xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision d261f9ebcf424535fe04e720a1cfa023be409f52)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 #include "irq-msi-lib.h"
42 
43 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
45 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
46 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
47 
48 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
49 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
50 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
51 
52 static u32 lpi_id_bits;
53 
54 /*
55  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56  * deal with (one configuration byte per interrupt). PENDBASE has to
57  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
58  */
59 #define LPI_NRBITS		lpi_id_bits
60 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
62 
63 static u8 __ro_after_init lpi_prop_prio;
64 
65 /*
66  * Collection structure - just an ID, and a redistributor address to
67  * ping. We use one per CPU as a bag of interrupts assigned to this
68  * CPU.
69  */
70 struct its_collection {
71 	u64			target_address;
72 	u16			col_id;
73 };
74 
75 /*
76  * The ITS_BASER structure - contains memory information, cached
77  * value of BASER register configuration and ITS page size.
78  */
79 struct its_baser {
80 	void		*base;
81 	u64		val;
82 	u32		order;
83 	u32		psz;
84 };
85 
86 struct its_device;
87 
88 /*
89  * The ITS structure - contains most of the infrastructure, with the
90  * top-level MSI domain, the command queue, the collections, and the
91  * list of devices writing to it.
92  *
93  * dev_alloc_lock has to be taken for device allocations, while the
94  * spinlock must be taken to parse data structures such as the device
95  * list.
96  */
97 struct its_node {
98 	raw_spinlock_t		lock;
99 	struct mutex		dev_alloc_lock;
100 	struct list_head	entry;
101 	void __iomem		*base;
102 	void __iomem		*sgir_base;
103 	phys_addr_t		phys_base;
104 	struct its_cmd_block	*cmd_base;
105 	struct its_cmd_block	*cmd_write;
106 	struct its_baser	tables[GITS_BASER_NR_REGS];
107 	struct its_collection	*collections;
108 	struct fwnode_handle	*fwnode_handle;
109 	u64			(*get_msi_base)(struct its_device *its_dev);
110 	u64			typer;
111 	u64			cbaser_save;
112 	u32			ctlr_save;
113 	u32			mpidr;
114 	struct list_head	its_device_list;
115 	u64			flags;
116 	unsigned long		list_nr;
117 	int			numa_node;
118 	unsigned int		msi_domain_flags;
119 	u32			pre_its_base; /* for Socionext Synquacer */
120 	int			vlpi_redist_offset;
121 };
122 
123 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
124 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
125 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
126 
127 #define ITS_ITT_ALIGN		SZ_256
128 
129 /* The maximum number of VPEID bits supported by VLPI commands */
130 #define ITS_MAX_VPEID_BITS						\
131 	({								\
132 		int nvpeid = 16;					\
133 		if (gic_rdists->has_rvpeid &&				\
134 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
135 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
136 				      GICD_TYPER2_VID);			\
137 									\
138 		nvpeid;							\
139 	})
140 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
141 
142 /* Convert page order to size in bytes */
143 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
144 
145 struct event_lpi_map {
146 	unsigned long		*lpi_map;
147 	u16			*col_map;
148 	irq_hw_number_t		lpi_base;
149 	int			nr_lpis;
150 	raw_spinlock_t		vlpi_lock;
151 	struct its_vm		*vm;
152 	struct its_vlpi_map	*vlpi_maps;
153 	int			nr_vlpis;
154 };
155 
156 /*
157  * The ITS view of a device - belongs to an ITS, owns an interrupt
158  * translation table, and a list of interrupts.  If it some of its
159  * LPIs are injected into a guest (GICv4), the event_map.vm field
160  * indicates which one.
161  */
162 struct its_device {
163 	struct list_head	entry;
164 	struct its_node		*its;
165 	struct event_lpi_map	event_map;
166 	void			*itt;
167 	u32			nr_ites;
168 	u32			device_id;
169 	bool			shared;
170 };
171 
172 static struct {
173 	raw_spinlock_t		lock;
174 	struct its_device	*dev;
175 	struct its_vpe		**vpes;
176 	int			next_victim;
177 } vpe_proxy;
178 
179 struct cpu_lpi_count {
180 	atomic_t	managed;
181 	atomic_t	unmanaged;
182 };
183 
184 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
185 
186 static LIST_HEAD(its_nodes);
187 static DEFINE_RAW_SPINLOCK(its_lock);
188 static struct rdists *gic_rdists;
189 static struct irq_domain *its_parent;
190 
191 static unsigned long its_list_map;
192 static u16 vmovp_seq_num;
193 static DEFINE_RAW_SPINLOCK(vmovp_lock);
194 
195 static DEFINE_IDA(its_vpeid_ida);
196 
197 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
198 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
199 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
200 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
201 
202 /*
203  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
204  * always have vSGIs mapped.
205  */
206 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
207 {
208 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
209 }
210 
211 static bool rdists_support_shareable(void)
212 {
213 	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
214 }
215 
216 static u16 get_its_list(struct its_vm *vm)
217 {
218 	struct its_node *its;
219 	unsigned long its_list = 0;
220 
221 	list_for_each_entry(its, &its_nodes, entry) {
222 		if (!is_v4(its))
223 			continue;
224 
225 		if (require_its_list_vmovp(vm, its))
226 			__set_bit(its->list_nr, &its_list);
227 	}
228 
229 	return (u16)its_list;
230 }
231 
232 static inline u32 its_get_event_id(struct irq_data *d)
233 {
234 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
235 	return d->hwirq - its_dev->event_map.lpi_base;
236 }
237 
238 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
239 					       u32 event)
240 {
241 	struct its_node *its = its_dev->its;
242 
243 	return its->collections + its_dev->event_map.col_map[event];
244 }
245 
246 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
247 					       u32 event)
248 {
249 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
250 		return NULL;
251 
252 	return &its_dev->event_map.vlpi_maps[event];
253 }
254 
255 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
256 {
257 	if (irqd_is_forwarded_to_vcpu(d)) {
258 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
259 		u32 event = its_get_event_id(d);
260 
261 		return dev_event_to_vlpi_map(its_dev, event);
262 	}
263 
264 	return NULL;
265 }
266 
267 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
268 {
269 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
270 	return vpe->col_idx;
271 }
272 
273 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
274 {
275 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
276 }
277 
278 static struct irq_chip its_vpe_irq_chip;
279 
280 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
281 {
282 	struct its_vpe *vpe = NULL;
283 	int cpu;
284 
285 	if (d->chip == &its_vpe_irq_chip) {
286 		vpe = irq_data_get_irq_chip_data(d);
287 	} else {
288 		struct its_vlpi_map *map = get_vlpi_map(d);
289 		if (map)
290 			vpe = map->vpe;
291 	}
292 
293 	if (vpe) {
294 		cpu = vpe_to_cpuid_lock(vpe, flags);
295 	} else {
296 		/* Physical LPIs are already locked via the irq_desc lock */
297 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
298 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
299 		/* Keep GCC quiet... */
300 		*flags = 0;
301 	}
302 
303 	return cpu;
304 }
305 
306 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
307 {
308 	struct its_vpe *vpe = NULL;
309 
310 	if (d->chip == &its_vpe_irq_chip) {
311 		vpe = irq_data_get_irq_chip_data(d);
312 	} else {
313 		struct its_vlpi_map *map = get_vlpi_map(d);
314 		if (map)
315 			vpe = map->vpe;
316 	}
317 
318 	if (vpe)
319 		vpe_to_cpuid_unlock(vpe, flags);
320 }
321 
322 static struct its_collection *valid_col(struct its_collection *col)
323 {
324 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
325 		return NULL;
326 
327 	return col;
328 }
329 
330 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
331 {
332 	if (valid_col(its->collections + vpe->col_idx))
333 		return vpe;
334 
335 	return NULL;
336 }
337 
338 /*
339  * ITS command descriptors - parameters to be encoded in a command
340  * block.
341  */
342 struct its_cmd_desc {
343 	union {
344 		struct {
345 			struct its_device *dev;
346 			u32 event_id;
347 		} its_inv_cmd;
348 
349 		struct {
350 			struct its_device *dev;
351 			u32 event_id;
352 		} its_clear_cmd;
353 
354 		struct {
355 			struct its_device *dev;
356 			u32 event_id;
357 		} its_int_cmd;
358 
359 		struct {
360 			struct its_device *dev;
361 			int valid;
362 		} its_mapd_cmd;
363 
364 		struct {
365 			struct its_collection *col;
366 			int valid;
367 		} its_mapc_cmd;
368 
369 		struct {
370 			struct its_device *dev;
371 			u32 phys_id;
372 			u32 event_id;
373 		} its_mapti_cmd;
374 
375 		struct {
376 			struct its_device *dev;
377 			struct its_collection *col;
378 			u32 event_id;
379 		} its_movi_cmd;
380 
381 		struct {
382 			struct its_device *dev;
383 			u32 event_id;
384 		} its_discard_cmd;
385 
386 		struct {
387 			struct its_collection *col;
388 		} its_invall_cmd;
389 
390 		struct {
391 			struct its_vpe *vpe;
392 		} its_vinvall_cmd;
393 
394 		struct {
395 			struct its_vpe *vpe;
396 			struct its_collection *col;
397 			bool valid;
398 		} its_vmapp_cmd;
399 
400 		struct {
401 			struct its_vpe *vpe;
402 			struct its_device *dev;
403 			u32 virt_id;
404 			u32 event_id;
405 			bool db_enabled;
406 		} its_vmapti_cmd;
407 
408 		struct {
409 			struct its_vpe *vpe;
410 			struct its_device *dev;
411 			u32 event_id;
412 			bool db_enabled;
413 		} its_vmovi_cmd;
414 
415 		struct {
416 			struct its_vpe *vpe;
417 			struct its_collection *col;
418 			u16 seq_num;
419 			u16 its_list;
420 		} its_vmovp_cmd;
421 
422 		struct {
423 			struct its_vpe *vpe;
424 		} its_invdb_cmd;
425 
426 		struct {
427 			struct its_vpe *vpe;
428 			u8 sgi;
429 			u8 priority;
430 			bool enable;
431 			bool group;
432 			bool clear;
433 		} its_vsgi_cmd;
434 	};
435 };
436 
437 /*
438  * The ITS command block, which is what the ITS actually parses.
439  */
440 struct its_cmd_block {
441 	union {
442 		u64	raw_cmd[4];
443 		__le64	raw_cmd_le[4];
444 	};
445 };
446 
447 #define ITS_CMD_QUEUE_SZ		SZ_64K
448 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
449 
450 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
451 						    struct its_cmd_block *,
452 						    struct its_cmd_desc *);
453 
454 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
455 					      struct its_cmd_block *,
456 					      struct its_cmd_desc *);
457 
458 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
459 {
460 	u64 mask = GENMASK_ULL(h, l);
461 	*raw_cmd &= ~mask;
462 	*raw_cmd |= (val << l) & mask;
463 }
464 
465 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
466 {
467 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
468 }
469 
470 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
471 {
472 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
473 }
474 
475 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
476 {
477 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
478 }
479 
480 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
481 {
482 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
483 }
484 
485 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
486 {
487 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
488 }
489 
490 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
491 {
492 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
493 }
494 
495 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
496 {
497 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
498 }
499 
500 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
501 {
502 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
503 }
504 
505 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
506 {
507 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
508 }
509 
510 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
511 {
512 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
513 }
514 
515 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
516 {
517 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
518 }
519 
520 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
521 {
522 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
523 }
524 
525 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
526 {
527 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
528 }
529 
530 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
531 {
532 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
533 }
534 
535 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
536 {
537 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
538 }
539 
540 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
541 {
542 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
543 }
544 
545 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
546 {
547 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
548 }
549 
550 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
551 {
552 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
553 }
554 
555 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
556 {
557 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
558 }
559 
560 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
561 {
562 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
563 }
564 
565 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
566 					u32 vpe_db_lpi)
567 {
568 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
569 }
570 
571 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
572 					u32 vpe_db_lpi)
573 {
574 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
575 }
576 
577 static void its_encode_db(struct its_cmd_block *cmd, bool db)
578 {
579 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
580 }
581 
582 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
583 {
584 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
585 }
586 
587 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
588 {
589 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
590 }
591 
592 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
593 {
594 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
595 }
596 
597 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
598 {
599 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
600 }
601 
602 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
603 {
604 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
605 }
606 
607 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
608 {
609 	/* Let's fixup BE commands */
610 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
611 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
612 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
613 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
614 }
615 
616 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
617 						 struct its_cmd_block *cmd,
618 						 struct its_cmd_desc *desc)
619 {
620 	unsigned long itt_addr;
621 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
622 
623 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
624 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
625 
626 	its_encode_cmd(cmd, GITS_CMD_MAPD);
627 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
628 	its_encode_size(cmd, size - 1);
629 	its_encode_itt(cmd, itt_addr);
630 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
631 
632 	its_fixup_cmd(cmd);
633 
634 	return NULL;
635 }
636 
637 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
638 						 struct its_cmd_block *cmd,
639 						 struct its_cmd_desc *desc)
640 {
641 	its_encode_cmd(cmd, GITS_CMD_MAPC);
642 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
643 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
644 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
645 
646 	its_fixup_cmd(cmd);
647 
648 	return desc->its_mapc_cmd.col;
649 }
650 
651 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
652 						  struct its_cmd_block *cmd,
653 						  struct its_cmd_desc *desc)
654 {
655 	struct its_collection *col;
656 
657 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
658 			       desc->its_mapti_cmd.event_id);
659 
660 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
661 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
662 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
663 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
664 	its_encode_collection(cmd, col->col_id);
665 
666 	its_fixup_cmd(cmd);
667 
668 	return valid_col(col);
669 }
670 
671 static struct its_collection *its_build_movi_cmd(struct its_node *its,
672 						 struct its_cmd_block *cmd,
673 						 struct its_cmd_desc *desc)
674 {
675 	struct its_collection *col;
676 
677 	col = dev_event_to_col(desc->its_movi_cmd.dev,
678 			       desc->its_movi_cmd.event_id);
679 
680 	its_encode_cmd(cmd, GITS_CMD_MOVI);
681 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
682 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
683 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
684 
685 	its_fixup_cmd(cmd);
686 
687 	return valid_col(col);
688 }
689 
690 static struct its_collection *its_build_discard_cmd(struct its_node *its,
691 						    struct its_cmd_block *cmd,
692 						    struct its_cmd_desc *desc)
693 {
694 	struct its_collection *col;
695 
696 	col = dev_event_to_col(desc->its_discard_cmd.dev,
697 			       desc->its_discard_cmd.event_id);
698 
699 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
700 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
701 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
702 
703 	its_fixup_cmd(cmd);
704 
705 	return valid_col(col);
706 }
707 
708 static struct its_collection *its_build_inv_cmd(struct its_node *its,
709 						struct its_cmd_block *cmd,
710 						struct its_cmd_desc *desc)
711 {
712 	struct its_collection *col;
713 
714 	col = dev_event_to_col(desc->its_inv_cmd.dev,
715 			       desc->its_inv_cmd.event_id);
716 
717 	its_encode_cmd(cmd, GITS_CMD_INV);
718 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
719 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
720 
721 	its_fixup_cmd(cmd);
722 
723 	return valid_col(col);
724 }
725 
726 static struct its_collection *its_build_int_cmd(struct its_node *its,
727 						struct its_cmd_block *cmd,
728 						struct its_cmd_desc *desc)
729 {
730 	struct its_collection *col;
731 
732 	col = dev_event_to_col(desc->its_int_cmd.dev,
733 			       desc->its_int_cmd.event_id);
734 
735 	its_encode_cmd(cmd, GITS_CMD_INT);
736 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
737 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
738 
739 	its_fixup_cmd(cmd);
740 
741 	return valid_col(col);
742 }
743 
744 static struct its_collection *its_build_clear_cmd(struct its_node *its,
745 						  struct its_cmd_block *cmd,
746 						  struct its_cmd_desc *desc)
747 {
748 	struct its_collection *col;
749 
750 	col = dev_event_to_col(desc->its_clear_cmd.dev,
751 			       desc->its_clear_cmd.event_id);
752 
753 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
754 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
755 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
756 
757 	its_fixup_cmd(cmd);
758 
759 	return valid_col(col);
760 }
761 
762 static struct its_collection *its_build_invall_cmd(struct its_node *its,
763 						   struct its_cmd_block *cmd,
764 						   struct its_cmd_desc *desc)
765 {
766 	its_encode_cmd(cmd, GITS_CMD_INVALL);
767 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
768 
769 	its_fixup_cmd(cmd);
770 
771 	return desc->its_invall_cmd.col;
772 }
773 
774 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
775 					     struct its_cmd_block *cmd,
776 					     struct its_cmd_desc *desc)
777 {
778 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
779 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
780 
781 	its_fixup_cmd(cmd);
782 
783 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
784 }
785 
786 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
787 					   struct its_cmd_block *cmd,
788 					   struct its_cmd_desc *desc)
789 {
790 	struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
791 	unsigned long vpt_addr, vconf_addr;
792 	u64 target;
793 	bool alloc;
794 
795 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
796 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
797 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
798 
799 	if (!desc->its_vmapp_cmd.valid) {
800 		if (is_v4_1(its)) {
801 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
802 			its_encode_alloc(cmd, alloc);
803 			/*
804 			 * Unmapping a VPE is self-synchronizing on GICv4.1,
805 			 * no need to issue a VSYNC.
806 			 */
807 			vpe = NULL;
808 		}
809 
810 		goto out;
811 	}
812 
813 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
814 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
815 
816 	its_encode_target(cmd, target);
817 	its_encode_vpt_addr(cmd, vpt_addr);
818 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
819 
820 	if (!is_v4_1(its))
821 		goto out;
822 
823 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
824 
825 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
826 
827 	its_encode_alloc(cmd, alloc);
828 
829 	/*
830 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
831 	 * to be unmapped first, and in this case, we may remap the vPE
832 	 * back while the VPT is not empty. So we can't assume that the
833 	 * VPT is empty on map. This is why we never advertise PTZ.
