1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 46 47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 49 #define RDIST_FLAGS_FORCE_NON_SHAREABLE (1 << 2) 50 51 #define RD_LOCAL_LPI_ENABLED BIT(0) 52 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 53 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 54 55 static u32 lpi_id_bits; 56 57 /* 58 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 59 * deal with (one configuration byte per interrupt). PENDBASE has to 60 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 61 */ 62 #define LPI_NRBITS lpi_id_bits 63 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 64 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 65 66 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 67 68 /* 69 * Collection structure - just an ID, and a redistributor address to 70 * ping. We use one per CPU as a bag of interrupts assigned to this 71 * CPU. 72 */ 73 struct its_collection { 74 u64 target_address; 75 u16 col_id; 76 }; 77 78 /* 79 * The ITS_BASER structure - contains memory information, cached 80 * value of BASER register configuration and ITS page size. 81 */ 82 struct its_baser { 83 void *base; 84 u64 val; 85 u32 order; 86 u32 psz; 87 }; 88 89 struct its_device; 90 91 /* 92 * The ITS structure - contains most of the infrastructure, with the 93 * top-level MSI domain, the command queue, the collections, and the 94 * list of devices writing to it. 95 * 96 * dev_alloc_lock has to be taken for device allocations, while the 97 * spinlock must be taken to parse data structures such as the device 98 * list. 99 */ 100 struct its_node { 101 raw_spinlock_t lock; 102 struct mutex dev_alloc_lock; 103 struct list_head entry; 104 void __iomem *base; 105 void __iomem *sgir_base; 106 phys_addr_t phys_base; 107 struct its_cmd_block *cmd_base; 108 struct its_cmd_block *cmd_write; 109 struct its_baser tables[GITS_BASER_NR_REGS]; 110 struct its_collection *collections; 111 struct fwnode_handle *fwnode_handle; 112 u64 (*get_msi_base)(struct its_device *its_dev); 113 u64 typer; 114 u64 cbaser_save; 115 u32 ctlr_save; 116 u32 mpidr; 117 struct list_head its_device_list; 118 u64 flags; 119 unsigned long list_nr; 120 int numa_node; 121 unsigned int msi_domain_flags; 122 u32 pre_its_base; /* for Socionext Synquacer */ 123 int vlpi_redist_offset; 124 }; 125 126 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 127 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 128 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 129 130 #define ITS_ITT_ALIGN SZ_256 131 132 /* The maximum number of VPEID bits supported by VLPI commands */ 133 #define ITS_MAX_VPEID_BITS \ 134 ({ \ 135 int nvpeid = 16; \ 136 if (gic_rdists->has_rvpeid && \ 137 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 138 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 139 GICD_TYPER2_VID); \ 140 \ 141 nvpeid; \ 142 }) 143 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 144 145 /* Convert page order to size in bytes */ 146 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 147 148 struct event_lpi_map { 149 unsigned long *lpi_map; 150 u16 *col_map; 151 irq_hw_number_t lpi_base; 152 int nr_lpis; 153 raw_spinlock_t vlpi_lock; 154 struct its_vm *vm; 155 struct its_vlpi_map *vlpi_maps; 156 int nr_vlpis; 157 }; 158 159 /* 160 * The ITS view of a device - belongs to an ITS, owns an interrupt 161 * translation table, and a list of interrupts. If it some of its 162 * LPIs are injected into a guest (GICv4), the event_map.vm field 163 * indicates which one. 164 */ 165 struct its_device { 166 struct list_head entry; 167 struct its_node *its; 168 struct event_lpi_map event_map; 169 void *itt; 170 u32 nr_ites; 171 u32 device_id; 172 bool shared; 173 }; 174 175 static struct { 176 raw_spinlock_t lock; 177 struct its_device *dev; 178 struct its_vpe **vpes; 179 int next_victim; 180 } vpe_proxy; 181 182 struct cpu_lpi_count { 183 atomic_t managed; 184 atomic_t unmanaged; 185 }; 186 187 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 188 189 static LIST_HEAD(its_nodes); 190 static DEFINE_RAW_SPINLOCK(its_lock); 191 static struct rdists *gic_rdists; 192 static struct irq_domain *its_parent; 193 194 static unsigned long its_list_map; 195 static u16 vmovp_seq_num; 196 static DEFINE_RAW_SPINLOCK(vmovp_lock); 197 198 static DEFINE_IDA(its_vpeid_ida); 199 200 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 201 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 202 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 203 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 204 205 /* 206 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 207 * always have vSGIs mapped. 208 */ 209 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 210 { 211 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 212 } 213 214 static u16 get_its_list(struct its_vm *vm) 215 { 216 struct its_node *its; 217 unsigned long its_list = 0; 218 219 list_for_each_entry(its, &its_nodes, entry) { 220 if (!is_v4(its)) 221 continue; 222 223 if (require_its_list_vmovp(vm, its)) 224 __set_bit(its->list_nr, &its_list); 225 } 226 227 return (u16)its_list; 228 } 229 230 static inline u32 its_get_event_id(struct irq_data *d) 231 { 232 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 233 return d->hwirq - its_dev->event_map.lpi_base; 234 } 235 236 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 237 u32 event) 238 { 239 struct its_node *its = its_dev->its; 240 241 return its->collections + its_dev->event_map.col_map[event]; 242 } 243 244 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 245 u32 event) 246 { 247 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 248 return NULL; 249 250 return &its_dev->event_map.vlpi_maps[event]; 251 } 252 253 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 254 { 255 if (irqd_is_forwarded_to_vcpu(d)) { 256 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 257 u32 event = its_get_event_id(d); 258 259 return dev_event_to_vlpi_map(its_dev, event); 260 } 261 262 return NULL; 263 } 264 265 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 266 { 267 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 268 return vpe->col_idx; 269 } 270 271 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 272 { 273 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 274 } 275 276 static struct irq_chip its_vpe_irq_chip; 277 278 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 279 { 280 struct its_vpe *vpe = NULL; 281 int cpu; 282 283 if (d->chip == &its_vpe_irq_chip) { 284 vpe = irq_data_get_irq_chip_data(d); 285 } else { 286 struct its_vlpi_map *map = get_vlpi_map(d); 287 if (map) 288 vpe = map->vpe; 289 } 290 291 if (vpe) { 292 cpu = vpe_to_cpuid_lock(vpe, flags); 293 } else { 294 /* Physical LPIs are already locked via the irq_desc lock */ 295 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 296 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 297 /* Keep GCC quiet... */ 298 *flags = 0; 299 } 300 301 return cpu; 302 } 303 304 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 305 { 306 struct its_vpe *vpe = NULL; 307 308 if (d->chip == &its_vpe_irq_chip) { 309 vpe = irq_data_get_irq_chip_data(d); 310 } else { 311 struct its_vlpi_map *map = get_vlpi_map(d); 312 if (map) 313 vpe = map->vpe; 314 } 315 316 if (vpe) 317 vpe_to_cpuid_unlock(vpe, flags); 318 } 319 320 static struct its_collection *valid_col(struct its_collection *col) 321 { 322 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 323 return NULL; 324 325 return col; 326 } 327 328 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 329 { 330 if (valid_col(its->collections + vpe->col_idx)) 331 return vpe; 332 333 return NULL; 334 } 335 336 /* 337 * ITS command descriptors - parameters to be encoded in a command 338 * block. 339 */ 340 struct its_cmd_desc { 341 union { 342 struct { 343 struct its_device *dev; 344 u32 event_id; 345 } its_inv_cmd; 346 347 struct { 348 struct its_device *dev; 349 u32 event_id; 350 } its_clear_cmd; 351 352 struct { 353 struct its_device *dev; 354 u32 event_id; 355 } its_int_cmd; 356 357 struct { 358 struct its_device *dev; 359 int valid; 360 } its_mapd_cmd; 361 362 struct { 363 struct its_collection *col; 364 int valid; 365 } its_mapc_cmd; 366 367 struct { 368 struct its_device *dev; 369 u32 phys_id; 370 u32 event_id; 371 } its_mapti_cmd; 372 373 struct { 374 struct its_device *dev; 375 struct its_collection *col; 376 u32 event_id; 377 } its_movi_cmd; 378 379 struct { 380 struct its_device *dev; 381 u32 event_id; 382 } its_discard_cmd; 383 384 struct { 385 struct its_collection *col; 386 } its_invall_cmd; 387 388 struct { 389 struct its_vpe *vpe; 390 } its_vinvall_cmd; 391 392 struct { 393 struct its_vpe *vpe; 394 struct its_collection *col; 395 bool valid; 396 } its_vmapp_cmd; 397 398 struct { 399 struct its_vpe *vpe; 400 struct its_device *dev; 401 u32 virt_id; 402 u32 event_id; 403 bool db_enabled; 404 } its_vmapti_cmd; 405 406 struct { 407 struct its_vpe *vpe; 408 struct its_device *dev; 409 u32 event_id; 410 bool db_enabled; 411 } its_vmovi_cmd; 412 413 struct { 414 struct its_vpe *vpe; 415 struct its_collection *col; 416 u16 seq_num; 417 u16 its_list; 418 } its_vmovp_cmd; 419 420 struct { 421 struct its_vpe *vpe; 422 } its_invdb_cmd; 423 424 struct { 425 struct its_vpe *vpe; 426 u8 sgi; 427 u8 priority; 428 bool enable; 429 bool group; 430 bool clear; 431 } its_vsgi_cmd; 432 }; 433 }; 434 435 /* 436 * The ITS command block, which is what the ITS actually parses. 437 */ 438 struct its_cmd_block { 439 union { 440 u64 raw_cmd[4]; 441 __le64 raw_cmd_le[4]; 442 }; 443 }; 444 445 #define ITS_CMD_QUEUE_SZ SZ_64K 446 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 447 448 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 449 struct its_cmd_block *, 450 struct its_cmd_desc *); 451 452 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 453 struct its_cmd_block *, 454 struct its_cmd_desc *); 455 456 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 457 { 458 u64 mask = GENMASK_ULL(h, l); 459 *raw_cmd &= ~mask; 460 *raw_cmd |= (val << l) & mask; 461 } 462 463 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 464 { 465 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 466 } 467 468 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 469 { 470 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 471 } 472 473 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 474 { 475 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 476 } 477 478 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 479 { 480 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 481 } 482 483 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 484 { 485 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 486 } 487 488 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 489 { 490 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 491 } 492 493 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 494 { 495 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 496 } 497 498 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 499 { 500 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 501 } 502 503 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 504 { 505 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 506 } 507 508 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 509 { 510 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 511 } 512 513 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 514 { 515 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 516 } 517 518 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 519 { 520 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 521 } 522 523 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 524 { 525 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 526 } 527 528 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 529 { 530 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 531 } 532 533 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 534 { 535 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 536 } 537 538 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 539 { 540 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 541 } 542 543 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 544 { 545 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 546 } 547 548 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 549 { 550 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 551 } 552 553 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 554 { 555 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 556 } 557 558 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 559 { 560 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 561 } 562 563 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 564 u32 vpe_db_lpi) 565 { 566 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 567 } 568 569 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 570 u32 vpe_db_lpi) 571 { 572 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 573 } 574 575 static void its_encode_db(struct its_cmd_block *cmd, bool db) 576 { 577 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 578 } 579 580 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 581 { 582 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 583 } 584 585 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 586 { 587 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 588 } 589 590 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 591 { 592 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 593 } 594 595 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 596 { 597 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 598 } 599 600 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 601 { 602 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 603 } 604 605 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 606 { 607 /* Let's fixup BE commands */ 608 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 609 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 610 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 611 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 612 } 613 614 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 615 struct its_cmd_block *cmd, 616 struct its_cmd_desc *desc) 617 { 618 unsigned long itt_addr; 619 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 620 621 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 622 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 623 624 its_encode_cmd(cmd, GITS_CMD_MAPD); 625 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 626 its_encode_size(cmd, size - 1); 627 its_encode_itt(cmd, itt_addr); 628 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 629 630 its_fixup_cmd(cmd); 631 632 return NULL; 633 } 634 635 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 636 struct its_cmd_block *cmd, 637 struct its_cmd_desc *desc) 638 { 639 its_encode_cmd(cmd, GITS_CMD_MAPC); 640 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 641 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 642 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 643 644 its_fixup_cmd(cmd); 645 646 return desc->its_mapc_cmd.col; 647 } 648 649 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 650 struct its_cmd_block *cmd, 651 struct its_cmd_desc *desc) 652 { 653 struct its_collection *col; 654 655 col = dev_event_to_col(desc->its_mapti_cmd.dev, 656 desc->its_mapti_cmd.event_id); 657 658 its_encode_cmd(cmd, GITS_CMD_MAPTI); 659 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 660 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 661 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 662 its_encode_collection(cmd, col->col_id); 663 664 its_fixup_cmd(cmd); 665 666 return valid_col(col); 667 } 668 669 static struct its_collection *its_build_movi_cmd(struct its_node *its, 670 struct its_cmd_block *cmd, 671 struct its_cmd_desc *desc) 672 { 673 struct its_collection *col; 674 675 col = dev_event_to_col(desc->its_movi_cmd.dev, 676 desc->its_movi_cmd.event_id); 677 678 its_encode_cmd(cmd, GITS_CMD_MOVI); 679 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 680 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 681 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 682 683 its_fixup_cmd(cmd); 684 685 return valid_col(col); 686 } 687 688 static struct its_collection *its_build_discard_cmd(struct its_node *its, 689 struct its_cmd_block *cmd, 690 struct its_cmd_desc *desc) 691 { 692 struct its_collection *col; 693 694 col = dev_event_to_col(desc->its_discard_cmd.dev, 695 desc->its_discard_cmd.event_id); 696 697 its_encode_cmd(cmd, GITS_CMD_DISCARD); 698 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 699 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 700 701 its_fixup_cmd(cmd); 702 703 return valid_col(col); 704 } 705 706 static struct its_collection *its_build_inv_cmd(struct its_node *its, 707 struct its_cmd_block *cmd, 708 struct its_cmd_desc *desc) 709 { 710 struct its_collection *col; 711 712 col = dev_event_to_col(desc->its_inv_cmd.dev, 713 desc->its_inv_cmd.event_id); 714 715 its_encode_cmd(cmd, GITS_CMD_INV); 716 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 717 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 718 719 its_fixup_cmd(cmd); 720 721 return valid_col(col); 722 } 723 724 static struct its_collection *its_build_int_cmd(struct its_node *its, 725 struct its_cmd_block *cmd, 726 struct its_cmd_desc *desc) 727 { 728 struct its_collection *col; 729 730 col = dev_event_to_col(desc->its_int_cmd.dev, 731 desc->its_int_cmd.event_id); 732 733 its_encode_cmd(cmd, GITS_CMD_INT); 734 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 735 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 736 737 its_fixup_cmd(cmd); 738 739 return valid_col(col); 740 } 741 742 static struct its_collection *its_build_clear_cmd(struct its_node *its, 743 struct its_cmd_block *cmd, 744 struct its_cmd_desc *desc) 745 { 746 struct its_collection *col; 747 748 col = dev_event_to_col(desc->its_clear_cmd.dev, 749 desc->its_clear_cmd.event_id); 750 751 its_encode_cmd(cmd, GITS_CMD_CLEAR); 752 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 753 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 754 755 its_fixup_cmd(cmd); 756 757 return valid_col(col); 758 } 759 760 static struct its_collection *its_build_invall_cmd(struct its_node *its, 761 struct its_cmd_block *cmd, 762 struct its_cmd_desc *desc) 763 { 764 its_encode_cmd(cmd, GITS_CMD_INVALL); 765 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 766 767 its_fixup_cmd(cmd); 768 769 return desc->its_invall_cmd.col; 770 } 771 772 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 773 struct its_cmd_block *cmd, 774 struct its_cmd_desc *desc) 775 { 776 its_encode_cmd(cmd, GITS_CMD_VINVALL); 777 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 778 779 its_fixup_cmd(cmd); 780 781 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 782 } 783 784 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 785 struct its_cmd_block *cmd, 786 struct its_cmd_desc *desc) 787 { 788 unsigned long vpt_addr, vconf_addr; 789 u64 target; 790 bool alloc; 791 792 its_encode_cmd(cmd, GITS_CMD_VMAPP); 793 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 794 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 795 796 if (!desc->its_vmapp_cmd.valid) { 797 if (is_v4_1(its)) { 798 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 799 its_encode_alloc(cmd, alloc); 