xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/list.h>
27 #include <linux/list_sort.h>
28 #include <linux/log2.h>
29 #include <linux/mm.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_pci.h>
35 #include <linux/of_platform.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/syscore_ops.h>
39 
40 #include <linux/irqchip.h>
41 #include <linux/irqchip/arm-gic-v3.h>
42 #include <linux/irqchip/arm-gic-v4.h>
43 
44 #include <asm/cputype.h>
45 #include <asm/exception.h>
46 
47 #include "irq-gic-common.h"
48 
49 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
50 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
51 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
52 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
53 
54 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
55 
56 static u32 lpi_id_bits;
57 
58 /*
59  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60  * deal with (one configuration byte per interrupt). PENDBASE has to
61  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
62  */
63 #define LPI_NRBITS		lpi_id_bits
64 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
66 
67 #define LPI_PROP_DEFAULT_PRIO	0xa0
68 
69 /*
70  * Collection structure - just an ID, and a redistributor address to
71  * ping. We use one per CPU as a bag of interrupts assigned to this
72  * CPU.
73  */
74 struct its_collection {
75 	u64			target_address;
76 	u16			col_id;
77 };
78 
79 /*
80  * The ITS_BASER structure - contains memory information, cached
81  * value of BASER register configuration and ITS page size.
82  */
83 struct its_baser {
84 	void		*base;
85 	u64		val;
86 	u32		order;
87 	u32		psz;
88 };
89 
90 struct its_device;
91 
92 /*
93  * The ITS structure - contains most of the infrastructure, with the
94  * top-level MSI domain, the command queue, the collections, and the
95  * list of devices writing to it.
96  */
97 struct its_node {
98 	raw_spinlock_t		lock;
99 	struct list_head	entry;
100 	void __iomem		*base;
101 	phys_addr_t		phys_base;
102 	struct its_cmd_block	*cmd_base;
103 	struct its_cmd_block	*cmd_write;
104 	struct its_baser	tables[GITS_BASER_NR_REGS];
105 	struct its_collection	*collections;
106 	struct fwnode_handle	*fwnode_handle;
107 	u64			(*get_msi_base)(struct its_device *its_dev);
108 	u64			cbaser_save;
109 	u32			ctlr_save;
110 	struct list_head	its_device_list;
111 	u64			flags;
112 	unsigned long		list_nr;
113 	u32			ite_size;
114 	u32			device_ids;
115 	int			numa_node;
116 	unsigned int		msi_domain_flags;
117 	u32			pre_its_base; /* for Socionext Synquacer */
118 	bool			is_v4;
119 	int			vlpi_redist_offset;
120 };
121 
122 #define ITS_ITT_ALIGN		SZ_256
123 
124 /* The maximum number of VPEID bits supported by VLPI commands */
125 #define ITS_MAX_VPEID_BITS	(16)
126 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
127 
128 /* Convert page order to size in bytes */
129 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
130 
131 struct event_lpi_map {
132 	unsigned long		*lpi_map;
133 	u16			*col_map;
134 	irq_hw_number_t		lpi_base;
135 	int			nr_lpis;
136 	struct mutex		vlpi_lock;
137 	struct its_vm		*vm;
138 	struct its_vlpi_map	*vlpi_maps;
139 	int			nr_vlpis;
140 };
141 
142 /*
143  * The ITS view of a device - belongs to an ITS, owns an interrupt
144  * translation table, and a list of interrupts.  If it some of its
145  * LPIs are injected into a guest (GICv4), the event_map.vm field
146  * indicates which one.
147  */
148 struct its_device {
149 	struct list_head	entry;
150 	struct its_node		*its;
151 	struct event_lpi_map	event_map;
152 	void			*itt;
153 	u32			nr_ites;
154 	u32			device_id;
155 };
156 
157 static struct {
158 	raw_spinlock_t		lock;
159 	struct its_device	*dev;
160 	struct its_vpe		**vpes;
161 	int			next_victim;
162 } vpe_proxy;
163 
164 static LIST_HEAD(its_nodes);
165 static DEFINE_RAW_SPINLOCK(its_lock);
166 static struct rdists *gic_rdists;
167 static struct irq_domain *its_parent;
168 
169 static unsigned long its_list_map;
170 static u16 vmovp_seq_num;
171 static DEFINE_RAW_SPINLOCK(vmovp_lock);
172 
173 static DEFINE_IDA(its_vpeid_ida);
174 
175 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
176 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
177 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
178 
179 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
180 					       u32 event)
181 {
182 	struct its_node *its = its_dev->its;
183 
184 	return its->collections + its_dev->event_map.col_map[event];
185 }
186 
187 static struct its_collection *valid_col(struct its_collection *col)
188 {
189 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15)))
190 		return NULL;
191 
192 	return col;
193 }
194 
195 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
196 {
197 	if (valid_col(its->collections + vpe->col_idx))
198 		return vpe;
199 
200 	return NULL;
201 }
202 
203 /*
204  * ITS command descriptors - parameters to be encoded in a command
205  * block.
206  */
207 struct its_cmd_desc {
208 	union {
209 		struct {
210 			struct its_device *dev;
211 			u32 event_id;
212 		} its_inv_cmd;
213 
214 		struct {
215 			struct its_device *dev;
216 			u32 event_id;
217 		} its_clear_cmd;
218 
219 		struct {
220 			struct its_device *dev;
221 			u32 event_id;
222 		} its_int_cmd;
223 
224 		struct {
225 			struct its_device *dev;
226 			int valid;
227 		} its_mapd_cmd;
228 
229 		struct {
230 			struct its_collection *col;
231 			int valid;
232 		} its_mapc_cmd;
233 
234 		struct {
235 			struct its_device *dev;
236 			u32 phys_id;
237 			u32 event_id;
238 		} its_mapti_cmd;
239 
240 		struct {
241 			struct its_device *dev;
242 			struct its_collection *col;
243 			u32 event_id;
244 		} its_movi_cmd;
245 
246 		struct {
247 			struct its_device *dev;
248 			u32 event_id;
249 		} its_discard_cmd;
250 
251 		struct {
252 			struct its_collection *col;
253 		} its_invall_cmd;
254 
255 		struct {
256 			struct its_vpe *vpe;
257 		} its_vinvall_cmd;
258 
259 		struct {
260 			struct its_vpe *vpe;
261 			struct its_collection *col;
262 			bool valid;
263 		} its_vmapp_cmd;
264 
265 		struct {
266 			struct its_vpe *vpe;
267 			struct its_device *dev;
268 			u32 virt_id;
269 			u32 event_id;
270 			bool db_enabled;
271 		} its_vmapti_cmd;
272 
273 		struct {
274 			struct its_vpe *vpe;
275 			struct its_device *dev;
276 			u32 event_id;
277 			bool db_enabled;
278 		} its_vmovi_cmd;
279 
280 		struct {
281 			struct its_vpe *vpe;
282 			struct its_collection *col;
283 			u16 seq_num;
284 			u16 its_list;
285 		} its_vmovp_cmd;
286 	};
287 };
288 
289 /*
290  * The ITS command block, which is what the ITS actually parses.
291  */
292 struct its_cmd_block {
293 	u64	raw_cmd[4];
294 };
295 
296 #define ITS_CMD_QUEUE_SZ		SZ_64K
297 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
298 
299 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
300 						    struct its_cmd_block *,
301 						    struct its_cmd_desc *);
302 
303 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
304 					      struct its_cmd_block *,
305 					      struct its_cmd_desc *);
306 
307 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
308 {
309 	u64 mask = GENMASK_ULL(h, l);
310 	*raw_cmd &= ~mask;
311 	*raw_cmd |= (val << l) & mask;
312 }
313 
314 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
315 {
316 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
317 }
318 
319 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
320 {
321 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
322 }
323 
324 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
325 {
326 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
327 }
328 
329 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
330 {
331 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
332 }
333 
334 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
335 {
336 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
337 }
338 
339 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
340 {
341 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
342 }
343 
344 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
345 {
346 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
347 }
348 
349 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
350 {
351 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
352 }
353 
354 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
355 {
356 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
357 }
358 
359 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
360 {
361 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
362 }
363 
364 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
365 {
366 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
367 }
368 
369 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
370 {
371 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
372 }
373 
374 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
375 {
376 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
377 }
378 
379 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
380 {
381 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
382 }
383 
384 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
385 {
386 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
387 }
388 
389 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
390 {
391 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
392 }
393 
394 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
395 {
396 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
397 }
398 
399 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
400 {
401 	/* Let's fixup BE commands */
402 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
403 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
404 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
405 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
406 }
407 
408 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
409 						 struct its_cmd_block *cmd,
410 						 struct its_cmd_desc *desc)
411 {
412 	unsigned long itt_addr;
413 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
414 
415 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
416 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
417 
418 	its_encode_cmd(cmd, GITS_CMD_MAPD);
419 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
420 	its_encode_size(cmd, size - 1);
421 	its_encode_itt(cmd, itt_addr);
422 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
423 
424 	its_fixup_cmd(cmd);
425 
426 	return NULL;
427 }
428 
429 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
430 						 struct its_cmd_block *cmd,
431 						 struct its_cmd_desc *desc)
432 {
433 	its_encode_cmd(cmd, GITS_CMD_MAPC);
434 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
435 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
436 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
437 
438 	its_fixup_cmd(cmd);
439 
440 	return desc->its_mapc_cmd.col;
441 }
442 
443 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
444 						  struct its_cmd_block *cmd,
445 						  struct its_cmd_desc *desc)
446 {
447 	struct its_collection *col;
448 
449 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
450 			       desc->its_mapti_cmd.event_id);
451 
452 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
453 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
454 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
455 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
456 	its_encode_collection(cmd, col->col_id);
457 
458 	its_fixup_cmd(cmd);
459 
460 	return valid_col(col);
461 }
462 
463 static struct its_collection *its_build_movi_cmd(struct its_node *its,
464 						 struct its_cmd_block *cmd,
465 						 struct its_cmd_desc *desc)
466 {
467 	struct its_collection *col;
468 
469 	col = dev_event_to_col(desc->its_movi_cmd.dev,
470 			       desc->its_movi_cmd.event_id);
471 
472 	its_encode_cmd(cmd, GITS_CMD_MOVI);
473 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
474 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
475 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
476 
477 	its_fixup_cmd(cmd);
478 
479 	return valid_col(col);
480 }
481 
482 static struct its_collection *its_build_discard_cmd(struct its_node *its,
483 						    struct its_cmd_block *cmd,
484 						    struct its_cmd_desc *desc)
485 {
486 	struct its_collection *col;
487 
488 	col = dev_event_to_col(desc->its_discard_cmd.dev,
489 			       desc->its_discard_cmd.event_id);
490 
491 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
492 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
493 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
494 
495 	its_fixup_cmd(cmd);
496 
497 	return valid_col(col);
498 }
499 
500 static struct its_collection *its_build_inv_cmd(struct its_node *its,
501 						struct its_cmd_block *cmd,
502 						struct its_cmd_desc *desc)
503 {
504 	struct its_collection *col;
505 
506 	col = dev_event_to_col(desc->its_inv_cmd.dev,
507 			       desc->its_inv_cmd.event_id);
508 
509 	its_encode_cmd(cmd, GITS_CMD_INV);
510 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
511 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
512 
513 	its_fixup_cmd(cmd);
514 
515 	return valid_col(col);
516 }
517 
518 static struct its_collection *its_build_int_cmd(struct its_node *its,
519 						struct its_cmd_block *cmd,
520 						struct its_cmd_desc *desc)
521 {
522 	struct its_collection *col;
523 
524 	col = dev_event_to_col(desc->its_int_cmd.dev,
525 			       desc->its_int_cmd.event_id);
526 
527 	its_encode_cmd(cmd, GITS_CMD_INT);
528 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
529 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
530 
531 	its_fixup_cmd(cmd);
532 
533 	return valid_col(col);
534 }
535 
536 static struct its_collection *its_build_clear_cmd(struct its_node *its,
537 						  struct its_cmd_block *cmd,
538 						  struct its_cmd_desc *desc)
539 {
540 	struct its_collection *col;
541 
542 	col = dev_event_to_col(desc->its_clear_cmd.dev,
543 			       desc->its_clear_cmd.event_id);
544 
545 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
546 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
547 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
548 
549 	its_fixup_cmd(cmd);
550 
551 	return valid_col(col);
552 }
553 
554 static struct its_collection *its_build_invall_cmd(struct its_node *its,
555 						   struct its_cmd_block *cmd,
556 						   struct its_cmd_desc *desc)
557 {
558 	its_encode_cmd(cmd, GITS_CMD_INVALL);
559 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
560 
561 	its_fixup_cmd(cmd);
562 
563 	return NULL;
564 }
565 
566 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
567 					     struct its_cmd_block *cmd,
568 					     struct its_cmd_desc *desc)
569 {
570 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
571 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
572 
573 	its_fixup_cmd(cmd);
574 
575 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
576 }
577 
578 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
579 					   struct its_cmd_block *cmd,
580 					   struct its_cmd_desc *desc)
581 {
582 	unsigned long vpt_addr;
583 	u64 target;
584 
585 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
586 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
587 
588 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
589 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
590 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
591 	its_encode_target(cmd, target);
592 	its_encode_vpt_addr(cmd, vpt_addr);
593 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
594 
595 	its_fixup_cmd(cmd);
596 
597 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
598 }
599 
600 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
601 					    struct its_cmd_block *cmd,
602 					    struct its_cmd_desc *desc)
603 {
604 	u32 db;
605 
606 	if (desc->its_vmapti_cmd.db_enabled)
607 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
608 	else
609 		db = 1023;
610 
611 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
612 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
613 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
614 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
615 	its_encode_db_phys_id(cmd, db);
616 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
617 
618 	its_fixup_cmd(cmd);
619 
620 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
621 }
622 
623 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
624 					   struct its_cmd_block *cmd,
625 					   struct its_cmd_desc *desc)
626 {
627 	u32 db;
628 
629 	if (desc->its_vmovi_cmd.db_enabled)
630 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
631 	else
632 		db = 1023;
633 
634 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
635 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
636 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
637 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
638 	its_encode_db_phys_id(cmd, db);
639 	its_encode_db_valid(cmd, true);
640 
641 	its_fixup_cmd(cmd);
642 
643 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
644 }
645 
646 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
647 					   struct its_cmd_block *cmd,
648 					   struct its_cmd_desc *desc)
649 {
650 	u64 target;
651 
652 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
653 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
654 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
655 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
656 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
657 	its_encode_target(cmd, target);
658 
659 	its_fixup_cmd(cmd);
660 
661 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
662 }
663 
664 static u64 its_cmd_ptr_to_offset(struct its_node *its,
665 				 struct its_cmd_block *ptr)
666 {
667 	return (ptr - its->cmd_base) * sizeof(*ptr);
668 }
669 
670 static int its_queue_full(struct its_node *its)
671 {
672 	int widx;
673 	int ridx;
674 
675 	widx = its->cmd_write - its->cmd_base;
676 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
677 
678 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
679 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
680 		return 1;
681 
682 	return 0;
683 }
684 
685 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
686 {
687 	struct its_cmd_block *cmd;
688 	u32 count = 1000000;	/* 1s! */
689 
690 	while (its_queue_full(its)) {
691 		count--;
692 		if (!count) {
693 			pr_err_ratelimited("ITS queue not draining\n");
694 			return NULL;
695 		}
696 		cpu_relax();
697 		udelay(1);
698 	}
699 
700 	cmd = its->cmd_write++;
701 
702 	/* Handle queue wrapping */
703 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
704 		its->cmd_write = its->cmd_base;
705 
706 	/* Clear command  */
707 	cmd->raw_cmd[0] = 0;
708 	cmd->raw_cmd[1] = 0;
709 	cmd->raw_cmd[2] = 0;
710 	cmd->raw_cmd[3] = 0;
711 
712 	return cmd;
713 }
714 
715 static struct its_cmd_block *its_post_commands(struct its_node *its)
716 {
717 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
718 
719 	writel_relaxed(wr, its->base + GITS_CWRITER);
720 
721 	return its->cmd_write;
722 }
723 
724 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
725 {
726 	/*
727 	 * Make sure the commands written to memory are observable by
728 	 * the ITS.
