xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision e3fc2fd77c63cd2e37ebd33a336602a68650f22b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 #include "irq-msi-lib.h"
42 
43 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
45 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
46 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
47 
48 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
49 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
50 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
51 
52 static u32 lpi_id_bits;
53 
54 /*
55  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56  * deal with (one configuration byte per interrupt). PENDBASE has to
57  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
58  */
59 #define LPI_NRBITS		lpi_id_bits
60 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
62 
63 static u8 __ro_after_init lpi_prop_prio;
64 
65 /*
66  * Collection structure - just an ID, and a redistributor address to
67  * ping. We use one per CPU as a bag of interrupts assigned to this
68  * CPU.
69  */
70 struct its_collection {
71 	u64			target_address;
72 	u16			col_id;
73 };
74 
75 /*
76  * The ITS_BASER structure - contains memory information, cached
77  * value of BASER register configuration and ITS page size.
78  */
79 struct its_baser {
80 	void		*base;
81 	u64		val;
82 	u32		order;
83 	u32		psz;
84 };
85 
86 struct its_device;
87 
88 /*
89  * The ITS structure - contains most of the infrastructure, with the
90  * top-level MSI domain, the command queue, the collections, and the
91  * list of devices writing to it.
92  *
93  * dev_alloc_lock has to be taken for device allocations, while the
94  * spinlock must be taken to parse data structures such as the device
95  * list.
96  */
97 struct its_node {
98 	raw_spinlock_t		lock;
99 	struct mutex		dev_alloc_lock;
100 	struct list_head	entry;
101 	void __iomem		*base;
102 	void __iomem		*sgir_base;
103 	phys_addr_t		phys_base;
104 	struct its_cmd_block	*cmd_base;
105 	struct its_cmd_block	*cmd_write;
106 	struct its_baser	tables[GITS_BASER_NR_REGS];
107 	struct its_collection	*collections;
108 	struct fwnode_handle	*fwnode_handle;
109 	u64			(*get_msi_base)(struct its_device *its_dev);
110 	u64			typer;
111 	u64			cbaser_save;
112 	u32			ctlr_save;
113 	u32			mpidr;
114 	struct list_head	its_device_list;
115 	u64			flags;
116 	unsigned long		list_nr;
117 	int			numa_node;
118 	unsigned int		msi_domain_flags;
119 	u32			pre_its_base; /* for Socionext Synquacer */
120 	int			vlpi_redist_offset;
121 };
122 
123 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
124 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
125 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
126 
127 #define ITS_ITT_ALIGN		SZ_256
128 
129 /* The maximum number of VPEID bits supported by VLPI commands */
130 #define ITS_MAX_VPEID_BITS						\
131 	({								\
132 		int nvpeid = 16;					\
133 		if (gic_rdists->has_rvpeid &&				\
134 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
135 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
136 				      GICD_TYPER2_VID);			\
137 									\
138 		nvpeid;							\
139 	})
140 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
141 
142 /* Convert page order to size in bytes */
143 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
144 
145 struct event_lpi_map {
146 	unsigned long		*lpi_map;
147 	u16			*col_map;
148 	irq_hw_number_t		lpi_base;
149 	int			nr_lpis;
150 	raw_spinlock_t		vlpi_lock;
151 	struct its_vm		*vm;
152 	struct its_vlpi_map	*vlpi_maps;
153 	int			nr_vlpis;
154 };
155 
156 /*
157  * The ITS view of a device - belongs to an ITS, owns an interrupt
158  * translation table, and a list of interrupts.  If it some of its
159  * LPIs are injected into a guest (GICv4), the event_map.vm field
160  * indicates which one.
161  */
162 struct its_device {
163 	struct list_head	entry;
164 	struct its_node		*its;
165 	struct event_lpi_map	event_map;
166 	void			*itt;
167 	u32			nr_ites;
168 	u32			device_id;
169 	bool			shared;
170 };
171 
172 static struct {
173 	raw_spinlock_t		lock;
174 	struct its_device	*dev;
175 	struct its_vpe		**vpes;
176 	int			next_victim;
177 } vpe_proxy;
178 
179 struct cpu_lpi_count {
180 	atomic_t	managed;
181 	atomic_t	unmanaged;
182 };
183 
184 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
185 
186 static LIST_HEAD(its_nodes);
187 static DEFINE_RAW_SPINLOCK(its_lock);
188 static struct rdists *gic_rdists;
189 static struct irq_domain *its_parent;
190 
191 static unsigned long its_list_map;
192 static u16 vmovp_seq_num;
193 static DEFINE_RAW_SPINLOCK(vmovp_lock);
194 
195 static DEFINE_IDA(its_vpeid_ida);
196 
197 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
198 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
199 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
200 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
201 
202 /*
203  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
204  * always have vSGIs mapped.
205  */
206 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
207 {
208 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
209 }
210 
211 static bool rdists_support_shareable(void)
212 {
213 	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
214 }
215 
216 static u16 get_its_list(struct its_vm *vm)
217 {
218 	struct its_node *its;
219 	unsigned long its_list = 0;
220 
221 	list_for_each_entry(its, &its_nodes, entry) {
222 		if (!is_v4(its))
223 			continue;
224 
225 		if (require_its_list_vmovp(vm, its))
226 			__set_bit(its->list_nr, &its_list);
227 	}
228 
229 	return (u16)its_list;
230 }
231 
232 static inline u32 its_get_event_id(struct irq_data *d)
233 {
234 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
235 	return d->hwirq - its_dev->event_map.lpi_base;
236 }
237 
238 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
239 					       u32 event)
240 {
241 	struct its_node *its = its_dev->its;
242 
243 	return its->collections + its_dev->event_map.col_map[event];
244 }
245 
246 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
247 					       u32 event)
248 {
249 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
250 		return NULL;
251 
252 	return &its_dev->event_map.vlpi_maps[event];
253 }
254 
255 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
256 {
257 	if (irqd_is_forwarded_to_vcpu(d)) {
258 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
259 		u32 event = its_get_event_id(d);
260 
261 		return dev_event_to_vlpi_map(its_dev, event);
262 	}
263 
264 	return NULL;
265 }
266 
267 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
268 {
269 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
270 	return vpe->col_idx;
271 }
272 
273 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
274 {
275 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
276 }
277 
278 static struct irq_chip its_vpe_irq_chip;
279 
280 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
281 {
282 	struct its_vpe *vpe = NULL;
283 	int cpu;
284 
285 	if (d->chip == &its_vpe_irq_chip) {
286 		vpe = irq_data_get_irq_chip_data(d);
287 	} else {
288 		struct its_vlpi_map *map = get_vlpi_map(d);
289 		if (map)
290 			vpe = map->vpe;
291 	}
292 
293 	if (vpe) {
294 		cpu = vpe_to_cpuid_lock(vpe, flags);
295 	} else {
296 		/* Physical LPIs are already locked via the irq_desc lock */
297 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
298 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
299 		/* Keep GCC quiet... */
300 		*flags = 0;
301 	}
302 
303 	return cpu;
304 }
305 
306 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
307 {
308 	struct its_vpe *vpe = NULL;
309 
310 	if (d->chip == &its_vpe_irq_chip) {
311 		vpe = irq_data_get_irq_chip_data(d);
312 	} else {
313 		struct its_vlpi_map *map = get_vlpi_map(d);
314 		if (map)
315 			vpe = map->vpe;
316 	}
317 
318 	if (vpe)
319 		vpe_to_cpuid_unlock(vpe, flags);
320 }
321 
322 static struct its_collection *valid_col(struct its_collection *col)
323 {
324 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
325 		return NULL;
326 
327 	return col;
328 }
329 
330 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
331 {
332 	if (valid_col(its->collections + vpe->col_idx))
333 		return vpe;
334 
335 	return NULL;
336 }
337 
338 /*
339  * ITS command descriptors - parameters to be encoded in a command
340  * block.
341  */
342 struct its_cmd_desc {
343 	union {
344 		struct {
345 			struct its_device *dev;
346 			u32 event_id;
347 		} its_inv_cmd;
348 
349 		struct {
350 			struct its_device *dev;
351 			u32 event_id;
352 		} its_clear_cmd;
353 
354 		struct {
355 			struct its_device *dev;
356 			u32 event_id;
357 		} its_int_cmd;
358 
359 		struct {
360 			struct its_device *dev;
361 			int valid;
362 		} its_mapd_cmd;
363 
364 		struct {
365 			struct its_collection *col;
366 			int valid;
367 		} its_mapc_cmd;
368 
369 		struct {
370 			struct its_device *dev;
371 			u32 phys_id;
372 			u32 event_id;
373 		} its_mapti_cmd;
374 
375 		struct {
376 			struct its_device *dev;
377 			struct its_collection *col;
378 			u32 event_id;
379 		} its_movi_cmd;
380 
381 		struct {
382 			struct its_device *dev;
383 			u32 event_id;
384 		} its_discard_cmd;
385 
386 		struct {
387 			struct its_collection *col;
388 		} its_invall_cmd;
389 
390 		struct {
391 			struct its_vpe *vpe;
392 		} its_vinvall_cmd;
393 
394 		struct {
395 			struct its_vpe *vpe;
396 			struct its_collection *col;
397 			bool valid;
398 		} its_vmapp_cmd;
399 
400 		struct {
401 			struct its_vpe *vpe;
402 			struct its_device *dev;
403 			u32 virt_id;
404 			u32 event_id;
405 			bool db_enabled;
406 		} its_vmapti_cmd;
407 
408 		struct {
409 			struct its_vpe *vpe;
410 			struct its_device *dev;
411 			u32 event_id;
412 			bool db_enabled;
413 		} its_vmovi_cmd;
414 
415 		struct {
416 			struct its_vpe *vpe;
417 			struct its_collection *col;
418 			u16 seq_num;
419 			u16 its_list;
420 		} its_vmovp_cmd;
421 
422 		struct {
423 			struct its_vpe *vpe;
424 		} its_invdb_cmd;
425 
426 		struct {
427 			struct its_vpe *vpe;
428 			u8 sgi;
429 			u8 priority;
430 			bool enable;
431 			bool group;
432 			bool clear;
433 		} its_vsgi_cmd;
434 	};
435 };
436 
437 /*
438  * The ITS command block, which is what the ITS actually parses.
439  */
440 struct its_cmd_block {
441 	union {
442 		u64	raw_cmd[4];
443 		__le64	raw_cmd_le[4];
444 	};
445 };
446 
447 #define ITS_CMD_QUEUE_SZ		SZ_64K
448 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
449 
450 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
451 						    struct its_cmd_block *,
452 						    struct its_cmd_desc *);
453 
454 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
455 					      struct its_cmd_block *,
456 					      struct its_cmd_desc *);
457 
458 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
459 {
460 	u64 mask = GENMASK_ULL(h, l);
461 	*raw_cmd &= ~mask;
462 	*raw_cmd |= (val << l) & mask;
463 }
464 
465 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
466 {
467 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
468 }
469 
470 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
471 {
472 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
473 }
474 
475 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
476 {
477 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
478 }
479 
480 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
481 {
482 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
483 }
484 
485 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
486 {
487 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
488 }
489 
490 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
491 {
492 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
493 }
494 
495 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
496 {
497 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
498 }
499 
500 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
501 {
502 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
503 }
504 
505 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
506 {
507 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
508 }
509 
510 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
511 {
512 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
513 }
514 
515 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
516 {
517 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
518 }
519 
520 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
521 {
522 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
523 }
524 
525 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
526 {
527 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
528 }
529 
530 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
531 {
532 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
533 }
534 
535 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
536 {
537 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
538 }
539 
540 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
541 {
542 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
543 }
544 
545 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
546 {
547 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
548 }
549 
550 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
551 {
552 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
553 }
554 
555 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
556 {
557 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
558 }
559 
560 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
561 {
562 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
563 }
564 
565 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
566 					u32 vpe_db_lpi)
567 {
568 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
569 }
570 
571 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
572 					u32 vpe_db_lpi)
573 {
574 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
575 }
576 
577 static void its_encode_db(struct its_cmd_block *cmd, bool db)
578 {
579 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
580 }
581 
582 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
583 {
584 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
585 }
586 
587 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
588 {
589 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
590 }
591 
592 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
593 {
594 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
595 }
596 
597 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
598 {
599 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
600 }
601 
602 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
603 {
604 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
605 }
606 
607 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
608 {
609 	/* Let's fixup BE commands */
610 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
611 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
612 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
613 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
614 }
615 
616 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
617 						 struct its_cmd_block *cmd,
618 						 struct its_cmd_desc *desc)
619 {
620 	unsigned long itt_addr;
621 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
622 
623 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
624 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
625 
626 	its_encode_cmd(cmd, GITS_CMD_MAPD);
627 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
628 	its_encode_size(cmd, size - 1);
629 	its_encode_itt(cmd, itt_addr);
630 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
631 
632 	its_fixup_cmd(cmd);
633 
634 	return NULL;
635 }
636 
637 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
638 						 struct its_cmd_block *cmd,
639 						 struct its_cmd_desc *desc)
640 {
641 	its_encode_cmd(cmd, GITS_CMD_MAPC);
642 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
643 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
644 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
645 
646 	its_fixup_cmd(cmd);
647 
648 	return desc->its_mapc_cmd.col;
649 }
650 
651 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
652 						  struct its_cmd_block *cmd,
653 						  struct its_cmd_desc *desc)
654 {
655 	struct its_collection *col;
656 
657 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
658 			       desc->its_mapti_cmd.event_id);
659 
660 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
661 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
662 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
663 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
664 	its_encode_collection(cmd, col->col_id);
665 
666 	its_fixup_cmd(cmd);
667 
668 	return valid_col(col);
669 }
670 
671 static struct its_collection *its_build_movi_cmd(struct its_node *its,
672 						 struct its_cmd_block *cmd,
673 						 struct its_cmd_desc *desc)
674 {
675 	struct its_collection *col;
676 
677 	col = dev_event_to_col(desc->its_movi_cmd.dev,
678 			       desc->its_movi_cmd.event_id);
679 
680 	its_encode_cmd(cmd, GITS_CMD_MOVI);
681 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
682 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
683 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
684 
685 	its_fixup_cmd(cmd);
686 
687 	return valid_col(col);
688 }
689 
690 static struct its_collection *its_build_discard_cmd(struct its_node *its,
691 						    struct its_cmd_block *cmd,
692 						    struct its_cmd_desc *desc)
693 {
694 	struct its_collection *col;
695 
696 	col = dev_event_to_col(desc->its_discard_cmd.dev,
697 			       desc->its_discard_cmd.event_id);
698 
699 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
700 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
701 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
702 
703 	its_fixup_cmd(cmd);
704 
705 	return valid_col(col);
706 }
707 
708 static struct its_collection *its_build_inv_cmd(struct its_node *its,
709 						struct its_cmd_block *cmd,
710 						struct its_cmd_desc *desc)
711 {
712 	struct its_collection *col;
713 
714 	col = dev_event_to_col(desc->its_inv_cmd.dev,
715 			       desc->its_inv_cmd.event_id);
716 
717 	its_encode_cmd(cmd, GITS_CMD_INV);
718 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
719 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
720 
721 	its_fixup_cmd(cmd);
722 
723 	return valid_col(col);
724 }
725 
726 static struct its_collection *its_build_int_cmd(struct its_node *its,
727 						struct its_cmd_block *cmd,
728 						struct its_cmd_desc *desc)
729 {
730 	struct its_collection *col;
731 
732 	col = dev_event_to_col(desc->its_int_cmd.dev,
733 			       desc->its_int_cmd.event_id);
734 
735 	its_encode_cmd(cmd, GITS_CMD_INT);
736 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
737 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
738 
739 	its_fixup_cmd(cmd);
740 
741 	return valid_col(col);
742 }
743 
744 static struct its_collection *its_build_clear_cmd(struct its_node *its,
745 						  struct its_cmd_block *cmd,
746 						  struct its_cmd_desc *desc)
747 {
748 	struct its_collection *col;
749 
750 	col = dev_event_to_col(desc->its_clear_cmd.dev,
751 			       desc->its_clear_cmd.event_id);
752 
753 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
754 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
755 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
756 
757 	its_fixup_cmd(cmd);
758 
759 	return valid_col(col);
760 }
761 
762 static struct its_collection *its_build_invall_cmd(struct its_node *its,
763 						   struct its_cmd_block *cmd,
764 						   struct its_cmd_desc *desc)
765 {
766 	its_encode_cmd(cmd, GITS_CMD_INVALL);
767 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
768 
769 	its_fixup_cmd(cmd);
770 
771 	return desc->its_invall_cmd.col;
772 }
773 
774 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
775 					     struct its_cmd_block *cmd,
776 					     struct its_cmd_desc *desc)
777 {
778 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
779 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
780 
781 	its_fixup_cmd(cmd);
782 
783 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
784 }
785 
786 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
787 					   struct its_cmd_block *cmd,
788 					   struct its_cmd_desc *desc)
789 {
790 	struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
791 	unsigned long vpt_addr, vconf_addr;
792 	u64 target;
793 	bool alloc;
794 
795 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
796 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
797 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
798 
799 	if (!desc->its_vmapp_cmd.valid) {
800 		alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
801 		if (is_v4_1(its)) {
802 			its_encode_alloc(cmd, alloc);
803 			/*
804 			 * Unmapping a VPE is self-synchronizing on GICv4.1,
805 			 * no need to issue a VSYNC.
806 			 */
807 			vpe = NULL;
808 		}
809 
810 		goto out;
811 	}
812 
813 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
814 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
815 
816 	its_encode_target(cmd, target);
817 	its_encode_vpt_addr(cmd, vpt_addr);
818 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
819 
820 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
821 
822 	if (!is_v4_1(its))
823 		goto out;
824 
825 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
826 
827 	its_encode_alloc(cmd, alloc);
828 
829 	/*
830 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
831 	 * to be unmapped first, and in this case, we may remap the vPE
832 	 * back while the VPT is not empty. So we can't assume that the
833 	 * VPT is empty on map. This is why we never advertise PTZ.
