1 /* 2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/acpi.h> 19 #include <linux/acpi_iort.h> 20 #include <linux/bitmap.h> 21 #include <linux/cpu.h> 22 #include <linux/delay.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/interrupt.h> 25 #include <linux/irqdomain.h> 26 #include <linux/list.h> 27 #include <linux/list_sort.h> 28 #include <linux/log2.h> 29 #include <linux/mm.h> 30 #include <linux/msi.h> 31 #include <linux/of.h> 32 #include <linux/of_address.h> 33 #include <linux/of_irq.h> 34 #include <linux/of_pci.h> 35 #include <linux/of_platform.h> 36 #include <linux/percpu.h> 37 #include <linux/slab.h> 38 #include <linux/syscore_ops.h> 39 40 #include <linux/irqchip.h> 41 #include <linux/irqchip/arm-gic-v3.h> 42 #include <linux/irqchip/arm-gic-v4.h> 43 44 #include <asm/cputype.h> 45 #include <asm/exception.h> 46 47 #include "irq-gic-common.h" 48 49 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 50 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 51 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 52 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) 53 54 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 55 56 static u32 lpi_id_bits; 57 58 /* 59 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 60 * deal with (one configuration byte per interrupt). PENDBASE has to 61 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 62 */ 63 #define LPI_NRBITS lpi_id_bits 64 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 65 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 66 67 #define LPI_PROP_DEFAULT_PRIO 0xa0 68 69 /* 70 * Collection structure - just an ID, and a redistributor address to 71 * ping. We use one per CPU as a bag of interrupts assigned to this 72 * CPU. 73 */ 74 struct its_collection { 75 u64 target_address; 76 u16 col_id; 77 }; 78 79 /* 80 * The ITS_BASER structure - contains memory information, cached 81 * value of BASER register configuration and ITS page size. 82 */ 83 struct its_baser { 84 void *base; 85 u64 val; 86 u32 order; 87 u32 psz; 88 }; 89 90 struct its_device; 91 92 /* 93 * The ITS structure - contains most of the infrastructure, with the 94 * top-level MSI domain, the command queue, the collections, and the 95 * list of devices writing to it. 96 */ 97 struct its_node { 98 raw_spinlock_t lock; 99 struct list_head entry; 100 void __iomem *base; 101 phys_addr_t phys_base; 102 struct its_cmd_block *cmd_base; 103 struct its_cmd_block *cmd_write; 104 struct its_baser tables[GITS_BASER_NR_REGS]; 105 struct its_collection *collections; 106 struct fwnode_handle *fwnode_handle; 107 u64 (*get_msi_base)(struct its_device *its_dev); 108 u64 cbaser_save; 109 u32 ctlr_save; 110 struct list_head its_device_list; 111 u64 flags; 112 unsigned long list_nr; 113 u32 ite_size; 114 u32 device_ids; 115 int numa_node; 116 unsigned int msi_domain_flags; 117 u32 pre_its_base; /* for Socionext Synquacer */ 118 bool is_v4; 119 int vlpi_redist_offset; 120 }; 121 122 #define ITS_ITT_ALIGN SZ_256 123 124 /* The maximum number of VPEID bits supported by VLPI commands */ 125 #define ITS_MAX_VPEID_BITS (16) 126 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 127 128 /* Convert page order to size in bytes */ 129 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 130 131 struct event_lpi_map { 132 unsigned long *lpi_map; 133 u16 *col_map; 134 irq_hw_number_t lpi_base; 135 int nr_lpis; 136 struct mutex vlpi_lock; 137 struct its_vm *vm; 138 struct its_vlpi_map *vlpi_maps; 139 int nr_vlpis; 140 }; 141 142 /* 143 * The ITS view of a device - belongs to an ITS, owns an interrupt 144 * translation table, and a list of interrupts. If it some of its 145 * LPIs are injected into a guest (GICv4), the event_map.vm field 146 * indicates which one. 147 */ 148 struct its_device { 149 struct list_head entry; 150 struct its_node *its; 151 struct event_lpi_map event_map; 152 void *itt; 153 u32 nr_ites; 154 u32 device_id; 155 }; 156 157 static struct { 158 raw_spinlock_t lock; 159 struct its_device *dev; 160 struct its_vpe **vpes; 161 int next_victim; 162 } vpe_proxy; 163 164 static LIST_HEAD(its_nodes); 165 static DEFINE_RAW_SPINLOCK(its_lock); 166 static struct rdists *gic_rdists; 167 static struct irq_domain *its_parent; 168 169 static unsigned long its_list_map; 170 static u16 vmovp_seq_num; 171 static DEFINE_RAW_SPINLOCK(vmovp_lock); 172 173 static DEFINE_IDA(its_vpeid_ida); 174 175 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 176 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 177 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 178 179 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 180 u32 event) 181 { 182 struct its_node *its = its_dev->its; 183 184 return its->collections + its_dev->event_map.col_map[event]; 185 } 186 187 static struct its_collection *valid_col(struct its_collection *col) 188 { 189 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15))) 190 return NULL; 191 192 return col; 193 } 194 195 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 196 { 197 if (valid_col(its->collections + vpe->col_idx)) 198 return vpe; 199 200 return NULL; 201 } 202 203 /* 204 * ITS command descriptors - parameters to be encoded in a command 205 * block. 206 */ 207 struct its_cmd_desc { 208 union { 209 struct { 210 struct its_device *dev; 211 u32 event_id; 212 } its_inv_cmd; 213 214 struct { 215 struct its_device *dev; 216 u32 event_id; 217 } its_clear_cmd; 218 219 struct { 220 struct its_device *dev; 221 u32 event_id; 222 } its_int_cmd; 223 224 struct { 225 struct its_device *dev; 226 int valid; 227 } its_mapd_cmd; 228 229 struct { 230 struct its_collection *col; 231 int valid; 232 } its_mapc_cmd; 233 234 struct { 235 struct its_device *dev; 236 u32 phys_id; 237 u32 event_id; 238 } its_mapti_cmd; 239 240 struct { 241 struct its_device *dev; 242 struct its_collection *col; 243 u32 event_id; 244 } its_movi_cmd; 245 246 struct { 247 struct its_device *dev; 248 u32 event_id; 249 } its_discard_cmd; 250 251 struct { 252 struct its_collection *col; 253 } its_invall_cmd; 254 255 struct { 256 struct its_vpe *vpe; 257 } its_vinvall_cmd; 258 259 struct { 260 struct its_vpe *vpe; 261 struct its_collection *col; 262 bool valid; 263 } its_vmapp_cmd; 264 265 struct { 266 struct its_vpe *vpe; 267 struct its_device *dev; 268 u32 virt_id; 269 u32 event_id; 270 bool db_enabled; 271 } its_vmapti_cmd; 272 273 struct { 274 struct its_vpe *vpe; 275 struct its_device *dev; 276 u32 event_id; 277 bool db_enabled; 278 } its_vmovi_cmd; 279 280 struct { 281 struct its_vpe *vpe; 282 struct its_collection *col; 283 u16 seq_num; 284 u16 its_list; 285 } its_vmovp_cmd; 286 }; 287 }; 288 289 /* 290 * The ITS command block, which is what the ITS actually parses. 291 */ 292 struct its_cmd_block { 293 u64 raw_cmd[4]; 294 }; 295 296 #define ITS_CMD_QUEUE_SZ SZ_64K 297 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 298 299 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 300 struct its_cmd_block *, 301 struct its_cmd_desc *); 302 303 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 304 struct its_cmd_block *, 305 struct its_cmd_desc *); 306 307 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 308 { 309 u64 mask = GENMASK_ULL(h, l); 310 *raw_cmd &= ~mask; 311 *raw_cmd |= (val << l) & mask; 312 } 313 314 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 315 { 316 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 317 } 318 319 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 320 { 321 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 322 } 323 324 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 325 { 326 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 327 } 328 329 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 330 { 331 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 332 } 333 334 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 335 { 336 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 337 } 338 339 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 340 { 341 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 342 } 343 344 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 345 { 346 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 347 } 348 349 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 350 { 351 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 352 } 353 354 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 355 { 356 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 357 } 358 359 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 360 { 361 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 362 } 363 364 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 365 { 366 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 367 } 368 369 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 370 { 371 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 372 } 373 374 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 375 { 376 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 377 } 378 379 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 380 { 381 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 382 } 383 384 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 385 { 386 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 387 } 388 389 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 390 { 391 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 392 } 393 394 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 395 { 396 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 397 } 398 399 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 400 { 401 /* Let's fixup BE commands */ 402 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 403 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 404 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 405 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 406 } 407 408 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 409 struct its_cmd_block *cmd, 410 struct its_cmd_desc *desc) 411 { 412 unsigned long itt_addr; 413 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 414 415 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 416 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 417 418 its_encode_cmd(cmd, GITS_CMD_MAPD); 419 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 420 its_encode_size(cmd, size - 1); 421 its_encode_itt(cmd, itt_addr); 422 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 423 424 its_fixup_cmd(cmd); 425 426 return NULL; 427 } 428 429 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 430 struct its_cmd_block *cmd, 431 struct its_cmd_desc *desc) 432 { 433 its_encode_cmd(cmd, GITS_CMD_MAPC); 434 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 435 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 436 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 437 438 its_fixup_cmd(cmd); 439 440 return desc->its_mapc_cmd.col; 441 } 442 443 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 444 struct its_cmd_block *cmd, 445 struct its_cmd_desc *desc) 446 { 447 struct its_collection *col; 448 449 col = dev_event_to_col(desc->its_mapti_cmd.dev, 450 desc->its_mapti_cmd.event_id); 451 452 its_encode_cmd(cmd, GITS_CMD_MAPTI); 453 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 454 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 455 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 456 its_encode_collection(cmd, col->col_id); 457 458 its_fixup_cmd(cmd); 459 460 return valid_col(col); 461 } 462 463 static struct its_collection *its_build_movi_cmd(struct its_node *its, 464 struct its_cmd_block *cmd, 465 struct its_cmd_desc *desc) 466 { 467 struct its_collection *col; 468 469 col = dev_event_to_col(desc->its_movi_cmd.dev, 470 desc->its_movi_cmd.event_id); 471 472 its_encode_cmd(cmd, GITS_CMD_MOVI); 473 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 474 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 475 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 476 477 its_fixup_cmd(cmd); 478 479 return valid_col(col); 480 } 481 482 static struct its_collection *its_build_discard_cmd(struct its_node *its, 483 struct its_cmd_block *cmd, 484 struct its_cmd_desc *desc) 485 { 486 struct its_collection *col; 487 488 col = dev_event_to_col(desc->its_discard_cmd.dev, 489 desc->its_discard_cmd.event_id); 490 491 its_encode_cmd(cmd, GITS_CMD_DISCARD); 492 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 493 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 494 495 its_fixup_cmd(cmd); 496 497 return valid_col(col); 498 } 499 500 static struct its_collection *its_build_inv_cmd(struct its_node *its, 501 struct its_cmd_block *cmd, 502 struct its_cmd_desc *desc) 503 { 504 struct its_collection *col; 505 506 col = dev_event_to_col(desc->its_inv_cmd.dev, 507 desc->its_inv_cmd.event_id); 508 509 its_encode_cmd(cmd, GITS_CMD_INV); 510 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 511 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 512 513 its_fixup_cmd(cmd); 514 515 return valid_col(col); 516 } 517 518 static struct its_collection *its_build_int_cmd(struct its_node *its, 519 struct its_cmd_block *cmd, 520 struct its_cmd_desc *desc) 521 { 522 struct its_collection *col; 523 524 col = dev_event_to_col(desc->its_int_cmd.dev, 525 desc->its_int_cmd.event_id); 526 527 its_encode_cmd(cmd, GITS_CMD_INT); 528 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 529 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 530 531 its_fixup_cmd(cmd); 532 533 return valid_col(col); 534 } 535 536 static struct its_collection *its_build_clear_cmd(struct its_node *its, 537 struct its_cmd_block *cmd, 538 struct its_cmd_desc *desc) 539 { 540 struct its_collection *col; 541 542 col = dev_event_to_col(desc->its_clear_cmd.dev, 543 desc->its_clear_cmd.event_id); 544 545 its_encode_cmd(cmd, GITS_CMD_CLEAR); 546 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 547 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 548 549 its_fixup_cmd(cmd); 550 551 return valid_col(col); 552 } 553 554 static struct its_collection *its_build_invall_cmd(struct its_node *its, 555 struct its_cmd_block *cmd, 556 struct its_cmd_desc *desc) 557 { 558 its_encode_cmd(cmd, GITS_CMD_INVALL); 559 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 560 561 its_fixup_cmd(cmd); 562 563 return NULL; 564 } 565 566 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 567 struct its_cmd_block *cmd, 568 struct its_cmd_desc *desc) 569 { 570 its_encode_cmd(cmd, GITS_CMD_VINVALL); 571 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 572 573 its_fixup_cmd(cmd); 574 575 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 576 } 577 578 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 579 struct its_cmd_block *cmd, 580 struct its_cmd_desc *desc) 581 { 582 unsigned long vpt_addr; 583 u64 target; 584 585 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 586 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 587 588 its_encode_cmd(cmd, GITS_CMD_VMAPP); 589 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 590 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 591 its_encode_target(cmd, target); 592 its_encode_vpt_addr(cmd, vpt_addr); 593 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 594 595 its_fixup_cmd(cmd); 596 597 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 598 } 599 600 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 601 struct its_cmd_block *cmd, 602 struct its_cmd_desc *desc) 603 { 604 u32 db; 605 606 if (desc->its_vmapti_cmd.db_enabled) 607 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 608 else 609 db = 1023; 610 611 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 612 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 613 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 614 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 615 its_encode_db_phys_id(cmd, db); 616 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 617 618 its_fixup_cmd(cmd); 619 620 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 621 } 622 623 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 624 struct its_cmd_block *cmd, 625 struct its_cmd_desc *desc) 626 { 627 u32 db; 628 629 if (desc->its_vmovi_cmd.db_enabled) 630 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 631 else 632 db = 1023; 633 634 its_encode_cmd(cmd, GITS_CMD_VMOVI); 635 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 636 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 637 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 638 its_encode_db_phys_id(cmd, db); 639 its_encode_db_valid(cmd, true); 640 641 its_fixup_cmd(cmd); 642 643 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 644 } 645 646 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 647 struct its_cmd_block *cmd, 648 struct its_cmd_desc *desc) 649 { 650 u64 target; 651 652 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 653 its_encode_cmd(cmd, GITS_CMD_VMOVP); 654 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 655 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 656 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 657 its_encode_target(cmd, target); 658 659 its_fixup_cmd(cmd); 660 661 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 662 } 663 664 static u64 its_cmd_ptr_to_offset(struct its_node *its, 665 struct its_cmd_block *ptr) 666 { 667 return (ptr - its->cmd_base) * sizeof(*ptr); 668 } 669 670 static int its_queue_full(struct its_node *its) 671 { 672 int widx; 673 int ridx; 674 675 widx = its->cmd_write - its->cmd_base; 676 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 677 678 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 679 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 680 return 1; 681 682 return 0; 683 } 684 685 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 686 { 687 struct its_cmd_block *cmd; 688 u32 count = 1000000; /* 1s! */ 689 690 while (its_queue_full(its)) { 691 count--; 692 if (!count) { 693 pr_err_ratelimited("ITS queue not draining\n"); 694 return NULL; 695 } 696 cpu_relax(); 697 udelay(1); 698 } 699 700 cmd = its->cmd_write++; 701 702 /* Handle queue wrapping */ 703 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 704 its->cmd_write = its->cmd_base; 705 706 /* Clear command */ 707 cmd->raw_cmd[0] = 0; 708 cmd->raw_cmd[1] = 0; 709 cmd->raw_cmd[2] = 0; 710 cmd->raw_cmd[3] = 0; 711 712 return cmd; 713 } 714 715 static struct its_cmd_block *its_post_commands(struct its_node *its) 716 { 717 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 718 719 writel_relaxed(wr, its->base + GITS_CWRITER); 720 721 return its->cmd_write; 722 } 723 724 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 725 { 726 /* 727 * Make sure the commands written to memory are observable by 728 * the ITS. 729 */ 730 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 731 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 732 else 733 dsb(ishst); 734 } 735 736 static int its_wait_for_range_completion(struct its_node *its, 737 struct its_cmd_block *from, 738 struct its_cmd_block *to) 739 { 740 u64 rd_idx, from_idx, to_idx; 741 u32 count = 1000000; /* 1s! */ 742 743 from_idx = its_cmd_ptr_to_offset(its, from); 744 to_idx = its_cmd_ptr_to_offset(its, to); 745 746 while (1) { 747 rd_idx = readl_relaxed(its->base + GITS_CREADR); 748 749 /* Direct case */ 750 if (from_idx < to_idx && rd_idx >= to_idx) 751 break; 752 753 /* Wrapped case */ 754 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx) 755 break; 756 757 count--; 758 if (!count) { 759 pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n", 760 from_idx, to_idx, rd_idx); 761 return -1; 762 } 763 cpu_relax(); 764 udelay(1); 765 } 766 767 return 0; 768 } 769 770 /* Warning, macro hell follows */ 771 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 772 void name(struct its_node *its, \ 773 buildtype builder, \ 774 struct its_cmd_desc *desc) \ 775 { \ 776 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 777 synctype *sync_obj; \ 778 unsigned long flags; \ 779 \ 780 raw_spin_lock_irqsave(&its->lock, flags); \ 781 \ 782 cmd = its_allocate_entry(its); \ 783 if (!cmd) { /* We're soooooo screewed... */ \ 784 raw_spin_unlock_irqrestore(&its->lock, flags); \ 785 return; \ 786 } \ 787 sync_obj = builder(its, cmd, desc); \ 788 its_flush_cmd(its, cmd); \ 789 \ 790 if (sync_obj) { \ 791 sync_cmd = its_allocate_entry(its); \ 792 if (!sync_cmd) \ 793 goto post; \ 794 \ 795 buildfn(its, sync_cmd, sync_obj); \ 796 its_flush_cmd(its, sync_cmd); \ 797 } \ 798 \ 799 post: \ 800 next_cmd = its_post_commands(its); \ 801 raw_spin_unlock_irqrestore(&its->lock, flags); \ 802 \ 803 if (its_wait_for_range_completion(its, cmd, next_cmd)) \ 804 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 805 } 806 807 static void its_build_sync_cmd(struct its_node *its, 808 struct its_cmd_block *sync_cmd, 809 struct its_collection *sync_col) 810 { 811 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 812 its_encode_target(sync_cmd, sync_col->target_address); 813 814 its_fixup_cmd(sync_cmd); 815 } 816 817 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 818 struct its_collection, its_build_sync_cmd) 819 820 static void its_build_vsync_cmd(struct its_node *its, 821 struct its_cmd_block *sync_cmd, 822 struct its_vpe *sync_vpe) 823 { 824 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 825 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 826 827 its_fixup_cmd(sync_cmd); 828 } 829 830 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 831 struct its_vpe, its_build_vsync_cmd) 832 833 static void its_send_int(struct its_device *dev, u32 event_id) 834 { 835 struct its_cmd_desc desc; 836 837 desc.its_int_cmd.dev = dev; 838 desc.its_int_cmd.event_id = event_id; 839 840 its_send_single_command(dev->its, its_build_int_cmd, &desc); 841 } 842 843 static void its_send_clear(struct its_device *dev, u32 event_id) 844 { 845 struct its_cmd_desc desc; 846 847 desc.its_clear_cmd.dev = dev; 848 desc.its_clear_cmd.event_id = event_id; 849 850 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 851 } 852 853 static void its_send_inv(struct its_device *dev, u32 event_id) 854 { 855 struct its_cmd_desc desc; 856 857 desc.its_inv_cmd.dev = dev; 858 desc.its_inv_cmd.event_id = event_id; 859 860 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 861 } 862 863 static void its_send_mapd(struct its_device *dev, int valid) 864 { 865 struct its_cmd_desc desc; 866 867 desc.its_mapd_cmd.dev = dev; 868 desc.its_mapd_cmd.valid = !!valid; 869 870 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 871 } 872 873 static void its_send_mapc(struct its_node *its, struct its_collection *col, 874 int valid) 875 { 876 struct its_cmd_desc desc; 877 878 desc.its_mapc_cmd.col = col; 879 desc.its_mapc_cmd.valid = !!valid; 880 881 its_send_single_command(its, its_build_mapc_cmd, &desc); 882 } 883 884 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 885 { 886 struct its_cmd_desc desc; 887 888 desc.its_mapti_cmd.dev = dev; 889 desc.its_mapti_cmd.phys_id = irq_id; 890 desc.its_mapti_cmd.event_id = id; 891 892 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 893 } 894 895 static void its_send_movi(struct its_device *dev, 896 struct its_collection *col, u32 id) 897 { 898 struct its_cmd_desc desc; 899 900 desc.its_movi_cmd.dev = dev; 901 desc.its_movi_cmd.col = col; 902 desc.its_movi_cmd.event_id = id; 903 904 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 905 } 906 907 static void its_send_discard(struct its_device *dev, u32 id) 908 { 909 struct its_cmd_desc desc; 910 911 desc.its_discard_cmd.dev = dev; 912 desc.its_discard_cmd.event_id = id; 913 914 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 915 } 916 917 static void its_send_invall(struct its_node *its, struct its_collection *col) 918 { 919 struct its_cmd_desc desc; 920 921 desc.its_invall_cmd.col = col; 922 923 its_send_single_command(its, its_build_invall_cmd, &desc); 924 } 925 926 static void its_send_vmapti(struct its_device *dev, u32 id) 927 { 928 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 929 struct its_cmd_desc desc; 930 931 desc.its_vmapti_cmd.vpe = map->vpe; 932 desc.its_vmapti_cmd.dev = dev; 933 desc.its_vmapti_cmd.virt_id = map->vintid; 934 desc.its_vmapti_cmd.event_id = id; 935 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 936 937 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 938 } 939 940 static void its_send_vmovi(struct its_device *dev, u32 id) 941 { 942 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 943 struct its_cmd_desc desc; 944 945 desc.its_vmovi_cmd.vpe = map->vpe; 946 desc.its_vmovi_cmd.dev = dev; 947 desc.its_vmovi_cmd.event_id = id; 948 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 949 950 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 951 } 952 953 static void its_send_vmapp(struct its_node *its, 954 struct its_vpe *vpe, bool valid) 955 { 956 struct its_cmd_desc desc; 957 958 desc.its_vmapp_cmd.vpe = vpe; 959 desc.its_vmapp_cmd.valid = valid; 960 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 961 962 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 963 } 964 965 static void its_send_vmovp(struct its_vpe *vpe) 966 { 967 struct its_cmd_desc desc; 968 struct its_node *its; 969 unsigned long flags; 970 int col_id = vpe->col_idx; 971 972 desc.its_vmovp_cmd.vpe = vpe; 973 desc.its_vmovp_cmd.its_list = (u16)its_list_map; 974 975 if (!its_list_map) { 976 its = list_first_entry(&its_nodes, struct its_node, entry); 977 desc.its_vmovp_cmd.seq_num = 0; 978 desc.its_vmovp_cmd.col = &its->collections[col_id]; 979 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 980 return; 981 } 982 983 /* 984 * Yet another marvel of the architecture. If using the 985 * its_list "feature", we need to make sure that all ITSs 986 * receive all VMOVP commands in the same order. The only way 987 * to guarantee this is to make vmovp a serialization point. 