729 	 */
730 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
731 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
732 	else
733 		dsb(ishst);
734 }
735 
736 static int its_wait_for_range_completion(struct its_node *its,
737 					 struct its_cmd_block *from,
738 					 struct its_cmd_block *to)
739 {
740 	u64 rd_idx, from_idx, to_idx;
741 	u32 count = 1000000;	/* 1s! */
742 
743 	from_idx = its_cmd_ptr_to_offset(its, from);
744 	to_idx = its_cmd_ptr_to_offset(its, to);
745 
746 	while (1) {
747 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
748 
749 		/* Direct case */
750 		if (from_idx < to_idx && rd_idx >= to_idx)
751 			break;
752 
753 		/* Wrapped case */
754 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
755 			break;
756 
757 		count--;
758 		if (!count) {
759 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
760 					   from_idx, to_idx, rd_idx);
761 			return -1;
762 		}
763 		cpu_relax();
764 		udelay(1);
765 	}
766 
767 	return 0;
768 }
769 
770 /* Warning, macro hell follows */
771 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
772 void name(struct its_node *its,						\
773 	  buildtype builder,						\
774 	  struct its_cmd_desc *desc)					\
775 {									\
776 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
777 	synctype *sync_obj;						\
778 	unsigned long flags;						\
779 									\
780 	raw_spin_lock_irqsave(&its->lock, flags);			\
781 									\
782 	cmd = its_allocate_entry(its);					\
783 	if (!cmd) {		/* We're soooooo screewed... */		\
784 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
785 		return;							\
786 	}								\
787 	sync_obj = builder(its, cmd, desc);				\
788 	its_flush_cmd(its, cmd);					\
789 									\
790 	if (sync_obj) {							\
791 		sync_cmd = its_allocate_entry(its);			\
792 		if (!sync_cmd)						\
793 			goto post;					\
794 									\
795 		buildfn(its, sync_cmd, sync_obj);			\
796 		its_flush_cmd(its, sync_cmd);				\
797 	}								\
798 									\
799 post:									\
800 	next_cmd = its_post_commands(its);				\
801 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
802 									\
803 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
804 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
805 }
806 
807 static void its_build_sync_cmd(struct its_node *its,
808 			       struct its_cmd_block *sync_cmd,
809 			       struct its_collection *sync_col)
810 {
811 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
812 	its_encode_target(sync_cmd, sync_col->target_address);
813 
814 	its_fixup_cmd(sync_cmd);
815 }
816 
817 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
818 			     struct its_collection, its_build_sync_cmd)
819 
820 static void its_build_vsync_cmd(struct its_node *its,
821 				struct its_cmd_block *sync_cmd,
822 				struct its_vpe *sync_vpe)
823 {
824 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
825 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
826 
827 	its_fixup_cmd(sync_cmd);
828 }
829 
830 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
831 			     struct its_vpe, its_build_vsync_cmd)
832 
833 static void its_send_int(struct its_device *dev, u32 event_id)
834 {
835 	struct its_cmd_desc desc;
836 
837 	desc.its_int_cmd.dev = dev;
838 	desc.its_int_cmd.event_id = event_id;
839 
840 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
841 }
842 
843 static void its_send_clear(struct its_device *dev, u32 event_id)
844 {
845 	struct its_cmd_desc desc;
846 
847 	desc.its_clear_cmd.dev = dev;
848 	desc.its_clear_cmd.event_id = event_id;
849 
850 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
851 }
852 
853 static void its_send_inv(struct its_device *dev, u32 event_id)
854 {
855 	struct its_cmd_desc desc;
856 
857 	desc.its_inv_cmd.dev = dev;
858 	desc.its_inv_cmd.event_id = event_id;
859 
860 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
861 }
862 
863 static void its_send_mapd(struct its_device *dev, int valid)
864 {
865 	struct its_cmd_desc desc;
866 
867 	desc.its_mapd_cmd.dev = dev;
868 	desc.its_mapd_cmd.valid = !!valid;
869 
870 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
871 }
872 
873 static void its_send_mapc(struct its_node *its, struct its_collection *col,
874 			  int valid)
875 {
876 	struct its_cmd_desc desc;
877 
878 	desc.its_mapc_cmd.col = col;
879 	desc.its_mapc_cmd.valid = !!valid;
880 
881 	its_send_single_command(its, its_build_mapc_cmd, &desc);
882 }
883 
884 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
885 {
886 	struct its_cmd_desc desc;
887 
888 	desc.its_mapti_cmd.dev = dev;
889 	desc.its_mapti_cmd.phys_id = irq_id;
890 	desc.its_mapti_cmd.event_id = id;
891 
892 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
893 }
894 
895 static void its_send_movi(struct its_device *dev,
896 			  struct its_collection *col, u32 id)
897 {
898 	struct its_cmd_desc desc;
899 
900 	desc.its_movi_cmd.dev = dev;
901 	desc.its_movi_cmd.col = col;
902 	desc.its_movi_cmd.event_id = id;
903 
904 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
905 }
906 
907 static void its_send_discard(struct its_device *dev, u32 id)
908 {
909 	struct its_cmd_desc desc;
910 
911 	desc.its_discard_cmd.dev = dev;
912 	desc.its_discard_cmd.event_id = id;
913 
914 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
915 }
916 
917 static void its_send_invall(struct its_node *its, struct its_collection *col)
918 {
919 	struct its_cmd_desc desc;
920 
921 	desc.its_invall_cmd.col = col;
922 
923 	its_send_single_command(its, its_build_invall_cmd, &desc);
924 }
925 
926 static void its_send_vmapti(struct its_device *dev, u32 id)
927 {
928 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
929 	struct its_cmd_desc desc;
930 
931 	desc.its_vmapti_cmd.vpe = map->vpe;
932 	desc.its_vmapti_cmd.dev = dev;
933 	desc.its_vmapti_cmd.virt_id = map->vintid;
934 	desc.its_vmapti_cmd.event_id = id;
935 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
936 
937 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
938 }
939 
940 static void its_send_vmovi(struct its_device *dev, u32 id)
941 {
942 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
943 	struct its_cmd_desc desc;
944 
945 	desc.its_vmovi_cmd.vpe = map->vpe;
946 	desc.its_vmovi_cmd.dev = dev;
947 	desc.its_vmovi_cmd.event_id = id;
948 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
949 
950 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
951 }
952 
953 static void its_send_vmapp(struct its_node *its,
954 			   struct its_vpe *vpe, bool valid)
955 {
956 	struct its_cmd_desc desc;
957 
958 	desc.its_vmapp_cmd.vpe = vpe;
959 	desc.its_vmapp_cmd.valid = valid;
960 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
961 
962 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
963 }
964 
965 static void its_send_vmovp(struct its_vpe *vpe)
966 {
967 	struct its_cmd_desc desc;
968 	struct its_node *its;
969 	unsigned long flags;
970 	int col_id = vpe->col_idx;
971 
972 	desc.its_vmovp_cmd.vpe = vpe;
973 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
974 
975 	if (!its_list_map) {
976 		its = list_first_entry(&its_nodes, struct its_node, entry);
977 		desc.its_vmovp_cmd.seq_num = 0;
978 		desc.its_vmovp_cmd.col = &its->collections[col_id];
979 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
980 		return;
981 	}
982 
983 	/*
984 	 * Yet another marvel of the architecture. If using the
985 	 * its_list "feature", we need to make sure that all ITSs
986 	 * receive all VMOVP commands in the same order. The only way
987 	 * to guarantee this is to make vmovp a serialization point.
988 	 *
989 	 * Wall <-- Head.
990 	 */
991 	raw_spin_lock_irqsave(&vmovp_lock, flags);
992 
993 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
994 
995 	/* Emit VMOVPs */
996 	list_for_each_entry(its, &its_nodes, entry) {
997 		if (!its->is_v4)
998 			continue;
999 
1000 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1001 			continue;
1002 
1003 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1004 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1005 	}
1006 
1007 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1008 }
1009 
1010 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1011 {
1012 	struct its_cmd_desc desc;
1013 
1014 	desc.its_vinvall_cmd.vpe = vpe;
1015 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1016 }
1017 
1018 /*
1019  * irqchip functions - assumes MSI, mostly.
1020  */
1021 
1022 static inline u32 its_get_event_id(struct irq_data *d)
1023 {
1024 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1025 	return d->hwirq - its_dev->event_map.lpi_base;
1026 }
1027 
1028 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1029 {
1030 	irq_hw_number_t hwirq;
1031 	struct page *prop_page;
1032 	u8 *cfg;
1033 
1034 	if (irqd_is_forwarded_to_vcpu(d)) {
1035 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1036 		u32 event = its_get_event_id(d);
1037 		struct its_vlpi_map *map;
1038 
1039 		prop_page = its_dev->event_map.vm->vprop_page;
1040 		map = &its_dev->event_map.vlpi_maps[event];
1041 		hwirq = map->vintid;
1042 
1043 		/* Remember the updated property */
1044 		map->properties &= ~clr;
1045 		map->properties |= set | LPI_PROP_GROUP1;
1046 	} else {
1047 		prop_page = gic_rdists->prop_page;
1048 		hwirq = d->hwirq;
1049 	}
1050 
1051 	cfg = page_address(prop_page) + hwirq - 8192;
1052 	*cfg &= ~clr;
1053 	*cfg |= set | LPI_PROP_GROUP1;
1054 
1055 	/*
1056 	 * Make the above write visible to the redistributors.
1057 	 * And yes, we're flushing exactly: One. Single. Byte.
1058 	 * Humpf...