834 	 */
835 	its_encode_ptz(cmd, false);
836 	its_encode_vconf_addr(cmd, vconf_addr);
837 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
838 
839 out:
840 	its_fixup_cmd(cmd);
841 
842 	return vpe;
843 }
844 
845 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
846 					    struct its_cmd_block *cmd,
847 					    struct its_cmd_desc *desc)
848 {
849 	u32 db;
850 
851 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
852 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
853 	else
854 		db = 1023;
855 
856 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
857 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
858 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
859 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
860 	its_encode_db_phys_id(cmd, db);
861 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
862 
863 	its_fixup_cmd(cmd);
864 
865 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
866 }
867 
868 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
869 					   struct its_cmd_block *cmd,
870 					   struct its_cmd_desc *desc)
871 {
872 	u32 db;
873 
874 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
875 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
876 	else
877 		db = 1023;
878 
879 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
880 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
881 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
882 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
883 	its_encode_db_phys_id(cmd, db);
884 	its_encode_db_valid(cmd, true);
885 
886 	its_fixup_cmd(cmd);
887 
888 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
889 }
890 
891 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
892 					   struct its_cmd_block *cmd,
893 					   struct its_cmd_desc *desc)
894 {
895 	u64 target;
896 
897 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
898 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
899 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
900 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
901 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
902 	its_encode_target(cmd, target);
903 
904 	if (is_v4_1(its)) {
905 		its_encode_db(cmd, true);
906 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
907 	}
908 
909 	its_fixup_cmd(cmd);
910 
911 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
912 }
913 
914 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
915 					  struct its_cmd_block *cmd,
916 					  struct its_cmd_desc *desc)
917 {
918 	struct its_vlpi_map *map;
919 
920 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
921 				    desc->its_inv_cmd.event_id);
922 
923 	its_encode_cmd(cmd, GITS_CMD_INV);
924 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
925 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
926 
927 	its_fixup_cmd(cmd);
928 
929 	return valid_vpe(its, map->vpe);
930 }
931 
932 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
933 					  struct its_cmd_block *cmd,
934 					  struct its_cmd_desc *desc)
935 {
936 	struct its_vlpi_map *map;
937 
938 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
939 				    desc->its_int_cmd.event_id);
940 
941 	its_encode_cmd(cmd, GITS_CMD_INT);
942 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
943 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
944 
945 	its_fixup_cmd(cmd);
946 
947 	return valid_vpe(its, map->vpe);
948 }
949 
950 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
951 					    struct its_cmd_block *cmd,
952 					    struct its_cmd_desc *desc)
953 {
954 	struct its_vlpi_map *map;
955 
956 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
957 				    desc->its_clear_cmd.event_id);
958 
959 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
960 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
961 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
962 
963 	its_fixup_cmd(cmd);
964 
965 	return valid_vpe(its, map->vpe);
966 }
967 
968 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
969 					   struct its_cmd_block *cmd,
970 					   struct its_cmd_desc *desc)
971 {
972 	if (WARN_ON(!is_v4_1(its)))
973 		return NULL;
974 
975 	its_encode_cmd(cmd, GITS_CMD_INVDB);
976 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
977 
978 	its_fixup_cmd(cmd);
979 
980 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
981 }
982 
983 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
984 					  struct its_cmd_block *cmd,
985 					  struct its_cmd_desc *desc)
986 {
987 	if (WARN_ON(!is_v4_1(its)))
988 		return NULL;
989 
990 	its_encode_cmd(cmd, GITS_CMD_VSGI);
991 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
992 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
993 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
994 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
995 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
996 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
997 
998 	its_fixup_cmd(cmd);
999 
1000 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1001 }
1002 
1003 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1004 				 struct its_cmd_block *ptr)
1005 {
1006 	return (ptr - its->cmd_base) * sizeof(*ptr);
1007 }
1008 
1009 static int its_queue_full(struct its_node *its)
1010 {
1011 	int widx;
1012 	int ridx;
1013 
1014 	widx = its->cmd_write - its->cmd_base;
1015 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1016 
1017 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1018 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1019 		return 1;
1020 
1021 	return 0;
1022 }
1023 
1024 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1025 {
1026 	struct its_cmd_block *cmd;
1027 	u32 count = 1000000;	/* 1s! */
1028 
1029 	while (its_queue_full(its)) {
1030 		count--;
1031 		if (!count) {
1032 			pr_err_ratelimited("ITS queue not draining\n");
1033 			return NULL;
1034 		}
1035 		cpu_relax();
1036 		udelay(1);
1037 	}
1038 
1039 	cmd = its->cmd_write++;
1040 
1041 	/* Handle queue wrapping */
1042 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1043 		its->cmd_write = its->cmd_base;
1044 
1045 	/* Clear command  */
1046 	cmd->raw_cmd[0] = 0;
1047 	cmd->raw_cmd[1] = 0;
1048 	cmd->raw_cmd[2] = 0;
1049 	cmd->raw_cmd[3] = 0;
1050 
1051 	return cmd;
1052 }
1053 
1054 static struct its_cmd_block *its_post_commands(struct its_node *its)
1055 {
1056 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1057 
1058 	writel_relaxed(wr, its->base + GITS_CWRITER);
1059 
1060 	return its->cmd_write;
1061 }
1062 
1063 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1064 {
1065 	/*
1066 	 * Make sure the commands written to memory are observable by
1067 	 * the ITS.
1068 	 */
1069 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1070 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1071 	else
1072 		dsb(ishst);
1073 }
1074 
1075 static int its_wait_for_range_completion(struct its_node *its,
1076 					 u64	prev_idx,
1077 					 struct its_cmd_block *to)
1078 {
1079 	u64 rd_idx, to_idx, linear_idx;
1080 	u32 count = 1000000;	/* 1s! */
1081 
1082 	/* Linearize to_idx if the command set has wrapped around */
1083 	to_idx = its_cmd_ptr_to_offset(its, to);
1084 	if (to_idx < prev_idx)
1085 		to_idx += ITS_CMD_QUEUE_SZ;
1086 
1087 	linear_idx = prev_idx;
1088 
1089 	while (1) {
1090 		s64 delta;
1091 
1092 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1093 
1094 		/*
1095 		 * Compute the read pointer progress, taking the
1096 		 * potential wrap-around into account.
1097 		 */
1098 		delta = rd_idx - prev_idx;
1099 		if (rd_idx < prev_idx)
1100 			delta += ITS_CMD_QUEUE_SZ;
1101 
1102 		linear_idx += delta;
1103 		if (linear_idx >= to_idx)
1104 			break;
1105 
1106 		count--;
1107 		if (!count) {
1108 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1109 					   to_idx, linear_idx);
1110 			return -1;
1111 		}
1112 		prev_idx = rd_idx;
1113 		cpu_relax();
1114 		udelay(1);
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 /* Warning, macro hell follows */
1121 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1122 void name(struct its_node *its,						\
1123 	  buildtype builder,						\
1124 	  struct its_cmd_desc *desc)					\
1125 {									\
1126 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1127 	synctype *sync_obj;						\
1128 	unsigned long flags;						\
1129 	u64 rd_idx;							\
1130 									\
1131 	raw_spin_lock_irqsave(&its->lock, flags);			\
1132 									\
1133 	cmd = its_allocate_entry(its);					\
1134 	if (!cmd) {		/* We're soooooo screewed... */		\
1135 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1136 		return;							\
1137 	}								\
1138 	sync_obj = builder(its, cmd, desc);				\
1139 	its_flush_cmd(its, cmd);					\
1140 									\
1141 	if (sync_obj) {							\
1142 		sync_cmd = its_allocate_entry(its);			\
1143 		if (!sync_cmd)						\
1144 			goto post;					\
1145 									\
1146 		buildfn(its, sync_cmd, sync_obj);			\
1147 		its_flush_cmd(its, sync_cmd);				\
1148 	}								\
1149 									\
1150 post:									\
1151 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1152 	next_cmd = its_post_commands(its);				\
1153 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1154 									\
1155 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1156 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1157 }
1158 
1159 static void its_build_sync_cmd(struct its_node *its,
1160 			       struct its_cmd_block *sync_cmd,
1161 			       struct its_collection *sync_col)
1162 {
1163 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1164 	its_encode_target(sync_cmd, sync_col->target_address);
1165 
1166 	its_fixup_cmd(sync_cmd);
1167 }
1168 
1169 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1170 			     struct its_collection, its_build_sync_cmd)
1171 
1172 static void its_build_vsync_cmd(struct its_node *its,
1173 				struct its_cmd_block *sync_cmd,
1174 				struct its_vpe *sync_vpe)
1175 {
1176 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1177 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1178 
1179 	its_fixup_cmd(sync_cmd);
1180 }
1181 
1182 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1183 			     struct its_vpe, its_build_vsync_cmd)
1184 
1185 static void its_send_int(struct its_device *dev, u32 event_id)
1186 {
1187 	struct its_cmd_desc desc;
1188 
1189 	desc.its_int_cmd.dev = dev;
1190 	desc.its_int_cmd.event_id = event_id;
1191 
1192 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1193 }
1194 
1195 static void its_send_clear(struct its_device *dev, u32 event_id)
1196 {
1197 	struct its_cmd_desc desc;
1198 
1199 	desc.its_clear_cmd.dev = dev;
1200 	desc.its_clear_cmd.event_id = event_id;
1201 
1202 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1203 }
1204 
1205 static void its_send_inv(struct its_device *dev, u32 event_id)
1206 {
1207 	struct its_cmd_desc desc;
1208 
1209 	desc.its_inv_cmd.dev = dev;
1210 	desc.its_inv_cmd.event_id = event_id;
1211 
1212 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1213 }
1214 
1215 static void its_send_mapd(struct its_device *dev, int valid)
1216 {
1217 	struct its_cmd_desc desc;
1218 
1219 	desc.its_mapd_cmd.dev = dev;
1220 	desc.its_mapd_cmd.valid = !!valid;
1221 
1222 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1223 }
1224 
1225 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1226 			  int valid)
1227 {
1228 	struct its_cmd_desc desc;
1229 
1230 	desc.its_mapc_cmd.col = col;
1231 	desc.its_mapc_cmd.valid = !!valid;
1232 
1233 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1234 }
1235 
1236 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1237 {
1238 	struct its_cmd_desc desc;
1239 
1240 	desc.its_mapti_cmd.dev = dev;
1241 	desc.its_mapti_cmd.phys_id = irq_id;
1242 	desc.its_mapti_cmd.event_id = id;
1243 
1244 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1245 }
1246 
1247 static void its_send_movi(struct its_device *dev,
1248 			  struct its_collection *col, u32 id)
1249 {
1250 	struct its_cmd_desc desc;
1251 
1252 	desc.its_movi_cmd.dev = dev;
1253 	desc.its_movi_cmd.col = col;
1254 	desc.its_movi_cmd.event_id = id;
1255 
1256 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1257 }
1258 
1259 static void its_send_discard(struct its_device *dev, u32 id)
1260 {
1261 	struct its_cmd_desc desc;
1262 
1263 	desc.its_discard_cmd.dev = dev;
1264 	desc.its_discard_cmd.event_id = id;
1265 
1266 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1267 }
1268 
1269 static void its_send_invall(struct its_node *its, struct its_collection *col)
1270 {
1271 	struct its_cmd_desc desc;
1272 
1273 	desc.its_invall_cmd.col = col;
1274 
1275 	its_send_single_command(its, its_build_invall_cmd, &desc);
1276 }
1277 
1278 static void its_send_vmapti(struct its_device *dev, u32 id)
1279 {
1280 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1281 	struct its_cmd_desc desc;
1282 
1283 	desc.its_vmapti_cmd.vpe = map->vpe;
1284 	desc.its_vmapti_cmd.dev = dev;
1285 	desc.its_vmapti_cmd.virt_id = map->vintid;
1286 	desc.its_vmapti_cmd.event_id = id;
1287 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1288 
1289 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1290 }
1291 
1292 static void its_send_vmovi(struct its_device *dev, u32 id)
1293 {
1294 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1295 	struct its_cmd_desc desc;
1296 
1297 	desc.its_vmovi_cmd.vpe = map->vpe;
1298 	desc.its_vmovi_cmd.dev = dev;
1299 	desc.its_vmovi_cmd.event_id = id;
1300 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1301 
1302 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1303 }
1304 
1305 static void its_send_vmapp(struct its_node *its,
1306 			   struct its_vpe *vpe, bool valid)
1307 {
1308 	struct its_cmd_desc desc;
1309 
1310 	desc.its_vmapp_cmd.vpe = vpe;
1311 	desc.its_vmapp_cmd.valid = valid;
1312 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1313 
1314 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1315 }
1316 
1317 static void its_send_vmovp(struct its_vpe *vpe)
1318 {
1319 	struct its_cmd_desc desc = {};
1320 	struct its_node *its;
1321 	int col_id = vpe->col_idx;
1322 
1323 	desc.its_vmovp_cmd.vpe = vpe;
1324 
1325 	if (!its_list_map) {
1326 		its = list_first_entry(&its_nodes, struct its_node, entry);
1327 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1328 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1329 		return;
1330 	}
1331 
1332 	/*
1333 	 * Yet another marvel of the architecture. If using the
1334 	 * its_list "feature", we need to make sure that all ITSs
1335 	 * receive all VMOVP commands in the same order. The only way
1336 	 * to guarantee this is to make vmovp a serialization point.
1337 	 *
1338 	 * Wall <-- Head.
1339 	 */
1340 	guard(raw_spinlock)(&vmovp_lock);
1341 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1342 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1343 
1344 	/* Emit VMOVPs */
1345 	list_for_each_entry(its, &its_nodes, entry) {
1346 		if (!is_v4(its))
1347 			continue;
1348 
1349 		if (!require_its_list_vmovp(vpe->its_vm, its))
1350 			continue;
1351 
1352 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1353 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1354 	}
1355 }
1356 
1357 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1358 {
1359 	struct its_cmd_desc desc;
1360 
1361 	desc.its_vinvall_cmd.vpe = vpe;
1362 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1363 }
1364 
1365 static void its_send_vinv(struct its_device *dev, u32 event_id)
1366 {
1367 	struct its_cmd_desc desc;
1368 
1369 	/*
1370 	 * There is no real VINV command. This is just a normal INV,
1371 	 * with a VSYNC instead of a SYNC.
1372 	 */
1373 	desc.its_inv_cmd.dev = dev;
1374 	desc.its_inv_cmd.event_id = event_id;
1375 
1376 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1377 }
1378 
1379 static void its_send_vint(struct its_device *dev, u32 event_id)
1380 {
1381 	struct its_cmd_desc desc;
1382 
1383 	/*
1384 	 * There is no real VINT command. This is just a normal INT,
1385 	 * with a VSYNC instead of a SYNC.
1386 	 */
1387 	desc.its_int_cmd.dev = dev;
1388 	desc.its_int_cmd.event_id = event_id;
1389 
1390 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1391 }
1392 
1393 static void its_send_vclear(struct its_device *dev, u32 event_id)
1394 {
1395 	struct its_cmd_desc desc;
1396 
1397 	/*
1398 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1399 	 * with a VSYNC instead of a SYNC.
1400 	 */
1401 	desc.its_clear_cmd.dev = dev;
1402 	desc.its_clear_cmd.event_id = event_id;
1403 
1404 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1405 }
1406 
1407 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1408 {
1409 	struct its_cmd_desc desc;
1410 
1411 	desc.its_invdb_cmd.vpe = vpe;
1412 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1413 }
1414 
1415 /*
1416  * irqchip functions - assumes MSI, mostly.
1417  */
1418 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1419 {
1420 	struct its_vlpi_map *map = get_vlpi_map(d);
1421 	irq_hw_number_t hwirq;
1422 	void *va;
1423 	u8 *cfg;
1424 
1425 	if (map) {
1426 		va = page_address(map->vm->vprop_page);
1427 		hwirq = map->vintid;
1428 
1429 		/* Remember the updated property */
1430 		map->properties &= ~clr;
1431 		map->properties |= set | LPI_PROP_GROUP1;
1432 	} else {
1433 		va = gic_rdists->prop_table_va;
1434 		hwirq = d->hwirq;
1435 	}
1436 
1437 	cfg = va + hwirq - 8192;
1438 	*cfg &= ~clr;
1439 	*cfg |= set | LPI_PROP_GROUP1;
1440 
1441 	/*
1442 	 * Make the above write visible to the redistributors.
1443 	 * And yes, we're flushing exactly: One. Single. Byte.
1444 	 * Humpf...
1445 	 */
1446 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1447 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1448 	else
1449 		dsb(ishst);
1450 }
1451 
1452 static void wait_for_syncr(void __iomem *rdbase)
1453 {
1454 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1455 		cpu_relax();
1456 }
1457 
1458 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1459 {
1460 	void __iomem *rdbase;
1461 	unsigned long flags;
1462 	int cpu;
1463 
1464 	/* Target the redistributor this LPI is currently routed to */
1465 	cpu = irq_to_cpuid_lock(d, &flags);
1466 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1467 
1468 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1469 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1470 	wait_for_syncr(rdbase);
1471 
1472 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1473 	irq_to_cpuid_unlock(d, flags);
1474 }
1475 
1476 static void direct_lpi_inv(struct irq_data *d)
1477 {
1478 	struct its_vlpi_map *map = get_vlpi_map(d);
1479 	u64 val;
1480 
1481 	if (map) {
1482 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1483 
1484 		WARN_ON(!is_v4_1(its_dev->its));
1485 
1486 		val  = GICR_INVLPIR_V;
1487 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1488 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1489 	} else {
1490 		val = d->hwirq;
1491 	}
1492 
1493 	__direct_lpi_inv(d, val);
1494 }
1495 
1496 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1497 {
1498 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1499 
1500 	lpi_write_config(d, clr, set);
1501 	if (gic_rdists->has_direct_lpi &&
1502 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1503 		direct_lpi_inv(d);
1504 	else if (!irqd_is_forwarded_to_vcpu(d))
1505 		its_send_inv(its_dev, its_get_event_id(d));
1506 	else
1507 		its_send_vinv(its_dev, its_get_event_id(d));
1508 }
1509 
1510 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1511 {
1512 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1513 	u32 event = its_get_event_id(d);
1514 	struct its_vlpi_map *map;
1515 
1516 	/*
1517 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1518 	 * here.
1519 	 */
1520 	if (is_v4_1(its_dev->its))
1521 		return;
1522 
1523 	map = dev_event_to_vlpi_map(its_dev, event);
1524 
1525 	if (map->db_enabled == enable)
1526 		return;
1527 
1528 	map->db_enabled = enable;
1529 
1530 	/*
1531 	 * More fun with the architecture:
1532 	 *
1533 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1534 	 * value or to 1023, depending on the enable bit. But that
1535 	 * would be issuing a mapping for an /existing/ DevID+EventID
1536 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1537 	 * to the /same/ vPE, using this opportunity to adjust the
1538 	 * doorbell. Mouahahahaha. We loves it, Precious.
1539 	 */
1540 	its_send_vmovi(its_dev, event);
1541 }
1542 
1543 static void its_mask_irq(struct irq_data *d)
1544 {
1545 	if (irqd_is_forwarded_to_vcpu(d))
1546 		its_vlpi_set_doorbell(d, false);
1547 
1548 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1549 }
1550 
1551 static void its_unmask_irq(struct irq_data *d)
1552 {
1553 	if (irqd_is_forwarded_to_vcpu(d))
1554 		its_vlpi_set_doorbell(d, true);
1555 
1556 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1557 }
1558 
1559 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1560 {
1561 	if (irqd_affinity_is_managed(d))
1562 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1563 
1564 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1565 }
1566 
1567 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1568 {
1569 	if (irqd_affinity_is_managed(d))
1570 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1571 	else
1572 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1573 }
1574 
1575 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1576 {
1577 	if (irqd_affinity_is_managed(d))
1578 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1579 	else
1580 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1581 }
1582 
1583 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1584 					      const struct cpumask *cpu_mask)
1585 {
1586 	unsigned int cpu = nr_cpu_ids, tmp;
1587 	int count = S32_MAX;
1588 
1589 	for_each_cpu(tmp, cpu_mask) {
1590 		int this_count = its_read_lpi_count(d, tmp);
1591 		if (this_count < count) {
1592 			cpu = tmp;
1593 		        count = this_count;
1594 		}
1595 	}
1596 
1597 	return cpu;
1598 }
1599 
1600 /*
1601  * As suggested by Thomas Gleixner in:
1602  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1603  */
1604 static int its_select_cpu(struct irq_data *d,
1605 			  const struct cpumask *aff_mask)
1606 {
1607 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1608 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1609 	static struct cpumask __tmpmask;
1610 	struct cpumask *tmpmask;
1611 	unsigned long flags;
1612 	int cpu, node;
1613 	node = its_dev->its->numa_node;
1614 	tmpmask = &__tmpmask;
1615 
1616 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1617 
1618 	if (!irqd_affinity_is_managed(d)) {
1619 		/* First try the NUMA node */
1620 		if (node != NUMA_NO_NODE) {
1621 			/*
1622 			 * Try the intersection of the affinity mask and the
1623 			 * node mask (and the online mask, just to be safe).