834 	 */
835 	its_encode_ptz(cmd, false);
836 	its_encode_vconf_addr(cmd, vconf_addr);
837 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
838 
839 out:
840 	its_fixup_cmd(cmd);
841 
842 	return vpe;
843 }
844 
845 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
846 					    struct its_cmd_block *cmd,
847 					    struct its_cmd_desc *desc)
848 {
849 	u32 db;
850 
851 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
852 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
853 	else
854 		db = 1023;
855 
856 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
857 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
858 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
859 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
860 	its_encode_db_phys_id(cmd, db);
861 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
862 
863 	its_fixup_cmd(cmd);
864 
865 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
866 }
867 
868 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
869 					   struct its_cmd_block *cmd,
870 					   struct its_cmd_desc *desc)
871 {
872 	u32 db;
873 
874 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
875 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
876 	else
877 		db = 1023;
878 
879 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
880 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
881 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
882 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
883 	its_encode_db_phys_id(cmd, db);
884 	its_encode_db_valid(cmd, true);
885 
886 	its_fixup_cmd(cmd);
887 
888 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
889 }
890 
891 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
892 					   struct its_cmd_block *cmd,
893 					   struct its_cmd_desc *desc)
894 {
895 	u64 target;
896 
897 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
898 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
899 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
900 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
901 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
902 	its_encode_target(cmd, target);
903 
904 	if (is_v4_1(its)) {
905 		its_encode_db(cmd, true);
906 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
907 	}
908 
909 	its_fixup_cmd(cmd);
910 
911 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
912 }
913 
914 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
915 					  struct its_cmd_block *cmd,
916 					  struct its_cmd_desc *desc)
917 {
918 	struct its_vlpi_map *map;
919 
920 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
921 				    desc->its_inv_cmd.event_id);
922 
923 	its_encode_cmd(cmd, GITS_CMD_INV);
924 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
925 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
926 
927 	its_fixup_cmd(cmd);
928 
929 	return valid_vpe(its, map->vpe);
930 }
931 
932 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
933 					  struct its_cmd_block *cmd,
934 					  struct its_cmd_desc *desc)
935 {
936 	struct its_vlpi_map *map;
937 
938 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
939 				    desc->its_int_cmd.event_id);
940 
941 	its_encode_cmd(cmd, GITS_CMD_INT);
942 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
943 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
944 
945 	its_fixup_cmd(cmd);
946 
947 	return valid_vpe(its, map->vpe);
948 }
949 
950 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
951 					    struct its_cmd_block *cmd,
952 					    struct its_cmd_desc *desc)
953 {
954 	struct its_vlpi_map *map;
955 
956 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
957 				    desc->its_clear_cmd.event_id);
958 
959 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
960 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
961 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
962 
963 	its_fixup_cmd(cmd);
964 
965 	return valid_vpe(its, map->vpe);
966 }
967 
968 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
969 					   struct its_cmd_block *cmd,
970 					   struct its_cmd_desc *desc)
971 {
972 	if (WARN_ON(!is_v4_1(its)))
973 		return NULL;
974 
975 	its_encode_cmd(cmd, GITS_CMD_INVDB);
976 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
977 
978 	its_fixup_cmd(cmd);
979 
980 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
981 }
982 
983 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
984 					  struct its_cmd_block *cmd,
985 					  struct its_cmd_desc *desc)
986 {
987 	if (WARN_ON(!is_v4_1(its)))
988 		return NULL;
989 
990 	its_encode_cmd(cmd, GITS_CMD_VSGI);
991 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
992 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
993 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
994 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
995 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
996 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
997 
998 	its_fixup_cmd(cmd);
999 
1000 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1001 }
1002 
1003 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1004 				 struct its_cmd_block *ptr)
1005 {
1006 	return (ptr - its->cmd_base) * sizeof(*ptr);
1007 }
1008 
1009 static int its_queue_full(struct its_node *its)
1010 {
1011 	int widx;
1012 	int ridx;
1013 
1014 	widx = its->cmd_write - its->cmd_base;
1015 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1016 
1017 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1018 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1019 		return 1;
1020 
1021 	return 0;
1022 }
1023 
1024 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1025 {
1026 	struct its_cmd_block *cmd;
1027 	u32 count = 1000000;	/* 1s! */
1028 
1029 	while (its_queue_full(its)) {
1030 		count--;
1031 		if (!count) {
1032 			pr_err_ratelimited("ITS queue not draining\n");
1033 			return NULL;
1034 		}
1035 		cpu_relax();
1036 		udelay(1);
1037 	}
1038 
1039 	cmd = its->cmd_write++;
1040 
1041 	/* Handle queue wrapping */
1042 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1043 		its->cmd_write = its->cmd_base;
1044 
1045 	/* Clear command  */
1046 	cmd->raw_cmd[0] = 0;
1047 	cmd->raw_cmd[1] = 0;
1048 	cmd->raw_cmd[2] = 0;
1049 	cmd->raw_cmd[3] = 0;
1050 
1051 	return cmd;
1052 }
1053 
1054 static struct its_cmd_block *its_post_commands(struct its_node *its)
1055 {
1056 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1057 
1058 	writel_relaxed(wr, its->base + GITS_CWRITER);
1059 
1060 	return its->cmd_write;
1061 }
1062 
1063 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1064 {
1065 	/*
1066 	 * Make sure the commands written to memory are observable by
1067 	 * the ITS.
1068 	 */
1069 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1070 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1071 	else
1072 		dsb(ishst);
1073 }
1074 
1075 static int its_wait_for_range_completion(struct its_node *its,
1076 					 u64	prev_idx,
1077 					 struct its_cmd_block *to)
1078 {
1079 	u64 rd_idx, to_idx, linear_idx;
1080 	u32 count = 1000000;	/* 1s! */
1081 
1082 	/* Linearize to_idx if the command set has wrapped around */
1083 	to_idx = its_cmd_ptr_to_offset(its, to);
1084 	if (to_idx < prev_idx)
1085 		to_idx += ITS_CMD_QUEUE_SZ;
1086 
1087 	linear_idx = prev_idx;
1088 
1089 	while (1) {
1090 		s64 delta;
1091 
1092 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1093 
1094 		/*
1095 		 * Compute the read pointer progress, taking the
1096 		 * potential wrap-around into account.
1097 		 */
1098 		delta = rd_idx - prev_idx;
1099 		if (rd_idx < prev_idx)
1100 			delta += ITS_CMD_QUEUE_SZ;
1101 
1102 		linear_idx += delta;
1103 		if (linear_idx >= to_idx)
1104 			break;
1105 
1106 		count--;
1107 		if (!count) {
1108 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1109 					   to_idx, linear_idx);
1110 			return -1;
1111 		}
1112 		prev_idx = rd_idx;
1113 		cpu_relax();
1114 		udelay(1);
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 /* Warning, macro hell follows */
1121 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1122 void name(struct its_node *its,						\
1123 	  buildtype builder,						\
1124 	  struct its_cmd_desc *desc)					\
1125 {									\
1126 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1127 	synctype *sync_obj;						\
1128 	unsigned long flags;						\
1129 	u64 rd_idx;							\
1130 									\
1131 	raw_spin_lock_irqsave(&its->lock, flags);			\
1132 									\
1133 	cmd = its_allocate_entry(its);					\
1134 	if (!cmd) {		/* We're soooooo screewed... */		\
1135 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1136 		return;							\
1137 	}								\
1138 	sync_obj = builder(its, cmd, desc);				\
1139 	its_flush_cmd(its, cmd);					\
1140 									\
1141 	if (sync_obj) {							\
1142 		sync_cmd = its_allocate_entry(its);			\
1143 		if (!sync_cmd)						\
1144 			goto post;					\
1145 									\
1146 		buildfn(its, sync_cmd, sync_obj);			\
1147 		its_flush_cmd(its, sync_cmd);				\
1148 	}								\
1149 									\
1150 post:									\
1151 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1152 	next_cmd = its_post_commands(its);				\
1153 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1154 									\
1155 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1156 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1157 }
1158 
1159 static void its_build_sync_cmd(struct its_node *its,
1160 			       struct its_cmd_block *sync_cmd,
1161 			       struct its_collection *sync_col)
1162 {
1163 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1164 	its_encode_target(sync_cmd, sync_col->target_address);
1165 
1166 	its_fixup_cmd(sync_cmd);
1167 }
1168 
1169 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1170 			     struct its_collection, its_build_sync_cmd)
1171 
1172 static void its_build_vsync_cmd(struct its_node *its,
1173 				struct its_cmd_block *sync_cmd,
1174 				struct its_vpe *sync_vpe)
1175 {
1176 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1177 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1178 
1179 	its_fixup_cmd(sync_cmd);
1180 }
1181 
1182 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1183 			     struct its_vpe, its_build_vsync_cmd)
1184 
1185 static void its_send_int(struct its_device *dev, u32 event_id)
1186 {
1187 	struct its_cmd_desc desc;
1188 
1189 	desc.its_int_cmd.dev = dev;
1190 	desc.its_int_cmd.event_id = event_id;
1191 
1192 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1193 }
1194 
1195 static void its_send_clear(struct its_device *dev, u32 event_id)
1196 {
1197 	struct its_cmd_desc desc;
1198 
1199 	desc.its_clear_cmd.dev = dev;
1200 	desc.its_clear_cmd.event_id = event_id;
1201 
1202 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1203 }
1204 
1205 static void its_send_inv(struct its_device *dev, u32 event_id)
1206 {
1207 	struct its_cmd_desc desc;
1208 
1209 	desc.its_inv_cmd.dev = dev;
1210 	desc.its_inv_cmd.event_id = event_id;
1211 
1212 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1213 }
1214 
1215 static void its_send_mapd(struct its_device *dev, int valid)
1216 {
1217 	struct its_cmd_desc desc;
1218 
1219 	desc.its_mapd_cmd.dev = dev;
1220 	desc.its_mapd_cmd.valid = !!valid;
1221 
1222 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1223 }
1224 
1225 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1226 			  int valid)
1227 {
1228 	struct its_cmd_desc desc;
1229 
1230 	desc.its_mapc_cmd.col = col;
1231 	desc.its_mapc_cmd.valid = !!valid;
1232 
1233 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1234 }
1235 
1236 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1237 {
1238 	struct its_cmd_desc desc;
1239 
1240 	desc.its_mapti_cmd.dev = dev;
1241 	desc.its_mapti_cmd.phys_id = irq_id;
1242 	desc.its_mapti_cmd.event_id = id;
1243 
1244 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1245 }
1246 
1247 static void its_send_movi(struct its_device *dev,
1248 			  struct its_collection *col, u32 id)
1249 {
1250 	struct its_cmd_desc desc;
1251 
1252 	desc.its_movi_cmd.dev = dev;
1253 	desc.its_movi_cmd.col = col;
1254 	desc.its_movi_cmd.event_id = id;
1255 
1256 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1257 }
1258 
1259 static void its_send_discard(struct its_device *dev, u32 id)
1260 {
1261 	struct its_cmd_desc desc;
1262 
1263 	desc.its_discard_cmd.dev = dev;
1264 	desc.its_discard_cmd.event_id = id;
1265 
1266 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1267 }
1268 
1269 static void its_send_invall(struct its_node *its, struct its_collection *col)
1270 {
1271 	struct its_cmd_desc desc;
1272 
1273 	desc.its_invall_cmd.col = col;
1274 
1275 	its_send_single_command(its, its_build_invall_cmd, &desc);
1276 }
1277 
1278 static void its_send_vmapti(struct its_device *dev, u32 id)
1279 {
1280 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1281 	struct its_cmd_desc desc;
1282 
1283 	desc.its_vmapti_cmd.vpe = map->vpe;
1284 	desc.its_vmapti_cmd.dev = dev;
1285 	desc.its_vmapti_cmd.virt_id = map->vintid;
1286 	desc.its_vmapti_cmd.event_id = id;
1287 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1288 
1289 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1290 }
1291 
1292 static void its_send_vmovi(struct its_device *dev, u32 id)
1293 {
1294 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1295 	struct its_cmd_desc desc;
1296 
1297 	desc.its_vmovi_cmd.vpe = map->vpe;
1298 	desc.its_vmovi_cmd.dev = dev;
1299 	desc.its_vmovi_cmd.event_id = id;
1300 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1301 
1302 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1303 }
1304 
1305 static void its_send_vmapp(struct its_node *its,
1306 			   struct its_vpe *vpe, bool valid)
1307 {
1308 	struct its_cmd_desc desc;
1309 
1310 	desc.its_vmapp_cmd.vpe = vpe;
1311 	desc.its_vmapp_cmd.valid = valid;
1312 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1313 
1314 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1315 }
1316 
1317 static void its_send_vmovp(struct its_vpe *vpe)
1318 {
1319 	struct its_cmd_desc desc = {};
1320 	struct its_node *its;
1321 	int col_id = vpe->col_idx;
1322 
1323 	desc.its_vmovp_cmd.vpe = vpe;
1324 
1325 	if (!its_list_map) {
1326 		its = list_first_entry(&its_nodes, struct its_node, entry);
1327 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1328 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1329 		return;
1330 	}
1331 
1332 	/*
1333 	 * Protect against concurrent updates of the mapping state on
1334 	 * individual VMs.
1335 	 */
1336 	guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
1337 
1338 	/*
1339 	 * Yet another marvel of the architecture. If using the
1340 	 * its_list "feature", we need to make sure that all ITSs
1341 	 * receive all VMOVP commands in the same order. The only way
1342 	 * to guarantee this is to make vmovp a serialization point.
1343 	 *
1344 	 * Wall <-- Head.
1345 	 */
1346 	guard(raw_spinlock)(&vmovp_lock);
1347 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1348 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1349 
1350 	/* Emit VMOVPs */
1351 	list_for_each_entry(its, &its_nodes, entry) {
1352 		if (!is_v4(its))
1353 			continue;
1354 
1355 		if (!require_its_list_vmovp(vpe->its_vm, its))
1356 			continue;
1357 
1358 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1359 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1360 	}
1361 }
1362 
1363 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1364 {
1365 	struct its_cmd_desc desc;
1366 
1367 	desc.its_vinvall_cmd.vpe = vpe;
1368 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1369 }
1370 
1371 static void its_send_vinv(struct its_device *dev, u32 event_id)
1372 {
1373 	struct its_cmd_desc desc;
1374 
1375 	/*
1376 	 * There is no real VINV command. This is just a normal INV,
1377 	 * with a VSYNC instead of a SYNC.
1378 	 */
1379 	desc.its_inv_cmd.dev = dev;
1380 	desc.its_inv_cmd.event_id = event_id;
1381 
1382 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1383 }
1384 
1385 static void its_send_vint(struct its_device *dev, u32 event_id)
1386 {
1387 	struct its_cmd_desc desc;
1388 
1389 	/*
1390 	 * There is no real VINT command. This is just a normal INT,
1391 	 * with a VSYNC instead of a SYNC.
1392 	 */
1393 	desc.its_int_cmd.dev = dev;
1394 	desc.its_int_cmd.event_id = event_id;
1395 
1396 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1397 }
1398 
1399 static void its_send_vclear(struct its_device *dev, u32 event_id)
1400 {
1401 	struct its_cmd_desc desc;
1402 
1403 	/*
1404 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1405 	 * with a VSYNC instead of a SYNC.
1406 	 */
1407 	desc.its_clear_cmd.dev = dev;
1408 	desc.its_clear_cmd.event_id = event_id;
1409 
1410 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1411 }
1412 
1413 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1414 {
1415 	struct its_cmd_desc desc;
1416 
1417 	desc.its_invdb_cmd.vpe = vpe;
1418 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1419 }
1420 
1421 /*
1422  * irqchip functions - assumes MSI, mostly.
1423  */
1424 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1425 {
1426 	struct its_vlpi_map *map = get_vlpi_map(d);
1427 	irq_hw_number_t hwirq;
1428 	void *va;
1429 	u8 *cfg;
1430 
1431 	if (map) {
1432 		va = page_address(map->vm->vprop_page);
1433 		hwirq = map->vintid;
1434 
1435 		/* Remember the updated property */
1436 		map->properties &= ~clr;
1437 		map->properties |= set | LPI_PROP_GROUP1;
1438 	} else {
1439 		va = gic_rdists->prop_table_va;
1440 		hwirq = d->hwirq;
1441 	}
1442 
1443 	cfg = va + hwirq - 8192;
1444 	*cfg &= ~clr;
1445 	*cfg |= set | LPI_PROP_GROUP1;
1446 
1447 	/*
1448 	 * Make the above write visible to the redistributors.
1449 	 * And yes, we're flushing exactly: One. Single. Byte.
1450 	 * Humpf...
1451 	 */
1452 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1453 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1454 	else
1455 		dsb(ishst);
1456 }
1457 
1458 static void wait_for_syncr(void __iomem *rdbase)
1459 {
1460 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1461 		cpu_relax();
1462 }
1463 
1464 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1465 {
1466 	void __iomem *rdbase;
1467 	unsigned long flags;
1468 	int cpu;
1469 
1470 	/* Target the redistributor this LPI is currently routed to */
1471 	cpu = irq_to_cpuid_lock(d, &flags);
1472 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1473 
1474 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1475 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1476 	wait_for_syncr(rdbase);
1477 
1478 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1479 	irq_to_cpuid_unlock(d, flags);
1480 }
1481 
1482 static void direct_lpi_inv(struct irq_data *d)
1483 {
1484 	struct its_vlpi_map *map = get_vlpi_map(d);
1485 	u64 val;
1486 
1487 	if (map) {
1488 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1489 
1490 		WARN_ON(!is_v4_1(its_dev->its));
1491 
1492 		val  = GICR_INVLPIR_V;
1493 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1494 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1495 	} else {
1496 		val = d->hwirq;
1497 	}
1498 
1499 	__direct_lpi_inv(d, val);
1500 }
1501 
1502 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1503 {
1504 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1505 
1506 	lpi_write_config(d, clr, set);
1507 	if (gic_rdists->has_direct_lpi &&
1508 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1509 		direct_lpi_inv(d);
1510 	else if (!irqd_is_forwarded_to_vcpu(d))
1511 		its_send_inv(its_dev, its_get_event_id(d));
1512 	else
1513 		its_send_vinv(its_dev, its_get_event_id(d));
1514 }
1515 
1516 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1517 {
1518 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1519 	u32 event = its_get_event_id(d);
1520 	struct its_vlpi_map *map;
1521 
1522 	/*
1523 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1524 	 * here.
1525 	 */
1526 	if (is_v4_1(its_dev->its))
1527 		return;
1528 
1529 	map = dev_event_to_vlpi_map(its_dev, event);
1530 
1531 	if (map->db_enabled == enable)
1532 		return;
1533 
1534 	map->db_enabled = enable;
1535 
1536 	/*
1537 	 * More fun with the architecture:
1538 	 *
1539 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1540 	 * value or to 1023, depending on the enable bit. But that
1541 	 * would be issuing a mapping for an /existing/ DevID+EventID
1542 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1543 	 * to the /same/ vPE, using this opportunity to adjust the
1544 	 * doorbell. Mouahahahaha. We loves it, Precious.
1545 	 */
1546 	its_send_vmovi(its_dev, event);
1547 }
1548 
1549 static void its_mask_irq(struct irq_data *d)
1550 {
1551 	if (irqd_is_forwarded_to_vcpu(d))
1552 		its_vlpi_set_doorbell(d, false);
1553 
1554 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1555 }
1556 
1557 static void its_unmask_irq(struct irq_data *d)
1558 {
1559 	if (irqd_is_forwarded_to_vcpu(d))
1560 		its_vlpi_set_doorbell(d, true);
1561 
1562 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1563 }
1564 
1565 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1566 {
1567 	if (irqd_affinity_is_managed(d))
1568 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1569 
1570 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1571 }
1572 
1573 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1574 {
1575 	if (irqd_affinity_is_managed(d))
1576 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1577 	else
1578 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1579 }
1580 
1581 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1582 {
1583 	if (irqd_affinity_is_managed(d))
1584 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1585 	else
1586 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1587 }
1588 
1589 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1590 					      const struct cpumask *cpu_mask)
1591 {
1592 	unsigned int cpu = nr_cpu_ids, tmp;
1593 	int count = S32_MAX;
1594 
1595 	for_each_cpu(tmp, cpu_mask) {
1596 		int this_count = its_read_lpi_count(d, tmp);
1597 		if (this_count < count) {
1598 			cpu = tmp;
1599 		        count = this_count;
1600 		}
1601 	}
1602 
1603 	return cpu;
1604 }
1605 
1606 /*
1607  * As suggested by Thomas Gleixner in:
1608  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1609  */
1610 static int its_select_cpu(struct irq_data *d,
1611 			  const struct cpumask *aff_mask)
1612 {
1613 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1614 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1615 	static struct cpumask __tmpmask;
1616 	struct cpumask *tmpmask;
1617 	unsigned long flags;
1618 	int cpu, node;
1619 	node = its_dev->its->numa_node;
1620 	tmpmask = &__tmpmask;
1621 
1622 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1623 
1624 	if (!irqd_affinity_is_managed(d)) {
1625 		/* First try the NUMA node */
1626 		if (node != NUMA_NO_NODE) {
1627 			/*
1628 			 * Try the intersection of the affinity mask and the
1629 			 * node mask (and the online mask, just to be safe).