1059 	 */
1060 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1061 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1062 	else
1063 		dsb(ishst);
1064 }
1065 
1066 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1067 {
1068 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1069 
1070 	lpi_write_config(d, clr, set);
1071 	its_send_inv(its_dev, its_get_event_id(d));
1072 }
1073 
1074 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1075 {
1076 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1077 	u32 event = its_get_event_id(d);
1078 
1079 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1080 		return;
1081 
1082 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1083 
1084 	/*
1085 	 * More fun with the architecture:
1086 	 *
1087 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1088 	 * value or to 1023, depending on the enable bit. But that
1089 	 * would be issueing a mapping for an /existing/ DevID+EventID
1090 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1091 	 * to the /same/ vPE, using this opportunity to adjust the
1092 	 * doorbell. Mouahahahaha. We loves it, Precious.
1093 	 */
1094 	its_send_vmovi(its_dev, event);
1095 }
1096 
1097 static void its_mask_irq(struct irq_data *d)
1098 {
1099 	if (irqd_is_forwarded_to_vcpu(d))
1100 		its_vlpi_set_doorbell(d, false);
1101 
1102 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1103 }
1104 
1105 static void its_unmask_irq(struct irq_data *d)
1106 {
1107 	if (irqd_is_forwarded_to_vcpu(d))
1108 		its_vlpi_set_doorbell(d, true);
1109 
1110 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1111 }
1112 
1113 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1114 			    bool force)
1115 {
1116 	unsigned int cpu;
1117 	const struct cpumask *cpu_mask = cpu_online_mask;
1118 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1119 	struct its_collection *target_col;
1120 	u32 id = its_get_event_id(d);
1121 
1122 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1123 	if (irqd_is_forwarded_to_vcpu(d))
1124 		return -EINVAL;
1125 
1126        /* lpi cannot be routed to a redistributor that is on a foreign node */
1127 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1128 		if (its_dev->its->numa_node >= 0) {
1129 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1130 			if (!cpumask_intersects(mask_val, cpu_mask))
1131 				return -EINVAL;
1132 		}
1133 	}
1134 
1135 	cpu = cpumask_any_and(mask_val, cpu_mask);
1136 
1137 	if (cpu >= nr_cpu_ids)
1138 		return -EINVAL;
1139 
1140 	/* don't set the affinity when the target cpu is same as current one */
1141 	if (cpu != its_dev->event_map.col_map[id]) {
1142 		target_col = &its_dev->its->collections[cpu];
1143 		its_send_movi(its_dev, target_col, id);
1144 		its_dev->event_map.col_map[id] = cpu;
1145 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1146 	}
1147 
1148 	return IRQ_SET_MASK_OK_DONE;
1149 }
1150 
1151 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1152 {
1153 	struct its_node *its = its_dev->its;
1154 
1155 	return its->phys_base + GITS_TRANSLATER;
1156 }
1157 
1158 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1159 {
1160 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1161 	struct its_node *its;
1162 	u64 addr;
1163 
1164 	its = its_dev->its;
1165 	addr = its->get_msi_base(its_dev);
1166 
1167 	msg->address_lo		= lower_32_bits(addr);
1168 	msg->address_hi		= upper_32_bits(addr);
1169 	msg->data		= its_get_event_id(d);
1170 
1171 	iommu_dma_map_msi_msg(d->irq, msg);
1172 }
1173 
1174 static int its_irq_set_irqchip_state(struct irq_data *d,
1175 				     enum irqchip_irq_state which,
1176 				     bool state)
1177 {
1178 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1179 	u32 event = its_get_event_id(d);
1180 
1181 	if (which != IRQCHIP_STATE_PENDING)
1182 		return -EINVAL;
1183 
1184 	if (state)
1185 		its_send_int(its_dev, event);
1186 	else
1187 		its_send_clear(its_dev, event);
1188 
1189 	return 0;
1190 }
1191 
1192 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1193 {
1194 	unsigned long flags;
1195 
1196 	/* Not using the ITS list? Everything is always mapped. */
1197 	if (!its_list_map)
1198 		return;
1199 
1200 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1201 
1202 	/*
1203 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1204 	 * them mapped now.
1205 	 */
1206 	vm->vlpi_count[its->list_nr]++;
1207 
1208 	if (vm->vlpi_count[its->list_nr] == 1) {
1209 		int i;
1210 
1211 		for (i = 0; i < vm->nr_vpes; i++) {
1212 			struct its_vpe *vpe = vm->vpes[i];
1213 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1214 
1215 			/* Map the VPE to the first possible CPU */
1216 			vpe->col_idx = cpumask_first(cpu_online_mask);
1217 			its_send_vmapp(its, vpe, true);
1218 			its_send_vinvall(its, vpe);
1219 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1220 		}
1221 	}
1222 
1223 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1224 }
1225 
1226 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1227 {
1228 	unsigned long flags;
1229 
1230 	/* Not using the ITS list? Everything is always mapped. */
1231 	if (!its_list_map)
1232 		return;
1233 
1234 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1235 
1236 	if (!--vm->vlpi_count[its->list_nr]) {
1237 		int i;
1238 
1239 		for (i = 0; i < vm->nr_vpes; i++)
1240 			its_send_vmapp(its, vm->vpes[i], false);
1241 	}
1242 
1243 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1244 }
1245 
1246 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1247 {
1248 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1249 	u32 event = its_get_event_id(d);
1250 	int ret = 0;
1251 
1252 	if (!info->map)
1253 		return -EINVAL;
1254 
1255 	mutex_lock(&its_dev->event_map.vlpi_lock);
1256 
1257 	if (!its_dev->event_map.vm) {
1258 		struct its_vlpi_map *maps;
1259 
1260 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1261 			       GFP_KERNEL);
1262 		if (!maps) {
1263 			ret = -ENOMEM;
1264 			goto out;
1265 		}
1266 
1267 		its_dev->event_map.vm = info->map->vm;
1268 		its_dev->event_map.vlpi_maps = maps;
1269 	} else if (its_dev->event_map.vm != info->map->vm) {
1270 		ret = -EINVAL;
1271 		goto out;
1272 	}
1273 
1274 	/* Get our private copy of the mapping information */
1275 	its_dev->event_map.vlpi_maps[event] = *info->map;
1276 
1277 	if (irqd_is_forwarded_to_vcpu(d)) {
1278 		/* Already mapped, move it around */
1279 		its_send_vmovi(its_dev, event);
1280 	} else {
1281 		/* Ensure all the VPEs are mapped on this ITS */
1282 		its_map_vm(its_dev->its, info->map->vm);
1283 
1284 		/*
1285 		 * Flag the interrupt as forwarded so that we can
1286 		 * start poking the virtual property table.
1287 		 */
1288 		irqd_set_forwarded_to_vcpu(d);
1289 
1290 		/* Write out the property to the prop table */
1291 		lpi_write_config(d, 0xff, info->map->properties);
1292 
1293 		/* Drop the physical mapping */
1294 		its_send_discard(its_dev, event);
1295 
1296 		/* and install the virtual one */
1297 		its_send_vmapti(its_dev, event);
1298 
1299 		/* Increment the number of VLPIs */
1300 		its_dev->event_map.nr_vlpis++;
1301 	}
1302 
1303 out:
1304 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1305 	return ret;
1306 }
1307 
1308 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1309 {
1310 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1311 	u32 event = its_get_event_id(d);
1312 	int ret = 0;
1313 
1314 	mutex_lock(&its_dev->event_map.vlpi_lock);
1315 
1316 	if (!its_dev->event_map.vm ||
1317 	    !its_dev->event_map.vlpi_maps[event].vm) {
1318 		ret = -EINVAL;
1319 		goto out;
1320 	}
1321 
1322 	/* Copy our mapping information to the incoming request */
1323 	*info->map = its_dev->event_map.vlpi_maps[event];
1324 
1325 out:
1326 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1327 	return ret;
1328 }
1329 
1330 static int its_vlpi_unmap(struct irq_data *d)
1331 {
1332 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1333 	u32 event = its_get_event_id(d);
1334 	int ret = 0;
1335 
1336 	mutex_lock(&its_dev->event_map.vlpi_lock);
1337 
1338 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1339 		ret = -EINVAL;
1340 		goto out;
1341 	}
1342 
1343 	/* Drop the virtual mapping */
1344 	its_send_discard(its_dev, event);
1345 
1346 	/* and restore the physical one */
1347 	irqd_clr_forwarded_to_vcpu(d);
1348 	its_send_mapti(its_dev, d->hwirq, event);
1349 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1350 				    LPI_PROP_ENABLED |
1351 				    LPI_PROP_GROUP1));
1352 
1353 	/* Potentially unmap the VM from this ITS */
1354 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1355 
1356 	/*
1357 	 * Drop the refcount and make the device available again if
1358 	 * this was the last VLPI.
1359 	 */
1360 	if (!--its_dev->event_map.nr_vlpis) {
1361 		its_dev->event_map.vm = NULL;
1362 		kfree(its_dev->event_map.vlpi_maps);
1363 	}
1364 
1365 out:
1366 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1367 	return ret;
1368 }
1369 
1370 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1371 {
1372 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1373 
1374 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1375 		return -EINVAL;
1376 
1377 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1378 		lpi_update_config(d, 0xff, info->config);
1379 	else
1380 		lpi_write_config(d, 0xff, info->config);
1381 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1382 
1383 	return 0;
1384 }
1385 
1386 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1387 {
1388 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1389 	struct its_cmd_info *info = vcpu_info;
1390 
1391 	/* Need a v4 ITS */
1392 	if (!its_dev->its->is_v4)
1393 		return -EINVAL;
1394 
1395 	/* Unmap request? */
1396 	if (!info)
1397 		return its_vlpi_unmap(d);
1398 
1399 	switch (info->cmd_type) {
1400 	case MAP_VLPI:
1401 		return its_vlpi_map(d, info);
1402 
1403 	case GET_VLPI:
1404 		return its_vlpi_get(d, info);
1405 
1406 	case PROP_UPDATE_VLPI:
1407 	case PROP_UPDATE_AND_INV_VLPI:
1408 		return its_vlpi_prop_update(d, info);
1409 
1410 	default:
1411 		return -EINVAL;
1412 	}
1413 }
1414 
1415 static struct irq_chip its_irq_chip = {
1416 	.name			= "ITS",
1417 	.irq_mask		= its_mask_irq,
1418 	.irq_unmask		= its_unmask_irq,
1419 	.irq_eoi		= irq_chip_eoi_parent,
1420 	.irq_set_affinity	= its_set_affinity,
1421 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1422 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1423 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1424 };
1425 
1426 
1427 /*
1428  * How we allocate LPIs:
1429  *
1430  * lpi_range_list contains ranges of LPIs that are to available to
1431  * allocate from. To allocate LPIs, just pick the first range that
1432  * fits the required allocation, and reduce it by the required
1433  * amount. Once empty, remove the range from the list.
1434  *
1435  * To free a range of LPIs, add a free range to the list, sort it and
1436  * merge the result if the new range happens to be adjacent to an
1437  * already free block.
1438  *
1439  * The consequence of the above is that allocation is cost is low, but
1440  * freeing is expensive. We assumes that freeing rarely occurs.
1441  */
1442 
1443 static DEFINE_MUTEX(lpi_range_lock);
1444 static LIST_HEAD(lpi_range_list);
1445 
1446 struct lpi_range {
1447 	struct list_head	entry;
1448 	u32			base_id;
1449 	u32			span;
1450 };
1451 
1452 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1453 {
1454 	struct lpi_range *range;
1455 
1456 	range = kzalloc(sizeof(*range), GFP_KERNEL);
1457 	if (range) {
1458 		INIT_LIST_HEAD(&range->entry);
1459 		range->base_id = base;
1460 		range->span = span;
1461 	}
1462 
1463 	return range;
1464 }
1465 
1466 static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b)
1467 {
1468 	struct lpi_range *ra, *rb;
1469 
1470 	ra = container_of(a, struct lpi_range, entry);
1471 	rb = container_of(b, struct lpi_range, entry);
1472 
1473 	return rb->base_id - ra->base_id;
1474 }
1475 
1476 static void merge_lpi_ranges(void)
1477 {
1478 	struct lpi_range *range, *tmp;
1479 
1480 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1481 		if (!list_is_last(&range->entry, &lpi_range_list) &&
1482 		    (tmp->base_id == (range->base_id + range->span))) {
1483 			tmp->base_id = range->base_id;
1484 			tmp->span += range->span;
1485 			list_del(&range->entry);
1486 			kfree(range);
1487 		}
1488 	}
1489 }
1490 
1491 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1492 {
1493 	struct lpi_range *range, *tmp;
1494 	int err = -ENOSPC;
1495 
1496 	mutex_lock(&lpi_range_lock);
1497 
1498 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1499 		if (range->span >= nr_lpis) {
1500 			*base = range->base_id;
1501 			range->base_id += nr_lpis;
1502 			range->span -= nr_lpis;
1503 
1504 			if (range->span == 0) {
1505 				list_del(&range->entry);
1506 				kfree(range);
1507 			}
1508 
1509 			err = 0;
1510 			break;
1511 		}
1512 	}
1513 
1514 	mutex_unlock(&lpi_range_lock);
1515 
1516 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1517 	return err;
1518 }
1519 
1520 static int free_lpi_range(u32 base, u32 nr_lpis)
1521 {
1522 	struct lpi_range *new;
1523 	int err = 0;
1524 
1525 	mutex_lock(&lpi_range_lock);
1526 
1527 	new = mk_lpi_range(base, nr_lpis);
1528 	if (!new) {
1529 		err = -ENOMEM;
1530 		goto out;
1531 	}
1532 
1533 	list_add(&new->entry, &lpi_range_list);
1534 	list_sort(NULL, &lpi_range_list, lpi_range_cmp);
1535 	merge_lpi_ranges();
1536 out:
1537 	mutex_unlock(&lpi_range_lock);
1538 	return err;
1539 }
1540 
1541 static int __init its_lpi_init(u32 id_bits)
1542 {
1543 	u32 lpis = (1UL << id_bits) - 8192;
1544 	u32 numlpis;
1545 	int err;
1546 
1547 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1548 
1549 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1550 		lpis = numlpis;
1551 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1552 			lpis);
1553 	}
1554 
1555 	/*
1556 	 * Initializing the allocator is just the same as freeing the
1557 	 * full range of LPIs.