1624 			 */
1625 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1626 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1627 
1628 			/*
1629 			 * Ideally, we would check if the mask is empty, and
1630 			 * try again on the full node here.
1631 			 *
1632 			 * But it turns out that the way ACPI describes the
1633 			 * affinity for ITSs only deals about memory, and
1634 			 * not target CPUs, so it cannot describe a single
1635 			 * ITS placed next to two NUMA nodes.
1636 			 *
1637 			 * Instead, just fallback on the online mask. This
1638 			 * diverges from Thomas' suggestion above.
1639 			 */
1640 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1641 			if (cpu < nr_cpu_ids)
1642 				goto out;
1643 
1644 			/* If we can't cross sockets, give up */
1645 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1646 				goto out;
1647 
1648 			/* If the above failed, expand the search */
1649 		}
1650 
1651 		/* Try the intersection of the affinity and online masks */
1652 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1653 
1654 		/* If that doesn't fly, the online mask is the last resort */
1655 		if (cpumask_empty(tmpmask))
1656 			cpumask_copy(tmpmask, cpu_online_mask);
1657 
1658 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1659 	} else {
1660 		cpumask_copy(tmpmask, aff_mask);
1661 
1662 		/* If we cannot cross sockets, limit the search to that node */
1663 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1664 		    node != NUMA_NO_NODE)
1665 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1666 
1667 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1668 	}
1669 out:
1670 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1671 
1672 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1673 	return cpu;
1674 }
1675 
1676 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1677 			    bool force)
1678 {
1679 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1680 	struct its_collection *target_col;
1681 	u32 id = its_get_event_id(d);
1682 	int cpu, prev_cpu;
1683 
1684 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1685 	if (irqd_is_forwarded_to_vcpu(d))
1686 		return -EINVAL;
1687 
1688 	prev_cpu = its_dev->event_map.col_map[id];
1689 	its_dec_lpi_count(d, prev_cpu);
1690 
1691 	if (!force)
1692 		cpu = its_select_cpu(d, mask_val);
1693 	else
1694 		cpu = cpumask_pick_least_loaded(d, mask_val);
1695 
1696 	if (cpu < 0 || cpu >= nr_cpu_ids)
1697 		goto err;
1698 
1699 	/* don't set the affinity when the target cpu is same as current one */
1700 	if (cpu != prev_cpu) {
1701 		target_col = &its_dev->its->collections[cpu];
1702 		its_send_movi(its_dev, target_col, id);
1703 		its_dev->event_map.col_map[id] = cpu;
1704 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1705 	}
1706 
1707 	its_inc_lpi_count(d, cpu);
1708 
1709 	return IRQ_SET_MASK_OK_DONE;
1710 
1711 err:
1712 	its_inc_lpi_count(d, prev_cpu);
1713 	return -EINVAL;
1714 }
1715 
1716 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1717 {
1718 	struct its_node *its = its_dev->its;
1719 
1720 	return its->phys_base + GITS_TRANSLATER;
1721 }
1722 
1723 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1724 {
1725 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1726 	struct its_node *its;
1727 	u64 addr;
1728 
1729 	its = its_dev->its;
1730 	addr = its->get_msi_base(its_dev);
1731 
1732 	msg->address_lo		= lower_32_bits(addr);
1733 	msg->address_hi		= upper_32_bits(addr);
1734 	msg->data		= its_get_event_id(d);
1735 
1736 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1737 }
1738 
1739 static int its_irq_set_irqchip_state(struct irq_data *d,
1740 				     enum irqchip_irq_state which,
1741 				     bool state)
1742 {
1743 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1744 	u32 event = its_get_event_id(d);
1745 
1746 	if (which != IRQCHIP_STATE_PENDING)
1747 		return -EINVAL;
1748 
1749 	if (irqd_is_forwarded_to_vcpu(d)) {
1750 		if (state)
1751 			its_send_vint(its_dev, event);
1752 		else
1753 			its_send_vclear(its_dev, event);
1754 	} else {
1755 		if (state)
1756 			its_send_int(its_dev, event);
1757 		else
1758 			its_send_clear(its_dev, event);
1759 	}
1760 
1761 	return 0;
1762 }
1763 
1764 static int its_irq_retrigger(struct irq_data *d)
1765 {
1766 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1767 }
1768 
1769 /*
1770  * Two favourable cases:
1771  *
1772  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1773  *     for vSGI delivery
1774  *
1775  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1776  *     and we're better off mapping all VPEs always
1777  *
1778  * If neither (a) nor (b) is true, then we map vPEs on demand.
1779  *
1780  */
1781 static bool gic_requires_eager_mapping(void)
1782 {
1783 	if (!its_list_map || gic_rdists->has_rvpeid)
1784 		return true;
1785 
1786 	return false;
1787 }
1788 
1789 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1790 {
1791 	if (gic_requires_eager_mapping())
1792 		return;
1793 
1794 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1795 
1796 	/*
1797 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1798 	 * them mapped now.
1799 	 */
1800 	vm->vlpi_count[its->list_nr]++;
1801 
1802 	if (vm->vlpi_count[its->list_nr] == 1) {
1803 		int i;
1804 
1805 		for (i = 0; i < vm->nr_vpes; i++) {
1806 			struct its_vpe *vpe = vm->vpes[i];
1807 
1808 			scoped_guard(raw_spinlock, &vpe->vpe_lock)
1809 				its_send_vmapp(its, vpe, true);
1810 
1811 			its_send_vinvall(its, vpe);
1812 		}
1813 	}
1814 }
1815 
1816 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1817 {
1818 	/* Not using the ITS list? Everything is always mapped. */
1819 	if (gic_requires_eager_mapping())
1820 		return;
1821 
1822 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1823 
1824 	if (!--vm->vlpi_count[its->list_nr]) {
1825 		int i;
1826 
1827 		for (i = 0; i < vm->nr_vpes; i++) {
1828 			guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1829 			its_send_vmapp(its, vm->vpes[i], false);
1830 		}
1831 	}
1832 }
1833 
1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1835 {
1836 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1837 	u32 event = its_get_event_id(d);
1838 
1839 	if (!info->map)
1840 		return -EINVAL;
1841 
1842 	if (!its_dev->event_map.vm) {
1843 		struct its_vlpi_map *maps;
1844 
1845 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1846 			       GFP_ATOMIC);
1847 		if (!maps)
1848 			return -ENOMEM;
1849 
1850 		its_dev->event_map.vm = info->map->vm;
1851 		its_dev->event_map.vlpi_maps = maps;
1852 	} else if (its_dev->event_map.vm != info->map->vm) {
1853 		return -EINVAL;
1854 	}
1855 
1856 	/* Get our private copy of the mapping information */
1857 	its_dev->event_map.vlpi_maps[event] = *info->map;
1858 
1859 	if (irqd_is_forwarded_to_vcpu(d)) {
1860 		/* Already mapped, move it around */
1861 		its_send_vmovi(its_dev, event);
1862 	} else {
1863 		/* Ensure all the VPEs are mapped on this ITS */
1864 		its_map_vm(its_dev->its, info->map->vm);
1865 
1866 		/*
1867 		 * Flag the interrupt as forwarded so that we can
1868 		 * start poking the virtual property table.
1869 		 */
1870 		irqd_set_forwarded_to_vcpu(d);
1871 
1872 		/* Write out the property to the prop table */
1873 		lpi_write_config(d, 0xff, info->map->properties);
1874 
1875 		/* Drop the physical mapping */
1876 		its_send_discard(its_dev, event);
1877 
1878 		/* and install the virtual one */
1879 		its_send_vmapti(its_dev, event);
1880 
1881 		/* Increment the number of VLPIs */
1882 		its_dev->event_map.nr_vlpis++;
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1889 {
1890 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1891 	struct its_vlpi_map *map;
1892 
1893 	map = get_vlpi_map(d);
1894 
1895 	if (!its_dev->event_map.vm || !map)
1896 		return -EINVAL;
1897 
1898 	/* Copy our mapping information to the incoming request */
1899 	*info->map = *map;
1900 
1901 	return 0;
1902 }
1903 
1904 static int its_vlpi_unmap(struct irq_data *d)
1905 {
1906 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1907 	u32 event = its_get_event_id(d);
1908 
1909 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1910 		return -EINVAL;
1911 
1912 	/* Drop the virtual mapping */
1913 	its_send_discard(its_dev, event);
1914 
1915 	/* and restore the physical one */
1916 	irqd_clr_forwarded_to_vcpu(d);
1917 	its_send_mapti(its_dev, d->hwirq, event);
1918 	lpi_update_config(d, 0xff, (lpi_prop_prio |
1919 				    LPI_PROP_ENABLED |
1920 				    LPI_PROP_GROUP1));
1921 
1922 	/* Potentially unmap the VM from this ITS */
1923 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1924 
1925 	/*
1926 	 * Drop the refcount and make the device available again if
1927 	 * this was the last VLPI.
1928 	 */
1929 	if (!--its_dev->event_map.nr_vlpis) {
1930 		its_dev->event_map.vm = NULL;
1931 		kfree(its_dev->event_map.vlpi_maps);
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1938 {
1939 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1940 
1941 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1942 		return -EINVAL;
1943 
1944 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1945 		lpi_update_config(d, 0xff, info->config);
1946 	else
1947 		lpi_write_config(d, 0xff, info->config);
1948 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1949 
1950 	return 0;
1951 }
1952 
1953 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1954 {
1955 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1956 	struct its_cmd_info *info = vcpu_info;
1957 
1958 	/* Need a v4 ITS */
1959 	if (!is_v4(its_dev->its))
1960 		return -EINVAL;
1961 
1962 	guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock);
1963 
1964 	/* Unmap request? */
1965 	if (!info)
1966 		return its_vlpi_unmap(d);
1967 
1968 	switch (info->cmd_type) {
1969 	case MAP_VLPI:
1970 		return its_vlpi_map(d, info);
1971 
1972 	case GET_VLPI:
1973 		return its_vlpi_get(d, info);
1974 
1975 	case PROP_UPDATE_VLPI:
1976 	case PROP_UPDATE_AND_INV_VLPI:
1977 		return its_vlpi_prop_update(d, info);
1978 
1979 	default:
1980 		return -EINVAL;
1981 	}
1982 }
1983 
1984 static struct irq_chip its_irq_chip = {
1985 	.name			= "ITS",
1986 	.irq_mask		= its_mask_irq,
1987 	.irq_unmask		= its_unmask_irq,
1988 	.irq_eoi		= irq_chip_eoi_parent,
1989 	.irq_set_affinity	= its_set_affinity,
1990 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1991 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1992 	.irq_retrigger		= its_irq_retrigger,
1993 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1994 };
1995 
1996 
1997 /*
1998  * How we allocate LPIs:
1999  *
2000  * lpi_range_list contains ranges of LPIs that are to available to
2001  * allocate from. To allocate LPIs, just pick the first range that
2002  * fits the required allocation, and reduce it by the required
2003  * amount. Once empty, remove the range from the list.
2004  *
2005  * To free a range of LPIs, add a free range to the list, sort it and
2006  * merge the result if the new range happens to be adjacent to an
2007  * already free block.
2008  *
2009  * The consequence of the above is that allocation is cost is low, but
2010  * freeing is expensive. We assumes that freeing rarely occurs.
2011  */
2012 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2013 
2014 static DEFINE_MUTEX(lpi_range_lock);
2015 static LIST_HEAD(lpi_range_list);
2016 
2017 struct lpi_range {
2018 	struct list_head	entry;
2019 	u32			base_id;
2020 	u32			span;
2021 };
2022 
2023 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2024 {
2025 	struct lpi_range *range;
2026 
2027 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2028 	if (range) {
2029 		range->base_id = base;
2030 		range->span = span;
2031 	}
2032 
2033 	return range;
2034 }
2035 
2036 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2037 {
2038 	struct lpi_range *range, *tmp;
2039 	int err = -ENOSPC;
2040 
2041 	mutex_lock(&lpi_range_lock);
2042 
2043 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2044 		if (range->span >= nr_lpis) {
2045 			*base = range->base_id;
2046 			range->base_id += nr_lpis;
2047 			range->span -= nr_lpis;
2048 
2049 			if (range->span == 0) {
2050 				list_del(&range->entry);
2051 				kfree(range);
2052 			}
2053 
2054 			err = 0;
2055 			break;
2056 		}
2057 	}
2058 
2059 	mutex_unlock(&lpi_range_lock);
2060 
2061 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2062 	return err;
2063 }
2064 
2065 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2066 {
2067 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2068 		return;
2069 	if (a->base_id + a->span != b->base_id)
2070 		return;
2071 	b->base_id = a->base_id;
2072 	b->span += a->span;
2073 	list_del(&a->entry);
2074 	kfree(a);
2075 }
2076 
2077 static int free_lpi_range(u32 base, u32 nr_lpis)
2078 {
2079 	struct lpi_range *new, *old;
2080 
2081 	new = mk_lpi_range(base, nr_lpis);
2082 	if (!new)
2083 		return -ENOMEM;
2084 
2085 	mutex_lock(&lpi_range_lock);
2086 
2087 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2088 		if (old->base_id < base)
2089 			break;
2090 	}
2091 	/*
2092 	 * old is the last element with ->base_id smaller than base,
2093 	 * so new goes right after it. If there are no elements with
2094 	 * ->base_id smaller than base, &old->entry ends up pointing
2095 	 * at the head of the list, and inserting new it the start of
2096 	 * the list is the right thing to do in that case as well.
2097 	 */
2098 	list_add(&new->entry, &old->entry);
2099 	/*
2100 	 * Now check if we can merge with the preceding and/or
2101 	 * following ranges.
2102 	 */
2103 	merge_lpi_ranges(old, new);
2104 	merge_lpi_ranges(new, list_next_entry(new, entry));
2105 
2106 	mutex_unlock(&lpi_range_lock);
2107 	return 0;
2108 }
2109 
2110 static int __init its_lpi_init(u32 id_bits)
2111 {
2112 	u32 lpis = (1UL << id_bits) - 8192;
2113 	u32 numlpis;
2114 	int err;
2115 
2116 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2117 
2118 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2119 		lpis = numlpis;
2120 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2121 			lpis);
2122 	}
2123 
2124 	/*
2125 	 * Initializing the allocator is just the same as freeing the
2126 	 * full range of LPIs.
2127 	 */
2128 	err = free_lpi_range(8192, lpis);
2129 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2130 	return err;
2131 }
2132 
2133 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2134 {
2135 	unsigned long *bitmap = NULL;
2136 	int err = 0;
2137 
2138 	do {
2139 		err = alloc_lpi_range(nr_irqs, base);
2140 		if (!err)
2141 			break;
2142 
2143 		nr_irqs /= 2;
2144 	} while (nr_irqs > 0);
2145 
2146 	if (!nr_irqs)
2147 		err = -ENOSPC;
2148 
2149 	if (err)
2150 		goto out;
2151 
2152 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2153 	if (!bitmap)
2154 		goto out;
2155 
2156 	*nr_ids = nr_irqs;
2157 
2158 out:
2159 	if (!bitmap)
2160 		*base = *nr_ids = 0;
2161 
2162 	return bitmap;
2163 }
2164 
2165 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2166 {
2167 	WARN_ON(free_lpi_range(base, nr_ids));
2168 	bitmap_free(bitmap);
2169 }
2170 
2171 static void gic_reset_prop_table(void *va)
2172 {
2173 	/* Regular IRQ priority, Group-1, disabled */
2174 	memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2175 
2176 	/* Make sure the GIC will observe the written configuration */
2177 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2178 }
2179 
2180 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2181 {
2182 	struct page *prop_page;
2183 
2184 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2185 	if (!prop_page)
2186 		return NULL;
2187 
2188 	gic_reset_prop_table(page_address(prop_page));
2189 
2190 	return prop_page;
2191 }
2192 
2193 static void its_free_prop_table(struct page *prop_page)
2194 {
2195 	free_pages((unsigned long)page_address(prop_page),
2196 		   get_order(LPI_PROPBASE_SZ));
2197 }
2198 
2199 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2200 {
2201 	phys_addr_t start, end, addr_end;
2202 	u64 i;
2203 
2204 	/*
2205 	 * We don't bother checking for a kdump kernel as by
2206 	 * construction, the LPI tables are out of this kernel's
2207 	 * memory map.
2208 	 */
2209 	if (is_kdump_kernel())
2210 		return true;
2211 
2212 	addr_end = addr + size - 1;
2213 
2214 	for_each_reserved_mem_range(i, &start, &end) {
2215 		if (addr >= start && addr_end <= end)
2216 			return true;
2217 	}
2218 
2219 	/* Not found, not a good sign... */
2220 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2221 		&addr, &addr_end);
2222 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2223 	return false;
2224 }
2225 
2226 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2227 {
2228 	if (efi_enabled(EFI_CONFIG_TABLES))
2229 		return efi_mem_reserve_persistent(addr, size);
2230 
2231 	return 0;
2232 }
2233 
2234 static int __init its_setup_lpi_prop_table(void)
2235 {
2236 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2237 		u64 val;
2238 
2239 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2240 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2241 
2242 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2243 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2244 						     LPI_PROPBASE_SZ,
2245 						     MEMREMAP_WB);
2246 		gic_reset_prop_table(gic_rdists->prop_table_va);
2247 	} else {
2248 		struct page *page;
2249 
2250 		lpi_id_bits = min_t(u32,
2251 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2252 				    ITS_MAX_LPI_NRBITS);
2253 		page = its_allocate_prop_table(GFP_NOWAIT);
2254 		if (!page) {
2255 			pr_err("Failed to allocate PROPBASE\n");
2256 			return -ENOMEM;
2257 		}
2258 
2259 		gic_rdists->prop_table_pa = page_to_phys(page);
2260 		gic_rdists->prop_table_va = page_address(page);
2261 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2262 					  LPI_PROPBASE_SZ));
2263 	}
2264 
2265 	pr_info("GICv3: using LPI property table @%pa\n",
2266 		&gic_rdists->prop_table_pa);
2267 
2268 	return its_lpi_init(lpi_id_bits);
2269 }
2270 
2271 static const char *its_base_type_string[] = {
2272 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2273 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2274 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2275 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2276 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2277 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2278 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2279 };
2280 
2281 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2282 {
2283 	u32 idx = baser - its->tables;
2284 
2285 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2286 }
2287 
2288 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2289 			    u64 val)
2290 {
2291 	u32 idx = baser - its->tables;
2292 
2293 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2294 	baser->val = its_read_baser(its, baser);
2295 }
2296 
2297 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2298 			   u64 cache, u64 shr, u32 order, bool indirect)
2299 {
2300 	u64 val = its_read_baser(its, baser);
2301 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2302 	u64 type = GITS_BASER_TYPE(val);
2303 	u64 baser_phys, tmp;
2304 	u32 alloc_pages, psz;
2305 	struct page *page;
2306 	void *base;
2307 
2308 	psz = baser->psz;
2309 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2310 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2311 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2312 			&its->phys_base, its_base_type_string[type],
2313 			alloc_pages, GITS_BASER_PAGES_MAX);
2314 		alloc_pages = GITS_BASER_PAGES_MAX;
2315 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2316 	}
2317 
2318 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2319 	if (!page)
2320 		return -ENOMEM;
2321 
2322 	base = (void *)page_address(page);
2323 	baser_phys = virt_to_phys(base);
2324 
2325 	/* Check if the physical address of the memory is above 48bits */
2326 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2327 
2328 		/* 52bit PA is supported only when PageSize=64K */
2329 		if (psz != SZ_64K) {
2330 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2331 			free_pages((unsigned long)base, order);
2332 			return -ENXIO;
2333 		}
2334 
2335 		/* Convert 52bit PA to 48bit field */
2336 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2337 	}
2338 
2339 retry_baser:
2340 	val = (baser_phys					 |
2341 		(type << GITS_BASER_TYPE_SHIFT)			 |
2342 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2343 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2344 		cache						 |
2345 		shr						 |
2346 		GITS_BASER_VALID);
2347 
2348 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2349 
2350 	switch (psz) {
2351 	case SZ_4K:
2352 		val |= GITS_BASER_PAGE_SIZE_4K;
2353 		break;
2354 	case SZ_16K:
2355 		val |= GITS_BASER_PAGE_SIZE_16K;
2356 		break;
2357 	case SZ_64K:
2358 		val |= GITS_BASER_PAGE_SIZE_64K;
2359 		break;
2360 	}
2361 
2362 	if (!shr)
2363 		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2364 
2365 	its_write_baser(its, baser, val);
2366 	tmp = baser->val;
2367 
2368 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2369 		/*
2370 		 * Shareability didn't stick. Just use
2371 		 * whatever the read reported, which is likely
2372 		 * to be the only thing this redistributor
2373 		 * supports. If that's zero, make it
2374 		 * non-cacheable as well.