1630 			 */
1631 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1632 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1633 
1634 			/*
1635 			 * Ideally, we would check if the mask is empty, and
1636 			 * try again on the full node here.
1637 			 *
1638 			 * But it turns out that the way ACPI describes the
1639 			 * affinity for ITSs only deals about memory, and
1640 			 * not target CPUs, so it cannot describe a single
1641 			 * ITS placed next to two NUMA nodes.
1642 			 *
1643 			 * Instead, just fallback on the online mask. This
1644 			 * diverges from Thomas' suggestion above.
1645 			 */
1646 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1647 			if (cpu < nr_cpu_ids)
1648 				goto out;
1649 
1650 			/* If we can't cross sockets, give up */
1651 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1652 				goto out;
1653 
1654 			/* If the above failed, expand the search */
1655 		}
1656 
1657 		/* Try the intersection of the affinity and online masks */
1658 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1659 
1660 		/* If that doesn't fly, the online mask is the last resort */
1661 		if (cpumask_empty(tmpmask))
1662 			cpumask_copy(tmpmask, cpu_online_mask);
1663 
1664 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1665 	} else {
1666 		cpumask_copy(tmpmask, aff_mask);
1667 
1668 		/* If we cannot cross sockets, limit the search to that node */
1669 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1670 		    node != NUMA_NO_NODE)
1671 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1672 
1673 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1674 	}
1675 out:
1676 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1677 
1678 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1679 	return cpu;
1680 }
1681 
1682 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1683 			    bool force)
1684 {
1685 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1686 	struct its_collection *target_col;
1687 	u32 id = its_get_event_id(d);
1688 	int cpu, prev_cpu;
1689 
1690 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1691 	if (irqd_is_forwarded_to_vcpu(d))
1692 		return -EINVAL;
1693 
1694 	prev_cpu = its_dev->event_map.col_map[id];
1695 	its_dec_lpi_count(d, prev_cpu);
1696 
1697 	if (!force)
1698 		cpu = its_select_cpu(d, mask_val);
1699 	else
1700 		cpu = cpumask_pick_least_loaded(d, mask_val);
1701 
1702 	if (cpu < 0 || cpu >= nr_cpu_ids)
1703 		goto err;
1704 
1705 	/* don't set the affinity when the target cpu is same as current one */
1706 	if (cpu != prev_cpu) {
1707 		target_col = &its_dev->its->collections[cpu];
1708 		its_send_movi(its_dev, target_col, id);
1709 		its_dev->event_map.col_map[id] = cpu;
1710 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1711 	}
1712 
1713 	its_inc_lpi_count(d, cpu);
1714 
1715 	return IRQ_SET_MASK_OK_DONE;
1716 
1717 err:
1718 	its_inc_lpi_count(d, prev_cpu);
1719 	return -EINVAL;
1720 }
1721 
1722 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1723 {
1724 	struct its_node *its = its_dev->its;
1725 
1726 	return its->phys_base + GITS_TRANSLATER;
1727 }
1728 
1729 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1730 {
1731 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1732 	struct its_node *its;
1733 	u64 addr;
1734 
1735 	its = its_dev->its;
1736 	addr = its->get_msi_base(its_dev);
1737 
1738 	msg->address_lo		= lower_32_bits(addr);
1739 	msg->address_hi		= upper_32_bits(addr);
1740 	msg->data		= its_get_event_id(d);
1741 
1742 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1743 }
1744 
1745 static int its_irq_set_irqchip_state(struct irq_data *d,
1746 				     enum irqchip_irq_state which,
1747 				     bool state)
1748 {
1749 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1750 	u32 event = its_get_event_id(d);
1751 
1752 	if (which != IRQCHIP_STATE_PENDING)
1753 		return -EINVAL;
1754 
1755 	if (irqd_is_forwarded_to_vcpu(d)) {
1756 		if (state)
1757 			its_send_vint(its_dev, event);
1758 		else
1759 			its_send_vclear(its_dev, event);
1760 	} else {
1761 		if (state)
1762 			its_send_int(its_dev, event);
1763 		else
1764 			its_send_clear(its_dev, event);
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static int its_irq_retrigger(struct irq_data *d)
1771 {
1772 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1773 }
1774 
1775 /*
1776  * Two favourable cases:
1777  *
1778  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1779  *     for vSGI delivery
1780  *
1781  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1782  *     and we're better off mapping all VPEs always
1783  *
1784  * If neither (a) nor (b) is true, then we map vPEs on demand.
1785  *
1786  */
1787 static bool gic_requires_eager_mapping(void)
1788 {
1789 	if (!its_list_map || gic_rdists->has_rvpeid)
1790 		return true;
1791 
1792 	return false;
1793 }
1794 
1795 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1796 {
1797 	if (gic_requires_eager_mapping())
1798 		return;
1799 
1800 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1801 
1802 	/*
1803 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1804 	 * them mapped now.
1805 	 */
1806 	vm->vlpi_count[its->list_nr]++;
1807 
1808 	if (vm->vlpi_count[its->list_nr] == 1) {
1809 		int i;
1810 
1811 		for (i = 0; i < vm->nr_vpes; i++) {
1812 			struct its_vpe *vpe = vm->vpes[i];
1813 
1814 			scoped_guard(raw_spinlock, &vpe->vpe_lock)
1815 				its_send_vmapp(its, vpe, true);
1816 
1817 			its_send_vinvall(its, vpe);
1818 		}
1819 	}
1820 }
1821 
1822 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1823 {
1824 	/* Not using the ITS list? Everything is always mapped. */
1825 	if (gic_requires_eager_mapping())
1826 		return;
1827 
1828 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1829 
1830 	if (!--vm->vlpi_count[its->list_nr]) {
1831 		int i;
1832 
1833 		for (i = 0; i < vm->nr_vpes; i++) {
1834 			guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1835 			its_send_vmapp(its, vm->vpes[i], false);
1836 		}
1837 	}
1838 }
1839 
1840 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1841 {
1842 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1843 	u32 event = its_get_event_id(d);
1844 
1845 	if (!info->map)
1846 		return -EINVAL;
1847 
1848 	if (!its_dev->event_map.vm) {
1849 		struct its_vlpi_map *maps;
1850 
1851 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1852 			       GFP_ATOMIC);
1853 		if (!maps)
1854 			return -ENOMEM;
1855 
1856 		its_dev->event_map.vm = info->map->vm;
1857 		its_dev->event_map.vlpi_maps = maps;
1858 	} else if (its_dev->event_map.vm != info->map->vm) {
1859 		return -EINVAL;
1860 	}
1861 
1862 	/* Get our private copy of the mapping information */
1863 	its_dev->event_map.vlpi_maps[event] = *info->map;
1864 
1865 	if (irqd_is_forwarded_to_vcpu(d)) {
1866 		/* Already mapped, move it around */
1867 		its_send_vmovi(its_dev, event);
1868 	} else {
1869 		/* Ensure all the VPEs are mapped on this ITS */
1870 		its_map_vm(its_dev->its, info->map->vm);
1871 
1872 		/*
1873 		 * Flag the interrupt as forwarded so that we can
1874 		 * start poking the virtual property table.
1875 		 */
1876 		irqd_set_forwarded_to_vcpu(d);
1877 
1878 		/* Write out the property to the prop table */
1879 		lpi_write_config(d, 0xff, info->map->properties);
1880 
1881 		/* Drop the physical mapping */
1882 		its_send_discard(its_dev, event);
1883 
1884 		/* and install the virtual one */
1885 		its_send_vmapti(its_dev, event);
1886 
1887 		/* Increment the number of VLPIs */
1888 		its_dev->event_map.nr_vlpis++;
1889 	}
1890 
1891 	return 0;
1892 }
1893 
1894 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1895 {
1896 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1897 	struct its_vlpi_map *map;
1898 
1899 	map = get_vlpi_map(d);
1900 
1901 	if (!its_dev->event_map.vm || !map)
1902 		return -EINVAL;
1903 
1904 	/* Copy our mapping information to the incoming request */
1905 	*info->map = *map;
1906 
1907 	return 0;
1908 }
1909 
1910 static int its_vlpi_unmap(struct irq_data *d)
1911 {
1912 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1913 	u32 event = its_get_event_id(d);
1914 
1915 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1916 		return -EINVAL;
1917 
1918 	/* Drop the virtual mapping */
1919 	its_send_discard(its_dev, event);
1920 
1921 	/* and restore the physical one */
1922 	irqd_clr_forwarded_to_vcpu(d);
1923 	its_send_mapti(its_dev, d->hwirq, event);
1924 	lpi_update_config(d, 0xff, (lpi_prop_prio |
1925 				    LPI_PROP_ENABLED |
1926 				    LPI_PROP_GROUP1));
1927 
1928 	/* Potentially unmap the VM from this ITS */
1929 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1930 
1931 	/*
1932 	 * Drop the refcount and make the device available again if
1933 	 * this was the last VLPI.
1934 	 */
1935 	if (!--its_dev->event_map.nr_vlpis) {
1936 		its_dev->event_map.vm = NULL;
1937 		kfree(its_dev->event_map.vlpi_maps);
1938 	}
1939 
1940 	return 0;
1941 }
1942 
1943 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1944 {
1945 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1946 
1947 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1948 		return -EINVAL;
1949 
1950 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1951 		lpi_update_config(d, 0xff, info->config);
1952 	else
1953 		lpi_write_config(d, 0xff, info->config);
1954 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1955 
1956 	return 0;
1957 }
1958 
1959 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1960 {
1961 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1962 	struct its_cmd_info *info = vcpu_info;
1963 
1964 	/* Need a v4 ITS */
1965 	if (!is_v4(its_dev->its))
1966 		return -EINVAL;
1967 
1968 	guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock);
1969 
1970 	/* Unmap request? */
1971 	if (!info)
1972 		return its_vlpi_unmap(d);
1973 
1974 	switch (info->cmd_type) {
1975 	case MAP_VLPI:
1976 		return its_vlpi_map(d, info);
1977 
1978 	case GET_VLPI:
1979 		return its_vlpi_get(d, info);
1980 
1981 	case PROP_UPDATE_VLPI:
1982 	case PROP_UPDATE_AND_INV_VLPI:
1983 		return its_vlpi_prop_update(d, info);
1984 
1985 	default:
1986 		return -EINVAL;
1987 	}
1988 }
1989 
1990 static struct irq_chip its_irq_chip = {
1991 	.name			= "ITS",
1992 	.irq_mask		= its_mask_irq,
1993 	.irq_unmask		= its_unmask_irq,
1994 	.irq_eoi		= irq_chip_eoi_parent,
1995 	.irq_set_affinity	= its_set_affinity,
1996 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1997 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1998 	.irq_retrigger		= its_irq_retrigger,
1999 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2000 };
2001 
2002 
2003 /*
2004  * How we allocate LPIs:
2005  *
2006  * lpi_range_list contains ranges of LPIs that are to available to
2007  * allocate from. To allocate LPIs, just pick the first range that
2008  * fits the required allocation, and reduce it by the required
2009  * amount. Once empty, remove the range from the list.
2010  *
2011  * To free a range of LPIs, add a free range to the list, sort it and
2012  * merge the result if the new range happens to be adjacent to an
2013  * already free block.
2014  *
2015  * The consequence of the above is that allocation is cost is low, but
2016  * freeing is expensive. We assumes that freeing rarely occurs.
2017  */
2018 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2019 
2020 static DEFINE_MUTEX(lpi_range_lock);
2021 static LIST_HEAD(lpi_range_list);
2022 
2023 struct lpi_range {
2024 	struct list_head	entry;
2025 	u32			base_id;
2026 	u32			span;
2027 };
2028 
2029 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2030 {
2031 	struct lpi_range *range;
2032 
2033 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2034 	if (range) {
2035 		range->base_id = base;
2036 		range->span = span;
2037 	}
2038 
2039 	return range;
2040 }
2041 
2042 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2043 {
2044 	struct lpi_range *range, *tmp;
2045 	int err = -ENOSPC;
2046 
2047 	mutex_lock(&lpi_range_lock);
2048 
2049 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2050 		if (range->span >= nr_lpis) {
2051 			*base = range->base_id;
2052 			range->base_id += nr_lpis;
2053 			range->span -= nr_lpis;
2054 
2055 			if (range->span == 0) {
2056 				list_del(&range->entry);
2057 				kfree(range);
2058 			}
2059 
2060 			err = 0;
2061 			break;
2062 		}
2063 	}
2064 
2065 	mutex_unlock(&lpi_range_lock);
2066 
2067 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2068 	return err;
2069 }
2070 
2071 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2072 {
2073 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2074 		return;
2075 	if (a->base_id + a->span != b->base_id)
2076 		return;
2077 	b->base_id = a->base_id;
2078 	b->span += a->span;
2079 	list_del(&a->entry);
2080 	kfree(a);
2081 }
2082 
2083 static int free_lpi_range(u32 base, u32 nr_lpis)
2084 {
2085 	struct lpi_range *new, *old;
2086 
2087 	new = mk_lpi_range(base, nr_lpis);
2088 	if (!new)
2089 		return -ENOMEM;
2090 
2091 	mutex_lock(&lpi_range_lock);
2092 
2093 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2094 		if (old->base_id < base)
2095 			break;
2096 	}
2097 	/*
2098 	 * old is the last element with ->base_id smaller than base,
2099 	 * so new goes right after it. If there are no elements with
2100 	 * ->base_id smaller than base, &old->entry ends up pointing
2101 	 * at the head of the list, and inserting new it the start of
2102 	 * the list is the right thing to do in that case as well.
2103 	 */
2104 	list_add(&new->entry, &old->entry);
2105 	/*
2106 	 * Now check if we can merge with the preceding and/or
2107 	 * following ranges.
2108 	 */
2109 	merge_lpi_ranges(old, new);
2110 	merge_lpi_ranges(new, list_next_entry(new, entry));
2111 
2112 	mutex_unlock(&lpi_range_lock);
2113 	return 0;
2114 }
2115 
2116 static int __init its_lpi_init(u32 id_bits)
2117 {
2118 	u32 lpis = (1UL << id_bits) - 8192;
2119 	u32 numlpis;
2120 	int err;
2121 
2122 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2123 
2124 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2125 		lpis = numlpis;
2126 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2127 			lpis);
2128 	}
2129 
2130 	/*
2131 	 * Initializing the allocator is just the same as freeing the
2132 	 * full range of LPIs.
2133 	 */
2134 	err = free_lpi_range(8192, lpis);
2135 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2136 	return err;
2137 }
2138 
2139 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2140 {
2141 	unsigned long *bitmap = NULL;
2142 	int err = 0;
2143 
2144 	do {
2145 		err = alloc_lpi_range(nr_irqs, base);
2146 		if (!err)
2147 			break;
2148 
2149 		nr_irqs /= 2;
2150 	} while (nr_irqs > 0);
2151 
2152 	if (!nr_irqs)
2153 		err = -ENOSPC;
2154 
2155 	if (err)
2156 		goto out;
2157 
2158 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2159 	if (!bitmap)
2160 		goto out;
2161 
2162 	*nr_ids = nr_irqs;
2163 
2164 out:
2165 	if (!bitmap)
2166 		*base = *nr_ids = 0;
2167 
2168 	return bitmap;
2169 }
2170 
2171 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2172 {
2173 	WARN_ON(free_lpi_range(base, nr_ids));
2174 	bitmap_free(bitmap);
2175 }
2176 
2177 static void gic_reset_prop_table(void *va)
2178 {
2179 	/* Regular IRQ priority, Group-1, disabled */
2180 	memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2181 
2182 	/* Make sure the GIC will observe the written configuration */
2183 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2184 }
2185 
2186 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2187 {
2188 	struct page *prop_page;
2189 
2190 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2191 	if (!prop_page)
2192 		return NULL;
2193 
2194 	gic_reset_prop_table(page_address(prop_page));
2195 
2196 	return prop_page;
2197 }
2198 
2199 static void its_free_prop_table(struct page *prop_page)
2200 {
2201 	free_pages((unsigned long)page_address(prop_page),
2202 		   get_order(LPI_PROPBASE_SZ));
2203 }
2204 
2205 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2206 {
2207 	phys_addr_t start, end, addr_end;
2208 	u64 i;
2209 
2210 	/*
2211 	 * We don't bother checking for a kdump kernel as by
2212 	 * construction, the LPI tables are out of this kernel's
2213 	 * memory map.