800 } 801 802 goto out; 803 } 804 805 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 806 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 807 808 its_encode_target(cmd, target); 809 its_encode_vpt_addr(cmd, vpt_addr); 810 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 811 812 if (!is_v4_1(its)) 813 goto out; 814 815 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 816 817 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 818 819 its_encode_alloc(cmd, alloc); 820 821 /* 822 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 823 * to be unmapped first, and in this case, we may remap the vPE 824 * back while the VPT is not empty. So we can't assume that the 825 * VPT is empty on map. This is why we never advertise PTZ. 826 */ 827 its_encode_ptz(cmd, false); 828 its_encode_vconf_addr(cmd, vconf_addr); 829 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 830 831 out: 832 its_fixup_cmd(cmd); 833 834 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 835 } 836 837 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 838 struct its_cmd_block *cmd, 839 struct its_cmd_desc *desc) 840 { 841 u32 db; 842 843 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 844 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 845 else 846 db = 1023; 847 848 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 849 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 850 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 851 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 852 its_encode_db_phys_id(cmd, db); 853 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 854 855 its_fixup_cmd(cmd); 856 857 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 858 } 859 860 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 861 struct its_cmd_block *cmd, 862 struct its_cmd_desc *desc) 863 { 864 u32 db; 865 866 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 867 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 868 else 869 db = 1023; 870 871 its_encode_cmd(cmd, GITS_CMD_VMOVI); 872 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 873 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 874 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 875 its_encode_db_phys_id(cmd, db); 876 its_encode_db_valid(cmd, true); 877 878 its_fixup_cmd(cmd); 879 880 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 881 } 882 883 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 884 struct its_cmd_block *cmd, 885 struct its_cmd_desc *desc) 886 { 887 u64 target; 888 889 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 890 its_encode_cmd(cmd, GITS_CMD_VMOVP); 891 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 892 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 893 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 894 its_encode_target(cmd, target); 895 896 if (is_v4_1(its)) { 897 its_encode_db(cmd, true); 898 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 899 } 900 901 its_fixup_cmd(cmd); 902 903 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 904 } 905 906 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 907 struct its_cmd_block *cmd, 908 struct its_cmd_desc *desc) 909 { 910 struct its_vlpi_map *map; 911 912 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 913 desc->its_inv_cmd.event_id); 914 915 its_encode_cmd(cmd, GITS_CMD_INV); 916 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 917 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 918 919 its_fixup_cmd(cmd); 920 921 return valid_vpe(its, map->vpe); 922 } 923 924 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 925 struct its_cmd_block *cmd, 926 struct its_cmd_desc *desc) 927 { 928 struct its_vlpi_map *map; 929 930 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 931 desc->its_int_cmd.event_id); 932 933 its_encode_cmd(cmd, GITS_CMD_INT); 934 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 935 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 936 937 its_fixup_cmd(cmd); 938 939 return valid_vpe(its, map->vpe); 940 } 941 942 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 943 struct its_cmd_block *cmd, 944 struct its_cmd_desc *desc) 945 { 946 struct its_vlpi_map *map; 947 948 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 949 desc->its_clear_cmd.event_id); 950 951 its_encode_cmd(cmd, GITS_CMD_CLEAR); 952 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 953 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 954 955 its_fixup_cmd(cmd); 956 957 return valid_vpe(its, map->vpe); 958 } 959 960 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 961 struct its_cmd_block *cmd, 962 struct its_cmd_desc *desc) 963 { 964 if (WARN_ON(!is_v4_1(its))) 965 return NULL; 966 967 its_encode_cmd(cmd, GITS_CMD_INVDB); 968 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 969 970 its_fixup_cmd(cmd); 971 972 return valid_vpe(its, desc->its_invdb_cmd.vpe); 973 } 974 975 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 976 struct its_cmd_block *cmd, 977 struct its_cmd_desc *desc) 978 { 979 if (WARN_ON(!is_v4_1(its))) 980 return NULL; 981 982 its_encode_cmd(cmd, GITS_CMD_VSGI); 983 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 984 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 985 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 986 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 987 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 988 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 989 990 its_fixup_cmd(cmd); 991 992 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 993 } 994 995 static u64 its_cmd_ptr_to_offset(struct its_node *its, 996 struct its_cmd_block *ptr) 997 { 998 return (ptr - its->cmd_base) * sizeof(*ptr); 999 } 1000 1001 static int its_queue_full(struct its_node *its) 1002 { 1003 int widx; 1004 int ridx; 1005 1006 widx = its->cmd_write - its->cmd_base; 1007 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1008 1009 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1010 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1011 return 1; 1012 1013 return 0; 1014 } 1015 1016 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1017 { 1018 struct its_cmd_block *cmd; 1019 u32 count = 1000000; /* 1s! */ 1020 1021 while (its_queue_full(its)) { 1022 count--; 1023 if (!count) { 1024 pr_err_ratelimited("ITS queue not draining\n"); 1025 return NULL; 1026 } 1027 cpu_relax(); 1028 udelay(1); 1029 } 1030 1031 cmd = its->cmd_write++; 1032 1033 /* Handle queue wrapping */ 1034 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1035 its->cmd_write = its->cmd_base; 1036 1037 /* Clear command */ 1038 cmd->raw_cmd[0] = 0; 1039 cmd->raw_cmd[1] = 0; 1040 cmd->raw_cmd[2] = 0; 1041 cmd->raw_cmd[3] = 0; 1042 1043 return cmd; 1044 } 1045 1046 static struct its_cmd_block *its_post_commands(struct its_node *its) 1047 { 1048 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1049 1050 writel_relaxed(wr, its->base + GITS_CWRITER); 1051 1052 return its->cmd_write; 1053 } 1054 1055 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1056 { 1057 /* 1058 * Make sure the commands written to memory are observable by 1059 * the ITS. 1060 */ 1061 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1062 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1063 else 1064 dsb(ishst); 1065 } 1066 1067 static int its_wait_for_range_completion(struct its_node *its, 1068 u64 prev_idx, 1069 struct its_cmd_block *to) 1070 { 1071 u64 rd_idx, to_idx, linear_idx; 1072 u32 count = 1000000; /* 1s! */ 1073 1074 /* Linearize to_idx if the command set has wrapped around */ 1075 to_idx = its_cmd_ptr_to_offset(its, to); 1076 if (to_idx < prev_idx) 1077 to_idx += ITS_CMD_QUEUE_SZ; 1078 1079 linear_idx = prev_idx; 1080 1081 while (1) { 1082 s64 delta; 1083 1084 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1085 1086 /* 1087 * Compute the read pointer progress, taking the 1088 * potential wrap-around into account. 1089 */ 1090 delta = rd_idx - prev_idx; 1091 if (rd_idx < prev_idx) 1092 delta += ITS_CMD_QUEUE_SZ; 1093 1094 linear_idx += delta; 1095 if (linear_idx >= to_idx) 1096 break; 1097 1098 count--; 1099 if (!count) { 1100 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1101 to_idx, linear_idx); 1102 return -1; 1103 } 1104 prev_idx = rd_idx; 1105 cpu_relax(); 1106 udelay(1); 1107 } 1108 1109 return 0; 1110 } 1111 1112 /* Warning, macro hell follows */ 1113 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1114 void name(struct its_node *its, \ 1115 buildtype builder, \ 1116 struct its_cmd_desc *desc) \ 1117 { \ 1118 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1119 synctype *sync_obj; \ 1120 unsigned long flags; \ 1121 u64 rd_idx; \ 1122 \ 1123 raw_spin_lock_irqsave(&its->lock, flags); \ 1124 \ 1125 cmd = its_allocate_entry(its); \ 1126 if (!cmd) { /* We're soooooo screewed... */ \ 1127 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1128 return; \ 1129 } \ 1130 sync_obj = builder(its, cmd, desc); \ 1131 its_flush_cmd(its, cmd); \ 1132 \ 1133 if (sync_obj) { \ 1134 sync_cmd = its_allocate_entry(its); \ 1135 if (!sync_cmd) \ 1136 goto post; \ 1137 \ 1138 buildfn(its, sync_cmd, sync_obj); \ 1139 its_flush_cmd(its, sync_cmd); \ 1140 } \ 1141 \ 1142 post: \ 1143 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1144 next_cmd = its_post_commands(its); \ 1145 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1146 \ 1147 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1148 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1149 } 1150 1151 static void its_build_sync_cmd(struct its_node *its, 1152 struct its_cmd_block *sync_cmd, 1153 struct its_collection *sync_col) 1154 { 1155 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1156 its_encode_target(sync_cmd, sync_col->target_address); 1157 1158 its_fixup_cmd(sync_cmd); 1159 } 1160 1161 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1162 struct its_collection, its_build_sync_cmd) 1163 1164 static void its_build_vsync_cmd(struct its_node *its, 1165 struct its_cmd_block *sync_cmd, 1166 struct its_vpe *sync_vpe) 1167 { 1168 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1169 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1170 1171 its_fixup_cmd(sync_cmd); 1172 } 1173 1174 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1175 struct its_vpe, its_build_vsync_cmd) 1176 1177 static void its_send_int(struct its_device *dev, u32 event_id) 1178 { 1179 struct its_cmd_desc desc; 1180 1181 desc.its_int_cmd.dev = dev; 1182 desc.its_int_cmd.event_id = event_id; 1183 1184 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1185 } 1186 1187 static void its_send_clear(struct its_device *dev, u32 event_id) 1188 { 1189 struct its_cmd_desc desc; 1190 1191 desc.its_clear_cmd.dev = dev; 1192 desc.its_clear_cmd.event_id = event_id; 1193 1194 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1195 } 1196 1197 static void its_send_inv(struct its_device *dev, u32 event_id) 1198 { 1199 struct its_cmd_desc desc; 1200 1201 desc.its_inv_cmd.dev = dev; 1202 desc.its_inv_cmd.event_id = event_id; 1203 1204 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1205 } 1206 1207 static void its_send_mapd(struct its_device *dev, int valid) 1208 { 1209 struct its_cmd_desc desc; 1210 1211 desc.its_mapd_cmd.dev = dev; 1212 desc.its_mapd_cmd.valid = !!valid; 1213 1214 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1215 } 1216 1217 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1218 int valid) 1219 { 1220 struct its_cmd_desc desc; 1221 1222 desc.its_mapc_cmd.col = col; 1223 desc.its_mapc_cmd.valid = !!valid; 1224 1225 its_send_single_command(its, its_build_mapc_cmd, &desc); 1226 } 1227 1228 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1229 { 1230 struct its_cmd_desc desc; 1231 1232 desc.its_mapti_cmd.dev = dev; 1233 desc.its_mapti_cmd.phys_id = irq_id; 1234 desc.its_mapti_cmd.event_id = id; 1235 1236 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1237 } 1238 1239 static void its_send_movi(struct its_device *dev, 1240 struct its_collection *col, u32 id) 1241 { 1242 struct its_cmd_desc desc; 1243 1244 desc.its_movi_cmd.dev = dev; 1245 desc.its_movi_cmd.col = col; 1246 desc.its_movi_cmd.event_id = id; 1247 1248 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1249 } 1250 1251 static void its_send_discard(struct its_device *dev, u32 id) 1252 { 1253 struct its_cmd_desc desc; 1254 1255 desc.its_discard_cmd.dev = dev; 1256 desc.its_discard_cmd.event_id = id; 1257 1258 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1259 } 1260 1261 static void its_send_invall(struct its_node *its, struct its_collection *col) 1262 { 1263 struct its_cmd_desc desc; 1264 1265 desc.its_invall_cmd.col = col; 1266 1267 its_send_single_command(its, its_build_invall_cmd, &desc); 1268 } 1269 1270 static void its_send_vmapti(struct its_device *dev, u32 id) 1271 { 1272 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1273 struct its_cmd_desc desc; 1274 1275 desc.its_vmapti_cmd.vpe = map->vpe; 1276 desc.its_vmapti_cmd.dev = dev; 1277 desc.its_vmapti_cmd.virt_id = map->vintid; 1278 desc.its_vmapti_cmd.event_id = id; 1279 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1280 1281 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1282 } 1283 1284 static void its_send_vmovi(struct its_device *dev, u32 id) 1285 { 1286 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1287 struct its_cmd_desc desc; 1288 1289 desc.its_vmovi_cmd.vpe = map->vpe; 1290 desc.its_vmovi_cmd.dev = dev; 1291 desc.its_vmovi_cmd.event_id = id; 1292 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1293 1294 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1295 } 1296 1297 static void its_send_vmapp(struct its_node *its, 1298 struct its_vpe *vpe, bool valid) 1299 { 1300 struct its_cmd_desc desc; 1301 1302 desc.its_vmapp_cmd.vpe = vpe; 1303 desc.its_vmapp_cmd.valid = valid; 1304 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1305 1306 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1307 } 1308 1309 static void its_send_vmovp(struct its_vpe *vpe) 1310 { 1311 struct its_cmd_desc desc = {}; 1312 struct its_node *its; 1313 unsigned long flags; 1314 int col_id = vpe->col_idx; 1315 1316 desc.its_vmovp_cmd.vpe = vpe; 1317 1318 if (!its_list_map) { 1319 its = list_first_entry(&its_nodes, struct its_node, entry); 1320 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1321 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1322 return; 1323 } 1324 1325 /* 1326 * Yet another marvel of the architecture. If using the 1327 * its_list "feature", we need to make sure that all ITSs 1328 * receive all VMOVP commands in the same order. The only way 1329 * to guarantee this is to make vmovp a serialization point. 1330 * 1331 * Wall <-- Head. 1332 */ 1333 raw_spin_lock_irqsave(&vmovp_lock, flags); 1334 1335 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1336 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1337 1338 /* Emit VMOVPs */ 1339 list_for_each_entry(its, &its_nodes, entry) { 1340 if (!is_v4(its)) 1341 continue; 1342 1343 if (!require_its_list_vmovp(vpe->its_vm, its)) 1344 continue; 1345 1346 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1347 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1348 } 1349 1350 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1351 } 1352 1353 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1354 { 1355 struct its_cmd_desc desc; 1356 1357 desc.its_vinvall_cmd.vpe = vpe; 1358 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1359 } 1360 1361 static void its_send_vinv(struct its_device *dev, u32 event_id) 1362 { 1363 struct its_cmd_desc desc; 1364 1365 /* 1366 * There is no real VINV command. This is just a normal INV, 1367 * with a VSYNC instead of a SYNC. 1368 */ 1369 desc.its_inv_cmd.dev = dev; 1370 desc.its_inv_cmd.event_id = event_id; 1371 1372 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1373 } 1374 1375 static void its_send_vint(struct its_device *dev, u32 event_id) 1376 { 1377 struct its_cmd_desc desc; 1378 1379 /* 1380 * There is no real VINT command. This is just a normal INT, 1381 * with a VSYNC instead of a SYNC. 1382 */ 1383 desc.its_int_cmd.dev = dev; 1384 desc.its_int_cmd.event_id = event_id; 1385 1386 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1387 } 1388 1389 static void its_send_vclear(struct its_device *dev, u32 event_id) 1390 { 1391 struct its_cmd_desc desc; 1392 1393 /* 1394 * There is no real VCLEAR command. This is just a normal CLEAR, 1395 * with a VSYNC instead of a SYNC. 1396 */ 1397 desc.its_clear_cmd.dev = dev; 1398 desc.its_clear_cmd.event_id = event_id; 1399 1400 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1401 } 1402 1403 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1404 { 1405 struct its_cmd_desc desc; 1406 1407 desc.its_invdb_cmd.vpe = vpe; 1408 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1409 } 1410 1411 /* 1412 * irqchip functions - assumes MSI, mostly. 1413 */ 1414 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1415 { 1416 struct its_vlpi_map *map = get_vlpi_map(d); 1417 irq_hw_number_t hwirq; 1418 void *va; 1419 u8 *cfg; 1420 1421 if (map) { 1422 va = page_address(map->vm->vprop_page); 1423 hwirq = map->vintid; 1424 1425 /* Remember the updated property */ 1426 map->properties &= ~clr; 1427 map->properties |= set | LPI_PROP_GROUP1; 1428 } else { 1429 va = gic_rdists->prop_table_va; 1430 hwirq = d->hwirq; 1431 } 1432 1433 cfg = va + hwirq - 8192; 1434 *cfg &= ~clr; 1435 *cfg |= set | LPI_PROP_GROUP1; 1436 1437 /* 1438 * Make the above write visible to the redistributors. 1439 * And yes, we're flushing exactly: One. Single. Byte. 1440 * Humpf... 1441 */ 1442 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1443 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1444 else 1445 dsb(ishst); 1446 } 1447 1448 static void wait_for_syncr(void __iomem *rdbase) 1449 { 1450 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1451 cpu_relax(); 1452 } 1453 1454 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1455 { 1456 void __iomem *rdbase; 1457 unsigned long flags; 1458 int cpu; 1459 1460 /* Target the redistributor this LPI is currently routed to */ 1461 cpu = irq_to_cpuid_lock(d, &flags); 1462 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1463 1464 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1465 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1466 wait_for_syncr(rdbase); 1467 1468 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1469 irq_to_cpuid_unlock(d, flags); 1470 } 1471 1472 static void direct_lpi_inv(struct irq_data *d) 1473 { 1474 struct its_vlpi_map *map = get_vlpi_map(d); 1475 u64 val; 1476 1477 if (map) { 1478 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1479 1480 WARN_ON(!is_v4_1(its_dev->its)); 1481 1482 val = GICR_INVLPIR_V; 1483 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1484 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1485 } else { 1486 val = d->hwirq; 1487 } 1488 1489 __direct_lpi_inv(d, val); 1490 } 1491 1492 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1493 { 1494 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1495 1496 lpi_write_config(d, clr, set); 1497 if (gic_rdists->has_direct_lpi && 1498 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1499 direct_lpi_inv(d); 1500 else if (!irqd_is_forwarded_to_vcpu(d)) 1501 its_send_inv(its_dev, its_get_event_id(d)); 1502 else 1503 its_send_vinv(its_dev, its_get_event_id(d)); 1504 } 1505 1506 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1507 { 1508 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1509 u32 event = its_get_event_id(d); 1510 struct its_vlpi_map *map; 1511 1512 /* 1513 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1514 * here. 1515 */ 1516 if (is_v4_1(its_dev->its)) 1517 return; 1518 1519 map = dev_event_to_vlpi_map(its_dev, event); 1520 1521 if (map->db_enabled == enable) 1522 return; 1523 1524 map->db_enabled = enable; 1525 1526 /* 1527 * More fun with the architecture: 1528 * 1529 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1530 * value or to 1023, depending on the enable bit. But that 1531 * would be issuing a mapping for an /existing/ DevID+EventID 1532 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1533 * to the /same/ vPE, using this opportunity to adjust the 1534 * doorbell. Mouahahahaha. We loves it, Precious. 