2375 		 */
2376 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2377 		if (!shr)
2378 			cache = GITS_BASER_nC;
2379 
2380 		goto retry_baser;
2381 	}
2382 
2383 	if (val != tmp) {
2384 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2385 		       &its->phys_base, its_base_type_string[type],
2386 		       val, tmp);
2387 		free_pages((unsigned long)base, order);
2388 		return -ENXIO;
2389 	}
2390 
2391 	baser->order = order;
2392 	baser->base = base;
2393 	baser->psz = psz;
2394 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2395 
2396 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2397 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2398 		its_base_type_string[type],
2399 		(unsigned long)virt_to_phys(base),
2400 		indirect ? "indirect" : "flat", (int)esz,
2401 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2402 
2403 	return 0;
2404 }
2405 
2406 static bool its_parse_indirect_baser(struct its_node *its,
2407 				     struct its_baser *baser,
2408 				     u32 *order, u32 ids)
2409 {
2410 	u64 tmp = its_read_baser(its, baser);
2411 	u64 type = GITS_BASER_TYPE(tmp);
2412 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2413 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2414 	u32 new_order = *order;
2415 	u32 psz = baser->psz;
2416 	bool indirect = false;
2417 
2418 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2419 	if ((esz << ids) > (psz * 2)) {
2420 		/*
2421 		 * Find out whether hw supports a single or two-level table by
2422 		 * table by reading bit at offset '62' after writing '1' to it.
2423 		 */
2424 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2425 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2426 
2427 		if (indirect) {
2428 			/*
2429 			 * The size of the lvl2 table is equal to ITS page size
2430 			 * which is 'psz'. For computing lvl1 table size,
2431 			 * subtract ID bits that sparse lvl2 table from 'ids'
2432 			 * which is reported by ITS hardware times lvl1 table
2433 			 * entry size.
2434 			 */
2435 			ids -= ilog2(psz / (int)esz);
2436 			esz = GITS_LVL1_ENTRY_SIZE;
2437 		}
2438 	}
2439 
2440 	/*
2441 	 * Allocate as many entries as required to fit the
2442 	 * range of device IDs that the ITS can grok... The ID
2443 	 * space being incredibly sparse, this results in a
2444 	 * massive waste of memory if two-level device table
2445 	 * feature is not supported by hardware.
2446 	 */
2447 	new_order = max_t(u32, get_order(esz << ids), new_order);
2448 	if (new_order > MAX_PAGE_ORDER) {
2449 		new_order = MAX_PAGE_ORDER;
2450 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2451 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2452 			&its->phys_base, its_base_type_string[type],
2453 			device_ids(its), ids);
2454 	}
2455 
2456 	*order = new_order;
2457 
2458 	return indirect;
2459 }
2460 
2461 static u32 compute_common_aff(u64 val)
2462 {
2463 	u32 aff, clpiaff;
2464 
2465 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2466 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2467 
2468 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2469 }
2470 
2471 static u32 compute_its_aff(struct its_node *its)
2472 {
2473 	u64 val;
2474 	u32 svpet;
2475 
2476 	/*
2477 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2478 	 * the resulting affinity. We then use that to see if this match
2479 	 * our own affinity.
2480 	 */
2481 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2482 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2483 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2484 	return compute_common_aff(val);
2485 }
2486 
2487 static struct its_node *find_sibling_its(struct its_node *cur_its)
2488 {
2489 	struct its_node *its;
2490 	u32 aff;
2491 
2492 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2493 		return NULL;
2494 
2495 	aff = compute_its_aff(cur_its);
2496 
2497 	list_for_each_entry(its, &its_nodes, entry) {
2498 		u64 baser;
2499 
2500 		if (!is_v4_1(its) || its == cur_its)
2501 			continue;
2502 
2503 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2504 			continue;
2505 
2506 		if (aff != compute_its_aff(its))
2507 			continue;
2508 
2509 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2510 		baser = its->tables[2].val;
2511 		if (!(baser & GITS_BASER_VALID))
2512 			continue;
2513 
2514 		return its;
2515 	}
2516 
2517 	return NULL;
2518 }
2519 
2520 static void its_free_tables(struct its_node *its)
2521 {
2522 	int i;
2523 
2524 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2525 		if (its->tables[i].base) {
2526 			free_pages((unsigned long)its->tables[i].base,
2527 				   its->tables[i].order);
2528 			its->tables[i].base = NULL;
2529 		}
2530 	}
2531 }
2532 
2533 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2534 {
2535 	u64 psz = SZ_64K;
2536 
2537 	while (psz) {
2538 		u64 val, gpsz;
2539 
2540 		val = its_read_baser(its, baser);
2541 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2542 
2543 		switch (psz) {
2544 		case SZ_64K:
2545 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2546 			break;
2547 		case SZ_16K:
2548 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2549 			break;
2550 		case SZ_4K:
2551 		default:
2552 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2553 			break;
2554 		}
2555 
2556 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2557 
2558 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2559 		its_write_baser(its, baser, val);
2560 
2561 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2562 			break;
2563 
2564 		switch (psz) {
2565 		case SZ_64K:
2566 			psz = SZ_16K;
2567 			break;
2568 		case SZ_16K:
2569 			psz = SZ_4K;
2570 			break;
2571 		case SZ_4K:
2572 		default:
2573 			return -1;
2574 		}
2575 	}
2576 
2577 	baser->psz = psz;
2578 	return 0;
2579 }
2580 
2581 static int its_alloc_tables(struct its_node *its)
2582 {
2583 	u64 shr = GITS_BASER_InnerShareable;
2584 	u64 cache = GITS_BASER_RaWaWb;
2585 	int err, i;
2586 
2587 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2588 		/* erratum 24313: ignore memory access type */
2589 		cache = GITS_BASER_nCnB;
2590 
2591 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2592 		cache = GITS_BASER_nC;
2593 		shr = 0;
2594 	}
2595 
2596 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2597 		struct its_baser *baser = its->tables + i;
2598 		u64 val = its_read_baser(its, baser);
2599 		u64 type = GITS_BASER_TYPE(val);
2600 		bool indirect = false;
2601 		u32 order;
2602 
2603 		if (type == GITS_BASER_TYPE_NONE)
2604 			continue;
2605 
2606 		if (its_probe_baser_psz(its, baser)) {
2607 			its_free_tables(its);
2608 			return -ENXIO;
2609 		}
2610 
2611 		order = get_order(baser->psz);
2612 
2613 		switch (type) {
2614 		case GITS_BASER_TYPE_DEVICE:
2615 			indirect = its_parse_indirect_baser(its, baser, &order,
2616 							    device_ids(its));
2617 			break;
2618 
2619 		case GITS_BASER_TYPE_VCPU:
2620 			if (is_v4_1(its)) {
2621 				struct its_node *sibling;
2622 
2623 				WARN_ON(i != 2);
2624 				if ((sibling = find_sibling_its(its))) {
2625 					*baser = sibling->tables[2];
2626 					its_write_baser(its, baser, baser->val);
2627 					continue;
2628 				}
2629 			}
2630 
2631 			indirect = its_parse_indirect_baser(its, baser, &order,
2632 							    ITS_MAX_VPEID_BITS);
2633 			break;
2634 		}
2635 
2636 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2637 		if (err < 0) {
2638 			its_free_tables(its);
2639 			return err;
2640 		}
2641 
2642 		/* Update settings which will be used for next BASERn */
2643 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2644 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 static u64 inherit_vpe_l1_table_from_its(void)
2651 {
2652 	struct its_node *its;
2653 	u64 val;
2654 	u32 aff;
2655 
2656 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2657 	aff = compute_common_aff(val);
2658 
2659 	list_for_each_entry(its, &its_nodes, entry) {
2660 		u64 baser, addr;
2661 
2662 		if (!is_v4_1(its))
2663 			continue;
2664 
2665 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2666 			continue;
2667 
2668 		if (aff != compute_its_aff(its))
2669 			continue;
2670 
2671 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2672 		baser = its->tables[2].val;
2673 		if (!(baser & GITS_BASER_VALID))
2674 			continue;
2675 
2676 		/* We have a winner! */
2677 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2678 
2679 		val  = GICR_VPROPBASER_4_1_VALID;
2680 		if (baser & GITS_BASER_INDIRECT)
2681 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2682 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2683 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2684 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2685 		case GIC_PAGE_SIZE_64K:
2686 			addr = GITS_BASER_ADDR_48_to_52(baser);
2687 			break;
2688 		default:
2689 			addr = baser & GENMASK_ULL(47, 12);
2690 			break;
2691 		}
2692 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2693 		if (rdists_support_shareable()) {
2694 			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2695 					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2696 			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2697 					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2698 		}
2699 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2700 
2701 		return val;
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2708 {
2709 	u32 aff;
2710 	u64 val;
2711 	int cpu;
2712 
2713 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2714 	aff = compute_common_aff(val);
2715 
2716 	for_each_possible_cpu(cpu) {
2717 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2718 
2719 		if (!base || cpu == smp_processor_id())
2720 			continue;
2721 
2722 		val = gic_read_typer(base + GICR_TYPER);
2723 		if (aff != compute_common_aff(val))
2724 			continue;
2725 
2726 		/*
2727 		 * At this point, we have a victim. This particular CPU
2728 		 * has already booted, and has an affinity that matches
2729 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2730 		 * Make sure we don't write the Z bit in that case.
2731 		 */
2732 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2733 		val &= ~GICR_VPROPBASER_4_1_Z;
2734 
2735 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2736 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2737 
2738 		return val;
2739 	}
2740 
2741 	return 0;
2742 }
2743 
2744 static bool allocate_vpe_l2_table(int cpu, u32 id)
2745 {
2746 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2747 	unsigned int psz, esz, idx, npg, gpsz;
2748 	u64 val;
2749 	struct page *page;
2750 	__le64 *table;
2751 
2752 	if (!gic_rdists->has_rvpeid)
2753 		return true;
2754 
2755 	/* Skip non-present CPUs */
2756 	if (!base)
2757 		return true;
2758 
2759 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2760 
2761 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2762 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2763 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2764 
2765 	switch (gpsz) {
2766 	default:
2767 		WARN_ON(1);
2768 		fallthrough;
2769 	case GIC_PAGE_SIZE_4K:
2770 		psz = SZ_4K;
2771 		break;
2772 	case GIC_PAGE_SIZE_16K:
2773 		psz = SZ_16K;
2774 		break;
2775 	case GIC_PAGE_SIZE_64K:
2776 		psz = SZ_64K;
2777 		break;
2778 	}
2779 
2780 	/* Don't allow vpe_id that exceeds single, flat table limit */
2781 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2782 		return (id < (npg * psz / (esz * SZ_8)));
2783 
2784 	/* Compute 1st level table index & check if that exceeds table limit */
2785 	idx = id >> ilog2(psz / (esz * SZ_8));
2786 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2787 		return false;
2788 
2789 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2790 
2791 	/* Allocate memory for 2nd level table */
2792 	if (!table[idx]) {
2793 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2794 		if (!page)
2795 			return false;
2796 
2797 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2798 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2799 			gic_flush_dcache_to_poc(page_address(page), psz);
2800 
2801 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2802 
2803 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2804 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2805 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2806 
2807 		/* Ensure updated table contents are visible to RD hardware */
2808 		dsb(sy);
2809 	}
2810 
2811 	return true;
2812 }
2813 
2814 static int allocate_vpe_l1_table(void)
2815 {
2816 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2817 	u64 val, gpsz, npg, pa;
2818 	unsigned int psz = SZ_64K;
2819 	unsigned int np, epp, esz;
2820 	struct page *page;
2821 
2822 	if (!gic_rdists->has_rvpeid)
2823 		return 0;
2824 
2825 	/*
2826 	 * if VPENDBASER.Valid is set, disable any previously programmed
2827 	 * VPE by setting PendingLast while clearing Valid. This has the
2828 	 * effect of making sure no doorbell will be generated and we can
2829 	 * then safely clear VPROPBASER.Valid.
2830 	 */
2831 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2832 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2833 				      vlpi_base + GICR_VPENDBASER);
2834 
2835 	/*
2836 	 * If we can inherit the configuration from another RD, let's do
2837 	 * so. Otherwise, we have to go through the allocation process. We
2838 	 * assume that all RDs have the exact same requirements, as
2839 	 * nothing will work otherwise.
2840 	 */
2841 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2842 	if (val & GICR_VPROPBASER_4_1_VALID)
2843 		goto out;
2844 
2845 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2846 	if (!gic_data_rdist()->vpe_table_mask)
2847 		return -ENOMEM;
2848 
2849 	val = inherit_vpe_l1_table_from_its();
2850 	if (val & GICR_VPROPBASER_4_1_VALID)
2851 		goto out;
2852 
2853 	/* First probe the page size */
2854 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2855 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2856 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2857 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2858 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2859 
2860 	switch (gpsz) {
2861 	default:
2862 		gpsz = GIC_PAGE_SIZE_4K;
2863 		fallthrough;
2864 	case GIC_PAGE_SIZE_4K:
2865 		psz = SZ_4K;
2866 		break;
2867 	case GIC_PAGE_SIZE_16K:
2868 		psz = SZ_16K;
2869 		break;
2870 	case GIC_PAGE_SIZE_64K:
2871 		psz = SZ_64K;
2872 		break;
2873 	}
2874 
2875 	/*
2876 	 * Start populating the register from scratch, including RO fields
2877 	 * (which we want to print in debug cases...)
2878 	 */
2879 	val = 0;
2880 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2881 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2882 
2883 	/* How many entries per GIC page? */
2884 	esz++;
2885 	epp = psz / (esz * SZ_8);
2886 
2887 	/*
2888 	 * If we need more than just a single L1 page, flag the table
2889 	 * as indirect and compute the number of required L1 pages.
2890 	 */
2891 	if (epp < ITS_MAX_VPEID) {
2892 		int nl2;
2893 
2894 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2895 
2896 		/* Number of L2 pages required to cover the VPEID space */
2897 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2898 
2899 		/* Number of L1 pages to point to the L2 pages */
2900 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2901 	} else {
2902 		npg = 1;
2903 	}
2904 
2905 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2906 
2907 	/* Right, that's the number of CPU pages we need for L1 */
2908 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2909 
2910 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2911 		 np, npg, psz, epp, esz);
2912 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2913 	if (!page)
2914 		return -ENOMEM;
2915 
2916 	gic_data_rdist()->vpe_l1_base = page_address(page);
2917 	pa = virt_to_phys(page_address(page));
2918 	WARN_ON(!IS_ALIGNED(pa, psz));
2919 
2920 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2921 	if (rdists_support_shareable()) {
2922 		val |= GICR_VPROPBASER_RaWb;
2923 		val |= GICR_VPROPBASER_InnerShareable;
2924 	}
2925 	val |= GICR_VPROPBASER_4_1_Z;
2926 	val |= GICR_VPROPBASER_4_1_VALID;
2927 
2928 out:
2929 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2930 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2931 
2932 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2933 		 smp_processor_id(), val,
2934 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2935 
2936 	return 0;
2937 }
2938 
2939 static int its_alloc_collections(struct its_node *its)
2940 {
2941 	int i;
2942 
2943 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2944 				   GFP_KERNEL);
2945 	if (!its->collections)
2946 		return -ENOMEM;
2947 
2948 	for (i = 0; i < nr_cpu_ids; i++)
2949 		its->collections[i].target_address = ~0ULL;
2950 
2951 	return 0;
2952 }
2953 
2954 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2955 {
2956 	struct page *pend_page;
2957 
2958 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2959 				get_order(LPI_PENDBASE_SZ));
2960 	if (!pend_page)
2961 		return NULL;
2962 
2963 	/* Make sure the GIC will observe the zero-ed page */
2964 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2965 
2966 	return pend_page;
2967 }
2968 
2969 static void its_free_pending_table(struct page *pt)
2970 {
2971 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2972 }
2973 
2974 /*
2975  * Booting with kdump and LPIs enabled is generally fine. Any other
2976  * case is wrong in the absence of firmware/EFI support.
2977  */
2978 static bool enabled_lpis_allowed(void)
2979 {
2980 	phys_addr_t addr;
2981 	u64 val;
2982 
2983 	/* Check whether the property table is in a reserved region */
2984 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2985 	addr = val & GENMASK_ULL(51, 12);
2986 
2987 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2988 }
2989 
2990 static int __init allocate_lpi_tables(void)
2991 {
2992 	u64 val;
2993 	int err, cpu;
2994 
2995 	/*
2996 	 * If LPIs are enabled while we run this from the boot CPU,
2997 	 * flag the RD tables as pre-allocated if the stars do align.
2998 	 */
2999 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3000 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3001 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3002 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3003 		pr_info("GICv3: Using preallocated redistributor tables\n");
3004 	}
3005 
3006 	err = its_setup_lpi_prop_table();
3007 	if (err)
3008 		return err;
3009 
3010 	/*
3011 	 * We allocate all the pending tables anyway, as we may have a
3012 	 * mix of RDs that have had LPIs enabled, and some that
3013 	 * don't. We'll free the unused ones as each CPU comes online.