2214 	 */
2215 	if (is_kdump_kernel())
2216 		return true;
2217 
2218 	addr_end = addr + size - 1;
2219 
2220 	for_each_reserved_mem_range(i, &start, &end) {
2221 		if (addr >= start && addr_end <= end)
2222 			return true;
2223 	}
2224 
2225 	/* Not found, not a good sign... */
2226 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2227 		&addr, &addr_end);
2228 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2229 	return false;
2230 }
2231 
2232 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2233 {
2234 	if (efi_enabled(EFI_CONFIG_TABLES))
2235 		return efi_mem_reserve_persistent(addr, size);
2236 
2237 	return 0;
2238 }
2239 
2240 static int __init its_setup_lpi_prop_table(void)
2241 {
2242 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2243 		u64 val;
2244 
2245 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2246 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2247 
2248 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2249 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2250 						     LPI_PROPBASE_SZ,
2251 						     MEMREMAP_WB);
2252 		gic_reset_prop_table(gic_rdists->prop_table_va);
2253 	} else {
2254 		struct page *page;
2255 
2256 		lpi_id_bits = min_t(u32,
2257 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2258 				    ITS_MAX_LPI_NRBITS);
2259 		page = its_allocate_prop_table(GFP_NOWAIT);
2260 		if (!page) {
2261 			pr_err("Failed to allocate PROPBASE\n");
2262 			return -ENOMEM;
2263 		}
2264 
2265 		gic_rdists->prop_table_pa = page_to_phys(page);
2266 		gic_rdists->prop_table_va = page_address(page);
2267 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2268 					  LPI_PROPBASE_SZ));
2269 	}
2270 
2271 	pr_info("GICv3: using LPI property table @%pa\n",
2272 		&gic_rdists->prop_table_pa);
2273 
2274 	return its_lpi_init(lpi_id_bits);
2275 }
2276 
2277 static const char *its_base_type_string[] = {
2278 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2279 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2280 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2281 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2282 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2283 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2284 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2285 };
2286 
2287 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2288 {
2289 	u32 idx = baser - its->tables;
2290 
2291 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2292 }
2293 
2294 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2295 			    u64 val)
2296 {
2297 	u32 idx = baser - its->tables;
2298 
2299 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2300 	baser->val = its_read_baser(its, baser);
2301 }
2302 
2303 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2304 			   u64 cache, u64 shr, u32 order, bool indirect)
2305 {
2306 	u64 val = its_read_baser(its, baser);
2307 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2308 	u64 type = GITS_BASER_TYPE(val);
2309 	u64 baser_phys, tmp;
2310 	u32 alloc_pages, psz;
2311 	struct page *page;
2312 	void *base;
2313 
2314 	psz = baser->psz;
2315 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2316 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2317 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2318 			&its->phys_base, its_base_type_string[type],
2319 			alloc_pages, GITS_BASER_PAGES_MAX);
2320 		alloc_pages = GITS_BASER_PAGES_MAX;
2321 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2322 	}
2323 
2324 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2325 	if (!page)
2326 		return -ENOMEM;
2327 
2328 	base = (void *)page_address(page);
2329 	baser_phys = virt_to_phys(base);
2330 
2331 	/* Check if the physical address of the memory is above 48bits */
2332 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2333 
2334 		/* 52bit PA is supported only when PageSize=64K */
2335 		if (psz != SZ_64K) {
2336 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2337 			free_pages((unsigned long)base, order);
2338 			return -ENXIO;
2339 		}
2340 
2341 		/* Convert 52bit PA to 48bit field */
2342 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2343 	}
2344 
2345 retry_baser:
2346 	val = (baser_phys					 |
2347 		(type << GITS_BASER_TYPE_SHIFT)			 |
2348 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2349 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2350 		cache						 |
2351 		shr						 |
2352 		GITS_BASER_VALID);
2353 
2354 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2355 
2356 	switch (psz) {
2357 	case SZ_4K:
2358 		val |= GITS_BASER_PAGE_SIZE_4K;
2359 		break;
2360 	case SZ_16K:
2361 		val |= GITS_BASER_PAGE_SIZE_16K;
2362 		break;
2363 	case SZ_64K:
2364 		val |= GITS_BASER_PAGE_SIZE_64K;
2365 		break;
2366 	}
2367 
2368 	if (!shr)
2369 		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2370 
2371 	its_write_baser(its, baser, val);
2372 	tmp = baser->val;
2373 
2374 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2375 		/*
2376 		 * Shareability didn't stick. Just use
2377 		 * whatever the read reported, which is likely
2378 		 * to be the only thing this redistributor
2379 		 * supports. If that's zero, make it
2380 		 * non-cacheable as well.
2381 		 */
2382 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2383 		if (!shr)
2384 			cache = GITS_BASER_nC;
2385 
2386 		goto retry_baser;
2387 	}
2388 
2389 	if (val != tmp) {
2390 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2391 		       &its->phys_base, its_base_type_string[type],
2392 		       val, tmp);
2393 		free_pages((unsigned long)base, order);
2394 		return -ENXIO;
2395 	}
2396 
2397 	baser->order = order;
2398 	baser->base = base;
2399 	baser->psz = psz;
2400 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2401 
2402 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2403 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2404 		its_base_type_string[type],
2405 		(unsigned long)virt_to_phys(base),
2406 		indirect ? "indirect" : "flat", (int)esz,
2407 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2408 
2409 	return 0;
2410 }
2411 
2412 static bool its_parse_indirect_baser(struct its_node *its,
2413 				     struct its_baser *baser,
2414 				     u32 *order, u32 ids)
2415 {
2416 	u64 tmp = its_read_baser(its, baser);
2417 	u64 type = GITS_BASER_TYPE(tmp);
2418 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2419 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2420 	u32 new_order = *order;
2421 	u32 psz = baser->psz;
2422 	bool indirect = false;
2423 
2424 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2425 	if ((esz << ids) > (psz * 2)) {
2426 		/*
2427 		 * Find out whether hw supports a single or two-level table by
2428 		 * table by reading bit at offset '62' after writing '1' to it.
2429 		 */
2430 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2431 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2432 
2433 		if (indirect) {
2434 			/*
2435 			 * The size of the lvl2 table is equal to ITS page size
2436 			 * which is 'psz'. For computing lvl1 table size,
2437 			 * subtract ID bits that sparse lvl2 table from 'ids'
2438 			 * which is reported by ITS hardware times lvl1 table
2439 			 * entry size.
2440 			 */
2441 			ids -= ilog2(psz / (int)esz);
2442 			esz = GITS_LVL1_ENTRY_SIZE;
2443 		}
2444 	}
2445 
2446 	/*
2447 	 * Allocate as many entries as required to fit the
2448 	 * range of device IDs that the ITS can grok... The ID
2449 	 * space being incredibly sparse, this results in a
2450 	 * massive waste of memory if two-level device table
2451 	 * feature is not supported by hardware.
2452 	 */
2453 	new_order = max_t(u32, get_order(esz << ids), new_order);
2454 	if (new_order > MAX_PAGE_ORDER) {
2455 		new_order = MAX_PAGE_ORDER;
2456 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2457 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2458 			&its->phys_base, its_base_type_string[type],
2459 			device_ids(its), ids);
2460 	}
2461 
2462 	*order = new_order;
2463 
2464 	return indirect;
2465 }
2466 
2467 static u32 compute_common_aff(u64 val)
2468 {
2469 	u32 aff, clpiaff;
2470 
2471 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2472 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2473 
2474 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2475 }
2476 
2477 static u32 compute_its_aff(struct its_node *its)
2478 {
2479 	u64 val;
2480 	u32 svpet;
2481 
2482 	/*
2483 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2484 	 * the resulting affinity. We then use that to see if this match
2485 	 * our own affinity.
2486 	 */
2487 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2488 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2489 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2490 	return compute_common_aff(val);
2491 }
2492 
2493 static struct its_node *find_sibling_its(struct its_node *cur_its)
2494 {
2495 	struct its_node *its;
2496 	u32 aff;
2497 
2498 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2499 		return NULL;
2500 
2501 	aff = compute_its_aff(cur_its);
2502 
2503 	list_for_each_entry(its, &its_nodes, entry) {
2504 		u64 baser;
2505 
2506 		if (!is_v4_1(its) || its == cur_its)
2507 			continue;
2508 
2509 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2510 			continue;
2511 
2512 		if (aff != compute_its_aff(its))
2513 			continue;
2514 
2515 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2516 		baser = its->tables[2].val;
2517 		if (!(baser & GITS_BASER_VALID))
2518 			continue;
2519 
2520 		return its;
2521 	}
2522 
2523 	return NULL;
2524 }
2525 
2526 static void its_free_tables(struct its_node *its)
2527 {
2528 	int i;
2529 
2530 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2531 		if (its->tables[i].base) {
2532 			free_pages((unsigned long)its->tables[i].base,
2533 				   its->tables[i].order);
2534 			its->tables[i].base = NULL;
2535 		}
2536 	}
2537 }
2538 
2539 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2540 {
2541 	u64 psz = SZ_64K;
2542 
2543 	while (psz) {
2544 		u64 val, gpsz;
2545 
2546 		val = its_read_baser(its, baser);
2547 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2548 
2549 		switch (psz) {
2550 		case SZ_64K:
2551 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2552 			break;
2553 		case SZ_16K:
2554 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2555 			break;
2556 		case SZ_4K:
2557 		default:
2558 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2559 			break;
2560 		}
2561 
2562 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2563 
2564 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2565 		its_write_baser(its, baser, val);
2566 
2567 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2568 			break;
2569 
2570 		switch (psz) {
2571 		case SZ_64K:
2572 			psz = SZ_16K;
2573 			break;
2574 		case SZ_16K:
2575 			psz = SZ_4K;
2576 			break;
2577 		case SZ_4K:
2578 		default:
2579 			return -1;
2580 		}
2581 	}
2582 
2583 	baser->psz = psz;
2584 	return 0;
2585 }
2586 
2587 static int its_alloc_tables(struct its_node *its)
2588 {
2589 	u64 shr = GITS_BASER_InnerShareable;
2590 	u64 cache = GITS_BASER_RaWaWb;
2591 	int err, i;
2592 
2593 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2594 		/* erratum 24313: ignore memory access type */
2595 		cache = GITS_BASER_nCnB;
2596 
2597 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2598 		cache = GITS_BASER_nC;
2599 		shr = 0;
2600 	}
2601 
2602 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2603 		struct its_baser *baser = its->tables + i;
2604 		u64 val = its_read_baser(its, baser);
2605 		u64 type = GITS_BASER_TYPE(val);
2606 		bool indirect = false;
2607 		u32 order;
2608 
2609 		if (type == GITS_BASER_TYPE_NONE)
2610 			continue;
2611 
2612 		if (its_probe_baser_psz(its, baser)) {
2613 			its_free_tables(its);
2614 			return -ENXIO;
2615 		}
2616 
2617 		order = get_order(baser->psz);
2618 
2619 		switch (type) {
2620 		case GITS_BASER_TYPE_DEVICE:
2621 			indirect = its_parse_indirect_baser(its, baser, &order,
2622 							    device_ids(its));
2623 			break;
2624 
2625 		case GITS_BASER_TYPE_VCPU:
2626 			if (is_v4_1(its)) {
2627 				struct its_node *sibling;
2628 
2629 				WARN_ON(i != 2);
2630 				if ((sibling = find_sibling_its(its))) {
2631 					*baser = sibling->tables[2];
2632 					its_write_baser(its, baser, baser->val);
2633 					continue;
2634 				}
2635 			}
2636 
2637 			indirect = its_parse_indirect_baser(its, baser, &order,
2638 							    ITS_MAX_VPEID_BITS);
2639 			break;
2640 		}
2641 
2642 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2643 		if (err < 0) {
2644 			its_free_tables(its);
2645 			return err;
2646 		}
2647 
2648 		/* Update settings which will be used for next BASERn */
2649 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2650 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2651 	}
2652 
2653 	return 0;
2654 }
2655 
2656 static u64 inherit_vpe_l1_table_from_its(void)
2657 {
2658 	struct its_node *its;
2659 	u64 val;
2660 	u32 aff;
2661 
2662 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2663 	aff = compute_common_aff(val);
2664 
2665 	list_for_each_entry(its, &its_nodes, entry) {
2666 		u64 baser, addr;
2667 
2668 		if (!is_v4_1(its))
2669 			continue;
2670 
2671 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2672 			continue;
2673 
2674 		if (aff != compute_its_aff(its))
2675 			continue;
2676 
2677 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2678 		baser = its->tables[2].val;
2679 		if (!(baser & GITS_BASER_VALID))
2680 			continue;
2681 
2682 		/* We have a winner! */
2683 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2684 
2685 		val  = GICR_VPROPBASER_4_1_VALID;
2686 		if (baser & GITS_BASER_INDIRECT)
2687 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2688 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2689 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2690 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2691 		case GIC_PAGE_SIZE_64K:
2692 			addr = GITS_BASER_ADDR_48_to_52(baser);
2693 			break;
2694 		default:
2695 			addr = baser & GENMASK_ULL(47, 12);
2696 			break;
2697 		}
2698 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2699 		if (rdists_support_shareable()) {
2700 			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2701 					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2702 			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2703 					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2704 		}
2705 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2706 
2707 		return val;
2708 	}
2709 
2710 	return 0;
2711 }
2712 
2713 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2714 {
2715 	u32 aff;
2716 	u64 val;
2717 	int cpu;
2718 
2719 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2720 	aff = compute_common_aff(val);
2721 
2722 	for_each_possible_cpu(cpu) {
2723 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2724 
2725 		if (!base || cpu == smp_processor_id())
2726 			continue;
2727 
2728 		val = gic_read_typer(base + GICR_TYPER);
2729 		if (aff != compute_common_aff(val))
2730 			continue;
2731 
2732 		/*
2733 		 * At this point, we have a victim. This particular CPU
2734 		 * has already booted, and has an affinity that matches
2735 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2736 		 * Make sure we don't write the Z bit in that case.
2737 		 */
2738 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2739 		val &= ~GICR_VPROPBASER_4_1_Z;
2740 
2741 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2742 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2743 
2744 		return val;
2745 	}
2746 
2747 	return 0;
2748 }
2749 
2750 static bool allocate_vpe_l2_table(int cpu, u32 id)
2751 {
2752 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2753 	unsigned int psz, esz, idx, npg, gpsz;
2754 	u64 val;
2755 	struct page *page;
2756 	__le64 *table;
2757 
2758 	if (!gic_rdists->has_rvpeid)
2759 		return true;
2760 
2761 	/* Skip non-present CPUs */
2762 	if (!base)
2763 		return true;
2764 
2765 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2766 
2767 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2768 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2769 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2770 
2771 	switch (gpsz) {
2772 	default:
2773 		WARN_ON(1);
2774 		fallthrough;
2775 	case GIC_PAGE_SIZE_4K:
2776 		psz = SZ_4K;
2777 		break;
2778 	case GIC_PAGE_SIZE_16K:
2779 		psz = SZ_16K;
2780 		break;
2781 	case GIC_PAGE_SIZE_64K:
2782 		psz = SZ_64K;
2783 		break;
2784 	}
2785 
2786 	/* Don't allow vpe_id that exceeds single, flat table limit */
2787 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2788 		return (id < (npg * psz / (esz * SZ_8)));
2789 
2790 	/* Compute 1st level table index & check if that exceeds table limit */
2791 	idx = id >> ilog2(psz / (esz * SZ_8));
2792 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2793 		return false;
2794 
2795 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2796 
2797 	/* Allocate memory for 2nd level table */
2798 	if (!table[idx]) {
2799 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2800 		if (!page)
2801 			return false;
2802 
2803 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2804 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2805 			gic_flush_dcache_to_poc(page_address(page), psz);
2806 
2807 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2808 
2809 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2810 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2811 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2812 
2813 		/* Ensure updated table contents are visible to RD hardware */
2814 		dsb(sy);
2815 	}
2816 
2817 	return true;
2818 }
2819 
2820 static int allocate_vpe_l1_table(void)
2821 {
2822 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2823 	u64 val, gpsz, npg, pa;
2824 	unsigned int psz = SZ_64K;
2825 	unsigned int np, epp, esz;
2826 	struct page *page;
2827 
2828 	if (!gic_rdists->has_rvpeid)
2829 		return 0;
2830 
2831 	/*
2832 	 * if VPENDBASER.Valid is set, disable any previously programmed
2833 	 * VPE by setting PendingLast while clearing Valid. This has the
2834 	 * effect of making sure no doorbell will be generated and we can
2835 	 * then safely clear VPROPBASER.Valid.
2836 	 */
2837 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2838 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2839 				      vlpi_base + GICR_VPENDBASER);
2840 
2841 	/*
2842 	 * If we can inherit the configuration from another RD, let's do
2843 	 * so. Otherwise, we have to go through the allocation process. We
2844 	 * assume that all RDs have the exact same requirements, as
2845 	 * nothing will work otherwise.
2846 	 */
2847 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2848 	if (val & GICR_VPROPBASER_4_1_VALID)
2849 		goto out;
2850 
2851 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2852 	if (!gic_data_rdist()->vpe_table_mask)
2853 		return -ENOMEM;
2854 
2855 	val = inherit_vpe_l1_table_from_its();
2856 	if (val & GICR_VPROPBASER_4_1_VALID)
2857 		goto out;
2858 
2859 	/* First probe the page size */
2860 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2861 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2862 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2863 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2864 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2865 
2866 	switch (gpsz) {
2867 	default:
2868 		gpsz = GIC_PAGE_SIZE_4K;
2869 		fallthrough;
2870 	case GIC_PAGE_SIZE_4K:
2871 		psz = SZ_4K;
2872 		break;
2873 	case GIC_PAGE_SIZE_16K:
2874 		psz = SZ_16K;
2875 		break;
2876 	case GIC_PAGE_SIZE_64K:
2877 		psz = SZ_64K;
2878 		break;
2879 	}
2880 
2881 	/*
2882 	 * Start populating the register from scratch, including RO fields
2883 	 * (which we want to print in debug cases...)
2884 	 */
2885 	val = 0;
2886 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2887 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2888 
2889 	/* How many entries per GIC page? */
2890 	esz++;
2891 	epp = psz / (esz * SZ_8);
2892 
2893 	/*
2894 	 * If we need more than just a single L1 page, flag the table
2895 	 * as indirect and compute the number of required L1 pages.
2896 	 */
2897 	if (epp < ITS_MAX_VPEID) {
2898 		int nl2;
2899 
2900 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2901 
2902 		/* Number of L2 pages required to cover the VPEID space */
2903 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2904 
2905 		/* Number of L1 pages to point to the L2 pages */
2906 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2907 	} else {
2908 		npg = 1;
2909 	}
2910 
2911 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2912 
2913 	/* Right, that's the number of CPU pages we need for L1 */
2914 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2915 
2916 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2917 		 np, npg, psz, epp, esz);
2918 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2919 	if (!page)
2920 		return -ENOMEM;
2921 
2922 	gic_data_rdist()->vpe_l1_base = page_address(page);
2923 	pa = virt_to_phys(page_address(page));
2924 	WARN_ON(!IS_ALIGNED(pa, psz));
2925 
2926 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2927 	if (rdists_support_shareable()) {
2928 		val |= GICR_VPROPBASER_RaWb;
2929 		val |= GICR_VPROPBASER_InnerShareable;
2930 	}
2931 	val |= GICR_VPROPBASER_4_1_Z;
2932 	val |= GICR_VPROPBASER_4_1_VALID;
2933 
2934 out:
2935 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2936 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2937 
2938 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2939 		 smp_processor_id(), val,
2940 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2941 
2942 	return 0;
2943 }
2944 
2945 static int its_alloc_collections(struct its_node *its)
2946 {
2947 	int i;
2948 
2949 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2950 				   GFP_KERNEL);
2951 	if (!its->collections)
2952 		return -ENOMEM;
2953 
2954 	for (i = 0; i < nr_cpu_ids; i++)
2955 		its->collections[i].target_address = ~0ULL;
2956 
2957 	return 0;
2958 }
2959 
2960 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2961 {
2962 	struct page *pend_page;
2963 
2964 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2965 				get_order(LPI_PENDBASE_SZ));
2966 	if (!pend_page)
2967 		return NULL;
2968 
2969 	/* Make sure the GIC will observe the zero-ed page */
2970 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2971 
2972 	return pend_page;
2973 }
2974 
2975 static void its_free_pending_table(struct page *pt)
2976 {
2977 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2978 }
2979 
2980 /*
2981  * Booting with kdump and LPIs enabled is generally fine. Any other
2982  * case is wrong in the absence of firmware/EFI support.
2983  */
2984 static bool enabled_lpis_allowed(void)
2985 {
2986 	phys_addr_t addr;
2987 	u64 val;
2988 
2989 	/* Check whether the property table is in a reserved region */
2990 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2991 	addr = val & GENMASK_ULL(51, 12);
2992 
2993 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2994 }
2995 
2996 static int __init allocate_lpi_tables(void)
2997 {
2998 	u64 val;
2999 	int err, cpu;
3000 
3001 	/*
3002 	 * If LPIs are enabled while we run this from the boot CPU,
3003 	 * flag the RD tables as pre-allocated if the stars do align.