1558 	 */
1559 	err = free_lpi_range(8192, lpis);
1560 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1561 	return err;
1562 }
1563 
1564 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1565 {
1566 	unsigned long *bitmap = NULL;
1567 	int err = 0;
1568 
1569 	do {
1570 		err = alloc_lpi_range(nr_irqs, base);
1571 		if (!err)
1572 			break;
1573 
1574 		nr_irqs /= 2;
1575 	} while (nr_irqs > 0);
1576 
1577 	if (err)
1578 		goto out;
1579 
1580 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1581 	if (!bitmap)
1582 		goto out;
1583 
1584 	*nr_ids = nr_irqs;
1585 
1586 out:
1587 	if (!bitmap)
1588 		*base = *nr_ids = 0;
1589 
1590 	return bitmap;
1591 }
1592 
1593 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1594 {
1595 	WARN_ON(free_lpi_range(base, nr_ids));
1596 	kfree(bitmap);
1597 }
1598 
1599 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1600 {
1601 	struct page *prop_page;
1602 
1603 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1604 	if (!prop_page)
1605 		return NULL;
1606 
1607 	/* Priority 0xa0, Group-1, disabled */
1608 	memset(page_address(prop_page),
1609 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1610 	       LPI_PROPBASE_SZ);
1611 
1612 	/* Make sure the GIC will observe the written configuration */
1613 	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1614 
1615 	return prop_page;
1616 }
1617 
1618 static void its_free_prop_table(struct page *prop_page)
1619 {
1620 	free_pages((unsigned long)page_address(prop_page),
1621 		   get_order(LPI_PROPBASE_SZ));
1622 }
1623 
1624 static int __init its_alloc_lpi_tables(void)
1625 {
1626 	phys_addr_t paddr;
1627 
1628 	lpi_id_bits = GICD_TYPER_ID_BITS(gic_rdists->gicd_typer);
1629 	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1630 	if (!gic_rdists->prop_page) {
1631 		pr_err("Failed to allocate PROPBASE\n");
1632 		return -ENOMEM;
1633 	}
1634 
1635 	paddr = page_to_phys(gic_rdists->prop_page);
1636 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
1637 
1638 	return its_lpi_init(lpi_id_bits);
1639 }
1640 
1641 static const char *its_base_type_string[] = {
1642 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1643 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1644 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1645 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1646 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1647 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1648 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1649 };
1650 
1651 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1652 {
1653 	u32 idx = baser - its->tables;
1654 
1655 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1656 }
1657 
1658 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1659 			    u64 val)
1660 {
1661 	u32 idx = baser - its->tables;
1662 
1663 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1664 	baser->val = its_read_baser(its, baser);
1665 }
1666 
1667 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1668 			   u64 cache, u64 shr, u32 psz, u32 order,
1669 			   bool indirect)
1670 {
1671 	u64 val = its_read_baser(its, baser);
1672 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1673 	u64 type = GITS_BASER_TYPE(val);
1674 	u64 baser_phys, tmp;
1675 	u32 alloc_pages;
1676 	void *base;
1677 
1678 retry_alloc_baser:
1679 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1680 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1681 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1682 			&its->phys_base, its_base_type_string[type],
1683 			alloc_pages, GITS_BASER_PAGES_MAX);
1684 		alloc_pages = GITS_BASER_PAGES_MAX;
1685 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1686 	}
1687 
1688 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1689 	if (!base)
1690 		return -ENOMEM;
1691 
1692 	baser_phys = virt_to_phys(base);
1693 
1694 	/* Check if the physical address of the memory is above 48bits */
1695 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1696 
1697 		/* 52bit PA is supported only when PageSize=64K */
1698 		if (psz != SZ_64K) {
1699 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1700 			free_pages((unsigned long)base, order);
1701 			return -ENXIO;
1702 		}
1703 
1704 		/* Convert 52bit PA to 48bit field */
1705 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1706 	}
1707 
1708 retry_baser:
1709 	val = (baser_phys					 |
1710 		(type << GITS_BASER_TYPE_SHIFT)			 |
1711 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1712 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1713 		cache						 |
1714 		shr						 |
1715 		GITS_BASER_VALID);
1716 
1717 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1718 
1719 	switch (psz) {
1720 	case SZ_4K:
1721 		val |= GITS_BASER_PAGE_SIZE_4K;
1722 		break;
1723 	case SZ_16K:
1724 		val |= GITS_BASER_PAGE_SIZE_16K;
1725 		break;
1726 	case SZ_64K:
1727 		val |= GITS_BASER_PAGE_SIZE_64K;
1728 		break;
1729 	}
1730 
1731 	its_write_baser(its, baser, val);
1732 	tmp = baser->val;
1733 
1734 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1735 		/*
1736 		 * Shareability didn't stick. Just use
1737 		 * whatever the read reported, which is likely
1738 		 * to be the only thing this redistributor
1739 		 * supports. If that's zero, make it
1740 		 * non-cacheable as well.
1741 		 */
1742 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1743 		if (!shr) {
1744 			cache = GITS_BASER_nC;
1745 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1746 		}
1747 		goto retry_baser;
1748 	}
1749 
1750 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1751 		/*
1752 		 * Page size didn't stick. Let's try a smaller
1753 		 * size and retry. If we reach 4K, then
1754 		 * something is horribly wrong...
1755 		 */
1756 		free_pages((unsigned long)base, order);
1757 		baser->base = NULL;
1758 
1759 		switch (psz) {
1760 		case SZ_16K:
1761 			psz = SZ_4K;
1762 			goto retry_alloc_baser;
1763 		case SZ_64K:
1764 			psz = SZ_16K;
1765 			goto retry_alloc_baser;
1766 		}
1767 	}
1768 
1769 	if (val != tmp) {
1770 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1771 		       &its->phys_base, its_base_type_string[type],
1772 		       val, tmp);
1773 		free_pages((unsigned long)base, order);
1774 		return -ENXIO;
1775 	}
1776 
1777 	baser->order = order;
1778 	baser->base = base;
1779 	baser->psz = psz;
1780 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1781 
1782 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1783 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1784 		its_base_type_string[type],
1785 		(unsigned long)virt_to_phys(base),
1786 		indirect ? "indirect" : "flat", (int)esz,
1787 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1788 
1789 	return 0;
1790 }
1791 
1792 static bool its_parse_indirect_baser(struct its_node *its,
1793 				     struct its_baser *baser,
1794 				     u32 psz, u32 *order, u32 ids)
1795 {
1796 	u64 tmp = its_read_baser(its, baser);
1797 	u64 type = GITS_BASER_TYPE(tmp);
1798 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1799 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1800 	u32 new_order = *order;
1801 	bool indirect = false;
1802 
1803 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1804 	if ((esz << ids) > (psz * 2)) {
1805 		/*
1806 		 * Find out whether hw supports a single or two-level table by
1807 		 * table by reading bit at offset '62' after writing '1' to it.
1808 		 */
1809 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1810 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1811 
1812 		if (indirect) {
1813 			/*
1814 			 * The size of the lvl2 table is equal to ITS page size
1815 			 * which is 'psz'. For computing lvl1 table size,
1816 			 * subtract ID bits that sparse lvl2 table from 'ids'
1817 			 * which is reported by ITS hardware times lvl1 table
1818 			 * entry size.
1819 			 */
1820 			ids -= ilog2(psz / (int)esz);
1821 			esz = GITS_LVL1_ENTRY_SIZE;
1822 		}
1823 	}
1824 
1825 	/*
1826 	 * Allocate as many entries as required to fit the
1827 	 * range of device IDs that the ITS can grok... The ID
1828 	 * space being incredibly sparse, this results in a
1829 	 * massive waste of memory if two-level device table
1830 	 * feature is not supported by hardware.
1831 	 */
1832 	new_order = max_t(u32, get_order(esz << ids), new_order);
1833 	if (new_order >= MAX_ORDER) {
1834 		new_order = MAX_ORDER - 1;
1835 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1836 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1837 			&its->phys_base, its_base_type_string[type],
1838 			its->device_ids, ids);
1839 	}
1840 
1841 	*order = new_order;
1842 
1843 	return indirect;
1844 }
1845 
1846 static void its_free_tables(struct its_node *its)
1847 {
1848 	int i;
1849 
1850 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1851 		if (its->tables[i].base) {
1852 			free_pages((unsigned long)its->tables[i].base,
1853 				   its->tables[i].order);
1854 			its->tables[i].base = NULL;
1855 		}
1856 	}
1857 }
1858 
1859 static int its_alloc_tables(struct its_node *its)
1860 {
1861 	u64 shr = GITS_BASER_InnerShareable;
1862 	u64 cache = GITS_BASER_RaWaWb;
1863 	u32 psz = SZ_64K;
1864 	int err, i;
1865 
1866 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1867 		/* erratum 24313: ignore memory access type */
1868 		cache = GITS_BASER_nCnB;
1869 
1870 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1871 		struct its_baser *baser = its->tables + i;
1872 		u64 val = its_read_baser(its, baser);
1873 		u64 type = GITS_BASER_TYPE(val);
1874 		u32 order = get_order(psz);
1875 		bool indirect = false;
1876 
1877 		switch (type) {
1878 		case GITS_BASER_TYPE_NONE:
1879 			continue;
1880 
1881 		case GITS_BASER_TYPE_DEVICE:
1882 			indirect = its_parse_indirect_baser(its, baser,
1883 							    psz, &order,
1884 							    its->device_ids);
1885 		case GITS_BASER_TYPE_VCPU:
1886 			indirect = its_parse_indirect_baser(its, baser,
1887 							    psz, &order,
1888 							    ITS_MAX_VPEID_BITS);
1889 			break;
1890 		}
1891 
1892 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1893 		if (err < 0) {
1894 			its_free_tables(its);
1895 			return err;
1896 		}
1897 
1898 		/* Update settings which will be used for next BASERn */
1899 		psz = baser->psz;
1900 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1901 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 static int its_alloc_collections(struct its_node *its)
1908 {
1909 	int i;
1910 
1911 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1912 				   GFP_KERNEL);
1913 	if (!its->collections)
1914 		return -ENOMEM;
1915 
1916 	for (i = 0; i < nr_cpu_ids; i++)
1917 		its->collections[i].target_address = ~0ULL;
1918 
1919 	return 0;
1920 }
1921 
1922 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1923 {
1924 	struct page *pend_page;
1925 	/*
1926 	 * The pending pages have to be at least 64kB aligned,
1927 	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1928 	 */
1929 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1930 				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1931 	if (!pend_page)
1932 		return NULL;
1933 
1934 	/* Make sure the GIC will observe the zero-ed page */
1935 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1936 
1937 	return pend_page;
1938 }
1939 
1940 static void its_free_pending_table(struct page *pt)
1941 {
1942 	free_pages((unsigned long)page_address(pt),
1943 		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1944 }
1945 
1946 static void its_cpu_init_lpis(void)
1947 {
1948 	void __iomem *rbase = gic_data_rdist_rd_base();
1949 	struct page *pend_page;
1950 	u64 val, tmp;
1951 
1952 	/* If we didn't allocate the pending table yet, do it now */
1953 	pend_page = gic_data_rdist()->pend_page;
1954 	if (!pend_page) {
1955 		phys_addr_t paddr;
1956 
1957 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
1958 		if (!pend_page) {
1959 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1960 			       smp_processor_id());
1961 			return;
1962 		}
1963 
1964 		paddr = page_to_phys(pend_page);
1965 		pr_info("CPU%d: using LPI pending table @%pa\n",
1966 			smp_processor_id(), &paddr);
1967 		gic_data_rdist()->pend_page = pend_page;
1968 	}
1969 
1970 	/* set PROPBASE */
1971 	val = (page_to_phys(gic_rdists->prop_page) |
1972 	       GICR_PROPBASER_InnerShareable |
1973 	       GICR_PROPBASER_RaWaWb |
1974 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1975 
1976 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1977 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1978 
1979 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1980 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1981 			/*
1982 			 * The HW reports non-shareable, we must
1983 			 * remove the cacheability attributes as
1984 			 * well.