3014 	 */
3015 	for_each_possible_cpu(cpu) {
3016 		struct page *pend_page;
3017 
3018 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3019 		if (!pend_page) {
3020 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3021 			return -ENOMEM;
3022 		}
3023 
3024 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3025 	}
3026 
3027 	return 0;
3028 }
3029 
3030 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3031 {
3032 	u32 count = 1000000;	/* 1s! */
3033 	bool clean;
3034 	u64 val;
3035 
3036 	do {
3037 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3038 		clean = !(val & GICR_VPENDBASER_Dirty);
3039 		if (!clean) {
3040 			count--;
3041 			cpu_relax();
3042 			udelay(1);
3043 		}
3044 	} while (!clean && count);
3045 
3046 	if (unlikely(!clean))
3047 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3048 
3049 	return val;
3050 }
3051 
3052 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3053 {
3054 	u64 val;
3055 
3056 	/* Make sure we wait until the RD is done with the initial scan */
3057 	val = read_vpend_dirty_clear(vlpi_base);
3058 	val &= ~GICR_VPENDBASER_Valid;
3059 	val &= ~clr;
3060 	val |= set;
3061 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3062 
3063 	val = read_vpend_dirty_clear(vlpi_base);
3064 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3065 		val |= GICR_VPENDBASER_PendingLast;
3066 
3067 	return val;
3068 }
3069 
3070 static void its_cpu_init_lpis(void)
3071 {
3072 	void __iomem *rbase = gic_data_rdist_rd_base();
3073 	struct page *pend_page;
3074 	phys_addr_t paddr;
3075 	u64 val, tmp;
3076 
3077 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3078 		return;
3079 
3080 	val = readl_relaxed(rbase + GICR_CTLR);
3081 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3082 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3083 		/*
3084 		 * Check that we get the same property table on all
3085 		 * RDs. If we don't, this is hopeless.
3086 		 */
3087 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3088 		paddr &= GENMASK_ULL(51, 12);
3089 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3090 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3091 
3092 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3093 		paddr &= GENMASK_ULL(51, 16);
3094 
3095 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3096 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3097 
3098 		goto out;
3099 	}
3100 
3101 	pend_page = gic_data_rdist()->pend_page;
3102 	paddr = page_to_phys(pend_page);
3103 
3104 	/* set PROPBASE */
3105 	val = (gic_rdists->prop_table_pa |
3106 	       GICR_PROPBASER_InnerShareable |
3107 	       GICR_PROPBASER_RaWaWb |
3108 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3109 
3110 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3111 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3112 
3113 	if (!rdists_support_shareable())
3114 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3115 
3116 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3117 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3118 			/*
3119 			 * The HW reports non-shareable, we must
3120 			 * remove the cacheability attributes as
3121 			 * well.
3122 			 */
3123 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3124 				 GICR_PROPBASER_CACHEABILITY_MASK);
3125 			val |= GICR_PROPBASER_nC;
3126 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3127 		}
3128 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3129 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3130 	}
3131 
3132 	/* set PENDBASE */
3133 	val = (page_to_phys(pend_page) |
3134 	       GICR_PENDBASER_InnerShareable |
3135 	       GICR_PENDBASER_RaWaWb);
3136 
3137 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3138 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3139 
3140 	if (!rdists_support_shareable())
3141 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3142 
3143 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3144 		/*
3145 		 * The HW reports non-shareable, we must remove the
3146 		 * cacheability attributes as well.
3147 		 */
3148 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3149 			 GICR_PENDBASER_CACHEABILITY_MASK);
3150 		val |= GICR_PENDBASER_nC;
3151 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3152 	}
3153 
3154 	/* Enable LPIs */
3155 	val = readl_relaxed(rbase + GICR_CTLR);
3156 	val |= GICR_CTLR_ENABLE_LPIS;
3157 	writel_relaxed(val, rbase + GICR_CTLR);
3158 
3159 out:
3160 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3161 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3162 
3163 		/*
3164 		 * It's possible for CPU to receive VLPIs before it is
3165 		 * scheduled as a vPE, especially for the first CPU, and the
3166 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3167 		 * as out of range and dropped by GIC.
3168 		 * So we initialize IDbits to known value to avoid VLPI drop.
3169 		 */
3170 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3171 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3172 			smp_processor_id(), val);
3173 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3174 
3175 		/*
3176 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3177 		 * ancient programming gets left in and has possibility of
3178 		 * corrupting memory.
3179 		 */
3180 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3181 	}
3182 
3183 	if (allocate_vpe_l1_table()) {
3184 		/*
3185 		 * If the allocation has failed, we're in massive trouble.
3186 		 * Disable direct injection, and pray that no VM was
3187 		 * already running...
3188 		 */
3189 		gic_rdists->has_rvpeid = false;
3190 		gic_rdists->has_vlpis = false;
3191 	}
3192 
3193 	/* Make sure the GIC has seen the above */
3194 	dsb(sy);
3195 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3196 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3197 		smp_processor_id(),
3198 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3199 		"reserved" : "allocated",
3200 		&paddr);
3201 }
3202 
3203 static void its_cpu_init_collection(struct its_node *its)
3204 {
3205 	int cpu = smp_processor_id();
3206 	u64 target;
3207 
3208 	/* avoid cross node collections and its mapping */
3209 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3210 		struct device_node *cpu_node;
3211 
3212 		cpu_node = of_get_cpu_node(cpu, NULL);
3213 		if (its->numa_node != NUMA_NO_NODE &&
3214 			its->numa_node != of_node_to_nid(cpu_node))
3215 			return;
3216 	}
3217 
3218 	/*
3219 	 * We now have to bind each collection to its target
3220 	 * redistributor.
3221 	 */
3222 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3223 		/*
3224 		 * This ITS wants the physical address of the
3225 		 * redistributor.
3226 		 */
3227 		target = gic_data_rdist()->phys_base;
3228 	} else {
3229 		/* This ITS wants a linear CPU number. */
3230 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3231 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3232 	}
3233 
3234 	/* Perform collection mapping */
3235 	its->collections[cpu].target_address = target;
3236 	its->collections[cpu].col_id = cpu;
3237 
3238 	its_send_mapc(its, &its->collections[cpu], 1);
3239 	its_send_invall(its, &its->collections[cpu]);
3240 }
3241 
3242 static void its_cpu_init_collections(void)
3243 {
3244 	struct its_node *its;
3245 
3246 	raw_spin_lock(&its_lock);
3247 
3248 	list_for_each_entry(its, &its_nodes, entry)
3249 		its_cpu_init_collection(its);
3250 
3251 	raw_spin_unlock(&its_lock);
3252 }
3253 
3254 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3255 {
3256 	struct its_device *its_dev = NULL, *tmp;
3257 	unsigned long flags;
3258 
3259 	raw_spin_lock_irqsave(&its->lock, flags);
3260 
3261 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3262 		if (tmp->device_id == dev_id) {
3263 			its_dev = tmp;
3264 			break;
3265 		}
3266 	}
3267 
3268 	raw_spin_unlock_irqrestore(&its->lock, flags);
3269 
3270 	return its_dev;
3271 }
3272 
3273 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3274 {
3275 	int i;
3276 
3277 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3278 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3279 			return &its->tables[i];
3280 	}
3281 
3282 	return NULL;
3283 }
3284 
3285 static bool its_alloc_table_entry(struct its_node *its,
3286 				  struct its_baser *baser, u32 id)
3287 {
3288 	struct page *page;
3289 	u32 esz, idx;
3290 	__le64 *table;
3291 
3292 	/* Don't allow device id that exceeds single, flat table limit */
3293 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3294 	if (!(baser->val & GITS_BASER_INDIRECT))
3295 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3296 
3297 	/* Compute 1st level table index & check if that exceeds table limit */
3298 	idx = id >> ilog2(baser->psz / esz);
3299 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3300 		return false;
3301 
3302 	table = baser->base;
3303 
3304 	/* Allocate memory for 2nd level table */
3305 	if (!table[idx]) {
3306 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3307 					get_order(baser->psz));
3308 		if (!page)
3309 			return false;
3310 
3311 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3312 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3313 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3314 
3315 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3316 
3317 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3318 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3319 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3320 
3321 		/* Ensure updated table contents are visible to ITS hardware */
3322 		dsb(sy);
3323 	}
3324 
3325 	return true;
3326 }
3327 
3328 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3329 {
3330 	struct its_baser *baser;
3331 
3332 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3333 
3334 	/* Don't allow device id that exceeds ITS hardware limit */
3335 	if (!baser)
3336 		return (ilog2(dev_id) < device_ids(its));
3337 
3338 	return its_alloc_table_entry(its, baser, dev_id);
3339 }
3340 
3341 static bool its_alloc_vpe_table(u32 vpe_id)
3342 {
3343 	struct its_node *its;
3344 	int cpu;
3345 
3346 	/*
3347 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3348 	 * could try and only do it on ITSs corresponding to devices
3349 	 * that have interrupts targeted at this VPE, but the
3350 	 * complexity becomes crazy (and you have tons of memory
3351 	 * anyway, right?).
3352 	 */
3353 	list_for_each_entry(its, &its_nodes, entry) {
3354 		struct its_baser *baser;
3355 
3356 		if (!is_v4(its))
3357 			continue;
3358 
3359 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3360 		if (!baser)
3361 			return false;
3362 
3363 		if (!its_alloc_table_entry(its, baser, vpe_id))
3364 			return false;
3365 	}
3366 
3367 	/* Non v4.1? No need to iterate RDs and go back early. */
3368 	if (!gic_rdists->has_rvpeid)
3369 		return true;
3370 
3371 	/*
3372 	 * Make sure the L2 tables are allocated for all copies of
3373 	 * the L1 table on *all* v4.1 RDs.
3374 	 */
3375 	for_each_possible_cpu(cpu) {
3376 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3377 			return false;
3378 	}
3379 
3380 	return true;
3381 }
3382 
3383 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3384 					    int nvecs, bool alloc_lpis)
3385 {
3386 	struct its_device *dev;
3387 	unsigned long *lpi_map = NULL;
3388 	unsigned long flags;
3389 	u16 *col_map = NULL;
3390 	void *itt;
3391 	int lpi_base;
3392 	int nr_lpis;
3393 	int nr_ites;
3394 	int sz;
3395 
3396 	if (!its_alloc_device_table(its, dev_id))
3397 		return NULL;
3398 
3399 	if (WARN_ON(!is_power_of_2(nvecs)))
3400 		nvecs = roundup_pow_of_two(nvecs);
3401 
3402 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3403 	/*
3404 	 * Even if the device wants a single LPI, the ITT must be
3405 	 * sized as a power of two (and you need at least one bit...).
3406 	 */
3407 	nr_ites = max(2, nvecs);
3408 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3409 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3410 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3411 	if (alloc_lpis) {
3412 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3413 		if (lpi_map)
3414 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3415 					  GFP_KERNEL);
3416 	} else {
3417 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3418 		nr_lpis = 0;
3419 		lpi_base = 0;
3420 	}
3421 
3422 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3423 		kfree(dev);
3424 		kfree(itt);
3425 		bitmap_free(lpi_map);
3426 		kfree(col_map);
3427 		return NULL;
3428 	}
3429 
3430 	gic_flush_dcache_to_poc(itt, sz);
3431 
3432 	dev->its = its;
3433 	dev->itt = itt;
3434 	dev->nr_ites = nr_ites;
3435 	dev->event_map.lpi_map = lpi_map;
3436 	dev->event_map.col_map = col_map;
3437 	dev->event_map.lpi_base = lpi_base;
3438 	dev->event_map.nr_lpis = nr_lpis;
3439 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3440 	dev->device_id = dev_id;
3441 	INIT_LIST_HEAD(&dev->entry);
3442 
3443 	raw_spin_lock_irqsave(&its->lock, flags);
3444 	list_add(&dev->entry, &its->its_device_list);
3445 	raw_spin_unlock_irqrestore(&its->lock, flags);
3446 
3447 	/* Map device to its ITT */
3448 	its_send_mapd(dev, 1);
3449 
3450 	return dev;
3451 }
3452 
3453 static void its_free_device(struct its_device *its_dev)
3454 {
3455 	unsigned long flags;
3456 
3457 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3458 	list_del(&its_dev->entry);
3459 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3460 	kfree(its_dev->event_map.col_map);
3461 	kfree(its_dev->itt);
3462 	kfree(its_dev);
3463 }
3464 
3465 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3466 {
3467 	int idx;
3468 
3469 	/* Find a free LPI region in lpi_map and allocate them. */
3470 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3471 				      dev->event_map.nr_lpis,
3472 				      get_count_order(nvecs));
3473 	if (idx < 0)
3474 		return -ENOSPC;
3475 
3476 	*hwirq = dev->event_map.lpi_base + idx;
3477 
3478 	return 0;
3479 }
3480 
3481 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3482 			   int nvec, msi_alloc_info_t *info)
3483 {
3484 	struct its_node *its;
3485 	struct its_device *its_dev;
3486 	struct msi_domain_info *msi_info;
3487 	u32 dev_id;
3488 	int err = 0;
3489 
3490 	/*
3491 	 * We ignore "dev" entirely, and rely on the dev_id that has
3492 	 * been passed via the scratchpad. This limits this domain's
3493 	 * usefulness to upper layers that definitely know that they
3494 	 * are built on top of the ITS.
3495 	 */
3496 	dev_id = info->scratchpad[0].ul;
3497 
3498 	msi_info = msi_get_domain_info(domain);
3499 	its = msi_info->data;
3500 
3501 	if (!gic_rdists->has_direct_lpi &&
3502 	    vpe_proxy.dev &&
3503 	    vpe_proxy.dev->its == its &&
3504 	    dev_id == vpe_proxy.dev->device_id) {
3505 		/* Bad luck. Get yourself a better implementation */
3506 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3507 			  dev_id);
3508 		return -EINVAL;
3509 	}
3510 
3511 	mutex_lock(&its->dev_alloc_lock);
3512 	its_dev = its_find_device(its, dev_id);
3513 	if (its_dev) {
3514 		/*
3515 		 * We already have seen this ID, probably through
3516 		 * another alias (PCI bridge of some sort). No need to
3517 		 * create the device.
3518 		 */
3519 		its_dev->shared = true;
3520 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3521 		goto out;
3522 	}
3523 
3524 	its_dev = its_create_device(its, dev_id, nvec, true);
3525 	if (!its_dev) {
3526 		err = -ENOMEM;
3527 		goto out;
3528 	}
3529 
3530 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3531 		its_dev->shared = true;
3532 
3533 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3534 out:
3535 	mutex_unlock(&its->dev_alloc_lock);
3536 	info->scratchpad[0].ptr = its_dev;
3537 	return err;
3538 }
3539 
3540 static struct msi_domain_ops its_msi_domain_ops = {
3541 	.msi_prepare	= its_msi_prepare,
3542 };
3543 
3544 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3545 				    unsigned int virq,
3546 				    irq_hw_number_t hwirq)
3547 {
3548 	struct irq_fwspec fwspec;
3549 
3550 	if (irq_domain_get_of_node(domain->parent)) {
3551 		fwspec.fwnode = domain->parent->fwnode;
3552 		fwspec.param_count = 3;
3553 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3554 		fwspec.param[1] = hwirq;
3555 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3556 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3557 		fwspec.fwnode = domain->parent->fwnode;
3558 		fwspec.param_count = 2;
3559 		fwspec.param[0] = hwirq;
3560 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3561 	} else {
3562 		return -EINVAL;
3563 	}
3564 
3565 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3566 }
3567 
3568 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3569 				unsigned int nr_irqs, void *args)
3570 {
3571 	msi_alloc_info_t *info = args;
3572 	struct its_device *its_dev = info->scratchpad[0].ptr;
3573 	struct its_node *its = its_dev->its;
3574 	struct irq_data *irqd;
3575 	irq_hw_number_t hwirq;
3576 	int err;
3577 	int i;
3578 
3579 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3580 	if (err)
3581 		return err;
3582 
3583 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3584 	if (err)
3585 		return err;
3586 
3587 	for (i = 0; i < nr_irqs; i++) {
3588 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3589 		if (err)
3590 			return err;
3591 
3592 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3593 					      hwirq + i, &its_irq_chip, its_dev);
3594 		irqd = irq_get_irq_data(virq + i);
3595 		irqd_set_single_target(irqd);
3596 		irqd_set_affinity_on_activate(irqd);
3597 		irqd_set_resend_when_in_progress(irqd);
3598 		pr_debug("ID:%d pID:%d vID:%d\n",
3599 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3600 			 (int)(hwirq + i), virq + i);
3601 	}
3602 
3603 	return 0;
3604 }
3605 
3606 static int its_irq_domain_activate(struct irq_domain *domain,
3607 				   struct irq_data *d, bool reserve)
3608 {
3609 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3610 	u32 event = its_get_event_id(d);
3611 	int cpu;
3612 
3613 	cpu = its_select_cpu(d, cpu_online_mask);
3614 	if (cpu < 0 || cpu >= nr_cpu_ids)
3615 		return -EINVAL;
3616 
3617 	its_inc_lpi_count(d, cpu);
3618 	its_dev->event_map.col_map[event] = cpu;
3619 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3620 
3621 	/* Map the GIC IRQ and event to the device */
3622 	its_send_mapti(its_dev, d->hwirq, event);
3623 	return 0;
3624 }
3625 
3626 static void its_irq_domain_deactivate(struct irq_domain *domain,
3627 				      struct irq_data *d)
3628 {
3629 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3630 	u32 event = its_get_event_id(d);
3631 
3632 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3633 	/* Stop the delivery of interrupts */
3634 	its_send_discard(its_dev, event);
3635 }
3636 
3637 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3638 				unsigned int nr_irqs)
3639 {
3640 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3641 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3642 	struct its_node *its = its_dev->its;
3643 	int i;
3644 
3645 	bitmap_release_region(its_dev->event_map.lpi_map,
3646 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3647 			      get_count_order(nr_irqs));
3648 
3649 	for (i = 0; i < nr_irqs; i++) {
3650 		struct irq_data *data = irq_domain_get_irq_data(domain,
3651 								virq + i);
3652 		/* Nuke the entry in the domain */
3653 		irq_domain_reset_irq_data(data);
3654 	}
3655 
3656 	mutex_lock(&its->dev_alloc_lock);
3657 
3658 	/*
3659 	 * If all interrupts have been freed, start mopping the
3660 	 * floor. This is conditioned on the device not being shared.
3661 	 */
3662 	if (!its_dev->shared &&
3663 	    bitmap_empty(its_dev->event_map.lpi_map,
3664 			 its_dev->event_map.nr_lpis)) {
3665 		its_lpi_free(its_dev->event_map.lpi_map,
3666 			     its_dev->event_map.lpi_base,
3667 			     its_dev->event_map.nr_lpis);
3668 
3669 		/* Unmap device/itt */
3670 		its_send_mapd(its_dev, 0);
3671 		its_free_device(its_dev);
3672 	}
3673 
3674 	mutex_unlock(&its->dev_alloc_lock);
3675 
3676 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3677 }
3678 
3679 static const struct irq_domain_ops its_domain_ops = {
3680 	.select			= msi_lib_irq_domain_select,
3681 	.alloc			= its_irq_domain_alloc,
3682 	.free			= its_irq_domain_free,
3683 	.activate		= its_irq_domain_activate,
3684 	.deactivate		= its_irq_domain_deactivate,
3685 };
3686 
3687 /*
3688  * This is insane.
