xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
46 
47 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
48 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
49 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
50 
51 static u32 lpi_id_bits;
52 
53 /*
54  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
55  * deal with (one configuration byte per interrupt). PENDBASE has to
56  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57  */
58 #define LPI_NRBITS		lpi_id_bits
59 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
60 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61 
62 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
63 
64 /*
65  * Collection structure - just an ID, and a redistributor address to
66  * ping. We use one per CPU as a bag of interrupts assigned to this
67  * CPU.
68  */
69 struct its_collection {
70 	u64			target_address;
71 	u16			col_id;
72 };
73 
74 /*
75  * The ITS_BASER structure - contains memory information, cached
76  * value of BASER register configuration and ITS page size.
77  */
78 struct its_baser {
79 	void		*base;
80 	u64		val;
81 	u32		order;
82 	u32		psz;
83 };
84 
85 struct its_device;
86 
87 /*
88  * The ITS structure - contains most of the infrastructure, with the
89  * top-level MSI domain, the command queue, the collections, and the
90  * list of devices writing to it.
91  *
92  * dev_alloc_lock has to be taken for device allocations, while the
93  * spinlock must be taken to parse data structures such as the device
94  * list.
95  */
96 struct its_node {
97 	raw_spinlock_t		lock;
98 	struct mutex		dev_alloc_lock;
99 	struct list_head	entry;
100 	void __iomem		*base;
101 	void __iomem		*sgir_base;
102 	phys_addr_t		phys_base;
103 	struct its_cmd_block	*cmd_base;
104 	struct its_cmd_block	*cmd_write;
105 	struct its_baser	tables[GITS_BASER_NR_REGS];
106 	struct its_collection	*collections;
107 	struct fwnode_handle	*fwnode_handle;
108 	u64			(*get_msi_base)(struct its_device *its_dev);
109 	u64			typer;
110 	u64			cbaser_save;
111 	u32			ctlr_save;
112 	u32			mpidr;
113 	struct list_head	its_device_list;
114 	u64			flags;
115 	unsigned long		list_nr;
116 	int			numa_node;
117 	unsigned int		msi_domain_flags;
118 	u32			pre_its_base; /* for Socionext Synquacer */
119 	int			vlpi_redist_offset;
120 };
121 
122 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
123 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
124 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125 
126 #define ITS_ITT_ALIGN		SZ_256
127 
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS						\
130 	({								\
131 		int nvpeid = 16;					\
132 		if (gic_rdists->has_rvpeid &&				\
133 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
134 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
135 				      GICD_TYPER2_VID);			\
136 									\
137 		nvpeid;							\
138 	})
139 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
140 
141 /* Convert page order to size in bytes */
142 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
143 
144 struct event_lpi_map {
145 	unsigned long		*lpi_map;
146 	u16			*col_map;
147 	irq_hw_number_t		lpi_base;
148 	int			nr_lpis;
149 	raw_spinlock_t		vlpi_lock;
150 	struct its_vm		*vm;
151 	struct its_vlpi_map	*vlpi_maps;
152 	int			nr_vlpis;
153 };
154 
155 /*
156  * The ITS view of a device - belongs to an ITS, owns an interrupt
157  * translation table, and a list of interrupts.  If it some of its
158  * LPIs are injected into a guest (GICv4), the event_map.vm field
159  * indicates which one.
160  */
161 struct its_device {
162 	struct list_head	entry;
163 	struct its_node		*its;
164 	struct event_lpi_map	event_map;
165 	void			*itt;
166 	u32			nr_ites;
167 	u32			device_id;
168 	bool			shared;
169 };
170 
171 static struct {
172 	raw_spinlock_t		lock;
173 	struct its_device	*dev;
174 	struct its_vpe		**vpes;
175 	int			next_victim;
176 } vpe_proxy;
177 
178 struct cpu_lpi_count {
179 	atomic_t	managed;
180 	atomic_t	unmanaged;
181 };
182 
183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
184 
185 static LIST_HEAD(its_nodes);
186 static DEFINE_RAW_SPINLOCK(its_lock);
187 static struct rdists *gic_rdists;
188 static struct irq_domain *its_parent;
189 
190 static unsigned long its_list_map;
191 static u16 vmovp_seq_num;
192 static DEFINE_RAW_SPINLOCK(vmovp_lock);
193 
194 static DEFINE_IDA(its_vpeid_ida);
195 
196 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
197 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
198 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
199 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
200 
201 /*
202  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
203  * always have vSGIs mapped.
204  */
205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
206 {
207 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
208 }
209 
210 static u16 get_its_list(struct its_vm *vm)
211 {
212 	struct its_node *its;
213 	unsigned long its_list = 0;
214 
215 	list_for_each_entry(its, &its_nodes, entry) {
216 		if (!is_v4(its))
217 			continue;
218 
219 		if (require_its_list_vmovp(vm, its))
220 			__set_bit(its->list_nr, &its_list);
221 	}
222 
223 	return (u16)its_list;
224 }
225 
226 static inline u32 its_get_event_id(struct irq_data *d)
227 {
228 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
229 	return d->hwirq - its_dev->event_map.lpi_base;
230 }
231 
232 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
233 					       u32 event)
234 {
235 	struct its_node *its = its_dev->its;
236 
237 	return its->collections + its_dev->event_map.col_map[event];
238 }
239 
240 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
241 					       u32 event)
242 {
243 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
244 		return NULL;
245 
246 	return &its_dev->event_map.vlpi_maps[event];
247 }
248 
249 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
250 {
251 	if (irqd_is_forwarded_to_vcpu(d)) {
252 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
253 		u32 event = its_get_event_id(d);
254 
255 		return dev_event_to_vlpi_map(its_dev, event);
256 	}
257 
258 	return NULL;
259 }
260 
261 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
262 {
263 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
264 	return vpe->col_idx;
265 }
266 
267 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
268 {
269 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
270 }
271 
272 static struct irq_chip its_vpe_irq_chip;
273 
274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
275 {
276 	struct its_vpe *vpe = NULL;
277 	int cpu;
278 
279 	if (d->chip == &its_vpe_irq_chip) {
280 		vpe = irq_data_get_irq_chip_data(d);
281 	} else {
282 		struct its_vlpi_map *map = get_vlpi_map(d);
283 		if (map)
284 			vpe = map->vpe;
285 	}
286 
287 	if (vpe) {
288 		cpu = vpe_to_cpuid_lock(vpe, flags);
289 	} else {
290 		/* Physical LPIs are already locked via the irq_desc lock */
291 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
292 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
293 		/* Keep GCC quiet... */
294 		*flags = 0;
295 	}
296 
297 	return cpu;
298 }
299 
300 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
301 {
302 	struct its_vpe *vpe = NULL;
303 
304 	if (d->chip == &its_vpe_irq_chip) {
305 		vpe = irq_data_get_irq_chip_data(d);
306 	} else {
307 		struct its_vlpi_map *map = get_vlpi_map(d);
308 		if (map)
309 			vpe = map->vpe;
310 	}
311 
312 	if (vpe)
313 		vpe_to_cpuid_unlock(vpe, flags);
314 }
315 
316 static struct its_collection *valid_col(struct its_collection *col)
317 {
318 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
319 		return NULL;
320 
321 	return col;
322 }
323 
324 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
325 {
326 	if (valid_col(its->collections + vpe->col_idx))
327 		return vpe;
328 
329 	return NULL;
330 }
331 
332 /*
333  * ITS command descriptors - parameters to be encoded in a command
334  * block.
335  */
336 struct its_cmd_desc {
337 	union {
338 		struct {
339 			struct its_device *dev;
340 			u32 event_id;
341 		} its_inv_cmd;
342 
343 		struct {
344 			struct its_device *dev;
345 			u32 event_id;
346 		} its_clear_cmd;
347 
348 		struct {
349 			struct its_device *dev;
350 			u32 event_id;
351 		} its_int_cmd;
352 
353 		struct {
354 			struct its_device *dev;
355 			int valid;
356 		} its_mapd_cmd;
357 
358 		struct {
359 			struct its_collection *col;
360 			int valid;
361 		} its_mapc_cmd;
362 
363 		struct {
364 			struct its_device *dev;
365 			u32 phys_id;
366 			u32 event_id;
367 		} its_mapti_cmd;
368 
369 		struct {
370 			struct its_device *dev;
371 			struct its_collection *col;
372 			u32 event_id;
373 		} its_movi_cmd;
374 
375 		struct {
376 			struct its_device *dev;
377 			u32 event_id;
378 		} its_discard_cmd;
379 
380 		struct {
381 			struct its_collection *col;
382 		} its_invall_cmd;
383 
384 		struct {
385 			struct its_vpe *vpe;
386 		} its_vinvall_cmd;
387 
388 		struct {
389 			struct its_vpe *vpe;
390 			struct its_collection *col;
391 			bool valid;
392 		} its_vmapp_cmd;
393 
394 		struct {
395 			struct its_vpe *vpe;
396 			struct its_device *dev;
397 			u32 virt_id;
398 			u32 event_id;
399 			bool db_enabled;
400 		} its_vmapti_cmd;
401 
402 		struct {
403 			struct its_vpe *vpe;
404 			struct its_device *dev;
405 			u32 event_id;
406 			bool db_enabled;
407 		} its_vmovi_cmd;
408 
409 		struct {
410 			struct its_vpe *vpe;
411 			struct its_collection *col;
412 			u16 seq_num;
413 			u16 its_list;
414 		} its_vmovp_cmd;
415 
416 		struct {
417 			struct its_vpe *vpe;
418 		} its_invdb_cmd;
419 
420 		struct {
421 			struct its_vpe *vpe;
422 			u8 sgi;
423 			u8 priority;
424 			bool enable;
425 			bool group;
426 			bool clear;
427 		} its_vsgi_cmd;
428 	};
429 };
430 
431 /*
432  * The ITS command block, which is what the ITS actually parses.
433  */
434 struct its_cmd_block {
435 	union {
436 		u64	raw_cmd[4];
437 		__le64	raw_cmd_le[4];
438 	};
439 };
440 
441 #define ITS_CMD_QUEUE_SZ		SZ_64K
442 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
443 
444 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
445 						    struct its_cmd_block *,
446 						    struct its_cmd_desc *);
447 
448 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
449 					      struct its_cmd_block *,
450 					      struct its_cmd_desc *);
451 
452 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
453 {
454 	u64 mask = GENMASK_ULL(h, l);
455 	*raw_cmd &= ~mask;
456 	*raw_cmd |= (val << l) & mask;
457 }
458 
459 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
460 {
461 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
462 }
463 
464 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
465 {
466 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
467 }
468 
469 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
470 {
471 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
472 }
473 
474 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
475 {
476 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
477 }
478 
479 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
480 {
481 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
482 }
483 
484 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
485 {
486 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
487 }
488 
489 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
490 {
491 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
492 }
493 
494 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
495 {
496 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
497 }
498 
499 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
500 {
501 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
502 }
503 
504 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
505 {
506 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
507 }
508 
509 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
510 {
511 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
512 }
513 
514 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
515 {
516 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
517 }
518 
519 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
520 {
521 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
522 }
523 
524 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
525 {
526 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
527 }
528 
529 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
530 {
531 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
532 }
533 
534 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
535 {
536 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
537 }
538 
539 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
540 {
541 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
542 }
543 
544 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
545 {
546 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
547 }
548 
549 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
550 {
551 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
552 }
553 
554 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
555 {
556 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
557 }
558 
559 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
560 					u32 vpe_db_lpi)
561 {
562 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
563 }
564 
565 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
566 					u32 vpe_db_lpi)
567 {
568 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
569 }
570 
571 static void its_encode_db(struct its_cmd_block *cmd, bool db)
572 {
573 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
574 }
575 
576 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
577 {
578 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
579 }
580 
581 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
582 {
583 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
584 }
585 
586 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
587 {
588 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
589 }
590 
591 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
592 {
593 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
594 }
595 
596 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
597 {
598 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
599 }
600 
601 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
602 {
603 	/* Let's fixup BE commands */
604 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
605 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
606 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
607 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
608 }
609 
610 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
611 						 struct its_cmd_block *cmd,
612 						 struct its_cmd_desc *desc)
613 {
614 	unsigned long itt_addr;
615 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
616 
617 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
618 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
619 
620 	its_encode_cmd(cmd, GITS_CMD_MAPD);
621 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
622 	its_encode_size(cmd, size - 1);
623 	its_encode_itt(cmd, itt_addr);
624 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
625 
626 	its_fixup_cmd(cmd);
627 
628 	return NULL;
629 }
630 
631 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
632 						 struct its_cmd_block *cmd,
633 						 struct its_cmd_desc *desc)
634 {
635 	its_encode_cmd(cmd, GITS_CMD_MAPC);
636 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
637 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
638 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
639 
640 	its_fixup_cmd(cmd);
641 
642 	return desc->its_mapc_cmd.col;
643 }
644 
645 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
646 						  struct its_cmd_block *cmd,
647 						  struct its_cmd_desc *desc)
648 {
649 	struct its_collection *col;
650 
651 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
652 			       desc->its_mapti_cmd.event_id);
653 
654 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
655 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
656 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
657 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
658 	its_encode_collection(cmd, col->col_id);
659 
660 	its_fixup_cmd(cmd);
661 
662 	return valid_col(col);
663 }
664 
665 static struct its_collection *its_build_movi_cmd(struct its_node *its,
666 						 struct its_cmd_block *cmd,
667 						 struct its_cmd_desc *desc)
668 {
669 	struct its_collection *col;
670 
671 	col = dev_event_to_col(desc->its_movi_cmd.dev,
672 			       desc->its_movi_cmd.event_id);
673 
674 	its_encode_cmd(cmd, GITS_CMD_MOVI);
675 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
676 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
677 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
678 
679 	its_fixup_cmd(cmd);
680 
681 	return valid_col(col);
682 }
683 
684 static struct its_collection *its_build_discard_cmd(struct its_node *its,
685 						    struct its_cmd_block *cmd,
686 						    struct its_cmd_desc *desc)
687 {
688 	struct its_collection *col;
689 
690 	col = dev_event_to_col(desc->its_discard_cmd.dev,
691 			       desc->its_discard_cmd.event_id);
692 
693 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
694 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
695 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
696 
697 	its_fixup_cmd(cmd);
698 
699 	return valid_col(col);
700 }
701 
702 static struct its_collection *its_build_inv_cmd(struct its_node *its,
703 						struct its_cmd_block *cmd,
704 						struct its_cmd_desc *desc)
705 {
706 	struct its_collection *col;
707 
708 	col = dev_event_to_col(desc->its_inv_cmd.dev,
709 			       desc->its_inv_cmd.event_id);
710 
711 	its_encode_cmd(cmd, GITS_CMD_INV);
712 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
713 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
714 
715 	its_fixup_cmd(cmd);
716 
717 	return valid_col(col);
718 }
719 
720 static struct its_collection *its_build_int_cmd(struct its_node *its,
721 						struct its_cmd_block *cmd,
722 						struct its_cmd_desc *desc)
723 {
724 	struct its_collection *col;
725 
726 	col = dev_event_to_col(desc->its_int_cmd.dev,
727 			       desc->its_int_cmd.event_id);
728 
729 	its_encode_cmd(cmd, GITS_CMD_INT);
730 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
731 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
732 
733 	its_fixup_cmd(cmd);
734 
735 	return valid_col(col);
736 }
737 
738 static struct its_collection *its_build_clear_cmd(struct its_node *its,
739 						  struct its_cmd_block *cmd,
740 						  struct its_cmd_desc *desc)
741 {
742 	struct its_collection *col;
743 
744 	col = dev_event_to_col(desc->its_clear_cmd.dev,
745 			       desc->its_clear_cmd.event_id);
746 
747 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
748 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
749 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
750 
751 	its_fixup_cmd(cmd);
752 
753 	return valid_col(col);
754 }
755 
756 static struct its_collection *its_build_invall_cmd(struct its_node *its,
757 						   struct its_cmd_block *cmd,
758 						   struct its_cmd_desc *desc)
759 {
760 	its_encode_cmd(cmd, GITS_CMD_INVALL);
761 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
762 
763 	its_fixup_cmd(cmd);
764 
765 	return desc->its_invall_cmd.col;
766 }
767 
768 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
769 					     struct its_cmd_block *cmd,
770 					     struct its_cmd_desc *desc)
771 {
772 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
773 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
774 
775 	its_fixup_cmd(cmd);
776 
777 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
778 }
779 
780 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
781 					   struct its_cmd_block *cmd,
782 					   struct its_cmd_desc *desc)
783 {
784 	unsigned long vpt_addr, vconf_addr;
785 	u64 target;
786 	bool alloc;
787 
788 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
789 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
790 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
791 
792 	if (!desc->its_vmapp_cmd.valid) {
793 		if (is_v4_1(its)) {
794 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
795 			its_encode_alloc(cmd, alloc);
796 		}
797 
798 		goto out;
799 	}
800 
801 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
802 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
803 
804 	its_encode_target(cmd, target);
805 	its_encode_vpt_addr(cmd, vpt_addr);
806 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
807 
808 	if (!is_v4_1(its))
809 		goto out;
810 
811 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
812 
813 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
814 
815 	its_encode_alloc(cmd, alloc);
816 
817 	/*
818 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
819 	 * to be unmapped first, and in this case, we may remap the vPE
820 	 * back while the VPT is not empty. So we can't assume that the
821 	 * VPT is empty on map. This is why we never advertise PTZ.