1535 */ 1536 its_send_vmovi(its_dev, event); 1537 } 1538 1539 static void its_mask_irq(struct irq_data *d) 1540 { 1541 if (irqd_is_forwarded_to_vcpu(d)) 1542 its_vlpi_set_doorbell(d, false); 1543 1544 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1545 } 1546 1547 static void its_unmask_irq(struct irq_data *d) 1548 { 1549 if (irqd_is_forwarded_to_vcpu(d)) 1550 its_vlpi_set_doorbell(d, true); 1551 1552 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1553 } 1554 1555 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1556 { 1557 if (irqd_affinity_is_managed(d)) 1558 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1559 1560 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1561 } 1562 1563 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1564 { 1565 if (irqd_affinity_is_managed(d)) 1566 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1567 else 1568 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1569 } 1570 1571 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1572 { 1573 if (irqd_affinity_is_managed(d)) 1574 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1575 else 1576 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1577 } 1578 1579 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1580 const struct cpumask *cpu_mask) 1581 { 1582 unsigned int cpu = nr_cpu_ids, tmp; 1583 int count = S32_MAX; 1584 1585 for_each_cpu(tmp, cpu_mask) { 1586 int this_count = its_read_lpi_count(d, tmp); 1587 if (this_count < count) { 1588 cpu = tmp; 1589 count = this_count; 1590 } 1591 } 1592 1593 return cpu; 1594 } 1595 1596 /* 1597 * As suggested by Thomas Gleixner in: 1598 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1599 */ 1600 static int its_select_cpu(struct irq_data *d, 1601 const struct cpumask *aff_mask) 1602 { 1603 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1604 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1605 static struct cpumask __tmpmask; 1606 struct cpumask *tmpmask; 1607 unsigned long flags; 1608 int cpu, node; 1609 node = its_dev->its->numa_node; 1610 tmpmask = &__tmpmask; 1611 1612 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1613 1614 if (!irqd_affinity_is_managed(d)) { 1615 /* First try the NUMA node */ 1616 if (node != NUMA_NO_NODE) { 1617 /* 1618 * Try the intersection of the affinity mask and the 1619 * node mask (and the online mask, just to be safe). 1620 */ 1621 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1622 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1623 1624 /* 1625 * Ideally, we would check if the mask is empty, and 1626 * try again on the full node here. 1627 * 1628 * But it turns out that the way ACPI describes the 1629 * affinity for ITSs only deals about memory, and 1630 * not target CPUs, so it cannot describe a single 1631 * ITS placed next to two NUMA nodes. 1632 * 1633 * Instead, just fallback on the online mask. This 1634 * diverges from Thomas' suggestion above. 1635 */ 1636 cpu = cpumask_pick_least_loaded(d, tmpmask); 1637 if (cpu < nr_cpu_ids) 1638 goto out; 1639 1640 /* If we can't cross sockets, give up */ 1641 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1642 goto out; 1643 1644 /* If the above failed, expand the search */ 1645 } 1646 1647 /* Try the intersection of the affinity and online masks */ 1648 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1649 1650 /* If that doesn't fly, the online mask is the last resort */ 1651 if (cpumask_empty(tmpmask)) 1652 cpumask_copy(tmpmask, cpu_online_mask); 1653 1654 cpu = cpumask_pick_least_loaded(d, tmpmask); 1655 } else { 1656 cpumask_copy(tmpmask, aff_mask); 1657 1658 /* If we cannot cross sockets, limit the search to that node */ 1659 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1660 node != NUMA_NO_NODE) 1661 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1662 1663 cpu = cpumask_pick_least_loaded(d, tmpmask); 1664 } 1665 out: 1666 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1667 1668 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1669 return cpu; 1670 } 1671 1672 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1673 bool force) 1674 { 1675 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1676 struct its_collection *target_col; 1677 u32 id = its_get_event_id(d); 1678 int cpu, prev_cpu; 1679 1680 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1681 if (irqd_is_forwarded_to_vcpu(d)) 1682 return -EINVAL; 1683 1684 prev_cpu = its_dev->event_map.col_map[id]; 1685 its_dec_lpi_count(d, prev_cpu); 1686 1687 if (!force) 1688 cpu = its_select_cpu(d, mask_val); 1689 else 1690 cpu = cpumask_pick_least_loaded(d, mask_val); 1691 1692 if (cpu < 0 || cpu >= nr_cpu_ids) 1693 goto err; 1694 1695 /* don't set the affinity when the target cpu is same as current one */ 1696 if (cpu != prev_cpu) { 1697 target_col = &its_dev->its->collections[cpu]; 1698 its_send_movi(its_dev, target_col, id); 1699 its_dev->event_map.col_map[id] = cpu; 1700 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1701 } 1702 1703 its_inc_lpi_count(d, cpu); 1704 1705 return IRQ_SET_MASK_OK_DONE; 1706 1707 err: 1708 its_inc_lpi_count(d, prev_cpu); 1709 return -EINVAL; 1710 } 1711 1712 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1713 { 1714 struct its_node *its = its_dev->its; 1715 1716 return its->phys_base + GITS_TRANSLATER; 1717 } 1718 1719 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1720 { 1721 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1722 struct its_node *its; 1723 u64 addr; 1724 1725 its = its_dev->its; 1726 addr = its->get_msi_base(its_dev); 1727 1728 msg->address_lo = lower_32_bits(addr); 1729 msg->address_hi = upper_32_bits(addr); 1730 msg->data = its_get_event_id(d); 1731 1732 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1733 } 1734 1735 static int its_irq_set_irqchip_state(struct irq_data *d, 1736 enum irqchip_irq_state which, 1737 bool state) 1738 { 1739 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1740 u32 event = its_get_event_id(d); 1741 1742 if (which != IRQCHIP_STATE_PENDING) 1743 return -EINVAL; 1744 1745 if (irqd_is_forwarded_to_vcpu(d)) { 1746 if (state) 1747 its_send_vint(its_dev, event); 1748 else 1749 its_send_vclear(its_dev, event); 1750 } else { 1751 if (state) 1752 its_send_int(its_dev, event); 1753 else 1754 its_send_clear(its_dev, event); 1755 } 1756 1757 return 0; 1758 } 1759 1760 static int its_irq_retrigger(struct irq_data *d) 1761 { 1762 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1763 } 1764 1765 /* 1766 * Two favourable cases: 1767 * 1768 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1769 * for vSGI delivery 1770 * 1771 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1772 * and we're better off mapping all VPEs always 1773 * 1774 * If neither (a) nor (b) is true, then we map vPEs on demand. 1775 * 1776 */ 1777 static bool gic_requires_eager_mapping(void) 1778 { 1779 if (!its_list_map || gic_rdists->has_rvpeid) 1780 return true; 1781 1782 return false; 1783 } 1784 1785 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1786 { 1787 unsigned long flags; 1788 1789 if (gic_requires_eager_mapping()) 1790 return; 1791 1792 raw_spin_lock_irqsave(&vmovp_lock, flags); 1793 1794 /* 1795 * If the VM wasn't mapped yet, iterate over the vpes and get 1796 * them mapped now. 1797 */ 1798 vm->vlpi_count[its->list_nr]++; 1799 1800 if (vm->vlpi_count[its->list_nr] == 1) { 1801 int i; 1802 1803 for (i = 0; i < vm->nr_vpes; i++) { 1804 struct its_vpe *vpe = vm->vpes[i]; 1805 struct irq_data *d = irq_get_irq_data(vpe->irq); 1806 1807 /* Map the VPE to the first possible CPU */ 1808 vpe->col_idx = cpumask_first(cpu_online_mask); 1809 its_send_vmapp(its, vpe, true); 1810 its_send_vinvall(its, vpe); 1811 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1812 } 1813 } 1814 1815 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1816 } 1817 1818 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1819 { 1820 unsigned long flags; 1821 1822 /* Not using the ITS list? Everything is always mapped. */ 1823 if (gic_requires_eager_mapping()) 1824 return; 1825 1826 raw_spin_lock_irqsave(&vmovp_lock, flags); 1827 1828 if (!--vm->vlpi_count[its->list_nr]) { 1829 int i; 1830 1831 for (i = 0; i < vm->nr_vpes; i++) 1832 its_send_vmapp(its, vm->vpes[i], false); 1833 } 1834 1835 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1836 } 1837 1838 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1839 { 1840 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1841 u32 event = its_get_event_id(d); 1842 int ret = 0; 1843 1844 if (!info->map) 1845 return -EINVAL; 1846 1847 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1848 1849 if (!its_dev->event_map.vm) { 1850 struct its_vlpi_map *maps; 1851 1852 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1853 GFP_ATOMIC); 1854 if (!maps) { 1855 ret = -ENOMEM; 1856 goto out; 1857 } 1858 1859 its_dev->event_map.vm = info->map->vm; 1860 its_dev->event_map.vlpi_maps = maps; 1861 } else if (its_dev->event_map.vm != info->map->vm) { 1862 ret = -EINVAL; 1863 goto out; 1864 } 1865 1866 /* Get our private copy of the mapping information */ 1867 its_dev->event_map.vlpi_maps[event] = *info->map; 1868 1869 if (irqd_is_forwarded_to_vcpu(d)) { 1870 /* Already mapped, move it around */ 1871 its_send_vmovi(its_dev, event); 1872 } else { 1873 /* Ensure all the VPEs are mapped on this ITS */ 1874 its_map_vm(its_dev->its, info->map->vm); 1875 1876 /* 1877 * Flag the interrupt as forwarded so that we can 1878 * start poking the virtual property table. 1879 */ 1880 irqd_set_forwarded_to_vcpu(d); 1881 1882 /* Write out the property to the prop table */ 1883 lpi_write_config(d, 0xff, info->map->properties); 1884 1885 /* Drop the physical mapping */ 1886 its_send_discard(its_dev, event); 1887 1888 /* and install the virtual one */ 1889 its_send_vmapti(its_dev, event); 1890 1891 /* Increment the number of VLPIs */ 1892 its_dev->event_map.nr_vlpis++; 1893 } 1894 1895 out: 1896 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1897 return ret; 1898 } 1899 1900 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1901 { 1902 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1903 struct its_vlpi_map *map; 1904 int ret = 0; 1905 1906 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1907 1908 map = get_vlpi_map(d); 1909 1910 if (!its_dev->event_map.vm || !map) { 1911 ret = -EINVAL; 1912 goto out; 1913 } 1914 1915 /* Copy our mapping information to the incoming request */ 1916 *info->map = *map; 1917 1918 out: 1919 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1920 return ret; 1921 } 1922 1923 static int its_vlpi_unmap(struct irq_data *d) 1924 { 1925 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1926 u32 event = its_get_event_id(d); 1927 int ret = 0; 1928 1929 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1930 1931 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1932 ret = -EINVAL; 1933 goto out; 1934 } 1935 1936 /* Drop the virtual mapping */ 1937 its_send_discard(its_dev, event); 1938 1939 /* and restore the physical one */ 1940 irqd_clr_forwarded_to_vcpu(d); 1941 its_send_mapti(its_dev, d->hwirq, event); 1942 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1943 LPI_PROP_ENABLED | 1944 LPI_PROP_GROUP1)); 1945 1946 /* Potentially unmap the VM from this ITS */ 1947 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1948 1949 /* 1950 * Drop the refcount and make the device available again if 1951 * this was the last VLPI. 1952 */ 1953 if (!--its_dev->event_map.nr_vlpis) { 1954 its_dev->event_map.vm = NULL; 1955 kfree(its_dev->event_map.vlpi_maps); 1956 } 1957 1958 out: 1959 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1960 return ret; 1961 } 1962 1963 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1964 { 1965 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1966 1967 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1968 return -EINVAL; 1969 1970 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1971 lpi_update_config(d, 0xff, info->config); 1972 else 1973 lpi_write_config(d, 0xff, info->config); 1974 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1975 1976 return 0; 1977 } 1978 1979 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1980 { 1981 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1982 struct its_cmd_info *info = vcpu_info; 1983 1984 /* Need a v4 ITS */ 1985 if (!is_v4(its_dev->its)) 1986 return -EINVAL; 1987 1988 /* Unmap request? */ 1989 if (!info) 1990 return its_vlpi_unmap(d); 1991 1992 switch (info->cmd_type) { 1993 case MAP_VLPI: 1994 return its_vlpi_map(d, info); 1995 1996 case GET_VLPI: 1997 return its_vlpi_get(d, info); 1998 1999 case PROP_UPDATE_VLPI: 2000 case PROP_UPDATE_AND_INV_VLPI: 2001 return its_vlpi_prop_update(d, info); 2002 2003 default: 2004 return -EINVAL; 2005 } 2006 } 2007 2008 static struct irq_chip its_irq_chip = { 2009 .name = "ITS", 2010 .irq_mask = its_mask_irq, 2011 .irq_unmask = its_unmask_irq, 2012 .irq_eoi = irq_chip_eoi_parent, 2013 .irq_set_affinity = its_set_affinity, 2014 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2015 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2016 .irq_retrigger = its_irq_retrigger, 2017 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2018 }; 2019 2020 2021 /* 2022 * How we allocate LPIs: 2023 * 2024 * lpi_range_list contains ranges of LPIs that are to available to 2025 * allocate from. To allocate LPIs, just pick the first range that 2026 * fits the required allocation, and reduce it by the required 2027 * amount. Once empty, remove the range from the list. 2028 * 2029 * To free a range of LPIs, add a free range to the list, sort it and 2030 * merge the result if the new range happens to be adjacent to an 2031 * already free block. 2032 * 2033 * The consequence of the above is that allocation is cost is low, but 2034 * freeing is expensive. We assumes that freeing rarely occurs. 2035 */ 2036 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2037 2038 static DEFINE_MUTEX(lpi_range_lock); 2039 static LIST_HEAD(lpi_range_list); 2040 2041 struct lpi_range { 2042 struct list_head entry; 2043 u32 base_id; 2044 u32 span; 2045 }; 2046 2047 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2048 { 2049 struct lpi_range *range; 2050 2051 range = kmalloc(sizeof(*range), GFP_KERNEL); 2052 if (range) { 2053 range->base_id = base; 2054 range->span = span; 2055 } 2056 2057 return range; 2058 } 2059 2060 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2061 { 2062 struct lpi_range *range, *tmp; 2063 int err = -ENOSPC; 2064 2065 mutex_lock(&lpi_range_lock); 2066 2067 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2068 if (range->span >= nr_lpis) { 2069 *base = range->base_id; 2070 range->base_id += nr_lpis; 2071 range->span -= nr_lpis; 2072 2073 if (range->span == 0) { 2074 list_del(&range->entry); 2075 kfree(range); 2076 } 2077 2078 err = 0; 2079 break; 2080 } 2081 } 2082 2083 mutex_unlock(&lpi_range_lock); 2084 2085 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2086 return err; 2087 } 2088 2089 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2090 { 2091 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2092 return; 2093 if (a->base_id + a->span != b->base_id) 2094 return; 2095 b->base_id = a->base_id; 2096 b->span += a->span; 2097 list_del(&a->entry); 2098 kfree(a); 2099 } 2100 2101 static int free_lpi_range(u32 base, u32 nr_lpis) 2102 { 2103 struct lpi_range *new, *old; 2104 2105 new = mk_lpi_range(base, nr_lpis); 2106 if (!new) 2107 return -ENOMEM; 2108 2109 mutex_lock(&lpi_range_lock); 2110 2111 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2112 if (old->base_id < base) 2113 break; 2114 } 2115 /* 2116 * old is the last element with ->base_id smaller than base, 2117 * so new goes right after it. If there are no elements with 2118 * ->base_id smaller than base, &old->entry ends up pointing 2119 * at the head of the list, and inserting new it the start of 2120 * the list is the right thing to do in that case as well. 2121 */ 2122 list_add(&new->entry, &old->entry); 2123 /* 2124 * Now check if we can merge with the preceding and/or 2125 * following ranges. 