988 * 989 * Wall <-- Head. 990 */ 991 raw_spin_lock_irqsave(&vmovp_lock, flags); 992 993 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 994 995 /* Emit VMOVPs */ 996 list_for_each_entry(its, &its_nodes, entry) { 997 if (!its->is_v4) 998 continue; 999 1000 if (!vpe->its_vm->vlpi_count[its->list_nr]) 1001 continue; 1002 1003 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1004 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1005 } 1006 1007 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1008 } 1009 1010 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1011 { 1012 struct its_cmd_desc desc; 1013 1014 desc.its_vinvall_cmd.vpe = vpe; 1015 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1016 } 1017 1018 /* 1019 * irqchip functions - assumes MSI, mostly. 1020 */ 1021 1022 static inline u32 its_get_event_id(struct irq_data *d) 1023 { 1024 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1025 return d->hwirq - its_dev->event_map.lpi_base; 1026 } 1027 1028 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1029 { 1030 irq_hw_number_t hwirq; 1031 struct page *prop_page; 1032 u8 *cfg; 1033 1034 if (irqd_is_forwarded_to_vcpu(d)) { 1035 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1036 u32 event = its_get_event_id(d); 1037 struct its_vlpi_map *map; 1038 1039 prop_page = its_dev->event_map.vm->vprop_page; 1040 map = &its_dev->event_map.vlpi_maps[event]; 1041 hwirq = map->vintid; 1042 1043 /* Remember the updated property */ 1044 map->properties &= ~clr; 1045 map->properties |= set | LPI_PROP_GROUP1; 1046 } else { 1047 prop_page = gic_rdists->prop_page; 1048 hwirq = d->hwirq; 1049 } 1050 1051 cfg = page_address(prop_page) + hwirq - 8192; 1052 *cfg &= ~clr; 1053 *cfg |= set | LPI_PROP_GROUP1; 1054 1055 /* 1056 * Make the above write visible to the redistributors. 1057 * And yes, we're flushing exactly: One. Single. Byte. 1058 * Humpf... 1059 */ 1060 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1061 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1062 else 1063 dsb(ishst); 1064 } 1065 1066 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1067 { 1068 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1069 1070 lpi_write_config(d, clr, set); 1071 its_send_inv(its_dev, its_get_event_id(d)); 1072 } 1073 1074 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1075 { 1076 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1077 u32 event = its_get_event_id(d); 1078 1079 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) 1080 return; 1081 1082 its_dev->event_map.vlpi_maps[event].db_enabled = enable; 1083 1084 /* 1085 * More fun with the architecture: 1086 * 1087 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1088 * value or to 1023, depending on the enable bit. But that 1089 * would be issueing a mapping for an /existing/ DevID+EventID 1090 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1091 * to the /same/ vPE, using this opportunity to adjust the 1092 * doorbell. Mouahahahaha. We loves it, Precious. 1093 */ 1094 its_send_vmovi(its_dev, event); 1095 } 1096 1097 static void its_mask_irq(struct irq_data *d) 1098 { 1099 if (irqd_is_forwarded_to_vcpu(d)) 1100 its_vlpi_set_doorbell(d, false); 1101 1102 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1103 } 1104 1105 static void its_unmask_irq(struct irq_data *d) 1106 { 1107 if (irqd_is_forwarded_to_vcpu(d)) 1108 its_vlpi_set_doorbell(d, true); 1109 1110 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1111 } 1112 1113 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1114 bool force) 1115 { 1116 unsigned int cpu; 1117 const struct cpumask *cpu_mask = cpu_online_mask; 1118 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1119 struct its_collection *target_col; 1120 u32 id = its_get_event_id(d); 1121 1122 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1123 if (irqd_is_forwarded_to_vcpu(d)) 1124 return -EINVAL; 1125 1126 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1127 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1128 if (its_dev->its->numa_node >= 0) { 1129 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1130 if (!cpumask_intersects(mask_val, cpu_mask)) 1131 return -EINVAL; 1132 } 1133 } 1134 1135 cpu = cpumask_any_and(mask_val, cpu_mask); 1136 1137 if (cpu >= nr_cpu_ids) 1138 return -EINVAL; 1139 1140 /* don't set the affinity when the target cpu is same as current one */ 1141 if (cpu != its_dev->event_map.col_map[id]) { 1142 target_col = &its_dev->its->collections[cpu]; 1143 its_send_movi(its_dev, target_col, id); 1144 its_dev->event_map.col_map[id] = cpu; 1145 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1146 } 1147 1148 return IRQ_SET_MASK_OK_DONE; 1149 } 1150 1151 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1152 { 1153 struct its_node *its = its_dev->its; 1154 1155 return its->phys_base + GITS_TRANSLATER; 1156 } 1157 1158 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1159 { 1160 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1161 struct its_node *its; 1162 u64 addr; 1163 1164 its = its_dev->its; 1165 addr = its->get_msi_base(its_dev); 1166 1167 msg->address_lo = lower_32_bits(addr); 1168 msg->address_hi = upper_32_bits(addr); 1169 msg->data = its_get_event_id(d); 1170 1171 iommu_dma_map_msi_msg(d->irq, msg); 1172 } 1173 1174 static int its_irq_set_irqchip_state(struct irq_data *d, 1175 enum irqchip_irq_state which, 1176 bool state) 1177 { 1178 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1179 u32 event = its_get_event_id(d); 1180 1181 if (which != IRQCHIP_STATE_PENDING) 1182 return -EINVAL; 1183 1184 if (state) 1185 its_send_int(its_dev, event); 1186 else 1187 its_send_clear(its_dev, event); 1188 1189 return 0; 1190 } 1191 1192 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1193 { 1194 unsigned long flags; 1195 1196 /* Not using the ITS list? Everything is always mapped. */ 1197 if (!its_list_map) 1198 return; 1199 1200 raw_spin_lock_irqsave(&vmovp_lock, flags); 1201 1202 /* 1203 * If the VM wasn't mapped yet, iterate over the vpes and get 1204 * them mapped now. 1205 */ 1206 vm->vlpi_count[its->list_nr]++; 1207 1208 if (vm->vlpi_count[its->list_nr] == 1) { 1209 int i; 1210 1211 for (i = 0; i < vm->nr_vpes; i++) { 1212 struct its_vpe *vpe = vm->vpes[i]; 1213 struct irq_data *d = irq_get_irq_data(vpe->irq); 1214 1215 /* Map the VPE to the first possible CPU */ 1216 vpe->col_idx = cpumask_first(cpu_online_mask); 1217 its_send_vmapp(its, vpe, true); 1218 its_send_vinvall(its, vpe); 1219 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1220 } 1221 } 1222 1223 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1224 } 1225 1226 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1227 { 1228 unsigned long flags; 1229 1230 /* Not using the ITS list? Everything is always mapped. */ 1231 if (!its_list_map) 1232 return; 1233 1234 raw_spin_lock_irqsave(&vmovp_lock, flags); 1235 1236 if (!--vm->vlpi_count[its->list_nr]) { 1237 int i; 1238 1239 for (i = 0; i < vm->nr_vpes; i++) 1240 its_send_vmapp(its, vm->vpes[i], false); 1241 } 1242 1243 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1244 } 1245 1246 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1247 { 1248 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1249 u32 event = its_get_event_id(d); 1250 int ret = 0; 1251 1252 if (!info->map) 1253 return -EINVAL; 1254 1255 mutex_lock(&its_dev->event_map.vlpi_lock); 1256 1257 if (!its_dev->event_map.vm) { 1258 struct its_vlpi_map *maps; 1259 1260 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1261 GFP_KERNEL); 1262 if (!maps) { 1263 ret = -ENOMEM; 1264 goto out; 1265 } 1266 1267 its_dev->event_map.vm = info->map->vm; 1268 its_dev->event_map.vlpi_maps = maps; 1269 } else if (its_dev->event_map.vm != info->map->vm) { 1270 ret = -EINVAL; 1271 goto out; 1272 } 1273 1274 /* Get our private copy of the mapping information */ 1275 its_dev->event_map.vlpi_maps[event] = *info->map; 1276 1277 if (irqd_is_forwarded_to_vcpu(d)) { 1278 /* Already mapped, move it around */ 1279 its_send_vmovi(its_dev, event); 1280 } else { 1281 /* Ensure all the VPEs are mapped on this ITS */ 1282 its_map_vm(its_dev->its, info->map->vm); 1283 1284 /* 1285 * Flag the interrupt as forwarded so that we can 1286 * start poking the virtual property table. 1287 */ 1288 irqd_set_forwarded_to_vcpu(d); 1289 1290 /* Write out the property to the prop table */ 1291 lpi_write_config(d, 0xff, info->map->properties); 1292 1293 /* Drop the physical mapping */ 1294 its_send_discard(its_dev, event); 1295 1296 /* and install the virtual one */ 1297 its_send_vmapti(its_dev, event); 1298 1299 /* Increment the number of VLPIs */ 1300 its_dev->event_map.nr_vlpis++; 1301 } 1302 1303 out: 1304 mutex_unlock(&its_dev->event_map.vlpi_lock); 1305 return ret; 1306 } 1307 1308 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1309 { 1310 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1311 u32 event = its_get_event_id(d); 1312 int ret = 0; 1313 1314 mutex_lock(&its_dev->event_map.vlpi_lock); 1315 1316 if (!its_dev->event_map.vm || 1317 !its_dev->event_map.vlpi_maps[event].vm) { 1318 ret = -EINVAL; 1319 goto out; 1320 } 1321 1322 /* Copy our mapping information to the incoming request */ 1323 *info->map = its_dev->event_map.vlpi_maps[event]; 1324 1325 out: 1326 mutex_unlock(&its_dev->event_map.vlpi_lock); 1327 return ret; 1328 } 1329 1330 static int its_vlpi_unmap(struct irq_data *d) 1331 { 1332 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1333 u32 event = its_get_event_id(d); 1334 int ret = 0; 1335 1336 mutex_lock(&its_dev->event_map.vlpi_lock); 1337 1338 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1339 ret = -EINVAL; 1340 goto out; 1341 } 1342 1343 /* Drop the virtual mapping */ 1344 its_send_discard(its_dev, event); 1345 1346 /* and restore the physical one */ 1347 irqd_clr_forwarded_to_vcpu(d); 1348 its_send_mapti(its_dev, d->hwirq, event); 1349 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1350 LPI_PROP_ENABLED | 1351 LPI_PROP_GROUP1)); 1352 1353 /* Potentially unmap the VM from this ITS */ 1354 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1355 1356 /* 1357 * Drop the refcount and make the device available again if 1358 * this was the last VLPI. 1359 */ 1360 if (!--its_dev->event_map.nr_vlpis) { 1361 its_dev->event_map.vm = NULL; 1362 kfree(its_dev->event_map.vlpi_maps); 1363 } 1364 1365 out: 1366 mutex_unlock(&its_dev->event_map.vlpi_lock); 1367 return ret; 1368 } 1369 1370 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1371 { 1372 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1373 1374 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1375 return -EINVAL; 1376 1377 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1378 lpi_update_config(d, 0xff, info->config); 1379 else 1380 lpi_write_config(d, 0xff, info->config); 1381 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1382 1383 return 0; 1384 } 1385 1386 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1387 { 1388 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1389 struct its_cmd_info *info = vcpu_info; 1390 1391 /* Need a v4 ITS */ 1392 if (!its_dev->its->is_v4) 1393 return -EINVAL; 1394 1395 /* Unmap request? */ 1396 if (!info) 1397 return its_vlpi_unmap(d); 1398 1399 switch (info->cmd_type) { 1400 case MAP_VLPI: 1401 return its_vlpi_map(d, info); 1402 1403 case GET_VLPI: 1404 return its_vlpi_get(d, info); 1405 1406 case PROP_UPDATE_VLPI: 1407 case PROP_UPDATE_AND_INV_VLPI: 1408 return its_vlpi_prop_update(d, info); 1409 1410 default: 1411 return -EINVAL; 1412 } 1413 } 1414 1415 static struct irq_chip its_irq_chip = { 1416 .name = "ITS", 1417 .irq_mask = its_mask_irq, 1418 .irq_unmask = its_unmask_irq, 1419 .irq_eoi = irq_chip_eoi_parent, 1420 .irq_set_affinity = its_set_affinity, 1421 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1422 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1423 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1424 }; 1425 1426 1427 /* 1428 * How we allocate LPIs: 1429 * 1430 * lpi_range_list contains ranges of LPIs that are to available to 1431 * allocate from. To allocate LPIs, just pick the first range that 1432 * fits the required allocation, and reduce it by the required 1433 * amount. Once empty, remove the range from the list. 1434 * 1435 * To free a range of LPIs, add a free range to the list, sort it and 1436 * merge the result if the new range happens to be adjacent to an 1437 * already free block. 1438 * 1439 * The consequence of the above is that allocation is cost is low, but 1440 * freeing is expensive. We assumes that freeing rarely occurs. 