822 	 */
823 	its_encode_ptz(cmd, false);
824 	its_encode_vconf_addr(cmd, vconf_addr);
825 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
826 
827 out:
828 	its_fixup_cmd(cmd);
829 
830 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
831 }
832 
833 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
834 					    struct its_cmd_block *cmd,
835 					    struct its_cmd_desc *desc)
836 {
837 	u32 db;
838 
839 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
840 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
841 	else
842 		db = 1023;
843 
844 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
845 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
846 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
847 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
848 	its_encode_db_phys_id(cmd, db);
849 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
850 
851 	its_fixup_cmd(cmd);
852 
853 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
854 }
855 
856 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
857 					   struct its_cmd_block *cmd,
858 					   struct its_cmd_desc *desc)
859 {
860 	u32 db;
861 
862 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
863 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
864 	else
865 		db = 1023;
866 
867 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
868 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
869 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
870 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
871 	its_encode_db_phys_id(cmd, db);
872 	its_encode_db_valid(cmd, true);
873 
874 	its_fixup_cmd(cmd);
875 
876 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
877 }
878 
879 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
880 					   struct its_cmd_block *cmd,
881 					   struct its_cmd_desc *desc)
882 {
883 	u64 target;
884 
885 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
886 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
887 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
888 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
889 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
890 	its_encode_target(cmd, target);
891 
892 	if (is_v4_1(its)) {
893 		its_encode_db(cmd, true);
894 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
895 	}
896 
897 	its_fixup_cmd(cmd);
898 
899 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
900 }
901 
902 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
903 					  struct its_cmd_block *cmd,
904 					  struct its_cmd_desc *desc)
905 {
906 	struct its_vlpi_map *map;
907 
908 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
909 				    desc->its_inv_cmd.event_id);
910 
911 	its_encode_cmd(cmd, GITS_CMD_INV);
912 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
913 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
914 
915 	its_fixup_cmd(cmd);
916 
917 	return valid_vpe(its, map->vpe);
918 }
919 
920 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
921 					  struct its_cmd_block *cmd,
922 					  struct its_cmd_desc *desc)
923 {
924 	struct its_vlpi_map *map;
925 
926 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
927 				    desc->its_int_cmd.event_id);
928 
929 	its_encode_cmd(cmd, GITS_CMD_INT);
930 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
931 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
932 
933 	its_fixup_cmd(cmd);
934 
935 	return valid_vpe(its, map->vpe);
936 }
937 
938 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
939 					    struct its_cmd_block *cmd,
940 					    struct its_cmd_desc *desc)
941 {
942 	struct its_vlpi_map *map;
943 
944 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
945 				    desc->its_clear_cmd.event_id);
946 
947 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
948 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
949 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
950 
951 	its_fixup_cmd(cmd);
952 
953 	return valid_vpe(its, map->vpe);
954 }
955 
956 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
957 					   struct its_cmd_block *cmd,
958 					   struct its_cmd_desc *desc)
959 {
960 	if (WARN_ON(!is_v4_1(its)))
961 		return NULL;
962 
963 	its_encode_cmd(cmd, GITS_CMD_INVDB);
964 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
965 
966 	its_fixup_cmd(cmd);
967 
968 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
969 }
970 
971 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
972 					  struct its_cmd_block *cmd,
973 					  struct its_cmd_desc *desc)
974 {
975 	if (WARN_ON(!is_v4_1(its)))
976 		return NULL;
977 
978 	its_encode_cmd(cmd, GITS_CMD_VSGI);
979 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
980 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
981 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
982 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
983 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
984 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
985 
986 	its_fixup_cmd(cmd);
987 
988 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
989 }
990 
991 static u64 its_cmd_ptr_to_offset(struct its_node *its,
992 				 struct its_cmd_block *ptr)
993 {
994 	return (ptr - its->cmd_base) * sizeof(*ptr);
995 }
996 
997 static int its_queue_full(struct its_node *its)
998 {
999 	int widx;
1000 	int ridx;
1001 
1002 	widx = its->cmd_write - its->cmd_base;
1003 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1004 
1005 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1006 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1007 		return 1;
1008 
1009 	return 0;
1010 }
1011 
1012 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1013 {
1014 	struct its_cmd_block *cmd;
1015 	u32 count = 1000000;	/* 1s! */
1016 
1017 	while (its_queue_full(its)) {
1018 		count--;
1019 		if (!count) {
1020 			pr_err_ratelimited("ITS queue not draining\n");
1021 			return NULL;
1022 		}
1023 		cpu_relax();
1024 		udelay(1);
1025 	}
1026 
1027 	cmd = its->cmd_write++;
1028 
1029 	/* Handle queue wrapping */
1030 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1031 		its->cmd_write = its->cmd_base;
1032 
1033 	/* Clear command  */
1034 	cmd->raw_cmd[0] = 0;
1035 	cmd->raw_cmd[1] = 0;
1036 	cmd->raw_cmd[2] = 0;
1037 	cmd->raw_cmd[3] = 0;
1038 
1039 	return cmd;
1040 }
1041 
1042 static struct its_cmd_block *its_post_commands(struct its_node *its)
1043 {
1044 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1045 
1046 	writel_relaxed(wr, its->base + GITS_CWRITER);
1047 
1048 	return its->cmd_write;
1049 }
1050 
1051 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1052 {
1053 	/*
1054 	 * Make sure the commands written to memory are observable by
1055 	 * the ITS.
1056 	 */
1057 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1058 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1059 	else
1060 		dsb(ishst);
1061 }
1062 
1063 static int its_wait_for_range_completion(struct its_node *its,
1064 					 u64	prev_idx,
1065 					 struct its_cmd_block *to)
1066 {
1067 	u64 rd_idx, to_idx, linear_idx;
1068 	u32 count = 1000000;	/* 1s! */
1069 
1070 	/* Linearize to_idx if the command set has wrapped around */
1071 	to_idx = its_cmd_ptr_to_offset(its, to);
1072 	if (to_idx < prev_idx)
1073 		to_idx += ITS_CMD_QUEUE_SZ;
1074 
1075 	linear_idx = prev_idx;
1076 
1077 	while (1) {
1078 		s64 delta;
1079 
1080 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1081 
1082 		/*
1083 		 * Compute the read pointer progress, taking the
1084 		 * potential wrap-around into account.
1085 		 */
1086 		delta = rd_idx - prev_idx;
1087 		if (rd_idx < prev_idx)
1088 			delta += ITS_CMD_QUEUE_SZ;
1089 
1090 		linear_idx += delta;
1091 		if (linear_idx >= to_idx)
1092 			break;
1093 
1094 		count--;
1095 		if (!count) {
1096 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1097 					   to_idx, linear_idx);
1098 			return -1;
1099 		}
1100 		prev_idx = rd_idx;
1101 		cpu_relax();
1102 		udelay(1);
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 /* Warning, macro hell follows */
1109 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1110 void name(struct its_node *its,						\
1111 	  buildtype builder,						\
1112 	  struct its_cmd_desc *desc)					\
1113 {									\
1114 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1115 	synctype *sync_obj;						\
1116 	unsigned long flags;						\
1117 	u64 rd_idx;							\
1118 									\
1119 	raw_spin_lock_irqsave(&its->lock, flags);			\
1120 									\
1121 	cmd = its_allocate_entry(its);					\
1122 	if (!cmd) {		/* We're soooooo screewed... */		\
1123 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1124 		return;							\
1125 	}								\
1126 	sync_obj = builder(its, cmd, desc);				\
1127 	its_flush_cmd(its, cmd);					\
1128 									\
1129 	if (sync_obj) {							\
1130 		sync_cmd = its_allocate_entry(its);			\
1131 		if (!sync_cmd)						\
1132 			goto post;					\
1133 									\
1134 		buildfn(its, sync_cmd, sync_obj);			\
1135 		its_flush_cmd(its, sync_cmd);				\
1136 	}								\
1137 									\
1138 post:									\
1139 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1140 	next_cmd = its_post_commands(its);				\
1141 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1142 									\
1143 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1144 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1145 }
1146 
1147 static void its_build_sync_cmd(struct its_node *its,
1148 			       struct its_cmd_block *sync_cmd,
1149 			       struct its_collection *sync_col)
1150 {
1151 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1152 	its_encode_target(sync_cmd, sync_col->target_address);
1153 
1154 	its_fixup_cmd(sync_cmd);
1155 }
1156 
1157 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1158 			     struct its_collection, its_build_sync_cmd)
1159 
1160 static void its_build_vsync_cmd(struct its_node *its,
1161 				struct its_cmd_block *sync_cmd,
1162 				struct its_vpe *sync_vpe)
1163 {
1164 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1165 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1166 
1167 	its_fixup_cmd(sync_cmd);
1168 }
1169 
1170 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1171 			     struct its_vpe, its_build_vsync_cmd)
1172 
1173 static void its_send_int(struct its_device *dev, u32 event_id)
1174 {
1175 	struct its_cmd_desc desc;
1176 
1177 	desc.its_int_cmd.dev = dev;
1178 	desc.its_int_cmd.event_id = event_id;
1179 
1180 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1181 }
1182 
1183 static void its_send_clear(struct its_device *dev, u32 event_id)
1184 {
1185 	struct its_cmd_desc desc;
1186 
1187 	desc.its_clear_cmd.dev = dev;
1188 	desc.its_clear_cmd.event_id = event_id;
1189 
1190 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1191 }
1192 
1193 static void its_send_inv(struct its_device *dev, u32 event_id)
1194 {
1195 	struct its_cmd_desc desc;
1196 
1197 	desc.its_inv_cmd.dev = dev;
1198 	desc.its_inv_cmd.event_id = event_id;
1199 
1200 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1201 }
1202 
1203 static void its_send_mapd(struct its_device *dev, int valid)
1204 {
1205 	struct its_cmd_desc desc;
1206 
1207 	desc.its_mapd_cmd.dev = dev;
1208 	desc.its_mapd_cmd.valid = !!valid;
1209 
1210 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1211 }
1212 
1213 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1214 			  int valid)
1215 {
1216 	struct its_cmd_desc desc;
1217 
1218 	desc.its_mapc_cmd.col = col;
1219 	desc.its_mapc_cmd.valid = !!valid;
1220 
1221 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1222 }
1223 
1224 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1225 {
1226 	struct its_cmd_desc desc;
1227 
1228 	desc.its_mapti_cmd.dev = dev;
1229 	desc.its_mapti_cmd.phys_id = irq_id;
1230 	desc.its_mapti_cmd.event_id = id;
1231 
1232 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1233 }
1234 
1235 static void its_send_movi(struct its_device *dev,
1236 			  struct its_collection *col, u32 id)
1237 {
1238 	struct its_cmd_desc desc;
1239 
1240 	desc.its_movi_cmd.dev = dev;
1241 	desc.its_movi_cmd.col = col;
1242 	desc.its_movi_cmd.event_id = id;
1243 
1244 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1245 }
1246 
1247 static void its_send_discard(struct its_device *dev, u32 id)
1248 {
1249 	struct its_cmd_desc desc;
1250 
1251 	desc.its_discard_cmd.dev = dev;
1252 	desc.its_discard_cmd.event_id = id;
1253 
1254 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1255 }
1256 
1257 static void its_send_invall(struct its_node *its, struct its_collection *col)
1258 {
1259 	struct its_cmd_desc desc;
1260 
1261 	desc.its_invall_cmd.col = col;
1262 
1263 	its_send_single_command(its, its_build_invall_cmd, &desc);
1264 }
1265 
1266 static void its_send_vmapti(struct its_device *dev, u32 id)
1267 {
1268 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1269 	struct its_cmd_desc desc;
1270 
1271 	desc.its_vmapti_cmd.vpe = map->vpe;
1272 	desc.its_vmapti_cmd.dev = dev;
1273 	desc.its_vmapti_cmd.virt_id = map->vintid;
1274 	desc.its_vmapti_cmd.event_id = id;
1275 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1276 
1277 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1278 }
1279 
1280 static void its_send_vmovi(struct its_device *dev, u32 id)
1281 {
1282 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1283 	struct its_cmd_desc desc;
1284 
1285 	desc.its_vmovi_cmd.vpe = map->vpe;
1286 	desc.its_vmovi_cmd.dev = dev;
1287 	desc.its_vmovi_cmd.event_id = id;
1288 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1289 
1290 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1291 }
1292 
1293 static void its_send_vmapp(struct its_node *its,
1294 			   struct its_vpe *vpe, bool valid)
1295 {
1296 	struct its_cmd_desc desc;
1297 
1298 	desc.its_vmapp_cmd.vpe = vpe;
1299 	desc.its_vmapp_cmd.valid = valid;
1300 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1301 
1302 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1303 }
1304 
1305 static void its_send_vmovp(struct its_vpe *vpe)
1306 {
1307 	struct its_cmd_desc desc = {};
1308 	struct its_node *its;
1309 	unsigned long flags;
1310 	int col_id = vpe->col_idx;
1311 
1312 	desc.its_vmovp_cmd.vpe = vpe;
1313 
1314 	if (!its_list_map) {
1315 		its = list_first_entry(&its_nodes, struct its_node, entry);
1316 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1317 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1318 		return;
1319 	}
1320 
1321 	/*
1322 	 * Yet another marvel of the architecture. If using the
1323 	 * its_list "feature", we need to make sure that all ITSs
1324 	 * receive all VMOVP commands in the same order. The only way
1325 	 * to guarantee this is to make vmovp a serialization point.
1326 	 *
1327 	 * Wall <-- Head.
1328 	 */
1329 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1330 
1331 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1332 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1333 
1334 	/* Emit VMOVPs */
1335 	list_for_each_entry(its, &its_nodes, entry) {
1336 		if (!is_v4(its))
1337 			continue;
1338 
1339 		if (!require_its_list_vmovp(vpe->its_vm, its))
1340 			continue;
1341 
1342 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1343 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1344 	}
1345 
1346 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1347 }
1348 
1349 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1350 {
1351 	struct its_cmd_desc desc;
1352 
1353 	desc.its_vinvall_cmd.vpe = vpe;
1354 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1355 }
1356 
1357 static void its_send_vinv(struct its_device *dev, u32 event_id)
1358 {
1359 	struct its_cmd_desc desc;
1360 
1361 	/*
1362 	 * There is no real VINV command. This is just a normal INV,
1363 	 * with a VSYNC instead of a SYNC.
1364 	 */
1365 	desc.its_inv_cmd.dev = dev;
1366 	desc.its_inv_cmd.event_id = event_id;
1367 
1368 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1369 }
1370 
1371 static void its_send_vint(struct its_device *dev, u32 event_id)
1372 {
1373 	struct its_cmd_desc desc;
1374 
1375 	/*
1376 	 * There is no real VINT command. This is just a normal INT,
1377 	 * with a VSYNC instead of a SYNC.
1378 	 */
1379 	desc.its_int_cmd.dev = dev;
1380 	desc.its_int_cmd.event_id = event_id;
1381 
1382 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1383 }
1384 
1385 static void its_send_vclear(struct its_device *dev, u32 event_id)
1386 {
1387 	struct its_cmd_desc desc;
1388 
1389 	/*
1390 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1391 	 * with a VSYNC instead of a SYNC.
1392 	 */
1393 	desc.its_clear_cmd.dev = dev;
1394 	desc.its_clear_cmd.event_id = event_id;
1395 
1396 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1397 }
1398 
1399 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1400 {
1401 	struct its_cmd_desc desc;
1402 
1403 	desc.its_invdb_cmd.vpe = vpe;
1404 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1405 }
1406 
1407 /*
1408  * irqchip functions - assumes MSI, mostly.
1409  */
1410 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1411 {
1412 	struct its_vlpi_map *map = get_vlpi_map(d);
1413 	irq_hw_number_t hwirq;
1414 	void *va;
1415 	u8 *cfg;
1416 
1417 	if (map) {
1418 		va = page_address(map->vm->vprop_page);
1419 		hwirq = map->vintid;
1420 
1421 		/* Remember the updated property */
1422 		map->properties &= ~clr;
1423 		map->properties |= set | LPI_PROP_GROUP1;
1424 	} else {
1425 		va = gic_rdists->prop_table_va;
1426 		hwirq = d->hwirq;
1427 	}
1428 
1429 	cfg = va + hwirq - 8192;
1430 	*cfg &= ~clr;
1431 	*cfg |= set | LPI_PROP_GROUP1;
1432 
1433 	/*
1434 	 * Make the above write visible to the redistributors.
1435 	 * And yes, we're flushing exactly: One. Single. Byte.
1436 	 * Humpf...
1437 	 */
1438 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1439 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1440 	else
1441 		dsb(ishst);
1442 }
1443 
1444 static void wait_for_syncr(void __iomem *rdbase)
1445 {
1446 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1447 		cpu_relax();
1448 }
1449 
1450 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1451 {
1452 	void __iomem *rdbase;
1453 	unsigned long flags;
1454 	int cpu;
1455 
1456 	/* Target the redistributor this LPI is currently routed to */
1457 	cpu = irq_to_cpuid_lock(d, &flags);
1458 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1459 
1460 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1461 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1462 	wait_for_syncr(rdbase);
1463 
1464 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1465 	irq_to_cpuid_unlock(d, flags);
1466 }
1467 
1468 static void direct_lpi_inv(struct irq_data *d)
1469 {
1470 	struct its_vlpi_map *map = get_vlpi_map(d);
1471 	u64 val;
1472 
1473 	if (map) {
1474 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1475 
1476 		WARN_ON(!is_v4_1(its_dev->its));
1477 
1478 		val  = GICR_INVLPIR_V;
1479 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1480 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1481 	} else {
1482 		val = d->hwirq;
1483 	}
1484 
1485 	__direct_lpi_inv(d, val);
1486 }
1487 
1488 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1489 {
1490 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1491 
1492 	lpi_write_config(d, clr, set);
1493 	if (gic_rdists->has_direct_lpi &&
1494 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1495 		direct_lpi_inv(d);
1496 	else if (!irqd_is_forwarded_to_vcpu(d))
1497 		its_send_inv(its_dev, its_get_event_id(d));
1498 	else
1499 		its_send_vinv(its_dev, its_get_event_id(d));
1500 }
1501 
1502 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1503 {
1504 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1505 	u32 event = its_get_event_id(d);
1506 	struct its_vlpi_map *map;
1507 
1508 	/*
1509 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1510 	 * here.
1511 	 */
1512 	if (is_v4_1(its_dev->its))
1513 		return;
1514 
1515 	map = dev_event_to_vlpi_map(its_dev, event);
1516 
1517 	if (map->db_enabled == enable)
1518 		return;
1519 
1520 	map->db_enabled = enable;
1521 
1522 	/*
1523 	 * More fun with the architecture:
1524 	 *
1525 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1526 	 * value or to 1023, depending on the enable bit. But that
1527 	 * would be issuing a mapping for an /existing/ DevID+EventID
1528 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1529 	 * to the /same/ vPE, using this opportunity to adjust the
1530 	 * doorbell. Mouahahahaha. We loves it, Precious.
1531 	 */
1532 	its_send_vmovi(its_dev, event);
1533 }
1534 
1535 static void its_mask_irq(struct irq_data *d)
1536 {
1537 	if (irqd_is_forwarded_to_vcpu(d))
1538 		its_vlpi_set_doorbell(d, false);
1539 
1540 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1541 }
1542 
1543 static void its_unmask_irq(struct irq_data *d)
1544 {
1545 	if (irqd_is_forwarded_to_vcpu(d))
1546 		its_vlpi_set_doorbell(d, true);
1547 
1548 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1549 }
1550 
1551 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1552 {
1553 	if (irqd_affinity_is_managed(d))
1554 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1555 
1556 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1557 }
1558 
1559 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1560 {
1561 	if (irqd_affinity_is_managed(d))
1562 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1563 	else
1564 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1565 }
1566 
1567 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1568 {
1569 	if (irqd_affinity_is_managed(d))
1570 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1571 	else
1572 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1573 }
1574 
1575 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1576 					      const struct cpumask *cpu_mask)
1577 {
1578 	unsigned int cpu = nr_cpu_ids, tmp;
1579 	int count = S32_MAX;
1580 
1581 	for_each_cpu(tmp, cpu_mask) {
1582 		int this_count = its_read_lpi_count(d, tmp);
1583 		if (this_count < count) {
1584 			cpu = tmp;
1585 		        count = this_count;
1586 		}
1587 	}
1588 
1589 	return cpu;
1590 }
1591 
1592 /*
1593  * As suggested by Thomas Gleixner in:
1594  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1595  */
1596 static int its_select_cpu(struct irq_data *d,
1597 			  const struct cpumask *aff_mask)
1598 {
1599 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1600 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1601 	static struct cpumask __tmpmask;
1602 	struct cpumask *tmpmask;
1603 	unsigned long flags;
1604 	int cpu, node;
1605 	node = its_dev->its->numa_node;
1606 	tmpmask = &__tmpmask;
1607 
1608 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1609 
1610 	if (!irqd_affinity_is_managed(d)) {
1611 		/* First try the NUMA node */
1612 		if (node != NUMA_NO_NODE) {
1613 			/*
1614 			 * Try the intersection of the affinity mask and the
1615 			 * node mask (and the online mask, just to be safe).