2126 */ 2127 merge_lpi_ranges(old, new); 2128 merge_lpi_ranges(new, list_next_entry(new, entry)); 2129 2130 mutex_unlock(&lpi_range_lock); 2131 return 0; 2132 } 2133 2134 static int __init its_lpi_init(u32 id_bits) 2135 { 2136 u32 lpis = (1UL << id_bits) - 8192; 2137 u32 numlpis; 2138 int err; 2139 2140 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2141 2142 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2143 lpis = numlpis; 2144 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2145 lpis); 2146 } 2147 2148 /* 2149 * Initializing the allocator is just the same as freeing the 2150 * full range of LPIs. 2151 */ 2152 err = free_lpi_range(8192, lpis); 2153 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2154 return err; 2155 } 2156 2157 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2158 { 2159 unsigned long *bitmap = NULL; 2160 int err = 0; 2161 2162 do { 2163 err = alloc_lpi_range(nr_irqs, base); 2164 if (!err) 2165 break; 2166 2167 nr_irqs /= 2; 2168 } while (nr_irqs > 0); 2169 2170 if (!nr_irqs) 2171 err = -ENOSPC; 2172 2173 if (err) 2174 goto out; 2175 2176 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2177 if (!bitmap) 2178 goto out; 2179 2180 *nr_ids = nr_irqs; 2181 2182 out: 2183 if (!bitmap) 2184 *base = *nr_ids = 0; 2185 2186 return bitmap; 2187 } 2188 2189 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2190 { 2191 WARN_ON(free_lpi_range(base, nr_ids)); 2192 bitmap_free(bitmap); 2193 } 2194 2195 static void gic_reset_prop_table(void *va) 2196 { 2197 /* Priority 0xa0, Group-1, disabled */ 2198 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2199 2200 /* Make sure the GIC will observe the written configuration */ 2201 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2202 } 2203 2204 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2205 { 2206 struct page *prop_page; 2207 2208 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2209 if (!prop_page) 2210 return NULL; 2211 2212 gic_reset_prop_table(page_address(prop_page)); 2213 2214 return prop_page; 2215 } 2216 2217 static void its_free_prop_table(struct page *prop_page) 2218 { 2219 free_pages((unsigned long)page_address(prop_page), 2220 get_order(LPI_PROPBASE_SZ)); 2221 } 2222 2223 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2224 { 2225 phys_addr_t start, end, addr_end; 2226 u64 i; 2227 2228 /* 2229 * We don't bother checking for a kdump kernel as by 2230 * construction, the LPI tables are out of this kernel's 2231 * memory map. 2232 */ 2233 if (is_kdump_kernel()) 2234 return true; 2235 2236 addr_end = addr + size - 1; 2237 2238 for_each_reserved_mem_range(i, &start, &end) { 2239 if (addr >= start && addr_end <= end) 2240 return true; 2241 } 2242 2243 /* Not found, not a good sign... */ 2244 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2245 &addr, &addr_end); 2246 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2247 return false; 2248 } 2249 2250 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2251 { 2252 if (efi_enabled(EFI_CONFIG_TABLES)) 2253 return efi_mem_reserve_persistent(addr, size); 2254 2255 return 0; 2256 } 2257 2258 static int __init its_setup_lpi_prop_table(void) 2259 { 2260 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2261 u64 val; 2262 2263 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2264 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2265 2266 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2267 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2268 LPI_PROPBASE_SZ, 2269 MEMREMAP_WB); 2270 gic_reset_prop_table(gic_rdists->prop_table_va); 2271 } else { 2272 struct page *page; 2273 2274 lpi_id_bits = min_t(u32, 2275 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2276 ITS_MAX_LPI_NRBITS); 2277 page = its_allocate_prop_table(GFP_NOWAIT); 2278 if (!page) { 2279 pr_err("Failed to allocate PROPBASE\n"); 2280 return -ENOMEM; 2281 } 2282 2283 gic_rdists->prop_table_pa = page_to_phys(page); 2284 gic_rdists->prop_table_va = page_address(page); 2285 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2286 LPI_PROPBASE_SZ)); 2287 } 2288 2289 pr_info("GICv3: using LPI property table @%pa\n", 2290 &gic_rdists->prop_table_pa); 2291 2292 return its_lpi_init(lpi_id_bits); 2293 } 2294 2295 static const char *its_base_type_string[] = { 2296 [GITS_BASER_TYPE_DEVICE] = "Devices", 2297 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2298 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2299 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2300 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2301 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2302 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2303 }; 2304 2305 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2306 { 2307 u32 idx = baser - its->tables; 2308 2309 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2310 } 2311 2312 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2313 u64 val) 2314 { 2315 u32 idx = baser - its->tables; 2316 2317 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2318 baser->val = its_read_baser(its, baser); 2319 } 2320 2321 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2322 u64 cache, u64 shr, u32 order, bool indirect) 2323 { 2324 u64 val = its_read_baser(its, baser); 2325 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2326 u64 type = GITS_BASER_TYPE(val); 2327 u64 baser_phys, tmp; 2328 u32 alloc_pages, psz; 2329 struct page *page; 2330 void *base; 2331 2332 psz = baser->psz; 2333 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2334 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2335 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2336 &its->phys_base, its_base_type_string[type], 2337 alloc_pages, GITS_BASER_PAGES_MAX); 2338 alloc_pages = GITS_BASER_PAGES_MAX; 2339 order = get_order(GITS_BASER_PAGES_MAX * psz); 2340 } 2341 2342 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2343 if (!page) 2344 return -ENOMEM; 2345 2346 base = (void *)page_address(page); 2347 baser_phys = virt_to_phys(base); 2348 2349 /* Check if the physical address of the memory is above 48bits */ 2350 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2351 2352 /* 52bit PA is supported only when PageSize=64K */ 2353 if (psz != SZ_64K) { 2354 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2355 free_pages((unsigned long)base, order); 2356 return -ENXIO; 2357 } 2358 2359 /* Convert 52bit PA to 48bit field */ 2360 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2361 } 2362 2363 retry_baser: 2364 val = (baser_phys | 2365 (type << GITS_BASER_TYPE_SHIFT) | 2366 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2367 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2368 cache | 2369 shr | 2370 GITS_BASER_VALID); 2371 2372 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2373 2374 switch (psz) { 2375 case SZ_4K: 2376 val |= GITS_BASER_PAGE_SIZE_4K; 2377 break; 2378 case SZ_16K: 2379 val |= GITS_BASER_PAGE_SIZE_16K; 2380 break; 2381 case SZ_64K: 2382 val |= GITS_BASER_PAGE_SIZE_64K; 2383 break; 2384 } 2385 2386 its_write_baser(its, baser, val); 2387 tmp = baser->val; 2388 2389 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 2390 tmp &= ~GITS_BASER_SHAREABILITY_MASK; 2391 2392 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2393 /* 2394 * Shareability didn't stick. Just use 2395 * whatever the read reported, which is likely 2396 * to be the only thing this redistributor 2397 * supports. If that's zero, make it 2398 * non-cacheable as well. 2399 */ 2400 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2401 if (!shr) { 2402 cache = GITS_BASER_nC; 2403 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2404 } 2405 goto retry_baser; 2406 } 2407 2408 if (val != tmp) { 2409 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2410 &its->phys_base, its_base_type_string[type], 2411 val, tmp); 2412 free_pages((unsigned long)base, order); 2413 return -ENXIO; 2414 } 2415 2416 baser->order = order; 2417 baser->base = base; 2418 baser->psz = psz; 2419 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2420 2421 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2422 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2423 its_base_type_string[type], 2424 (unsigned long)virt_to_phys(base), 2425 indirect ? "indirect" : "flat", (int)esz, 2426 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2427 2428 return 0; 2429 } 2430 2431 static bool its_parse_indirect_baser(struct its_node *its, 2432 struct its_baser *baser, 2433 u32 *order, u32 ids) 2434 { 2435 u64 tmp = its_read_baser(its, baser); 2436 u64 type = GITS_BASER_TYPE(tmp); 2437 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2438 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2439 u32 new_order = *order; 2440 u32 psz = baser->psz; 2441 bool indirect = false; 2442 2443 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2444 if ((esz << ids) > (psz * 2)) { 2445 /* 2446 * Find out whether hw supports a single or two-level table by 2447 * table by reading bit at offset '62' after writing '1' to it. 2448 */ 2449 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2450 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2451 2452 if (indirect) { 2453 /* 2454 * The size of the lvl2 table is equal to ITS page size 2455 * which is 'psz'. For computing lvl1 table size, 2456 * subtract ID bits that sparse lvl2 table from 'ids' 2457 * which is reported by ITS hardware times lvl1 table 2458 * entry size. 2459 */ 2460 ids -= ilog2(psz / (int)esz); 2461 esz = GITS_LVL1_ENTRY_SIZE; 2462 } 2463 } 2464 2465 /* 2466 * Allocate as many entries as required to fit the 2467 * range of device IDs that the ITS can grok... The ID 2468 * space being incredibly sparse, this results in a 2469 * massive waste of memory if two-level device table 2470 * feature is not supported by hardware. 2471 */ 2472 new_order = max_t(u32, get_order(esz << ids), new_order); 2473 if (new_order > MAX_ORDER) { 2474 new_order = MAX_ORDER; 2475 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2476 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2477 &its->phys_base, its_base_type_string[type], 2478 device_ids(its), ids); 2479 } 2480 2481 *order = new_order; 2482 2483 return indirect; 2484 } 2485 2486 static u32 compute_common_aff(u64 val) 2487 { 2488 u32 aff, clpiaff; 2489 2490 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2491 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2492 2493 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2494 } 2495 2496 static u32 compute_its_aff(struct its_node *its) 2497 { 2498 u64 val; 2499 u32 svpet; 2500 2501 /* 2502 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2503 * the resulting affinity. We then use that to see if this match 2504 * our own affinity. 2505 */ 2506 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2507 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2508 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2509 return compute_common_aff(val); 2510 } 2511 2512 static struct its_node *find_sibling_its(struct its_node *cur_its) 2513 { 2514 struct its_node *its; 2515 u32 aff; 2516 2517 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2518 return NULL; 2519 2520 aff = compute_its_aff(cur_its); 2521 2522 list_for_each_entry(its, &its_nodes, entry) { 2523 u64 baser; 2524 2525 if (!is_v4_1(its) || its == cur_its) 2526 continue; 2527 2528 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2529 continue; 2530 2531 if (aff != compute_its_aff(its)) 2532 continue; 2533 2534 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2535 baser = its->tables[2].val; 2536 if (!(baser & GITS_BASER_VALID)) 2537 continue; 2538 2539 return its; 2540 } 2541 2542 return NULL; 2543 } 2544 2545 static void its_free_tables(struct its_node *its) 2546 { 2547 int i; 2548 2549 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2550 if (its->tables[i].base) { 2551 free_pages((unsigned long)its->tables[i].base, 2552 its->tables[i].order); 2553 its->tables[i].base = NULL; 2554 } 2555 } 2556 } 2557 2558 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2559 { 2560 u64 psz = SZ_64K; 2561 2562 while (psz) { 2563 u64 val, gpsz; 2564 2565 val = its_read_baser(its, baser); 2566 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2567 2568 switch (psz) { 2569 case SZ_64K: 2570 gpsz = GITS_BASER_PAGE_SIZE_64K; 2571 break; 2572 case SZ_16K: 2573 gpsz = GITS_BASER_PAGE_SIZE_16K; 2574 break; 2575 case SZ_4K: 2576 default: 2577 gpsz = GITS_BASER_PAGE_SIZE_4K; 2578 break; 2579 } 2580 2581 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2582 2583 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2584 its_write_baser(its, baser, val); 2585 2586 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2587 break; 2588 2589 switch (psz) { 2590 case SZ_64K: 2591 psz = SZ_16K; 2592 break; 2593 case SZ_16K: 2594 psz = SZ_4K; 2595 break; 2596 case SZ_4K: 2597 default: 2598 return -1; 2599 } 2600 } 2601 2602 baser->psz = psz; 2603 return 0; 2604 } 2605 2606 static int its_alloc_tables(struct its_node *its) 2607 { 2608 u64 shr = GITS_BASER_InnerShareable; 2609 u64 cache = GITS_BASER_RaWaWb; 2610 int err, i; 2611 2612 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2613 /* erratum 24313: ignore memory access type */ 2614 cache = GITS_BASER_nCnB; 2615 2616 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2617 struct its_baser *baser = its->tables + i; 2618 u64 val = its_read_baser(its, baser); 2619 u64 type = GITS_BASER_TYPE(val); 2620 bool indirect = false; 2621 u32 order; 2622 2623 if (type == GITS_BASER_TYPE_NONE) 2624 continue; 2625 2626 if (its_probe_baser_psz(its, baser)) { 2627 its_free_tables(its); 2628 return -ENXIO; 2629 } 2630 2631 order = get_order(baser->psz); 2632 2633 switch (type) { 2634 case GITS_BASER_TYPE_DEVICE: 2635 indirect = its_parse_indirect_baser(its, baser, &order, 2636 device_ids(its)); 2637 break; 2638 2639 case GITS_BASER_TYPE_VCPU: 2640 if (is_v4_1(its)) { 2641 struct its_node *sibling; 2642 2643 WARN_ON(i != 2); 2644 if ((sibling = find_sibling_its(its))) { 2645 *baser = sibling->tables[2]; 2646 its_write_baser(its, baser, baser->val); 2647 continue; 2648 } 2649 } 2650 2651 indirect = its_parse_indirect_baser(its, baser, &order, 2652 ITS_MAX_VPEID_BITS); 2653 break; 2654 } 2655 2656 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2657 if (err < 0) { 2658 its_free_tables(its); 2659 return err; 2660 } 2661 2662 /* Update settings which will be used for next BASERn */ 2663 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2664 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2665 } 2666 2667 return 0; 2668 } 2669 2670 static u64 inherit_vpe_l1_table_from_its(void) 2671 { 2672 struct its_node *its; 2673 u64 val; 2674 u32 aff; 2675 2676 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2677 aff = compute_common_aff(val); 2678 2679 list_for_each_entry(its, &its_nodes, entry) { 2680 u64 baser, addr; 2681 2682 if (!is_v4_1(its)) 2683 continue; 2684 2685 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2686 continue; 2687 2688 if (aff != compute_its_aff(its)) 2689 continue; 2690 2691 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2692 baser = its->tables[2].val; 2693 if (!(baser & GITS_BASER_VALID)) 2694 continue; 2695 2696 /* We have a winner! */ 2697 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2698 2699 val = GICR_VPROPBASER_4_1_VALID; 2700 if (baser & GITS_BASER_INDIRECT) 2701 val |= GICR_VPROPBASER_4_1_INDIRECT; 2702 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2703 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2704 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2705 case GIC_PAGE_SIZE_64K: 2706 addr = GITS_BASER_ADDR_48_to_52(baser); 2707 break; 2708 default: 2709 addr = baser & GENMASK_ULL(47, 12); 2710 break; 2711 } 2712 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2713 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2714 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2715 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2716 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2717 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2718 2719 return val; 2720 } 2721 2722 return 0; 2723 } 2724 2725 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2726 { 2727 u32 aff; 2728 u64 val; 2729 int cpu; 2730 2731 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2732 aff = compute_common_aff(val); 2733 2734 for_each_possible_cpu(cpu) { 2735 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2736 2737 if (!base || cpu == smp_processor_id()) 2738 continue; 2739 2740 val = gic_read_typer(base + GICR_TYPER); 2741 if (aff != compute_common_aff(val)) 2742 continue; 2743 2744 /* 2745 * At this point, we have a victim. This particular CPU 2746 * has already booted, and has an affinity that matches 2747 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2748 * Make sure we don't write the Z bit in that case. 2749 */ 2750 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2751 val &= ~GICR_VPROPBASER_4_1_Z; 2752 2753 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2754 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2755 2756 return val; 2757 } 2758 2759 return 0; 2760 } 2761 2762 static bool allocate_vpe_l2_table(int cpu, u32 id) 2763 { 2764 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2765 unsigned int psz, esz, idx, npg, gpsz; 2766 u64 val; 2767 struct page *page; 2768 __le64 *table; 2769 2770 if (!gic_rdists->has_rvpeid) 2771 return true; 2772 2773 /* Skip non-present CPUs */ 2774 if (!base) 2775 return true; 2776 2777 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2778 2779 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2780 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2781 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2782 2783 switch (gpsz) { 2784 default: 2785 WARN_ON(1); 2786 fallthrough; 2787 case GIC_PAGE_SIZE_4K: 2788 psz = SZ_4K; 2789 break; 2790 case GIC_PAGE_SIZE_16K: 2791 psz = SZ_16K; 2792 break; 2793 case GIC_PAGE_SIZE_64K: 2794 psz = SZ_64K; 2795 break; 2796 } 2797 2798 /* Don't allow vpe_id that exceeds single, flat table limit */ 2799 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2800 return (id < (npg * psz / (esz * SZ_8))); 2801 2802 /* Compute 1st level table index & check if that exceeds table limit */ 2803 idx = id >> ilog2(psz / (esz * SZ_8)); 2804 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2805 return false; 2806 2807 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2808 2809 /* Allocate memory for 2nd level table */ 2810 if (!table[idx]) { 2811 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2812 if (!page) 2813 return false; 2814 2815 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2816 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2817 gic_flush_dcache_to_poc(page_address(page), psz); 2818 2819 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2820 2821 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2822 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2823 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2824 2825 /* Ensure updated table contents are visible to RD hardware */ 2826 dsb(sy); 2827 } 2828 2829 return true; 2830 } 2831 2832 static int allocate_vpe_l1_table(void) 2833 { 2834 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2835 u64 val, gpsz, npg, pa; 2836 unsigned int psz = SZ_64K; 2837 unsigned int np, epp, esz; 2838 struct page *page; 2839 2840 if (!gic_rdists->has_rvpeid) 2841 return 0; 2842 2843 /* 2844 * if VPENDBASER.Valid is set, disable any previously programmed 2845 * VPE by setting PendingLast while clearing Valid. This has the 2846 * effect of making sure no doorbell will be generated and we can 2847 * then safely clear VPROPBASER.Valid. 2848 */ 2849 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2850 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2851 vlpi_base + GICR_VPENDBASER); 2852 2853 /* 2854 * If we can inherit the configuration from another RD, let's do 2855 * so. Otherwise, we have to go through the allocation process. We 2856 * assume that all RDs have the exact same requirements, as 2857 * nothing will work otherwise. 2858 */ 2859 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2860 if (val & GICR_VPROPBASER_4_1_VALID) 2861 goto out; 2862 2863 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2864 if (!gic_data_rdist()->vpe_table_mask) 2865 return -ENOMEM; 2866 2867 val = inherit_vpe_l1_table_from_its(); 2868 if (val & GICR_VPROPBASER_4_1_VALID) 2869 goto out; 2870 2871 /* First probe the page size */ 2872 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2873 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2874 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2875 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2876 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2877 2878 switch (gpsz) { 2879 default: 2880 gpsz = GIC_PAGE_SIZE_4K; 2881 fallthrough; 2882 case GIC_PAGE_SIZE_4K: 2883 psz = SZ_4K; 2884 break; 2885 case GIC_PAGE_SIZE_16K: 2886 psz = SZ_16K; 2887 break; 2888 case GIC_PAGE_SIZE_64K: 2889 psz = SZ_64K; 2890 break; 2891 } 2892 2893 /* 2894 * Start populating the register from scratch, including RO fields 2895 * (which we want to print in debug cases...) 2896 */ 2897 val = 0; 2898 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2899 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2900 2901 /* How many entries per GIC page? */ 2902 esz++; 2903 epp = psz / (esz * SZ_8); 2904 2905 /* 2906 * If we need more than just a single L1 page, flag the table 2907 * as indirect and compute the number of required L1 pages. 