1985 			 */
1986 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1987 				 GICR_PROPBASER_CACHEABILITY_MASK);
1988 			val |= GICR_PROPBASER_nC;
1989 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1990 		}
1991 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1992 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1993 	}
1994 
1995 	/* set PENDBASE */
1996 	val = (page_to_phys(pend_page) |
1997 	       GICR_PENDBASER_InnerShareable |
1998 	       GICR_PENDBASER_RaWaWb);
1999 
2000 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2001 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2002 
2003 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2004 		/*
2005 		 * The HW reports non-shareable, we must remove the
2006 		 * cacheability attributes as well.
2007 		 */
2008 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2009 			 GICR_PENDBASER_CACHEABILITY_MASK);
2010 		val |= GICR_PENDBASER_nC;
2011 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2012 	}
2013 
2014 	/* Enable LPIs */
2015 	val = readl_relaxed(rbase + GICR_CTLR);
2016 	val |= GICR_CTLR_ENABLE_LPIS;
2017 	writel_relaxed(val, rbase + GICR_CTLR);
2018 
2019 	/* Make sure the GIC has seen the above */
2020 	dsb(sy);
2021 }
2022 
2023 static void its_cpu_init_collection(struct its_node *its)
2024 {
2025 	int cpu = smp_processor_id();
2026 	u64 target;
2027 
2028 	/* avoid cross node collections and its mapping */
2029 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2030 		struct device_node *cpu_node;
2031 
2032 		cpu_node = of_get_cpu_node(cpu, NULL);
2033 		if (its->numa_node != NUMA_NO_NODE &&
2034 			its->numa_node != of_node_to_nid(cpu_node))
2035 			return;
2036 	}
2037 
2038 	/*
2039 	 * We now have to bind each collection to its target
2040 	 * redistributor.
2041 	 */
2042 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2043 		/*
2044 		 * This ITS wants the physical address of the
2045 		 * redistributor.
2046 		 */
2047 		target = gic_data_rdist()->phys_base;
2048 	} else {
2049 		/* This ITS wants a linear CPU number. */
2050 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2051 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2052 	}
2053 
2054 	/* Perform collection mapping */
2055 	its->collections[cpu].target_address = target;
2056 	its->collections[cpu].col_id = cpu;
2057 
2058 	its_send_mapc(its, &its->collections[cpu], 1);
2059 	its_send_invall(its, &its->collections[cpu]);
2060 }
2061 
2062 static void its_cpu_init_collections(void)
2063 {
2064 	struct its_node *its;
2065 
2066 	raw_spin_lock(&its_lock);
2067 
2068 	list_for_each_entry(its, &its_nodes, entry)
2069 		its_cpu_init_collection(its);
2070 
2071 	raw_spin_unlock(&its_lock);
2072 }
2073 
2074 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2075 {
2076 	struct its_device *its_dev = NULL, *tmp;
2077 	unsigned long flags;
2078 
2079 	raw_spin_lock_irqsave(&its->lock, flags);
2080 
2081 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2082 		if (tmp->device_id == dev_id) {
2083 			its_dev = tmp;
2084 			break;
2085 		}
2086 	}
2087 
2088 	raw_spin_unlock_irqrestore(&its->lock, flags);
2089 
2090 	return its_dev;
2091 }
2092 
2093 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2094 {
2095 	int i;
2096 
2097 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2098 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2099 			return &its->tables[i];
2100 	}
2101 
2102 	return NULL;
2103 }
2104 
2105 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2106 {
2107 	struct page *page;
2108 	u32 esz, idx;
2109 	__le64 *table;
2110 
2111 	/* Don't allow device id that exceeds single, flat table limit */
2112 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2113 	if (!(baser->val & GITS_BASER_INDIRECT))
2114 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2115 
2116 	/* Compute 1st level table index & check if that exceeds table limit */
2117 	idx = id >> ilog2(baser->psz / esz);
2118 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2119 		return false;
2120 
2121 	table = baser->base;
2122 
2123 	/* Allocate memory for 2nd level table */
2124 	if (!table[idx]) {
2125 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2126 		if (!page)
2127 			return false;
2128 
2129 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2130 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2131 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2132 
2133 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2134 
2135 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2136 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2137 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2138 
2139 		/* Ensure updated table contents are visible to ITS hardware */
2140 		dsb(sy);
2141 	}
2142 
2143 	return true;
2144 }
2145 
2146 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2147 {
2148 	struct its_baser *baser;
2149 
2150 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2151 
2152 	/* Don't allow device id that exceeds ITS hardware limit */
2153 	if (!baser)
2154 		return (ilog2(dev_id) < its->device_ids);
2155 
2156 	return its_alloc_table_entry(baser, dev_id);
2157 }
2158 
2159 static bool its_alloc_vpe_table(u32 vpe_id)
2160 {
2161 	struct its_node *its;
2162 
2163 	/*
2164 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2165 	 * could try and only do it on ITSs corresponding to devices
2166 	 * that have interrupts targeted at this VPE, but the
2167 	 * complexity becomes crazy (and you have tons of memory
2168 	 * anyway, right?).
2169 	 */
2170 	list_for_each_entry(its, &its_nodes, entry) {
2171 		struct its_baser *baser;
2172 
2173 		if (!its->is_v4)
2174 			continue;
2175 
2176 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2177 		if (!baser)
2178 			return false;
2179 
2180 		if (!its_alloc_table_entry(baser, vpe_id))
2181 			return false;
2182 	}
2183 
2184 	return true;
2185 }
2186 
2187 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2188 					    int nvecs, bool alloc_lpis)
2189 {
2190 	struct its_device *dev;
2191 	unsigned long *lpi_map = NULL;
2192 	unsigned long flags;
2193 	u16 *col_map = NULL;
2194 	void *itt;
2195 	int lpi_base;
2196 	int nr_lpis;
2197 	int nr_ites;
2198 	int sz;
2199 
2200 	if (!its_alloc_device_table(its, dev_id))
2201 		return NULL;
2202 
2203 	if (WARN_ON(!is_power_of_2(nvecs)))
2204 		nvecs = roundup_pow_of_two(nvecs);
2205 
2206 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2207 	/*
2208 	 * Even if the device wants a single LPI, the ITT must be
2209 	 * sized as a power of two (and you need at least one bit...).
2210 	 */
2211 	nr_ites = max(2, nvecs);
2212 	sz = nr_ites * its->ite_size;
2213 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2214 	itt = kzalloc(sz, GFP_KERNEL);
2215 	if (alloc_lpis) {
2216 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2217 		if (lpi_map)
2218 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2219 					  GFP_KERNEL);
2220 	} else {
2221 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2222 		nr_lpis = 0;
2223 		lpi_base = 0;
2224 	}
2225 
2226 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2227 		kfree(dev);
2228 		kfree(itt);
2229 		kfree(lpi_map);
2230 		kfree(col_map);
2231 		return NULL;
2232 	}
2233 
2234 	gic_flush_dcache_to_poc(itt, sz);
2235 
2236 	dev->its = its;
2237 	dev->itt = itt;
2238 	dev->nr_ites = nr_ites;
2239 	dev->event_map.lpi_map = lpi_map;
2240 	dev->event_map.col_map = col_map;
2241 	dev->event_map.lpi_base = lpi_base;
2242 	dev->event_map.nr_lpis = nr_lpis;
2243 	mutex_init(&dev->event_map.vlpi_lock);
2244 	dev->device_id = dev_id;
2245 	INIT_LIST_HEAD(&dev->entry);
2246 
2247 	raw_spin_lock_irqsave(&its->lock, flags);
2248 	list_add(&dev->entry, &its->its_device_list);
2249 	raw_spin_unlock_irqrestore(&its->lock, flags);
2250 
2251 	/* Map device to its ITT */
2252 	its_send_mapd(dev, 1);
2253 
2254 	return dev;
2255 }
2256 
2257 static void its_free_device(struct its_device *its_dev)
2258 {
2259 	unsigned long flags;
2260 
2261 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2262 	list_del(&its_dev->entry);
2263 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2264 	kfree(its_dev->itt);
2265 	kfree(its_dev);
2266 }
2267 
2268 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2269 {
2270 	int idx;
2271 
2272 	idx = find_first_zero_bit(dev->event_map.lpi_map,
2273 				  dev->event_map.nr_lpis);
2274 	if (idx == dev->event_map.nr_lpis)
2275 		return -ENOSPC;
2276 
2277 	*hwirq = dev->event_map.lpi_base + idx;
2278 	set_bit(idx, dev->event_map.lpi_map);
2279 
2280 	return 0;
2281 }
2282 
2283 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2284 			   int nvec, msi_alloc_info_t *info)
2285 {
2286 	struct its_node *its;
2287 	struct its_device *its_dev;
2288 	struct msi_domain_info *msi_info;
2289 	u32 dev_id;
2290 
2291 	/*
2292 	 * We ignore "dev" entierely, and rely on the dev_id that has
2293 	 * been passed via the scratchpad. This limits this domain's
2294 	 * usefulness to upper layers that definitely know that they
2295 	 * are built on top of the ITS.
2296 	 */
2297 	dev_id = info->scratchpad[0].ul;
2298 
2299 	msi_info = msi_get_domain_info(domain);
2300 	its = msi_info->data;
2301 
2302 	if (!gic_rdists->has_direct_lpi &&
2303 	    vpe_proxy.dev &&
2304 	    vpe_proxy.dev->its == its &&
2305 	    dev_id == vpe_proxy.dev->device_id) {
2306 		/* Bad luck. Get yourself a better implementation */
2307 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2308 			  dev_id);
2309 		return -EINVAL;
2310 	}
2311 
2312 	its_dev = its_find_device(its, dev_id);
2313 	if (its_dev) {
2314 		/*
2315 		 * We already have seen this ID, probably through
2316 		 * another alias (PCI bridge of some sort). No need to
2317 		 * create the device.
2318 		 */
2319 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2320 		goto out;
2321 	}
2322 
2323 	its_dev = its_create_device(its, dev_id, nvec, true);
2324 	if (!its_dev)
2325 		return -ENOMEM;
2326 
2327 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2328 out:
2329 	info->scratchpad[0].ptr = its_dev;
2330 	return 0;
2331 }
2332 
2333 static struct msi_domain_ops its_msi_domain_ops = {
2334 	.msi_prepare	= its_msi_prepare,
2335 };
2336 
2337 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2338 				    unsigned int virq,
2339 				    irq_hw_number_t hwirq)
2340 {
2341 	struct irq_fwspec fwspec;
2342 
2343 	if (irq_domain_get_of_node(domain->parent)) {
2344 		fwspec.fwnode = domain->parent->fwnode;
2345 		fwspec.param_count = 3;
2346 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2347 		fwspec.param[1] = hwirq;
2348 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2349 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2350 		fwspec.fwnode = domain->parent->fwnode;
2351 		fwspec.param_count = 2;
2352 		fwspec.param[0] = hwirq;
2353 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2354 	} else {
2355 		return -EINVAL;
2356 	}
2357 
2358 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2359 }
2360 
2361 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2362 				unsigned int nr_irqs, void *args)
2363 {
2364 	msi_alloc_info_t *info = args;
2365 	struct its_device *its_dev = info->scratchpad[0].ptr;
2366 	irq_hw_number_t hwirq;
2367 	int err;
2368 	int i;
2369 
2370 	for (i = 0; i < nr_irqs; i++) {
2371 		err = its_alloc_device_irq(its_dev, &hwirq);
2372 		if (err)
2373 			return err;
2374 
2375 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2376 		if (err)
2377 			return err;
2378 
2379 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2380 					      hwirq, &its_irq_chip, its_dev);
2381 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2382 		pr_debug("ID:%d pID:%d vID:%d\n",
2383 			 (int)(hwirq - its_dev->event_map.lpi_base),
2384 			 (int) hwirq, virq + i);
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 static int its_irq_domain_activate(struct irq_domain *domain,
2391 				   struct irq_data *d, bool reserve)
2392 {
2393 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2394 	u32 event = its_get_event_id(d);
2395 	const struct cpumask *cpu_mask = cpu_online_mask;
2396 	int cpu;
2397 
2398 	/* get the cpu_mask of local node */
2399 	if (its_dev->its->numa_node >= 0)
2400 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2401 
2402 	/* Bind the LPI to the first possible CPU */
2403 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2404 	if (cpu >= nr_cpu_ids) {
2405 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2406 			return -EINVAL;
2407 
2408 		cpu = cpumask_first(cpu_online_mask);
2409 	}
2410 
2411 	its_dev->event_map.col_map[event] = cpu;
2412 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2413 
2414 	/* Map the GIC IRQ and event to the device */
2415 	its_send_mapti(its_dev, d->hwirq, event);
2416 	return 0;
2417 }
2418 
2419 static void its_irq_domain_deactivate(struct irq_domain *domain,
2420 				      struct irq_data *d)
2421 {
2422 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2423 	u32 event = its_get_event_id(d);
2424 
2425 	/* Stop the delivery of interrupts */
2426 	its_send_discard(its_dev, event);
2427 }
2428 
2429 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2430 				unsigned int nr_irqs)
2431 {
2432 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2433 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2434 	int i;
2435 
2436 	for (i = 0; i < nr_irqs; i++) {
2437 		struct irq_data *data = irq_domain_get_irq_data(domain,
2438 								virq + i);
2439 		u32 event = its_get_event_id(data);
2440 
2441 		/* Mark interrupt index as unused */
2442 		clear_bit(event, its_dev->event_map.lpi_map);
2443 
2444 		/* Nuke the entry in the domain */
2445 		irq_domain_reset_irq_data(data);
2446 	}
2447 
2448 	/* If all interrupts have been freed, start mopping the floor */
2449 	if (bitmap_empty(its_dev->event_map.lpi_map,
2450 			 its_dev->event_map.nr_lpis)) {
2451 		its_lpi_free(its_dev->event_map.lpi_map,
2452 			     its_dev->event_map.lpi_base,
2453 			     its_dev->event_map.nr_lpis);
2454 		kfree(its_dev->event_map.col_map);
2455 
2456 		/* Unmap device/itt */
2457 		its_send_mapd(its_dev, 0);
2458 		its_free_device(its_dev);
2459 	}
2460 
2461 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2462 }
2463 
2464 static const struct irq_domain_ops its_domain_ops = {
2465 	.alloc			= its_irq_domain_alloc,
2466 	.free			= its_irq_domain_free,
2467 	.activate		= its_irq_domain_activate,
2468 	.deactivate		= its_irq_domain_deactivate,
2469 };
2470 
2471 /*
2472  * This is insane.