1616 			 */
1617 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1618 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1619 
1620 			/*
1621 			 * Ideally, we would check if the mask is empty, and
1622 			 * try again on the full node here.
1623 			 *
1624 			 * But it turns out that the way ACPI describes the
1625 			 * affinity for ITSs only deals about memory, and
1626 			 * not target CPUs, so it cannot describe a single
1627 			 * ITS placed next to two NUMA nodes.
1628 			 *
1629 			 * Instead, just fallback on the online mask. This
1630 			 * diverges from Thomas' suggestion above.
1631 			 */
1632 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1633 			if (cpu < nr_cpu_ids)
1634 				goto out;
1635 
1636 			/* If we can't cross sockets, give up */
1637 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1638 				goto out;
1639 
1640 			/* If the above failed, expand the search */
1641 		}
1642 
1643 		/* Try the intersection of the affinity and online masks */
1644 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1645 
1646 		/* If that doesn't fly, the online mask is the last resort */
1647 		if (cpumask_empty(tmpmask))
1648 			cpumask_copy(tmpmask, cpu_online_mask);
1649 
1650 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1651 	} else {
1652 		cpumask_copy(tmpmask, aff_mask);
1653 
1654 		/* If we cannot cross sockets, limit the search to that node */
1655 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1656 		    node != NUMA_NO_NODE)
1657 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1658 
1659 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1660 	}
1661 out:
1662 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1663 
1664 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1665 	return cpu;
1666 }
1667 
1668 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1669 			    bool force)
1670 {
1671 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1672 	struct its_collection *target_col;
1673 	u32 id = its_get_event_id(d);
1674 	int cpu, prev_cpu;
1675 
1676 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1677 	if (irqd_is_forwarded_to_vcpu(d))
1678 		return -EINVAL;
1679 
1680 	prev_cpu = its_dev->event_map.col_map[id];
1681 	its_dec_lpi_count(d, prev_cpu);
1682 
1683 	if (!force)
1684 		cpu = its_select_cpu(d, mask_val);
1685 	else
1686 		cpu = cpumask_pick_least_loaded(d, mask_val);
1687 
1688 	if (cpu < 0 || cpu >= nr_cpu_ids)
1689 		goto err;
1690 
1691 	/* don't set the affinity when the target cpu is same as current one */
1692 	if (cpu != prev_cpu) {
1693 		target_col = &its_dev->its->collections[cpu];
1694 		its_send_movi(its_dev, target_col, id);
1695 		its_dev->event_map.col_map[id] = cpu;
1696 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1697 	}
1698 
1699 	its_inc_lpi_count(d, cpu);
1700 
1701 	return IRQ_SET_MASK_OK_DONE;
1702 
1703 err:
1704 	its_inc_lpi_count(d, prev_cpu);
1705 	return -EINVAL;
1706 }
1707 
1708 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1709 {
1710 	struct its_node *its = its_dev->its;
1711 
1712 	return its->phys_base + GITS_TRANSLATER;
1713 }
1714 
1715 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1716 {
1717 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1718 	struct its_node *its;
1719 	u64 addr;
1720 
1721 	its = its_dev->its;
1722 	addr = its->get_msi_base(its_dev);
1723 
1724 	msg->address_lo		= lower_32_bits(addr);
1725 	msg->address_hi		= upper_32_bits(addr);
1726 	msg->data		= its_get_event_id(d);
1727 
1728 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1729 }
1730 
1731 static int its_irq_set_irqchip_state(struct irq_data *d,
1732 				     enum irqchip_irq_state which,
1733 				     bool state)
1734 {
1735 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1736 	u32 event = its_get_event_id(d);
1737 
1738 	if (which != IRQCHIP_STATE_PENDING)
1739 		return -EINVAL;
1740 
1741 	if (irqd_is_forwarded_to_vcpu(d)) {
1742 		if (state)
1743 			its_send_vint(its_dev, event);
1744 		else
1745 			its_send_vclear(its_dev, event);
1746 	} else {
1747 		if (state)
1748 			its_send_int(its_dev, event);
1749 		else
1750 			its_send_clear(its_dev, event);
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 static int its_irq_retrigger(struct irq_data *d)
1757 {
1758 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1759 }
1760 
1761 /*
1762  * Two favourable cases:
1763  *
1764  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1765  *     for vSGI delivery
1766  *
1767  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1768  *     and we're better off mapping all VPEs always
1769  *
1770  * If neither (a) nor (b) is true, then we map vPEs on demand.
1771  *
1772  */
1773 static bool gic_requires_eager_mapping(void)
1774 {
1775 	if (!its_list_map || gic_rdists->has_rvpeid)
1776 		return true;
1777 
1778 	return false;
1779 }
1780 
1781 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1782 {
1783 	unsigned long flags;
1784 
1785 	if (gic_requires_eager_mapping())
1786 		return;
1787 
1788 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1789 
1790 	/*
1791 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1792 	 * them mapped now.
1793 	 */
1794 	vm->vlpi_count[its->list_nr]++;
1795 
1796 	if (vm->vlpi_count[its->list_nr] == 1) {
1797 		int i;
1798 
1799 		for (i = 0; i < vm->nr_vpes; i++) {
1800 			struct its_vpe *vpe = vm->vpes[i];
1801 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1802 
1803 			/* Map the VPE to the first possible CPU */
1804 			vpe->col_idx = cpumask_first(cpu_online_mask);
1805 			its_send_vmapp(its, vpe, true);
1806 			its_send_vinvall(its, vpe);
1807 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1808 		}
1809 	}
1810 
1811 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1812 }
1813 
1814 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1815 {
1816 	unsigned long flags;
1817 
1818 	/* Not using the ITS list? Everything is always mapped. */
1819 	if (gic_requires_eager_mapping())
1820 		return;
1821 
1822 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1823 
1824 	if (!--vm->vlpi_count[its->list_nr]) {
1825 		int i;
1826 
1827 		for (i = 0; i < vm->nr_vpes; i++)
1828 			its_send_vmapp(its, vm->vpes[i], false);
1829 	}
1830 
1831 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1832 }
1833 
1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1835 {
1836 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1837 	u32 event = its_get_event_id(d);
1838 	int ret = 0;
1839 
1840 	if (!info->map)
1841 		return -EINVAL;
1842 
1843 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1844 
1845 	if (!its_dev->event_map.vm) {
1846 		struct its_vlpi_map *maps;
1847 
1848 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1849 			       GFP_ATOMIC);
1850 		if (!maps) {
1851 			ret = -ENOMEM;
1852 			goto out;
1853 		}
1854 
1855 		its_dev->event_map.vm = info->map->vm;
1856 		its_dev->event_map.vlpi_maps = maps;
1857 	} else if (its_dev->event_map.vm != info->map->vm) {
1858 		ret = -EINVAL;
1859 		goto out;
1860 	}
1861 
1862 	/* Get our private copy of the mapping information */
1863 	its_dev->event_map.vlpi_maps[event] = *info->map;
1864 
1865 	if (irqd_is_forwarded_to_vcpu(d)) {
1866 		/* Already mapped, move it around */
1867 		its_send_vmovi(its_dev, event);
1868 	} else {
1869 		/* Ensure all the VPEs are mapped on this ITS */
1870 		its_map_vm(its_dev->its, info->map->vm);
1871 
1872 		/*
1873 		 * Flag the interrupt as forwarded so that we can
1874 		 * start poking the virtual property table.
1875 		 */
1876 		irqd_set_forwarded_to_vcpu(d);
1877 
1878 		/* Write out the property to the prop table */
1879 		lpi_write_config(d, 0xff, info->map->properties);
1880 
1881 		/* Drop the physical mapping */
1882 		its_send_discard(its_dev, event);
1883 
1884 		/* and install the virtual one */
1885 		its_send_vmapti(its_dev, event);
1886 
1887 		/* Increment the number of VLPIs */
1888 		its_dev->event_map.nr_vlpis++;
1889 	}
1890 
1891 out:
1892 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1893 	return ret;
1894 }
1895 
1896 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1897 {
1898 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1899 	struct its_vlpi_map *map;
1900 	int ret = 0;
1901 
1902 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1903 
1904 	map = get_vlpi_map(d);
1905 
1906 	if (!its_dev->event_map.vm || !map) {
1907 		ret = -EINVAL;
1908 		goto out;
1909 	}
1910 
1911 	/* Copy our mapping information to the incoming request */
1912 	*info->map = *map;
1913 
1914 out:
1915 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1916 	return ret;
1917 }
1918 
1919 static int its_vlpi_unmap(struct irq_data *d)
1920 {
1921 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1922 	u32 event = its_get_event_id(d);
1923 	int ret = 0;
1924 
1925 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1926 
1927 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1928 		ret = -EINVAL;
1929 		goto out;
1930 	}
1931 
1932 	/* Drop the virtual mapping */
1933 	its_send_discard(its_dev, event);
1934 
1935 	/* and restore the physical one */
1936 	irqd_clr_forwarded_to_vcpu(d);
1937 	its_send_mapti(its_dev, d->hwirq, event);
1938 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1939 				    LPI_PROP_ENABLED |
1940 				    LPI_PROP_GROUP1));
1941 
1942 	/* Potentially unmap the VM from this ITS */
1943 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1944 
1945 	/*
1946 	 * Drop the refcount and make the device available again if
1947 	 * this was the last VLPI.
1948 	 */
1949 	if (!--its_dev->event_map.nr_vlpis) {
1950 		its_dev->event_map.vm = NULL;
1951 		kfree(its_dev->event_map.vlpi_maps);
1952 	}
1953 
1954 out:
1955 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1956 	return ret;
1957 }
1958 
1959 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1960 {
1961 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1962 
1963 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1964 		return -EINVAL;
1965 
1966 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1967 		lpi_update_config(d, 0xff, info->config);
1968 	else
1969 		lpi_write_config(d, 0xff, info->config);
1970 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1971 
1972 	return 0;
1973 }
1974 
1975 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1976 {
1977 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1978 	struct its_cmd_info *info = vcpu_info;
1979 
1980 	/* Need a v4 ITS */
1981 	if (!is_v4(its_dev->its))
1982 		return -EINVAL;
1983 
1984 	/* Unmap request? */
1985 	if (!info)
1986 		return its_vlpi_unmap(d);
1987 
1988 	switch (info->cmd_type) {
1989 	case MAP_VLPI:
1990 		return its_vlpi_map(d, info);
1991 
1992 	case GET_VLPI:
1993 		return its_vlpi_get(d, info);
1994 
1995 	case PROP_UPDATE_VLPI:
1996 	case PROP_UPDATE_AND_INV_VLPI:
1997 		return its_vlpi_prop_update(d, info);
1998 
1999 	default:
2000 		return -EINVAL;
2001 	}
2002 }
2003 
2004 static struct irq_chip its_irq_chip = {
2005 	.name			= "ITS",
2006 	.irq_mask		= its_mask_irq,
2007 	.irq_unmask		= its_unmask_irq,
2008 	.irq_eoi		= irq_chip_eoi_parent,
2009 	.irq_set_affinity	= its_set_affinity,
2010 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2011 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2012 	.irq_retrigger		= its_irq_retrigger,
2013 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2014 };
2015 
2016 
2017 /*
2018  * How we allocate LPIs:
2019  *
2020  * lpi_range_list contains ranges of LPIs that are to available to
2021  * allocate from. To allocate LPIs, just pick the first range that
2022  * fits the required allocation, and reduce it by the required
2023  * amount. Once empty, remove the range from the list.
2024  *
2025  * To free a range of LPIs, add a free range to the list, sort it and
2026  * merge the result if the new range happens to be adjacent to an
2027  * already free block.
2028  *
2029  * The consequence of the above is that allocation is cost is low, but
2030  * freeing is expensive. We assumes that freeing rarely occurs.
2031  */
2032 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2033 
2034 static DEFINE_MUTEX(lpi_range_lock);
2035 static LIST_HEAD(lpi_range_list);
2036 
2037 struct lpi_range {
2038 	struct list_head	entry;
2039 	u32			base_id;
2040 	u32			span;
2041 };
2042 
2043 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2044 {
2045 	struct lpi_range *range;
2046 
2047 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2048 	if (range) {
2049 		range->base_id = base;
2050 		range->span = span;
2051 	}
2052 
2053 	return range;
2054 }
2055 
2056 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2057 {
2058 	struct lpi_range *range, *tmp;
2059 	int err = -ENOSPC;
2060 
2061 	mutex_lock(&lpi_range_lock);
2062 
2063 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2064 		if (range->span >= nr_lpis) {
2065 			*base = range->base_id;
2066 			range->base_id += nr_lpis;
2067 			range->span -= nr_lpis;
2068 
2069 			if (range->span == 0) {
2070 				list_del(&range->entry);
2071 				kfree(range);
2072 			}
2073 
2074 			err = 0;
2075 			break;
2076 		}
2077 	}
2078 
2079 	mutex_unlock(&lpi_range_lock);
2080 
2081 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2082 	return err;
2083 }
2084 
2085 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2086 {
2087 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2088 		return;
2089 	if (a->base_id + a->span != b->base_id)
2090 		return;
2091 	b->base_id = a->base_id;
2092 	b->span += a->span;
2093 	list_del(&a->entry);
2094 	kfree(a);
2095 }
2096 
2097 static int free_lpi_range(u32 base, u32 nr_lpis)
2098 {
2099 	struct lpi_range *new, *old;
2100 
2101 	new = mk_lpi_range(base, nr_lpis);
2102 	if (!new)
2103 		return -ENOMEM;
2104 
2105 	mutex_lock(&lpi_range_lock);
2106 
2107 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2108 		if (old->base_id < base)
2109 			break;
2110 	}
2111 	/*
2112 	 * old is the last element with ->base_id smaller than base,
2113 	 * so new goes right after it. If there are no elements with
2114 	 * ->base_id smaller than base, &old->entry ends up pointing
2115 	 * at the head of the list, and inserting new it the start of
2116 	 * the list is the right thing to do in that case as well.
2117 	 */
2118 	list_add(&new->entry, &old->entry);
2119 	/*
2120 	 * Now check if we can merge with the preceding and/or
2121 	 * following ranges.
2122 	 */
2123 	merge_lpi_ranges(old, new);
2124 	merge_lpi_ranges(new, list_next_entry(new, entry));
2125 
2126 	mutex_unlock(&lpi_range_lock);
2127 	return 0;
2128 }
2129 
2130 static int __init its_lpi_init(u32 id_bits)
2131 {
2132 	u32 lpis = (1UL << id_bits) - 8192;
2133 	u32 numlpis;
2134 	int err;
2135 
2136 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2137 
2138 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2139 		lpis = numlpis;
2140 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2141 			lpis);
2142 	}
2143 
2144 	/*
2145 	 * Initializing the allocator is just the same as freeing the
2146 	 * full range of LPIs.
2147 	 */
2148 	err = free_lpi_range(8192, lpis);
2149 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2150 	return err;
2151 }
2152 
2153 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2154 {
2155 	unsigned long *bitmap = NULL;
2156 	int err = 0;
2157 
2158 	do {
2159 		err = alloc_lpi_range(nr_irqs, base);
2160 		if (!err)
2161 			break;
2162 
2163 		nr_irqs /= 2;
2164 	} while (nr_irqs > 0);
2165 
2166 	if (!nr_irqs)
2167 		err = -ENOSPC;
2168 
2169 	if (err)
2170 		goto out;
2171 
2172 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2173 	if (!bitmap)
2174 		goto out;
2175 
2176 	*nr_ids = nr_irqs;
2177 
2178 out:
2179 	if (!bitmap)
2180 		*base = *nr_ids = 0;
2181 
2182 	return bitmap;
2183 }
2184 
2185 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2186 {
2187 	WARN_ON(free_lpi_range(base, nr_ids));
2188 	bitmap_free(bitmap);
2189 }
2190 
2191 static void gic_reset_prop_table(void *va)
2192 {
2193 	/* Priority 0xa0, Group-1, disabled */
2194 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2195 
2196 	/* Make sure the GIC will observe the written configuration */
2197 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2198 }
2199 
2200 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2201 {
2202 	struct page *prop_page;
2203 
2204 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2205 	if (!prop_page)
2206 		return NULL;
2207 
2208 	gic_reset_prop_table(page_address(prop_page));
2209 
2210 	return prop_page;
2211 }
2212 
2213 static void its_free_prop_table(struct page *prop_page)
2214 {
2215 	free_pages((unsigned long)page_address(prop_page),
2216 		   get_order(LPI_PROPBASE_SZ));
2217 }
2218 
2219 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2220 {
2221 	phys_addr_t start, end, addr_end;
2222 	u64 i;
2223 
2224 	/*
2225 	 * We don't bother checking for a kdump kernel as by
2226 	 * construction, the LPI tables are out of this kernel's
2227 	 * memory map.