3004 	 */
3005 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3006 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3007 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3008 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3009 		pr_info("GICv3: Using preallocated redistributor tables\n");
3010 	}
3011 
3012 	err = its_setup_lpi_prop_table();
3013 	if (err)
3014 		return err;
3015 
3016 	/*
3017 	 * We allocate all the pending tables anyway, as we may have a
3018 	 * mix of RDs that have had LPIs enabled, and some that
3019 	 * don't. We'll free the unused ones as each CPU comes online.
3020 	 */
3021 	for_each_possible_cpu(cpu) {
3022 		struct page *pend_page;
3023 
3024 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3025 		if (!pend_page) {
3026 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3027 			return -ENOMEM;
3028 		}
3029 
3030 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3037 {
3038 	u32 count = 1000000;	/* 1s! */
3039 	bool clean;
3040 	u64 val;
3041 
3042 	do {
3043 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3044 		clean = !(val & GICR_VPENDBASER_Dirty);
3045 		if (!clean) {
3046 			count--;
3047 			cpu_relax();
3048 			udelay(1);
3049 		}
3050 	} while (!clean && count);
3051 
3052 	if (unlikely(!clean))
3053 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3054 
3055 	return val;
3056 }
3057 
3058 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3059 {
3060 	u64 val;
3061 
3062 	/* Make sure we wait until the RD is done with the initial scan */
3063 	val = read_vpend_dirty_clear(vlpi_base);
3064 	val &= ~GICR_VPENDBASER_Valid;
3065 	val &= ~clr;
3066 	val |= set;
3067 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3068 
3069 	val = read_vpend_dirty_clear(vlpi_base);
3070 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3071 		val |= GICR_VPENDBASER_PendingLast;
3072 
3073 	return val;
3074 }
3075 
3076 static void its_cpu_init_lpis(void)
3077 {
3078 	void __iomem *rbase = gic_data_rdist_rd_base();
3079 	struct page *pend_page;
3080 	phys_addr_t paddr;
3081 	u64 val, tmp;
3082 
3083 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3084 		return;
3085 
3086 	val = readl_relaxed(rbase + GICR_CTLR);
3087 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3088 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3089 		/*
3090 		 * Check that we get the same property table on all
3091 		 * RDs. If we don't, this is hopeless.
3092 		 */
3093 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3094 		paddr &= GENMASK_ULL(51, 12);
3095 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3096 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3097 
3098 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3099 		paddr &= GENMASK_ULL(51, 16);
3100 
3101 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3102 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3103 
3104 		goto out;
3105 	}
3106 
3107 	pend_page = gic_data_rdist()->pend_page;
3108 	paddr = page_to_phys(pend_page);
3109 
3110 	/* set PROPBASE */
3111 	val = (gic_rdists->prop_table_pa |
3112 	       GICR_PROPBASER_InnerShareable |
3113 	       GICR_PROPBASER_RaWaWb |
3114 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3115 
3116 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3117 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3118 
3119 	if (!rdists_support_shareable())
3120 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3121 
3122 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3123 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3124 			/*
3125 			 * The HW reports non-shareable, we must
3126 			 * remove the cacheability attributes as
3127 			 * well.
3128 			 */
3129 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3130 				 GICR_PROPBASER_CACHEABILITY_MASK);
3131 			val |= GICR_PROPBASER_nC;
3132 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3133 		}
3134 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3135 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3136 	}
3137 
3138 	/* set PENDBASE */
3139 	val = (page_to_phys(pend_page) |
3140 	       GICR_PENDBASER_InnerShareable |
3141 	       GICR_PENDBASER_RaWaWb);
3142 
3143 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3144 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3145 
3146 	if (!rdists_support_shareable())
3147 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3148 
3149 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3150 		/*
3151 		 * The HW reports non-shareable, we must remove the
3152 		 * cacheability attributes as well.
3153 		 */
3154 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3155 			 GICR_PENDBASER_CACHEABILITY_MASK);
3156 		val |= GICR_PENDBASER_nC;
3157 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3158 	}
3159 
3160 	/* Enable LPIs */
3161 	val = readl_relaxed(rbase + GICR_CTLR);
3162 	val |= GICR_CTLR_ENABLE_LPIS;
3163 	writel_relaxed(val, rbase + GICR_CTLR);
3164 
3165 out:
3166 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3167 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3168 
3169 		/*
3170 		 * It's possible for CPU to receive VLPIs before it is
3171 		 * scheduled as a vPE, especially for the first CPU, and the
3172 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3173 		 * as out of range and dropped by GIC.
3174 		 * So we initialize IDbits to known value to avoid VLPI drop.
3175 		 */
3176 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3177 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3178 			smp_processor_id(), val);
3179 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3180 
3181 		/*
3182 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3183 		 * ancient programming gets left in and has possibility of
3184 		 * corrupting memory.
3185 		 */
3186 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3187 	}
3188 
3189 	if (allocate_vpe_l1_table()) {
3190 		/*
3191 		 * If the allocation has failed, we're in massive trouble.
3192 		 * Disable direct injection, and pray that no VM was
3193 		 * already running...
3194 		 */
3195 		gic_rdists->has_rvpeid = false;
3196 		gic_rdists->has_vlpis = false;
3197 	}
3198 
3199 	/* Make sure the GIC has seen the above */
3200 	dsb(sy);
3201 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3202 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3203 		smp_processor_id(),
3204 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3205 		"reserved" : "allocated",
3206 		&paddr);
3207 }
3208 
3209 static void its_cpu_init_collection(struct its_node *its)
3210 {
3211 	int cpu = smp_processor_id();
3212 	u64 target;
3213 
3214 	/* avoid cross node collections and its mapping */
3215 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3216 		struct device_node *cpu_node;
3217 
3218 		cpu_node = of_get_cpu_node(cpu, NULL);
3219 		if (its->numa_node != NUMA_NO_NODE &&
3220 			its->numa_node != of_node_to_nid(cpu_node))
3221 			return;
3222 	}
3223 
3224 	/*
3225 	 * We now have to bind each collection to its target
3226 	 * redistributor.
3227 	 */
3228 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3229 		/*
3230 		 * This ITS wants the physical address of the
3231 		 * redistributor.
3232 		 */
3233 		target = gic_data_rdist()->phys_base;
3234 	} else {
3235 		/* This ITS wants a linear CPU number. */
3236 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3237 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3238 	}
3239 
3240 	/* Perform collection mapping */
3241 	its->collections[cpu].target_address = target;
3242 	its->collections[cpu].col_id = cpu;
3243 
3244 	its_send_mapc(its, &its->collections[cpu], 1);
3245 	its_send_invall(its, &its->collections[cpu]);
3246 }
3247 
3248 static void its_cpu_init_collections(void)
3249 {
3250 	struct its_node *its;
3251 
3252 	raw_spin_lock(&its_lock);
3253 
3254 	list_for_each_entry(its, &its_nodes, entry)
3255 		its_cpu_init_collection(its);
3256 
3257 	raw_spin_unlock(&its_lock);
3258 }
3259 
3260 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3261 {
3262 	struct its_device *its_dev = NULL, *tmp;
3263 	unsigned long flags;
3264 
3265 	raw_spin_lock_irqsave(&its->lock, flags);
3266 
3267 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3268 		if (tmp->device_id == dev_id) {
3269 			its_dev = tmp;
3270 			break;
3271 		}
3272 	}
3273 
3274 	raw_spin_unlock_irqrestore(&its->lock, flags);
3275 
3276 	return its_dev;
3277 }
3278 
3279 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3280 {
3281 	int i;
3282 
3283 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3284 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3285 			return &its->tables[i];
3286 	}
3287 
3288 	return NULL;
3289 }
3290 
3291 static bool its_alloc_table_entry(struct its_node *its,
3292 				  struct its_baser *baser, u32 id)
3293 {
3294 	struct page *page;
3295 	u32 esz, idx;
3296 	__le64 *table;
3297 
3298 	/* Don't allow device id that exceeds single, flat table limit */
3299 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3300 	if (!(baser->val & GITS_BASER_INDIRECT))
3301 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3302 
3303 	/* Compute 1st level table index & check if that exceeds table limit */
3304 	idx = id >> ilog2(baser->psz / esz);
3305 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3306 		return false;
3307 
3308 	table = baser->base;
3309 
3310 	/* Allocate memory for 2nd level table */
3311 	if (!table[idx]) {
3312 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3313 					get_order(baser->psz));
3314 		if (!page)
3315 			return false;
3316 
3317 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3318 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3319 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3320 
3321 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3322 
3323 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3324 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3325 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3326 
3327 		/* Ensure updated table contents are visible to ITS hardware */
3328 		dsb(sy);
3329 	}
3330 
3331 	return true;
3332 }
3333 
3334 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3335 {
3336 	struct its_baser *baser;
3337 
3338 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3339 
3340 	/* Don't allow device id that exceeds ITS hardware limit */
3341 	if (!baser)
3342 		return (ilog2(dev_id) < device_ids(its));
3343 
3344 	return its_alloc_table_entry(its, baser, dev_id);
3345 }
3346 
3347 static bool its_alloc_vpe_table(u32 vpe_id)
3348 {
3349 	struct its_node *its;
3350 	int cpu;
3351 
3352 	/*
3353 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3354 	 * could try and only do it on ITSs corresponding to devices
3355 	 * that have interrupts targeted at this VPE, but the
3356 	 * complexity becomes crazy (and you have tons of memory
3357 	 * anyway, right?).
3358 	 */
3359 	list_for_each_entry(its, &its_nodes, entry) {
3360 		struct its_baser *baser;
3361 
3362 		if (!is_v4(its))
3363 			continue;
3364 
3365 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3366 		if (!baser)
3367 			return false;
3368 
3369 		if (!its_alloc_table_entry(its, baser, vpe_id))
3370 			return false;
3371 	}
3372 
3373 	/* Non v4.1? No need to iterate RDs and go back early. */
3374 	if (!gic_rdists->has_rvpeid)
3375 		return true;
3376 
3377 	/*
3378 	 * Make sure the L2 tables are allocated for all copies of
3379 	 * the L1 table on *all* v4.1 RDs.
3380 	 */
3381 	for_each_possible_cpu(cpu) {
3382 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3383 			return false;
3384 	}
3385 
3386 	return true;
3387 }
3388 
3389 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3390 					    int nvecs, bool alloc_lpis)
3391 {
3392 	struct its_device *dev;
3393 	unsigned long *lpi_map = NULL;
3394 	unsigned long flags;
3395 	u16 *col_map = NULL;
3396 	void *itt;
3397 	int lpi_base;
3398 	int nr_lpis;
3399 	int nr_ites;
3400 	int sz;
3401 
3402 	if (!its_alloc_device_table(its, dev_id))
3403 		return NULL;
3404 
3405 	if (WARN_ON(!is_power_of_2(nvecs)))
3406 		nvecs = roundup_pow_of_two(nvecs);
3407 
3408 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3409 	/*
3410 	 * Even if the device wants a single LPI, the ITT must be
3411 	 * sized as a power of two (and you need at least one bit...).
3412 	 */
3413 	nr_ites = max(2, nvecs);
3414 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3415 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3416 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3417 	if (alloc_lpis) {
3418 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3419 		if (lpi_map)
3420 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3421 					  GFP_KERNEL);
3422 	} else {
3423 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3424 		nr_lpis = 0;
3425 		lpi_base = 0;
3426 	}
3427 
3428 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3429 		kfree(dev);
3430 		kfree(itt);
3431 		bitmap_free(lpi_map);
3432 		kfree(col_map);
3433 		return NULL;
3434 	}
3435 
3436 	gic_flush_dcache_to_poc(itt, sz);
3437 
3438 	dev->its = its;
3439 	dev->itt = itt;
3440 	dev->nr_ites = nr_ites;
3441 	dev->event_map.lpi_map = lpi_map;
3442 	dev->event_map.col_map = col_map;
3443 	dev->event_map.lpi_base = lpi_base;
3444 	dev->event_map.nr_lpis = nr_lpis;
3445 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3446 	dev->device_id = dev_id;
3447 	INIT_LIST_HEAD(&dev->entry);
3448 
3449 	raw_spin_lock_irqsave(&its->lock, flags);
3450 	list_add(&dev->entry, &its->its_device_list);
3451 	raw_spin_unlock_irqrestore(&its->lock, flags);
3452 
3453 	/* Map device to its ITT */
3454 	its_send_mapd(dev, 1);
3455 
3456 	return dev;
3457 }
3458 
3459 static void its_free_device(struct its_device *its_dev)
3460 {
3461 	unsigned long flags;
3462 
3463 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3464 	list_del(&its_dev->entry);
3465 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3466 	kfree(its_dev->event_map.col_map);
3467 	kfree(its_dev->itt);
3468 	kfree(its_dev);
3469 }
3470 
3471 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3472 {
3473 	int idx;
3474 
3475 	/* Find a free LPI region in lpi_map and allocate them. */
3476 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3477 				      dev->event_map.nr_lpis,
3478 				      get_count_order(nvecs));
3479 	if (idx < 0)
3480 		return -ENOSPC;
3481 
3482 	*hwirq = dev->event_map.lpi_base + idx;
3483 
3484 	return 0;
3485 }
3486 
3487 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3488 			   int nvec, msi_alloc_info_t *info)
3489 {
3490 	struct its_node *its;
3491 	struct its_device *its_dev;
3492 	struct msi_domain_info *msi_info;
3493 	u32 dev_id;
3494 	int err = 0;
3495 
3496 	/*
3497 	 * We ignore "dev" entirely, and rely on the dev_id that has
3498 	 * been passed via the scratchpad. This limits this domain's
3499 	 * usefulness to upper layers that definitely know that they
3500 	 * are built on top of the ITS.
3501 	 */
3502 	dev_id = info->scratchpad[0].ul;
3503 
3504 	msi_info = msi_get_domain_info(domain);
3505 	its = msi_info->data;
3506 
3507 	if (!gic_rdists->has_direct_lpi &&
3508 	    vpe_proxy.dev &&
3509 	    vpe_proxy.dev->its == its &&
3510 	    dev_id == vpe_proxy.dev->device_id) {
3511 		/* Bad luck. Get yourself a better implementation */
3512 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3513 			  dev_id);
3514 		return -EINVAL;
3515 	}
3516 
3517 	mutex_lock(&its->dev_alloc_lock);
3518 	its_dev = its_find_device(its, dev_id);
3519 	if (its_dev) {
3520 		/*
3521 		 * We already have seen this ID, probably through
3522 		 * another alias (PCI bridge of some sort). No need to
3523 		 * create the device.
3524 		 */
3525 		its_dev->shared = true;
3526 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3527 		goto out;
3528 	}
3529 
3530 	its_dev = its_create_device(its, dev_id, nvec, true);
3531 	if (!its_dev) {
3532 		err = -ENOMEM;
3533 		goto out;
3534 	}
3535 
3536 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3537 		its_dev->shared = true;
3538 
3539 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3540 out:
3541 	mutex_unlock(&its->dev_alloc_lock);
3542 	info->scratchpad[0].ptr = its_dev;
3543 	return err;
3544 }
3545 
3546 static struct msi_domain_ops its_msi_domain_ops = {
3547 	.msi_prepare	= its_msi_prepare,
3548 };
3549 
3550 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3551 				    unsigned int virq,
3552 				    irq_hw_number_t hwirq)
3553 {
3554 	struct irq_fwspec fwspec;
3555 
3556 	if (irq_domain_get_of_node(domain->parent)) {
3557 		fwspec.fwnode = domain->parent->fwnode;
3558 		fwspec.param_count = 3;
3559 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3560 		fwspec.param[1] = hwirq;
3561 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3562 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3563 		fwspec.fwnode = domain->parent->fwnode;
3564 		fwspec.param_count = 2;
3565 		fwspec.param[0] = hwirq;
3566 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3567 	} else {
3568 		return -EINVAL;
3569 	}
3570 
3571 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3572 }
3573 
3574 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3575 				unsigned int nr_irqs, void *args)
3576 {
3577 	msi_alloc_info_t *info = args;
3578 	struct its_device *its_dev = info->scratchpad[0].ptr;
3579 	struct its_node *its = its_dev->its;
3580 	struct irq_data *irqd;
3581 	irq_hw_number_t hwirq;
3582 	int err;
3583 	int i;
3584 
3585 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3586 	if (err)
3587 		return err;
3588 
3589 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3590 	if (err)
3591 		return err;
3592 
3593 	for (i = 0; i < nr_irqs; i++) {
3594 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3595 		if (err)
3596 			return err;
3597 
3598 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3599 					      hwirq + i, &its_irq_chip, its_dev);
3600 		irqd = irq_get_irq_data(virq + i);
3601 		irqd_set_single_target(irqd);
3602 		irqd_set_affinity_on_activate(irqd);
3603 		irqd_set_resend_when_in_progress(irqd);
3604 		pr_debug("ID:%d pID:%d vID:%d\n",
3605 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3606 			 (int)(hwirq + i), virq + i);
3607 	}
3608 
3609 	return 0;
3610 }
3611 
3612 static int its_irq_domain_activate(struct irq_domain *domain,
3613 				   struct irq_data *d, bool reserve)
3614 {
3615 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3616 	u32 event = its_get_event_id(d);
3617 	int cpu;
3618 
3619 	cpu = its_select_cpu(d, cpu_online_mask);
3620 	if (cpu < 0 || cpu >= nr_cpu_ids)
3621 		return -EINVAL;
3622 
3623 	its_inc_lpi_count(d, cpu);
3624 	its_dev->event_map.col_map[event] = cpu;
3625 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3626 
3627 	/* Map the GIC IRQ and event to the device */
3628 	its_send_mapti(its_dev, d->hwirq, event);
3629 	return 0;
3630 }
3631 
3632 static void its_irq_domain_deactivate(struct irq_domain *domain,
3633 				      struct irq_data *d)
3634 {
3635 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3636 	u32 event = its_get_event_id(d);
3637 
3638 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3639 	/* Stop the delivery of interrupts */
3640 	its_send_discard(its_dev, event);
3641 }
3642 
3643 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3644 				unsigned int nr_irqs)
3645 {
3646 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3647 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3648 	struct its_node *its = its_dev->its;
3649 	int i;
3650 
3651 	bitmap_release_region(its_dev->event_map.lpi_map,
3652 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3653 			      get_count_order(nr_irqs));
3654 
3655 	for (i = 0; i < nr_irqs; i++) {
3656 		struct irq_data *data = irq_domain_get_irq_data(domain,
3657 								virq + i);
3658 		/* Nuke the entry in the domain */
3659 		irq_domain_reset_irq_data(data);
3660 	}
3661 
3662 	mutex_lock(&its->dev_alloc_lock);
3663 
3664 	/*
3665 	 * If all interrupts have been freed, start mopping the
3666 	 * floor. This is conditioned on the device not being shared.