3689  *
3690  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3691  * likely), the only way to perform an invalidate is to use a fake
3692  * device to issue an INV command, implying that the LPI has first
3693  * been mapped to some event on that device. Since this is not exactly
3694  * cheap, we try to keep that mapping around as long as possible, and
3695  * only issue an UNMAP if we're short on available slots.
3696  *
3697  * Broken by design(tm).
3698  *
3699  * GICv4.1, on the other hand, mandates that we're able to invalidate
3700  * by writing to a MMIO register. It doesn't implement the whole of
3701  * DirectLPI, but that's good enough. And most of the time, we don't
3702  * even have to invalidate anything, as the redistributor can be told
3703  * whether to generate a doorbell or not (we thus leave it enabled,
3704  * always).
3705  */
3706 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3707 {
3708 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3709 	if (gic_rdists->has_rvpeid)
3710 		return;
3711 
3712 	/* Already unmapped? */
3713 	if (vpe->vpe_proxy_event == -1)
3714 		return;
3715 
3716 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3717 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3718 
3719 	/*
3720 	 * We don't track empty slots at all, so let's move the
3721 	 * next_victim pointer if we can quickly reuse that slot
3722 	 * instead of nuking an existing entry. Not clear that this is
3723 	 * always a win though, and this might just generate a ripple
3724 	 * effect... Let's just hope VPEs don't migrate too often.
3725 	 */
3726 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3727 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3728 
3729 	vpe->vpe_proxy_event = -1;
3730 }
3731 
3732 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3733 {
3734 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3735 	if (gic_rdists->has_rvpeid)
3736 		return;
3737 
3738 	if (!gic_rdists->has_direct_lpi) {
3739 		unsigned long flags;
3740 
3741 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3742 		its_vpe_db_proxy_unmap_locked(vpe);
3743 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3744 	}
3745 }
3746 
3747 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3748 {
3749 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3750 	if (gic_rdists->has_rvpeid)
3751 		return;
3752 
3753 	/* Already mapped? */
3754 	if (vpe->vpe_proxy_event != -1)
3755 		return;
3756 
3757 	/* This slot was already allocated. Kick the other VPE out. */
3758 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3759 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3760 
3761 	/* Map the new VPE instead */
3762 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3763 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3764 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3765 
3766 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3767 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3768 }
3769 
3770 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3771 {
3772 	unsigned long flags;
3773 	struct its_collection *target_col;
3774 
3775 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3776 	if (gic_rdists->has_rvpeid)
3777 		return;
3778 
3779 	if (gic_rdists->has_direct_lpi) {
3780 		void __iomem *rdbase;
3781 
3782 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3783 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3784 		wait_for_syncr(rdbase);
3785 
3786 		return;
3787 	}
3788 
3789 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3790 
3791 	its_vpe_db_proxy_map_locked(vpe);
3792 
3793 	target_col = &vpe_proxy.dev->its->collections[to];
3794 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3795 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3796 
3797 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3798 }
3799 
3800 static int its_vpe_set_affinity(struct irq_data *d,
3801 				const struct cpumask *mask_val,
3802 				bool force)
3803 {
3804 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3805 	unsigned int from, cpu = nr_cpu_ids;
3806 	struct cpumask *table_mask;
3807 	unsigned long flags;
3808 
3809 	/*
3810 	 * Check if we're racing against a VPE being destroyed, for
3811 	 * which we don't want to allow a VMOVP.
3812 	 */
3813 	if (!atomic_read(&vpe->vmapp_count))
3814 		return -EINVAL;
3815 
3816 	/*
3817 	 * Changing affinity is mega expensive, so let's be as lazy as
3818 	 * we can and only do it if we really have to. Also, if mapped
3819 	 * into the proxy device, we need to move the doorbell
3820 	 * interrupt to its new location.
3821 	 *
3822 	 * Another thing is that changing the affinity of a vPE affects
3823 	 * *other interrupts* such as all the vLPIs that are routed to
3824 	 * this vPE. This means that the irq_desc lock is not enough to
3825 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3826 	 * during the update, hence the lock below which must also be
3827 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3828 	 *
3829 	 * Finally, we must protect ourselves against concurrent updates of
3830 	 * the mapping state on this VM should the ITS list be in use (see
3831 	 * the shortcut in its_send_vmovp() otherewise).
3832 	 */
3833 	if (its_list_map)
3834 		raw_spin_lock(&vpe->its_vm->vmapp_lock);
3835 
3836 	from = vpe_to_cpuid_lock(vpe, &flags);
3837 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3838 
3839 	/*
3840 	 * If we are offered another CPU in the same GICv4.1 ITS
3841 	 * affinity, pick this one. Otherwise, any CPU will do.
3842 	 */
3843 	if (table_mask)
3844 		cpu = cpumask_any_and(mask_val, table_mask);
3845 	if (cpu < nr_cpu_ids) {
3846 		if (cpumask_test_cpu(from, mask_val) &&
3847 		    cpumask_test_cpu(from, table_mask))
3848 			cpu = from;
3849 	} else {
3850 		cpu = cpumask_first(mask_val);
3851 	}
3852 
3853 	if (from == cpu)
3854 		goto out;
3855 
3856 	vpe->col_idx = cpu;
3857 
3858 	its_send_vmovp(vpe);
3859 	its_vpe_db_proxy_move(vpe, from, cpu);
3860 
3861 out:
3862 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3863 	vpe_to_cpuid_unlock(vpe, flags);
3864 
3865 	if (its_list_map)
3866 		raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3867 
3868 	return IRQ_SET_MASK_OK_DONE;
3869 }
3870 
3871 static void its_wait_vpt_parse_complete(void)
3872 {
3873 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3874 	u64 val;
3875 
3876 	if (!gic_rdists->has_vpend_valid_dirty)
3877 		return;
3878 
3879 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3880 						       val,
3881 						       !(val & GICR_VPENDBASER_Dirty),
3882 						       1, 500));
3883 }
3884 
3885 static void its_vpe_schedule(struct its_vpe *vpe)
3886 {
3887 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3888 	u64 val;
3889 
3890 	/* Schedule the VPE */
3891 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3892 		GENMASK_ULL(51, 12);
3893 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3894 	if (rdists_support_shareable()) {
3895 		val |= GICR_VPROPBASER_RaWb;
3896 		val |= GICR_VPROPBASER_InnerShareable;
3897 	}
3898 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3899 
3900 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3901 		GENMASK_ULL(51, 16);
3902 	if (rdists_support_shareable()) {
3903 		val |= GICR_VPENDBASER_RaWaWb;
3904 		val |= GICR_VPENDBASER_InnerShareable;
3905 	}
3906 	/*
3907 	 * There is no good way of finding out if the pending table is
3908 	 * empty as we can race against the doorbell interrupt very
3909 	 * easily. So in the end, vpe->pending_last is only an
3910 	 * indication that the vcpu has something pending, not one
3911 	 * that the pending table is empty. A good implementation
3912 	 * would be able to read its coarse map pretty quickly anyway,
3913 	 * making this a tolerable issue.
3914 	 */
3915 	val |= GICR_VPENDBASER_PendingLast;
3916 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3917 	val |= GICR_VPENDBASER_Valid;
3918 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3919 }
3920 
3921 static void its_vpe_deschedule(struct its_vpe *vpe)
3922 {
3923 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3924 	u64 val;
3925 
3926 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3927 
3928 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3929 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3930 }
3931 
3932 static void its_vpe_invall(struct its_vpe *vpe)
3933 {
3934 	struct its_node *its;
3935 
3936 	guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
3937 
3938 	list_for_each_entry(its, &its_nodes, entry) {
3939 		if (!is_v4(its))
3940 			continue;
3941 
3942 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3943 			continue;
3944 
3945 		/*
3946 		 * Sending a VINVALL to a single ITS is enough, as all
3947 		 * we need is to reach the redistributors.
3948 		 */
3949 		its_send_vinvall(its, vpe);
3950 		return;
3951 	}
3952 }
3953 
3954 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3955 {
3956 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3957 	struct its_cmd_info *info = vcpu_info;
3958 
3959 	switch (info->cmd_type) {
3960 	case SCHEDULE_VPE:
3961 		its_vpe_schedule(vpe);
3962 		return 0;
3963 
3964 	case DESCHEDULE_VPE:
3965 		its_vpe_deschedule(vpe);
3966 		return 0;
3967 
3968 	case COMMIT_VPE:
3969 		its_wait_vpt_parse_complete();
3970 		return 0;
3971 
3972 	case INVALL_VPE:
3973 		its_vpe_invall(vpe);
3974 		return 0;
3975 
3976 	default:
3977 		return -EINVAL;
3978 	}
3979 }
3980 
3981 static void its_vpe_send_cmd(struct its_vpe *vpe,
3982 			     void (*cmd)(struct its_device *, u32))
3983 {
3984 	unsigned long flags;
3985 
3986 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3987 
3988 	its_vpe_db_proxy_map_locked(vpe);
3989 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3990 
3991 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3992 }
3993 
3994 static void its_vpe_send_inv(struct irq_data *d)
3995 {
3996 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3997 
3998 	if (gic_rdists->has_direct_lpi)
3999 		__direct_lpi_inv(d, d->parent_data->hwirq);
4000 	else
4001 		its_vpe_send_cmd(vpe, its_send_inv);
4002 }
4003 
4004 static void its_vpe_mask_irq(struct irq_data *d)
4005 {
4006 	/*
4007 	 * We need to unmask the LPI, which is described by the parent
4008 	 * irq_data. Instead of calling into the parent (which won't
4009 	 * exactly do the right thing, let's simply use the
4010 	 * parent_data pointer. Yes, I'm naughty.
4011 	 */
4012 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4013 	its_vpe_send_inv(d);
4014 }
4015 
4016 static void its_vpe_unmask_irq(struct irq_data *d)
4017 {
4018 	/* Same hack as above... */
4019 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4020 	its_vpe_send_inv(d);
4021 }
4022 
4023 static int its_vpe_set_irqchip_state(struct irq_data *d,
4024 				     enum irqchip_irq_state which,
4025 				     bool state)
4026 {
4027 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4028 
4029 	if (which != IRQCHIP_STATE_PENDING)
4030 		return -EINVAL;
4031 
4032 	if (gic_rdists->has_direct_lpi) {
4033 		void __iomem *rdbase;
4034 
4035 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4036 		if (state) {
4037 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4038 		} else {
4039 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4040 			wait_for_syncr(rdbase);
4041 		}
4042 	} else {
4043 		if (state)
4044 			its_vpe_send_cmd(vpe, its_send_int);
4045 		else
4046 			its_vpe_send_cmd(vpe, its_send_clear);
4047 	}
4048 
4049 	return 0;
4050 }
4051 
4052 static int its_vpe_retrigger(struct irq_data *d)
4053 {
4054 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4055 }
4056 
4057 static struct irq_chip its_vpe_irq_chip = {
4058 	.name			= "GICv4-vpe",
4059 	.irq_mask		= its_vpe_mask_irq,
4060 	.irq_unmask		= its_vpe_unmask_irq,
4061 	.irq_eoi		= irq_chip_eoi_parent,
4062 	.irq_set_affinity	= its_vpe_set_affinity,
4063 	.irq_retrigger		= its_vpe_retrigger,
4064 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4065 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4066 };
4067 
4068 static struct its_node *find_4_1_its(void)
4069 {
4070 	static struct its_node *its = NULL;
4071 
4072 	if (!its) {
4073 		list_for_each_entry(its, &its_nodes, entry) {
4074 			if (is_v4_1(its))
4075 				return its;
4076 		}
4077 
4078 		/* Oops? */
4079 		its = NULL;
4080 	}
4081 
4082 	return its;
4083 }
4084 
4085 static void its_vpe_4_1_send_inv(struct irq_data *d)
4086 {
4087 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4088 	struct its_node *its;
4089 
4090 	/*
4091 	 * GICv4.1 wants doorbells to be invalidated using the
4092 	 * INVDB command in order to be broadcast to all RDs. Send
4093 	 * it to the first valid ITS, and let the HW do its magic.
4094 	 */
4095 	its = find_4_1_its();
4096 	if (its)
4097 		its_send_invdb(its, vpe);
4098 }
4099 
4100 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4101 {
4102 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4103 	its_vpe_4_1_send_inv(d);
4104 }
4105 
4106 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4107 {
4108 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4109 	its_vpe_4_1_send_inv(d);
4110 }
4111 
4112 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4113 				 struct its_cmd_info *info)
4114 {
4115 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4116 	u64 val = 0;
4117 
4118 	/* Schedule the VPE */
4119 	val |= GICR_VPENDBASER_Valid;
4120 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4121 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4122 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4123 
4124 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4125 }
4126 
4127 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4128 				   struct its_cmd_info *info)
4129 {
4130 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4131 	u64 val;
4132 
4133 	if (info->req_db) {
4134 		unsigned long flags;
4135 
4136 		/*
4137 		 * vPE is going to block: make the vPE non-resident with
4138 		 * PendingLast clear and DB set. The GIC guarantees that if
4139 		 * we read-back PendingLast clear, then a doorbell will be
4140 		 * delivered when an interrupt comes.
4141 		 *
4142 		 * Note the locking to deal with the concurrent update of
4143 		 * pending_last from the doorbell interrupt handler that can
4144 		 * run concurrently.
4145 		 */
4146 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4147 		val = its_clear_vpend_valid(vlpi_base,
4148 					    GICR_VPENDBASER_PendingLast,
4149 					    GICR_VPENDBASER_4_1_DB);
4150 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4151 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4152 	} else {
4153 		/*
4154 		 * We're not blocking, so just make the vPE non-resident
4155 		 * with PendingLast set, indicating that we'll be back.
4156 		 */
4157 		val = its_clear_vpend_valid(vlpi_base,
4158 					    0,
4159 					    GICR_VPENDBASER_PendingLast);
4160 		vpe->pending_last = true;
4161 	}
4162 }
4163 
4164 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4165 {
4166 	void __iomem *rdbase;
4167 	unsigned long flags;
4168 	u64 val;
4169 	int cpu;
4170 
4171 	val  = GICR_INVALLR_V;
4172 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4173 
4174 	/* Target the redistributor this vPE is currently known on */
4175 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4176 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4177 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4178 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4179 
4180 	wait_for_syncr(rdbase);
4181 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4182 	vpe_to_cpuid_unlock(vpe, flags);
4183 }
4184 
4185 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4186 {
4187 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4188 	struct its_cmd_info *info = vcpu_info;
4189 
4190 	switch (info->cmd_type) {
4191 	case SCHEDULE_VPE:
4192 		its_vpe_4_1_schedule(vpe, info);
4193 		return 0;
4194 
4195 	case DESCHEDULE_VPE:
4196 		its_vpe_4_1_deschedule(vpe, info);
4197 		return 0;
4198 
4199 	case COMMIT_VPE:
4200 		its_wait_vpt_parse_complete();
4201 		return 0;
4202 
4203 	case INVALL_VPE:
4204 		its_vpe_4_1_invall(vpe);
4205 		return 0;
4206 
4207 	default:
4208 		return -EINVAL;
4209 	}
4210 }
4211 
4212 static struct irq_chip its_vpe_4_1_irq_chip = {
4213 	.name			= "GICv4.1-vpe",
4214 	.irq_mask		= its_vpe_4_1_mask_irq,
4215 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4216 	.irq_eoi		= irq_chip_eoi_parent,
4217 	.irq_set_affinity	= its_vpe_set_affinity,
4218 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4219 };
4220 
4221 static void its_configure_sgi(struct irq_data *d, bool clear)
4222 {
4223 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4224 	struct its_cmd_desc desc;
4225 
4226 	desc.its_vsgi_cmd.vpe = vpe;
4227 	desc.its_vsgi_cmd.sgi = d->hwirq;
4228 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4229 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4230 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4231 	desc.its_vsgi_cmd.clear = clear;
4232 
4233 	/*
4234 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4235 	 * destination VPE is mapped there. Since we map them eagerly at
4236 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4237 	 */
4238 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4239 }
4240 
4241 static void its_sgi_mask_irq(struct irq_data *d)
4242 {
4243 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4244 
4245 	vpe->sgi_config[d->hwirq].enabled = false;
4246 	its_configure_sgi(d, false);
4247 }
4248 
4249 static void its_sgi_unmask_irq(struct irq_data *d)
4250 {
4251 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4252 
4253 	vpe->sgi_config[d->hwirq].enabled = true;
4254 	its_configure_sgi(d, false);
4255 }
4256 
4257 static int its_sgi_set_affinity(struct irq_data *d,
4258 				const struct cpumask *mask_val,
4259 				bool force)
4260 {
4261 	/*
4262 	 * There is no notion of affinity for virtual SGIs, at least
4263 	 * not on the host (since they can only be targeting a vPE).
4264 	 * Tell the kernel we've done whatever it asked for.
4265 	 */
4266 	irq_data_update_effective_affinity(d, mask_val);
4267 	return IRQ_SET_MASK_OK;
4268 }
4269 
4270 static int its_sgi_set_irqchip_state(struct irq_data *d,
4271 				     enum irqchip_irq_state which,
4272 				     bool state)
4273 {
4274 	if (which != IRQCHIP_STATE_PENDING)
4275 		return -EINVAL;
4276 
4277 	if (state) {
4278 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279 		struct its_node *its = find_4_1_its();
4280 		u64 val;
4281 
4282 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4283 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4284 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4285 	} else {
4286 		its_configure_sgi(d, true);
4287 	}
4288 
4289 	return 0;
4290 }
4291 
4292 static int its_sgi_get_irqchip_state(struct irq_data *d,
4293 				     enum irqchip_irq_state which, bool *val)
4294 {
4295 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4296 	void __iomem *base;
4297 	unsigned long flags;
4298 	u32 count = 1000000;	/* 1s! */
4299 	u32 status;
4300 	int cpu;
4301 
4302 	if (which != IRQCHIP_STATE_PENDING)
4303 		return -EINVAL;
4304 
4305 	/*
4306 	 * Locking galore! We can race against two different events:
4307 	 *
4308 	 * - Concurrent vPE affinity change: we must make sure it cannot
4309 	 *   happen, or we'll talk to the wrong redistributor. This is
4310 	 *   identical to what happens with vLPIs.
4311 	 *
4312 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4313 	 *   MMIO registers, this must be made atomic one way or another.