2908 */ 2909 if (epp < ITS_MAX_VPEID) { 2910 int nl2; 2911 2912 val |= GICR_VPROPBASER_4_1_INDIRECT; 2913 2914 /* Number of L2 pages required to cover the VPEID space */ 2915 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2916 2917 /* Number of L1 pages to point to the L2 pages */ 2918 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2919 } else { 2920 npg = 1; 2921 } 2922 2923 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2924 2925 /* Right, that's the number of CPU pages we need for L1 */ 2926 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2927 2928 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2929 np, npg, psz, epp, esz); 2930 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2931 if (!page) 2932 return -ENOMEM; 2933 2934 gic_data_rdist()->vpe_l1_base = page_address(page); 2935 pa = virt_to_phys(page_address(page)); 2936 WARN_ON(!IS_ALIGNED(pa, psz)); 2937 2938 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2939 val |= GICR_VPROPBASER_RaWb; 2940 val |= GICR_VPROPBASER_InnerShareable; 2941 val |= GICR_VPROPBASER_4_1_Z; 2942 val |= GICR_VPROPBASER_4_1_VALID; 2943 2944 out: 2945 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2946 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2947 2948 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2949 smp_processor_id(), val, 2950 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2951 2952 return 0; 2953 } 2954 2955 static int its_alloc_collections(struct its_node *its) 2956 { 2957 int i; 2958 2959 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2960 GFP_KERNEL); 2961 if (!its->collections) 2962 return -ENOMEM; 2963 2964 for (i = 0; i < nr_cpu_ids; i++) 2965 its->collections[i].target_address = ~0ULL; 2966 2967 return 0; 2968 } 2969 2970 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2971 { 2972 struct page *pend_page; 2973 2974 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2975 get_order(LPI_PENDBASE_SZ)); 2976 if (!pend_page) 2977 return NULL; 2978 2979 /* Make sure the GIC will observe the zero-ed page */ 2980 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2981 2982 return pend_page; 2983 } 2984 2985 static void its_free_pending_table(struct page *pt) 2986 { 2987 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2988 } 2989 2990 /* 2991 * Booting with kdump and LPIs enabled is generally fine. Any other 2992 * case is wrong in the absence of firmware/EFI support. 2993 */ 2994 static bool enabled_lpis_allowed(void) 2995 { 2996 phys_addr_t addr; 2997 u64 val; 2998 2999 /* Check whether the property table is in a reserved region */ 3000 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 3001 addr = val & GENMASK_ULL(51, 12); 3002 3003 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 3004 } 3005 3006 static int __init allocate_lpi_tables(void) 3007 { 3008 u64 val; 3009 int err, cpu; 3010 3011 /* 3012 * If LPIs are enabled while we run this from the boot CPU, 3013 * flag the RD tables as pre-allocated if the stars do align. 3014 */ 3015 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3016 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3017 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3018 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3019 pr_info("GICv3: Using preallocated redistributor tables\n"); 3020 } 3021 3022 err = its_setup_lpi_prop_table(); 3023 if (err) 3024 return err; 3025 3026 /* 3027 * We allocate all the pending tables anyway, as we may have a 3028 * mix of RDs that have had LPIs enabled, and some that 3029 * don't. We'll free the unused ones as each CPU comes online. 3030 */ 3031 for_each_possible_cpu(cpu) { 3032 struct page *pend_page; 3033 3034 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3035 if (!pend_page) { 3036 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3037 return -ENOMEM; 3038 } 3039 3040 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3041 } 3042 3043 return 0; 3044 } 3045 3046 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3047 { 3048 u32 count = 1000000; /* 1s! */ 3049 bool clean; 3050 u64 val; 3051 3052 do { 3053 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3054 clean = !(val & GICR_VPENDBASER_Dirty); 3055 if (!clean) { 3056 count--; 3057 cpu_relax(); 3058 udelay(1); 3059 } 3060 } while (!clean && count); 3061 3062 if (unlikely(!clean)) 3063 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3064 3065 return val; 3066 } 3067 3068 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3069 { 3070 u64 val; 3071 3072 /* Make sure we wait until the RD is done with the initial scan */ 3073 val = read_vpend_dirty_clear(vlpi_base); 3074 val &= ~GICR_VPENDBASER_Valid; 3075 val &= ~clr; 3076 val |= set; 3077 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3078 3079 val = read_vpend_dirty_clear(vlpi_base); 3080 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3081 val |= GICR_VPENDBASER_PendingLast; 3082 3083 return val; 3084 } 3085 3086 static void its_cpu_init_lpis(void) 3087 { 3088 void __iomem *rbase = gic_data_rdist_rd_base(); 3089 struct page *pend_page; 3090 phys_addr_t paddr; 3091 u64 val, tmp; 3092 3093 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3094 return; 3095 3096 val = readl_relaxed(rbase + GICR_CTLR); 3097 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3098 (val & GICR_CTLR_ENABLE_LPIS)) { 3099 /* 3100 * Check that we get the same property table on all 3101 * RDs. If we don't, this is hopeless. 3102 */ 3103 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3104 paddr &= GENMASK_ULL(51, 12); 3105 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3106 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3107 3108 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3109 paddr &= GENMASK_ULL(51, 16); 3110 3111 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3112 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3113 3114 goto out; 3115 } 3116 3117 pend_page = gic_data_rdist()->pend_page; 3118 paddr = page_to_phys(pend_page); 3119 3120 /* set PROPBASE */ 3121 val = (gic_rdists->prop_table_pa | 3122 GICR_PROPBASER_InnerShareable | 3123 GICR_PROPBASER_RaWaWb | 3124 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3125 3126 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3127 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3128 3129 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE) 3130 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3131 3132 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3133 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3134 /* 3135 * The HW reports non-shareable, we must 3136 * remove the cacheability attributes as 3137 * well. 3138 */ 3139 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3140 GICR_PROPBASER_CACHEABILITY_MASK); 3141 val |= GICR_PROPBASER_nC; 3142 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3143 } 3144 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3145 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3146 } 3147 3148 /* set PENDBASE */ 3149 val = (page_to_phys(pend_page) | 3150 GICR_PENDBASER_InnerShareable | 3151 GICR_PENDBASER_RaWaWb); 3152 3153 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3154 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3155 3156 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE) 3157 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3158 3159 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3160 /* 3161 * The HW reports non-shareable, we must remove the 3162 * cacheability attributes as well. 3163 */ 3164 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3165 GICR_PENDBASER_CACHEABILITY_MASK); 3166 val |= GICR_PENDBASER_nC; 3167 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3168 } 3169 3170 /* Enable LPIs */ 3171 val = readl_relaxed(rbase + GICR_CTLR); 3172 val |= GICR_CTLR_ENABLE_LPIS; 3173 writel_relaxed(val, rbase + GICR_CTLR); 3174 3175 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3176 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3177 3178 /* 3179 * It's possible for CPU to receive VLPIs before it is 3180 * scheduled as a vPE, especially for the first CPU, and the 3181 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3182 * as out of range and dropped by GIC. 3183 * So we initialize IDbits to known value to avoid VLPI drop. 3184 */ 3185 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3186 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3187 smp_processor_id(), val); 3188 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3189 3190 /* 3191 * Also clear Valid bit of GICR_VPENDBASER, in case some 3192 * ancient programming gets left in and has possibility of 3193 * corrupting memory. 3194 */ 3195 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3196 } 3197 3198 if (allocate_vpe_l1_table()) { 3199 /* 3200 * If the allocation has failed, we're in massive trouble. 3201 * Disable direct injection, and pray that no VM was 3202 * already running... 3203 */ 3204 gic_rdists->has_rvpeid = false; 3205 gic_rdists->has_vlpis = false; 3206 } 3207 3208 /* Make sure the GIC has seen the above */ 3209 dsb(sy); 3210 out: 3211 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3212 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3213 smp_processor_id(), 3214 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3215 "reserved" : "allocated", 3216 &paddr); 3217 } 3218 3219 static void its_cpu_init_collection(struct its_node *its) 3220 { 3221 int cpu = smp_processor_id(); 3222 u64 target; 3223 3224 /* avoid cross node collections and its mapping */ 3225 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3226 struct device_node *cpu_node; 3227 3228 cpu_node = of_get_cpu_node(cpu, NULL); 3229 if (its->numa_node != NUMA_NO_NODE && 3230 its->numa_node != of_node_to_nid(cpu_node)) 3231 return; 3232 } 3233 3234 /* 3235 * We now have to bind each collection to its target 3236 * redistributor. 3237 */ 3238 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3239 /* 3240 * This ITS wants the physical address of the 3241 * redistributor. 3242 */ 3243 target = gic_data_rdist()->phys_base; 3244 } else { 3245 /* This ITS wants a linear CPU number. */ 3246 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3247 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3248 } 3249 3250 /* Perform collection mapping */ 3251 its->collections[cpu].target_address = target; 3252 its->collections[cpu].col_id = cpu; 3253 3254 its_send_mapc(its, &its->collections[cpu], 1); 3255 its_send_invall(its, &its->collections[cpu]); 3256 } 3257 3258 static void its_cpu_init_collections(void) 3259 { 3260 struct its_node *its; 3261 3262 raw_spin_lock(&its_lock); 3263 3264 list_for_each_entry(its, &its_nodes, entry) 3265 its_cpu_init_collection(its); 3266 3267 raw_spin_unlock(&its_lock); 3268 } 3269 3270 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3271 { 3272 struct its_device *its_dev = NULL, *tmp; 3273 unsigned long flags; 3274 3275 raw_spin_lock_irqsave(&its->lock, flags); 3276 3277 list_for_each_entry(tmp, &its->its_device_list, entry) { 3278 if (tmp->device_id == dev_id) { 3279 its_dev = tmp; 3280 break; 3281 } 3282 } 3283 3284 raw_spin_unlock_irqrestore(&its->lock, flags); 3285 3286 return its_dev; 3287 } 3288 3289 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3290 { 3291 int i; 3292 3293 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3294 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3295 return &its->tables[i]; 3296 } 3297 3298 return NULL; 3299 } 3300 3301 static bool its_alloc_table_entry(struct its_node *its, 3302 struct its_baser *baser, u32 id) 3303 { 3304 struct page *page; 3305 u32 esz, idx; 3306 __le64 *table; 3307 3308 /* Don't allow device id that exceeds single, flat table limit */ 3309 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3310 if (!(baser->val & GITS_BASER_INDIRECT)) 3311 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3312 3313 /* Compute 1st level table index & check if that exceeds table limit */ 3314 idx = id >> ilog2(baser->psz / esz); 3315 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3316 return false; 3317 3318 table = baser->base; 3319 3320 /* Allocate memory for 2nd level table */ 3321 if (!table[idx]) { 3322 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3323 get_order(baser->psz)); 3324 if (!page) 3325 return false; 3326 3327 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3328 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3329 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3330 3331 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3332 3333 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3334 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3335 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3336 3337 /* Ensure updated table contents are visible to ITS hardware */ 3338 dsb(sy); 3339 } 3340 3341 return true; 3342 } 3343 3344 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3345 { 3346 struct its_baser *baser; 3347 3348 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3349 3350 /* Don't allow device id that exceeds ITS hardware limit */ 3351 if (!baser) 3352 return (ilog2(dev_id) < device_ids(its)); 3353 3354 return its_alloc_table_entry(its, baser, dev_id); 3355 } 3356 3357 static bool its_alloc_vpe_table(u32 vpe_id) 3358 { 3359 struct its_node *its; 3360 int cpu; 3361 3362 /* 3363 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3364 * could try and only do it on ITSs corresponding to devices 3365 * that have interrupts targeted at this VPE, but the 3366 * complexity becomes crazy (and you have tons of memory 3367 * anyway, right?). 3368 */ 3369 list_for_each_entry(its, &its_nodes, entry) { 3370 struct its_baser *baser; 3371 3372 if (!is_v4(its)) 3373 continue; 3374 3375 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3376 if (!baser) 3377 return false; 3378 3379 if (!its_alloc_table_entry(its, baser, vpe_id)) 3380 return false; 3381 } 3382 3383 /* Non v4.1? No need to iterate RDs and go back early. */ 3384 if (!gic_rdists->has_rvpeid) 3385 return true; 3386 3387 /* 3388 * Make sure the L2 tables are allocated for all copies of 3389 * the L1 table on *all* v4.1 RDs. 3390 */ 3391 for_each_possible_cpu(cpu) { 3392 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3393 return false; 3394 } 3395 3396 return true; 3397 } 3398 3399 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3400 int nvecs, bool alloc_lpis) 3401 { 3402 struct its_device *dev; 3403 unsigned long *lpi_map = NULL; 3404 unsigned long flags; 3405 u16 *col_map = NULL; 3406 void *itt; 3407 int lpi_base; 3408 int nr_lpis; 3409 int nr_ites; 3410 int sz; 3411 3412 if (!its_alloc_device_table(its, dev_id)) 3413 return NULL; 3414 3415 if (WARN_ON(!is_power_of_2(nvecs))) 3416 nvecs = roundup_pow_of_two(nvecs); 3417 3418 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3419 /* 3420 * Even if the device wants a single LPI, the ITT must be 3421 * sized as a power of two (and you need at least one bit...). 3422 */ 3423 nr_ites = max(2, nvecs); 3424 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3425 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3426 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3427 if (alloc_lpis) { 3428 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3429 if (lpi_map) 3430 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3431 GFP_KERNEL); 3432 } else { 3433 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3434 nr_lpis = 0; 3435 lpi_base = 0; 3436 } 3437 3438 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3439 kfree(dev); 3440 kfree(itt); 3441 bitmap_free(lpi_map); 3442 kfree(col_map); 3443 return NULL; 3444 } 3445 3446 gic_flush_dcache_to_poc(itt, sz); 3447 3448 dev->its = its; 3449 dev->itt = itt; 3450 dev->nr_ites = nr_ites; 3451 dev->event_map.lpi_map = lpi_map; 3452 dev->event_map.col_map = col_map; 3453 dev->event_map.lpi_base = lpi_base; 3454 dev->event_map.nr_lpis = nr_lpis; 3455 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3456 dev->device_id = dev_id; 3457 INIT_LIST_HEAD(&dev->entry); 3458 3459 raw_spin_lock_irqsave(&its->lock, flags); 3460 list_add(&dev->entry, &its->its_device_list); 3461 raw_spin_unlock_irqrestore(&its->lock, flags); 3462 3463 /* Map device to its ITT */ 3464 its_send_mapd(dev, 1); 3465 3466 return dev; 3467 } 3468 3469 static void its_free_device(struct its_device *its_dev) 3470 { 3471 unsigned long flags; 3472 3473 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3474 list_del(&its_dev->entry); 3475 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3476 kfree(its_dev->event_map.col_map); 3477 kfree(its_dev->itt); 3478 kfree(its_dev); 3479 } 3480 3481 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3482 { 3483 int idx; 3484 3485 /* Find a free LPI region in lpi_map and allocate them. */ 3486 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3487 dev->event_map.nr_lpis, 3488 get_count_order(nvecs)); 3489 if (idx < 0) 3490 return -ENOSPC; 3491 3492 *hwirq = dev->event_map.lpi_base + idx; 3493 3494 return 0; 3495 } 3496 3497 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3498 int nvec, msi_alloc_info_t *info) 3499 { 3500 struct its_node *its; 3501 struct its_device *its_dev; 3502 struct msi_domain_info *msi_info; 3503 u32 dev_id; 3504 int err = 0; 3505 3506 /* 3507 * We ignore "dev" entirely, and rely on the dev_id that has 3508 * been passed via the scratchpad. This limits this domain's 3509 * usefulness to upper layers that definitely know that they 3510 * are built on top of the ITS. 3511 */ 3512 dev_id = info->scratchpad[0].ul; 3513 3514 msi_info = msi_get_domain_info(domain); 3515 its = msi_info->data; 3516 3517 if (!gic_rdists->has_direct_lpi && 3518 vpe_proxy.dev && 3519 vpe_proxy.dev->its == its && 3520 dev_id == vpe_proxy.dev->device_id) { 3521 /* Bad luck. Get yourself a better implementation */ 3522 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3523 dev_id); 3524 return -EINVAL; 3525 } 3526 3527 mutex_lock(&its->dev_alloc_lock); 3528 its_dev = its_find_device(its, dev_id); 3529 if (its_dev) { 3530 /* 3531 * We already have seen this ID, probably through 3532 * another alias (PCI bridge of some sort). No need to 3533 * create the device. 