2228 	 */
2229 	if (is_kdump_kernel())
2230 		return true;
2231 
2232 	addr_end = addr + size - 1;
2233 
2234 	for_each_reserved_mem_range(i, &start, &end) {
2235 		if (addr >= start && addr_end <= end)
2236 			return true;
2237 	}
2238 
2239 	/* Not found, not a good sign... */
2240 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2241 		&addr, &addr_end);
2242 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2243 	return false;
2244 }
2245 
2246 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2247 {
2248 	if (efi_enabled(EFI_CONFIG_TABLES))
2249 		return efi_mem_reserve_persistent(addr, size);
2250 
2251 	return 0;
2252 }
2253 
2254 static int __init its_setup_lpi_prop_table(void)
2255 {
2256 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2257 		u64 val;
2258 
2259 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2260 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2261 
2262 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2263 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2264 						     LPI_PROPBASE_SZ,
2265 						     MEMREMAP_WB);
2266 		gic_reset_prop_table(gic_rdists->prop_table_va);
2267 	} else {
2268 		struct page *page;
2269 
2270 		lpi_id_bits = min_t(u32,
2271 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2272 				    ITS_MAX_LPI_NRBITS);
2273 		page = its_allocate_prop_table(GFP_NOWAIT);
2274 		if (!page) {
2275 			pr_err("Failed to allocate PROPBASE\n");
2276 			return -ENOMEM;
2277 		}
2278 
2279 		gic_rdists->prop_table_pa = page_to_phys(page);
2280 		gic_rdists->prop_table_va = page_address(page);
2281 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2282 					  LPI_PROPBASE_SZ));
2283 	}
2284 
2285 	pr_info("GICv3: using LPI property table @%pa\n",
2286 		&gic_rdists->prop_table_pa);
2287 
2288 	return its_lpi_init(lpi_id_bits);
2289 }
2290 
2291 static const char *its_base_type_string[] = {
2292 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2293 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2294 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2295 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2296 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2297 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2298 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2299 };
2300 
2301 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2302 {
2303 	u32 idx = baser - its->tables;
2304 
2305 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2306 }
2307 
2308 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2309 			    u64 val)
2310 {
2311 	u32 idx = baser - its->tables;
2312 
2313 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2314 	baser->val = its_read_baser(its, baser);
2315 }
2316 
2317 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2318 			   u64 cache, u64 shr, u32 order, bool indirect)
2319 {
2320 	u64 val = its_read_baser(its, baser);
2321 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2322 	u64 type = GITS_BASER_TYPE(val);
2323 	u64 baser_phys, tmp;
2324 	u32 alloc_pages, psz;
2325 	struct page *page;
2326 	void *base;
2327 
2328 	psz = baser->psz;
2329 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2330 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2331 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2332 			&its->phys_base, its_base_type_string[type],
2333 			alloc_pages, GITS_BASER_PAGES_MAX);
2334 		alloc_pages = GITS_BASER_PAGES_MAX;
2335 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2336 	}
2337 
2338 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2339 	if (!page)
2340 		return -ENOMEM;
2341 
2342 	base = (void *)page_address(page);
2343 	baser_phys = virt_to_phys(base);
2344 
2345 	/* Check if the physical address of the memory is above 48bits */
2346 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2347 
2348 		/* 52bit PA is supported only when PageSize=64K */
2349 		if (psz != SZ_64K) {
2350 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2351 			free_pages((unsigned long)base, order);
2352 			return -ENXIO;
2353 		}
2354 
2355 		/* Convert 52bit PA to 48bit field */
2356 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2357 	}
2358 
2359 retry_baser:
2360 	val = (baser_phys					 |
2361 		(type << GITS_BASER_TYPE_SHIFT)			 |
2362 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2363 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2364 		cache						 |
2365 		shr						 |
2366 		GITS_BASER_VALID);
2367 
2368 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2369 
2370 	switch (psz) {
2371 	case SZ_4K:
2372 		val |= GITS_BASER_PAGE_SIZE_4K;
2373 		break;
2374 	case SZ_16K:
2375 		val |= GITS_BASER_PAGE_SIZE_16K;
2376 		break;
2377 	case SZ_64K:
2378 		val |= GITS_BASER_PAGE_SIZE_64K;
2379 		break;
2380 	}
2381 
2382 	if (!shr)
2383 		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2384 
2385 	its_write_baser(its, baser, val);
2386 	tmp = baser->val;
2387 
2388 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2389 		/*
2390 		 * Shareability didn't stick. Just use
2391 		 * whatever the read reported, which is likely
2392 		 * to be the only thing this redistributor
2393 		 * supports. If that's zero, make it
2394 		 * non-cacheable as well.
2395 		 */
2396 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2397 		if (!shr)
2398 			cache = GITS_BASER_nC;
2399 
2400 		goto retry_baser;
2401 	}
2402 
2403 	if (val != tmp) {
2404 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2405 		       &its->phys_base, its_base_type_string[type],
2406 		       val, tmp);
2407 		free_pages((unsigned long)base, order);
2408 		return -ENXIO;
2409 	}
2410 
2411 	baser->order = order;
2412 	baser->base = base;
2413 	baser->psz = psz;
2414 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2415 
2416 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2417 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2418 		its_base_type_string[type],
2419 		(unsigned long)virt_to_phys(base),
2420 		indirect ? "indirect" : "flat", (int)esz,
2421 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2422 
2423 	return 0;
2424 }
2425 
2426 static bool its_parse_indirect_baser(struct its_node *its,
2427 				     struct its_baser *baser,
2428 				     u32 *order, u32 ids)
2429 {
2430 	u64 tmp = its_read_baser(its, baser);
2431 	u64 type = GITS_BASER_TYPE(tmp);
2432 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2433 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2434 	u32 new_order = *order;
2435 	u32 psz = baser->psz;
2436 	bool indirect = false;
2437 
2438 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2439 	if ((esz << ids) > (psz * 2)) {
2440 		/*
2441 		 * Find out whether hw supports a single or two-level table by
2442 		 * table by reading bit at offset '62' after writing '1' to it.
2443 		 */
2444 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2445 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2446 
2447 		if (indirect) {
2448 			/*
2449 			 * The size of the lvl2 table is equal to ITS page size
2450 			 * which is 'psz'. For computing lvl1 table size,
2451 			 * subtract ID bits that sparse lvl2 table from 'ids'
2452 			 * which is reported by ITS hardware times lvl1 table
2453 			 * entry size.
2454 			 */
2455 			ids -= ilog2(psz / (int)esz);
2456 			esz = GITS_LVL1_ENTRY_SIZE;
2457 		}
2458 	}
2459 
2460 	/*
2461 	 * Allocate as many entries as required to fit the
2462 	 * range of device IDs that the ITS can grok... The ID
2463 	 * space being incredibly sparse, this results in a
2464 	 * massive waste of memory if two-level device table
2465 	 * feature is not supported by hardware.
2466 	 */
2467 	new_order = max_t(u32, get_order(esz << ids), new_order);
2468 	if (new_order > MAX_PAGE_ORDER) {
2469 		new_order = MAX_PAGE_ORDER;
2470 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2471 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2472 			&its->phys_base, its_base_type_string[type],
2473 			device_ids(its), ids);
2474 	}
2475 
2476 	*order = new_order;
2477 
2478 	return indirect;
2479 }
2480 
2481 static u32 compute_common_aff(u64 val)
2482 {
2483 	u32 aff, clpiaff;
2484 
2485 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2486 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2487 
2488 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2489 }
2490 
2491 static u32 compute_its_aff(struct its_node *its)
2492 {
2493 	u64 val;
2494 	u32 svpet;
2495 
2496 	/*
2497 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2498 	 * the resulting affinity. We then use that to see if this match
2499 	 * our own affinity.
2500 	 */
2501 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2502 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2503 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2504 	return compute_common_aff(val);
2505 }
2506 
2507 static struct its_node *find_sibling_its(struct its_node *cur_its)
2508 {
2509 	struct its_node *its;
2510 	u32 aff;
2511 
2512 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2513 		return NULL;
2514 
2515 	aff = compute_its_aff(cur_its);
2516 
2517 	list_for_each_entry(its, &its_nodes, entry) {
2518 		u64 baser;
2519 
2520 		if (!is_v4_1(its) || its == cur_its)
2521 			continue;
2522 
2523 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2524 			continue;
2525 
2526 		if (aff != compute_its_aff(its))
2527 			continue;
2528 
2529 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2530 		baser = its->tables[2].val;
2531 		if (!(baser & GITS_BASER_VALID))
2532 			continue;
2533 
2534 		return its;
2535 	}
2536 
2537 	return NULL;
2538 }
2539 
2540 static void its_free_tables(struct its_node *its)
2541 {
2542 	int i;
2543 
2544 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2545 		if (its->tables[i].base) {
2546 			free_pages((unsigned long)its->tables[i].base,
2547 				   its->tables[i].order);
2548 			its->tables[i].base = NULL;
2549 		}
2550 	}
2551 }
2552 
2553 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2554 {
2555 	u64 psz = SZ_64K;
2556 
2557 	while (psz) {
2558 		u64 val, gpsz;
2559 
2560 		val = its_read_baser(its, baser);
2561 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2562 
2563 		switch (psz) {
2564 		case SZ_64K:
2565 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2566 			break;
2567 		case SZ_16K:
2568 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2569 			break;
2570 		case SZ_4K:
2571 		default:
2572 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2573 			break;
2574 		}
2575 
2576 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2577 
2578 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2579 		its_write_baser(its, baser, val);
2580 
2581 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2582 			break;
2583 
2584 		switch (psz) {
2585 		case SZ_64K:
2586 			psz = SZ_16K;
2587 			break;
2588 		case SZ_16K:
2589 			psz = SZ_4K;
2590 			break;
2591 		case SZ_4K:
2592 		default:
2593 			return -1;
2594 		}
2595 	}
2596 
2597 	baser->psz = psz;
2598 	return 0;
2599 }
2600 
2601 static int its_alloc_tables(struct its_node *its)
2602 {
2603 	u64 shr = GITS_BASER_InnerShareable;
2604 	u64 cache = GITS_BASER_RaWaWb;
2605 	int err, i;
2606 
2607 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2608 		/* erratum 24313: ignore memory access type */
2609 		cache = GITS_BASER_nCnB;
2610 
2611 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2612 		cache = GITS_BASER_nC;
2613 		shr = 0;
2614 	}
2615 
2616 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2617 		struct its_baser *baser = its->tables + i;
2618 		u64 val = its_read_baser(its, baser);
2619 		u64 type = GITS_BASER_TYPE(val);
2620 		bool indirect = false;
2621 		u32 order;
2622 
2623 		if (type == GITS_BASER_TYPE_NONE)
2624 			continue;
2625 
2626 		if (its_probe_baser_psz(its, baser)) {
2627 			its_free_tables(its);
2628 			return -ENXIO;
2629 		}
2630 
2631 		order = get_order(baser->psz);
2632 
2633 		switch (type) {
2634 		case GITS_BASER_TYPE_DEVICE:
2635 			indirect = its_parse_indirect_baser(its, baser, &order,
2636 							    device_ids(its));
2637 			break;
2638 
2639 		case GITS_BASER_TYPE_VCPU:
2640 			if (is_v4_1(its)) {
2641 				struct its_node *sibling;
2642 
2643 				WARN_ON(i != 2);
2644 				if ((sibling = find_sibling_its(its))) {
2645 					*baser = sibling->tables[2];
2646 					its_write_baser(its, baser, baser->val);
2647 					continue;
2648 				}
2649 			}
2650 
2651 			indirect = its_parse_indirect_baser(its, baser, &order,
2652 							    ITS_MAX_VPEID_BITS);
2653 			break;
2654 		}
2655 
2656 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2657 		if (err < 0) {
2658 			its_free_tables(its);
2659 			return err;
2660 		}
2661 
2662 		/* Update settings which will be used for next BASERn */
2663 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2664 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 static u64 inherit_vpe_l1_table_from_its(void)
2671 {
2672 	struct its_node *its;
2673 	u64 val;
2674 	u32 aff;
2675 
2676 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2677 	aff = compute_common_aff(val);
2678 
2679 	list_for_each_entry(its, &its_nodes, entry) {
2680 		u64 baser, addr;
2681 
2682 		if (!is_v4_1(its))
2683 			continue;
2684 
2685 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2686 			continue;
2687 
2688 		if (aff != compute_its_aff(its))
2689 			continue;
2690 
2691 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2692 		baser = its->tables[2].val;
2693 		if (!(baser & GITS_BASER_VALID))
2694 			continue;
2695 
2696 		/* We have a winner! */
2697 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2698 
2699 		val  = GICR_VPROPBASER_4_1_VALID;
2700 		if (baser & GITS_BASER_INDIRECT)
2701 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2702 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2703 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2704 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2705 		case GIC_PAGE_SIZE_64K:
2706 			addr = GITS_BASER_ADDR_48_to_52(baser);
2707 			break;
2708 		default:
2709 			addr = baser & GENMASK_ULL(47, 12);
2710 			break;
2711 		}
2712 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2713 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2714 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2715 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2716 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2717 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2718 
2719 		return val;
2720 	}
2721 
2722 	return 0;
2723 }
2724 
2725 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2726 {
2727 	u32 aff;
2728 	u64 val;
2729 	int cpu;
2730 
2731 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2732 	aff = compute_common_aff(val);
2733 
2734 	for_each_possible_cpu(cpu) {
2735 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2736 
2737 		if (!base || cpu == smp_processor_id())
2738 			continue;
2739 
2740 		val = gic_read_typer(base + GICR_TYPER);
2741 		if (aff != compute_common_aff(val))
2742 			continue;
2743 
2744 		/*
2745 		 * At this point, we have a victim. This particular CPU
2746 		 * has already booted, and has an affinity that matches
2747 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2748 		 * Make sure we don't write the Z bit in that case.
2749 		 */
2750 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2751 		val &= ~GICR_VPROPBASER_4_1_Z;
2752 
2753 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2754 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2755 
2756 		return val;
2757 	}
2758 
2759 	return 0;
2760 }
2761 
2762 static bool allocate_vpe_l2_table(int cpu, u32 id)
2763 {
2764 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2765 	unsigned int psz, esz, idx, npg, gpsz;
2766 	u64 val;
2767 	struct page *page;
2768 	__le64 *table;
2769 
2770 	if (!gic_rdists->has_rvpeid)
2771 		return true;
2772 
2773 	/* Skip non-present CPUs */
2774 	if (!base)
2775 		return true;
2776 
2777 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2778 
2779 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2780 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2781 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2782 
2783 	switch (gpsz) {
2784 	default:
2785 		WARN_ON(1);
2786 		fallthrough;
2787 	case GIC_PAGE_SIZE_4K:
2788 		psz = SZ_4K;
2789 		break;
2790 	case GIC_PAGE_SIZE_16K:
2791 		psz = SZ_16K;
2792 		break;
2793 	case GIC_PAGE_SIZE_64K:
2794 		psz = SZ_64K;
2795 		break;
2796 	}
2797 
2798 	/* Don't allow vpe_id that exceeds single, flat table limit */
2799 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2800 		return (id < (npg * psz / (esz * SZ_8)));
2801 
2802 	/* Compute 1st level table index & check if that exceeds table limit */
2803 	idx = id >> ilog2(psz / (esz * SZ_8));
2804 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2805 		return false;
2806 
2807 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2808 
2809 	/* Allocate memory for 2nd level table */
2810 	if (!table[idx]) {
2811 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2812 		if (!page)
2813 			return false;
2814 
2815 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2816 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2817 			gic_flush_dcache_to_poc(page_address(page), psz);
2818 
2819 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2820 
2821 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2822 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2823 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2824 
2825 		/* Ensure updated table contents are visible to RD hardware */
2826 		dsb(sy);
2827 	}
2828 
2829 	return true;
2830 }
2831 
2832 static int allocate_vpe_l1_table(void)
2833 {
2834 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2835 	u64 val, gpsz, npg, pa;
2836 	unsigned int psz = SZ_64K;
2837 	unsigned int np, epp, esz;
2838 	struct page *page;
2839 
2840 	if (!gic_rdists->has_rvpeid)
2841 		return 0;
2842 
2843 	/*
2844 	 * if VPENDBASER.Valid is set, disable any previously programmed
2845 	 * VPE by setting PendingLast while clearing Valid. This has the
2846 	 * effect of making sure no doorbell will be generated and we can
2847 	 * then safely clear VPROPBASER.Valid.
2848 	 */
2849 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2850 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2851 				      vlpi_base + GICR_VPENDBASER);
2852 
2853 	/*
2854 	 * If we can inherit the configuration from another RD, let's do
2855 	 * so. Otherwise, we have to go through the allocation process. We
2856 	 * assume that all RDs have the exact same requirements, as
2857 	 * nothing will work otherwise.
2858 	 */
2859 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2860 	if (val & GICR_VPROPBASER_4_1_VALID)
2861 		goto out;
2862 
2863 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2864 	if (!gic_data_rdist()->vpe_table_mask)
2865 		return -ENOMEM;
2866 
2867 	val = inherit_vpe_l1_table_from_its();
2868 	if (val & GICR_VPROPBASER_4_1_VALID)
2869 		goto out;
2870 
2871 	/* First probe the page size */
2872 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2873 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2874 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2875 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2876 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2877 
2878 	switch (gpsz) {
2879 	default:
2880 		gpsz = GIC_PAGE_SIZE_4K;
2881 		fallthrough;
2882 	case GIC_PAGE_SIZE_4K:
2883 		psz = SZ_4K;
2884 		break;
2885 	case GIC_PAGE_SIZE_16K:
2886 		psz = SZ_16K;
2887 		break;
2888 	case GIC_PAGE_SIZE_64K:
2889 		psz = SZ_64K;
2890 		break;
2891 	}
2892 
2893 	/*
2894 	 * Start populating the register from scratch, including RO fields
2895 	 * (which we want to print in debug cases...)
2896 	 */
2897 	val = 0;
2898 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2899 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2900 
2901 	/* How many entries per GIC page? */
2902 	esz++;
2903 	epp = psz / (esz * SZ_8);
2904 
2905 	/*
2906 	 * If we need more than just a single L1 page, flag the table
2907 	 * as indirect and compute the number of required L1 pages.
2908 	 */
2909 	if (epp < ITS_MAX_VPEID) {
2910 		int nl2;
2911 
2912 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2913 
2914 		/* Number of L2 pages required to cover the VPEID space */
2915 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2916 
2917 		/* Number of L1 pages to point to the L2 pages */
2918 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2919 	} else {
2920 		npg = 1;
2921 	}
2922 
2923 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2924 
2925 	/* Right, that's the number of CPU pages we need for L1 */
2926 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2927 
2928 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2929 		 np, npg, psz, epp, esz);
2930 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2931 	if (!page)
2932 		return -ENOMEM;
2933 
2934 	gic_data_rdist()->vpe_l1_base = page_address(page);
2935 	pa = virt_to_phys(page_address(page));
2936 	WARN_ON(!IS_ALIGNED(pa, psz));
2937 
2938 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2939 	val |= GICR_VPROPBASER_RaWb;
2940 	val |= GICR_VPROPBASER_InnerShareable;
2941 	val |= GICR_VPROPBASER_4_1_Z;
2942 	val |= GICR_VPROPBASER_4_1_VALID;
2943 
2944 out:
2945 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2946 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2947 
2948 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2949 		 smp_processor_id(), val,
2950 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2951 
2952 	return 0;
2953 }
2954 
2955 static int its_alloc_collections(struct its_node *its)
2956 {
2957 	int i;
2958 
2959 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2960 				   GFP_KERNEL);
2961 	if (!its->collections)
2962 		return -ENOMEM;
2963 
2964 	for (i = 0; i < nr_cpu_ids; i++)
2965 		its->collections[i].target_address = ~0ULL;
2966 
2967 	return 0;
2968 }
2969 
2970 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2971 {
2972 	struct page *pend_page;
2973 
2974 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2975 				get_order(LPI_PENDBASE_SZ));
2976 	if (!pend_page)
2977 		return NULL;
2978 
2979 	/* Make sure the GIC will observe the zero-ed page */
2980 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2981 
2982 	return pend_page;
2983 }
2984 
2985 static void its_free_pending_table(struct page *pt)
2986 {
2987 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2988 }
2989 
2990 /*
2991  * Booting with kdump and LPIs enabled is generally fine. Any other
2992  * case is wrong in the absence of firmware/EFI support.
2993  */
2994 static bool enabled_lpis_allowed(void)
2995 {
2996 	phys_addr_t addr;
2997 	u64 val;
2998 
2999 	/* Check whether the property table is in a reserved region */
3000 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3001 	addr = val & GENMASK_ULL(51, 12);
3002 
3003 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3004 }
3005 
3006 static int __init allocate_lpi_tables(void)
3007 {
3008 	u64 val;
3009 	int err, cpu;
3010 
3011 	/*
3012 	 * If LPIs are enabled while we run this from the boot CPU,
3013 	 * flag the RD tables as pre-allocated if the stars do align.