1441 */ 1442 1443 static DEFINE_MUTEX(lpi_range_lock); 1444 static LIST_HEAD(lpi_range_list); 1445 1446 struct lpi_range { 1447 struct list_head entry; 1448 u32 base_id; 1449 u32 span; 1450 }; 1451 1452 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 1453 { 1454 struct lpi_range *range; 1455 1456 range = kzalloc(sizeof(*range), GFP_KERNEL); 1457 if (range) { 1458 INIT_LIST_HEAD(&range->entry); 1459 range->base_id = base; 1460 range->span = span; 1461 } 1462 1463 return range; 1464 } 1465 1466 static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b) 1467 { 1468 struct lpi_range *ra, *rb; 1469 1470 ra = container_of(a, struct lpi_range, entry); 1471 rb = container_of(b, struct lpi_range, entry); 1472 1473 return rb->base_id - ra->base_id; 1474 } 1475 1476 static void merge_lpi_ranges(void) 1477 { 1478 struct lpi_range *range, *tmp; 1479 1480 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 1481 if (!list_is_last(&range->entry, &lpi_range_list) && 1482 (tmp->base_id == (range->base_id + range->span))) { 1483 tmp->base_id = range->base_id; 1484 tmp->span += range->span; 1485 list_del(&range->entry); 1486 kfree(range); 1487 } 1488 } 1489 } 1490 1491 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 1492 { 1493 struct lpi_range *range, *tmp; 1494 int err = -ENOSPC; 1495 1496 mutex_lock(&lpi_range_lock); 1497 1498 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 1499 if (range->span >= nr_lpis) { 1500 *base = range->base_id; 1501 range->base_id += nr_lpis; 1502 range->span -= nr_lpis; 1503 1504 if (range->span == 0) { 1505 list_del(&range->entry); 1506 kfree(range); 1507 } 1508 1509 err = 0; 1510 break; 1511 } 1512 } 1513 1514 mutex_unlock(&lpi_range_lock); 1515 1516 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 1517 return err; 1518 } 1519 1520 static int free_lpi_range(u32 base, u32 nr_lpis) 1521 { 1522 struct lpi_range *new; 1523 int err = 0; 1524 1525 mutex_lock(&lpi_range_lock); 1526 1527 new = mk_lpi_range(base, nr_lpis); 1528 if (!new) { 1529 err = -ENOMEM; 1530 goto out; 1531 } 1532 1533 list_add(&new->entry, &lpi_range_list); 1534 list_sort(NULL, &lpi_range_list, lpi_range_cmp); 1535 merge_lpi_ranges(); 1536 out: 1537 mutex_unlock(&lpi_range_lock); 1538 return err; 1539 } 1540 1541 static int __init its_lpi_init(u32 id_bits) 1542 { 1543 u32 lpis = (1UL << id_bits) - 8192; 1544 u32 numlpis; 1545 int err; 1546 1547 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 1548 1549 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 1550 lpis = numlpis; 1551 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 1552 lpis); 1553 } 1554 1555 /* 1556 * Initializing the allocator is just the same as freeing the 1557 * full range of LPIs. 1558 */ 1559 err = free_lpi_range(8192, lpis); 1560 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 1561 return err; 1562 } 1563 1564 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 1565 { 1566 unsigned long *bitmap = NULL; 1567 int err = 0; 1568 1569 do { 1570 err = alloc_lpi_range(nr_irqs, base); 1571 if (!err) 1572 break; 1573 1574 nr_irqs /= 2; 1575 } while (nr_irqs > 0); 1576 1577 if (err) 1578 goto out; 1579 1580 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); 1581 if (!bitmap) 1582 goto out; 1583 1584 *nr_ids = nr_irqs; 1585 1586 out: 1587 if (!bitmap) 1588 *base = *nr_ids = 0; 1589 1590 return bitmap; 1591 } 1592 1593 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 1594 { 1595 WARN_ON(free_lpi_range(base, nr_ids)); 1596 kfree(bitmap); 1597 } 1598 1599 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 1600 { 1601 struct page *prop_page; 1602 1603 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 1604 if (!prop_page) 1605 return NULL; 1606 1607 /* Priority 0xa0, Group-1, disabled */ 1608 memset(page_address(prop_page), 1609 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 1610 LPI_PROPBASE_SZ); 1611 1612 /* Make sure the GIC will observe the written configuration */ 1613 gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ); 1614 1615 return prop_page; 1616 } 1617 1618 static void its_free_prop_table(struct page *prop_page) 1619 { 1620 free_pages((unsigned long)page_address(prop_page), 1621 get_order(LPI_PROPBASE_SZ)); 1622 } 1623 1624 static int __init its_alloc_lpi_tables(void) 1625 { 1626 phys_addr_t paddr; 1627 1628 lpi_id_bits = GICD_TYPER_ID_BITS(gic_rdists->gicd_typer); 1629 gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT); 1630 if (!gic_rdists->prop_page) { 1631 pr_err("Failed to allocate PROPBASE\n"); 1632 return -ENOMEM; 1633 } 1634 1635 paddr = page_to_phys(gic_rdists->prop_page); 1636 pr_info("GIC: using LPI property table @%pa\n", &paddr); 1637 1638 return its_lpi_init(lpi_id_bits); 1639 } 1640 1641 static const char *its_base_type_string[] = { 1642 [GITS_BASER_TYPE_DEVICE] = "Devices", 1643 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 1644 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 1645 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 1646 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 1647 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 1648 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 1649 }; 1650 1651 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 1652 { 1653 u32 idx = baser - its->tables; 1654 1655 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 1656 } 1657 1658 static void its_write_baser(struct its_node *its, struct its_baser *baser, 1659 u64 val) 1660 { 1661 u32 idx = baser - its->tables; 1662 1663 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 1664 baser->val = its_read_baser(its, baser); 1665 } 1666 1667 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 1668 u64 cache, u64 shr, u32 psz, u32 order, 1669 bool indirect) 1670 { 1671 u64 val = its_read_baser(its, baser); 1672 u64 esz = GITS_BASER_ENTRY_SIZE(val); 1673 u64 type = GITS_BASER_TYPE(val); 1674 u64 baser_phys, tmp; 1675 u32 alloc_pages; 1676 void *base; 1677 1678 retry_alloc_baser: 1679 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 1680 if (alloc_pages > GITS_BASER_PAGES_MAX) { 1681 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 1682 &its->phys_base, its_base_type_string[type], 1683 alloc_pages, GITS_BASER_PAGES_MAX); 1684 alloc_pages = GITS_BASER_PAGES_MAX; 1685 order = get_order(GITS_BASER_PAGES_MAX * psz); 1686 } 1687 1688 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1689 if (!base) 1690 return -ENOMEM; 1691 1692 baser_phys = virt_to_phys(base); 1693 1694 /* Check if the physical address of the memory is above 48bits */ 1695 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 1696 1697 /* 52bit PA is supported only when PageSize=64K */ 1698 if (psz != SZ_64K) { 1699 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 1700 free_pages((unsigned long)base, order); 1701 return -ENXIO; 1702 } 1703 1704 /* Convert 52bit PA to 48bit field */ 1705 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 1706 } 1707 1708 retry_baser: 1709 val = (baser_phys | 1710 (type << GITS_BASER_TYPE_SHIFT) | 1711 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 1712 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 1713 cache | 1714 shr | 1715 GITS_BASER_VALID); 1716 1717 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 1718 1719 switch (psz) { 1720 case SZ_4K: 1721 val |= GITS_BASER_PAGE_SIZE_4K; 1722 break; 1723 case SZ_16K: 1724 val |= GITS_BASER_PAGE_SIZE_16K; 1725 break; 1726 case SZ_64K: 1727 val |= GITS_BASER_PAGE_SIZE_64K; 1728 break; 1729 } 1730 1731 its_write_baser(its, baser, val); 1732 tmp = baser->val; 1733 1734 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 1735 /* 1736 * Shareability didn't stick. Just use 1737 * whatever the read reported, which is likely 1738 * to be the only thing this redistributor 1739 * supports. If that's zero, make it 1740 * non-cacheable as well. 1741 */ 1742 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 1743 if (!shr) { 1744 cache = GITS_BASER_nC; 1745 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 1746 } 1747 goto retry_baser; 1748 } 1749 1750 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 1751 /* 1752 * Page size didn't stick. Let's try a smaller 1753 * size and retry. If we reach 4K, then 1754 * something is horribly wrong... 1755 */ 1756 free_pages((unsigned long)base, order); 1757 baser->base = NULL; 1758 1759 switch (psz) { 1760 case SZ_16K: 1761 psz = SZ_4K; 1762 goto retry_alloc_baser; 1763 case SZ_64K: 1764 psz = SZ_16K; 1765 goto retry_alloc_baser; 1766 } 1767 } 1768 1769 if (val != tmp) { 1770 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 1771 &its->phys_base, its_base_type_string[type], 1772 val, tmp); 1773 free_pages((unsigned long)base, order); 1774 return -ENXIO; 1775 } 1776 1777 baser->order = order; 1778 baser->base = base; 1779 baser->psz = psz; 1780 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 1781 1782 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 1783 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 1784 its_base_type_string[type], 1785 (unsigned long)virt_to_phys(base), 1786 indirect ? "indirect" : "flat", (int)esz, 1787 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 1788 1789 return 0; 1790 } 1791 1792 static bool its_parse_indirect_baser(struct its_node *its, 1793 struct its_baser *baser, 1794 u32 psz, u32 *order, u32 ids) 1795 { 1796 u64 tmp = its_read_baser(its, baser); 1797 u64 type = GITS_BASER_TYPE(tmp); 1798 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 1799 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 1800 u32 new_order = *order; 1801 bool indirect = false; 1802 1803 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 1804 if ((esz << ids) > (psz * 2)) { 1805 /* 1806 * Find out whether hw supports a single or two-level table by 1807 * table by reading bit at offset '62' after writing '1' to it. 1808 */ 1809 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 1810 indirect = !!(baser->val & GITS_BASER_INDIRECT); 1811 1812 if (indirect) { 1813 /* 1814 * The size of the lvl2 table is equal to ITS page size 1815 * which is 'psz'. For computing lvl1 table size, 1816 * subtract ID bits that sparse lvl2 table from 'ids' 1817 * which is reported by ITS hardware times lvl1 table 1818 * entry size. 1819 */ 1820 ids -= ilog2(psz / (int)esz); 1821 esz = GITS_LVL1_ENTRY_SIZE; 1822 } 1823 } 1824 1825 /* 1826 * Allocate as many entries as required to fit the 1827 * range of device IDs that the ITS can grok... The ID 1828 * space being incredibly sparse, this results in a 1829 * massive waste of memory if two-level device table 1830 * feature is not supported by hardware. 1831 */ 1832 new_order = max_t(u32, get_order(esz << ids), new_order); 1833 if (new_order >= MAX_ORDER) { 1834 new_order = MAX_ORDER - 1; 1835 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 1836 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", 1837 &its->phys_base, its_base_type_string[type], 1838 its->device_ids, ids); 1839 } 1840 1841 *order = new_order; 1842 1843 return indirect; 1844 } 1845 1846 static void its_free_tables(struct its_node *its) 1847 { 1848 int i; 1849 1850 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1851 if (its->tables[i].base) { 1852 free_pages((unsigned long)its->tables[i].base, 1853 its->tables[i].order); 1854 its->tables[i].base = NULL; 1855 } 1856 } 1857 } 1858 1859 static int its_alloc_tables(struct its_node *its) 1860 { 1861 u64 shr = GITS_BASER_InnerShareable; 1862 u64 cache = GITS_BASER_RaWaWb; 1863 u32 psz = SZ_64K; 1864 int err, i; 1865 1866 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 1867 /* erratum 24313: ignore memory access type */ 1868 cache = GITS_BASER_nCnB; 1869 1870 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1871 struct its_baser *baser = its->tables + i; 1872 u64 val = its_read_baser(its, baser); 1873 u64 type = GITS_BASER_TYPE(val); 1874 u32 order = get_order(psz); 1875 bool indirect = false; 1876 1877 switch (type) { 1878 case GITS_BASER_TYPE_NONE: 1879 continue; 1880 1881 case GITS_BASER_TYPE_DEVICE: 1882 indirect = its_parse_indirect_baser(its, baser, 1883 psz, &order, 1884 its->device_ids); 1885 case GITS_BASER_TYPE_VCPU: 1886 indirect = its_parse_indirect_baser(its, baser, 1887 psz, &order, 1888 ITS_MAX_VPEID_BITS); 1889 break; 1890 } 1891 1892 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1893 if (err < 0) { 1894 its_free_tables(its); 1895 return err; 1896 } 1897 1898 /* Update settings which will be used for next BASERn */ 1899 psz = baser->psz; 1900 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1901 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1902 } 1903 1904 return 0; 1905 } 1906 1907 static int its_alloc_collections(struct its_node *its) 1908 { 1909 int i; 1910 1911 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 1912 GFP_KERNEL); 1913 if (!its->collections) 1914 return -ENOMEM; 1915 1916 for (i = 0; i < nr_cpu_ids; i++) 1917 its->collections[i].target_address = ~0ULL; 1918 1919 return 0; 1920 } 1921 1922 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 1923 { 1924 struct page *pend_page; 1925 /* 1926 * The pending pages have to be at least 64kB aligned, 1927 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 1928 */ 1929 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 1930 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1931 if (!pend_page) 1932 return NULL; 1933 1934 /* Make sure the GIC will observe the zero-ed page */ 1935 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 1936 1937 return pend_page; 1938 } 1939 1940 static void its_free_pending_table(struct page *pt) 1941 { 1942 