4314 	 */
4315 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4316 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4317 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4318 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4319 	do {
4320 		status = readl_relaxed(base + GICR_VSGIPENDR);
4321 		if (!(status & GICR_VSGIPENDR_BUSY))
4322 			goto out;
4323 
4324 		count--;
4325 		if (!count) {
4326 			pr_err_ratelimited("Unable to get SGI status\n");
4327 			goto out;
4328 		}
4329 		cpu_relax();
4330 		udelay(1);
4331 	} while (count);
4332 
4333 out:
4334 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4335 	vpe_to_cpuid_unlock(vpe, flags);
4336 
4337 	if (!count)
4338 		return -ENXIO;
4339 
4340 	*val = !!(status & (1 << d->hwirq));
4341 
4342 	return 0;
4343 }
4344 
4345 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4346 {
4347 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4348 	struct its_cmd_info *info = vcpu_info;
4349 
4350 	switch (info->cmd_type) {
4351 	case PROP_UPDATE_VSGI:
4352 		vpe->sgi_config[d->hwirq].priority = info->priority;
4353 		vpe->sgi_config[d->hwirq].group = info->group;
4354 		its_configure_sgi(d, false);
4355 		return 0;
4356 
4357 	default:
4358 		return -EINVAL;
4359 	}
4360 }
4361 
4362 static struct irq_chip its_sgi_irq_chip = {
4363 	.name			= "GICv4.1-sgi",
4364 	.irq_mask		= its_sgi_mask_irq,
4365 	.irq_unmask		= its_sgi_unmask_irq,
4366 	.irq_set_affinity	= its_sgi_set_affinity,
4367 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4368 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4369 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4370 };
4371 
4372 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4373 				    unsigned int virq, unsigned int nr_irqs,
4374 				    void *args)
4375 {
4376 	struct its_vpe *vpe = args;
4377 	int i;
4378 
4379 	/* Yes, we do want 16 SGIs */
4380 	WARN_ON(nr_irqs != 16);
4381 
4382 	for (i = 0; i < 16; i++) {
4383 		vpe->sgi_config[i].priority = 0;
4384 		vpe->sgi_config[i].enabled = false;
4385 		vpe->sgi_config[i].group = false;
4386 
4387 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4388 					      &its_sgi_irq_chip, vpe);
4389 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4390 	}
4391 
4392 	return 0;
4393 }
4394 
4395 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4396 				    unsigned int virq,
4397 				    unsigned int nr_irqs)
4398 {
4399 	/* Nothing to do */
4400 }
4401 
4402 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4403 				       struct irq_data *d, bool reserve)
4404 {
4405 	/* Write out the initial SGI configuration */
4406 	its_configure_sgi(d, false);
4407 	return 0;
4408 }
4409 
4410 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4411 					  struct irq_data *d)
4412 {
4413 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4414 
4415 	/*
4416 	 * The VSGI command is awkward:
4417 	 *
4418 	 * - To change the configuration, CLEAR must be set to false,
4419 	 *   leaving the pending bit unchanged.
4420 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4421 	 *   the configuration unchanged.
4422 	 *
4423 	 * You just can't do both at once, hence the two commands below.
4424 	 */
4425 	vpe->sgi_config[d->hwirq].enabled = false;
4426 	its_configure_sgi(d, false);
4427 	its_configure_sgi(d, true);
4428 }
4429 
4430 static const struct irq_domain_ops its_sgi_domain_ops = {
4431 	.alloc		= its_sgi_irq_domain_alloc,
4432 	.free		= its_sgi_irq_domain_free,
4433 	.activate	= its_sgi_irq_domain_activate,
4434 	.deactivate	= its_sgi_irq_domain_deactivate,
4435 };
4436 
4437 static int its_vpe_id_alloc(void)
4438 {
4439 	return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4440 }
4441 
4442 static void its_vpe_id_free(u16 id)
4443 {
4444 	ida_free(&its_vpeid_ida, id);
4445 }
4446 
4447 static int its_vpe_init(struct its_vpe *vpe)
4448 {
4449 	struct page *vpt_page;
4450 	int vpe_id;
4451 
4452 	/* Allocate vpe_id */
4453 	vpe_id = its_vpe_id_alloc();
4454 	if (vpe_id < 0)
4455 		return vpe_id;
4456 
4457 	/* Allocate VPT */
4458 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4459 	if (!vpt_page) {
4460 		its_vpe_id_free(vpe_id);
4461 		return -ENOMEM;
4462 	}
4463 
4464 	if (!its_alloc_vpe_table(vpe_id)) {
4465 		its_vpe_id_free(vpe_id);
4466 		its_free_pending_table(vpt_page);
4467 		return -ENOMEM;
4468 	}
4469 
4470 	raw_spin_lock_init(&vpe->vpe_lock);
4471 	vpe->vpe_id = vpe_id;
4472 	vpe->vpt_page = vpt_page;
4473 	atomic_set(&vpe->vmapp_count, 0);
4474 	if (!gic_rdists->has_rvpeid)
4475 		vpe->vpe_proxy_event = -1;
4476 
4477 	return 0;
4478 }
4479 
4480 static void its_vpe_teardown(struct its_vpe *vpe)
4481 {
4482 	its_vpe_db_proxy_unmap(vpe);
4483 	its_vpe_id_free(vpe->vpe_id);
4484 	its_free_pending_table(vpe->vpt_page);
4485 }
4486 
4487 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4488 				    unsigned int virq,
4489 				    unsigned int nr_irqs)
4490 {
4491 	struct its_vm *vm = domain->host_data;
4492 	int i;
4493 
4494 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4495 
4496 	for (i = 0; i < nr_irqs; i++) {
4497 		struct irq_data *data = irq_domain_get_irq_data(domain,
4498 								virq + i);
4499 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4500 
4501 		BUG_ON(vm != vpe->its_vm);
4502 
4503 		clear_bit(data->hwirq, vm->db_bitmap);
4504 		its_vpe_teardown(vpe);
4505 		irq_domain_reset_irq_data(data);
4506 	}
4507 
4508 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4509 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4510 		its_free_prop_table(vm->vprop_page);
4511 	}
4512 }
4513 
4514 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4515 				    unsigned int nr_irqs, void *args)
4516 {
4517 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4518 	struct its_vm *vm = args;
4519 	unsigned long *bitmap;
4520 	struct page *vprop_page;
4521 	int base, nr_ids, i, err = 0;
4522 
4523 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4524 	if (!bitmap)
4525 		return -ENOMEM;
4526 
4527 	if (nr_ids < nr_irqs) {
4528 		its_lpi_free(bitmap, base, nr_ids);
4529 		return -ENOMEM;
4530 	}
4531 
4532 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4533 	if (!vprop_page) {
4534 		its_lpi_free(bitmap, base, nr_ids);
4535 		return -ENOMEM;
4536 	}
4537 
4538 	vm->db_bitmap = bitmap;
4539 	vm->db_lpi_base = base;
4540 	vm->nr_db_lpis = nr_ids;
4541 	vm->vprop_page = vprop_page;
4542 	raw_spin_lock_init(&vm->vmapp_lock);
4543 
4544 	if (gic_rdists->has_rvpeid)
4545 		irqchip = &its_vpe_4_1_irq_chip;
4546 
4547 	for (i = 0; i < nr_irqs; i++) {
4548 		vm->vpes[i]->vpe_db_lpi = base + i;
4549 		err = its_vpe_init(vm->vpes[i]);
4550 		if (err)
4551 			break;
4552 		err = its_irq_gic_domain_alloc(domain, virq + i,
4553 					       vm->vpes[i]->vpe_db_lpi);
4554 		if (err)
4555 			break;
4556 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4557 					      irqchip, vm->vpes[i]);
4558 		set_bit(i, bitmap);
4559 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4560 	}
4561 
4562 	if (err)
4563 		its_vpe_irq_domain_free(domain, virq, i);
4564 
4565 	return err;
4566 }
4567 
4568 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4569 				       struct irq_data *d, bool reserve)
4570 {
4571 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4572 	struct its_node *its;
4573 
4574 	/* Map the VPE to the first possible CPU */
4575 	vpe->col_idx = cpumask_first(cpu_online_mask);
4576 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4577 
4578 	/*
4579 	 * If we use the list map, we issue VMAPP on demand... Unless
4580 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4581 	 * so that VSGIs can work.
4582 	 */
4583 	if (!gic_requires_eager_mapping())
4584 		return 0;
4585 
4586 	list_for_each_entry(its, &its_nodes, entry) {
4587 		if (!is_v4(its))
4588 			continue;
4589 
4590 		its_send_vmapp(its, vpe, true);
4591 		its_send_vinvall(its, vpe);
4592 	}
4593 
4594 	return 0;
4595 }
4596 
4597 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4598 					  struct irq_data *d)
4599 {
4600 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4601 	struct its_node *its;
4602 
4603 	/*
4604 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4605 	 * VLPIs are associated with the VM.
4606 	 */
4607 	if (!gic_requires_eager_mapping())
4608 		return;
4609 
4610 	list_for_each_entry(its, &its_nodes, entry) {
4611 		if (!is_v4(its))
4612 			continue;
4613 
4614 		its_send_vmapp(its, vpe, false);
4615 	}
4616 
4617 	/*
4618 	 * There may be a direct read to the VPT after unmapping the
4619 	 * vPE, to guarantee the validity of this, we make the VPT
4620 	 * memory coherent with the CPU caches here.
4621 	 */
4622 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4623 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4624 					LPI_PENDBASE_SZ);
4625 }
4626 
4627 static const struct irq_domain_ops its_vpe_domain_ops = {
4628 	.alloc			= its_vpe_irq_domain_alloc,
4629 	.free			= its_vpe_irq_domain_free,
4630 	.activate		= its_vpe_irq_domain_activate,
4631 	.deactivate		= its_vpe_irq_domain_deactivate,
4632 };
4633 
4634 static int its_force_quiescent(void __iomem *base)
4635 {
4636 	u32 count = 1000000;	/* 1s */
4637 	u32 val;
4638 
4639 	val = readl_relaxed(base + GITS_CTLR);
4640 	/*
4641 	 * GIC architecture specification requires the ITS to be both
4642 	 * disabled and quiescent for writes to GITS_BASER<n> or
4643 	 * GITS_CBASER to not have UNPREDICTABLE results.
4644 	 */
4645 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4646 		return 0;
4647 
4648 	/* Disable the generation of all interrupts to this ITS */
4649 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4650 	writel_relaxed(val, base + GITS_CTLR);
4651 
4652 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4653 	while (1) {
4654 		val = readl_relaxed(base + GITS_CTLR);
4655 		if (val & GITS_CTLR_QUIESCENT)
4656 			return 0;
4657 
4658 		count--;
4659 		if (!count)
4660 			return -EBUSY;
4661 
4662 		cpu_relax();
4663 		udelay(1);
4664 	}
4665 }
4666 
4667 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4668 {
4669 	struct its_node *its = data;
4670 
4671 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4672 	its->typer &= ~GITS_TYPER_DEVBITS;
4673 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4674 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4675 
4676 	return true;
4677 }
4678 
4679 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4680 {
4681 	struct its_node *its = data;
4682 
4683 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4684 
4685 	return true;
4686 }
4687 
4688 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4689 {
4690 	struct its_node *its = data;
4691 
4692 	/* On QDF2400, the size of the ITE is 16Bytes */
4693 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4694 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4695 
4696 	return true;
4697 }
4698 
4699 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4700 {
4701 	struct its_node *its = its_dev->its;
4702 
4703 	/*
4704 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4705 	 * which maps 32-bit writes targeted at a separate window of
4706 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4707 	 * with device ID taken from bits [device_id_bits + 1:2] of
4708 	 * the window offset.
4709 	 */
4710 	return its->pre_its_base + (its_dev->device_id << 2);
4711 }
4712 
4713 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4714 {
4715 	struct its_node *its = data;
4716 	u32 pre_its_window[2];
4717 	u32 ids;
4718 
4719 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4720 					   "socionext,synquacer-pre-its",
4721 					   pre_its_window,
4722 					   ARRAY_SIZE(pre_its_window))) {
4723 
4724 		its->pre_its_base = pre_its_window[0];
4725 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4726 
4727 		ids = ilog2(pre_its_window[1]) - 2;
4728 		if (device_ids(its) > ids) {
4729 			its->typer &= ~GITS_TYPER_DEVBITS;
4730 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4731 		}
4732 
4733 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4734 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4735 		return true;
4736 	}
4737 	return false;
4738 }
4739 
4740 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4741 {
4742 	struct its_node *its = data;
4743 
4744 	/*
4745 	 * Hip07 insists on using the wrong address for the VLPI
4746 	 * page. Trick it into doing the right thing...
4747 	 */
4748 	its->vlpi_redist_offset = SZ_128K;
4749 	return true;
4750 }
4751 
4752 static bool __maybe_unused its_enable_rk3588001(void *data)
4753 {
4754 	struct its_node *its = data;
4755 
4756 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4757 	    !of_machine_is_compatible("rockchip,rk3588s"))
4758 		return false;
4759 
4760 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4761 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4762 
4763 	return true;
4764 }
4765 
4766 static bool its_set_non_coherent(void *data)
4767 {
4768 	struct its_node *its = data;
4769 
4770 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4771 	return true;
4772 }
4773 
4774 static const struct gic_quirk its_quirks[] = {
4775 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4776 	{
4777 		.desc	= "ITS: Cavium errata 22375, 24313",
4778 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4779 		.mask	= 0xffff0fff,
4780 		.init	= its_enable_quirk_cavium_22375,
4781 	},
4782 #endif
4783 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4784 	{
4785 		.desc	= "ITS: Cavium erratum 23144",
4786 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4787 		.mask	= 0xffff0fff,
4788 		.init	= its_enable_quirk_cavium_23144,
4789 	},
4790 #endif
4791 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4792 	{
4793 		.desc	= "ITS: QDF2400 erratum 0065",
4794 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4795 		.mask	= 0xffffffff,
4796 		.init	= its_enable_quirk_qdf2400_e0065,
4797 	},
4798 #endif
4799 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4800 	{
4801 		/*
4802 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4803 		 * implementation, but with a 'pre-ITS' added that requires
4804 		 * special handling in software.
4805 		 */
4806 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4807 		.iidr	= 0x0001143b,
4808 		.mask	= 0xffffffff,
4809 		.init	= its_enable_quirk_socionext_synquacer,
4810 	},
4811 #endif
4812 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4813 	{
4814 		.desc	= "ITS: Hip07 erratum 161600802",
4815 		.iidr	= 0x00000004,
4816 		.mask	= 0xffffffff,
4817 		.init	= its_enable_quirk_hip07_161600802,
4818 	},
4819 #endif
4820 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4821 	{
4822 		.desc   = "ITS: Rockchip erratum RK3588001",
4823 		.iidr   = 0x0201743b,
4824 		.mask   = 0xffffffff,
4825 		.init   = its_enable_rk3588001,
4826 	},
4827 #endif
4828 	{
4829 		.desc   = "ITS: non-coherent attribute",
4830 		.property = "dma-noncoherent",
4831 		.init   = its_set_non_coherent,
4832 	},
4833 	{
4834 	}
4835 };
4836 
4837 static void its_enable_quirks(struct its_node *its)
4838 {
4839 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4840 
4841 	gic_enable_quirks(iidr, its_quirks, its);
4842 
4843 	if (is_of_node(its->fwnode_handle))
4844 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4845 				     its_quirks, its);
4846 }
4847 
4848 static int its_save_disable(void)
4849 {
4850 	struct its_node *its;
4851 	int err = 0;
4852 
4853 	raw_spin_lock(&its_lock);
4854 	list_for_each_entry(its, &its_nodes, entry) {
4855 		void __iomem *base;
4856 
4857 		base = its->base;
4858 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4859 		err = its_force_quiescent(base);
4860 		if (err) {
4861 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4862 			       &its->phys_base, err);
4863 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4864 			goto err;
4865 		}
4866 
4867 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4868 	}
4869 
4870 err:
4871 	if (err) {
4872 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4873 			void __iomem *base;
4874 
4875 			base = its->base;
4876 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4877 		}
4878 	}
4879 	raw_spin_unlock(&its_lock);
4880 
4881 	return err;
4882 }
4883 
4884 static void its_restore_enable(void)
4885 {
4886 	struct its_node *its;
4887 	int ret;
4888 
4889 	raw_spin_lock(&its_lock);
4890 	list_for_each_entry(its, &its_nodes, entry) {
4891 		void __iomem *base;
4892 		int i;
4893 
4894 		base = its->base;
4895 
4896 		/*
4897 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4898 		 * don't restore it since writing to CBASER or BASER<n>
4899 		 * registers is undefined according to the GIC v3 ITS
4900 		 * Specification.
4901 		 *
4902 		 * Firmware resuming with the ITS enabled is terminally broken.
4903 		 */
4904 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4905 		ret = its_force_quiescent(base);
4906 		if (ret) {
4907 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4908 			       &its->phys_base, ret);
4909 			continue;
4910 		}
4911 
4912 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4913 
4914 		/*
4915 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4916 		 * cmd_write line up with it.
4917 		 */
4918 		its->cmd_write = its->cmd_base;
4919 		gits_write_cwriter(0, base + GITS_CWRITER);
4920 
4921 		/* Restore GITS_BASER from the value cache. */
4922 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4923 			struct its_baser *baser = &its->tables[i];
4924 
4925 			if (!(baser->val & GITS_BASER_VALID))
4926 				continue;
4927 
4928 			its_write_baser(its, baser, baser->val);
4929 		}
4930 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4931 
4932 		/*
4933 		 * Reinit the collection if it's stored in the ITS. This is
4934 		 * indicated by the col_id being less than the HCC field.
4935 		 * CID < HCC as specified in the GIC v3 Documentation.
4936 		 */
4937 		if (its->collections[smp_processor_id()].col_id <
4938 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4939 			its_cpu_init_collection(its);
4940 	}
4941 	raw_spin_unlock(&its_lock);
4942 }
4943 
4944 static struct syscore_ops its_syscore_ops = {
4945 	.suspend = its_save_disable,
4946 	.resume = its_restore_enable,
4947 };
4948 
4949 static void __init __iomem *its_map_one(struct resource *res, int *err)
4950 {
4951 	void __iomem *its_base;
4952 	u32 val;
4953 
4954 	its_base = ioremap(res->start, SZ_64K);
4955 	if (!its_base) {
4956 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4957 		*err = -ENOMEM;
4958 		return NULL;
4959 	}
4960 
4961 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4962 	if (val != 0x30 && val != 0x40) {
4963 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4964 		*err = -ENODEV;
4965 		goto out_unmap;
4966 	}
4967 
4968 	*err = its_force_quiescent(its_base);
4969 	if (*err) {
4970 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4971 		goto out_unmap;
4972 	}
4973 
4974 	return its_base;
4975 
4976 out_unmap:
4977 	iounmap(its_base);
4978 	return NULL;
4979 }
4980 
4981 static int its_init_domain(struct its_node *its)
4982 {
4983 	struct irq_domain *inner_domain;
4984 	struct msi_domain_info *info;
4985 
4986 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4987 	if (!info)
4988 		return -ENOMEM;
4989 
4990 	info->ops = &its_msi_domain_ops;
4991 	info->data = its;
4992 
4993 	inner_domain = irq_domain_create_hierarchy(its_parent,
4994 						   its->msi_domain_flags, 0,
4995 						   its->fwnode_handle, &its_domain_ops,
4996 						   info);
4997 	if (!inner_domain) {
4998 		kfree(info);
4999 		return -ENOMEM;
5000 	}
5001 
5002 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
5003 
5004 	inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
5005 	inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
5006 
5007 	return 0;
5008 }
5009 
5010 static int its_init_vpe_domain(void)
5011 {
5012 	struct its_node *its;
5013 	u32 devid;
5014 	int entries;
5015 
5016 	if (gic_rdists->has_direct_lpi) {
5017 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5018 		return 0;
5019 	}
5020 
5021 	/* Any ITS will do, even if not v4 */
5022 	its = list_first_entry(&its_nodes, struct its_node, entry);
5023 
5024 	entries = roundup_pow_of_two(nr_cpu_ids);
5025 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5026 				 GFP_KERNEL);
5027 	if (!vpe_proxy.vpes)
5028 		return -ENOMEM;
5029 
5030 	/* Use the last possible DevID */
5031 	devid = GENMASK(device_ids(its) - 1, 0);
5032 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5033 	if (!vpe_proxy.dev) {
5034 		kfree(vpe_proxy.vpes);
5035 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5036 		return -ENOMEM;
5037 	}
5038 
5039 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5040 
5041 	raw_spin_lock_init(&vpe_proxy.lock);
5042 	vpe_proxy.next_victim = 0;
5043 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5044 		devid, vpe_proxy.dev->nr_ites);
5045 
5046 	return 0;
5047 }
5048 
5049 static int __init its_compute_its_list_map(struct its_node *its)
5050 {
5051 	int its_number;
5052 	u32 ctlr;
5053 
5054 	/*
5055 	 * This is assumed to be done early enough that we're
5056 	 * guaranteed to be single-threaded, hence no
5057 	 * locking. Should this change, we should address
5058 	 * this.