3014 	 */
3015 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3016 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3017 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3018 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3019 		pr_info("GICv3: Using preallocated redistributor tables\n");
3020 	}
3021 
3022 	err = its_setup_lpi_prop_table();
3023 	if (err)
3024 		return err;
3025 
3026 	/*
3027 	 * We allocate all the pending tables anyway, as we may have a
3028 	 * mix of RDs that have had LPIs enabled, and some that
3029 	 * don't. We'll free the unused ones as each CPU comes online.
3030 	 */
3031 	for_each_possible_cpu(cpu) {
3032 		struct page *pend_page;
3033 
3034 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3035 		if (!pend_page) {
3036 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3037 			return -ENOMEM;
3038 		}
3039 
3040 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3047 {
3048 	u32 count = 1000000;	/* 1s! */
3049 	bool clean;
3050 	u64 val;
3051 
3052 	do {
3053 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3054 		clean = !(val & GICR_VPENDBASER_Dirty);
3055 		if (!clean) {
3056 			count--;
3057 			cpu_relax();
3058 			udelay(1);
3059 		}
3060 	} while (!clean && count);
3061 
3062 	if (unlikely(!clean))
3063 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3064 
3065 	return val;
3066 }
3067 
3068 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3069 {
3070 	u64 val;
3071 
3072 	/* Make sure we wait until the RD is done with the initial scan */
3073 	val = read_vpend_dirty_clear(vlpi_base);
3074 	val &= ~GICR_VPENDBASER_Valid;
3075 	val &= ~clr;
3076 	val |= set;
3077 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3078 
3079 	val = read_vpend_dirty_clear(vlpi_base);
3080 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3081 		val |= GICR_VPENDBASER_PendingLast;
3082 
3083 	return val;
3084 }
3085 
3086 static void its_cpu_init_lpis(void)
3087 {
3088 	void __iomem *rbase = gic_data_rdist_rd_base();
3089 	struct page *pend_page;
3090 	phys_addr_t paddr;
3091 	u64 val, tmp;
3092 
3093 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3094 		return;
3095 
3096 	val = readl_relaxed(rbase + GICR_CTLR);
3097 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3098 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3099 		/*
3100 		 * Check that we get the same property table on all
3101 		 * RDs. If we don't, this is hopeless.
3102 		 */
3103 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3104 		paddr &= GENMASK_ULL(51, 12);
3105 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3106 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3107 
3108 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3109 		paddr &= GENMASK_ULL(51, 16);
3110 
3111 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3112 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3113 
3114 		goto out;
3115 	}
3116 
3117 	pend_page = gic_data_rdist()->pend_page;
3118 	paddr = page_to_phys(pend_page);
3119 
3120 	/* set PROPBASE */
3121 	val = (gic_rdists->prop_table_pa |
3122 	       GICR_PROPBASER_InnerShareable |
3123 	       GICR_PROPBASER_RaWaWb |
3124 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3125 
3126 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3127 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3128 
3129 	if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3130 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3131 
3132 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3133 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3134 			/*
3135 			 * The HW reports non-shareable, we must
3136 			 * remove the cacheability attributes as
3137 			 * well.
3138 			 */
3139 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3140 				 GICR_PROPBASER_CACHEABILITY_MASK);
3141 			val |= GICR_PROPBASER_nC;
3142 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3143 		}
3144 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3145 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3146 	}
3147 
3148 	/* set PENDBASE */
3149 	val = (page_to_phys(pend_page) |
3150 	       GICR_PENDBASER_InnerShareable |
3151 	       GICR_PENDBASER_RaWaWb);
3152 
3153 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3154 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3155 
3156 	if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3157 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3158 
3159 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3160 		/*
3161 		 * The HW reports non-shareable, we must remove the
3162 		 * cacheability attributes as well.
3163 		 */
3164 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3165 			 GICR_PENDBASER_CACHEABILITY_MASK);
3166 		val |= GICR_PENDBASER_nC;
3167 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3168 	}
3169 
3170 	/* Enable LPIs */
3171 	val = readl_relaxed(rbase + GICR_CTLR);
3172 	val |= GICR_CTLR_ENABLE_LPIS;
3173 	writel_relaxed(val, rbase + GICR_CTLR);
3174 
3175 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3176 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3177 
3178 		/*
3179 		 * It's possible for CPU to receive VLPIs before it is
3180 		 * scheduled as a vPE, especially for the first CPU, and the
3181 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3182 		 * as out of range and dropped by GIC.
3183 		 * So we initialize IDbits to known value to avoid VLPI drop.
3184 		 */
3185 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3186 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3187 			smp_processor_id(), val);
3188 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3189 
3190 		/*
3191 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3192 		 * ancient programming gets left in and has possibility of
3193 		 * corrupting memory.
3194 		 */
3195 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3196 	}
3197 
3198 	if (allocate_vpe_l1_table()) {
3199 		/*
3200 		 * If the allocation has failed, we're in massive trouble.
3201 		 * Disable direct injection, and pray that no VM was
3202 		 * already running...
3203 		 */
3204 		gic_rdists->has_rvpeid = false;
3205 		gic_rdists->has_vlpis = false;
3206 	}
3207 
3208 	/* Make sure the GIC has seen the above */
3209 	dsb(sy);
3210 out:
3211 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3212 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3213 		smp_processor_id(),
3214 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3215 		"reserved" : "allocated",
3216 		&paddr);
3217 }
3218 
3219 static void its_cpu_init_collection(struct its_node *its)
3220 {
3221 	int cpu = smp_processor_id();
3222 	u64 target;
3223 
3224 	/* avoid cross node collections and its mapping */
3225 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3226 		struct device_node *cpu_node;
3227 
3228 		cpu_node = of_get_cpu_node(cpu, NULL);
3229 		if (its->numa_node != NUMA_NO_NODE &&
3230 			its->numa_node != of_node_to_nid(cpu_node))
3231 			return;
3232 	}
3233 
3234 	/*
3235 	 * We now have to bind each collection to its target
3236 	 * redistributor.
3237 	 */
3238 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3239 		/*
3240 		 * This ITS wants the physical address of the
3241 		 * redistributor.
3242 		 */
3243 		target = gic_data_rdist()->phys_base;
3244 	} else {
3245 		/* This ITS wants a linear CPU number. */
3246 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3247 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3248 	}
3249 
3250 	/* Perform collection mapping */
3251 	its->collections[cpu].target_address = target;
3252 	its->collections[cpu].col_id = cpu;
3253 
3254 	its_send_mapc(its, &its->collections[cpu], 1);
3255 	its_send_invall(its, &its->collections[cpu]);
3256 }
3257 
3258 static void its_cpu_init_collections(void)
3259 {
3260 	struct its_node *its;
3261 
3262 	raw_spin_lock(&its_lock);
3263 
3264 	list_for_each_entry(its, &its_nodes, entry)
3265 		its_cpu_init_collection(its);
3266 
3267 	raw_spin_unlock(&its_lock);
3268 }
3269 
3270 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3271 {
3272 	struct its_device *its_dev = NULL, *tmp;
3273 	unsigned long flags;
3274 
3275 	raw_spin_lock_irqsave(&its->lock, flags);
3276 
3277 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3278 		if (tmp->device_id == dev_id) {
3279 			its_dev = tmp;
3280 			break;
3281 		}
3282 	}
3283 
3284 	raw_spin_unlock_irqrestore(&its->lock, flags);
3285 
3286 	return its_dev;
3287 }
3288 
3289 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3290 {
3291 	int i;
3292 
3293 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3294 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3295 			return &its->tables[i];
3296 	}
3297 
3298 	return NULL;
3299 }
3300 
3301 static bool its_alloc_table_entry(struct its_node *its,
3302 				  struct its_baser *baser, u32 id)
3303 {
3304 	struct page *page;
3305 	u32 esz, idx;
3306 	__le64 *table;
3307 
3308 	/* Don't allow device id that exceeds single, flat table limit */
3309 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3310 	if (!(baser->val & GITS_BASER_INDIRECT))
3311 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3312 
3313 	/* Compute 1st level table index & check if that exceeds table limit */
3314 	idx = id >> ilog2(baser->psz / esz);
3315 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3316 		return false;
3317 
3318 	table = baser->base;
3319 
3320 	/* Allocate memory for 2nd level table */
3321 	if (!table[idx]) {
3322 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3323 					get_order(baser->psz));
3324 		if (!page)
3325 			return false;
3326 
3327 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3328 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3329 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3330 
3331 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3332 
3333 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3334 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3335 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3336 
3337 		/* Ensure updated table contents are visible to ITS hardware */
3338 		dsb(sy);
3339 	}
3340 
3341 	return true;
3342 }
3343 
3344 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3345 {
3346 	struct its_baser *baser;
3347 
3348 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3349 
3350 	/* Don't allow device id that exceeds ITS hardware limit */
3351 	if (!baser)
3352 		return (ilog2(dev_id) < device_ids(its));
3353 
3354 	return its_alloc_table_entry(its, baser, dev_id);
3355 }
3356 
3357 static bool its_alloc_vpe_table(u32 vpe_id)
3358 {
3359 	struct its_node *its;
3360 	int cpu;
3361 
3362 	/*
3363 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3364 	 * could try and only do it on ITSs corresponding to devices
3365 	 * that have interrupts targeted at this VPE, but the
3366 	 * complexity becomes crazy (and you have tons of memory
3367 	 * anyway, right?).
3368 	 */
3369 	list_for_each_entry(its, &its_nodes, entry) {
3370 		struct its_baser *baser;
3371 
3372 		if (!is_v4(its))
3373 			continue;
3374 
3375 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3376 		if (!baser)
3377 			return false;
3378 
3379 		if (!its_alloc_table_entry(its, baser, vpe_id))
3380 			return false;
3381 	}
3382 
3383 	/* Non v4.1? No need to iterate RDs and go back early. */
3384 	if (!gic_rdists->has_rvpeid)
3385 		return true;
3386 
3387 	/*
3388 	 * Make sure the L2 tables are allocated for all copies of
3389 	 * the L1 table on *all* v4.1 RDs.
3390 	 */
3391 	for_each_possible_cpu(cpu) {
3392 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3393 			return false;
3394 	}
3395 
3396 	return true;
3397 }
3398 
3399 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3400 					    int nvecs, bool alloc_lpis)
3401 {
3402 	struct its_device *dev;
3403 	unsigned long *lpi_map = NULL;
3404 	unsigned long flags;
3405 	u16 *col_map = NULL;
3406 	void *itt;
3407 	int lpi_base;
3408 	int nr_lpis;
3409 	int nr_ites;
3410 	int sz;
3411 
3412 	if (!its_alloc_device_table(its, dev_id))
3413 		return NULL;
3414 
3415 	if (WARN_ON(!is_power_of_2(nvecs)))
3416 		nvecs = roundup_pow_of_two(nvecs);
3417 
3418 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3419 	/*
3420 	 * Even if the device wants a single LPI, the ITT must be
3421 	 * sized as a power of two (and you need at least one bit...).
3422 	 */
3423 	nr_ites = max(2, nvecs);
3424 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3425 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3426 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3427 	if (alloc_lpis) {
3428 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3429 		if (lpi_map)
3430 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3431 					  GFP_KERNEL);
3432 	} else {
3433 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3434 		nr_lpis = 0;
3435 		lpi_base = 0;
3436 	}
3437 
3438 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3439 		kfree(dev);
3440 		kfree(itt);
3441 		bitmap_free(lpi_map);
3442 		kfree(col_map);
3443 		return NULL;
3444 	}
3445 
3446 	gic_flush_dcache_to_poc(itt, sz);
3447 
3448 	dev->its = its;
3449 	dev->itt = itt;
3450 	dev->nr_ites = nr_ites;
3451 	dev->event_map.lpi_map = lpi_map;
3452 	dev->event_map.col_map = col_map;
3453 	dev->event_map.lpi_base = lpi_base;
3454 	dev->event_map.nr_lpis = nr_lpis;
3455 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3456 	dev->device_id = dev_id;
3457 	INIT_LIST_HEAD(&dev->entry);
3458 
3459 	raw_spin_lock_irqsave(&its->lock, flags);
3460 	list_add(&dev->entry, &its->its_device_list);
3461 	raw_spin_unlock_irqrestore(&its->lock, flags);
3462 
3463 	/* Map device to its ITT */
3464 	its_send_mapd(dev, 1);
3465 
3466 	return dev;
3467 }
3468 
3469 static void its_free_device(struct its_device *its_dev)
3470 {
3471 	unsigned long flags;
3472 
3473 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3474 	list_del(&its_dev->entry);
3475 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3476 	kfree(its_dev->event_map.col_map);
3477 	kfree(its_dev->itt);
3478 	kfree(its_dev);
3479 }
3480 
3481 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3482 {
3483 	int idx;
3484 
3485 	/* Find a free LPI region in lpi_map and allocate them. */
3486 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3487 				      dev->event_map.nr_lpis,
3488 				      get_count_order(nvecs));
3489 	if (idx < 0)
3490 		return -ENOSPC;
3491 
3492 	*hwirq = dev->event_map.lpi_base + idx;
3493 
3494 	return 0;
3495 }
3496 
3497 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3498 			   int nvec, msi_alloc_info_t *info)
3499 {
3500 	struct its_node *its;
3501 	struct its_device *its_dev;
3502 	struct msi_domain_info *msi_info;
3503 	u32 dev_id;
3504 	int err = 0;
3505 
3506 	/*
3507 	 * We ignore "dev" entirely, and rely on the dev_id that has
3508 	 * been passed via the scratchpad. This limits this domain's
3509 	 * usefulness to upper layers that definitely know that they
3510 	 * are built on top of the ITS.
3511 	 */
3512 	dev_id = info->scratchpad[0].ul;
3513 
3514 	msi_info = msi_get_domain_info(domain);
3515 	its = msi_info->data;
3516 
3517 	if (!gic_rdists->has_direct_lpi &&
3518 	    vpe_proxy.dev &&
3519 	    vpe_proxy.dev->its == its &&
3520 	    dev_id == vpe_proxy.dev->device_id) {
3521 		/* Bad luck. Get yourself a better implementation */
3522 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3523 			  dev_id);
3524 		return -EINVAL;
3525 	}
3526 
3527 	mutex_lock(&its->dev_alloc_lock);
3528 	its_dev = its_find_device(its, dev_id);
3529 	if (its_dev) {
3530 		/*
3531 		 * We already have seen this ID, probably through
3532 		 * another alias (PCI bridge of some sort). No need to
3533 		 * create the device.
3534 		 */
3535 		its_dev->shared = true;
3536 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3537 		goto out;
3538 	}
3539 
3540 	its_dev = its_create_device(its, dev_id, nvec, true);
3541 	if (!its_dev) {
3542 		err = -ENOMEM;
3543 		goto out;
3544 	}
3545 
3546 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3547 		its_dev->shared = true;
3548 
3549 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3550 out:
3551 	mutex_unlock(&its->dev_alloc_lock);
3552 	info->scratchpad[0].ptr = its_dev;
3553 	return err;
3554 }
3555 
3556 static struct msi_domain_ops its_msi_domain_ops = {
3557 	.msi_prepare	= its_msi_prepare,
3558 };
3559 
3560 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3561 				    unsigned int virq,
3562 				    irq_hw_number_t hwirq)
3563 {
3564 	struct irq_fwspec fwspec;
3565 
3566 	if (irq_domain_get_of_node(domain->parent)) {
3567 		fwspec.fwnode = domain->parent->fwnode;
3568 		fwspec.param_count = 3;
3569 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3570 		fwspec.param[1] = hwirq;
3571 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3572 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3573 		fwspec.fwnode = domain->parent->fwnode;
3574 		fwspec.param_count = 2;
3575 		fwspec.param[0] = hwirq;
3576 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3577 	} else {
3578 		return -EINVAL;
3579 	}
3580 
3581 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3582 }
3583 
3584 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3585 				unsigned int nr_irqs, void *args)
3586 {
3587 	msi_alloc_info_t *info = args;
3588 	struct its_device *its_dev = info->scratchpad[0].ptr;
3589 	struct its_node *its = its_dev->its;
3590 	struct irq_data *irqd;
3591 	irq_hw_number_t hwirq;
3592 	int err;
3593 	int i;
3594 
3595 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3596 	if (err)
3597 		return err;
3598 
3599 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3600 	if (err)
3601 		return err;
3602 
3603 	for (i = 0; i < nr_irqs; i++) {
3604 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3605 		if (err)
3606 			return err;
3607 
3608 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3609 					      hwirq + i, &its_irq_chip, its_dev);
3610 		irqd = irq_get_irq_data(virq + i);
3611 		irqd_set_single_target(irqd);
3612 		irqd_set_affinity_on_activate(irqd);
3613 		irqd_set_resend_when_in_progress(irqd);
3614 		pr_debug("ID:%d pID:%d vID:%d\n",
3615 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3616 			 (int)(hwirq + i), virq + i);
3617 	}
3618 
3619 	return 0;
3620 }
3621 
3622 static int its_irq_domain_activate(struct irq_domain *domain,
3623 				   struct irq_data *d, bool reserve)
3624 {
3625 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3626 	u32 event = its_get_event_id(d);
3627 	int cpu;
3628 
3629 	cpu = its_select_cpu(d, cpu_online_mask);
3630 	if (cpu < 0 || cpu >= nr_cpu_ids)
3631 		return -EINVAL;
3632 
3633 	its_inc_lpi_count(d, cpu);
3634 	its_dev->event_map.col_map[event] = cpu;
3635 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3636 
3637 	/* Map the GIC IRQ and event to the device */
3638 	its_send_mapti(its_dev, d->hwirq, event);
3639 	return 0;
3640 }
3641 
3642 static void its_irq_domain_deactivate(struct irq_domain *domain,
3643 				      struct irq_data *d)
3644 {
3645 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3646 	u32 event = its_get_event_id(d);
3647 
3648 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3649 	/* Stop the delivery of interrupts */
3650 	its_send_discard(its_dev, event);
3651 }
3652 
3653 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3654 				unsigned int nr_irqs)
3655 {
3656 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3657 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3658 	struct its_node *its = its_dev->its;
3659 	int i;
3660 
3661 	bitmap_release_region(its_dev->event_map.lpi_map,
3662 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3663 			      get_count_order(nr_irqs));
3664 
3665 	for (i = 0; i < nr_irqs; i++) {
3666 		struct irq_data *data = irq_domain_get_irq_data(domain,
3667 								virq + i);
3668 		/* Nuke the entry in the domain */
3669 		irq_domain_reset_irq_data(data);
3670 	}
3671 
3672 	mutex_lock(&its->dev_alloc_lock);
3673 
3674 	/*
3675 	 * If all interrupts have been freed, start mopping the
3676 	 * floor. This is conditioned on the device not being shared.