2473  *
2474  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2475  * likely), the only way to perform an invalidate is to use a fake
2476  * device to issue an INV command, implying that the LPI has first
2477  * been mapped to some event on that device. Since this is not exactly
2478  * cheap, we try to keep that mapping around as long as possible, and
2479  * only issue an UNMAP if we're short on available slots.
2480  *
2481  * Broken by design(tm).
2482  */
2483 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2484 {
2485 	/* Already unmapped? */
2486 	if (vpe->vpe_proxy_event == -1)
2487 		return;
2488 
2489 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2490 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2491 
2492 	/*
2493 	 * We don't track empty slots at all, so let's move the
2494 	 * next_victim pointer if we can quickly reuse that slot
2495 	 * instead of nuking an existing entry. Not clear that this is
2496 	 * always a win though, and this might just generate a ripple
2497 	 * effect... Let's just hope VPEs don't migrate too often.
2498 	 */
2499 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2500 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2501 
2502 	vpe->vpe_proxy_event = -1;
2503 }
2504 
2505 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2506 {
2507 	if (!gic_rdists->has_direct_lpi) {
2508 		unsigned long flags;
2509 
2510 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2511 		its_vpe_db_proxy_unmap_locked(vpe);
2512 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2513 	}
2514 }
2515 
2516 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2517 {
2518 	/* Already mapped? */
2519 	if (vpe->vpe_proxy_event != -1)
2520 		return;
2521 
2522 	/* This slot was already allocated. Kick the other VPE out. */
2523 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2524 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2525 
2526 	/* Map the new VPE instead */
2527 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2528 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2529 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2530 
2531 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2532 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2533 }
2534 
2535 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2536 {
2537 	unsigned long flags;
2538 	struct its_collection *target_col;
2539 
2540 	if (gic_rdists->has_direct_lpi) {
2541 		void __iomem *rdbase;
2542 
2543 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2544 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2545 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2546 			cpu_relax();
2547 
2548 		return;
2549 	}
2550 
2551 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2552 
2553 	its_vpe_db_proxy_map_locked(vpe);
2554 
2555 	target_col = &vpe_proxy.dev->its->collections[to];
2556 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2557 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2558 
2559 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2560 }
2561 
2562 static int its_vpe_set_affinity(struct irq_data *d,
2563 				const struct cpumask *mask_val,
2564 				bool force)
2565 {
2566 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2567 	int cpu = cpumask_first(mask_val);
2568 
2569 	/*
2570 	 * Changing affinity is mega expensive, so let's be as lazy as
2571 	 * we can and only do it if we really have to. Also, if mapped
2572 	 * into the proxy device, we need to move the doorbell
2573 	 * interrupt to its new location.
2574 	 */
2575 	if (vpe->col_idx != cpu) {
2576 		int from = vpe->col_idx;
2577 
2578 		vpe->col_idx = cpu;
2579 		its_send_vmovp(vpe);
2580 		its_vpe_db_proxy_move(vpe, from, cpu);
2581 	}
2582 
2583 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2584 
2585 	return IRQ_SET_MASK_OK_DONE;
2586 }
2587 
2588 static void its_vpe_schedule(struct its_vpe *vpe)
2589 {
2590 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2591 	u64 val;
2592 
2593 	/* Schedule the VPE */
2594 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2595 		GENMASK_ULL(51, 12);
2596 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2597 	val |= GICR_VPROPBASER_RaWb;
2598 	val |= GICR_VPROPBASER_InnerShareable;
2599 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2600 
2601 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2602 		GENMASK_ULL(51, 16);
2603 	val |= GICR_VPENDBASER_RaWaWb;
2604 	val |= GICR_VPENDBASER_NonShareable;
2605 	/*
2606 	 * There is no good way of finding out if the pending table is
2607 	 * empty as we can race against the doorbell interrupt very
2608 	 * easily. So in the end, vpe->pending_last is only an
2609 	 * indication that the vcpu has something pending, not one
2610 	 * that the pending table is empty. A good implementation
2611 	 * would be able to read its coarse map pretty quickly anyway,
2612 	 * making this a tolerable issue.
2613 	 */
2614 	val |= GICR_VPENDBASER_PendingLast;
2615 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2616 	val |= GICR_VPENDBASER_Valid;
2617 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2618 }
2619 
2620 static void its_vpe_deschedule(struct its_vpe *vpe)
2621 {
2622 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2623 	u32 count = 1000000;	/* 1s! */
2624 	bool clean;
2625 	u64 val;
2626 
2627 	/* We're being scheduled out */
2628 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2629 	val &= ~GICR_VPENDBASER_Valid;
2630 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2631 
2632 	do {
2633 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2634 		clean = !(val & GICR_VPENDBASER_Dirty);
2635 		if (!clean) {
2636 			count--;
2637 			cpu_relax();
2638 			udelay(1);
2639 		}
2640 	} while (!clean && count);
2641 
2642 	if (unlikely(!clean && !count)) {
2643 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2644 		vpe->idai = false;
2645 		vpe->pending_last = true;
2646 	} else {
2647 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2648 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2649 	}
2650 }
2651 
2652 static void its_vpe_invall(struct its_vpe *vpe)
2653 {
2654 	struct its_node *its;
2655 
2656 	list_for_each_entry(its, &its_nodes, entry) {
2657 		if (!its->is_v4)
2658 			continue;
2659 
2660 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2661 			continue;
2662 
2663 		/*
2664 		 * Sending a VINVALL to a single ITS is enough, as all
2665 		 * we need is to reach the redistributors.
2666 		 */
2667 		its_send_vinvall(its, vpe);
2668 		return;
2669 	}
2670 }
2671 
2672 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2673 {
2674 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2675 	struct its_cmd_info *info = vcpu_info;
2676 
2677 	switch (info->cmd_type) {
2678 	case SCHEDULE_VPE:
2679 		its_vpe_schedule(vpe);
2680 		return 0;
2681 
2682 	case DESCHEDULE_VPE:
2683 		its_vpe_deschedule(vpe);
2684 		return 0;
2685 
2686 	case INVALL_VPE:
2687 		its_vpe_invall(vpe);
2688 		return 0;
2689 
2690 	default:
2691 		return -EINVAL;
2692 	}
2693 }
2694 
2695 static void its_vpe_send_cmd(struct its_vpe *vpe,
2696 			     void (*cmd)(struct its_device *, u32))
2697 {
2698 	unsigned long flags;
2699 
2700 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2701 
2702 	its_vpe_db_proxy_map_locked(vpe);
2703 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2704 
2705 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2706 }
2707 
2708 static void its_vpe_send_inv(struct irq_data *d)
2709 {
2710 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2711 
2712 	if (gic_rdists->has_direct_lpi) {
2713 		void __iomem *rdbase;
2714 
2715 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2716 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2717 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2718 			cpu_relax();
2719 	} else {
2720 		its_vpe_send_cmd(vpe, its_send_inv);
2721 	}
2722 }
2723 
2724 static void its_vpe_mask_irq(struct irq_data *d)
2725 {
2726 	/*
2727 	 * We need to unmask the LPI, which is described by the parent
2728 	 * irq_data. Instead of calling into the parent (which won't
2729 	 * exactly do the right thing, let's simply use the
2730 	 * parent_data pointer. Yes, I'm naughty.
2731 	 */
2732 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2733 	its_vpe_send_inv(d);
2734 }
2735 
2736 static void its_vpe_unmask_irq(struct irq_data *d)
2737 {
2738 	/* Same hack as above... */
2739 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2740 	its_vpe_send_inv(d);
2741 }
2742 
2743 static int its_vpe_set_irqchip_state(struct irq_data *d,
2744 				     enum irqchip_irq_state which,
2745 				     bool state)
2746 {
2747 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2748 
2749 	if (which != IRQCHIP_STATE_PENDING)
2750 		return -EINVAL;
2751 
2752 	if (gic_rdists->has_direct_lpi) {
2753 		void __iomem *rdbase;
2754 
2755 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2756 		if (state) {
2757 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2758 		} else {
2759 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2760 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2761 				cpu_relax();
2762 		}
2763 	} else {
2764 		if (state)
2765 			its_vpe_send_cmd(vpe, its_send_int);
2766 		else
2767 			its_vpe_send_cmd(vpe, its_send_clear);
2768 	}
2769 
2770 	return 0;
2771 }
2772 
2773 static struct irq_chip its_vpe_irq_chip = {
2774 	.name			= "GICv4-vpe",
2775 	.irq_mask		= its_vpe_mask_irq,
2776 	.irq_unmask		= its_vpe_unmask_irq,
2777 	.irq_eoi		= irq_chip_eoi_parent,
2778 	.irq_set_affinity	= its_vpe_set_affinity,
2779 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2780 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2781 };
2782 
2783 static int its_vpe_id_alloc(void)
2784 {
2785 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2786 }
2787 
2788 static void its_vpe_id_free(u16 id)
2789 {
2790 	ida_simple_remove(&its_vpeid_ida, id);
2791 }
2792 
2793 static int its_vpe_init(struct its_vpe *vpe)
2794 {
2795 	struct page *vpt_page;
2796 	int vpe_id;
2797 
2798 	/* Allocate vpe_id */
2799 	vpe_id = its_vpe_id_alloc();
2800 	if (vpe_id < 0)
2801 		return vpe_id;
2802 
2803 	/* Allocate VPT */
2804 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2805 	if (!vpt_page) {
2806 		its_vpe_id_free(vpe_id);
2807 		return -ENOMEM;
2808 	}
2809 
2810 	if (!its_alloc_vpe_table(vpe_id)) {
2811 		its_vpe_id_free(vpe_id);
2812 		its_free_pending_table(vpe->vpt_page);
2813 		return -ENOMEM;
2814 	}
2815 
2816 	vpe->vpe_id = vpe_id;
2817 	vpe->vpt_page = vpt_page;
2818 	vpe->vpe_proxy_event = -1;
2819 
2820 	return 0;
2821 }
2822 
2823 static void its_vpe_teardown(struct its_vpe *vpe)
2824 {
2825 	its_vpe_db_proxy_unmap(vpe);
2826 	its_vpe_id_free(vpe->vpe_id);
2827 	its_free_pending_table(vpe->vpt_page);
2828 }
2829 
2830 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2831 				    unsigned int virq,
2832 				    unsigned int nr_irqs)
2833 {
2834 	struct its_vm *vm = domain->host_data;
2835 	int i;
2836 
2837 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2838 
2839 	for (i = 0; i < nr_irqs; i++) {
2840 		struct irq_data *data = irq_domain_get_irq_data(domain,
2841 								virq + i);
2842 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2843 
2844 		BUG_ON(vm != vpe->its_vm);
2845 
2846 		clear_bit(data->hwirq, vm->db_bitmap);
2847 		its_vpe_teardown(vpe);
2848 		irq_domain_reset_irq_data(data);
2849 	}
2850 
2851 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2852 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2853 		its_free_prop_table(vm->vprop_page);
2854 	}
2855 }
2856 
2857 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2858 				    unsigned int nr_irqs, void *args)
2859 {
2860 	struct its_vm *vm = args;
2861 	unsigned long *bitmap;
2862 	struct page *vprop_page;
2863 	int base, nr_ids, i, err = 0;
2864 
2865 	BUG_ON(!vm);
2866 
2867 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
2868 	if (!bitmap)
2869 		return -ENOMEM;
2870 
2871 	if (nr_ids < nr_irqs) {
2872 		its_lpi_free(bitmap, base, nr_ids);
2873 		return -ENOMEM;
2874 	}
2875 
2876 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
2877 	if (!vprop_page) {
2878 		its_lpi_free(bitmap, base, nr_ids);
2879 		return -ENOMEM;
2880 	}
2881 
2882 	vm->db_bitmap = bitmap;
2883 	vm->db_lpi_base = base;
2884 	vm->nr_db_lpis = nr_ids;
2885 	vm->vprop_page = vprop_page;
2886 
2887 	for (i = 0; i < nr_irqs; i++) {
2888 		vm->vpes[i]->vpe_db_lpi = base + i;
2889 		err = its_vpe_init(vm->vpes[i]);
2890 		if (err)
2891 			break;
2892 		err = its_irq_gic_domain_alloc(domain, virq + i,
2893 					       vm->vpes[i]->vpe_db_lpi);
2894 		if (err)
2895 			break;
2896 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2897 					      &its_vpe_irq_chip, vm->vpes[i]);
2898 		set_bit(i, bitmap);
2899 	}
2900 
2901 	if (err) {
2902 		if (i > 0)
2903 			its_vpe_irq_domain_free(domain, virq, i - 1);
2904 
2905 		its_lpi_free(bitmap, base, nr_ids);
2906 		its_free_prop_table(vprop_page);
2907 	}
2908 
2909 	return err;
2910 }
2911 
2912 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2913 				       struct irq_data *d, bool reserve)
2914 {
2915 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2916 	struct its_node *its;
2917 
2918 	/* If we use the list map, we issue VMAPP on demand... */
2919 	if (its_list_map)
2920 		return 0;
2921 
2922 	/* Map the VPE to the first possible CPU */
2923 	vpe->col_idx = cpumask_first(cpu_online_mask);
2924 
2925 	list_for_each_entry(its, &its_nodes, entry) {
2926 		if (!its->is_v4)
2927 			continue;
2928 
2929 		its_send_vmapp(its, vpe, true);
2930 		its_send_vinvall(its, vpe);
2931 	}
2932 
2933 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2934 
2935 	return 0;
2936 }
2937 
2938 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2939 					  struct irq_data *d)
2940 {
2941 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2942 	struct its_node *its;
2943 
2944 	/*
2945 	 * If we use the list map, we unmap the VPE once no VLPIs are
2946 	 * associated with the VM.