free_pages((unsigned long)page_address(pt), 1943 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1944 } 1945 1946 static void its_cpu_init_lpis(void) 1947 { 1948 void __iomem *rbase = gic_data_rdist_rd_base(); 1949 struct page *pend_page; 1950 u64 val, tmp; 1951 1952 /* If we didn't allocate the pending table yet, do it now */ 1953 pend_page = gic_data_rdist()->pend_page; 1954 if (!pend_page) { 1955 phys_addr_t paddr; 1956 1957 pend_page = its_allocate_pending_table(GFP_NOWAIT); 1958 if (!pend_page) { 1959 pr_err("Failed to allocate PENDBASE for CPU%d\n", 1960 smp_processor_id()); 1961 return; 1962 } 1963 1964 paddr = page_to_phys(pend_page); 1965 pr_info("CPU%d: using LPI pending table @%pa\n", 1966 smp_processor_id(), &paddr); 1967 gic_data_rdist()->pend_page = pend_page; 1968 } 1969 1970 /* set PROPBASE */ 1971 val = (page_to_phys(gic_rdists->prop_page) | 1972 GICR_PROPBASER_InnerShareable | 1973 GICR_PROPBASER_RaWaWb | 1974 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1975 1976 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1977 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 1978 1979 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1980 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1981 /* 1982 * The HW reports non-shareable, we must 1983 * remove the cacheability attributes as 1984 * well. 1985 */ 1986 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1987 GICR_PROPBASER_CACHEABILITY_MASK); 1988 val |= GICR_PROPBASER_nC; 1989 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1990 } 1991 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1992 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1993 } 1994 1995 /* set PENDBASE */ 1996 val = (page_to_phys(pend_page) | 1997 GICR_PENDBASER_InnerShareable | 1998 GICR_PENDBASER_RaWaWb); 1999 2000 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2001 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2002 2003 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 2004 /* 2005 * The HW reports non-shareable, we must remove the 2006 * cacheability attributes as well. 2007 */ 2008 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 2009 GICR_PENDBASER_CACHEABILITY_MASK); 2010 val |= GICR_PENDBASER_nC; 2011 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2012 } 2013 2014 /* Enable LPIs */ 2015 val = readl_relaxed(rbase + GICR_CTLR); 2016 val |= GICR_CTLR_ENABLE_LPIS; 2017 writel_relaxed(val, rbase + GICR_CTLR); 2018 2019 /* Make sure the GIC has seen the above */ 2020 dsb(sy); 2021 } 2022 2023 static void its_cpu_init_collection(struct its_node *its) 2024 { 2025 int cpu = smp_processor_id(); 2026 u64 target; 2027 2028 /* avoid cross node collections and its mapping */ 2029 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 2030 struct device_node *cpu_node; 2031 2032 cpu_node = of_get_cpu_node(cpu, NULL); 2033 if (its->numa_node != NUMA_NO_NODE && 2034 its->numa_node != of_node_to_nid(cpu_node)) 2035 return; 2036 } 2037 2038 /* 2039 * We now have to bind each collection to its target 2040 * redistributor. 2041 */ 2042 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 2043 /* 2044 * This ITS wants the physical address of the 2045 * redistributor. 2046 */ 2047 target = gic_data_rdist()->phys_base; 2048 } else { 2049 /* This ITS wants a linear CPU number. */ 2050 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2051 target = GICR_TYPER_CPU_NUMBER(target) << 16; 2052 } 2053 2054 /* Perform collection mapping */ 2055 its->collections[cpu].target_address = target; 2056 its->collections[cpu].col_id = cpu; 2057 2058 its_send_mapc(its, &its->collections[cpu], 1); 2059 its_send_invall(its, &its->collections[cpu]); 2060 } 2061 2062 static void its_cpu_init_collections(void) 2063 { 2064 struct its_node *its; 2065 2066 raw_spin_lock(&its_lock); 2067 2068 list_for_each_entry(its, &its_nodes, entry) 2069 its_cpu_init_collection(its); 2070 2071 raw_spin_unlock(&its_lock); 2072 } 2073 2074 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 2075 { 2076 struct its_device *its_dev = NULL, *tmp; 2077 unsigned long flags; 2078 2079 raw_spin_lock_irqsave(&its->lock, flags); 2080 2081 list_for_each_entry(tmp, &its->its_device_list, entry) { 2082 if (tmp->device_id == dev_id) { 2083 its_dev = tmp; 2084 break; 2085 } 2086 } 2087 2088 raw_spin_unlock_irqrestore(&its->lock, flags); 2089 2090 return its_dev; 2091 } 2092 2093 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 2094 { 2095 int i; 2096 2097 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2098 if (GITS_BASER_TYPE(its->tables[i].val) == type) 2099 return &its->tables[i]; 2100 } 2101 2102 return NULL; 2103 } 2104 2105 static bool its_alloc_table_entry(struct its_baser *baser, u32 id) 2106 { 2107 struct page *page; 2108 u32 esz, idx; 2109 __le64 *table; 2110 2111 /* Don't allow device id that exceeds single, flat table limit */ 2112 esz = GITS_BASER_ENTRY_SIZE(baser->val); 2113 if (!(baser->val & GITS_BASER_INDIRECT)) 2114 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 2115 2116 /* Compute 1st level table index & check if that exceeds table limit */ 2117 idx = id >> ilog2(baser->psz / esz); 2118 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 2119 return false; 2120 2121 table = baser->base; 2122 2123 /* Allocate memory for 2nd level table */ 2124 if (!table[idx]) { 2125 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); 2126 if (!page) 2127 return false; 2128 2129 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2130 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2131 gic_flush_dcache_to_poc(page_address(page), baser->psz); 2132 2133 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2134 2135 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2136 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2137 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2138 2139 /* Ensure updated table contents are visible to ITS hardware */ 2140 dsb(sy); 2141 } 2142 2143 return true; 2144 } 2145 2146 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 2147 { 2148 struct its_baser *baser; 2149 2150 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 2151 2152 /* Don't allow device id that exceeds ITS hardware limit */ 2153 if (!baser) 2154 return (ilog2(dev_id) < its->device_ids); 2155 2156 return its_alloc_table_entry(baser, dev_id); 2157 } 2158 2159 static bool its_alloc_vpe_table(u32 vpe_id) 2160 { 2161 struct its_node *its; 2162 2163 /* 2164 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 2165 * could try and only do it on ITSs corresponding to devices 2166 * that have interrupts targeted at this VPE, but the 2167 * complexity becomes crazy (and you have tons of memory 2168 * anyway, right?). 2169 */ 2170 list_for_each_entry(its, &its_nodes, entry) { 2171 struct its_baser *baser; 2172 2173 if (!its->is_v4) 2174 continue; 2175 2176 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 2177 if (!baser) 2178 return false; 2179 2180 if (!its_alloc_table_entry(baser, vpe_id)) 2181 return false; 2182 } 2183 2184 return true; 2185 } 2186 2187 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 2188 int nvecs, bool alloc_lpis) 2189 { 2190 struct its_device *dev; 2191 unsigned long *lpi_map = NULL; 2192 unsigned long flags; 2193 u16 *col_map = NULL; 2194 void *itt; 2195 int lpi_base; 2196 int nr_lpis; 2197 int nr_ites; 2198 int sz; 2199 2200 if (!its_alloc_device_table(its, dev_id)) 2201 return NULL; 2202 2203 if (WARN_ON(!is_power_of_2(nvecs))) 2204 nvecs = roundup_pow_of_two(nvecs); 2205 2206 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2207 /* 2208 * Even if the device wants a single LPI, the ITT must be 2209 * sized as a power of two (and you need at least one bit...). 2210 */ 2211 nr_ites = max(2, nvecs); 2212 sz = nr_ites * its->ite_size; 2213 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 2214 itt = kzalloc(sz, GFP_KERNEL); 2215 if (alloc_lpis) { 2216 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 2217 if (lpi_map) 2218 col_map = kcalloc(nr_lpis, sizeof(*col_map), 2219 GFP_KERNEL); 2220 } else { 2221 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 2222 nr_lpis = 0; 2223 lpi_base = 0; 2224 } 2225 2226 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 2227 kfree(dev); 2228 kfree(itt); 2229 kfree(lpi_map); 2230 kfree(col_map); 2231 return NULL; 2232 } 2233 2234 gic_flush_dcache_to_poc(itt, sz); 2235 2236 dev->its = its; 2237 dev->itt = itt; 2238 dev->nr_ites = nr_ites; 2239 dev->event_map.lpi_map = lpi_map; 2240 dev->event_map.col_map = col_map; 2241 dev->event_map.lpi_base = lpi_base; 2242 dev->event_map.nr_lpis = nr_lpis; 2243 mutex_init(&dev->event_map.vlpi_lock); 2244 dev->device_id = dev_id; 2245 INIT_LIST_HEAD(&dev->entry); 2246 2247 raw_spin_lock_irqsave(&its->lock, flags); 2248 list_add(&dev->entry, &its->its_device_list); 2249 raw_spin_unlock_irqrestore(&its->lock, flags); 2250 2251 /* Map device to its ITT */ 2252 its_send_mapd(dev, 1); 2253 2254 return dev; 2255 } 2256 2257 static void its_free_device(struct its_device *its_dev) 2258 { 2259 unsigned long flags; 2260 2261 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 2262 list_del(&its_dev->entry); 2263 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 2264 kfree(its_dev->itt); 2265 kfree(its_dev); 2266 } 2267 2268 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 2269 { 2270 int idx; 2271 2272 idx = find_first_zero_bit(dev->event_map.lpi_map, 2273 dev->event_map.nr_lpis); 2274 if (idx == dev->event_map.nr_lpis) 2275 return -ENOSPC; 2276 2277 *hwirq = dev->event_map.lpi_base + idx; 2278 set_bit(idx, dev->event_map.lpi_map); 2279 2280 return 0; 2281 } 2282 2283 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 2284 int nvec, msi_alloc_info_t *info) 2285 { 2286 struct its_node *its; 2287 struct its_device *its_dev; 2288 struct msi_domain_info *msi_info; 2289 u32 dev_id; 2290 2291 /* 2292 * We ignore "dev" entierely, and rely on the dev_id that has 2293 * been passed via the scratchpad. This limits this domain's 2294 * usefulness to upper layers that definitely know that they 2295 * are built on top of the ITS. 2296 */ 2297 dev_id = info->scratchpad[0].ul; 2298 2299 msi_info = msi_get_domain_info(domain); 2300 its = msi_info->data; 2301 2302 if (!gic_rdists->has_direct_lpi && 2303 vpe_proxy.dev && 2304 vpe_proxy.dev->its == its && 2305 dev_id == vpe_proxy.dev->device_id) { 2306 /* Bad luck. Get yourself a better implementation */ 2307 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 2308 dev_id); 2309 return -EINVAL; 2310 } 2311 2312 its_dev = its_find_device(its, dev_id); 2313 if (its_dev) { 2314 /* 2315 * We already have seen this ID, probably through 2316 * another alias (PCI bridge of some sort). No need to 2317 * create the device. 2318 */ 2319 pr_debug("Reusing ITT for devID %x\n", dev_id); 2320 goto out; 2321 } 2322 2323 its_dev = its_create_device(its, dev_id, nvec, true); 2324 if (!its_dev) 2325 return -ENOMEM; 2326 2327 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 2328 out: 2329 info->scratchpad[0].ptr = its_dev; 2330 return 0; 2331 } 2332 2333 static struct msi_domain_ops its_msi_domain_ops = { 2334 .msi_prepare = its_msi_prepare, 2335 }; 2336 2337 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 2338 unsigned int virq, 2339 irq_hw_number_t hwirq) 2340 { 2341 struct irq_fwspec fwspec; 2342 2343 if (irq_domain_get_of_node(domain->parent)) { 2344 fwspec.fwnode = domain->parent->fwnode; 2345 fwspec.param_count = 3; 2346 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 2347 fwspec.param[1] = hwirq; 2348 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 2349 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 2350 fwspec.fwnode = domain->parent->fwnode; 2351 fwspec.param_count = 2; 2352 fwspec.param[0] = hwirq; 2353 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 2354 } else { 2355 return -EINVAL; 2356 } 2357 2358 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 2359 } 2360 2361 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2362 unsigned int nr_irqs, void *args) 2363 { 2364 msi_alloc_info_t *info = args; 2365 struct its_device *its_dev = info->scratchpad[0].ptr; 2366 irq_hw_number_t hwirq; 2367 int err; 2368 int i; 2369 2370 for (i = 0; i < nr_irqs; i++) { 2371 err = its_alloc_device_irq(its_dev, &hwirq); 2372 if (err) 2373 return err; 2374 2375 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 2376 if (err) 2377 return err; 2378 2379 irq_domain_set_hwirq_and_chip(domain, virq + i, 2380 hwirq, &its_irq_chip, its_dev); 2381 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 2382 pr_debug("ID:%d pID:%d vID:%d\n", 2383 (int)(hwirq - its_dev->event_map.lpi_base), 2384 (int) hwirq, virq + i); 2385 } 2386 2387 return 0; 2388 } 2389 2390 static int its_irq_domain_activate(struct irq_domain *domain, 2391 struct irq_data *d, bool reserve) 2392 { 2393 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2394 u32 event = its_get_event_id(d); 2395 const struct cpumask *cpu_mask = cpu_online_mask; 2396 int cpu; 2397 2398 /* get