3667 	 */
3668 	if (!its_dev->shared &&
3669 	    bitmap_empty(its_dev->event_map.lpi_map,
3670 			 its_dev->event_map.nr_lpis)) {
3671 		its_lpi_free(its_dev->event_map.lpi_map,
3672 			     its_dev->event_map.lpi_base,
3673 			     its_dev->event_map.nr_lpis);
3674 
3675 		/* Unmap device/itt */
3676 		its_send_mapd(its_dev, 0);
3677 		its_free_device(its_dev);
3678 	}
3679 
3680 	mutex_unlock(&its->dev_alloc_lock);
3681 
3682 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3683 }
3684 
3685 static const struct irq_domain_ops its_domain_ops = {
3686 	.select			= msi_lib_irq_domain_select,
3687 	.alloc			= its_irq_domain_alloc,
3688 	.free			= its_irq_domain_free,
3689 	.activate		= its_irq_domain_activate,
3690 	.deactivate		= its_irq_domain_deactivate,
3691 };
3692 
3693 /*
3694  * This is insane.
3695  *
3696  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3697  * likely), the only way to perform an invalidate is to use a fake
3698  * device to issue an INV command, implying that the LPI has first
3699  * been mapped to some event on that device. Since this is not exactly
3700  * cheap, we try to keep that mapping around as long as possible, and
3701  * only issue an UNMAP if we're short on available slots.
3702  *
3703  * Broken by design(tm).
3704  *
3705  * GICv4.1, on the other hand, mandates that we're able to invalidate
3706  * by writing to a MMIO register. It doesn't implement the whole of
3707  * DirectLPI, but that's good enough. And most of the time, we don't
3708  * even have to invalidate anything, as the redistributor can be told
3709  * whether to generate a doorbell or not (we thus leave it enabled,
3710  * always).
3711  */
3712 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3713 {
3714 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3715 	if (gic_rdists->has_rvpeid)
3716 		return;
3717 
3718 	/* Already unmapped? */
3719 	if (vpe->vpe_proxy_event == -1)
3720 		return;
3721 
3722 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3723 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3724 
3725 	/*
3726 	 * We don't track empty slots at all, so let's move the
3727 	 * next_victim pointer if we can quickly reuse that slot
3728 	 * instead of nuking an existing entry. Not clear that this is
3729 	 * always a win though, and this might just generate a ripple
3730 	 * effect... Let's just hope VPEs don't migrate too often.
3731 	 */
3732 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3733 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3734 
3735 	vpe->vpe_proxy_event = -1;
3736 }
3737 
3738 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3739 {
3740 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3741 	if (gic_rdists->has_rvpeid)
3742 		return;
3743 
3744 	if (!gic_rdists->has_direct_lpi) {
3745 		unsigned long flags;
3746 
3747 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3748 		its_vpe_db_proxy_unmap_locked(vpe);
3749 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3750 	}
3751 }
3752 
3753 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3754 {
3755 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3756 	if (gic_rdists->has_rvpeid)
3757 		return;
3758 
3759 	/* Already mapped? */
3760 	if (vpe->vpe_proxy_event != -1)
3761 		return;
3762 
3763 	/* This slot was already allocated. Kick the other VPE out. */
3764 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3765 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3766 
3767 	/* Map the new VPE instead */
3768 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3769 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3770 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3771 
3772 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3773 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3774 }
3775 
3776 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3777 {
3778 	unsigned long flags;
3779 	struct its_collection *target_col;
3780 
3781 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3782 	if (gic_rdists->has_rvpeid)
3783 		return;
3784 
3785 	if (gic_rdists->has_direct_lpi) {
3786 		void __iomem *rdbase;
3787 
3788 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3789 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3790 		wait_for_syncr(rdbase);
3791 
3792 		return;
3793 	}
3794 
3795 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3796 
3797 	its_vpe_db_proxy_map_locked(vpe);
3798 
3799 	target_col = &vpe_proxy.dev->its->collections[to];
3800 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3801 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3802 
3803 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3804 }
3805 
3806 static int its_vpe_set_affinity(struct irq_data *d,
3807 				const struct cpumask *mask_val,
3808 				bool force)
3809 {
3810 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3811 	unsigned int from, cpu = nr_cpu_ids;
3812 	struct cpumask *table_mask;
3813 	unsigned long flags;
3814 
3815 	/*
3816 	 * Changing affinity is mega expensive, so let's be as lazy as
3817 	 * we can and only do it if we really have to. Also, if mapped
3818 	 * into the proxy device, we need to move the doorbell
3819 	 * interrupt to its new location.
3820 	 *
3821 	 * Another thing is that changing the affinity of a vPE affects
3822 	 * *other interrupts* such as all the vLPIs that are routed to
3823 	 * this vPE. This means that the irq_desc lock is not enough to
3824 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3825 	 * during the update, hence the lock below which must also be
3826 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3827 	 */
3828 	from = vpe_to_cpuid_lock(vpe, &flags);
3829 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3830 
3831 	/*
3832 	 * If we are offered another CPU in the same GICv4.1 ITS
3833 	 * affinity, pick this one. Otherwise, any CPU will do.
3834 	 */
3835 	if (table_mask)
3836 		cpu = cpumask_any_and(mask_val, table_mask);
3837 	if (cpu < nr_cpu_ids) {
3838 		if (cpumask_test_cpu(from, mask_val) &&
3839 		    cpumask_test_cpu(from, table_mask))
3840 			cpu = from;
3841 	} else {
3842 		cpu = cpumask_first(mask_val);
3843 	}
3844 
3845 	if (from == cpu)
3846 		goto out;
3847 
3848 	vpe->col_idx = cpu;
3849 
3850 	its_send_vmovp(vpe);
3851 	its_vpe_db_proxy_move(vpe, from, cpu);
3852 
3853 out:
3854 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3855 	vpe_to_cpuid_unlock(vpe, flags);
3856 
3857 	return IRQ_SET_MASK_OK_DONE;
3858 }
3859 
3860 static void its_wait_vpt_parse_complete(void)
3861 {
3862 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3863 	u64 val;
3864 
3865 	if (!gic_rdists->has_vpend_valid_dirty)
3866 		return;
3867 
3868 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3869 						       val,
3870 						       !(val & GICR_VPENDBASER_Dirty),
3871 						       1, 500));
3872 }
3873 
3874 static void its_vpe_schedule(struct its_vpe *vpe)
3875 {
3876 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3877 	u64 val;
3878 
3879 	/* Schedule the VPE */
3880 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3881 		GENMASK_ULL(51, 12);
3882 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3883 	if (rdists_support_shareable()) {
3884 		val |= GICR_VPROPBASER_RaWb;
3885 		val |= GICR_VPROPBASER_InnerShareable;
3886 	}
3887 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3888 
3889 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3890 		GENMASK_ULL(51, 16);
3891 	if (rdists_support_shareable()) {
3892 		val |= GICR_VPENDBASER_RaWaWb;
3893 		val |= GICR_VPENDBASER_InnerShareable;
3894 	}
3895 	/*
3896 	 * There is no good way of finding out if the pending table is
3897 	 * empty as we can race against the doorbell interrupt very
3898 	 * easily. So in the end, vpe->pending_last is only an
3899 	 * indication that the vcpu has something pending, not one
3900 	 * that the pending table is empty. A good implementation
3901 	 * would be able to read its coarse map pretty quickly anyway,
3902 	 * making this a tolerable issue.
3903 	 */
3904 	val |= GICR_VPENDBASER_PendingLast;
3905 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3906 	val |= GICR_VPENDBASER_Valid;
3907 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3908 }
3909 
3910 static void its_vpe_deschedule(struct its_vpe *vpe)
3911 {
3912 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3913 	u64 val;
3914 
3915 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3916 
3917 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3918 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3919 }
3920 
3921 static void its_vpe_invall(struct its_vpe *vpe)
3922 {
3923 	struct its_node *its;
3924 
3925 	guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
3926 
3927 	list_for_each_entry(its, &its_nodes, entry) {
3928 		if (!is_v4(its))
3929 			continue;
3930 
3931 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3932 			continue;
3933 
3934 		/*
3935 		 * Sending a VINVALL to a single ITS is enough, as all
3936 		 * we need is to reach the redistributors.
3937 		 */
3938 		its_send_vinvall(its, vpe);
3939 		return;
3940 	}
3941 }
3942 
3943 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3944 {
3945 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3946 	struct its_cmd_info *info = vcpu_info;
3947 
3948 	switch (info->cmd_type) {
3949 	case SCHEDULE_VPE:
3950 		its_vpe_schedule(vpe);
3951 		return 0;
3952 
3953 	case DESCHEDULE_VPE:
3954 		its_vpe_deschedule(vpe);
3955 		return 0;
3956 
3957 	case COMMIT_VPE:
3958 		its_wait_vpt_parse_complete();
3959 		return 0;
3960 
3961 	case INVALL_VPE:
3962 		its_vpe_invall(vpe);
3963 		return 0;
3964 
3965 	default:
3966 		return -EINVAL;
3967 	}
3968 }
3969 
3970 static void its_vpe_send_cmd(struct its_vpe *vpe,
3971 			     void (*cmd)(struct its_device *, u32))
3972 {
3973 	unsigned long flags;
3974 
3975 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3976 
3977 	its_vpe_db_proxy_map_locked(vpe);
3978 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3979 
3980 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3981 }
3982 
3983 static void its_vpe_send_inv(struct irq_data *d)
3984 {
3985 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3986 
3987 	if (gic_rdists->has_direct_lpi)
3988 		__direct_lpi_inv(d, d->parent_data->hwirq);
3989 	else
3990 		its_vpe_send_cmd(vpe, its_send_inv);
3991 }
3992 
3993 static void its_vpe_mask_irq(struct irq_data *d)
3994 {
3995 	/*
3996 	 * We need to unmask the LPI, which is described by the parent
3997 	 * irq_data. Instead of calling into the parent (which won't
3998 	 * exactly do the right thing, let's simply use the
3999 	 * parent_data pointer. Yes, I'm naughty.
4000 	 */
4001 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4002 	its_vpe_send_inv(d);
4003 }
4004 
4005 static void its_vpe_unmask_irq(struct irq_data *d)
4006 {
4007 	/* Same hack as above... */
4008 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4009 	its_vpe_send_inv(d);
4010 }
4011 
4012 static int its_vpe_set_irqchip_state(struct irq_data *d,
4013 				     enum irqchip_irq_state which,
4014 				     bool state)
4015 {
4016 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4017 
4018 	if (which != IRQCHIP_STATE_PENDING)
4019 		return -EINVAL;
4020 
4021 	if (gic_rdists->has_direct_lpi) {
4022 		void __iomem *rdbase;
4023 
4024 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4025 		if (state) {
4026 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4027 		} else {
4028 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4029 			wait_for_syncr(rdbase);
4030 		}
4031 	} else {
4032 		if (state)
4033 			its_vpe_send_cmd(vpe, its_send_int);
4034 		else
4035 			its_vpe_send_cmd(vpe, its_send_clear);
4036 	}
4037 
4038 	return 0;
4039 }
4040 
4041 static int its_vpe_retrigger(struct irq_data *d)
4042 {
4043 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4044 }
4045 
4046 static struct irq_chip its_vpe_irq_chip = {
4047 	.name			= "GICv4-vpe",
4048 	.irq_mask		= its_vpe_mask_irq,
4049 	.irq_unmask		= its_vpe_unmask_irq,
4050 	.irq_eoi		= irq_chip_eoi_parent,
4051 	.irq_set_affinity	= its_vpe_set_affinity,
4052 	.irq_retrigger		= its_vpe_retrigger,
4053 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4054 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4055 };
4056 
4057 static struct its_node *find_4_1_its(void)
4058 {
4059 	static struct its_node *its = NULL;
4060 
4061 	if (!its) {
4062 		list_for_each_entry(its, &its_nodes, entry) {
4063 			if (is_v4_1(its))
4064 				return its;
4065 		}
4066 
4067 		/* Oops? */
4068 		its = NULL;
4069 	}
4070 
4071 	return its;
4072 }
4073 
4074 static void its_vpe_4_1_send_inv(struct irq_data *d)
4075 {
4076 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4077 	struct its_node *its;
4078 
4079 	/*
4080 	 * GICv4.1 wants doorbells to be invalidated using the
4081 	 * INVDB command in order to be broadcast to all RDs. Send
4082 	 * it to the first valid ITS, and let the HW do its magic.
4083 	 */
4084 	its = find_4_1_its();
4085 	if (its)
4086 		its_send_invdb(its, vpe);
4087 }
4088 
4089 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4090 {
4091 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4092 	its_vpe_4_1_send_inv(d);
4093 }
4094 
4095 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4096 {
4097 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4098 	its_vpe_4_1_send_inv(d);
4099 }
4100 
4101 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4102 				 struct its_cmd_info *info)
4103 {
4104 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4105 	u64 val = 0;
4106 
4107 	/* Schedule the VPE */
4108 	val |= GICR_VPENDBASER_Valid;
4109 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4110 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4111 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4112 
4113 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4114 }
4115 
4116 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4117 				   struct its_cmd_info *info)
4118 {
4119 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4120 	u64 val;
4121 
4122 	if (info->req_db) {
4123 		unsigned long flags;
4124 
4125 		/*
4126 		 * vPE is going to block: make the vPE non-resident with
4127 		 * PendingLast clear and DB set. The GIC guarantees that if
4128 		 * we read-back PendingLast clear, then a doorbell will be
4129 		 * delivered when an interrupt comes.
4130 		 *
4131 		 * Note the locking to deal with the concurrent update of
4132 		 * pending_last from the doorbell interrupt handler that can
4133 		 * run concurrently.
4134 		 */
4135 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4136 		val = its_clear_vpend_valid(vlpi_base,
4137 					    GICR_VPENDBASER_PendingLast,
4138 					    GICR_VPENDBASER_4_1_DB);
4139 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4140 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4141 	} else {
4142 		/*
4143 		 * We're not blocking, so just make the vPE non-resident
4144 		 * with PendingLast set, indicating that we'll be back.
4145 		 */
4146 		val = its_clear_vpend_valid(vlpi_base,
4147 					    0,
4148 					    GICR_VPENDBASER_PendingLast);
4149 		vpe->pending_last = true;
4150 	}
4151 }
4152 
4153 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4154 {
4155 	void __iomem *rdbase;
4156 	unsigned long flags;
4157 	u64 val;
4158 	int cpu;
4159 
4160 	val  = GICR_INVALLR_V;
4161 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4162 
4163 	/* Target the redistributor this vPE is currently known on */
4164 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4165 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4166 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4167 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4168 
4169 	wait_for_syncr(rdbase);
4170 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4171 	vpe_to_cpuid_unlock(vpe, flags);
4172 }
4173 
4174 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4175 {
4176 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4177 	struct its_cmd_info *info = vcpu_info;
4178 
4179 	switch (info->cmd_type) {
4180 	case SCHEDULE_VPE:
4181 		its_vpe_4_1_schedule(vpe, info);
4182 		return 0;
4183 
4184 	case DESCHEDULE_VPE:
4185 		its_vpe_4_1_deschedule(vpe, info);
4186 		return 0;
4187 
4188 	case COMMIT_VPE:
4189 		its_wait_vpt_parse_complete();
4190 		return 0;
4191 
4192 	case INVALL_VPE:
4193 		its_vpe_4_1_invall(vpe);
4194 		return 0;
4195 
4196 	default:
4197 		return -EINVAL;
4198 	}
4199 }
4200 
4201 static struct irq_chip its_vpe_4_1_irq_chip = {
4202 	.name			= "GICv4.1-vpe",
4203 	.irq_mask		= its_vpe_4_1_mask_irq,
4204 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4205 	.irq_eoi		= irq_chip_eoi_parent,
4206 	.irq_set_affinity	= its_vpe_set_affinity,
4207 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4208 };
4209 
4210 static void its_configure_sgi(struct irq_data *d, bool clear)
4211 {
4212 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4213 	struct its_cmd_desc desc;
4214 
4215 	desc.its_vsgi_cmd.vpe = vpe;
4216 	desc.its_vsgi_cmd.sgi = d->hwirq;
4217 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4218 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4219 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4220 	desc.its_vsgi_cmd.clear = clear;
4221 
4222 	/*
4223 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4224 	 * destination VPE is mapped there. Since we map them eagerly at
4225 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4226 	 */
4227 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4228 }
4229 
4230 static void its_sgi_mask_irq(struct irq_data *d)
4231 {
4232 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4233 
4234 	vpe->sgi_config[d->hwirq].enabled = false;
4235 	its_configure_sgi(d, false);
4236 }
4237 
4238 static void its_sgi_unmask_irq(struct irq_data *d)
4239 {
4240 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4241 
4242 	vpe->sgi_config[d->hwirq].enabled = true;
4243 	its_configure_sgi(d, false);
4244 }
4245 
4246 static int its_sgi_set_affinity(struct irq_data *d,
4247 				const struct cpumask *mask_val,
4248 				bool force)
4249 {
4250 	/*
4251 	 * There is no notion of affinity for virtual SGIs, at least
4252 	 * not on the host (since they can only be targeting a vPE).
4253 	 * Tell the kernel we've done whatever it asked for.
4254 	 */
4255 	irq_data_update_effective_affinity(d, mask_val);
4256 	return IRQ_SET_MASK_OK;
4257 }
4258 
4259 static int its_sgi_set_irqchip_state(struct irq_data *d,
4260 				     enum irqchip_irq_state which,
4261 				     bool state)
4262 {
4263 	if (which != IRQCHIP_STATE_PENDING)
4264 		return -EINVAL;
4265 
4266 	if (state) {
4267 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4268 		struct its_node *its = find_4_1_its();
4269 		u64 val;
4270 
4271 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4272 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4273 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4274 	} else {
4275 		its_configure_sgi(d, true);
4276 	}
4277 
4278 	return 0;
4279 }
4280 
4281 static int its_sgi_get_irqchip_state(struct irq_data *d,
4282 				     enum irqchip_irq_state which, bool *val)
4283 {
4284 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4285 	void __iomem *base;
4286 	unsigned long flags;
4287 	u32 count = 1000000;	/* 1s! */
4288 	u32 status;
4289 	int cpu;
4290 
4291 	if (which != IRQCHIP_STATE_PENDING)
4292 		return -EINVAL;
4293 
4294 	/*
4295 	 * Locking galore! We can race against two different events:
4296 	 *
4297 	 * - Concurrent vPE affinity change: we must make sure it cannot
4298 	 *   happen, or we'll talk to the wrong redistributor. This is
4299 	 *   identical to what happens with vLPIs.
4300 	 *
4301 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4302 	 *   MMIO registers, this must be made atomic one way or another.