3534 */ 3535 its_dev->shared = true; 3536 pr_debug("Reusing ITT for devID %x\n", dev_id); 3537 goto out; 3538 } 3539 3540 its_dev = its_create_device(its, dev_id, nvec, true); 3541 if (!its_dev) { 3542 err = -ENOMEM; 3543 goto out; 3544 } 3545 3546 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3547 its_dev->shared = true; 3548 3549 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3550 out: 3551 mutex_unlock(&its->dev_alloc_lock); 3552 info->scratchpad[0].ptr = its_dev; 3553 return err; 3554 } 3555 3556 static struct msi_domain_ops its_msi_domain_ops = { 3557 .msi_prepare = its_msi_prepare, 3558 }; 3559 3560 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3561 unsigned int virq, 3562 irq_hw_number_t hwirq) 3563 { 3564 struct irq_fwspec fwspec; 3565 3566 if (irq_domain_get_of_node(domain->parent)) { 3567 fwspec.fwnode = domain->parent->fwnode; 3568 fwspec.param_count = 3; 3569 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3570 fwspec.param[1] = hwirq; 3571 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3572 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3573 fwspec.fwnode = domain->parent->fwnode; 3574 fwspec.param_count = 2; 3575 fwspec.param[0] = hwirq; 3576 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3577 } else { 3578 return -EINVAL; 3579 } 3580 3581 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3582 } 3583 3584 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3585 unsigned int nr_irqs, void *args) 3586 { 3587 msi_alloc_info_t *info = args; 3588 struct its_device *its_dev = info->scratchpad[0].ptr; 3589 struct its_node *its = its_dev->its; 3590 struct irq_data *irqd; 3591 irq_hw_number_t hwirq; 3592 int err; 3593 int i; 3594 3595 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3596 if (err) 3597 return err; 3598 3599 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3600 if (err) 3601 return err; 3602 3603 for (i = 0; i < nr_irqs; i++) { 3604 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3605 if (err) 3606 return err; 3607 3608 irq_domain_set_hwirq_and_chip(domain, virq + i, 3609 hwirq + i, &its_irq_chip, its_dev); 3610 irqd = irq_get_irq_data(virq + i); 3611 irqd_set_single_target(irqd); 3612 irqd_set_affinity_on_activate(irqd); 3613 irqd_set_resend_when_in_progress(irqd); 3614 pr_debug("ID:%d pID:%d vID:%d\n", 3615 (int)(hwirq + i - its_dev->event_map.lpi_base), 3616 (int)(hwirq + i), virq + i); 3617 } 3618 3619 return 0; 3620 } 3621 3622 static int its_irq_domain_activate(struct irq_domain *domain, 3623 struct irq_data *d, bool reserve) 3624 { 3625 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3626 u32 event = its_get_event_id(d); 3627 int cpu; 3628 3629 cpu = its_select_cpu(d, cpu_online_mask); 3630 if (cpu < 0 || cpu >= nr_cpu_ids) 3631 return -EINVAL; 3632 3633 its_inc_lpi_count(d, cpu); 3634 its_dev->event_map.col_map[event] = cpu; 3635 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3636 3637 /* Map the GIC IRQ and event to the device */ 3638 its_send_mapti(its_dev, d->hwirq, event); 3639 return 0; 3640 } 3641 3642 static void its_irq_domain_deactivate(struct irq_domain *domain, 3643 struct irq_data *d) 3644 { 3645 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3646 u32 event = its_get_event_id(d); 3647 3648 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3649 /* Stop the delivery of interrupts */ 3650 its_send_discard(its_dev, event); 3651 } 3652 3653 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3654 unsigned int nr_irqs) 3655 { 3656 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3657 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3658 struct its_node *its = its_dev->its; 3659 int i; 3660 3661 bitmap_release_region(its_dev->event_map.lpi_map, 3662 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3663 get_count_order(nr_irqs)); 3664 3665 for (i = 0; i < nr_irqs; i++) { 3666 struct irq_data *data = irq_domain_get_irq_data(domain, 3667 virq + i); 3668 /* Nuke the entry in the domain */ 3669 irq_domain_reset_irq_data(data); 3670 } 3671 3672 mutex_lock(&its->dev_alloc_lock); 3673 3674 /* 3675 * If all interrupts have been freed, start mopping the 3676 * floor. This is conditioned on the device not being shared. 3677 */ 3678 if (!its_dev->shared && 3679 bitmap_empty(its_dev->event_map.lpi_map, 3680 its_dev->event_map.nr_lpis)) { 3681 its_lpi_free(its_dev->event_map.lpi_map, 3682 its_dev->event_map.lpi_base, 3683 its_dev->event_map.nr_lpis); 3684 3685 /* Unmap device/itt */ 3686 its_send_mapd(its_dev, 0); 3687 its_free_device(its_dev); 3688 } 3689 3690 mutex_unlock(&its->dev_alloc_lock); 3691 3692 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3693 } 3694 3695 static const struct irq_domain_ops its_domain_ops = { 3696 .alloc = its_irq_domain_alloc, 3697 .free = its_irq_domain_free, 3698 .activate = its_irq_domain_activate, 3699 .deactivate = its_irq_domain_deactivate, 3700 }; 3701 3702 /* 3703 * This is insane. 3704 * 3705 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3706 * likely), the only way to perform an invalidate is to use a fake 3707 * device to issue an INV command, implying that the LPI has first 3708 * been mapped to some event on that device. Since this is not exactly 3709 * cheap, we try to keep that mapping around as long as possible, and 3710 * only issue an UNMAP if we're short on available slots. 3711 * 3712 * Broken by design(tm). 3713 * 3714 * GICv4.1, on the other hand, mandates that we're able to invalidate 3715 * by writing to a MMIO register. It doesn't implement the whole of 3716 * DirectLPI, but that's good enough. And most of the time, we don't 3717 * even have to invalidate anything, as the redistributor can be told 3718 * whether to generate a doorbell or not (we thus leave it enabled, 3719 * always). 3720 */ 3721 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3722 { 3723 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3724 if (gic_rdists->has_rvpeid) 3725 return; 3726 3727 /* Already unmapped? */ 3728 if (vpe->vpe_proxy_event == -1) 3729 return; 3730 3731 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3732 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3733 3734 /* 3735 * We don't track empty slots at all, so let's move the 3736 * next_victim pointer if we can quickly reuse that slot 3737 * instead of nuking an existing entry. Not clear that this is 3738 * always a win though, and this might just generate a ripple 3739 * effect... Let's just hope VPEs don't migrate too often. 3740 */ 3741 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3742 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3743 3744 vpe->vpe_proxy_event = -1; 3745 } 3746 3747 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3748 { 3749 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3750 if (gic_rdists->has_rvpeid) 3751 return; 3752 3753 if (!gic_rdists->has_direct_lpi) { 3754 unsigned long flags; 3755 3756 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3757 its_vpe_db_proxy_unmap_locked(vpe); 3758 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3759 } 3760 } 3761 3762 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3763 { 3764 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3765 if (gic_rdists->has_rvpeid) 3766 return; 3767 3768 /* Already mapped? */ 3769 if (vpe->vpe_proxy_event != -1) 3770 return; 3771 3772 /* This slot was already allocated. Kick the other VPE out. */ 3773 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3774 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3775 3776 /* Map the new VPE instead */ 3777 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3778 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3779 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3780 3781 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3782 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3783 } 3784 3785 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3786 { 3787 unsigned long flags; 3788 struct its_collection *target_col; 3789 3790 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3791 if (gic_rdists->has_rvpeid) 3792 return; 3793 3794 if (gic_rdists->has_direct_lpi) { 3795 void __iomem *rdbase; 3796 3797 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3798 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3799 wait_for_syncr(rdbase); 3800 3801 return; 3802 } 3803 3804 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3805 3806 its_vpe_db_proxy_map_locked(vpe); 3807 3808 target_col = &vpe_proxy.dev->its->collections[to]; 3809 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3810 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3811 3812 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3813 } 3814 3815 static int its_vpe_set_affinity(struct irq_data *d, 3816 const struct cpumask *mask_val, 3817 bool force) 3818 { 3819 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3820 int from, cpu = cpumask_first(mask_val); 3821 unsigned long flags; 3822 3823 /* 3824 * Changing affinity is mega expensive, so let's be as lazy as 3825 * we can and only do it if we really have to. Also, if mapped 3826 * into the proxy device, we need to move the doorbell 3827 * interrupt to its new location. 3828 * 3829 * Another thing is that changing the affinity of a vPE affects 3830 * *other interrupts* such as all the vLPIs that are routed to 3831 * this vPE. This means that the irq_desc lock is not enough to 3832 * protect us, and that we must ensure nobody samples vpe->col_idx 3833 * during the update, hence the lock below which must also be 3834 * taken on any vLPI handling path that evaluates vpe->col_idx. 3835 */ 3836 from = vpe_to_cpuid_lock(vpe, &flags); 3837 if (from == cpu) 3838 goto out; 3839 3840 vpe->col_idx = cpu; 3841 3842 /* 3843 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD 3844 * is sharing its VPE table with the current one. 3845 */ 3846 if (gic_data_rdist_cpu(cpu)->vpe_table_mask && 3847 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) 3848 goto out; 3849 3850 its_send_vmovp(vpe); 3851 its_vpe_db_proxy_move(vpe, from, cpu); 3852 3853 out: 3854 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3855 vpe_to_cpuid_unlock(vpe, flags); 3856 3857 return IRQ_SET_MASK_OK_DONE; 3858 } 3859 3860 static void its_wait_vpt_parse_complete(void) 3861 { 3862 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3863 u64 val; 3864 3865 if (!gic_rdists->has_vpend_valid_dirty) 3866 return; 3867 3868 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3869 val, 3870 !(val & GICR_VPENDBASER_Dirty), 3871 1, 500)); 3872 } 3873 3874 static void its_vpe_schedule(struct its_vpe *vpe) 3875 { 3876 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3877 u64 val; 3878 3879 /* Schedule the VPE */ 3880 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3881 GENMASK_ULL(51, 12); 3882 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3883 val |= GICR_VPROPBASER_RaWb; 3884 val |= GICR_VPROPBASER_InnerShareable; 3885 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3886 3887 val = virt_to_phys(page_address(vpe->vpt_page)) & 3888 GENMASK_ULL(51, 16); 3889 val |= GICR_VPENDBASER_RaWaWb; 3890 val |= GICR_VPENDBASER_InnerShareable; 3891 /* 3892 * There is no good way of finding out if the pending table is 3893 * empty as we can race against the doorbell interrupt very 3894 * easily. So in the end, vpe->pending_last is only an 3895 * indication that the vcpu has something pending, not one 3896 * that the pending table is empty. A good implementation 3897 * would be able to read its coarse map pretty quickly anyway, 3898 * making this a tolerable issue. 3899 */ 3900 val |= GICR_VPENDBASER_PendingLast; 3901 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3902 val |= GICR_VPENDBASER_Valid; 3903 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3904 } 3905 3906 static void its_vpe_deschedule(struct its_vpe *vpe) 3907 { 3908 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3909 u64 val; 3910 3911 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3912 3913 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3914 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3915 } 3916 3917 static void its_vpe_invall(struct its_vpe *vpe) 3918 { 3919 struct its_node *its; 3920 3921 list_for_each_entry(its, &its_nodes, entry) { 3922 if (!is_v4(its)) 3923 continue; 3924 3925 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3926 continue; 3927 3928 /* 3929 * Sending a VINVALL to a single ITS is enough, as all 3930 * we need is to reach the redistributors. 3931 */ 3932 its_send_vinvall(its, vpe); 3933 return; 3934 } 3935 } 3936 3937 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3938 { 3939 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3940 struct its_cmd_info *info = vcpu_info; 3941 3942 switch (info->cmd_type) { 3943 case SCHEDULE_VPE: 3944 its_vpe_schedule(vpe); 3945 return 0; 3946 3947 case DESCHEDULE_VPE: 3948 its_vpe_deschedule(vpe); 3949 return 0; 3950 3951 case COMMIT_VPE: 3952 its_wait_vpt_parse_complete(); 3953 return 0; 3954 3955 case INVALL_VPE: 3956 its_vpe_invall(vpe); 3957 return 0; 3958 3959 default: 3960 return -EINVAL; 3961 } 3962 } 3963 3964 static void its_vpe_send_cmd(struct its_vpe *vpe, 3965 void (*cmd)(struct its_device *, u32)) 3966 { 3967 unsigned long flags; 3968 3969 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3970 3971 its_vpe_db_proxy_map_locked(vpe); 3972 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3973 3974 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3975 } 3976 3977 static void its_vpe_send_inv(struct irq_data *d) 3978 { 3979 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3980 3981 if (gic_rdists->has_direct_lpi) 3982 __direct_lpi_inv(d, d->parent_data->hwirq); 3983 else 3984 its_vpe_send_cmd(vpe, its_send_inv); 3985 } 3986 3987 static void its_vpe_mask_irq(struct irq_data *d) 3988 { 3989 /* 3990 * We need to unmask the LPI, which is described by the parent 3991 * irq_data. Instead of calling into the parent (which won't 3992 * exactly do the right thing, let's simply use the 3993 * parent_data pointer. Yes, I'm naughty. 3994 */ 3995 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3996 its_vpe_send_inv(d); 3997 } 3998 3999 static void its_vpe_unmask_irq(struct irq_data *d) 4000 { 4001 /* Same hack as above... */ 4002 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4003 its_vpe_send_inv(d); 4004 } 4005 4006 static int its_vpe_set_irqchip_state(struct irq_data *d, 4007 enum irqchip_irq_state which, 4008 bool state) 4009 { 4010 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4011 4012 if (which != IRQCHIP_STATE_PENDING) 4013 return -EINVAL; 4014 4015 if (gic_rdists->has_direct_lpi) { 4016 void __iomem *rdbase; 4017 4018 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4019 if (state) { 4020 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4021 } else { 4022 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4023 wait_for_syncr(rdbase); 4024 } 4025 } else { 4026 if (state) 4027 its_vpe_send_cmd(vpe, its_send_int); 4028 else 4029 its_vpe_send_cmd(vpe, its_send_clear); 4030 } 4031 4032 return 0; 4033 } 4034 4035 static int its_vpe_retrigger(struct irq_data *d) 4036 { 4037 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4038 } 4039 4040 static struct irq_chip its_vpe_irq_chip = { 4041 .name = "GICv4-vpe", 4042 .irq_mask = its_vpe_mask_irq, 4043 .irq_unmask = its_vpe_unmask_irq, 4044 .irq_eoi = irq_chip_eoi_parent, 4045 .irq_set_affinity = its_vpe_set_affinity, 4046 .irq_retrigger = its_vpe_retrigger, 4047 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4048 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4049 }; 4050 4051 static struct its_node *find_4_1_its(void) 4052 { 4053 static struct its_node *its = NULL; 4054 4055 if (!its) { 4056 list_for_each_entry(its, &its_nodes, entry) { 4057 if (is_v4_1(its)) 4058 return its; 4059 } 4060 4061 /* Oops? */ 4062 its = NULL; 4063 } 4064 4065 return its; 4066 } 4067 4068 static void its_vpe_4_1_send_inv(struct irq_data *d) 4069 { 4070 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4071 struct its_node *its; 4072 4073 /* 4074 * GICv4.1 wants doorbells to be invalidated using the 4075 * INVDB command in order to be broadcast to all RDs. Send 4076 * it to the first valid ITS, and let the HW do its magic. 4077 */ 4078 its = find_4_1_its(); 4079 if (its) 4080 its_send_invdb(its, vpe); 4081 } 4082 4083 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4084 { 4085 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4086 its_vpe_4_1_send_inv(d); 4087 } 4088 4089 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4090 { 4091 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4092 its_vpe_4_1_send_inv(d); 4093 } 4094 4095 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4096 struct its_cmd_info *info) 4097 { 4098 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4099 u64 val = 0; 4100 4101 /* Schedule the VPE */ 4102 val |= GICR_VPENDBASER_Valid; 4103 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4104 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4105 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4106 4107 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4108 } 4109 4110 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4111 struct its_cmd_info *info) 4112 { 4113 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4114 u64 val; 4115 4116 if (info->req_db) { 4117 unsigned long flags; 4118 4119 /* 4120 * vPE is going to block: make the vPE non-resident with 4121 * PendingLast clear and DB set. The GIC guarantees that if 4122 * we read-back PendingLast clear, then a doorbell will be 4123 * delivered when an interrupt comes. 4124 * 4125 * Note the locking to deal with the concurrent update of 4126 * pending_last from the doorbell interrupt handler that can 4127 * run concurrently. 4128 */ 4129 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4130 val = its_clear_vpend_valid(vlpi_base, 4131 GICR_VPENDBASER_PendingLast, 4132 GICR_VPENDBASER_4_1_DB); 4133 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4134 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4135 } else { 4136 /* 4137 * We're not blocking, so just make the vPE non-resident 4138 * with PendingLast set, indicating that we'll be back. 4139 */ 4140 val = its_clear_vpend_valid(vlpi_base, 4141 0, 4142 GICR_VPENDBASER_PendingLast); 4143 vpe->pending_last = true; 4144 } 4145 } 4146 4147 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4148 { 4149 void __iomem *rdbase; 4150 unsigned long flags; 4151 u64 val; 4152 int cpu; 4153 4154 val = GICR_INVALLR_V; 4155 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4156 4157 /* Target the redistributor this vPE is currently known on */ 4158 cpu = vpe_to_cpuid_lock(vpe, &flags); 4159 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4160 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4161 gic_write_lpir(val, rdbase + GICR_INVALLR); 4162 4163 wait_for_syncr(rdbase); 4164 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4165 vpe_to_cpuid_unlock(vpe, flags); 4166 } 4167 4168 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4169 { 4170 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4171 struct its_cmd_info *info = vcpu_info; 4172 4173 switch (info->cmd_type) { 4174 case SCHEDULE_VPE: 4175 its_vpe_4_1_schedule(vpe, info); 4176 return 0; 4177 4178 case DESCHEDULE_VPE: 4179 its_vpe_4_1_deschedule(vpe, info); 4180 return 0; 4181 4182 case COMMIT_VPE: 4183 its_wait_vpt_parse_complete(); 4184 return 0; 4185 4186 case INVALL_VPE: 4187 its_vpe_4_1_invall(vpe); 4188 return 0; 4189 4190 default: 4191 return -EINVAL; 4192 } 4193 } 4194 4195 static struct irq_chip its_vpe_4_1_irq_chip = { 4196 .name = "GICv4.1-vpe", 4197 .irq_mask = its_vpe_4_1_mask_irq, 4198 .irq_unmask = its_vpe_4_1_unmask_irq, 4199 .irq_eoi = irq_chip_eoi_parent, 4200 .irq_set_affinity = its_vpe_set_affinity, 4201 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4202 }; 4203 4204 static void its_configure_sgi(struct irq_data *d, bool clear) 4205 { 4206 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4207 struct its_cmd_desc desc; 4208 4209 desc.its_vsgi_cmd.vpe = vpe; 4210 desc.its_vsgi_cmd.sgi = d->hwirq; 4211 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4212 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4213 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4214 desc.its_vsgi_cmd.clear = clear; 4215 4216 /* 4217 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4218 * destination VPE is mapped there. Since we map them eagerly at 4219 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4220 */ 4221 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4222 } 4223 4224 static void its_sgi_mask_irq(struct irq_data *d) 4225 { 4226 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4227 4228 vpe->sgi_config[d->hwirq].enabled = false; 4229 its_configure_sgi(d, false); 4230 } 4231 4232 static void its_sgi_unmask_irq(struct irq_data *d) 4233 { 4234 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4235 4236 vpe->sgi_config[d->hwirq].enabled = true; 4237 its_configure_sgi(d, false); 4238 } 4239 4240 static int its_sgi_set_affinity(struct irq_data *d, 4241 const struct cpumask *mask_val, 4242 bool force) 4243 { 4244 /* 4245 * There is no notion of affinity for virtual SGIs, at least 4246 * not on the host (since they can only be targeting a vPE). 