the cpu_mask of local node */ 2399 if (its_dev->its->numa_node >= 0) 2400 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 2401 2402 /* Bind the LPI to the first possible CPU */ 2403 cpu = cpumask_first_and(cpu_mask, cpu_online_mask); 2404 if (cpu >= nr_cpu_ids) { 2405 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) 2406 return -EINVAL; 2407 2408 cpu = cpumask_first(cpu_online_mask); 2409 } 2410 2411 its_dev->event_map.col_map[event] = cpu; 2412 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2413 2414 /* Map the GIC IRQ and event to the device */ 2415 its_send_mapti(its_dev, d->hwirq, event); 2416 return 0; 2417 } 2418 2419 static void its_irq_domain_deactivate(struct irq_domain *domain, 2420 struct irq_data *d) 2421 { 2422 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2423 u32 event = its_get_event_id(d); 2424 2425 /* Stop the delivery of interrupts */ 2426 its_send_discard(its_dev, event); 2427 } 2428 2429 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 2430 unsigned int nr_irqs) 2431 { 2432 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 2433 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2434 int i; 2435 2436 for (i = 0; i < nr_irqs; i++) { 2437 struct irq_data *data = irq_domain_get_irq_data(domain, 2438 virq + i); 2439 u32 event = its_get_event_id(data); 2440 2441 /* Mark interrupt index as unused */ 2442 clear_bit(event, its_dev->event_map.lpi_map); 2443 2444 /* Nuke the entry in the domain */ 2445 irq_domain_reset_irq_data(data); 2446 } 2447 2448 /* If all interrupts have been freed, start mopping the floor */ 2449 if (bitmap_empty(its_dev->event_map.lpi_map, 2450 its_dev->event_map.nr_lpis)) { 2451 its_lpi_free(its_dev->event_map.lpi_map, 2452 its_dev->event_map.lpi_base, 2453 its_dev->event_map.nr_lpis); 2454 kfree(its_dev->event_map.col_map); 2455 2456 /* Unmap device/itt */ 2457 its_send_mapd(its_dev, 0); 2458 its_free_device(its_dev); 2459 } 2460 2461 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2462 } 2463 2464 static const struct irq_domain_ops its_domain_ops = { 2465 .alloc = its_irq_domain_alloc, 2466 .free = its_irq_domain_free, 2467 .activate = its_irq_domain_activate, 2468 .deactivate = its_irq_domain_deactivate, 2469 }; 2470 2471 /* 2472 * This is insane. 2473 * 2474 * If a GICv4 doesn't implement Direct LPIs (which is extremely 2475 * likely), the only way to perform an invalidate is to use a fake 2476 * device to issue an INV command, implying that the LPI has first 2477 * been mapped to some event on that device. Since this is not exactly 2478 * cheap, we try to keep that mapping around as long as possible, and 2479 * only issue an UNMAP if we're short on available slots. 2480 * 2481 * Broken by design(tm). 2482 */ 2483 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 2484 { 2485 /* Already unmapped? */ 2486 if (vpe->vpe_proxy_event == -1) 2487 return; 2488 2489 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 2490 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 2491 2492 /* 2493 * We don't track empty slots at all, so let's move the 2494 * next_victim pointer if we can quickly reuse that slot 2495 * instead of nuking an existing entry. Not clear that this is 2496 * always a win though, and this might just generate a ripple 2497 * effect... Let's just hope VPEs don't migrate too often. 2498 */ 2499 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2500 vpe_proxy.next_victim = vpe->vpe_proxy_event; 2501 2502 vpe->vpe_proxy_event = -1; 2503 } 2504 2505 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 2506 { 2507 if (!gic_rdists->has_direct_lpi) { 2508 unsigned long flags; 2509 2510 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2511 its_vpe_db_proxy_unmap_locked(vpe); 2512 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2513 } 2514 } 2515 2516 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 2517 { 2518 /* Already mapped? */ 2519 if (vpe->vpe_proxy_event != -1) 2520 return; 2521 2522 /* This slot was already allocated. Kick the other VPE out. */ 2523 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2524 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 2525 2526 /* Map the new VPE instead */ 2527 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 2528 vpe->vpe_proxy_event = vpe_proxy.next_victim; 2529 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 2530 2531 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 2532 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 2533 } 2534 2535 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 2536 { 2537 unsigned long flags; 2538 struct its_collection *target_col; 2539 2540 if (gic_rdists->has_direct_lpi) { 2541 void __iomem *rdbase; 2542 2543 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 2544 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2545 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2546 cpu_relax(); 2547 2548 return; 2549 } 2550 2551 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2552 2553 its_vpe_db_proxy_map_locked(vpe); 2554 2555 target_col = &vpe_proxy.dev->its->collections[to]; 2556 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 2557 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 2558 2559 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2560 } 2561 2562 static int its_vpe_set_affinity(struct irq_data *d, 2563 const struct cpumask *mask_val, 2564 bool force) 2565 { 2566 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2567 int cpu = cpumask_first(mask_val); 2568 2569 /* 2570 * Changing affinity is mega expensive, so let's be as lazy as 2571 * we can and only do it if we really have to. Also, if mapped 2572 * into the proxy device, we need to move the doorbell 2573 * interrupt to its new location. 2574 */ 2575 if (vpe->col_idx != cpu) { 2576 int from = vpe->col_idx; 2577 2578 vpe->col_idx = cpu; 2579 its_send_vmovp(vpe); 2580 its_vpe_db_proxy_move(vpe, from, cpu); 2581 } 2582 2583 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2584 2585 return IRQ_SET_MASK_OK_DONE; 2586 } 2587 2588 static void its_vpe_schedule(struct its_vpe *vpe) 2589 { 2590 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2591 u64 val; 2592 2593 /* Schedule the VPE */ 2594 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 2595 GENMASK_ULL(51, 12); 2596 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2597 val |= GICR_VPROPBASER_RaWb; 2598 val |= GICR_VPROPBASER_InnerShareable; 2599 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2600 2601 val = virt_to_phys(page_address(vpe->vpt_page)) & 2602 GENMASK_ULL(51, 16); 2603 val |= GICR_VPENDBASER_RaWaWb; 2604 val |= GICR_VPENDBASER_NonShareable; 2605 /* 2606 * There is no good way of finding out if the pending table is 2607 * empty as we can race against the doorbell interrupt very 2608 * easily. So in the end, vpe->pending_last is only an 2609 * indication that the vcpu has something pending, not one 2610 * that the pending table is empty. A good implementation 2611 * would be able to read its coarse map pretty quickly anyway, 2612 * making this a tolerable issue. 2613 */ 2614 val |= GICR_VPENDBASER_PendingLast; 2615 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 2616 val |= GICR_VPENDBASER_Valid; 2617 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2618 } 2619 2620 static void its_vpe_deschedule(struct its_vpe *vpe) 2621 { 2622 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2623 u32 count = 1000000; /* 1s! */ 2624 bool clean; 2625 u64 val; 2626 2627 /* We're being scheduled out */ 2628 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2629 val &= ~GICR_VPENDBASER_Valid; 2630 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2631 2632 do { 2633 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2634 clean = !(val & GICR_VPENDBASER_Dirty); 2635 if (!clean) { 2636 count--; 2637 cpu_relax(); 2638 udelay(1); 2639 } 2640 } while (!clean && count); 2641 2642 if (unlikely(!clean && !count)) { 2643 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 2644 vpe->idai = false; 2645 vpe->pending_last = true; 2646 } else { 2647 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 2648 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 2649 } 2650 } 2651 2652 static void its_vpe_invall(struct its_vpe *vpe) 2653 { 2654 struct its_node *its; 2655 2656 list_for_each_entry(its, &its_nodes, entry) { 2657 if (!its->is_v4) 2658 continue; 2659 2660 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 2661 continue; 2662 2663 /* 2664 * Sending a VINVALL to a single ITS is enough, as all 2665 * we need is to reach the redistributors. 2666 */ 2667 its_send_vinvall(its, vpe); 2668 return; 2669 } 2670 } 2671 2672 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2673 { 2674 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2675 struct its_cmd_info *info = vcpu_info; 2676 2677 switch (info->cmd_type) { 2678 case SCHEDULE_VPE: 2679 its_vpe_schedule(vpe); 2680 return 0; 2681 2682 case DESCHEDULE_VPE: 2683 its_vpe_deschedule(vpe); 2684 return 0; 2685 2686 case INVALL_VPE: 2687 its_vpe_invall(vpe); 2688 return 0; 2689 2690 default: 2691 return -EINVAL; 2692 } 2693 } 2694 2695 static void its_vpe_send_cmd(struct its_vpe *vpe, 2696 void (*cmd)(struct its_device *, u32)) 2697 { 2698 unsigned long flags; 2699 2700 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2701 2702 its_vpe_db_proxy_map_locked(vpe); 2703 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 2704 2705 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2706 } 2707 2708 static void its_vpe_send_inv(struct irq_data *d) 2709 { 2710 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2711 2712 if (gic_rdists->has_direct_lpi) { 2713 void __iomem *rdbase; 2714 2715 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2716 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); 2717 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2718 cpu_relax(); 2719 } else { 2720 its_vpe_send_cmd(vpe, its_send_inv); 2721 } 2722 } 2723 2724 static void its_vpe_mask_irq(struct irq_data *d) 2725 { 2726 /* 2727 * We need to unmask the LPI, which is described by the parent 2728 * irq_data. Instead of calling into the parent (which won't 2729 * exactly do the right thing, let's simply use the 2730 * parent_data pointer. Yes, I'm naughty. 2731 */ 2732 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 2733 its_vpe_send_inv(d); 2734 } 2735 2736 static void its_vpe_unmask_irq(struct irq_data *d) 2737 { 2738 /* Same hack as above... */ 2739 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 2740 its_vpe_send_inv(d); 2741 } 2742 2743 static int its_vpe_set_irqchip_state(struct irq_data *d, 2744 enum irqchip_irq_state which, 2745 bool state) 2746 { 2747 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2748 2749 if (which != IRQCHIP_STATE_PENDING) 2750 return -EINVAL; 2751 2752 if (gic_rdists->has_direct_lpi) { 2753 void __iomem *rdbase; 2754 2755 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2756 if (state) { 2757 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 2758 } else { 2759 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2760 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2761 cpu_relax(); 2762 } 2763 } else { 2764 if (state) 2765 its_vpe_send_cmd(vpe, its_send_int); 2766 else 2767 its_vpe_send_cmd(vpe, its_send_clear); 2768 } 2769 2770 return 0; 2771 } 2772 2773 static struct irq_chip its_vpe_irq_chip = { 2774 .name = "GICv4-vpe", 2775 .irq_mask = its_vpe_mask_irq, 2776 .irq_unmask = its_vpe_unmask_irq, 2777 .irq_eoi = irq_chip_eoi_parent, 2778 .irq_set_affinity = its_vpe_set_affinity, 2779 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 2780 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 2781 }; 2782 2783 static int its_vpe_id_alloc(void) 2784 { 2785 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 2786 } 2787 2788 static void its_vpe_id_free(u16 id) 2789 { 2790 ida_simple_remove(&its_vpeid_ida, id); 2791 } 2792 2793 static int its_vpe_init(struct its_vpe *vpe) 2794 { 2795 struct page *vpt_page; 2796 int vpe_id; 2797 2798 /* Allocate vpe_id */ 2799 vpe_id = its_vpe_id_alloc(); 2800 if (vpe_id < 0) 2801 return vpe_id; 2802 2803 /* Allocate VPT */ 2804 vpt_page = its_allocate_pending_table(GFP_KERNEL); 2805 if (!vpt_page) { 2806 its_vpe_id_free(vpe_id); 2807 return -ENOMEM; 2808 } 2809 2810 if (!its_alloc_vpe_table(vpe_id)) { 2811 its_vpe_id_free(vpe_id); 2812 its_free_pending_table(vpe->vpt_page); 2813 return -ENOMEM; 2814 } 2815 2816 vpe->vpe_id = vpe_id; 2817 vpe->vpt_page = vpt_page; 2818 vpe->vpe_proxy_event = -1; 2819 2820 return 0; 2821 } 2822 2823 static void its_vpe_teardown(struct its_vpe *vpe) 2824 { 2825 its_vpe_db_proxy_unmap(vpe); 2826 its_vpe_id_free(vpe->vpe_id); 2827 its_free_pending_table(vpe->vpt_page); 2828 } 2829 2830 static void its_vpe_irq_domain_free(struct irq_domain *domain, 2831 unsigned int virq, 2832 unsigned int nr_irqs) 2833 { 2834 struct its_vm *vm = domain->host_data; 2835 int i; 2836 2837 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2838 2839 for (i = 0; i < nr_irqs; i++) { 2840 struct irq_data *data = irq_domain_get_irq_data(domain, 2841 virq + i); 2842 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 2843 2844 BUG_ON(vm != vpe->its_vm); 2845 2846 clear_bit(data->hwirq, vm->db_bitmap); 2847 its_vpe_teardown(vpe); 2848 irq_domain_reset_irq_data(data); 2849 } 2850 2851 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 2852 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 2853 its_free_prop_table(vm->vprop_page); 2854 } 2855 } 2856 2857 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2858 unsigned int nr_irqs, void *args) 2859 { 2860 struct its_vm *vm = args; 2861 unsigned long *bitmap; 2862 struct page *vprop_page; 2863 int base, nr_ids, i, err = 0; 2864 2865 BUG_ON(!vm); 2866 2867 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 2868 if (!bitmap) 2869 return -ENOMEM; 2870 2871 if (nr_ids < nr_irqs) { 2872 its_lpi_free(bitmap, base, nr_ids); 2873 return -ENOMEM; 2874 } 2875 2876 vprop_page = its_allocate_prop_table(GFP_KERNEL); 2877 if (!vprop_page) { 2878 its_lpi_free(bitmap, base, nr_ids); 2879 return -ENOMEM; 2880 } 2881 2882 vm->db_bitmap = bitmap; 2883 vm->db_lpi_base = base; 2884 vm->nr_db_lpis = nr_ids; 2885 vm->vprop_page = vprop_page; 2886 2887 for (i = 0; i < nr_irqs; i++) { 2888 vm->vpes[i]->vpe_db_lpi = base + i; 2889 err = its_vpe_init(vm->vpes[i]); 2890 if (err) 2891 break; 2892 err = its_irq_gic_domain_alloc(domain, virq + i, 2893 vm->vpes[i]->vpe_db_lpi); 2894 if (err) 2895 break; 2896 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 2897 &its_vpe_irq_chip, vm->vpes[i]); 2898 set_bit(i, bitmap); 2899 } 2900 2901 if (err) { 2902 if (i > 0) 2903 its_vpe_irq_domain_free(domain, virq, i - 1); 2904 2905 its_lpi_free(bitmap, base, nr_ids); 2906 its_free_prop_table(vprop_page); 2907 } 2908 2909 return err; 2910 } 2911 2912 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 2913 struct irq_data *d, bool reserve) 2914 { 2915 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2916 struct its_node *its; 2917 2918 /* If we use the list map, we issue VMAPP on demand... */ 2919 if (its_list_map) 2920 return 0; 2921 2922 /* Map the VPE to the first possible CPU */ 2923 vpe->col_idx = cpumask_first(cpu_online_mask); 2924 2925 list_for_each_entry(its, &its_nodes, entry) { 2926 if (!its->is_v4) 2927 continue; 2928 2929 its_send_vmapp(its, vpe, true); 2930 its_send_vinvall(its, vpe); 2931 } 2932 2933 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 2934 2935 return 0; 2936 } 2937 2938 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 2939 struct irq_data *d) 2940 { 2941 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2942 struct its_node *its; 2943 2944 /* 2945 * If we use the list map, we unmap the VPE once no VLPIs are 2946 * associated with the VM. 2947 */ 2948 if (its_list_map) 2949 return; 2950 2951 list_for_each_entry(its, &its_nodes, entry) { 2952 if (!its->is_v4) 2953 continue; 2954 2955 its_send_vmapp(its, vpe, false); 2956 } 2957 } 2958 2959 static const struct irq_domain_ops its_vpe_domain_ops = { 2960 .alloc = its_vpe_irq_domain_alloc, 2961 .free = its_vpe_irq_domain_free, 2962 .activate = its_vpe_irq_domain_activate, 2963 .deactivate = its_vpe_irq_domain_deactivate, 2964 }; 2965 2966 static int its_force_quiescent(void __iomem *base) 2967 { 2968 u32 count = 1000000; /* 1s */ 2969 u32 val; 2970 2971 val = readl_relaxed(base + GITS_CTLR); 2972 /* 2973 * GIC architecture specification requires the ITS to be both 2974 * disabled and quiescent for writes to GITS_BASER<n> or 2975 * GITS_CBASER to not have UNPREDICTABLE results. 2976 */ 2977 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 2978 return 0; 2979 2980 /* Disable the generation of all interrupts to this ITS */ 2981 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 2982 writel_relaxed(val, base + GITS_CTLR); 2983 2984 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 2985 while (1) { 2986 val = readl_relaxed(base + GITS_CTLR); 2987 if (val & GITS_CTLR_QUIESCENT) 2988 return 0; 2989 2990 count--; 2991 if (!count) 2992 return -EBUSY; 2993 2994 cpu_relax(); 2995 udelay(1); 2996 } 2997 } 2998 2999 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 3000 { 3001 struct its_node *its = data; 3002 3003 /* erratum 22375: only alloc 8MB table size */ 3004 its->device_ids = 0x14; /* 20 bits, 8MB */ 3005 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 3006 3007 return true; 3008 } 3009 3010 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 3011 { 3012 struct its_node *its = data; 3013 3014 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 3015 3016 return true; 3017 } 3018 3019 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 3020 { 3021 struct its_node *its = data; 3022 3023 /* On QDF2400, the size of the ITE is 16Bytes */ 3024 its->ite_size = 16; 3025 3026 return true; 3027 } 3028 3029 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 3030 { 3031 struct its_node *its = its_dev->its; 3032 3033 /* 3034 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 3035 * which maps 32-bit writes targeted at a separate window of 3036 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 3037 * with device ID taken from bits [device_id_bits + 1:2] of 3038 * the window offset. 3039 */ 3040 return its->pre_its_base + (its_dev->device_id << 2); 3041 } 3042 3043 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 3044 { 3045 struct its_node *its = data; 3046 u32 pre_its_window[2]; 3047 u32 ids; 3048 3049 if (!fwnode_property_read_u32_array(its->fwnode_handle, 3050 "socionext,synquacer-pre-its", 3051 pre_its_window, 3052 ARRAY_SIZE(pre_its_window))) { 3053 3054 its->pre_its_base = pre_its_window[0]; 3055 its->get_msi_base = its_irq_get_msi_base_pre_its; 3056 3057 ids = ilog2(pre_its_window[1]) - 2; 3058 if (its->device_ids > ids) 3059 its->device_ids = ids; 3060 3061 /* the pre-ITS breaks isolation, so disable MSI remapping */ 3062 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 3063 return true; 3064 } 3065 return false; 3066 } 3067 3068 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 3069 { 3070 struct its_node *its = data; 3071 3072 /* 3073 * Hip07 insists on using the wrong address for the VLPI 3074 * page. Trick it into doing the right thing... 3075 */ 3076 its->vlpi_redist_offset = SZ_128K; 3077 return true; 3078 } 3079 3080 static const struct gic_quirk its_quirks[] = { 3081 #ifdef CONFIG_CAVIUM_ERRATUM_22375 3082 { 3083 .desc = "ITS: Cavium errata 22375, 24313", 3084 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3085 .mask = 0xffff0fff, 3086 .init = its_enable_quirk_cavium_22375, 3087 }, 3088 #endif 3089 #ifdef CONFIG_CAVIUM_ERRATUM_23144 3090 { 3091 .desc = "ITS: Cavium erratum 23144", 3092 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3093 .mask = 0xffff0fff, 3094 .init = its_enable_quirk_cavium_23144, 3095 }, 3096 #endif 3097 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 3098 { 3099 .desc = "ITS: QDF2400 erratum 0065", 3100 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 3101 .mask = 0xffffffff, 3102 .init = its_enable_quirk_qdf2400_e0065, 3103 }, 3104 #endif 3105 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 3106 { 3107 /* 3108 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 3109 * implementation, but with a 'pre-ITS' added that requires 3110 * special handling in software. 3111 */ 3112 .desc = "ITS: Socionext Synquacer pre-ITS", 3113 .iidr = 0x0001143b, 3114 .mask = 0xffffffff, 3115 .init = its_enable_quirk_socionext_synquacer, 3116 }, 3117 #endif 3118 #ifdef CONFIG_HISILICON_ERRATUM_161600802 3119 { 3120 .desc = "ITS: Hip07 erratum 161600802", 3121 .iidr = 0x00000004, 3122 .mask = 0xffffffff, 3123 .init = its_enable_quirk_hip07_161600802, 3124 }, 3125 #endif 3126 { 3127 } 3128 }; 3129 3130 static void its_enable_quirks(struct its_node *its) 3131 { 3132 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 3133 3134 gic_enable_quirks(iidr, its_quirks, its); 3135 } 3136 3137 static int its_save_disable(void) 3138 { 3139 struct its_node *its; 3140 int err = 0; 3141 3142 raw_spin_lock(&its_lock); 3143 list_for_each_entry(its, &its_nodes, entry) { 3144 void __iomem *base; 3145 3146 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3147 continue; 3148 3149 base = its->base; 3150 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 3151 err = its_force_quiescent(base); 3152 if (err) { 3153 pr_err("ITS@%pa: failed to quiesce: %d\n", 3154 &its->phys_base, err); 3155 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3156 goto err; 3157 } 3158 3159 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 3160 } 3161 3162 err: 3163 if (err) { 3164 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 3165 void __iomem *base; 3166 3167 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3168 continue; 3169 3170 base = its->base; 3171 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3172 } 3173 } 3174 raw_spin_unlock(&its_lock); 3175 3176 return err; 3177 } 3178 3179 static void its_restore_enable(void) 3180 { 3181 struct its_node *its; 3182 int ret; 3183 3184 raw_spin_lock(&its_lock); 3185 list_for_each_entry(its, &its_nodes, entry) { 3186 void __iomem *base; 3187 int i; 3188 3189 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3190 continue; 3191 3192 base = its->base; 3193 3194 /* 3195 * Make sure that the ITS is disabled. If it fails to quiesce, 3196 * don't restore it since writing to CBASER or BASER<n> 3197 * registers is undefined according to the GIC v3 ITS 3198 * Specification. 3199 */ 3200 ret = its_force_quiescent(base); 3201 if (ret) { 3202 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 3203 &its->phys_base, ret); 3204 continue; 3205 } 3206 3207 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 3208 3209 /* 3210 * Writing CBASER resets CREADR to 0, so make CWRITER and 3211 * cmd_write line up with it. 3212 */ 3213 its->cmd_write = its->cmd_base; 3214 gits_write_cwriter(0, base + GITS_CWRITER); 3215 3216 /* Restore GITS_BASER from the value cache. */ 3217 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3218 struct its_baser *baser = &its->tables[i]; 3219 3220 if (!(baser->val & GITS_BASER_VALID)) 3221 continue; 3222 3223 its_write_baser(its, baser, baser->val); 3224 } 3225 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3226 3227 /* 3228 * Reinit the collection if it's stored in the ITS. This is 3229 * indicated by the col_id being less than the HCC field. 3230 * CID < HCC as specified in the GIC v3 Documentation. 3231 */ 3232 if (its->collections[smp_processor_id()].col_id < 3233 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 3234 its_cpu_init_collection(its); 3235 } 3236 raw_spin_unlock(&its_lock); 3237 } 3238 3239 static struct syscore_ops its_syscore_ops = { 3240 .suspend = its_save_disable, 3241 .resume = its_restore_enable, 3242 }; 3243 3244 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 3245 { 3246 struct irq_domain *inner_domain; 3247 struct msi_domain_info *info; 3248 3249 info = kzalloc(sizeof(*info), GFP_KERNEL); 3250 if (!info) 3251 return -ENOMEM; 3252 3253 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 3254 if (!inner_domain) { 3255 kfree(info); 3256 return -ENOMEM; 3257 } 3258 3259 inner_domain->parent = its_parent; 3260 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 3261 inner_domain->flags |= its->msi_domain_flags; 3262 info->ops = &its_msi_domain_ops; 3263 info->data = its; 3264 inner_domain->host_data = info; 3265 3266 return 0; 3267 } 3268 3269 static int its_init_vpe_domain(void) 3270 { 3271 struct its_node *its; 3272 u32 devid; 3273 int entries; 3274 3275 if (gic_rdists->has_direct_lpi) { 3276 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 3277 return 0; 3278 } 3279 3280 /* Any ITS will do, even if not v4 */ 3281 its = list_first_entry(&its_nodes, struct its_node, entry); 3282 3283 entries = roundup_pow_of_two(nr_cpu_ids); 3284 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 3285 GFP_KERNEL); 3286 if (!vpe_proxy.vpes) { 3287 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 3288 return -ENOMEM; 3289 } 3290 3291 /* Use the last possible DevID */ 3292 devid = GENMASK(its->device_ids - 1, 0); 3293 vpe_proxy.dev = its_create_device(its, devid, entries, false); 3294 if (!vpe_proxy.dev) { 3295 kfree(vpe_proxy.vpes); 3296 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 3297 return -ENOMEM; 3298 } 3299 3300 BUG_ON(entries > vpe_proxy.dev->nr_ites); 3301 3302 raw_spin_lock_init(&vpe_proxy.lock); 3303 vpe_proxy.next_victim = 0; 3304 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 3305 devid, vpe_proxy.dev->nr_ites); 3306 3307 return 0; 3308 } 3309 3310 static int __init its_compute_its_list_map(struct resource *res, 3311 void __iomem *its_base) 3312 { 3313 int its_number; 3314 u32 ctlr; 3315 3316 /* 3317 * This is assumed to be done early enough that we're 3318 * guaranteed to be single-threaded, hence no 3319 * locking. Should this change, we should address 3320 * this. 3321 */ 3322 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 3323 if (its_number >= GICv4_ITS_LIST_MAX) { 3324 pr_err("ITS@%pa: No ITSList entry available!