4303 	 */
4304 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4305 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4306 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4307 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4308 	do {
4309 		status = readl_relaxed(base + GICR_VSGIPENDR);
4310 		if (!(status & GICR_VSGIPENDR_BUSY))
4311 			goto out;
4312 
4313 		count--;
4314 		if (!count) {
4315 			pr_err_ratelimited("Unable to get SGI status\n");
4316 			goto out;
4317 		}
4318 		cpu_relax();
4319 		udelay(1);
4320 	} while (count);
4321 
4322 out:
4323 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4324 	vpe_to_cpuid_unlock(vpe, flags);
4325 
4326 	if (!count)
4327 		return -ENXIO;
4328 
4329 	*val = !!(status & (1 << d->hwirq));
4330 
4331 	return 0;
4332 }
4333 
4334 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4335 {
4336 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4337 	struct its_cmd_info *info = vcpu_info;
4338 
4339 	switch (info->cmd_type) {
4340 	case PROP_UPDATE_VSGI:
4341 		vpe->sgi_config[d->hwirq].priority = info->priority;
4342 		vpe->sgi_config[d->hwirq].group = info->group;
4343 		its_configure_sgi(d, false);
4344 		return 0;
4345 
4346 	default:
4347 		return -EINVAL;
4348 	}
4349 }
4350 
4351 static struct irq_chip its_sgi_irq_chip = {
4352 	.name			= "GICv4.1-sgi",
4353 	.irq_mask		= its_sgi_mask_irq,
4354 	.irq_unmask		= its_sgi_unmask_irq,
4355 	.irq_set_affinity	= its_sgi_set_affinity,
4356 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4357 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4358 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4359 };
4360 
4361 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4362 				    unsigned int virq, unsigned int nr_irqs,
4363 				    void *args)
4364 {
4365 	struct its_vpe *vpe = args;
4366 	int i;
4367 
4368 	/* Yes, we do want 16 SGIs */
4369 	WARN_ON(nr_irqs != 16);
4370 
4371 	for (i = 0; i < 16; i++) {
4372 		vpe->sgi_config[i].priority = 0;
4373 		vpe->sgi_config[i].enabled = false;
4374 		vpe->sgi_config[i].group = false;
4375 
4376 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4377 					      &its_sgi_irq_chip, vpe);
4378 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4379 	}
4380 
4381 	return 0;
4382 }
4383 
4384 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4385 				    unsigned int virq,
4386 				    unsigned int nr_irqs)
4387 {
4388 	/* Nothing to do */
4389 }
4390 
4391 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4392 				       struct irq_data *d, bool reserve)
4393 {
4394 	/* Write out the initial SGI configuration */
4395 	its_configure_sgi(d, false);
4396 	return 0;
4397 }
4398 
4399 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4400 					  struct irq_data *d)
4401 {
4402 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4403 
4404 	/*
4405 	 * The VSGI command is awkward:
4406 	 *
4407 	 * - To change the configuration, CLEAR must be set to false,
4408 	 *   leaving the pending bit unchanged.
4409 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4410 	 *   the configuration unchanged.
4411 	 *
4412 	 * You just can't do both at once, hence the two commands below.
4413 	 */
4414 	vpe->sgi_config[d->hwirq].enabled = false;
4415 	its_configure_sgi(d, false);
4416 	its_configure_sgi(d, true);
4417 }
4418 
4419 static const struct irq_domain_ops its_sgi_domain_ops = {
4420 	.alloc		= its_sgi_irq_domain_alloc,
4421 	.free		= its_sgi_irq_domain_free,
4422 	.activate	= its_sgi_irq_domain_activate,
4423 	.deactivate	= its_sgi_irq_domain_deactivate,
4424 };
4425 
4426 static int its_vpe_id_alloc(void)
4427 {
4428 	return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4429 }
4430 
4431 static void its_vpe_id_free(u16 id)
4432 {
4433 	ida_free(&its_vpeid_ida, id);
4434 }
4435 
4436 static int its_vpe_init(struct its_vpe *vpe)
4437 {
4438 	struct page *vpt_page;
4439 	int vpe_id;
4440 
4441 	/* Allocate vpe_id */
4442 	vpe_id = its_vpe_id_alloc();
4443 	if (vpe_id < 0)
4444 		return vpe_id;
4445 
4446 	/* Allocate VPT */
4447 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4448 	if (!vpt_page) {
4449 		its_vpe_id_free(vpe_id);
4450 		return -ENOMEM;
4451 	}
4452 
4453 	if (!its_alloc_vpe_table(vpe_id)) {
4454 		its_vpe_id_free(vpe_id);
4455 		its_free_pending_table(vpt_page);
4456 		return -ENOMEM;
4457 	}
4458 
4459 	raw_spin_lock_init(&vpe->vpe_lock);
4460 	vpe->vpe_id = vpe_id;
4461 	vpe->vpt_page = vpt_page;
4462 	if (gic_rdists->has_rvpeid)
4463 		atomic_set(&vpe->vmapp_count, 0);
4464 	else
4465 		vpe->vpe_proxy_event = -1;
4466 
4467 	return 0;
4468 }
4469 
4470 static void its_vpe_teardown(struct its_vpe *vpe)
4471 {
4472 	its_vpe_db_proxy_unmap(vpe);
4473 	its_vpe_id_free(vpe->vpe_id);
4474 	its_free_pending_table(vpe->vpt_page);
4475 }
4476 
4477 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4478 				    unsigned int virq,
4479 				    unsigned int nr_irqs)
4480 {
4481 	struct its_vm *vm = domain->host_data;
4482 	int i;
4483 
4484 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4485 
4486 	for (i = 0; i < nr_irqs; i++) {
4487 		struct irq_data *data = irq_domain_get_irq_data(domain,
4488 								virq + i);
4489 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4490 
4491 		BUG_ON(vm != vpe->its_vm);
4492 
4493 		clear_bit(data->hwirq, vm->db_bitmap);
4494 		its_vpe_teardown(vpe);
4495 		irq_domain_reset_irq_data(data);
4496 	}
4497 
4498 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4499 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4500 		its_free_prop_table(vm->vprop_page);
4501 	}
4502 }
4503 
4504 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4505 				    unsigned int nr_irqs, void *args)
4506 {
4507 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4508 	struct its_vm *vm = args;
4509 	unsigned long *bitmap;
4510 	struct page *vprop_page;
4511 	int base, nr_ids, i, err = 0;
4512 
4513 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4514 	if (!bitmap)
4515 		return -ENOMEM;
4516 
4517 	if (nr_ids < nr_irqs) {
4518 		its_lpi_free(bitmap, base, nr_ids);
4519 		return -ENOMEM;
4520 	}
4521 
4522 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4523 	if (!vprop_page) {
4524 		its_lpi_free(bitmap, base, nr_ids);
4525 		return -ENOMEM;
4526 	}
4527 
4528 	vm->db_bitmap = bitmap;
4529 	vm->db_lpi_base = base;
4530 	vm->nr_db_lpis = nr_ids;
4531 	vm->vprop_page = vprop_page;
4532 	raw_spin_lock_init(&vm->vmapp_lock);
4533 
4534 	if (gic_rdists->has_rvpeid)
4535 		irqchip = &its_vpe_4_1_irq_chip;
4536 
4537 	for (i = 0; i < nr_irqs; i++) {
4538 		vm->vpes[i]->vpe_db_lpi = base + i;
4539 		err = its_vpe_init(vm->vpes[i]);
4540 		if (err)
4541 			break;
4542 		err = its_irq_gic_domain_alloc(domain, virq + i,
4543 					       vm->vpes[i]->vpe_db_lpi);
4544 		if (err)
4545 			break;
4546 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4547 					      irqchip, vm->vpes[i]);
4548 		set_bit(i, bitmap);
4549 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4550 	}
4551 
4552 	if (err)
4553 		its_vpe_irq_domain_free(domain, virq, i);
4554 
4555 	return err;
4556 }
4557 
4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4559 				       struct irq_data *d, bool reserve)
4560 {
4561 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562 	struct its_node *its;
4563 
4564 	/* Map the VPE to the first possible CPU */
4565 	vpe->col_idx = cpumask_first(cpu_online_mask);
4566 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4567 
4568 	/*
4569 	 * If we use the list map, we issue VMAPP on demand... Unless
4570 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4571 	 * so that VSGIs can work.
4572 	 */
4573 	if (!gic_requires_eager_mapping())
4574 		return 0;
4575 
4576 	list_for_each_entry(its, &its_nodes, entry) {
4577 		if (!is_v4(its))
4578 			continue;
4579 
4580 		its_send_vmapp(its, vpe, true);
4581 		its_send_vinvall(its, vpe);
4582 	}
4583 
4584 	return 0;
4585 }
4586 
4587 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4588 					  struct irq_data *d)
4589 {
4590 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4591 	struct its_node *its;
4592 
4593 	/*
4594 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4595 	 * VLPIs are associated with the VM.
4596 	 */
4597 	if (!gic_requires_eager_mapping())
4598 		return;
4599 
4600 	list_for_each_entry(its, &its_nodes, entry) {
4601 		if (!is_v4(its))
4602 			continue;
4603 
4604 		its_send_vmapp(its, vpe, false);
4605 	}
4606 
4607 	/*
4608 	 * There may be a direct read to the VPT after unmapping the
4609 	 * vPE, to guarantee the validity of this, we make the VPT
4610 	 * memory coherent with the CPU caches here.
4611 	 */
4612 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4613 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4614 					LPI_PENDBASE_SZ);
4615 }
4616 
4617 static const struct irq_domain_ops its_vpe_domain_ops = {
4618 	.alloc			= its_vpe_irq_domain_alloc,
4619 	.free			= its_vpe_irq_domain_free,
4620 	.activate		= its_vpe_irq_domain_activate,
4621 	.deactivate		= its_vpe_irq_domain_deactivate,
4622 };
4623 
4624 static int its_force_quiescent(void __iomem *base)
4625 {
4626 	u32 count = 1000000;	/* 1s */
4627 	u32 val;
4628 
4629 	val = readl_relaxed(base + GITS_CTLR);
4630 	/*
4631 	 * GIC architecture specification requires the ITS to be both
4632 	 * disabled and quiescent for writes to GITS_BASER<n> or
4633 	 * GITS_CBASER to not have UNPREDICTABLE results.
4634 	 */
4635 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4636 		return 0;
4637 
4638 	/* Disable the generation of all interrupts to this ITS */
4639 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4640 	writel_relaxed(val, base + GITS_CTLR);
4641 
4642 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4643 	while (1) {
4644 		val = readl_relaxed(base + GITS_CTLR);
4645 		if (val & GITS_CTLR_QUIESCENT)
4646 			return 0;
4647 
4648 		count--;
4649 		if (!count)
4650 			return -EBUSY;
4651 
4652 		cpu_relax();
4653 		udelay(1);
4654 	}
4655 }
4656 
4657 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4658 {
4659 	struct its_node *its = data;
4660 
4661 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4662 	its->typer &= ~GITS_TYPER_DEVBITS;
4663 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4664 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4665 
4666 	return true;
4667 }
4668 
4669 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4670 {
4671 	struct its_node *its = data;
4672 
4673 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4674 
4675 	return true;
4676 }
4677 
4678 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4679 {
4680 	struct its_node *its = data;
4681 
4682 	/* On QDF2400, the size of the ITE is 16Bytes */
4683 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4684 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4685 
4686 	return true;
4687 }
4688 
4689 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4690 {
4691 	struct its_node *its = its_dev->its;
4692 
4693 	/*
4694 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4695 	 * which maps 32-bit writes targeted at a separate window of
4696 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4697 	 * with device ID taken from bits [device_id_bits + 1:2] of
4698 	 * the window offset.
4699 	 */
4700 	return its->pre_its_base + (its_dev->device_id << 2);
4701 }
4702 
4703 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4704 {
4705 	struct its_node *its = data;
4706 	u32 pre_its_window[2];
4707 	u32 ids;
4708 
4709 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4710 					   "socionext,synquacer-pre-its",
4711 					   pre_its_window,
4712 					   ARRAY_SIZE(pre_its_window))) {
4713 
4714 		its->pre_its_base = pre_its_window[0];
4715 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4716 
4717 		ids = ilog2(pre_its_window[1]) - 2;
4718 		if (device_ids(its) > ids) {
4719 			its->typer &= ~GITS_TYPER_DEVBITS;
4720 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4721 		}
4722 
4723 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4724 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4725 		return true;
4726 	}
4727 	return false;
4728 }
4729 
4730 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4731 {
4732 	struct its_node *its = data;
4733 
4734 	/*
4735 	 * Hip07 insists on using the wrong address for the VLPI
4736 	 * page. Trick it into doing the right thing...
4737 	 */
4738 	its->vlpi_redist_offset = SZ_128K;
4739 	return true;
4740 }
4741 
4742 static bool __maybe_unused its_enable_rk3588001(void *data)
4743 {
4744 	struct its_node *its = data;
4745 
4746 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4747 	    !of_machine_is_compatible("rockchip,rk3588s"))
4748 		return false;
4749 
4750 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4751 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4752 
4753 	return true;
4754 }
4755 
4756 static bool its_set_non_coherent(void *data)
4757 {
4758 	struct its_node *its = data;
4759 
4760 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4761 	return true;
4762 }
4763 
4764 static const struct gic_quirk its_quirks[] = {
4765 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4766 	{
4767 		.desc	= "ITS: Cavium errata 22375, 24313",
4768 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4769 		.mask	= 0xffff0fff,
4770 		.init	= its_enable_quirk_cavium_22375,
4771 	},
4772 #endif
4773 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4774 	{
4775 		.desc	= "ITS: Cavium erratum 23144",
4776 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4777 		.mask	= 0xffff0fff,
4778 		.init	= its_enable_quirk_cavium_23144,
4779 	},
4780 #endif
4781 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4782 	{
4783 		.desc	= "ITS: QDF2400 erratum 0065",
4784 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4785 		.mask	= 0xffffffff,
4786 		.init	= its_enable_quirk_qdf2400_e0065,
4787 	},
4788 #endif
4789 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4790 	{
4791 		/*
4792 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4793 		 * implementation, but with a 'pre-ITS' added that requires
4794 		 * special handling in software.
4795 		 */
4796 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4797 		.iidr	= 0x0001143b,
4798 		.mask	= 0xffffffff,
4799 		.init	= its_enable_quirk_socionext_synquacer,
4800 	},
4801 #endif
4802 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4803 	{
4804 		.desc	= "ITS: Hip07 erratum 161600802",
4805 		.iidr	= 0x00000004,
4806 		.mask	= 0xffffffff,
4807 		.init	= its_enable_quirk_hip07_161600802,
4808 	},
4809 #endif
4810 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4811 	{
4812 		.desc   = "ITS: Rockchip erratum RK3588001",
4813 		.iidr   = 0x0201743b,
4814 		.mask   = 0xffffffff,
4815 		.init   = its_enable_rk3588001,
4816 	},
4817 #endif
4818 	{
4819 		.desc   = "ITS: non-coherent attribute",
4820 		.property = "dma-noncoherent",
4821 		.init   = its_set_non_coherent,
4822 	},
4823 	{
4824 	}
4825 };
4826 
4827 static void its_enable_quirks(struct its_node *its)
4828 {
4829 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4830 
4831 	gic_enable_quirks(iidr, its_quirks, its);
4832 
4833 	if (is_of_node(its->fwnode_handle))
4834 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4835 				     its_quirks, its);
4836 }
4837 
4838 static int its_save_disable(void)
4839 {
4840 	struct its_node *its;
4841 	int err = 0;
4842 
4843 	raw_spin_lock(&its_lock);
4844 	list_for_each_entry(its, &its_nodes, entry) {
4845 		void __iomem *base;
4846 
4847 		base = its->base;
4848 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4849 		err = its_force_quiescent(base);
4850 		if (err) {
4851 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4852 			       &its->phys_base, err);
4853 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4854 			goto err;
4855 		}
4856 
4857 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4858 	}
4859 
4860 err:
4861 	if (err) {
4862 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4863 			void __iomem *base;
4864 
4865 			base = its->base;
4866 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4867 		}
4868 	}
4869 	raw_spin_unlock(&its_lock);
4870 
4871 	return err;
4872 }
4873 
4874 static void its_restore_enable(void)
4875 {
4876 	struct its_node *its;
4877 	int ret;
4878 
4879 	raw_spin_lock(&its_lock);
4880 	list_for_each_entry(its, &its_nodes, entry) {
4881 		void __iomem *base;
4882 		int i;
4883 
4884 		base = its->base;
4885 
4886 		/*
4887 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4888 		 * don't restore it since writing to CBASER or BASER<n>
4889 		 * registers is undefined according to the GIC v3 ITS
4890 		 * Specification.
4891 		 *
4892 		 * Firmware resuming with the ITS enabled is terminally broken.
4893 		 */
4894 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4895 		ret = its_force_quiescent(base);
4896 		if (ret) {
4897 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4898 			       &its->phys_base, ret);
4899 			continue;
4900 		}
4901 
4902 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4903 
4904 		/*
4905 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4906 		 * cmd_write line up with it.
4907 		 */
4908 		its->cmd_write = its->cmd_base;
4909 		gits_write_cwriter(0, base + GITS_CWRITER);
4910 
4911 		/* Restore GITS_BASER from the value cache. */
4912 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4913 			struct its_baser *baser = &its->tables[i];
4914 
4915 			if (!(baser->val & GITS_BASER_VALID))
4916 				continue;
4917 
4918 			its_write_baser(its, baser, baser->val);
4919 		}
4920 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4921 
4922 		/*
4923 		 * Reinit the collection if it's stored in the ITS. This is
4924 		 * indicated by the col_id being less than the HCC field.
4925 		 * CID < HCC as specified in the GIC v3 Documentation.
4926 		 */
4927 		if (its->collections[smp_processor_id()].col_id <
4928 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4929 			its_cpu_init_collection(its);
4930 	}
4931 	raw_spin_unlock(&its_lock);
4932 }
4933 
4934 static struct syscore_ops its_syscore_ops = {
4935 	.suspend = its_save_disable,
4936 	.resume = its_restore_enable,
4937 };
4938 
4939 static void __init __iomem *its_map_one(struct resource *res, int *err)
4940 {
4941 	void __iomem *its_base;
4942 	u32 val;
4943 
4944 	its_base = ioremap(res->start, SZ_64K);
4945 	if (!its_base) {
4946 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4947 		*err = -ENOMEM;
4948 		return NULL;
4949 	}
4950 
4951 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4952 	if (val != 0x30 && val != 0x40) {
4953 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4954 		*err = -ENODEV;
4955 		goto out_unmap;
4956 	}
4957 
4958 	*err = its_force_quiescent(its_base);
4959 	if (*err) {
4960 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4961 		goto out_unmap;
4962 	}
4963 
4964 	return its_base;
4965 
4966 out_unmap:
4967 	iounmap(its_base);
4968 	return NULL;
4969 }
4970 
4971 static int its_init_domain(struct its_node *its)
4972 {
4973 	struct irq_domain *inner_domain;
4974 	struct msi_domain_info *info;
4975 
4976 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4977 	if (!info)
4978 		return -ENOMEM;
4979 
4980 	info->ops = &its_msi_domain_ops;
4981 	info->data = its;
4982 
4983 	inner_domain = irq_domain_create_hierarchy(its_parent,
4984 						   its->msi_domain_flags, 0,
4985 						   its->fwnode_handle, &its_domain_ops,
4986 						   info);
4987 	if (!inner_domain) {
4988 		kfree(info);
4989 		return -ENOMEM;
4990 	}
4991 
4992 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4993 
4994 	inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
4995 	inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
4996 
4997 	return 0;
4998 }
4999 
5000 static int its_init_vpe_domain(void)
5001 {
5002 	struct its_node *its;
5003 	u32 devid;
5004 	int entries;
5005 
5006 	if (gic_rdists->has_direct_lpi) {
5007 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5008 		return 0;
5009 	}
5010 
5011 	/* Any ITS will do, even if not v4 */
5012 	its = list_first_entry(&its_nodes, struct its_node, entry);
5013 
5014 	entries = roundup_pow_of_two(nr_cpu_ids);
5015 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5016 				 GFP_KERNEL);
5017 	if (!vpe_proxy.vpes)
5018 		return -ENOMEM;
5019 
5020 	/* Use the last possible DevID */
5021 	devid = GENMASK(device_ids(its) - 1, 0);
5022 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5023 	if (!vpe_proxy.dev) {
5024 		kfree(vpe_proxy.vpes);
5025 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5026 		return -ENOMEM;
5027 	}
5028 
5029 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5030 
5031 	raw_spin_lock_init(&vpe_proxy.lock);
5032 	vpe_proxy.next_victim = 0;
5033 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5034 		devid, vpe_proxy.dev->nr_ites);
5035 
5036 	return 0;
5037 }
5038 
5039 static int __init its_compute_its_list_map(struct its_node *its)
5040 {
5041 	int its_number;
5042 	u32 ctlr;
5043 
5044 	/*
5045 	 * This is assumed to be done early enough that we're
5046 	 * guaranteed to be single-threaded, hence no
5047 	 * locking. Should this change, we should address
5048 	 * this.