2947 	 */
2948 	if (its_list_map)
2949 		return;
2950 
2951 	list_for_each_entry(its, &its_nodes, entry) {
2952 		if (!its->is_v4)
2953 			continue;
2954 
2955 		its_send_vmapp(its, vpe, false);
2956 	}
2957 }
2958 
2959 static const struct irq_domain_ops its_vpe_domain_ops = {
2960 	.alloc			= its_vpe_irq_domain_alloc,
2961 	.free			= its_vpe_irq_domain_free,
2962 	.activate		= its_vpe_irq_domain_activate,
2963 	.deactivate		= its_vpe_irq_domain_deactivate,
2964 };
2965 
2966 static int its_force_quiescent(void __iomem *base)
2967 {
2968 	u32 count = 1000000;	/* 1s */
2969 	u32 val;
2970 
2971 	val = readl_relaxed(base + GITS_CTLR);
2972 	/*
2973 	 * GIC architecture specification requires the ITS to be both
2974 	 * disabled and quiescent for writes to GITS_BASER<n> or
2975 	 * GITS_CBASER to not have UNPREDICTABLE results.
2976 	 */
2977 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2978 		return 0;
2979 
2980 	/* Disable the generation of all interrupts to this ITS */
2981 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2982 	writel_relaxed(val, base + GITS_CTLR);
2983 
2984 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
2985 	while (1) {
2986 		val = readl_relaxed(base + GITS_CTLR);
2987 		if (val & GITS_CTLR_QUIESCENT)
2988 			return 0;
2989 
2990 		count--;
2991 		if (!count)
2992 			return -EBUSY;
2993 
2994 		cpu_relax();
2995 		udelay(1);
2996 	}
2997 }
2998 
2999 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3000 {
3001 	struct its_node *its = data;
3002 
3003 	/* erratum 22375: only alloc 8MB table size */
3004 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3005 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3006 
3007 	return true;
3008 }
3009 
3010 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3011 {
3012 	struct its_node *its = data;
3013 
3014 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3015 
3016 	return true;
3017 }
3018 
3019 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3020 {
3021 	struct its_node *its = data;
3022 
3023 	/* On QDF2400, the size of the ITE is 16Bytes */
3024 	its->ite_size = 16;
3025 
3026 	return true;
3027 }
3028 
3029 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3030 {
3031 	struct its_node *its = its_dev->its;
3032 
3033 	/*
3034 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3035 	 * which maps 32-bit writes targeted at a separate window of
3036 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3037 	 * with device ID taken from bits [device_id_bits + 1:2] of
3038 	 * the window offset.
3039 	 */
3040 	return its->pre_its_base + (its_dev->device_id << 2);
3041 }
3042 
3043 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3044 {
3045 	struct its_node *its = data;
3046 	u32 pre_its_window[2];
3047 	u32 ids;
3048 
3049 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3050 					   "socionext,synquacer-pre-its",
3051 					   pre_its_window,
3052 					   ARRAY_SIZE(pre_its_window))) {
3053 
3054 		its->pre_its_base = pre_its_window[0];
3055 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3056 
3057 		ids = ilog2(pre_its_window[1]) - 2;
3058 		if (its->device_ids > ids)
3059 			its->device_ids = ids;
3060 
3061 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3062 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3063 		return true;
3064 	}
3065 	return false;
3066 }
3067 
3068 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3069 {
3070 	struct its_node *its = data;
3071 
3072 	/*
3073 	 * Hip07 insists on using the wrong address for the VLPI
3074 	 * page. Trick it into doing the right thing...
3075 	 */
3076 	its->vlpi_redist_offset = SZ_128K;
3077 	return true;
3078 }
3079 
3080 static const struct gic_quirk its_quirks[] = {
3081 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3082 	{
3083 		.desc	= "ITS: Cavium errata 22375, 24313",
3084 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3085 		.mask	= 0xffff0fff,
3086 		.init	= its_enable_quirk_cavium_22375,
3087 	},
3088 #endif
3089 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3090 	{
3091 		.desc	= "ITS: Cavium erratum 23144",
3092 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3093 		.mask	= 0xffff0fff,
3094 		.init	= its_enable_quirk_cavium_23144,
3095 	},
3096 #endif
3097 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3098 	{
3099 		.desc	= "ITS: QDF2400 erratum 0065",
3100 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3101 		.mask	= 0xffffffff,
3102 		.init	= its_enable_quirk_qdf2400_e0065,
3103 	},
3104 #endif
3105 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3106 	{
3107 		/*
3108 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3109 		 * implementation, but with a 'pre-ITS' added that requires
3110 		 * special handling in software.
3111 		 */
3112 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3113 		.iidr	= 0x0001143b,
3114 		.mask	= 0xffffffff,
3115 		.init	= its_enable_quirk_socionext_synquacer,
3116 	},
3117 #endif
3118 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3119 	{
3120 		.desc	= "ITS: Hip07 erratum 161600802",
3121 		.iidr	= 0x00000004,
3122 		.mask	= 0xffffffff,
3123 		.init	= its_enable_quirk_hip07_161600802,
3124 	},
3125 #endif
3126 	{
3127 	}
3128 };
3129 
3130 static void its_enable_quirks(struct its_node *its)
3131 {
3132 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3133 
3134 	gic_enable_quirks(iidr, its_quirks, its);
3135 }
3136 
3137 static int its_save_disable(void)
3138 {
3139 	struct its_node *its;
3140 	int err = 0;
3141 
3142 	raw_spin_lock(&its_lock);
3143 	list_for_each_entry(its, &its_nodes, entry) {
3144 		void __iomem *base;
3145 
3146 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3147 			continue;
3148 
3149 		base = its->base;
3150 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3151 		err = its_force_quiescent(base);
3152 		if (err) {
3153 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3154 			       &its->phys_base, err);
3155 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3156 			goto err;
3157 		}
3158 
3159 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3160 	}
3161 
3162 err:
3163 	if (err) {
3164 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3165 			void __iomem *base;
3166 
3167 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3168 				continue;
3169 
3170 			base = its->base;
3171 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3172 		}
3173 	}
3174 	raw_spin_unlock(&its_lock);
3175 
3176 	return err;
3177 }
3178 
3179 static void its_restore_enable(void)
3180 {
3181 	struct its_node *its;
3182 	int ret;
3183 
3184 	raw_spin_lock(&its_lock);
3185 	list_for_each_entry(its, &its_nodes, entry) {
3186 		void __iomem *base;
3187 		int i;
3188 
3189 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3190 			continue;
3191 
3192 		base = its->base;
3193 
3194 		/*
3195 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3196 		 * don't restore it since writing to CBASER or BASER<n>
3197 		 * registers is undefined according to the GIC v3 ITS
3198 		 * Specification.
3199 		 */
3200 		ret = its_force_quiescent(base);
3201 		if (ret) {
3202 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3203 			       &its->phys_base, ret);
3204 			continue;
3205 		}
3206 
3207 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3208 
3209 		/*
3210 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3211 		 * cmd_write line up with it.
3212 		 */
3213 		its->cmd_write = its->cmd_base;
3214 		gits_write_cwriter(0, base + GITS_CWRITER);
3215 
3216 		/* Restore GITS_BASER from the value cache. */
3217 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3218 			struct its_baser *baser = &its->tables[i];
3219 
3220 			if (!(baser->val & GITS_BASER_VALID))
3221 				continue;
3222 
3223 			its_write_baser(its, baser, baser->val);
3224 		}
3225 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3226 
3227 		/*
3228 		 * Reinit the collection if it's stored in the ITS. This is
3229 		 * indicated by the col_id being less than the HCC field.
3230 		 * CID < HCC as specified in the GIC v3 Documentation.
3231 		 */
3232 		if (its->collections[smp_processor_id()].col_id <
3233 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3234 			its_cpu_init_collection(its);
3235 	}
3236 	raw_spin_unlock(&its_lock);
3237 }
3238 
3239 static struct syscore_ops its_syscore_ops = {
3240 	.suspend = its_save_disable,
3241 	.resume = its_restore_enable,
3242 };
3243 
3244 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3245 {
3246 	struct irq_domain *inner_domain;
3247 	struct msi_domain_info *info;
3248 
3249 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3250 	if (!info)
3251 		return -ENOMEM;
3252 
3253 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3254 	if (!inner_domain) {
3255 		kfree(info);
3256 		return -ENOMEM;
3257 	}
3258 
3259 	inner_domain->parent = its_parent;
3260 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3261 	inner_domain->flags |= its->msi_domain_flags;
3262 	info->ops = &its_msi_domain_ops;
3263 	info->data = its;
3264 	inner_domain->host_data = info;
3265 
3266 	return 0;
3267 }
3268 
3269 static int its_init_vpe_domain(void)
3270 {
3271 	struct its_node *its;
3272 	u32 devid;
3273 	int entries;
3274 
3275 	if (gic_rdists->has_direct_lpi) {
3276 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3277 		return 0;
3278 	}
3279 
3280 	/* Any ITS will do, even if not v4 */
3281 	its = list_first_entry(&its_nodes, struct its_node, entry);
3282 
3283 	entries = roundup_pow_of_two(nr_cpu_ids);
3284 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3285 				 GFP_KERNEL);
3286 	if (!vpe_proxy.vpes) {
3287 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3288 		return -ENOMEM;
3289 	}
3290 
3291 	/* Use the last possible DevID */
3292 	devid = GENMASK(its->device_ids - 1, 0);
3293 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3294 	if (!vpe_proxy.dev) {
3295 		kfree(vpe_proxy.vpes);
3296 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3297 		return -ENOMEM;
3298 	}
3299 
3300 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3301 
3302 	raw_spin_lock_init(&vpe_proxy.lock);
3303 	vpe_proxy.next_victim = 0;
3304 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3305 		devid, vpe_proxy.dev->nr_ites);
3306 
3307 	return 0;
3308 }
3309 
3310 static int __init its_compute_its_list_map(struct resource *res,
3311 					   void __iomem *its_base)
3312 {
3313 	int its_number;
3314 	u32 ctlr;
3315 
3316 	/*
3317 	 * This is assumed to be done early enough that we're
3318 	 * guaranteed to be single-threaded, hence no
3319 	 * locking. Should this change, we should address
3320 	 * this.