3677 	 */
3678 	if (!its_dev->shared &&
3679 	    bitmap_empty(its_dev->event_map.lpi_map,
3680 			 its_dev->event_map.nr_lpis)) {
3681 		its_lpi_free(its_dev->event_map.lpi_map,
3682 			     its_dev->event_map.lpi_base,
3683 			     its_dev->event_map.nr_lpis);
3684 
3685 		/* Unmap device/itt */
3686 		its_send_mapd(its_dev, 0);
3687 		its_free_device(its_dev);
3688 	}
3689 
3690 	mutex_unlock(&its->dev_alloc_lock);
3691 
3692 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3693 }
3694 
3695 static const struct irq_domain_ops its_domain_ops = {
3696 	.alloc			= its_irq_domain_alloc,
3697 	.free			= its_irq_domain_free,
3698 	.activate		= its_irq_domain_activate,
3699 	.deactivate		= its_irq_domain_deactivate,
3700 };
3701 
3702 /*
3703  * This is insane.
3704  *
3705  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3706  * likely), the only way to perform an invalidate is to use a fake
3707  * device to issue an INV command, implying that the LPI has first
3708  * been mapped to some event on that device. Since this is not exactly
3709  * cheap, we try to keep that mapping around as long as possible, and
3710  * only issue an UNMAP if we're short on available slots.
3711  *
3712  * Broken by design(tm).
3713  *
3714  * GICv4.1, on the other hand, mandates that we're able to invalidate
3715  * by writing to a MMIO register. It doesn't implement the whole of
3716  * DirectLPI, but that's good enough. And most of the time, we don't
3717  * even have to invalidate anything, as the redistributor can be told
3718  * whether to generate a doorbell or not (we thus leave it enabled,
3719  * always).
3720  */
3721 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3722 {
3723 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3724 	if (gic_rdists->has_rvpeid)
3725 		return;
3726 
3727 	/* Already unmapped? */
3728 	if (vpe->vpe_proxy_event == -1)
3729 		return;
3730 
3731 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3732 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3733 
3734 	/*
3735 	 * We don't track empty slots at all, so let's move the
3736 	 * next_victim pointer if we can quickly reuse that slot
3737 	 * instead of nuking an existing entry. Not clear that this is
3738 	 * always a win though, and this might just generate a ripple
3739 	 * effect... Let's just hope VPEs don't migrate too often.
3740 	 */
3741 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3742 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3743 
3744 	vpe->vpe_proxy_event = -1;
3745 }
3746 
3747 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3748 {
3749 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3750 	if (gic_rdists->has_rvpeid)
3751 		return;
3752 
3753 	if (!gic_rdists->has_direct_lpi) {
3754 		unsigned long flags;
3755 
3756 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3757 		its_vpe_db_proxy_unmap_locked(vpe);
3758 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3759 	}
3760 }
3761 
3762 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3763 {
3764 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3765 	if (gic_rdists->has_rvpeid)
3766 		return;
3767 
3768 	/* Already mapped? */
3769 	if (vpe->vpe_proxy_event != -1)
3770 		return;
3771 
3772 	/* This slot was already allocated. Kick the other VPE out. */
3773 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3774 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3775 
3776 	/* Map the new VPE instead */
3777 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3778 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3779 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3780 
3781 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3782 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3783 }
3784 
3785 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3786 {
3787 	unsigned long flags;
3788 	struct its_collection *target_col;
3789 
3790 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3791 	if (gic_rdists->has_rvpeid)
3792 		return;
3793 
3794 	if (gic_rdists->has_direct_lpi) {
3795 		void __iomem *rdbase;
3796 
3797 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3798 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3799 		wait_for_syncr(rdbase);
3800 
3801 		return;
3802 	}
3803 
3804 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3805 
3806 	its_vpe_db_proxy_map_locked(vpe);
3807 
3808 	target_col = &vpe_proxy.dev->its->collections[to];
3809 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3810 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3811 
3812 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3813 }
3814 
3815 static int its_vpe_set_affinity(struct irq_data *d,
3816 				const struct cpumask *mask_val,
3817 				bool force)
3818 {
3819 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3820 	int from, cpu = cpumask_first(mask_val);
3821 	unsigned long flags;
3822 
3823 	/*
3824 	 * Changing affinity is mega expensive, so let's be as lazy as
3825 	 * we can and only do it if we really have to. Also, if mapped
3826 	 * into the proxy device, we need to move the doorbell
3827 	 * interrupt to its new location.
3828 	 *
3829 	 * Another thing is that changing the affinity of a vPE affects
3830 	 * *other interrupts* such as all the vLPIs that are routed to
3831 	 * this vPE. This means that the irq_desc lock is not enough to
3832 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3833 	 * during the update, hence the lock below which must also be
3834 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3835 	 */
3836 	from = vpe_to_cpuid_lock(vpe, &flags);
3837 	if (from == cpu)
3838 		goto out;
3839 
3840 	vpe->col_idx = cpu;
3841 
3842 	/*
3843 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3844 	 * is sharing its VPE table with the current one.
3845 	 */
3846 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3847 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3848 		goto out;
3849 
3850 	its_send_vmovp(vpe);
3851 	its_vpe_db_proxy_move(vpe, from, cpu);
3852 
3853 out:
3854 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3855 	vpe_to_cpuid_unlock(vpe, flags);
3856 
3857 	return IRQ_SET_MASK_OK_DONE;
3858 }
3859 
3860 static void its_wait_vpt_parse_complete(void)
3861 {
3862 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3863 	u64 val;
3864 
3865 	if (!gic_rdists->has_vpend_valid_dirty)
3866 		return;
3867 
3868 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3869 						       val,
3870 						       !(val & GICR_VPENDBASER_Dirty),
3871 						       1, 500));
3872 }
3873 
3874 static void its_vpe_schedule(struct its_vpe *vpe)
3875 {
3876 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3877 	u64 val;
3878 
3879 	/* Schedule the VPE */
3880 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3881 		GENMASK_ULL(51, 12);
3882 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3883 	val |= GICR_VPROPBASER_RaWb;
3884 	val |= GICR_VPROPBASER_InnerShareable;
3885 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3886 
3887 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3888 		GENMASK_ULL(51, 16);
3889 	val |= GICR_VPENDBASER_RaWaWb;
3890 	val |= GICR_VPENDBASER_InnerShareable;
3891 	/*
3892 	 * There is no good way of finding out if the pending table is
3893 	 * empty as we can race against the doorbell interrupt very
3894 	 * easily. So in the end, vpe->pending_last is only an
3895 	 * indication that the vcpu has something pending, not one
3896 	 * that the pending table is empty. A good implementation
3897 	 * would be able to read its coarse map pretty quickly anyway,
3898 	 * making this a tolerable issue.
3899 	 */
3900 	val |= GICR_VPENDBASER_PendingLast;
3901 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3902 	val |= GICR_VPENDBASER_Valid;
3903 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3904 }
3905 
3906 static void its_vpe_deschedule(struct its_vpe *vpe)
3907 {
3908 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3909 	u64 val;
3910 
3911 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3912 
3913 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3914 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3915 }
3916 
3917 static void its_vpe_invall(struct its_vpe *vpe)
3918 {
3919 	struct its_node *its;
3920 
3921 	list_for_each_entry(its, &its_nodes, entry) {
3922 		if (!is_v4(its))
3923 			continue;
3924 
3925 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3926 			continue;
3927 
3928 		/*
3929 		 * Sending a VINVALL to a single ITS is enough, as all
3930 		 * we need is to reach the redistributors.
3931 		 */
3932 		its_send_vinvall(its, vpe);
3933 		return;
3934 	}
3935 }
3936 
3937 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3938 {
3939 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3940 	struct its_cmd_info *info = vcpu_info;
3941 
3942 	switch (info->cmd_type) {
3943 	case SCHEDULE_VPE:
3944 		its_vpe_schedule(vpe);
3945 		return 0;
3946 
3947 	case DESCHEDULE_VPE:
3948 		its_vpe_deschedule(vpe);
3949 		return 0;
3950 
3951 	case COMMIT_VPE:
3952 		its_wait_vpt_parse_complete();
3953 		return 0;
3954 
3955 	case INVALL_VPE:
3956 		its_vpe_invall(vpe);
3957 		return 0;
3958 
3959 	default:
3960 		return -EINVAL;
3961 	}
3962 }
3963 
3964 static void its_vpe_send_cmd(struct its_vpe *vpe,
3965 			     void (*cmd)(struct its_device *, u32))
3966 {
3967 	unsigned long flags;
3968 
3969 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3970 
3971 	its_vpe_db_proxy_map_locked(vpe);
3972 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3973 
3974 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3975 }
3976 
3977 static void its_vpe_send_inv(struct irq_data *d)
3978 {
3979 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3980 
3981 	if (gic_rdists->has_direct_lpi)
3982 		__direct_lpi_inv(d, d->parent_data->hwirq);
3983 	else
3984 		its_vpe_send_cmd(vpe, its_send_inv);
3985 }
3986 
3987 static void its_vpe_mask_irq(struct irq_data *d)
3988 {
3989 	/*
3990 	 * We need to unmask the LPI, which is described by the parent
3991 	 * irq_data. Instead of calling into the parent (which won't
3992 	 * exactly do the right thing, let's simply use the
3993 	 * parent_data pointer. Yes, I'm naughty.
3994 	 */
3995 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3996 	its_vpe_send_inv(d);
3997 }
3998 
3999 static void its_vpe_unmask_irq(struct irq_data *d)
4000 {
4001 	/* Same hack as above... */
4002 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4003 	its_vpe_send_inv(d);
4004 }
4005 
4006 static int its_vpe_set_irqchip_state(struct irq_data *d,
4007 				     enum irqchip_irq_state which,
4008 				     bool state)
4009 {
4010 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4011 
4012 	if (which != IRQCHIP_STATE_PENDING)
4013 		return -EINVAL;
4014 
4015 	if (gic_rdists->has_direct_lpi) {
4016 		void __iomem *rdbase;
4017 
4018 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4019 		if (state) {
4020 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4021 		} else {
4022 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4023 			wait_for_syncr(rdbase);
4024 		}
4025 	} else {
4026 		if (state)
4027 			its_vpe_send_cmd(vpe, its_send_int);
4028 		else
4029 			its_vpe_send_cmd(vpe, its_send_clear);
4030 	}
4031 
4032 	return 0;
4033 }
4034 
4035 static int its_vpe_retrigger(struct irq_data *d)
4036 {
4037 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4038 }
4039 
4040 static struct irq_chip its_vpe_irq_chip = {
4041 	.name			= "GICv4-vpe",
4042 	.irq_mask		= its_vpe_mask_irq,
4043 	.irq_unmask		= its_vpe_unmask_irq,
4044 	.irq_eoi		= irq_chip_eoi_parent,
4045 	.irq_set_affinity	= its_vpe_set_affinity,
4046 	.irq_retrigger		= its_vpe_retrigger,
4047 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4048 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4049 };
4050 
4051 static struct its_node *find_4_1_its(void)
4052 {
4053 	static struct its_node *its = NULL;
4054 
4055 	if (!its) {
4056 		list_for_each_entry(its, &its_nodes, entry) {
4057 			if (is_v4_1(its))
4058 				return its;
4059 		}
4060 
4061 		/* Oops? */
4062 		its = NULL;
4063 	}
4064 
4065 	return its;
4066 }
4067 
4068 static void its_vpe_4_1_send_inv(struct irq_data *d)
4069 {
4070 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4071 	struct its_node *its;
4072 
4073 	/*
4074 	 * GICv4.1 wants doorbells to be invalidated using the
4075 	 * INVDB command in order to be broadcast to all RDs. Send
4076 	 * it to the first valid ITS, and let the HW do its magic.
4077 	 */
4078 	its = find_4_1_its();
4079 	if (its)
4080 		its_send_invdb(its, vpe);
4081 }
4082 
4083 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4084 {
4085 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4086 	its_vpe_4_1_send_inv(d);
4087 }
4088 
4089 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4090 {
4091 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4092 	its_vpe_4_1_send_inv(d);
4093 }
4094 
4095 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4096 				 struct its_cmd_info *info)
4097 {
4098 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4099 	u64 val = 0;
4100 
4101 	/* Schedule the VPE */
4102 	val |= GICR_VPENDBASER_Valid;
4103 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4104 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4105 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4106 
4107 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4108 }
4109 
4110 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4111 				   struct its_cmd_info *info)
4112 {
4113 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4114 	u64 val;
4115 
4116 	if (info->req_db) {
4117 		unsigned long flags;
4118 
4119 		/*
4120 		 * vPE is going to block: make the vPE non-resident with
4121 		 * PendingLast clear and DB set. The GIC guarantees that if
4122 		 * we read-back PendingLast clear, then a doorbell will be
4123 		 * delivered when an interrupt comes.
4124 		 *
4125 		 * Note the locking to deal with the concurrent update of
4126 		 * pending_last from the doorbell interrupt handler that can
4127 		 * run concurrently.
4128 		 */
4129 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4130 		val = its_clear_vpend_valid(vlpi_base,
4131 					    GICR_VPENDBASER_PendingLast,
4132 					    GICR_VPENDBASER_4_1_DB);
4133 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4134 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4135 	} else {
4136 		/*
4137 		 * We're not blocking, so just make the vPE non-resident
4138 		 * with PendingLast set, indicating that we'll be back.
4139 		 */
4140 		val = its_clear_vpend_valid(vlpi_base,
4141 					    0,
4142 					    GICR_VPENDBASER_PendingLast);
4143 		vpe->pending_last = true;
4144 	}
4145 }
4146 
4147 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4148 {
4149 	void __iomem *rdbase;
4150 	unsigned long flags;
4151 	u64 val;
4152 	int cpu;
4153 
4154 	val  = GICR_INVALLR_V;
4155 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4156 
4157 	/* Target the redistributor this vPE is currently known on */
4158 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4159 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4160 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4161 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4162 
4163 	wait_for_syncr(rdbase);
4164 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4165 	vpe_to_cpuid_unlock(vpe, flags);
4166 }
4167 
4168 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4169 {
4170 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4171 	struct its_cmd_info *info = vcpu_info;
4172 
4173 	switch (info->cmd_type) {
4174 	case SCHEDULE_VPE:
4175 		its_vpe_4_1_schedule(vpe, info);
4176 		return 0;
4177 
4178 	case DESCHEDULE_VPE:
4179 		its_vpe_4_1_deschedule(vpe, info);
4180 		return 0;
4181 
4182 	case COMMIT_VPE:
4183 		its_wait_vpt_parse_complete();
4184 		return 0;
4185 
4186 	case INVALL_VPE:
4187 		its_vpe_4_1_invall(vpe);
4188 		return 0;
4189 
4190 	default:
4191 		return -EINVAL;
4192 	}
4193 }
4194 
4195 static struct irq_chip its_vpe_4_1_irq_chip = {
4196 	.name			= "GICv4.1-vpe",
4197 	.irq_mask		= its_vpe_4_1_mask_irq,
4198 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4199 	.irq_eoi		= irq_chip_eoi_parent,
4200 	.irq_set_affinity	= its_vpe_set_affinity,
4201 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4202 };
4203 
4204 static void its_configure_sgi(struct irq_data *d, bool clear)
4205 {
4206 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4207 	struct its_cmd_desc desc;
4208 
4209 	desc.its_vsgi_cmd.vpe = vpe;
4210 	desc.its_vsgi_cmd.sgi = d->hwirq;
4211 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4212 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4213 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4214 	desc.its_vsgi_cmd.clear = clear;
4215 
4216 	/*
4217 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4218 	 * destination VPE is mapped there. Since we map them eagerly at
4219 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4220 	 */
4221 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4222 }
4223 
4224 static void its_sgi_mask_irq(struct irq_data *d)
4225 {
4226 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4227 
4228 	vpe->sgi_config[d->hwirq].enabled = false;
4229 	its_configure_sgi(d, false);
4230 }
4231 
4232 static void its_sgi_unmask_irq(struct irq_data *d)
4233 {
4234 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4235 
4236 	vpe->sgi_config[d->hwirq].enabled = true;
4237 	its_configure_sgi(d, false);
4238 }
4239 
4240 static int its_sgi_set_affinity(struct irq_data *d,
4241 				const struct cpumask *mask_val,
4242 				bool force)
4243 {
4244 	/*
4245 	 * There is no notion of affinity for virtual SGIs, at least
4246 	 * not on the host (since they can only be targeting a vPE).
4247 	 * Tell the kernel we've done whatever it asked for.
4248 	 */
4249 	irq_data_update_effective_affinity(d, mask_val);
4250 	return IRQ_SET_MASK_OK;
4251 }
4252 
4253 static int its_sgi_set_irqchip_state(struct irq_data *d,
4254 				     enum irqchip_irq_state which,
4255 				     bool state)
4256 {
4257 	if (which != IRQCHIP_STATE_PENDING)
4258 		return -EINVAL;
4259 
4260 	if (state) {
4261 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4262 		struct its_node *its = find_4_1_its();
4263 		u64 val;
4264 
4265 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4266 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4267 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4268 	} else {
4269 		its_configure_sgi(d, true);
4270 	}
4271 
4272 	return 0;
4273 }
4274 
4275 static int its_sgi_get_irqchip_state(struct irq_data *d,
4276 				     enum irqchip_irq_state which, bool *val)
4277 {
4278 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279 	void __iomem *base;
4280 	unsigned long flags;
4281 	u32 count = 1000000;	/* 1s! */
4282 	u32 status;
4283 	int cpu;
4284 
4285 	if (which != IRQCHIP_STATE_PENDING)
4286 		return -EINVAL;
4287 
4288 	/*
4289 	 * Locking galore! We can race against two different events:
4290 	 *
4291 	 * - Concurrent vPE affinity change: we must make sure it cannot
4292 	 *   happen, or we'll talk to the wrong redistributor. This is
4293 	 *   identical to what happens with vLPIs.
4294 	 *
4295 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4296 	 *   MMIO registers, this must be made atomic one way or another.