5049 	 */
5050 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5051 	if (its_number >= GICv4_ITS_LIST_MAX) {
5052 		pr_err("ITS@%pa: No ITSList entry available!\n",
5053 		       &its->phys_base);
5054 		return -EINVAL;
5055 	}
5056 
5057 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5058 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5059 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5060 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5061 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5062 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5063 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5064 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5065 	}
5066 
5067 	if (test_and_set_bit(its_number, &its_list_map)) {
5068 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5069 		       &its->phys_base, its_number);
5070 		return -EINVAL;
5071 	}
5072 
5073 	return its_number;
5074 }
5075 
5076 static int __init its_probe_one(struct its_node *its)
5077 {
5078 	u64 baser, tmp;
5079 	struct page *page;
5080 	u32 ctlr;
5081 	int err;
5082 
5083 	its_enable_quirks(its);
5084 
5085 	if (is_v4(its)) {
5086 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5087 			err = its_compute_its_list_map(its);
5088 			if (err < 0)
5089 				goto out;
5090 
5091 			its->list_nr = err;
5092 
5093 			pr_info("ITS@%pa: Using ITS number %d\n",
5094 				&its->phys_base, err);
5095 		} else {
5096 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5097 		}
5098 
5099 		if (is_v4_1(its)) {
5100 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5101 
5102 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5103 			if (!its->sgir_base) {
5104 				err = -ENOMEM;
5105 				goto out;
5106 			}
5107 
5108 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5109 
5110 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5111 				&its->phys_base, its->mpidr, svpet);
5112 		}
5113 	}
5114 
5115 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5116 				get_order(ITS_CMD_QUEUE_SZ));
5117 	if (!page) {
5118 		err = -ENOMEM;
5119 		goto out_unmap_sgir;
5120 	}
5121 	its->cmd_base = (void *)page_address(page);
5122 	its->cmd_write = its->cmd_base;
5123 
5124 	err = its_alloc_tables(its);
5125 	if (err)
5126 		goto out_free_cmd;
5127 
5128 	err = its_alloc_collections(its);
5129 	if (err)
5130 		goto out_free_tables;
5131 
5132 	baser = (virt_to_phys(its->cmd_base)	|
5133 		 GITS_CBASER_RaWaWb		|
5134 		 GITS_CBASER_InnerShareable	|
5135 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5136 		 GITS_CBASER_VALID);
5137 
5138 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5139 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5140 
5141 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5142 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5143 
5144 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5145 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5146 			/*
5147 			 * The HW reports non-shareable, we must
5148 			 * remove the cacheability attributes as
5149 			 * well.
5150 			 */
5151 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5152 				   GITS_CBASER_CACHEABILITY_MASK);
5153 			baser |= GITS_CBASER_nC;
5154 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5155 		}
5156 		pr_info("ITS: using cache flushing for cmd queue\n");
5157 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5158 	}
5159 
5160 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5161 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5162 	ctlr |= GITS_CTLR_ENABLE;
5163 	if (is_v4(its))
5164 		ctlr |= GITS_CTLR_ImDe;
5165 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5166 
5167 	err = its_init_domain(its);
5168 	if (err)
5169 		goto out_free_tables;
5170 
5171 	raw_spin_lock(&its_lock);
5172 	list_add(&its->entry, &its_nodes);
5173 	raw_spin_unlock(&its_lock);
5174 
5175 	return 0;
5176 
5177 out_free_tables:
5178 	its_free_tables(its);
5179 out_free_cmd:
5180 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5181 out_unmap_sgir:
5182 	if (its->sgir_base)
5183 		iounmap(its->sgir_base);
5184 out:
5185 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5186 	return err;
5187 }
5188 
5189 static bool gic_rdists_supports_plpis(void)
5190 {
5191 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5192 }
5193 
5194 static int redist_disable_lpis(void)
5195 {
5196 	void __iomem *rbase = gic_data_rdist_rd_base();
5197 	u64 timeout = USEC_PER_SEC;
5198 	u64 val;
5199 
5200 	if (!gic_rdists_supports_plpis()) {
5201 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5202 		return -ENXIO;
5203 	}
5204 
5205 	val = readl_relaxed(rbase + GICR_CTLR);
5206 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5207 		return 0;
5208 
5209 	/*
5210 	 * If coming via a CPU hotplug event, we don't need to disable
5211 	 * LPIs before trying to re-enable them. They are already
5212 	 * configured and all is well in the world.
5213 	 *
5214 	 * If running with preallocated tables, there is nothing to do.
5215 	 */
5216 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5217 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5218 		return 0;
5219 
5220 	/*
5221 	 * From that point on, we only try to do some damage control.
5222 	 */
5223 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5224 		smp_processor_id());
5225 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5226 
5227 	/* Disable LPIs */
5228 	val &= ~GICR_CTLR_ENABLE_LPIS;
5229 	writel_relaxed(val, rbase + GICR_CTLR);
5230 
5231 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5232 	dsb(sy);
5233 
5234 	/*
5235 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5236 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5237 	 * Error out if we time out waiting for RWP to clear.
5238 	 */
5239 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5240 		if (!timeout) {
5241 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5242 			       smp_processor_id());
5243 			return -ETIMEDOUT;
5244 		}
5245 		udelay(1);
5246 		timeout--;
5247 	}
5248 
5249 	/*
5250 	 * After it has been written to 1, it is IMPLEMENTATION
5251 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5252 	 * cleared to 0. Error out if clearing the bit failed.
5253 	 */
5254 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5255 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5256 		return -EBUSY;
5257 	}
5258 
5259 	return 0;
5260 }
5261 
5262 int its_cpu_init(void)
5263 {
5264 	if (!list_empty(&its_nodes)) {
5265 		int ret;
5266 
5267 		ret = redist_disable_lpis();
5268 		if (ret)
5269 			return ret;
5270 
5271 		its_cpu_init_lpis();
5272 		its_cpu_init_collections();
5273 	}
5274 
5275 	return 0;
5276 }
5277 
5278 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5279 {
5280 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5281 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5282 }
5283 
5284 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5285 		    rdist_memreserve_cpuhp_cleanup_workfn);
5286 
5287 static int its_cpu_memreserve_lpi(unsigned int cpu)
5288 {
5289 	struct page *pend_page;
5290 	int ret = 0;
5291 
5292 	/* This gets to run exactly once per CPU */
5293 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5294 		return 0;
5295 
5296 	pend_page = gic_data_rdist()->pend_page;
5297 	if (WARN_ON(!pend_page)) {
5298 		ret = -ENOMEM;
5299 		goto out;
5300 	}
5301 	/*
5302 	 * If the pending table was pre-programmed, free the memory we
5303 	 * preemptively allocated. Otherwise, reserve that memory for
5304 	 * later kexecs.
5305 	 */
5306 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5307 		its_free_pending_table(pend_page);
5308 		gic_data_rdist()->pend_page = NULL;
5309 	} else {
5310 		phys_addr_t paddr = page_to_phys(pend_page);
5311 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5312 	}
5313 
5314 out:
5315 	/* Last CPU being brought up gets to issue the cleanup */
5316 	if (!IS_ENABLED(CONFIG_SMP) ||
5317 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5318 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5319 
5320 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5321 	return ret;
5322 }
5323 
5324 /* Mark all the BASER registers as invalid before they get reprogrammed */
5325 static int __init its_reset_one(struct resource *res)
5326 {
5327 	void __iomem *its_base;
5328 	int err, i;
5329 
5330 	its_base = its_map_one(res, &err);
5331 	if (!its_base)
5332 		return err;
5333 
5334 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5335 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5336 
5337 	iounmap(its_base);
5338 	return 0;
5339 }
5340 
5341 static const struct of_device_id its_device_id[] = {
5342 	{	.compatible	= "arm,gic-v3-its",	},
5343 	{},
5344 };
5345 
5346 static struct its_node __init *its_node_init(struct resource *res,
5347 					     struct fwnode_handle *handle, int numa_node)
5348 {
5349 	void __iomem *its_base;
5350 	struct its_node *its;
5351 	int err;
5352 
5353 	its_base = its_map_one(res, &err);
5354 	if (!its_base)
5355 		return NULL;
5356 
5357 	pr_info("ITS %pR\n", res);
5358 
5359 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5360 	if (!its)
5361 		goto out_unmap;
5362 
5363 	raw_spin_lock_init(&its->lock);
5364 	mutex_init(&its->dev_alloc_lock);
5365 	INIT_LIST_HEAD(&its->entry);
5366 	INIT_LIST_HEAD(&its->its_device_list);
5367 
5368 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5369 	its->base = its_base;
5370 	its->phys_base = res->start;
5371 	its->get_msi_base = its_irq_get_msi_base;
5372 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5373 
5374 	its->numa_node = numa_node;
5375 	its->fwnode_handle = handle;
5376 
5377 	return its;
5378 
5379 out_unmap:
5380 	iounmap(its_base);
5381 	return NULL;
5382 }
5383 
5384 static void its_node_destroy(struct its_node *its)
5385 {
5386 	iounmap(its->base);
5387 	kfree(its);
5388 }
5389 
5390 static int __init its_of_probe(struct device_node *node)
5391 {
5392 	struct device_node *np;
5393 	struct resource res;
5394 	int err;
5395 
5396 	/*
5397 	 * Make sure *all* the ITS are reset before we probe any, as
5398 	 * they may be sharing memory. If any of the ITS fails to
5399 	 * reset, don't even try to go any further, as this could
5400 	 * result in something even worse.
5401 	 */
5402 	for (np = of_find_matching_node(node, its_device_id); np;
5403 	     np = of_find_matching_node(np, its_device_id)) {
5404 		if (!of_device_is_available(np) ||
5405 		    !of_property_read_bool(np, "msi-controller") ||
5406 		    of_address_to_resource(np, 0, &res))
5407 			continue;
5408 
5409 		err = its_reset_one(&res);
5410 		if (err)
5411 			return err;
5412 	}
5413 
5414 	for (np = of_find_matching_node(node, its_device_id); np;
5415 	     np = of_find_matching_node(np, its_device_id)) {
5416 		struct its_node *its;
5417 
5418 		if (!of_device_is_available(np))
5419 			continue;
5420 		if (!of_property_read_bool(np, "msi-controller")) {
5421 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5422 				np);
5423 			continue;
5424 		}
5425 
5426 		if (of_address_to_resource(np, 0, &res)) {
5427 			pr_warn("%pOF: no regs?\n", np);
5428 			continue;
5429 		}
5430 
5431 
5432 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5433 		if (!its)
5434 			return -ENOMEM;
5435 
5436 		err = its_probe_one(its);
5437 		if (err)  {
5438 			its_node_destroy(its);
5439 			return err;
5440 		}
5441 	}
5442 	return 0;
5443 }
5444 
5445 #ifdef CONFIG_ACPI
5446 
5447 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5448 
5449 #ifdef CONFIG_ACPI_NUMA
5450 struct its_srat_map {
5451 	/* numa node id */
5452 	u32	numa_node;
5453 	/* GIC ITS ID */
5454 	u32	its_id;
5455 };
5456 
5457 static struct its_srat_map *its_srat_maps __initdata;
5458 static int its_in_srat __initdata;
5459 
5460 static int __init acpi_get_its_numa_node(u32 its_id)
5461 {
5462 	int i;
5463 
5464 	for (i = 0; i < its_in_srat; i++) {
5465 		if (its_id == its_srat_maps[i].its_id)
5466 			return its_srat_maps[i].numa_node;
5467 	}
5468 	return NUMA_NO_NODE;
5469 }
5470 
5471 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5472 					  const unsigned long end)
5473 {
5474 	return 0;
5475 }
5476 
5477 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5478 			 const unsigned long end)
5479 {
5480 	int node;
5481 	struct acpi_srat_gic_its_affinity *its_affinity;
5482 
5483 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5484 	if (!its_affinity)
5485 		return -EINVAL;
5486 
5487 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5488 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5489 			its_affinity->header.length);
5490 		return -EINVAL;
5491 	}
5492 
5493 	/*
5494 	 * Note that in theory a new proximity node could be created by this
5495 	 * entry as it is an SRAT resource allocation structure.
5496 	 * We do not currently support doing so.
5497 	 */
5498 	node = pxm_to_node(its_affinity->proximity_domain);
5499 
5500 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5501 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5502 		return 0;
5503 	}
5504 
5505 	its_srat_maps[its_in_srat].numa_node = node;
5506 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5507 	its_in_srat++;
5508 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5509 		its_affinity->proximity_domain, its_affinity->its_id, node);
5510 
5511 	return 0;
5512 }
5513 
5514 static void __init acpi_table_parse_srat_its(void)
5515 {
5516 	int count;
5517 
5518 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5519 			sizeof(struct acpi_table_srat),
5520 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5521 			gic_acpi_match_srat_its, 0);
5522 	if (count <= 0)
5523 		return;
5524 
5525 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5526 				      GFP_KERNEL);
5527 	if (!its_srat_maps)
5528 		return;
5529 
5530 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5531 			sizeof(struct acpi_table_srat),
5532 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5533 			gic_acpi_parse_srat_its, 0);
5534 }
5535 
5536 /* free the its_srat_maps after ITS probing */
5537 static void __init acpi_its_srat_maps_free(void)
5538 {
5539 	kfree(its_srat_maps);
5540 }
5541 #else
5542 static void __init acpi_table_parse_srat_its(void)	{ }
5543 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5544 static void __init acpi_its_srat_maps_free(void) { }
5545 #endif
5546 
5547 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5548 					  const unsigned long end)
5549 {
5550 	struct acpi_madt_generic_translator *its_entry;
5551 	struct fwnode_handle *dom_handle;
5552 	struct its_node *its;
5553 	struct resource res;
5554 	int err;
5555 
5556 	its_entry = (struct acpi_madt_generic_translator *)header;
5557 	memset(&res, 0, sizeof(res));
5558 	res.start = its_entry->base_address;
5559 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5560 	res.flags = IORESOURCE_MEM;
5561 
5562 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5563 	if (!dom_handle) {
5564 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5565 		       &res.start);
5566 		return -ENOMEM;
5567 	}
5568 
5569 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5570 					 dom_handle);
5571 	if (err) {
5572 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5573 		       &res.start, its_entry->translation_id);
5574 		goto dom_err;
5575 	}
5576 
5577 	its = its_node_init(&res, dom_handle,
5578 			    acpi_get_its_numa_node(its_entry->translation_id));
5579 	if (!its) {
5580 		err = -ENOMEM;
5581 		goto node_err;
5582 	}
5583 
5584 	if (acpi_get_madt_revision() >= 7 &&
5585 	    (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5586 		its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5587 
5588 	err = its_probe_one(its);
5589 	if (!err)
5590 		return 0;
5591 
5592 node_err:
5593 	iort_deregister_domain_token(its_entry->translation_id);
5594 dom_err:
5595 	irq_domain_free_fwnode(dom_handle);
5596 	return err;
5597 }
5598 
5599 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5600 				 const unsigned long end)
5601 {
5602 	struct acpi_madt_generic_translator *its_entry;
5603 	struct resource res;
5604 
5605 	its_entry = (struct acpi_madt_generic_translator *)header;
5606 	res = (struct resource) {
5607 		.start	= its_entry->base_address,
5608 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5609 		.flags	= IORESOURCE_MEM,
5610 	};
5611 
5612 	return its_reset_one(&res);
5613 }
5614 
5615 static void __init its_acpi_probe(void)
5616 {
5617 	acpi_table_parse_srat_its();
5618 	/*
5619 	 * Make sure *all* the ITS are reset before we probe any, as
5620 	 * they may be sharing memory. If any of the ITS fails to
5621 	 * reset, don't even try to go any further, as this could
5622 	 * result in something even worse.
5623 	 */
5624 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5625 				  its_acpi_reset, 0) > 0)
5626 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5627 				      gic_acpi_parse_madt_its, 0);
5628 	acpi_its_srat_maps_free();
5629 }
5630 #else
5631 static void __init its_acpi_probe(void) { }
5632 #endif
5633 
5634 int __init its_lpi_memreserve_init(void)
5635 {
5636 	int state;
5637 
5638 	if (!efi_enabled(EFI_CONFIG_TABLES))
5639 		return 0;
5640 
5641 	if (list_empty(&its_nodes))
5642 		return 0;
5643 
5644 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5645 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5646 				  "irqchip/arm/gicv3/memreserve:online",
5647 				  its_cpu_memreserve_lpi,
5648 				  NULL);
5649 	if (state < 0)
5650 		return state;
5651 
5652 	gic_rdists->cpuhp_memreserve_state = state;
5653 
5654 	return 0;
5655 }
5656 
5657 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5658 		    struct irq_domain *parent_domain, u8 irq_prio)
5659 {
5660 	struct device_node *of_node;
5661 	struct its_node *its;
5662 	bool has_v4 = false;
5663 	bool has_v4_1 = false;
5664 	int err;
5665 
5666 	gic_rdists = rdists;
5667 
5668 	lpi_prop_prio = irq_prio;
5669 	its_parent = parent_domain;
5670 	of_node = to_of_node(handle);
5671 	if (of_node)
5672 		its_of_probe(of_node);
5673 	else
5674 		its_acpi_probe();
5675 
5676 	if (list_empty(&its_nodes)) {
5677 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5678 		return -ENXIO;
5679 	}
5680 
5681 	err = allocate_lpi_tables();
5682 	if (err)
5683 		return err;
5684 
5685 	list_for_each_entry(its, &its_nodes, entry) {
5686 		has_v4 |= is_v4(its);
5687 		has_v4_1 |= is_v4_1(its);
5688 	}
5689 
5690 	/* Don't bother with inconsistent systems */
5691 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5692 		rdists->has_rvpeid = false;
5693 
5694 	if (has_v4 & rdists->has_vlpis) {
5695 		const struct irq_domain_ops *sgi_ops;
5696 
5697 		if (has_v4_1)
5698 			sgi_ops = &its_sgi_domain_ops;
5699 		else
5700 			sgi_ops = NULL;
5701 
5702 		if (its_init_vpe_domain() ||
5703 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5704 			rdists->has_vlpis = false;
5705 			pr_err("ITS: Disabling GICv4 support\n");
5706 		}
5707 	}
5708 
5709 	register_syscore_ops(&its_syscore_ops);
5710 
5711 	return 0;
5712 }
5713