3321 	 */
3322 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3323 	if (its_number >= GICv4_ITS_LIST_MAX) {
3324 		pr_err("ITS@%pa: No ITSList entry available!\n",
3325 		       &res->start);
3326 		return -EINVAL;
3327 	}
3328 
3329 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3330 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3331 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3332 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3333 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3334 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3335 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3336 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3337 	}
3338 
3339 	if (test_and_set_bit(its_number, &its_list_map)) {
3340 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3341 		       &res->start, its_number);
3342 		return -EINVAL;
3343 	}
3344 
3345 	return its_number;
3346 }
3347 
3348 static int __init its_probe_one(struct resource *res,
3349 				struct fwnode_handle *handle, int numa_node)
3350 {
3351 	struct its_node *its;
3352 	void __iomem *its_base;
3353 	u32 val, ctlr;
3354 	u64 baser, tmp, typer;
3355 	int err;
3356 
3357 	its_base = ioremap(res->start, resource_size(res));
3358 	if (!its_base) {
3359 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3360 		return -ENOMEM;
3361 	}
3362 
3363 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3364 	if (val != 0x30 && val != 0x40) {
3365 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3366 		err = -ENODEV;
3367 		goto out_unmap;
3368 	}
3369 
3370 	err = its_force_quiescent(its_base);
3371 	if (err) {
3372 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3373 		goto out_unmap;
3374 	}
3375 
3376 	pr_info("ITS %pR\n", res);
3377 
3378 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3379 	if (!its) {
3380 		err = -ENOMEM;
3381 		goto out_unmap;
3382 	}
3383 
3384 	raw_spin_lock_init(&its->lock);
3385 	INIT_LIST_HEAD(&its->entry);
3386 	INIT_LIST_HEAD(&its->its_device_list);
3387 	typer = gic_read_typer(its_base + GITS_TYPER);
3388 	its->base = its_base;
3389 	its->phys_base = res->start;
3390 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3391 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3392 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3393 	if (its->is_v4) {
3394 		if (!(typer & GITS_TYPER_VMOVP)) {
3395 			err = its_compute_its_list_map(res, its_base);
3396 			if (err < 0)
3397 				goto out_free_its;
3398 
3399 			its->list_nr = err;
3400 
3401 			pr_info("ITS@%pa: Using ITS number %d\n",
3402 				&res->start, err);
3403 		} else {
3404 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3405 		}
3406 	}
3407 
3408 	its->numa_node = numa_node;
3409 
3410 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3411 						get_order(ITS_CMD_QUEUE_SZ));
3412 	if (!its->cmd_base) {
3413 		err = -ENOMEM;
3414 		goto out_free_its;
3415 	}
3416 	its->cmd_write = its->cmd_base;
3417 	its->fwnode_handle = handle;
3418 	its->get_msi_base = its_irq_get_msi_base;
3419 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3420 
3421 	its_enable_quirks(its);
3422 
3423 	err = its_alloc_tables(its);
3424 	if (err)
3425 		goto out_free_cmd;
3426 
3427 	err = its_alloc_collections(its);
3428 	if (err)
3429 		goto out_free_tables;
3430 
3431 	baser = (virt_to_phys(its->cmd_base)	|
3432 		 GITS_CBASER_RaWaWb		|
3433 		 GITS_CBASER_InnerShareable	|
3434 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3435 		 GITS_CBASER_VALID);
3436 
3437 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3438 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3439 
3440 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3441 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3442 			/*
3443 			 * The HW reports non-shareable, we must
3444 			 * remove the cacheability attributes as
3445 			 * well.
3446 			 */
3447 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3448 				   GITS_CBASER_CACHEABILITY_MASK);
3449 			baser |= GITS_CBASER_nC;
3450 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3451 		}
3452 		pr_info("ITS: using cache flushing for cmd queue\n");
3453 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3454 	}
3455 
3456 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3457 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3458 	ctlr |= GITS_CTLR_ENABLE;
3459 	if (its->is_v4)
3460 		ctlr |= GITS_CTLR_ImDe;
3461 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3462 
3463 	if (GITS_TYPER_HCC(typer))
3464 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3465 
3466 	err = its_init_domain(handle, its);
3467 	if (err)
3468 		goto out_free_tables;
3469 
3470 	raw_spin_lock(&its_lock);
3471 	list_add(&its->entry, &its_nodes);
3472 	raw_spin_unlock(&its_lock);
3473 
3474 	return 0;
3475 
3476 out_free_tables:
3477 	its_free_tables(its);
3478 out_free_cmd:
3479 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3480 out_free_its:
3481 	kfree(its);
3482 out_unmap:
3483 	iounmap(its_base);
3484 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3485 	return err;
3486 }
3487 
3488 static bool gic_rdists_supports_plpis(void)
3489 {
3490 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3491 }
3492 
3493 static int redist_disable_lpis(void)
3494 {
3495 	void __iomem *rbase = gic_data_rdist_rd_base();
3496 	u64 timeout = USEC_PER_SEC;
3497 	u64 val;
3498 
3499 	/*
3500 	 * If coming via a CPU hotplug event, we don't need to disable
3501 	 * LPIs before trying to re-enable them. They are already
3502 	 * configured and all is well in the world. Detect this case
3503 	 * by checking the allocation of the pending table for the
3504 	 * current CPU.
3505 	 */
3506 	if (gic_data_rdist()->pend_page)
3507 		return 0;
3508 
3509 	if (!gic_rdists_supports_plpis()) {
3510 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3511 		return -ENXIO;
3512 	}
3513 
3514 	val = readl_relaxed(rbase + GICR_CTLR);
3515 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3516 		return 0;
3517 
3518 	pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3519 		smp_processor_id());
3520 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3521 
3522 	/* Disable LPIs */
3523 	val &= ~GICR_CTLR_ENABLE_LPIS;
3524 	writel_relaxed(val, rbase + GICR_CTLR);
3525 
3526 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3527 	dsb(sy);
3528 
3529 	/*
3530 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3531 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3532 	 * Error out if we time out waiting for RWP to clear.
3533 	 */
3534 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3535 		if (!timeout) {
3536 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3537 			       smp_processor_id());
3538 			return -ETIMEDOUT;
3539 		}
3540 		udelay(1);
3541 		timeout--;
3542 	}
3543 
3544 	/*
3545 	 * After it has been written to 1, it is IMPLEMENTATION
3546 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3547 	 * cleared to 0. Error out if clearing the bit failed.
3548 	 */
3549 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3550 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3551 		return -EBUSY;
3552 	}
3553 
3554 	return 0;
3555 }
3556 
3557 int its_cpu_init(void)
3558 {
3559 	if (!list_empty(&its_nodes)) {
3560 		int ret;
3561 
3562 		ret = redist_disable_lpis();
3563 		if (ret)
3564 			return ret;
3565 
3566 		its_cpu_init_lpis();
3567 		its_cpu_init_collections();
3568 	}
3569 
3570 	return 0;
3571 }
3572 
3573 static const struct of_device_id its_device_id[] = {
3574 	{	.compatible	= "arm,gic-v3-its",	},
3575 	{},
3576 };
3577 
3578 static int __init its_of_probe(struct device_node *node)
3579 {
3580 	struct device_node *np;
3581 	struct resource res;
3582 
3583 	for (np = of_find_matching_node(node, its_device_id); np;
3584 	     np = of_find_matching_node(np, its_device_id)) {
3585 		if (!of_device_is_available(np))
3586 			continue;
3587 		if (!of_property_read_bool(np, "msi-controller")) {
3588 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3589 				np);
3590 			continue;
3591 		}
3592 
3593 		if (of_address_to_resource(np, 0, &res)) {
3594 			pr_warn("%pOF: no regs?\n", np);
3595 			continue;
3596 		}
3597 
3598 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3599 	}
3600 	return 0;
3601 }
3602 
3603 #ifdef CONFIG_ACPI
3604 
3605 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3606 
3607 #ifdef CONFIG_ACPI_NUMA
3608 struct its_srat_map {
3609 	/* numa node id */
3610 	u32	numa_node;
3611 	/* GIC ITS ID */
3612 	u32	its_id;
3613 };
3614 
3615 static struct its_srat_map *its_srat_maps __initdata;
3616 static int its_in_srat __initdata;
3617 
3618 static int __init acpi_get_its_numa_node(u32 its_id)
3619 {
3620 	int i;
3621 
3622 	for (i = 0; i < its_in_srat; i++) {
3623 		if (its_id == its_srat_maps[i].its_id)
3624 			return its_srat_maps[i].numa_node;
3625 	}
3626 	return NUMA_NO_NODE;
3627 }
3628 
3629 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3630 					  const unsigned long end)
3631 {
3632 	return 0;
3633 }
3634 
3635 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3636 			 const unsigned long end)
3637 {
3638 	int node;
3639 	struct acpi_srat_gic_its_affinity *its_affinity;
3640 
3641 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3642 	if (!its_affinity)
3643 		return -EINVAL;
3644 
3645 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3646 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3647 			its_affinity->header.length);
3648 		return -EINVAL;
3649 	}
3650 
3651 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3652 
3653 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3654 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3655 		return 0;
3656 	}
3657 
3658 	its_srat_maps[its_in_srat].numa_node = node;
3659 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3660 	its_in_srat++;
3661 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3662 		its_affinity->proximity_domain, its_affinity->its_id, node);
3663 
3664 	return 0;
3665 }
3666 
3667 static void __init acpi_table_parse_srat_its(void)
3668 {
3669 	int count;
3670 
3671 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3672 			sizeof(struct acpi_table_srat),
3673 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3674 			gic_acpi_match_srat_its, 0);
3675 	if (count <= 0)
3676 		return;
3677 
3678 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3679 				      GFP_KERNEL);
3680 	if (!its_srat_maps) {
3681 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3682 		return;
3683 	}
3684 
3685 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3686 			sizeof(struct acpi_table_srat),
3687 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3688 			gic_acpi_parse_srat_its, 0);
3689 }
3690 
3691 /* free the its_srat_maps after ITS probing */
3692 static void __init acpi_its_srat_maps_free(void)
3693 {
3694 	kfree(its_srat_maps);
3695 }
3696 #else
3697 static void __init acpi_table_parse_srat_its(void)	{ }
3698 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3699 static void __init acpi_its_srat_maps_free(void) { }
3700 #endif
3701 
3702 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3703 					  const unsigned long end)
3704 {
3705 	struct acpi_madt_generic_translator *its_entry;
3706 	struct fwnode_handle *dom_handle;
3707 	struct resource res;
3708 	int err;
3709 
3710 	its_entry = (struct acpi_madt_generic_translator *)header;
3711 	memset(&res, 0, sizeof(res));
3712 	res.start = its_entry->base_address;
3713 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3714 	res.flags = IORESOURCE_MEM;
3715 
3716 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3717 	if (!dom_handle) {
3718 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3719 		       &res.start);
3720 		return -ENOMEM;
3721 	}
3722 
3723 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3724 					 dom_handle);
3725 	if (err) {
3726 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3727 		       &res.start, its_entry->translation_id);
3728 		goto dom_err;
3729 	}
3730 
3731 	err = its_probe_one(&res, dom_handle,
3732 			acpi_get_its_numa_node(its_entry->translation_id));
3733 	if (!err)
3734 		return 0;
3735 
3736 	iort_deregister_domain_token(its_entry->translation_id);
3737 dom_err:
3738 	irq_domain_free_fwnode(dom_handle);
3739 	return err;
3740 }
3741 
3742 static void __init its_acpi_probe(void)
3743 {
3744 	acpi_table_parse_srat_its();
3745 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3746 			      gic_acpi_parse_madt_its, 0);
3747 	acpi_its_srat_maps_free();
3748 }
3749 #else
3750 static void __init its_acpi_probe(void) { }
3751 #endif
3752 
3753 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3754 		    struct irq_domain *parent_domain)
3755 {
3756 	struct device_node *of_node;
3757 	struct its_node *its;
3758 	bool has_v4 = false;
3759 	int err;
3760 
3761 	its_parent = parent_domain;
3762 	of_node = to_of_node(handle);
3763 	if (of_node)
3764 		its_of_probe(of_node);
3765 	else
3766 		its_acpi_probe();
3767 
3768 	if (list_empty(&its_nodes)) {
3769 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3770 		return -ENXIO;
3771 	}
3772 
3773 	gic_rdists = rdists;
3774 	err = its_alloc_lpi_tables();
3775 	if (err)
3776 		return err;
3777 
3778 	list_for_each_entry(its, &its_nodes, entry)
3779 		has_v4 |= its->is_v4;
3780 
3781 	if (has_v4 & rdists->has_vlpis) {
3782 		if (its_init_vpe_domain() ||
3783 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3784 			rdists->has_vlpis = false;
3785 			pr_err("ITS: Disabling GICv4 support\n");
3786 		}
3787 	}
3788 
3789 	register_syscore_ops(&its_syscore_ops);
3790 
3791 	return 0;
3792 }
3793