4297 	 */
4298 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4299 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4300 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4301 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4302 	do {
4303 		status = readl_relaxed(base + GICR_VSGIPENDR);
4304 		if (!(status & GICR_VSGIPENDR_BUSY))
4305 			goto out;
4306 
4307 		count--;
4308 		if (!count) {
4309 			pr_err_ratelimited("Unable to get SGI status\n");
4310 			goto out;
4311 		}
4312 		cpu_relax();
4313 		udelay(1);
4314 	} while (count);
4315 
4316 out:
4317 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4318 	vpe_to_cpuid_unlock(vpe, flags);
4319 
4320 	if (!count)
4321 		return -ENXIO;
4322 
4323 	*val = !!(status & (1 << d->hwirq));
4324 
4325 	return 0;
4326 }
4327 
4328 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4329 {
4330 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4331 	struct its_cmd_info *info = vcpu_info;
4332 
4333 	switch (info->cmd_type) {
4334 	case PROP_UPDATE_VSGI:
4335 		vpe->sgi_config[d->hwirq].priority = info->priority;
4336 		vpe->sgi_config[d->hwirq].group = info->group;
4337 		its_configure_sgi(d, false);
4338 		return 0;
4339 
4340 	default:
4341 		return -EINVAL;
4342 	}
4343 }
4344 
4345 static struct irq_chip its_sgi_irq_chip = {
4346 	.name			= "GICv4.1-sgi",
4347 	.irq_mask		= its_sgi_mask_irq,
4348 	.irq_unmask		= its_sgi_unmask_irq,
4349 	.irq_set_affinity	= its_sgi_set_affinity,
4350 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4351 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4352 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4353 };
4354 
4355 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4356 				    unsigned int virq, unsigned int nr_irqs,
4357 				    void *args)
4358 {
4359 	struct its_vpe *vpe = args;
4360 	int i;
4361 
4362 	/* Yes, we do want 16 SGIs */
4363 	WARN_ON(nr_irqs != 16);
4364 
4365 	for (i = 0; i < 16; i++) {
4366 		vpe->sgi_config[i].priority = 0;
4367 		vpe->sgi_config[i].enabled = false;
4368 		vpe->sgi_config[i].group = false;
4369 
4370 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4371 					      &its_sgi_irq_chip, vpe);
4372 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4373 	}
4374 
4375 	return 0;
4376 }
4377 
4378 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4379 				    unsigned int virq,
4380 				    unsigned int nr_irqs)
4381 {
4382 	/* Nothing to do */
4383 }
4384 
4385 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4386 				       struct irq_data *d, bool reserve)
4387 {
4388 	/* Write out the initial SGI configuration */
4389 	its_configure_sgi(d, false);
4390 	return 0;
4391 }
4392 
4393 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4394 					  struct irq_data *d)
4395 {
4396 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4397 
4398 	/*
4399 	 * The VSGI command is awkward:
4400 	 *
4401 	 * - To change the configuration, CLEAR must be set to false,
4402 	 *   leaving the pending bit unchanged.
4403 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4404 	 *   the configuration unchanged.
4405 	 *
4406 	 * You just can't do both at once, hence the two commands below.
4407 	 */
4408 	vpe->sgi_config[d->hwirq].enabled = false;
4409 	its_configure_sgi(d, false);
4410 	its_configure_sgi(d, true);
4411 }
4412 
4413 static const struct irq_domain_ops its_sgi_domain_ops = {
4414 	.alloc		= its_sgi_irq_domain_alloc,
4415 	.free		= its_sgi_irq_domain_free,
4416 	.activate	= its_sgi_irq_domain_activate,
4417 	.deactivate	= its_sgi_irq_domain_deactivate,
4418 };
4419 
4420 static int its_vpe_id_alloc(void)
4421 {
4422 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4423 }
4424 
4425 static void its_vpe_id_free(u16 id)
4426 {
4427 	ida_simple_remove(&its_vpeid_ida, id);
4428 }
4429 
4430 static int its_vpe_init(struct its_vpe *vpe)
4431 {
4432 	struct page *vpt_page;
4433 	int vpe_id;
4434 
4435 	/* Allocate vpe_id */
4436 	vpe_id = its_vpe_id_alloc();
4437 	if (vpe_id < 0)
4438 		return vpe_id;
4439 
4440 	/* Allocate VPT */
4441 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4442 	if (!vpt_page) {
4443 		its_vpe_id_free(vpe_id);
4444 		return -ENOMEM;
4445 	}
4446 
4447 	if (!its_alloc_vpe_table(vpe_id)) {
4448 		its_vpe_id_free(vpe_id);
4449 		its_free_pending_table(vpt_page);
4450 		return -ENOMEM;
4451 	}
4452 
4453 	raw_spin_lock_init(&vpe->vpe_lock);
4454 	vpe->vpe_id = vpe_id;
4455 	vpe->vpt_page = vpt_page;
4456 	if (gic_rdists->has_rvpeid)
4457 		atomic_set(&vpe->vmapp_count, 0);
4458 	else
4459 		vpe->vpe_proxy_event = -1;
4460 
4461 	return 0;
4462 }
4463 
4464 static void its_vpe_teardown(struct its_vpe *vpe)
4465 {
4466 	its_vpe_db_proxy_unmap(vpe);
4467 	its_vpe_id_free(vpe->vpe_id);
4468 	its_free_pending_table(vpe->vpt_page);
4469 }
4470 
4471 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4472 				    unsigned int virq,
4473 				    unsigned int nr_irqs)
4474 {
4475 	struct its_vm *vm = domain->host_data;
4476 	int i;
4477 
4478 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4479 
4480 	for (i = 0; i < nr_irqs; i++) {
4481 		struct irq_data *data = irq_domain_get_irq_data(domain,
4482 								virq + i);
4483 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4484 
4485 		BUG_ON(vm != vpe->its_vm);
4486 
4487 		clear_bit(data->hwirq, vm->db_bitmap);
4488 		its_vpe_teardown(vpe);
4489 		irq_domain_reset_irq_data(data);
4490 	}
4491 
4492 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4493 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4494 		its_free_prop_table(vm->vprop_page);
4495 	}
4496 }
4497 
4498 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4499 				    unsigned int nr_irqs, void *args)
4500 {
4501 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4502 	struct its_vm *vm = args;
4503 	unsigned long *bitmap;
4504 	struct page *vprop_page;
4505 	int base, nr_ids, i, err = 0;
4506 
4507 	BUG_ON(!vm);
4508 
4509 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4510 	if (!bitmap)
4511 		return -ENOMEM;
4512 
4513 	if (nr_ids < nr_irqs) {
4514 		its_lpi_free(bitmap, base, nr_ids);
4515 		return -ENOMEM;
4516 	}
4517 
4518 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4519 	if (!vprop_page) {
4520 		its_lpi_free(bitmap, base, nr_ids);
4521 		return -ENOMEM;
4522 	}
4523 
4524 	vm->db_bitmap = bitmap;
4525 	vm->db_lpi_base = base;
4526 	vm->nr_db_lpis = nr_ids;
4527 	vm->vprop_page = vprop_page;
4528 
4529 	if (gic_rdists->has_rvpeid)
4530 		irqchip = &its_vpe_4_1_irq_chip;
4531 
4532 	for (i = 0; i < nr_irqs; i++) {
4533 		vm->vpes[i]->vpe_db_lpi = base + i;
4534 		err = its_vpe_init(vm->vpes[i]);
4535 		if (err)
4536 			break;
4537 		err = its_irq_gic_domain_alloc(domain, virq + i,
4538 					       vm->vpes[i]->vpe_db_lpi);
4539 		if (err)
4540 			break;
4541 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4542 					      irqchip, vm->vpes[i]);
4543 		set_bit(i, bitmap);
4544 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4545 	}
4546 
4547 	if (err) {
4548 		if (i > 0)
4549 			its_vpe_irq_domain_free(domain, virq, i);
4550 
4551 		its_lpi_free(bitmap, base, nr_ids);
4552 		its_free_prop_table(vprop_page);
4553 	}
4554 
4555 	return err;
4556 }
4557 
4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4559 				       struct irq_data *d, bool reserve)
4560 {
4561 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562 	struct its_node *its;
4563 
4564 	/*
4565 	 * If we use the list map, we issue VMAPP on demand... Unless
4566 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4567 	 * so that VSGIs can work.
4568 	 */
4569 	if (!gic_requires_eager_mapping())
4570 		return 0;
4571 
4572 	/* Map the VPE to the first possible CPU */
4573 	vpe->col_idx = cpumask_first(cpu_online_mask);
4574 
4575 	list_for_each_entry(its, &its_nodes, entry) {
4576 		if (!is_v4(its))
4577 			continue;
4578 
4579 		its_send_vmapp(its, vpe, true);
4580 		its_send_vinvall(its, vpe);
4581 	}
4582 
4583 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4584 
4585 	return 0;
4586 }
4587 
4588 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4589 					  struct irq_data *d)
4590 {
4591 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4592 	struct its_node *its;
4593 
4594 	/*
4595 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4596 	 * VLPIs are associated with the VM.
4597 	 */
4598 	if (!gic_requires_eager_mapping())
4599 		return;
4600 
4601 	list_for_each_entry(its, &its_nodes, entry) {
4602 		if (!is_v4(its))
4603 			continue;
4604 
4605 		its_send_vmapp(its, vpe, false);
4606 	}
4607 
4608 	/*
4609 	 * There may be a direct read to the VPT after unmapping the
4610 	 * vPE, to guarantee the validity of this, we make the VPT
4611 	 * memory coherent with the CPU caches here.
4612 	 */
4613 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4614 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4615 					LPI_PENDBASE_SZ);
4616 }
4617 
4618 static const struct irq_domain_ops its_vpe_domain_ops = {
4619 	.alloc			= its_vpe_irq_domain_alloc,
4620 	.free			= its_vpe_irq_domain_free,
4621 	.activate		= its_vpe_irq_domain_activate,
4622 	.deactivate		= its_vpe_irq_domain_deactivate,
4623 };
4624 
4625 static int its_force_quiescent(void __iomem *base)
4626 {
4627 	u32 count = 1000000;	/* 1s */
4628 	u32 val;
4629 
4630 	val = readl_relaxed(base + GITS_CTLR);
4631 	/*
4632 	 * GIC architecture specification requires the ITS to be both
4633 	 * disabled and quiescent for writes to GITS_BASER<n> or
4634 	 * GITS_CBASER to not have UNPREDICTABLE results.
4635 	 */
4636 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4637 		return 0;
4638 
4639 	/* Disable the generation of all interrupts to this ITS */
4640 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4641 	writel_relaxed(val, base + GITS_CTLR);
4642 
4643 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4644 	while (1) {
4645 		val = readl_relaxed(base + GITS_CTLR);
4646 		if (val & GITS_CTLR_QUIESCENT)
4647 			return 0;
4648 
4649 		count--;
4650 		if (!count)
4651 			return -EBUSY;
4652 
4653 		cpu_relax();
4654 		udelay(1);
4655 	}
4656 }
4657 
4658 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4659 {
4660 	struct its_node *its = data;
4661 
4662 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4663 	its->typer &= ~GITS_TYPER_DEVBITS;
4664 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4665 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4666 
4667 	return true;
4668 }
4669 
4670 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4671 {
4672 	struct its_node *its = data;
4673 
4674 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4675 
4676 	return true;
4677 }
4678 
4679 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4680 {
4681 	struct its_node *its = data;
4682 
4683 	/* On QDF2400, the size of the ITE is 16Bytes */
4684 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4685 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4686 
4687 	return true;
4688 }
4689 
4690 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4691 {
4692 	struct its_node *its = its_dev->its;
4693 
4694 	/*
4695 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4696 	 * which maps 32-bit writes targeted at a separate window of
4697 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4698 	 * with device ID taken from bits [device_id_bits + 1:2] of
4699 	 * the window offset.
4700 	 */
4701 	return its->pre_its_base + (its_dev->device_id << 2);
4702 }
4703 
4704 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4705 {
4706 	struct its_node *its = data;
4707 	u32 pre_its_window[2];
4708 	u32 ids;
4709 
4710 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4711 					   "socionext,synquacer-pre-its",
4712 					   pre_its_window,
4713 					   ARRAY_SIZE(pre_its_window))) {
4714 
4715 		its->pre_its_base = pre_its_window[0];
4716 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4717 
4718 		ids = ilog2(pre_its_window[1]) - 2;
4719 		if (device_ids(its) > ids) {
4720 			its->typer &= ~GITS_TYPER_DEVBITS;
4721 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4722 		}
4723 
4724 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4725 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4726 		return true;
4727 	}
4728 	return false;
4729 }
4730 
4731 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4732 {
4733 	struct its_node *its = data;
4734 
4735 	/*
4736 	 * Hip07 insists on using the wrong address for the VLPI
4737 	 * page. Trick it into doing the right thing...
4738 	 */
4739 	its->vlpi_redist_offset = SZ_128K;
4740 	return true;
4741 }
4742 
4743 static bool __maybe_unused its_enable_rk3588001(void *data)
4744 {
4745 	struct its_node *its = data;
4746 
4747 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4748 	    !of_machine_is_compatible("rockchip,rk3588s"))
4749 		return false;
4750 
4751 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4752 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4753 
4754 	return true;
4755 }
4756 
4757 static bool its_set_non_coherent(void *data)
4758 {
4759 	struct its_node *its = data;
4760 
4761 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4762 	return true;
4763 }
4764 
4765 static const struct gic_quirk its_quirks[] = {
4766 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4767 	{
4768 		.desc	= "ITS: Cavium errata 22375, 24313",
4769 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4770 		.mask	= 0xffff0fff,
4771 		.init	= its_enable_quirk_cavium_22375,
4772 	},
4773 #endif
4774 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4775 	{
4776 		.desc	= "ITS: Cavium erratum 23144",
4777 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4778 		.mask	= 0xffff0fff,
4779 		.init	= its_enable_quirk_cavium_23144,
4780 	},
4781 #endif
4782 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4783 	{
4784 		.desc	= "ITS: QDF2400 erratum 0065",
4785 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4786 		.mask	= 0xffffffff,
4787 		.init	= its_enable_quirk_qdf2400_e0065,
4788 	},
4789 #endif
4790 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4791 	{
4792 		/*
4793 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4794 		 * implementation, but with a 'pre-ITS' added that requires
4795 		 * special handling in software.
4796 		 */
4797 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4798 		.iidr	= 0x0001143b,
4799 		.mask	= 0xffffffff,
4800 		.init	= its_enable_quirk_socionext_synquacer,
4801 	},
4802 #endif
4803 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4804 	{
4805 		.desc	= "ITS: Hip07 erratum 161600802",
4806 		.iidr	= 0x00000004,
4807 		.mask	= 0xffffffff,
4808 		.init	= its_enable_quirk_hip07_161600802,
4809 	},
4810 #endif
4811 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4812 	{
4813 		.desc   = "ITS: Rockchip erratum RK3588001",
4814 		.iidr   = 0x0201743b,
4815 		.mask   = 0xffffffff,
4816 		.init   = its_enable_rk3588001,
4817 	},
4818 #endif
4819 	{
4820 		.desc   = "ITS: non-coherent attribute",
4821 		.property = "dma-noncoherent",
4822 		.init   = its_set_non_coherent,
4823 	},
4824 	{
4825 	}
4826 };
4827 
4828 static void its_enable_quirks(struct its_node *its)
4829 {
4830 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4831 
4832 	gic_enable_quirks(iidr, its_quirks, its);
4833 
4834 	if (is_of_node(its->fwnode_handle))
4835 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4836 				     its_quirks, its);
4837 }
4838 
4839 static int its_save_disable(void)
4840 {
4841 	struct its_node *its;
4842 	int err = 0;
4843 
4844 	raw_spin_lock(&its_lock);
4845 	list_for_each_entry(its, &its_nodes, entry) {
4846 		void __iomem *base;
4847 
4848 		base = its->base;
4849 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4850 		err = its_force_quiescent(base);
4851 		if (err) {
4852 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4853 			       &its->phys_base, err);
4854 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4855 			goto err;
4856 		}
4857 
4858 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4859 	}
4860 
4861 err:
4862 	if (err) {
4863 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4864 			void __iomem *base;
4865 
4866 			base = its->base;
4867 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4868 		}
4869 	}
4870 	raw_spin_unlock(&its_lock);
4871 
4872 	return err;
4873 }
4874 
4875 static void its_restore_enable(void)
4876 {
4877 	struct its_node *its;
4878 	int ret;
4879 
4880 	raw_spin_lock(&its_lock);
4881 	list_for_each_entry(its, &its_nodes, entry) {
4882 		void __iomem *base;
4883 		int i;
4884 
4885 		base = its->base;
4886 
4887 		/*
4888 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4889 		 * don't restore it since writing to CBASER or BASER<n>
4890 		 * registers is undefined according to the GIC v3 ITS
4891 		 * Specification.
4892 		 *
4893 		 * Firmware resuming with the ITS enabled is terminally broken.
4894 		 */
4895 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4896 		ret = its_force_quiescent(base);
4897 		if (ret) {
4898 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4899 			       &its->phys_base, ret);
4900 			continue;
4901 		}
4902 
4903 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4904 
4905 		/*
4906 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4907 		 * cmd_write line up with it.
4908 		 */
4909 		its->cmd_write = its->cmd_base;
4910 		gits_write_cwriter(0, base + GITS_CWRITER);
4911 
4912 		/* Restore GITS_BASER from the value cache. */
4913 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4914 			struct its_baser *baser = &its->tables[i];
4915 
4916 			if (!(baser->val & GITS_BASER_VALID))
4917 				continue;
4918 
4919 			its_write_baser(its, baser, baser->val);
4920 		}
4921 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4922 
4923 		/*
4924 		 * Reinit the collection if it's stored in the ITS. This is
4925 		 * indicated by the col_id being less than the HCC field.
4926 		 * CID < HCC as specified in the GIC v3 Documentation.
4927 		 */
4928 		if (its->collections[smp_processor_id()].col_id <
4929 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4930 			its_cpu_init_collection(its);
4931 	}
4932 	raw_spin_unlock(&its_lock);
4933 }
4934 
4935 static struct syscore_ops its_syscore_ops = {
4936 	.suspend = its_save_disable,
4937 	.resume = its_restore_enable,
4938 };
4939 
4940 static void __init __iomem *its_map_one(struct resource *res, int *err)
4941 {
4942 	void __iomem *its_base;
4943 	u32 val;
4944 
4945 	its_base = ioremap(res->start, SZ_64K);
4946 	if (!its_base) {
4947 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4948 		*err = -ENOMEM;
4949 		return NULL;
4950 	}
4951 
4952 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4953 	if (val != 0x30 && val != 0x40) {
4954 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4955 		*err = -ENODEV;
4956 		goto out_unmap;
4957 	}
4958 
4959 	*err = its_force_quiescent(its_base);
4960 	if (*err) {
4961 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4962 		goto out_unmap;
4963 	}
4964 
4965 	return its_base;
4966 
4967 out_unmap:
4968 	iounmap(its_base);
4969 	return NULL;
4970 }
4971 
4972 static int its_init_domain(struct its_node *its)
4973 {
4974 	struct irq_domain *inner_domain;
4975 	struct msi_domain_info *info;
4976 
4977 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4978 	if (!info)
4979 		return -ENOMEM;
4980 
4981 	info->ops = &its_msi_domain_ops;
4982 	info->data = its;
4983 
4984 	inner_domain = irq_domain_create_hierarchy(its_parent,
4985 						   its->msi_domain_flags, 0,
4986 						   its->fwnode_handle, &its_domain_ops,
4987 						   info);
4988 	if (!inner_domain) {
4989 		kfree(info);
4990 		return -ENOMEM;
4991 	}
4992 
4993 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4994 
4995 	return 0;
4996 }
4997 
4998 static int its_init_vpe_domain(void)
4999 {
5000 	struct its_node *its;
5001 	u32 devid;
5002 	int entries;
5003 
5004 	if (gic_rdists->has_direct_lpi) {
5005 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5006 		return 0;
5007 	}
5008 
5009 	/* Any ITS will do, even if not v4 */
5010 	its = list_first_entry(&its_nodes, struct its_node, entry);
5011 
5012 	entries = roundup_pow_of_two(nr_cpu_ids);
5013 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5014 				 GFP_KERNEL);
5015 	if (!vpe_proxy.vpes)
5016 		return -ENOMEM;
5017 
5018 	/* Use the last possible DevID */
5019 	devid = GENMASK(device_ids(its) - 1, 0);
5020 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5021 	if (!vpe_proxy.dev) {
5022 		kfree(vpe_proxy.vpes);
5023 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5024 		return -ENOMEM;
5025 	}
5026 
5027 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5028 
5029 	raw_spin_lock_init(&vpe_proxy.lock);
5030 	vpe_proxy.next_victim = 0;
5031 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5032 		devid, vpe_proxy.dev->nr_ites);
5033 
5034 	return 0;
5035 }
5036 
5037 static int __init its_compute_its_list_map(struct its_node *its)
5038 {
5039 	int its_number;
5040 	u32 ctlr;
5041 
5042 	/*
5043 	 * This is assumed to be done early enough that we're
5044 	 * guaranteed to be single-threaded, hence no
5045 	 * locking. Should this change, we should address
5046 	 * this.