4247 * Tell the kernel we've done whatever it asked for. 4248 */ 4249 irq_data_update_effective_affinity(d, mask_val); 4250 return IRQ_SET_MASK_OK; 4251 } 4252 4253 static int its_sgi_set_irqchip_state(struct irq_data *d, 4254 enum irqchip_irq_state which, 4255 bool state) 4256 { 4257 if (which != IRQCHIP_STATE_PENDING) 4258 return -EINVAL; 4259 4260 if (state) { 4261 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4262 struct its_node *its = find_4_1_its(); 4263 u64 val; 4264 4265 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4266 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4267 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4268 } else { 4269 its_configure_sgi(d, true); 4270 } 4271 4272 return 0; 4273 } 4274 4275 static int its_sgi_get_irqchip_state(struct irq_data *d, 4276 enum irqchip_irq_state which, bool *val) 4277 { 4278 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4279 void __iomem *base; 4280 unsigned long flags; 4281 u32 count = 1000000; /* 1s! */ 4282 u32 status; 4283 int cpu; 4284 4285 if (which != IRQCHIP_STATE_PENDING) 4286 return -EINVAL; 4287 4288 /* 4289 * Locking galore! We can race against two different events: 4290 * 4291 * - Concurrent vPE affinity change: we must make sure it cannot 4292 * happen, or we'll talk to the wrong redistributor. This is 4293 * identical to what happens with vLPIs. 4294 * 4295 * - Concurrent VSGIPENDR access: As it involves accessing two 4296 * MMIO registers, this must be made atomic one way or another. 4297 */ 4298 cpu = vpe_to_cpuid_lock(vpe, &flags); 4299 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4300 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4301 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4302 do { 4303 status = readl_relaxed(base + GICR_VSGIPENDR); 4304 if (!(status & GICR_VSGIPENDR_BUSY)) 4305 goto out; 4306 4307 count--; 4308 if (!count) { 4309 pr_err_ratelimited("Unable to get SGI status\n"); 4310 goto out; 4311 } 4312 cpu_relax(); 4313 udelay(1); 4314 } while (count); 4315 4316 out: 4317 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4318 vpe_to_cpuid_unlock(vpe, flags); 4319 4320 if (!count) 4321 return -ENXIO; 4322 4323 *val = !!(status & (1 << d->hwirq)); 4324 4325 return 0; 4326 } 4327 4328 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4329 { 4330 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4331 struct its_cmd_info *info = vcpu_info; 4332 4333 switch (info->cmd_type) { 4334 case PROP_UPDATE_VSGI: 4335 vpe->sgi_config[d->hwirq].priority = info->priority; 4336 vpe->sgi_config[d->hwirq].group = info->group; 4337 its_configure_sgi(d, false); 4338 return 0; 4339 4340 default: 4341 return -EINVAL; 4342 } 4343 } 4344 4345 static struct irq_chip its_sgi_irq_chip = { 4346 .name = "GICv4.1-sgi", 4347 .irq_mask = its_sgi_mask_irq, 4348 .irq_unmask = its_sgi_unmask_irq, 4349 .irq_set_affinity = its_sgi_set_affinity, 4350 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4351 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4352 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4353 }; 4354 4355 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4356 unsigned int virq, unsigned int nr_irqs, 4357 void *args) 4358 { 4359 struct its_vpe *vpe = args; 4360 int i; 4361 4362 /* Yes, we do want 16 SGIs */ 4363 WARN_ON(nr_irqs != 16); 4364 4365 for (i = 0; i < 16; i++) { 4366 vpe->sgi_config[i].priority = 0; 4367 vpe->sgi_config[i].enabled = false; 4368 vpe->sgi_config[i].group = false; 4369 4370 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4371 &its_sgi_irq_chip, vpe); 4372 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4373 } 4374 4375 return 0; 4376 } 4377 4378 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4379 unsigned int virq, 4380 unsigned int nr_irqs) 4381 { 4382 /* Nothing to do */ 4383 } 4384 4385 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4386 struct irq_data *d, bool reserve) 4387 { 4388 /* Write out the initial SGI configuration */ 4389 its_configure_sgi(d, false); 4390 return 0; 4391 } 4392 4393 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4394 struct irq_data *d) 4395 { 4396 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4397 4398 /* 4399 * The VSGI command is awkward: 4400 * 4401 * - To change the configuration, CLEAR must be set to false, 4402 * leaving the pending bit unchanged. 4403 * - To clear the pending bit, CLEAR must be set to true, leaving 4404 * the configuration unchanged. 4405 * 4406 * You just can't do both at once, hence the two commands below. 4407 */ 4408 vpe->sgi_config[d->hwirq].enabled = false; 4409 its_configure_sgi(d, false); 4410 its_configure_sgi(d, true); 4411 } 4412 4413 static const struct irq_domain_ops its_sgi_domain_ops = { 4414 .alloc = its_sgi_irq_domain_alloc, 4415 .free = its_sgi_irq_domain_free, 4416 .activate = its_sgi_irq_domain_activate, 4417 .deactivate = its_sgi_irq_domain_deactivate, 4418 }; 4419 4420 static int its_vpe_id_alloc(void) 4421 { 4422 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4423 } 4424 4425 static void its_vpe_id_free(u16 id) 4426 { 4427 ida_simple_remove(&its_vpeid_ida, id); 4428 } 4429 4430 static int its_vpe_init(struct its_vpe *vpe) 4431 { 4432 struct page *vpt_page; 4433 int vpe_id; 4434 4435 /* Allocate vpe_id */ 4436 vpe_id = its_vpe_id_alloc(); 4437 if (vpe_id < 0) 4438 return vpe_id; 4439 4440 /* Allocate VPT */ 4441 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4442 if (!vpt_page) { 4443 its_vpe_id_free(vpe_id); 4444 return -ENOMEM; 4445 } 4446 4447 if (!its_alloc_vpe_table(vpe_id)) { 4448 its_vpe_id_free(vpe_id); 4449 its_free_pending_table(vpt_page); 4450 return -ENOMEM; 4451 } 4452 4453 raw_spin_lock_init(&vpe->vpe_lock); 4454 vpe->vpe_id = vpe_id; 4455 vpe->vpt_page = vpt_page; 4456 if (gic_rdists->has_rvpeid) 4457 atomic_set(&vpe->vmapp_count, 0); 4458 else 4459 vpe->vpe_proxy_event = -1; 4460 4461 return 0; 4462 } 4463 4464 static void its_vpe_teardown(struct its_vpe *vpe) 4465 { 4466 its_vpe_db_proxy_unmap(vpe); 4467 its_vpe_id_free(vpe->vpe_id); 4468 its_free_pending_table(vpe->vpt_page); 4469 } 4470 4471 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4472 unsigned int virq, 4473 unsigned int nr_irqs) 4474 { 4475 struct its_vm *vm = domain->host_data; 4476 int i; 4477 4478 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4479 4480 for (i = 0; i < nr_irqs; i++) { 4481 struct irq_data *data = irq_domain_get_irq_data(domain, 4482 virq + i); 4483 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4484 4485 BUG_ON(vm != vpe->its_vm); 4486 4487 clear_bit(data->hwirq, vm->db_bitmap); 4488 its_vpe_teardown(vpe); 4489 irq_domain_reset_irq_data(data); 4490 } 4491 4492 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4493 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4494 its_free_prop_table(vm->vprop_page); 4495 } 4496 } 4497 4498 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4499 unsigned int nr_irqs, void *args) 4500 { 4501 struct irq_chip *irqchip = &its_vpe_irq_chip; 4502 struct its_vm *vm = args; 4503 unsigned long *bitmap; 4504 struct page *vprop_page; 4505 int base, nr_ids, i, err = 0; 4506 4507 BUG_ON(!vm); 4508 4509 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4510 if (!bitmap) 4511 return -ENOMEM; 4512 4513 if (nr_ids < nr_irqs) { 4514 its_lpi_free(bitmap, base, nr_ids); 4515 return -ENOMEM; 4516 } 4517 4518 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4519 if (!vprop_page) { 4520 its_lpi_free(bitmap, base, nr_ids); 4521 return -ENOMEM; 4522 } 4523 4524 vm->db_bitmap = bitmap; 4525 vm->db_lpi_base = base; 4526 vm->nr_db_lpis = nr_ids; 4527 vm->vprop_page = vprop_page; 4528 4529 if (gic_rdists->has_rvpeid) 4530 irqchip = &its_vpe_4_1_irq_chip; 4531 4532 for (i = 0; i < nr_irqs; i++) { 4533 vm->vpes[i]->vpe_db_lpi = base + i; 4534 err = its_vpe_init(vm->vpes[i]); 4535 if (err) 4536 break; 4537 err = its_irq_gic_domain_alloc(domain, virq + i, 4538 vm->vpes[i]->vpe_db_lpi); 4539 if (err) 4540 break; 4541 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4542 irqchip, vm->vpes[i]); 4543 set_bit(i, bitmap); 4544 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4545 } 4546 4547 if (err) { 4548 if (i > 0) 4549 its_vpe_irq_domain_free(domain, virq, i); 4550 4551 its_lpi_free(bitmap, base, nr_ids); 4552 its_free_prop_table(vprop_page); 4553 } 4554 4555 return err; 4556 } 4557 4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4559 struct irq_data *d, bool reserve) 4560 { 4561 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4562 struct its_node *its; 4563 4564 /* 4565 * If we use the list map, we issue VMAPP on demand... Unless 4566 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4567 * so that VSGIs can work. 4568 */ 4569 if (!gic_requires_eager_mapping()) 4570 return 0; 4571 4572 /* Map the VPE to the first possible CPU */ 4573 vpe->col_idx = cpumask_first(cpu_online_mask); 4574 4575 list_for_each_entry(its, &its_nodes, entry) { 4576 if (!is_v4(its)) 4577 continue; 4578 4579 its_send_vmapp(its, vpe, true); 4580 its_send_vinvall(its, vpe); 4581 } 4582 4583 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4584 4585 return 0; 4586 } 4587 4588 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4589 struct irq_data *d) 4590 { 4591 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4592 struct its_node *its; 4593 4594 /* 4595 * If we use the list map on GICv4.0, we unmap the VPE once no 4596 * VLPIs are associated with the VM. 4597 */ 4598 if (!gic_requires_eager_mapping()) 4599 return; 4600 4601 list_for_each_entry(its, &its_nodes, entry) { 4602 if (!is_v4(its)) 4603 continue; 4604 4605 its_send_vmapp(its, vpe, false); 4606 } 4607 4608 /* 4609 * There may be a direct read to the VPT after unmapping the 4610 * vPE, to guarantee the validity of this, we make the VPT 4611 * memory coherent with the CPU caches here. 4612 */ 4613 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4614 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4615 LPI_PENDBASE_SZ); 4616 } 4617 4618 static const struct irq_domain_ops its_vpe_domain_ops = { 4619 .alloc = its_vpe_irq_domain_alloc, 4620 .free = its_vpe_irq_domain_free, 4621 .activate = its_vpe_irq_domain_activate, 4622 .deactivate = its_vpe_irq_domain_deactivate, 4623 }; 4624 4625 static int its_force_quiescent(void __iomem *base) 4626 { 4627 u32 count = 1000000; /* 1s */ 4628 u32 val; 4629 4630 val = readl_relaxed(base + GITS_CTLR); 4631 /* 4632 * GIC architecture specification requires the ITS to be both 4633 * disabled and quiescent for writes to GITS_BASER<n> or 4634 * GITS_CBASER to not have UNPREDICTABLE results. 4635 */ 4636 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4637 return 0; 4638 4639 /* Disable the generation of all interrupts to this ITS */ 4640 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4641 writel_relaxed(val, base + GITS_CTLR); 4642 4643 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4644 while (1) { 4645 val = readl_relaxed(base + GITS_CTLR); 4646 if (val & GITS_CTLR_QUIESCENT) 4647 return 0; 4648 4649 count--; 4650 if (!count) 4651 return -EBUSY; 4652 4653 cpu_relax(); 4654 udelay(1); 4655 } 4656 } 4657 4658 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4659 { 4660 struct its_node *its = data; 4661 4662 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4663 its->typer &= ~GITS_TYPER_DEVBITS; 4664 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4665 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4666 4667 return true; 4668 } 4669 4670 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4671 { 4672 struct its_node *its = data; 4673 4674 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4675 4676 return true; 4677 } 4678 4679 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4680 { 4681 struct its_node *its = data; 4682 4683 /* On QDF2400, the size of the ITE is 16Bytes */ 4684 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4685 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4686 4687 return true; 4688 } 4689 4690 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4691 { 4692 struct its_node *its = its_dev->its; 4693 4694 /* 4695 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4696 * which maps 32-bit writes targeted at a separate window of 4697 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4698 * with device ID taken from bits [device_id_bits + 1:2] of 4699 * the window offset. 4700 */ 4701 return its->pre_its_base + (its_dev->device_id << 2); 4702 } 4703 4704 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4705 { 4706 struct its_node *its = data; 4707 u32 pre_its_window[2]; 4708 u32 ids; 4709 4710 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4711 "socionext,synquacer-pre-its", 4712 pre_its_window, 4713 ARRAY_SIZE(pre_its_window))) { 4714 4715 its->pre_its_base = pre_its_window[0]; 4716 its->get_msi_base = its_irq_get_msi_base_pre_its; 4717 4718 ids = ilog2(pre_its_window[1]) - 2; 4719 if (device_ids(its) > ids) { 4720 its->typer &= ~GITS_TYPER_DEVBITS; 4721 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4722 } 4723 4724 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4725 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4726 return true; 4727 } 4728 return false; 4729 } 4730 4731 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4732 { 4733 struct its_node *its = data; 4734 4735 /* 4736 * Hip07 insists on using the wrong address for the VLPI 4737 * page. Trick it into doing the right thing... 4738 */ 4739 its->vlpi_redist_offset = SZ_128K; 4740 return true; 4741 } 4742 4743 static bool __maybe_unused its_enable_rk3588001(void *data) 4744 { 4745 struct its_node *its = data; 4746 4747 if (!of_machine_is_compatible("rockchip,rk3588") && 4748 !of_machine_is_compatible("rockchip,rk3588s")) 4749 return false; 4750 4751 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4752 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4753 4754 return true; 4755 } 4756 4757 static const struct gic_quirk its_quirks[] = { 4758 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4759 { 4760 .desc = "ITS: Cavium errata 22375, 24313", 4761 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4762 .mask = 0xffff0fff, 4763 .init = its_enable_quirk_cavium_22375, 4764 }, 4765 #endif 4766 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4767 { 4768 .desc = "ITS: Cavium erratum 23144", 4769 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4770 .mask = 0xffff0fff, 4771 .init = its_enable_quirk_cavium_23144, 4772 }, 4773 #endif 4774 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4775 { 4776 .desc = "ITS: QDF2400 erratum 0065", 4777 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4778 .mask = 0xffffffff, 4779 .init = its_enable_quirk_qdf2400_e0065, 4780 }, 4781 #endif 4782 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4783 { 4784 /* 4785 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4786 * implementation, but with a 'pre-ITS' added that requires 4787 * special handling in software. 4788 */ 4789 .desc = "ITS: Socionext Synquacer pre-ITS", 4790 .iidr = 0x0001143b, 4791 .mask = 0xffffffff, 4792 .init = its_enable_quirk_socionext_synquacer, 4793 }, 4794 #endif 4795 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4796 { 4797 .desc = "ITS: Hip07 erratum 161600802", 4798 .iidr = 0x00000004, 4799 .mask = 0xffffffff, 4800 .init = its_enable_quirk_hip07_161600802, 4801 }, 4802 #endif 4803 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4804 { 4805 .desc = "ITS: Rockchip erratum RK3588001", 4806 .iidr = 0x0201743b, 4807 .mask = 0xffffffff, 4808 .init = its_enable_rk3588001, 4809 }, 4810 #endif 4811 { 4812 } 4813 }; 4814 4815 static void its_enable_quirks(struct its_node *its) 4816 { 4817 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4818 4819 gic_enable_quirks(iidr, its_quirks, its); 4820 } 4821 4822 static int its_save_disable(void) 4823 { 4824 struct its_node *its; 4825 int err = 0; 4826 4827 raw_spin_lock(&its_lock); 4828 list_for_each_entry(its, &its_nodes, entry) { 4829 void __iomem *base; 4830 4831 base = its->base; 4832 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4833 err = its_force_quiescent(base); 4834 if (err) { 4835 pr_err("ITS@%pa: failed to quiesce: %d\n", 4836 &its->phys_base, err); 4837 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4838 goto err; 4839 } 4840 4841 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4842 } 4843 4844 err: 4845 if (err) { 4846 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4847 void __iomem *base; 4848 4849 base = its->base; 4850 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4851 } 4852 } 4853 raw_spin_unlock(&its_lock); 4854 4855 return err; 4856 } 4857 4858 static void its_restore_enable(void) 4859 { 4860 struct its_node *its; 4861 int ret; 4862 4863 raw_spin_lock(&its_lock); 4864 list_for_each_entry(its, &its_nodes, entry) { 4865 void __iomem *base; 4866 int i; 4867 4868 base = its->base; 4869 4870 /* 4871 * Make sure that the ITS is disabled. If it fails to quiesce, 4872 * don't restore it since writing to CBASER or BASER<n> 4873 * registers is undefined according to the GIC v3 ITS 4874 * Specification. 4875 * 4876 * Firmware resuming with the ITS enabled is terminally broken. 4877 */ 4878 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4879 ret = its_force_quiescent(base); 4880 if (ret) { 4881 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4882 &its->phys_base, ret); 4883 continue; 4884 } 4885 4886 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4887 4888 /* 4889 * Writing CBASER resets CREADR to 0, so make CWRITER and 4890 * cmd_write line up with it. 4891 */ 4892 its->cmd_write = its->cmd_base; 4893 gits_write_cwriter(0, base + GITS_CWRITER); 4894 4895 /* Restore GITS_BASER from the value cache. */ 4896 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4897 struct its_baser *baser = &its->tables[i]; 4898 4899 if (!(baser->val & GITS_BASER_VALID)) 4900 continue; 4901 4902 its_write_baser(its, baser, baser->val); 4903 } 4904 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4905 4906 /* 4907 * Reinit the collection if it's stored in the ITS. This is 4908 * indicated by the col_id being less than the HCC field. 4909 * CID < HCC as specified in the GIC v3 Documentation. 