5059 	 */
5060 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5061 	if (its_number >= GICv4_ITS_LIST_MAX) {
5062 		pr_err("ITS@%pa: No ITSList entry available!\n",
5063 		       &its->phys_base);
5064 		return -EINVAL;
5065 	}
5066 
5067 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5068 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5069 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5070 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5071 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5072 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5073 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5074 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5075 	}
5076 
5077 	if (test_and_set_bit(its_number, &its_list_map)) {
5078 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5079 		       &its->phys_base, its_number);
5080 		return -EINVAL;
5081 	}
5082 
5083 	return its_number;
5084 }
5085 
5086 static int __init its_probe_one(struct its_node *its)
5087 {
5088 	u64 baser, tmp;
5089 	struct page *page;
5090 	u32 ctlr;
5091 	int err;
5092 
5093 	its_enable_quirks(its);
5094 
5095 	if (is_v4(its)) {
5096 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5097 			err = its_compute_its_list_map(its);
5098 			if (err < 0)
5099 				goto out;
5100 
5101 			its->list_nr = err;
5102 
5103 			pr_info("ITS@%pa: Using ITS number %d\n",
5104 				&its->phys_base, err);
5105 		} else {
5106 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5107 		}
5108 
5109 		if (is_v4_1(its)) {
5110 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5111 
5112 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5113 			if (!its->sgir_base) {
5114 				err = -ENOMEM;
5115 				goto out;
5116 			}
5117 
5118 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5119 
5120 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5121 				&its->phys_base, its->mpidr, svpet);
5122 		}
5123 	}
5124 
5125 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5126 				get_order(ITS_CMD_QUEUE_SZ));
5127 	if (!page) {
5128 		err = -ENOMEM;
5129 		goto out_unmap_sgir;
5130 	}
5131 	its->cmd_base = (void *)page_address(page);
5132 	its->cmd_write = its->cmd_base;
5133 
5134 	err = its_alloc_tables(its);
5135 	if (err)
5136 		goto out_free_cmd;
5137 
5138 	err = its_alloc_collections(its);
5139 	if (err)
5140 		goto out_free_tables;
5141 
5142 	baser = (virt_to_phys(its->cmd_base)	|
5143 		 GITS_CBASER_RaWaWb		|
5144 		 GITS_CBASER_InnerShareable	|
5145 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5146 		 GITS_CBASER_VALID);
5147 
5148 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5149 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5150 
5151 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5152 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5153 
5154 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5155 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5156 			/*
5157 			 * The HW reports non-shareable, we must
5158 			 * remove the cacheability attributes as
5159 			 * well.
5160 			 */
5161 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5162 				   GITS_CBASER_CACHEABILITY_MASK);
5163 			baser |= GITS_CBASER_nC;
5164 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5165 		}
5166 		pr_info("ITS: using cache flushing for cmd queue\n");
5167 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5168 	}
5169 
5170 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5171 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5172 	ctlr |= GITS_CTLR_ENABLE;
5173 	if (is_v4(its))
5174 		ctlr |= GITS_CTLR_ImDe;
5175 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5176 
5177 	err = its_init_domain(its);
5178 	if (err)
5179 		goto out_free_tables;
5180 
5181 	raw_spin_lock(&its_lock);
5182 	list_add(&its->entry, &its_nodes);
5183 	raw_spin_unlock(&its_lock);
5184 
5185 	return 0;
5186 
5187 out_free_tables:
5188 	its_free_tables(its);
5189 out_free_cmd:
5190 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5191 out_unmap_sgir:
5192 	if (its->sgir_base)
5193 		iounmap(its->sgir_base);
5194 out:
5195 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5196 	return err;
5197 }
5198 
5199 static bool gic_rdists_supports_plpis(void)
5200 {
5201 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5202 }
5203 
5204 static int redist_disable_lpis(void)
5205 {
5206 	void __iomem *rbase = gic_data_rdist_rd_base();
5207 	u64 timeout = USEC_PER_SEC;
5208 	u64 val;
5209 
5210 	if (!gic_rdists_supports_plpis()) {
5211 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5212 		return -ENXIO;
5213 	}
5214 
5215 	val = readl_relaxed(rbase + GICR_CTLR);
5216 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5217 		return 0;
5218 
5219 	/*
5220 	 * If coming via a CPU hotplug event, we don't need to disable
5221 	 * LPIs before trying to re-enable them. They are already
5222 	 * configured and all is well in the world.
5223 	 *
5224 	 * If running with preallocated tables, there is nothing to do.
5225 	 */
5226 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5227 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5228 		return 0;
5229 
5230 	/*
5231 	 * From that point on, we only try to do some damage control.
5232 	 */
5233 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5234 		smp_processor_id());
5235 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5236 
5237 	/* Disable LPIs */
5238 	val &= ~GICR_CTLR_ENABLE_LPIS;
5239 	writel_relaxed(val, rbase + GICR_CTLR);
5240 
5241 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5242 	dsb(sy);
5243 
5244 	/*
5245 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5246 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5247 	 * Error out if we time out waiting for RWP to clear.
5248 	 */
5249 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5250 		if (!timeout) {
5251 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5252 			       smp_processor_id());
5253 			return -ETIMEDOUT;
5254 		}
5255 		udelay(1);
5256 		timeout--;
5257 	}
5258 
5259 	/*
5260 	 * After it has been written to 1, it is IMPLEMENTATION
5261 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5262 	 * cleared to 0. Error out if clearing the bit failed.
5263 	 */
5264 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5265 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5266 		return -EBUSY;
5267 	}
5268 
5269 	return 0;
5270 }
5271 
5272 int its_cpu_init(void)
5273 {
5274 	if (!list_empty(&its_nodes)) {
5275 		int ret;
5276 
5277 		ret = redist_disable_lpis();
5278 		if (ret)
5279 			return ret;
5280 
5281 		its_cpu_init_lpis();
5282 		its_cpu_init_collections();
5283 	}
5284 
5285 	return 0;
5286 }
5287 
5288 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5289 {
5290 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5291 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5292 }
5293 
5294 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5295 		    rdist_memreserve_cpuhp_cleanup_workfn);
5296 
5297 static int its_cpu_memreserve_lpi(unsigned int cpu)
5298 {
5299 	struct page *pend_page;
5300 	int ret = 0;
5301 
5302 	/* This gets to run exactly once per CPU */
5303 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5304 		return 0;
5305 
5306 	pend_page = gic_data_rdist()->pend_page;
5307 	if (WARN_ON(!pend_page)) {
5308 		ret = -ENOMEM;
5309 		goto out;
5310 	}
5311 	/*
5312 	 * If the pending table was pre-programmed, free the memory we
5313 	 * preemptively allocated. Otherwise, reserve that memory for
5314 	 * later kexecs.
5315 	 */
5316 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5317 		its_free_pending_table(pend_page);
5318 		gic_data_rdist()->pend_page = NULL;
5319 	} else {
5320 		phys_addr_t paddr = page_to_phys(pend_page);
5321 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5322 	}
5323 
5324 out:
5325 	/* Last CPU being brought up gets to issue the cleanup */
5326 	if (!IS_ENABLED(CONFIG_SMP) ||
5327 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5328 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5329 
5330 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5331 	return ret;
5332 }
5333 
5334 /* Mark all the BASER registers as invalid before they get reprogrammed */
5335 static int __init its_reset_one(struct resource *res)
5336 {
5337 	void __iomem *its_base;
5338 	int err, i;
5339 
5340 	its_base = its_map_one(res, &err);
5341 	if (!its_base)
5342 		return err;
5343 
5344 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5345 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5346 
5347 	iounmap(its_base);
5348 	return 0;
5349 }
5350 
5351 static const struct of_device_id its_device_id[] = {
5352 	{	.compatible	= "arm,gic-v3-its",	},
5353 	{},
5354 };
5355 
5356 static struct its_node __init *its_node_init(struct resource *res,
5357 					     struct fwnode_handle *handle, int numa_node)
5358 {
5359 	void __iomem *its_base;
5360 	struct its_node *its;
5361 	int err;
5362 
5363 	its_base = its_map_one(res, &err);
5364 	if (!its_base)
5365 		return NULL;
5366 
5367 	pr_info("ITS %pR\n", res);
5368 
5369 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5370 	if (!its)
5371 		goto out_unmap;
5372 
5373 	raw_spin_lock_init(&its->lock);
5374 	mutex_init(&its->dev_alloc_lock);
5375 	INIT_LIST_HEAD(&its->entry);
5376 	INIT_LIST_HEAD(&its->its_device_list);
5377 
5378 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5379 	its->base = its_base;
5380 	its->phys_base = res->start;
5381 	its->get_msi_base = its_irq_get_msi_base;
5382 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5383 
5384 	its->numa_node = numa_node;
5385 	its->fwnode_handle = handle;
5386 
5387 	return its;
5388 
5389 out_unmap:
5390 	iounmap(its_base);
5391 	return NULL;
5392 }
5393 
5394 static void its_node_destroy(struct its_node *its)
5395 {
5396 	iounmap(its->base);
5397 	kfree(its);
5398 }
5399 
5400 static int __init its_of_probe(struct device_node *node)
5401 {
5402 	struct device_node *np;
5403 	struct resource res;
5404 	int err;
5405 
5406 	/*
5407 	 * Make sure *all* the ITS are reset before we probe any, as
5408 	 * they may be sharing memory. If any of the ITS fails to
5409 	 * reset, don't even try to go any further, as this could
5410 	 * result in something even worse.
5411 	 */
5412 	for (np = of_find_matching_node(node, its_device_id); np;
5413 	     np = of_find_matching_node(np, its_device_id)) {
5414 		if (!of_device_is_available(np) ||
5415 		    !of_property_read_bool(np, "msi-controller") ||
5416 		    of_address_to_resource(np, 0, &res))
5417 			continue;
5418 
5419 		err = its_reset_one(&res);
5420 		if (err)
5421 			return err;
5422 	}
5423 
5424 	for (np = of_find_matching_node(node, its_device_id); np;
5425 	     np = of_find_matching_node(np, its_device_id)) {
5426 		struct its_node *its;
5427 
5428 		if (!of_device_is_available(np))
5429 			continue;
5430 		if (!of_property_read_bool(np, "msi-controller")) {
5431 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5432 				np);
5433 			continue;
5434 		}
5435 
5436 		if (of_address_to_resource(np, 0, &res)) {
5437 			pr_warn("%pOF: no regs?\n", np);
5438 			continue;
5439 		}
5440 
5441 
5442 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5443 		if (!its)
5444 			return -ENOMEM;
5445 
5446 		err = its_probe_one(its);
5447 		if (err)  {
5448 			its_node_destroy(its);
5449 			return err;
5450 		}
5451 	}
5452 	return 0;
5453 }
5454 
5455 #ifdef CONFIG_ACPI
5456 
5457 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5458 
5459 #ifdef CONFIG_ACPI_NUMA
5460 struct its_srat_map {
5461 	/* numa node id */
5462 	u32	numa_node;
5463 	/* GIC ITS ID */
5464 	u32	its_id;
5465 };
5466 
5467 static struct its_srat_map *its_srat_maps __initdata;
5468 static int its_in_srat __initdata;
5469 
5470 static int __init acpi_get_its_numa_node(u32 its_id)
5471 {
5472 	int i;
5473 
5474 	for (i = 0; i < its_in_srat; i++) {
5475 		if (its_id == its_srat_maps[i].its_id)
5476 			return its_srat_maps[i].numa_node;
5477 	}
5478 	return NUMA_NO_NODE;
5479 }
5480 
5481 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5482 					  const unsigned long end)
5483 {
5484 	return 0;
5485 }
5486 
5487 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5488 			 const unsigned long end)
5489 {
5490 	int node;
5491 	struct acpi_srat_gic_its_affinity *its_affinity;
5492 
5493 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5494 	if (!its_affinity)
5495 		return -EINVAL;
5496 
5497 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5498 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5499 			its_affinity->header.length);
5500 		return -EINVAL;
5501 	}
5502 
5503 	/*
5504 	 * Note that in theory a new proximity node could be created by this
5505 	 * entry as it is an SRAT resource allocation structure.
5506 	 * We do not currently support doing so.
5507 	 */
5508 	node = pxm_to_node(its_affinity->proximity_domain);
5509 
5510 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5511 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5512 		return 0;
5513 	}
5514 
5515 	its_srat_maps[its_in_srat].numa_node = node;
5516 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5517 	its_in_srat++;
5518 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5519 		its_affinity->proximity_domain, its_affinity->its_id, node);
5520 
5521 	return 0;
5522 }
5523 
5524 static void __init acpi_table_parse_srat_its(void)
5525 {
5526 	int count;
5527 
5528 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5529 			sizeof(struct acpi_table_srat),
5530 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5531 			gic_acpi_match_srat_its, 0);
5532 	if (count <= 0)
5533 		return;
5534 
5535 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5536 				      GFP_KERNEL);
5537 	if (!its_srat_maps)
5538 		return;
5539 
5540 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5541 			sizeof(struct acpi_table_srat),
5542 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5543 			gic_acpi_parse_srat_its, 0);
5544 }
5545 
5546 /* free the its_srat_maps after ITS probing */
5547 static void __init acpi_its_srat_maps_free(void)
5548 {
5549 	kfree(its_srat_maps);
5550 }
5551 #else
5552 static void __init acpi_table_parse_srat_its(void)	{ }
5553 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5554 static void __init acpi_its_srat_maps_free(void) { }
5555 #endif
5556 
5557 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5558 					  const unsigned long end)
5559 {
5560 	struct acpi_madt_generic_translator *its_entry;
5561 	struct fwnode_handle *dom_handle;
5562 	struct its_node *its;
5563 	struct resource res;
5564 	int err;
5565 
5566 	its_entry = (struct acpi_madt_generic_translator *)header;
5567 	memset(&res, 0, sizeof(res));
5568 	res.start = its_entry->base_address;
5569 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5570 	res.flags = IORESOURCE_MEM;
5571 
5572 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5573 	if (!dom_handle) {
5574 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5575 		       &res.start);
5576 		return -ENOMEM;
5577 	}
5578 
5579 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5580 					 dom_handle);
5581 	if (err) {
5582 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5583 		       &res.start, its_entry->translation_id);
5584 		goto dom_err;
5585 	}
5586 
5587 	its = its_node_init(&res, dom_handle,
5588 			    acpi_get_its_numa_node(its_entry->translation_id));
5589 	if (!its) {
5590 		err = -ENOMEM;
5591 		goto node_err;
5592 	}
5593 
5594 	if (acpi_get_madt_revision() >= 7 &&
5595 	    (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5596 		its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5597 
5598 	err = its_probe_one(its);
5599 	if (!err)
5600 		return 0;
5601 
5602 node_err:
5603 	iort_deregister_domain_token(its_entry->translation_id);
5604 dom_err:
5605 	irq_domain_free_fwnode(dom_handle);
5606 	return err;
5607 }
5608 
5609 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5610 				 const unsigned long end)
5611 {
5612 	struct acpi_madt_generic_translator *its_entry;
5613 	struct resource res;
5614 
5615 	its_entry = (struct acpi_madt_generic_translator *)header;
5616 	res = (struct resource) {
5617 		.start	= its_entry->base_address,
5618 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5619 		.flags	= IORESOURCE_MEM,
5620 	};
5621 
5622 	return its_reset_one(&res);
5623 }
5624 
5625 static void __init its_acpi_probe(void)
5626 {
5627 	acpi_table_parse_srat_its();
5628 	/*
5629 	 * Make sure *all* the ITS are reset before we probe any, as
5630 	 * they may be sharing memory. If any of the ITS fails to
5631 	 * reset, don't even try to go any further, as this could
5632 	 * result in something even worse.
5633 	 */
5634 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5635 				  its_acpi_reset, 0) > 0)
5636 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5637 				      gic_acpi_parse_madt_its, 0);
5638 	acpi_its_srat_maps_free();
5639 }
5640 #else
5641 static void __init its_acpi_probe(void) { }
5642 #endif
5643 
5644 int __init its_lpi_memreserve_init(void)
5645 {
5646 	int state;
5647 
5648 	if (!efi_enabled(EFI_CONFIG_TABLES))
5649 		return 0;
5650 
5651 	if (list_empty(&its_nodes))
5652 		return 0;
5653 
5654 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5655 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5656 				  "irqchip/arm/gicv3/memreserve:online",
5657 				  its_cpu_memreserve_lpi,
5658 				  NULL);
5659 	if (state < 0)
5660 		return state;
5661 
5662 	gic_rdists->cpuhp_memreserve_state = state;
5663 
5664 	return 0;
5665 }
5666 
5667 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5668 		    struct irq_domain *parent_domain, u8 irq_prio)
5669 {
5670 	struct device_node *of_node;
5671 	struct its_node *its;
5672 	bool has_v4 = false;
5673 	bool has_v4_1 = false;
5674 	int err;
5675 
5676 	gic_rdists = rdists;
5677 
5678 	lpi_prop_prio = irq_prio;
5679 	its_parent = parent_domain;
5680 	of_node = to_of_node(handle);
5681 	if (of_node)
5682 		its_of_probe(of_node);
5683 	else
5684 		its_acpi_probe();
5685 
5686 	if (list_empty(&its_nodes)) {
5687 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5688 		return -ENXIO;
5689 	}
5690 
5691 	err = allocate_lpi_tables();
5692 	if (err)
5693 		return err;
5694 
5695 	list_for_each_entry(its, &its_nodes, entry) {
5696 		has_v4 |= is_v4(its);
5697 		has_v4_1 |= is_v4_1(its);
5698 	}
5699 
5700 	/* Don't bother with inconsistent systems */
5701 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5702 		rdists->has_rvpeid = false;
5703 
5704 	if (has_v4 & rdists->has_vlpis) {
5705 		const struct irq_domain_ops *sgi_ops;
5706 
5707 		if (has_v4_1)
5708 			sgi_ops = &its_sgi_domain_ops;
5709 		else
5710 			sgi_ops = NULL;
5711 
5712 		if (its_init_vpe_domain() ||
5713 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5714 			rdists->has_vlpis = false;
5715 			pr_err("ITS: Disabling GICv4 support\n");
5716 		}
5717 	}
5718 
5719 	register_syscore_ops(&its_syscore_ops);
5720 
5721 	return 0;
5722 }
5723