5047 	 */
5048 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5049 	if (its_number >= GICv4_ITS_LIST_MAX) {
5050 		pr_err("ITS@%pa: No ITSList entry available!\n",
5051 		       &its->phys_base);
5052 		return -EINVAL;
5053 	}
5054 
5055 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5056 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5057 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5058 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5059 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5060 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5061 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5062 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5063 	}
5064 
5065 	if (test_and_set_bit(its_number, &its_list_map)) {
5066 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5067 		       &its->phys_base, its_number);
5068 		return -EINVAL;
5069 	}
5070 
5071 	return its_number;
5072 }
5073 
5074 static int __init its_probe_one(struct its_node *its)
5075 {
5076 	u64 baser, tmp;
5077 	struct page *page;
5078 	u32 ctlr;
5079 	int err;
5080 
5081 	if (is_v4(its)) {
5082 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5083 			err = its_compute_its_list_map(its);
5084 			if (err < 0)
5085 				goto out;
5086 
5087 			its->list_nr = err;
5088 
5089 			pr_info("ITS@%pa: Using ITS number %d\n",
5090 				&its->phys_base, err);
5091 		} else {
5092 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5093 		}
5094 
5095 		if (is_v4_1(its)) {
5096 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5097 
5098 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5099 			if (!its->sgir_base) {
5100 				err = -ENOMEM;
5101 				goto out;
5102 			}
5103 
5104 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5105 
5106 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5107 				&its->phys_base, its->mpidr, svpet);
5108 		}
5109 	}
5110 
5111 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5112 				get_order(ITS_CMD_QUEUE_SZ));
5113 	if (!page) {
5114 		err = -ENOMEM;
5115 		goto out_unmap_sgir;
5116 	}
5117 	its->cmd_base = (void *)page_address(page);
5118 	its->cmd_write = its->cmd_base;
5119 
5120 	err = its_alloc_tables(its);
5121 	if (err)
5122 		goto out_free_cmd;
5123 
5124 	err = its_alloc_collections(its);
5125 	if (err)
5126 		goto out_free_tables;
5127 
5128 	baser = (virt_to_phys(its->cmd_base)	|
5129 		 GITS_CBASER_RaWaWb		|
5130 		 GITS_CBASER_InnerShareable	|
5131 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5132 		 GITS_CBASER_VALID);
5133 
5134 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5135 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5136 
5137 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5138 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5139 
5140 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5141 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5142 			/*
5143 			 * The HW reports non-shareable, we must
5144 			 * remove the cacheability attributes as
5145 			 * well.
5146 			 */
5147 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5148 				   GITS_CBASER_CACHEABILITY_MASK);
5149 			baser |= GITS_CBASER_nC;
5150 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5151 		}
5152 		pr_info("ITS: using cache flushing for cmd queue\n");
5153 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5154 	}
5155 
5156 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5157 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5158 	ctlr |= GITS_CTLR_ENABLE;
5159 	if (is_v4(its))
5160 		ctlr |= GITS_CTLR_ImDe;
5161 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5162 
5163 	err = its_init_domain(its);
5164 	if (err)
5165 		goto out_free_tables;
5166 
5167 	raw_spin_lock(&its_lock);
5168 	list_add(&its->entry, &its_nodes);
5169 	raw_spin_unlock(&its_lock);
5170 
5171 	return 0;
5172 
5173 out_free_tables:
5174 	its_free_tables(its);
5175 out_free_cmd:
5176 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5177 out_unmap_sgir:
5178 	if (its->sgir_base)
5179 		iounmap(its->sgir_base);
5180 out:
5181 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5182 	return err;
5183 }
5184 
5185 static bool gic_rdists_supports_plpis(void)
5186 {
5187 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5188 }
5189 
5190 static int redist_disable_lpis(void)
5191 {
5192 	void __iomem *rbase = gic_data_rdist_rd_base();
5193 	u64 timeout = USEC_PER_SEC;
5194 	u64 val;
5195 
5196 	if (!gic_rdists_supports_plpis()) {
5197 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5198 		return -ENXIO;
5199 	}
5200 
5201 	val = readl_relaxed(rbase + GICR_CTLR);
5202 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5203 		return 0;
5204 
5205 	/*
5206 	 * If coming via a CPU hotplug event, we don't need to disable
5207 	 * LPIs before trying to re-enable them. They are already
5208 	 * configured and all is well in the world.
5209 	 *
5210 	 * If running with preallocated tables, there is nothing to do.
5211 	 */
5212 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5213 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5214 		return 0;
5215 
5216 	/*
5217 	 * From that point on, we only try to do some damage control.
5218 	 */
5219 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5220 		smp_processor_id());
5221 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5222 
5223 	/* Disable LPIs */
5224 	val &= ~GICR_CTLR_ENABLE_LPIS;
5225 	writel_relaxed(val, rbase + GICR_CTLR);
5226 
5227 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5228 	dsb(sy);
5229 
5230 	/*
5231 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5232 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5233 	 * Error out if we time out waiting for RWP to clear.
5234 	 */
5235 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5236 		if (!timeout) {
5237 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5238 			       smp_processor_id());
5239 			return -ETIMEDOUT;
5240 		}
5241 		udelay(1);
5242 		timeout--;
5243 	}
5244 
5245 	/*
5246 	 * After it has been written to 1, it is IMPLEMENTATION
5247 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5248 	 * cleared to 0. Error out if clearing the bit failed.
5249 	 */
5250 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5251 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5252 		return -EBUSY;
5253 	}
5254 
5255 	return 0;
5256 }
5257 
5258 int its_cpu_init(void)
5259 {
5260 	if (!list_empty(&its_nodes)) {
5261 		int ret;
5262 
5263 		ret = redist_disable_lpis();
5264 		if (ret)
5265 			return ret;
5266 
5267 		its_cpu_init_lpis();
5268 		its_cpu_init_collections();
5269 	}
5270 
5271 	return 0;
5272 }
5273 
5274 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5275 {
5276 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5277 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5278 }
5279 
5280 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5281 		    rdist_memreserve_cpuhp_cleanup_workfn);
5282 
5283 static int its_cpu_memreserve_lpi(unsigned int cpu)
5284 {
5285 	struct page *pend_page;
5286 	int ret = 0;
5287 
5288 	/* This gets to run exactly once per CPU */
5289 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5290 		return 0;
5291 
5292 	pend_page = gic_data_rdist()->pend_page;
5293 	if (WARN_ON(!pend_page)) {
5294 		ret = -ENOMEM;
5295 		goto out;
5296 	}
5297 	/*
5298 	 * If the pending table was pre-programmed, free the memory we
5299 	 * preemptively allocated. Otherwise, reserve that memory for
5300 	 * later kexecs.
5301 	 */
5302 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5303 		its_free_pending_table(pend_page);
5304 		gic_data_rdist()->pend_page = NULL;
5305 	} else {
5306 		phys_addr_t paddr = page_to_phys(pend_page);
5307 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5308 	}
5309 
5310 out:
5311 	/* Last CPU being brought up gets to issue the cleanup */
5312 	if (!IS_ENABLED(CONFIG_SMP) ||
5313 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5314 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5315 
5316 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5317 	return ret;
5318 }
5319 
5320 /* Mark all the BASER registers as invalid before they get reprogrammed */
5321 static int __init its_reset_one(struct resource *res)
5322 {
5323 	void __iomem *its_base;
5324 	int err, i;
5325 
5326 	its_base = its_map_one(res, &err);
5327 	if (!its_base)
5328 		return err;
5329 
5330 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5331 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5332 
5333 	iounmap(its_base);
5334 	return 0;
5335 }
5336 
5337 static const struct of_device_id its_device_id[] = {
5338 	{	.compatible	= "arm,gic-v3-its",	},
5339 	{},
5340 };
5341 
5342 static struct its_node __init *its_node_init(struct resource *res,
5343 					     struct fwnode_handle *handle, int numa_node)
5344 {
5345 	void __iomem *its_base;
5346 	struct its_node *its;
5347 	int err;
5348 
5349 	its_base = its_map_one(res, &err);
5350 	if (!its_base)
5351 		return NULL;
5352 
5353 	pr_info("ITS %pR\n", res);
5354 
5355 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5356 	if (!its)
5357 		goto out_unmap;
5358 
5359 	raw_spin_lock_init(&its->lock);
5360 	mutex_init(&its->dev_alloc_lock);
5361 	INIT_LIST_HEAD(&its->entry);
5362 	INIT_LIST_HEAD(&its->its_device_list);
5363 
5364 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5365 	its->base = its_base;
5366 	its->phys_base = res->start;
5367 	its->get_msi_base = its_irq_get_msi_base;
5368 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5369 
5370 	its->numa_node = numa_node;
5371 	its->fwnode_handle = handle;
5372 
5373 	return its;
5374 
5375 out_unmap:
5376 	iounmap(its_base);
5377 	return NULL;
5378 }
5379 
5380 static void its_node_destroy(struct its_node *its)
5381 {
5382 	iounmap(its->base);
5383 	kfree(its);
5384 }
5385 
5386 static int __init its_of_probe(struct device_node *node)
5387 {
5388 	struct device_node *np;
5389 	struct resource res;
5390 	int err;
5391 
5392 	/*
5393 	 * Make sure *all* the ITS are reset before we probe any, as
5394 	 * they may be sharing memory. If any of the ITS fails to
5395 	 * reset, don't even try to go any further, as this could
5396 	 * result in something even worse.
5397 	 */
5398 	for (np = of_find_matching_node(node, its_device_id); np;
5399 	     np = of_find_matching_node(np, its_device_id)) {
5400 		if (!of_device_is_available(np) ||
5401 		    !of_property_read_bool(np, "msi-controller") ||
5402 		    of_address_to_resource(np, 0, &res))
5403 			continue;
5404 
5405 		err = its_reset_one(&res);
5406 		if (err)
5407 			return err;
5408 	}
5409 
5410 	for (np = of_find_matching_node(node, its_device_id); np;
5411 	     np = of_find_matching_node(np, its_device_id)) {
5412 		struct its_node *its;
5413 
5414 		if (!of_device_is_available(np))
5415 			continue;
5416 		if (!of_property_read_bool(np, "msi-controller")) {
5417 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5418 				np);
5419 			continue;
5420 		}
5421 
5422 		if (of_address_to_resource(np, 0, &res)) {
5423 			pr_warn("%pOF: no regs?\n", np);
5424 			continue;
5425 		}
5426 
5427 
5428 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5429 		if (!its)
5430 			return -ENOMEM;
5431 
5432 		its_enable_quirks(its);
5433 		err = its_probe_one(its);
5434 		if (err)  {
5435 			its_node_destroy(its);
5436 			return err;
5437 		}
5438 	}
5439 	return 0;
5440 }
5441 
5442 #ifdef CONFIG_ACPI
5443 
5444 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5445 
5446 #ifdef CONFIG_ACPI_NUMA
5447 struct its_srat_map {
5448 	/* numa node id */
5449 	u32	numa_node;
5450 	/* GIC ITS ID */
5451 	u32	its_id;
5452 };
5453 
5454 static struct its_srat_map *its_srat_maps __initdata;
5455 static int its_in_srat __initdata;
5456 
5457 static int __init acpi_get_its_numa_node(u32 its_id)
5458 {
5459 	int i;
5460 
5461 	for (i = 0; i < its_in_srat; i++) {
5462 		if (its_id == its_srat_maps[i].its_id)
5463 			return its_srat_maps[i].numa_node;
5464 	}
5465 	return NUMA_NO_NODE;
5466 }
5467 
5468 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5469 					  const unsigned long end)
5470 {
5471 	return 0;
5472 }
5473 
5474 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5475 			 const unsigned long end)
5476 {
5477 	int node;
5478 	struct acpi_srat_gic_its_affinity *its_affinity;
5479 
5480 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5481 	if (!its_affinity)
5482 		return -EINVAL;
5483 
5484 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5485 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5486 			its_affinity->header.length);
5487 		return -EINVAL;
5488 	}
5489 
5490 	/*
5491 	 * Note that in theory a new proximity node could be created by this
5492 	 * entry as it is an SRAT resource allocation structure.
5493 	 * We do not currently support doing so.
5494 	 */
5495 	node = pxm_to_node(its_affinity->proximity_domain);
5496 
5497 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5498 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5499 		return 0;
5500 	}
5501 
5502 	its_srat_maps[its_in_srat].numa_node = node;
5503 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5504 	its_in_srat++;
5505 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5506 		its_affinity->proximity_domain, its_affinity->its_id, node);
5507 
5508 	return 0;
5509 }
5510 
5511 static void __init acpi_table_parse_srat_its(void)
5512 {
5513 	int count;
5514 
5515 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5516 			sizeof(struct acpi_table_srat),
5517 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5518 			gic_acpi_match_srat_its, 0);
5519 	if (count <= 0)
5520 		return;
5521 
5522 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5523 				      GFP_KERNEL);
5524 	if (!its_srat_maps)
5525 		return;
5526 
5527 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5528 			sizeof(struct acpi_table_srat),
5529 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5530 			gic_acpi_parse_srat_its, 0);
5531 }
5532 
5533 /* free the its_srat_maps after ITS probing */
5534 static void __init acpi_its_srat_maps_free(void)
5535 {
5536 	kfree(its_srat_maps);
5537 }
5538 #else
5539 static void __init acpi_table_parse_srat_its(void)	{ }
5540 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5541 static void __init acpi_its_srat_maps_free(void) { }
5542 #endif
5543 
5544 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5545 					  const unsigned long end)
5546 {
5547 	struct acpi_madt_generic_translator *its_entry;
5548 	struct fwnode_handle *dom_handle;
5549 	struct its_node *its;
5550 	struct resource res;
5551 	int err;
5552 
5553 	its_entry = (struct acpi_madt_generic_translator *)header;
5554 	memset(&res, 0, sizeof(res));
5555 	res.start = its_entry->base_address;
5556 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5557 	res.flags = IORESOURCE_MEM;
5558 
5559 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5560 	if (!dom_handle) {
5561 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5562 		       &res.start);
5563 		return -ENOMEM;
5564 	}
5565 
5566 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5567 					 dom_handle);
5568 	if (err) {
5569 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5570 		       &res.start, its_entry->translation_id);
5571 		goto dom_err;
5572 	}
5573 
5574 	its = its_node_init(&res, dom_handle,
5575 			    acpi_get_its_numa_node(its_entry->translation_id));
5576 	if (!its) {
5577 		err = -ENOMEM;
5578 		goto node_err;
5579 	}
5580 
5581 	err = its_probe_one(its);
5582 	if (!err)
5583 		return 0;
5584 
5585 node_err:
5586 	iort_deregister_domain_token(its_entry->translation_id);
5587 dom_err:
5588 	irq_domain_free_fwnode(dom_handle);
5589 	return err;
5590 }
5591 
5592 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5593 				 const unsigned long end)
5594 {
5595 	struct acpi_madt_generic_translator *its_entry;
5596 	struct resource res;
5597 
5598 	its_entry = (struct acpi_madt_generic_translator *)header;
5599 	res = (struct resource) {
5600 		.start	= its_entry->base_address,
5601 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5602 		.flags	= IORESOURCE_MEM,
5603 	};
5604 
5605 	return its_reset_one(&res);
5606 }
5607 
5608 static void __init its_acpi_probe(void)
5609 {
5610 	acpi_table_parse_srat_its();
5611 	/*
5612 	 * Make sure *all* the ITS are reset before we probe any, as
5613 	 * they may be sharing memory. If any of the ITS fails to
5614 	 * reset, don't even try to go any further, as this could
5615 	 * result in something even worse.
5616 	 */
5617 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5618 				  its_acpi_reset, 0) > 0)
5619 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5620 				      gic_acpi_parse_madt_its, 0);
5621 	acpi_its_srat_maps_free();
5622 }
5623 #else
5624 static void __init its_acpi_probe(void) { }
5625 #endif
5626 
5627 int __init its_lpi_memreserve_init(void)
5628 {
5629 	int state;
5630 
5631 	if (!efi_enabled(EFI_CONFIG_TABLES))
5632 		return 0;
5633 
5634 	if (list_empty(&its_nodes))
5635 		return 0;
5636 
5637 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5638 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5639 				  "irqchip/arm/gicv3/memreserve:online",
5640 				  its_cpu_memreserve_lpi,
5641 				  NULL);
5642 	if (state < 0)
5643 		return state;
5644 
5645 	gic_rdists->cpuhp_memreserve_state = state;
5646 
5647 	return 0;
5648 }
5649 
5650 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5651 		    struct irq_domain *parent_domain)
5652 {
5653 	struct device_node *of_node;
5654 	struct its_node *its;
5655 	bool has_v4 = false;
5656 	bool has_v4_1 = false;
5657 	int err;
5658 
5659 	gic_rdists = rdists;
5660 
5661 	its_parent = parent_domain;
5662 	of_node = to_of_node(handle);
5663 	if (of_node)
5664 		its_of_probe(of_node);
5665 	else
5666 		its_acpi_probe();
5667 
5668 	if (list_empty(&its_nodes)) {
5669 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5670 		return -ENXIO;
5671 	}
5672 
5673 	err = allocate_lpi_tables();
5674 	if (err)
5675 		return err;
5676 
5677 	list_for_each_entry(its, &its_nodes, entry) {
5678 		has_v4 |= is_v4(its);
5679 		has_v4_1 |= is_v4_1(its);
5680 	}
5681 
5682 	/* Don't bother with inconsistent systems */
5683 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5684 		rdists->has_rvpeid = false;
5685 
5686 	if (has_v4 & rdists->has_vlpis) {
5687 		const struct irq_domain_ops *sgi_ops;
5688 
5689 		if (has_v4_1)
5690 			sgi_ops = &its_sgi_domain_ops;
5691 		else
5692 			sgi_ops = NULL;
5693 
5694 		if (its_init_vpe_domain() ||
5695 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5696 			rdists->has_vlpis = false;
5697 			pr_err("ITS: Disabling GICv4 support\n");
5698 		}
5699 	}
5700 
5701 	register_syscore_ops(&its_syscore_ops);
5702 
5703 	return 0;
5704 }
5705