4910 */ 4911 if (its->collections[smp_processor_id()].col_id < 4912 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4913 its_cpu_init_collection(its); 4914 } 4915 raw_spin_unlock(&its_lock); 4916 } 4917 4918 static struct syscore_ops its_syscore_ops = { 4919 .suspend = its_save_disable, 4920 .resume = its_restore_enable, 4921 }; 4922 4923 static void __init __iomem *its_map_one(struct resource *res, int *err) 4924 { 4925 void __iomem *its_base; 4926 u32 val; 4927 4928 its_base = ioremap(res->start, SZ_64K); 4929 if (!its_base) { 4930 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4931 *err = -ENOMEM; 4932 return NULL; 4933 } 4934 4935 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4936 if (val != 0x30 && val != 0x40) { 4937 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4938 *err = -ENODEV; 4939 goto out_unmap; 4940 } 4941 4942 *err = its_force_quiescent(its_base); 4943 if (*err) { 4944 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4945 goto out_unmap; 4946 } 4947 4948 return its_base; 4949 4950 out_unmap: 4951 iounmap(its_base); 4952 return NULL; 4953 } 4954 4955 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 4956 { 4957 struct irq_domain *inner_domain; 4958 struct msi_domain_info *info; 4959 4960 info = kzalloc(sizeof(*info), GFP_KERNEL); 4961 if (!info) 4962 return -ENOMEM; 4963 4964 info->ops = &its_msi_domain_ops; 4965 info->data = its; 4966 4967 inner_domain = irq_domain_create_hierarchy(its_parent, 4968 its->msi_domain_flags, 0, 4969 handle, &its_domain_ops, 4970 info); 4971 if (!inner_domain) { 4972 kfree(info); 4973 return -ENOMEM; 4974 } 4975 4976 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4977 4978 return 0; 4979 } 4980 4981 static int its_init_vpe_domain(void) 4982 { 4983 struct its_node *its; 4984 u32 devid; 4985 int entries; 4986 4987 if (gic_rdists->has_direct_lpi) { 4988 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 4989 return 0; 4990 } 4991 4992 /* Any ITS will do, even if not v4 */ 4993 its = list_first_entry(&its_nodes, struct its_node, entry); 4994 4995 entries = roundup_pow_of_two(nr_cpu_ids); 4996 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 4997 GFP_KERNEL); 4998 if (!vpe_proxy.vpes) 4999 return -ENOMEM; 5000 5001 /* Use the last possible DevID */ 5002 devid = GENMASK(device_ids(its) - 1, 0); 5003 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5004 if (!vpe_proxy.dev) { 5005 kfree(vpe_proxy.vpes); 5006 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5007 return -ENOMEM; 5008 } 5009 5010 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5011 5012 raw_spin_lock_init(&vpe_proxy.lock); 5013 vpe_proxy.next_victim = 0; 5014 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5015 devid, vpe_proxy.dev->nr_ites); 5016 5017 return 0; 5018 } 5019 5020 static int __init its_compute_its_list_map(struct resource *res, 5021 void __iomem *its_base) 5022 { 5023 int its_number; 5024 u32 ctlr; 5025 5026 /* 5027 * This is assumed to be done early enough that we're 5028 * guaranteed to be single-threaded, hence no 5029 * locking. Should this change, we should address 5030 * this. 5031 */ 5032 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5033 if (its_number >= GICv4_ITS_LIST_MAX) { 5034 pr_err("ITS@%pa: No ITSList entry available!\n", 5035 &res->start); 5036 return -EINVAL; 5037 } 5038 5039 ctlr = readl_relaxed(its_base + GITS_CTLR); 5040 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5041 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5042 writel_relaxed(ctlr, its_base + GITS_CTLR); 5043 ctlr = readl_relaxed(its_base + GITS_CTLR); 5044 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5045 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5046 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5047 } 5048 5049 if (test_and_set_bit(its_number, &its_list_map)) { 5050 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5051 &res->start, its_number); 5052 return -EINVAL; 5053 } 5054 5055 return its_number; 5056 } 5057 5058 static int __init its_probe_one(struct resource *res, 5059 struct fwnode_handle *handle, int numa_node) 5060 { 5061 struct its_node *its; 5062 void __iomem *its_base; 5063 u64 baser, tmp, typer; 5064 struct page *page; 5065 u32 ctlr; 5066 int err; 5067 5068 its_base = its_map_one(res, &err); 5069 if (!its_base) 5070 return err; 5071 5072 pr_info("ITS %pR\n", res); 5073 5074 its = kzalloc(sizeof(*its), GFP_KERNEL); 5075 if (!its) { 5076 err = -ENOMEM; 5077 goto out_unmap; 5078 } 5079 5080 raw_spin_lock_init(&its->lock); 5081 mutex_init(&its->dev_alloc_lock); 5082 INIT_LIST_HEAD(&its->entry); 5083 INIT_LIST_HEAD(&its->its_device_list); 5084 typer = gic_read_typer(its_base + GITS_TYPER); 5085 its->typer = typer; 5086 its->base = its_base; 5087 its->phys_base = res->start; 5088 if (is_v4(its)) { 5089 if (!(typer & GITS_TYPER_VMOVP)) { 5090 err = its_compute_its_list_map(res, its_base); 5091 if (err < 0) 5092 goto out_free_its; 5093 5094 its->list_nr = err; 5095 5096 pr_info("ITS@%pa: Using ITS number %d\n", 5097 &res->start, err); 5098 } else { 5099 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 5100 } 5101 5102 if (is_v4_1(its)) { 5103 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); 5104 5105 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); 5106 if (!its->sgir_base) { 5107 err = -ENOMEM; 5108 goto out_free_its; 5109 } 5110 5111 its->mpidr = readl_relaxed(its_base + GITS_MPIDR); 5112 5113 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5114 &res->start, its->mpidr, svpet); 5115 } 5116 } 5117 5118 its->numa_node = numa_node; 5119 5120 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5121 get_order(ITS_CMD_QUEUE_SZ)); 5122 if (!page) { 5123 err = -ENOMEM; 5124 goto out_unmap_sgir; 5125 } 5126 its->cmd_base = (void *)page_address(page); 5127 its->cmd_write = its->cmd_base; 5128 its->fwnode_handle = handle; 5129 its->get_msi_base = its_irq_get_msi_base; 5130 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5131 5132 its_enable_quirks(its); 5133 5134 err = its_alloc_tables(its); 5135 if (err) 5136 goto out_free_cmd; 5137 5138 err = its_alloc_collections(its); 5139 if (err) 5140 goto out_free_tables; 5141 5142 baser = (virt_to_phys(its->cmd_base) | 5143 GITS_CBASER_RaWaWb | 5144 GITS_CBASER_InnerShareable | 5145 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5146 GITS_CBASER_VALID); 5147 5148 gits_write_cbaser(baser, its->base + GITS_CBASER); 5149 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5150 5151 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5152 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5153 5154 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5155 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5156 /* 5157 * The HW reports non-shareable, we must 5158 * remove the cacheability attributes as 5159 * well. 5160 */ 5161 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5162 GITS_CBASER_CACHEABILITY_MASK); 5163 baser |= GITS_CBASER_nC; 5164 gits_write_cbaser(baser, its->base + GITS_CBASER); 5165 } 5166 pr_info("ITS: using cache flushing for cmd queue\n"); 5167 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5168 } 5169 5170 gits_write_cwriter(0, its->base + GITS_CWRITER); 5171 ctlr = readl_relaxed(its->base + GITS_CTLR); 5172 ctlr |= GITS_CTLR_ENABLE; 5173 if (is_v4(its)) 5174 ctlr |= GITS_CTLR_ImDe; 5175 writel_relaxed(ctlr, its->base + GITS_CTLR); 5176 5177 err = its_init_domain(handle, its); 5178 if (err) 5179 goto out_free_tables; 5180 5181 raw_spin_lock(&its_lock); 5182 list_add(&its->entry, &its_nodes); 5183 raw_spin_unlock(&its_lock); 5184 5185 return 0; 5186 5187 out_free_tables: 5188 its_free_tables(its); 5189 out_free_cmd: 5190 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5191 out_unmap_sgir: 5192 if (its->sgir_base) 5193 iounmap(its->sgir_base); 5194 out_free_its: 5195 kfree(its); 5196 out_unmap: 5197 iounmap(its_base); 5198 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 5199 return err; 5200 } 5201 5202 static bool gic_rdists_supports_plpis(void) 5203 { 5204 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5205 } 5206 5207 static int redist_disable_lpis(void) 5208 { 5209 void __iomem *rbase = gic_data_rdist_rd_base(); 5210 u64 timeout = USEC_PER_SEC; 5211 u64 val; 5212 5213 if (!gic_rdists_supports_plpis()) { 5214 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5215 return -ENXIO; 5216 } 5217 5218 val = readl_relaxed(rbase + GICR_CTLR); 5219 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5220 return 0; 5221 5222 /* 5223 * If coming via a CPU hotplug event, we don't need to disable 5224 * LPIs before trying to re-enable them. They are already 5225 * configured and all is well in the world. 5226 * 5227 * If running with preallocated tables, there is nothing to do. 5228 */ 5229 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5230 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5231 return 0; 5232 5233 /* 5234 * From that point on, we only try to do some damage control. 5235 */ 5236 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5237 smp_processor_id()); 5238 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5239 5240 /* Disable LPIs */ 5241 val &= ~GICR_CTLR_ENABLE_LPIS; 5242 writel_relaxed(val, rbase + GICR_CTLR); 5243 5244 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5245 dsb(sy); 5246 5247 /* 5248 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5249 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5250 * Error out if we time out waiting for RWP to clear. 5251 */ 5252 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5253 if (!timeout) { 5254 pr_err("CPU%d: Timeout while disabling LPIs\n", 5255 smp_processor_id()); 5256 return -ETIMEDOUT; 5257 } 5258 udelay(1); 5259 timeout--; 5260 } 5261 5262 /* 5263 * After it has been written to 1, it is IMPLEMENTATION 5264 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5265 * cleared to 0. Error out if clearing the bit failed. 5266 */ 5267 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5268 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5269 return -EBUSY; 5270 } 5271 5272 return 0; 5273 } 5274 5275 int its_cpu_init(void) 5276 { 5277 if (!list_empty(&its_nodes)) { 5278 int ret; 5279 5280 ret = redist_disable_lpis(); 5281 if (ret) 5282 return ret; 5283 5284 its_cpu_init_lpis(); 5285 its_cpu_init_collections(); 5286 } 5287 5288 return 0; 5289 } 5290 5291 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5292 { 5293 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5294 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5295 } 5296 5297 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5298 rdist_memreserve_cpuhp_cleanup_workfn); 5299 5300 static int its_cpu_memreserve_lpi(unsigned int cpu) 5301 { 5302 struct page *pend_page; 5303 int ret = 0; 5304 5305 /* This gets to run exactly once per CPU */ 5306 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5307 return 0; 5308 5309 pend_page = gic_data_rdist()->pend_page; 5310 if (WARN_ON(!pend_page)) { 5311 ret = -ENOMEM; 5312 goto out; 5313 } 5314 /* 5315 * If the pending table was pre-programmed, free the memory we 5316 * preemptively allocated. Otherwise, reserve that memory for 5317 * later kexecs. 5318 */ 5319 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5320 its_free_pending_table(pend_page); 5321 gic_data_rdist()->pend_page = NULL; 5322 } else { 5323 phys_addr_t paddr = page_to_phys(pend_page); 5324 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5325 } 5326 5327 out: 5328 /* Last CPU being brought up gets to issue the cleanup */ 5329 if (!IS_ENABLED(CONFIG_SMP) || 5330 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5331 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5332 5333 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5334 return ret; 5335 } 5336 5337 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5338 static int __init its_reset_one(struct resource *res) 5339 { 5340 void __iomem *its_base; 5341 int err, i; 5342 5343 its_base = its_map_one(res, &err); 5344 if (!its_base) 5345 return err; 5346 5347 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5348 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5349 5350 iounmap(its_base); 5351 return 0; 5352 } 5353 5354 static const struct of_device_id its_device_id[] = { 5355 { .compatible = "arm,gic-v3-its", }, 5356 {}, 5357 }; 5358 5359 static int __init its_of_probe(struct device_node *node) 5360 { 5361 struct device_node *np; 5362 struct resource res; 5363 5364 /* 5365 * Make sure *all* the ITS are reset before we probe any, as 5366 * they may be sharing memory. If any of the ITS fails to 5367 * reset, don't even try to go any further, as this could 5368 * result in something even worse. 5369 */ 5370 for (np = of_find_matching_node(node, its_device_id); np; 5371 np = of_find_matching_node(np, its_device_id)) { 5372 int err; 5373 5374 if (!of_device_is_available(np) || 5375 !of_property_read_bool(np, "msi-controller") || 5376 of_address_to_resource(np, 0, &res)) 5377 continue; 5378 5379 err = its_reset_one(&res); 5380 if (err) 5381 return err; 5382 } 5383 5384 for (np = of_find_matching_node(node, its_device_id); np; 5385 np = of_find_matching_node(np, its_device_id)) { 5386 if (!of_device_is_available(np)) 5387 continue; 5388 if (!of_property_read_bool(np, "msi-controller")) { 5389 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5390 np); 5391 continue; 5392 } 5393 5394 if (of_address_to_resource(np, 0, &res)) { 5395 pr_warn("%pOF: no regs?\n", np); 5396 continue; 5397 } 5398 5399 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 5400 } 5401 return 0; 5402 } 5403 5404 #ifdef CONFIG_ACPI 5405 5406 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5407 5408 #ifdef CONFIG_ACPI_NUMA 5409 struct its_srat_map { 5410 /* numa node id */ 5411 u32 numa_node; 5412 /* GIC ITS ID */ 5413 u32 its_id; 5414 }; 5415 5416 static struct its_srat_map *its_srat_maps __initdata; 5417 static int its_in_srat __initdata; 5418 5419 static int __init acpi_get_its_numa_node(u32 its_id) 5420 { 5421 int i; 5422 5423 for (i = 0; i < its_in_srat; i++) { 5424 if (its_id == its_srat_maps[i].its_id) 5425 return its_srat_maps[i].numa_node; 5426 } 5427 return NUMA_NO_NODE; 5428 } 5429 5430 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5431 const unsigned long end) 5432 { 5433 return 0; 5434 } 5435 5436 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5437 const unsigned long end) 5438 { 5439 int node; 5440 struct acpi_srat_gic_its_affinity *its_affinity; 5441 5442 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5443 if (!its_affinity) 5444 return -EINVAL; 5445 5446 if (its_affinity->header.length < sizeof(*its_affinity)) { 5447 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5448 its_affinity->header.length); 5449 return -EINVAL; 5450 } 5451 5452 /* 5453 * Note that in theory a new proximity node could be created by this 5454 * entry as it is an SRAT resource allocation structure. 5455 * We do not currently support doing so. 5456 */ 5457 node = pxm_to_node(its_affinity->proximity_domain); 5458 5459 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5460 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5461 return 0; 5462 } 5463 5464 its_srat_maps[its_in_srat].numa_node = node; 5465 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5466 its_in_srat++; 5467 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5468 its_affinity->proximity_domain, its_affinity->its_id, node); 5469 5470 return 0; 5471 } 5472 5473 static void __init acpi_table_parse_srat_its(void) 5474 { 5475 int count; 5476 5477 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5478 sizeof(struct acpi_table_srat), 5479 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5480 gic_acpi_match_srat_its, 0); 5481 if (count <= 0) 5482 return; 5483 5484 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5485 GFP_KERNEL); 5486 if (!its_srat_maps) 5487 return; 5488 5489 acpi_table_parse_entries(ACPI_SIG_SRAT, 5490 sizeof(struct acpi_table_srat), 5491 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5492 gic_acpi_parse_srat_its, 0); 5493 } 5494 5495 /* free the its_srat_maps after ITS probing */ 5496 static void __init acpi_its_srat_maps_free(void) 5497 { 5498 kfree(its_srat_maps); 5499 } 5500 #else 5501 static void __init acpi_table_parse_srat_its(void) { } 5502 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5503 static void __init acpi_its_srat_maps_free(void) { } 5504 #endif 5505 5506 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5507 const unsigned long end) 5508 { 5509 struct acpi_madt_generic_translator *its_entry; 5510 struct fwnode_handle *dom_handle; 5511 struct resource res; 5512 int err; 5513 5514 its_entry = (struct acpi_madt_generic_translator *)header; 5515 memset(&res, 0, sizeof(res)); 5516 res.start = its_entry->base_address; 5517 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5518 res.flags = IORESOURCE_MEM; 5519 5520 dom_handle = irq_domain_alloc_fwnode(&res.start); 5521 if (!dom_handle) { 5522 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5523 &res.start); 5524 return -ENOMEM; 5525 } 5526 5527 err = iort_register_domain_token(its_entry->translation_id, res.start, 5528 dom_handle); 5529 if (err) { 5530 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5531 &res.start, its_entry->translation_id); 5532 goto dom_err; 5533 } 5534 5535 err = its_probe_one(&res, dom_handle, 5536 acpi_get_its_numa_node(its_entry->translation_id)); 5537 if (!err) 5538 return 0; 5539 5540 iort_deregister_domain_token(its_entry->translation_id); 5541 dom_err: 5542 irq_domain_free_fwnode(dom_handle); 5543 return err; 5544 } 5545 5546 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5547 const unsigned long end) 5548 { 5549 struct acpi_madt_generic_translator *its_entry; 5550 struct resource res; 5551 5552 its_entry = (struct acpi_madt_generic_translator *)header; 5553 res = (struct resource) { 5554 .start = its_entry->base_address, 5555 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5556 .flags = IORESOURCE_MEM, 5557 }; 5558 5559 return its_reset_one(&res); 5560 } 5561 5562 static void __init its_acpi_probe(void) 5563 { 5564 acpi_table_parse_srat_its(); 5565 /* 5566 * Make sure *all* the ITS are reset before we probe any, as 5567 * they may be sharing memory. If any of the ITS fails to 5568 * reset, don't even try to go any further, as this could 5569 * result in something even worse. 5570 */ 5571 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5572 its_acpi_reset, 0) > 0) 5573 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5574 gic_acpi_parse_madt_its, 0); 5575 acpi_its_srat_maps_free(); 5576 } 5577 #else 5578 static void __init its_acpi_probe(void) { } 5579 #endif 5580 5581 int __init its_lpi_memreserve_init(void) 5582 { 5583 int state; 5584 5585 if (!efi_enabled(EFI_CONFIG_TABLES)) 5586 return 0; 5587 5588 if (list_empty(&its_nodes)) 5589 return 0; 5590 5591 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5592 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5593 "irqchip/arm/gicv3/memreserve:online", 5594 its_cpu_memreserve_lpi, 5595 NULL); 5596 if (state < 0) 5597 return state; 5598 5599 gic_rdists->cpuhp_memreserve_state = state; 5600 5601 return 0; 5602 } 5603 5604 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5605 struct irq_domain *parent_domain) 5606 { 5607 struct device_node *of_node; 5608 struct its_node *its; 5609 bool has_v4 = false; 5610 bool has_v4_1 = false; 5611 int err; 5612 5613 gic_rdists = rdists; 5614 5615 its_parent = parent_domain; 5616 of_node = to_of_node(handle); 5617 if (of_node) 5618 its_of_probe(of_node); 5619 else 5620 its_acpi_probe(); 5621 5622 if (list_empty(&its_nodes)) { 5623 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5624 return -ENXIO; 5625 } 5626 5627 err = allocate_lpi_tables(); 5628 if (err) 5629 return err; 5630 5631 list_for_each_entry(its, &its_nodes, entry) { 5632 has_v4 |= is_v4(its); 5633 has_v4_1 |= is_v4_1(its); 5634 } 5635 5636 /* Don't bother with inconsistent systems */ 5637 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5638 rdists->has_rvpeid = false; 5639 5640 if (has_v4 & rdists->has_vlpis) { 5641 const struct irq_domain_ops *sgi_ops; 5642 5643 if (has_v4_1) 5644 sgi_ops = &its_sgi_domain_ops; 5645 else 5646 sgi_ops = NULL; 5647 5648 if (its_init_vpe_domain() || 5649 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5650 rdists->has_vlpis = false; 5651 pr_err("ITS: Disabling GICv4 support\n"); 5652 } 5653 } 5654 5655 register_syscore_ops(&its_syscore_ops); 5656 5657 return 0; 5658 } 5659