\n", 3325 &res->start); 3326 return -EINVAL; 3327 } 3328 3329 ctlr = readl_relaxed(its_base + GITS_CTLR); 3330 ctlr &= ~GITS_CTLR_ITS_NUMBER; 3331 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 3332 writel_relaxed(ctlr, its_base + GITS_CTLR); 3333 ctlr = readl_relaxed(its_base + GITS_CTLR); 3334 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 3335 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 3336 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 3337 } 3338 3339 if (test_and_set_bit(its_number, &its_list_map)) { 3340 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 3341 &res->start, its_number); 3342 return -EINVAL; 3343 } 3344 3345 return its_number; 3346 } 3347 3348 static int __init its_probe_one(struct resource *res, 3349 struct fwnode_handle *handle, int numa_node) 3350 { 3351 struct its_node *its; 3352 void __iomem *its_base; 3353 u32 val, ctlr; 3354 u64 baser, tmp, typer; 3355 int err; 3356 3357 its_base = ioremap(res->start, resource_size(res)); 3358 if (!its_base) { 3359 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 3360 return -ENOMEM; 3361 } 3362 3363 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 3364 if (val != 0x30 && val != 0x40) { 3365 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 3366 err = -ENODEV; 3367 goto out_unmap; 3368 } 3369 3370 err = its_force_quiescent(its_base); 3371 if (err) { 3372 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 3373 goto out_unmap; 3374 } 3375 3376 pr_info("ITS %pR\n", res); 3377 3378 its = kzalloc(sizeof(*its), GFP_KERNEL); 3379 if (!its) { 3380 err = -ENOMEM; 3381 goto out_unmap; 3382 } 3383 3384 raw_spin_lock_init(&its->lock); 3385 INIT_LIST_HEAD(&its->entry); 3386 INIT_LIST_HEAD(&its->its_device_list); 3387 typer = gic_read_typer(its_base + GITS_TYPER); 3388 its->base = its_base; 3389 its->phys_base = res->start; 3390 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); 3391 its->device_ids = GITS_TYPER_DEVBITS(typer); 3392 its->is_v4 = !!(typer & GITS_TYPER_VLPIS); 3393 if (its->is_v4) { 3394 if (!(typer & GITS_TYPER_VMOVP)) { 3395 err = its_compute_its_list_map(res, its_base); 3396 if (err < 0) 3397 goto out_free_its; 3398 3399 its->list_nr = err; 3400 3401 pr_info("ITS@%pa: Using ITS number %d\n", 3402 &res->start, err); 3403 } else { 3404 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 3405 } 3406 } 3407 3408 its->numa_node = numa_node; 3409 3410 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 3411 get_order(ITS_CMD_QUEUE_SZ)); 3412 if (!its->cmd_base) { 3413 err = -ENOMEM; 3414 goto out_free_its; 3415 } 3416 its->cmd_write = its->cmd_base; 3417 its->fwnode_handle = handle; 3418 its->get_msi_base = its_irq_get_msi_base; 3419 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 3420 3421 its_enable_quirks(its); 3422 3423 err = its_alloc_tables(its); 3424 if (err) 3425 goto out_free_cmd; 3426 3427 err = its_alloc_collections(its); 3428 if (err) 3429 goto out_free_tables; 3430 3431 baser = (virt_to_phys(its->cmd_base) | 3432 GITS_CBASER_RaWaWb | 3433 GITS_CBASER_InnerShareable | 3434 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 3435 GITS_CBASER_VALID); 3436 3437 gits_write_cbaser(baser, its->base + GITS_CBASER); 3438 tmp = gits_read_cbaser(its->base + GITS_CBASER); 3439 3440 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 3441 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 3442 /* 3443 * The HW reports non-shareable, we must 3444 * remove the cacheability attributes as 3445 * well. 3446 */ 3447 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 3448 GITS_CBASER_CACHEABILITY_MASK); 3449 baser |= GITS_CBASER_nC; 3450 gits_write_cbaser(baser, its->base + GITS_CBASER); 3451 } 3452 pr_info("ITS: using cache flushing for cmd queue\n"); 3453 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 3454 } 3455 3456 gits_write_cwriter(0, its->base + GITS_CWRITER); 3457 ctlr = readl_relaxed(its->base + GITS_CTLR); 3458 ctlr |= GITS_CTLR_ENABLE; 3459 if (its->is_v4) 3460 ctlr |= GITS_CTLR_ImDe; 3461 writel_relaxed(ctlr, its->base + GITS_CTLR); 3462 3463 if (GITS_TYPER_HCC(typer)) 3464 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; 3465 3466 err = its_init_domain(handle, its); 3467 if (err) 3468 goto out_free_tables; 3469 3470 raw_spin_lock(&its_lock); 3471 list_add(&its->entry, &its_nodes); 3472 raw_spin_unlock(&its_lock); 3473 3474 return 0; 3475 3476 out_free_tables: 3477 its_free_tables(its); 3478 out_free_cmd: 3479 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 3480 out_free_its: 3481 kfree(its); 3482 out_unmap: 3483 iounmap(its_base); 3484 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 3485 return err; 3486 } 3487 3488 static bool gic_rdists_supports_plpis(void) 3489 { 3490 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 3491 } 3492 3493 static int redist_disable_lpis(void) 3494 { 3495 void __iomem *rbase = gic_data_rdist_rd_base(); 3496 u64 timeout = USEC_PER_SEC; 3497 u64 val; 3498 3499 /* 3500 * If coming via a CPU hotplug event, we don't need to disable 3501 * LPIs before trying to re-enable them. They are already 3502 * configured and all is well in the world. Detect this case 3503 * by checking the allocation of the pending table for the 3504 * current CPU. 3505 */ 3506 if (gic_data_rdist()->pend_page) 3507 return 0; 3508 3509 if (!gic_rdists_supports_plpis()) { 3510 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 3511 return -ENXIO; 3512 } 3513 3514 val = readl_relaxed(rbase + GICR_CTLR); 3515 if (!(val & GICR_CTLR_ENABLE_LPIS)) 3516 return 0; 3517 3518 pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 3519 smp_processor_id()); 3520 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3521 3522 /* Disable LPIs */ 3523 val &= ~GICR_CTLR_ENABLE_LPIS; 3524 writel_relaxed(val, rbase + GICR_CTLR); 3525 3526 /* Make sure any change to GICR_CTLR is observable by the GIC */ 3527 dsb(sy); 3528 3529 /* 3530 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 3531 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 3532 * Error out if we time out waiting for RWP to clear. 3533 */ 3534 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 3535 if (!timeout) { 3536 pr_err("CPU%d: Timeout while disabling LPIs\n", 3537 smp_processor_id()); 3538 return -ETIMEDOUT; 3539 } 3540 udelay(1); 3541 timeout--; 3542 } 3543 3544 /* 3545 * After it has been written to 1, it is IMPLEMENTATION 3546 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 3547 * cleared to 0. Error out if clearing the bit failed. 3548 */ 3549 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 3550 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 3551 return -EBUSY; 3552 } 3553 3554 return 0; 3555 } 3556 3557 int its_cpu_init(void) 3558 { 3559 if (!list_empty(&its_nodes)) { 3560 int ret; 3561 3562 ret = redist_disable_lpis(); 3563 if (ret) 3564 return ret; 3565 3566 its_cpu_init_lpis(); 3567 its_cpu_init_collections(); 3568 } 3569 3570 return 0; 3571 } 3572 3573 static const struct of_device_id its_device_id[] = { 3574 { .compatible = "arm,gic-v3-its", }, 3575 {}, 3576 }; 3577 3578 static int __init its_of_probe(struct device_node *node) 3579 { 3580 struct device_node *np; 3581 struct resource res; 3582 3583 for (np = of_find_matching_node(node, its_device_id); np; 3584 np = of_find_matching_node(np, its_device_id)) { 3585 if (!of_device_is_available(np)) 3586 continue; 3587 if (!of_property_read_bool(np, "msi-controller")) { 3588 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 3589 np); 3590 continue; 3591 } 3592 3593 if (of_address_to_resource(np, 0, &res)) { 3594 pr_warn("%pOF: no regs?\n", np); 3595 continue; 3596 } 3597 3598 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 3599 } 3600 return 0; 3601 } 3602 3603 #ifdef CONFIG_ACPI 3604 3605 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 3606 3607 #ifdef CONFIG_ACPI_NUMA 3608 struct its_srat_map { 3609 /* numa node id */ 3610 u32 numa_node; 3611 /* GIC ITS ID */ 3612 u32 its_id; 3613 }; 3614 3615 static struct its_srat_map *its_srat_maps __initdata; 3616 static int its_in_srat __initdata; 3617 3618 static int __init acpi_get_its_numa_node(u32 its_id) 3619 { 3620 int i; 3621 3622 for (i = 0; i < its_in_srat; i++) { 3623 if (its_id == its_srat_maps[i].its_id) 3624 return its_srat_maps[i].numa_node; 3625 } 3626 return NUMA_NO_NODE; 3627 } 3628 3629 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header, 3630 const unsigned long end) 3631 { 3632 return 0; 3633 } 3634 3635 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header, 3636 const unsigned long end) 3637 { 3638 int node; 3639 struct acpi_srat_gic_its_affinity *its_affinity; 3640 3641 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 3642 if (!its_affinity) 3643 return -EINVAL; 3644 3645 if (its_affinity->header.length < sizeof(*its_affinity)) { 3646 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 3647 its_affinity->header.length); 3648 return -EINVAL; 3649 } 3650 3651 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 3652 3653 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 3654 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 3655 return 0; 3656 } 3657 3658 its_srat_maps[its_in_srat].numa_node = node; 3659 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 3660 its_in_srat++; 3661 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 3662 its_affinity->proximity_domain, its_affinity->its_id, node); 3663 3664 return 0; 3665 } 3666 3667 static void __init acpi_table_parse_srat_its(void) 3668 { 3669 int count; 3670 3671 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 3672 sizeof(struct acpi_table_srat), 3673 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3674 gic_acpi_match_srat_its, 0); 3675 if (count <= 0) 3676 return; 3677 3678 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 3679 GFP_KERNEL); 3680 if (!its_srat_maps) { 3681 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 3682 return; 3683 } 3684 3685 acpi_table_parse_entries(ACPI_SIG_SRAT, 3686 sizeof(struct acpi_table_srat), 3687 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3688 gic_acpi_parse_srat_its, 0); 3689 } 3690 3691 /* free the its_srat_maps after ITS probing */ 3692 static void __init acpi_its_srat_maps_free(void) 3693 { 3694 kfree(its_srat_maps); 3695 } 3696 #else 3697 static void __init acpi_table_parse_srat_its(void) { } 3698 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 3699 static void __init acpi_its_srat_maps_free(void) { } 3700 #endif 3701 3702 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, 3703 const unsigned long end) 3704 { 3705 struct acpi_madt_generic_translator *its_entry; 3706 struct fwnode_handle *dom_handle; 3707 struct resource res; 3708 int err; 3709 3710 its_entry = (struct acpi_madt_generic_translator *)header; 3711 memset(&res, 0, sizeof(res)); 3712 res.start = its_entry->base_address; 3713 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 3714 res.flags = IORESOURCE_MEM; 3715 3716 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); 3717 if (!dom_handle) { 3718 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 3719 &res.start); 3720 return -ENOMEM; 3721 } 3722 3723 err = iort_register_domain_token(its_entry->translation_id, res.start, 3724 dom_handle); 3725 if (err) { 3726 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 3727 &res.start, its_entry->translation_id); 3728 goto dom_err; 3729 } 3730 3731 err = its_probe_one(&res, dom_handle, 3732 acpi_get_its_numa_node(its_entry->translation_id)); 3733 if (!err) 3734 return 0; 3735 3736 iort_deregister_domain_token(its_entry->translation_id); 3737 dom_err: 3738 irq_domain_free_fwnode(dom_handle); 3739 return err; 3740 } 3741 3742 static void __init its_acpi_probe(void) 3743 { 3744 acpi_table_parse_srat_its(); 3745 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 3746 gic_acpi_parse_madt_its, 0); 3747 acpi_its_srat_maps_free(); 3748 } 3749 #else 3750 static void __init its_acpi_probe(void) { } 3751 #endif 3752 3753 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 3754 struct irq_domain *parent_domain) 3755 { 3756 struct device_node *of_node; 3757 struct its_node *its; 3758 bool has_v4 = false; 3759 int err; 3760 3761 its_parent = parent_domain; 3762 of_node = to_of_node(handle); 3763 if (of_node) 3764 its_of_probe(of_node); 3765 else 3766 its_acpi_probe(); 3767 3768 if (list_empty(&its_nodes)) { 3769 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 3770 return -ENXIO; 3771 } 3772 3773 gic_rdists = rdists; 3774 err = its_alloc_lpi_tables(); 3775 if (err) 3776 return err; 3777 3778 list_for_each_entry(its, &its_nodes, entry) 3779 has_v4 |= its->is_v4; 3780 3781 if (has_v4 & rdists->has_vlpis) { 3782 if (its_init_vpe_domain() || 3783 its_init_v4(parent_domain, &its_vpe_domain_ops)) { 3784 rdists->has_vlpis = false; 3785 pr_err("ITS: Disabling GICv4 support\n"); 3786 } 3787 } 3788 3789 register_syscore_ops(&its_syscore_ops); 3790 3791 return 0; 3792 } 3793