1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 #include "irq-msi-lib.h" 42 43 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 45 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 46 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 47 48 #define RD_LOCAL_LPI_ENABLED BIT(0) 49 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 50 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 51 52 static u32 lpi_id_bits; 53 54 /* 55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 56 * deal with (one configuration byte per interrupt). PENDBASE has to 57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 58 */ 59 #define LPI_NRBITS lpi_id_bits 60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 62 63 static u8 __ro_after_init lpi_prop_prio; 64 65 /* 66 * Collection structure - just an ID, and a redistributor address to 67 * ping. We use one per CPU as a bag of interrupts assigned to this 68 * CPU. 69 */ 70 struct its_collection { 71 u64 target_address; 72 u16 col_id; 73 }; 74 75 /* 76 * The ITS_BASER structure - contains memory information, cached 77 * value of BASER register configuration and ITS page size. 78 */ 79 struct its_baser { 80 void *base; 81 u64 val; 82 u32 order; 83 u32 psz; 84 }; 85 86 struct its_device; 87 88 /* 89 * The ITS structure - contains most of the infrastructure, with the 90 * top-level MSI domain, the command queue, the collections, and the 91 * list of devices writing to it. 92 * 93 * dev_alloc_lock has to be taken for device allocations, while the 94 * spinlock must be taken to parse data structures such as the device 95 * list. 96 */ 97 struct its_node { 98 raw_spinlock_t lock; 99 struct mutex dev_alloc_lock; 100 struct list_head entry; 101 void __iomem *base; 102 void __iomem *sgir_base; 103 phys_addr_t phys_base; 104 struct its_cmd_block *cmd_base; 105 struct its_cmd_block *cmd_write; 106 struct its_baser tables[GITS_BASER_NR_REGS]; 107 struct its_collection *collections; 108 struct fwnode_handle *fwnode_handle; 109 u64 (*get_msi_base)(struct its_device *its_dev); 110 u64 typer; 111 u64 cbaser_save; 112 u32 ctlr_save; 113 u32 mpidr; 114 struct list_head its_device_list; 115 u64 flags; 116 unsigned long list_nr; 117 int numa_node; 118 unsigned int msi_domain_flags; 119 u32 pre_its_base; /* for Socionext Synquacer */ 120 int vlpi_redist_offset; 121 }; 122 123 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 124 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 125 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 126 127 #define ITS_ITT_ALIGN SZ_256 128 129 /* The maximum number of VPEID bits supported by VLPI commands */ 130 #define ITS_MAX_VPEID_BITS \ 131 ({ \ 132 int nvpeid = 16; \ 133 if (gic_rdists->has_rvpeid && \ 134 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 135 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 136 GICD_TYPER2_VID); \ 137 \ 138 nvpeid; \ 139 }) 140 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 141 142 /* Convert page order to size in bytes */ 143 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 144 145 struct event_lpi_map { 146 unsigned long *lpi_map; 147 u16 *col_map; 148 irq_hw_number_t lpi_base; 149 int nr_lpis; 150 raw_spinlock_t vlpi_lock; 151 struct its_vm *vm; 152 struct its_vlpi_map *vlpi_maps; 153 int nr_vlpis; 154 }; 155 156 /* 157 * The ITS view of a device - belongs to an ITS, owns an interrupt 158 * translation table, and a list of interrupts. If it some of its 159 * LPIs are injected into a guest (GICv4), the event_map.vm field 160 * indicates which one. 161 */ 162 struct its_device { 163 struct list_head entry; 164 struct its_node *its; 165 struct event_lpi_map event_map; 166 void *itt; 167 u32 nr_ites; 168 u32 device_id; 169 bool shared; 170 }; 171 172 static struct { 173 raw_spinlock_t lock; 174 struct its_device *dev; 175 struct its_vpe **vpes; 176 int next_victim; 177 } vpe_proxy; 178 179 struct cpu_lpi_count { 180 atomic_t managed; 181 atomic_t unmanaged; 182 }; 183 184 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 185 186 static LIST_HEAD(its_nodes); 187 static DEFINE_RAW_SPINLOCK(its_lock); 188 static struct rdists *gic_rdists; 189 static struct irq_domain *its_parent; 190 191 static unsigned long its_list_map; 192 static u16 vmovp_seq_num; 193 static DEFINE_RAW_SPINLOCK(vmovp_lock); 194 195 static DEFINE_IDA(its_vpeid_ida); 196 197 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 198 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 199 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 200 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 201 202 /* 203 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 204 * always have vSGIs mapped. 205 */ 206 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 207 { 208 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 209 } 210 211 static bool rdists_support_shareable(void) 212 { 213 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 214 } 215 216 static u16 get_its_list(struct its_vm *vm) 217 { 218 struct its_node *its; 219 unsigned long its_list = 0; 220 221 list_for_each_entry(its, &its_nodes, entry) { 222 if (!is_v4(its)) 223 continue; 224 225 if (require_its_list_vmovp(vm, its)) 226 __set_bit(its->list_nr, &its_list); 227 } 228 229 return (u16)its_list; 230 } 231 232 static inline u32 its_get_event_id(struct irq_data *d) 233 { 234 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 235 return d->hwirq - its_dev->event_map.lpi_base; 236 } 237 238 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 239 u32 event) 240 { 241 struct its_node *its = its_dev->its; 242 243 return its->collections + its_dev->event_map.col_map[event]; 244 } 245 246 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 247 u32 event) 248 { 249 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 250 return NULL; 251 252 return &its_dev->event_map.vlpi_maps[event]; 253 } 254 255 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 256 { 257 if (irqd_is_forwarded_to_vcpu(d)) { 258 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 259 u32 event = its_get_event_id(d); 260 261 return dev_event_to_vlpi_map(its_dev, event); 262 } 263 264 return NULL; 265 } 266 267 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 268 { 269 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 270 return vpe->col_idx; 271 } 272 273 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 274 { 275 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 276 } 277 278 static struct irq_chip its_vpe_irq_chip; 279 280 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 281 { 282 struct its_vpe *vpe = NULL; 283 int cpu; 284 285 if (d->chip == &its_vpe_irq_chip) { 286 vpe = irq_data_get_irq_chip_data(d); 287 } else { 288 struct its_vlpi_map *map = get_vlpi_map(d); 289 if (map) 290 vpe = map->vpe; 291 } 292 293 if (vpe) { 294 cpu = vpe_to_cpuid_lock(vpe, flags); 295 } else { 296 /* Physical LPIs are already locked via the irq_desc lock */ 297 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 298 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 299 /* Keep GCC quiet... */ 300 *flags = 0; 301 } 302 303 return cpu; 304 } 305 306 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 307 { 308 struct its_vpe *vpe = NULL; 309 310 if (d->chip == &its_vpe_irq_chip) { 311 vpe = irq_data_get_irq_chip_data(d); 312 } else { 313 struct its_vlpi_map *map = get_vlpi_map(d); 314 if (map) 315 vpe = map->vpe; 316 } 317 318 if (vpe) 319 vpe_to_cpuid_unlock(vpe, flags); 320 } 321 322 static struct its_collection *valid_col(struct its_collection *col) 323 { 324 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 325 return NULL; 326 327 return col; 328 } 329 330 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 331 { 332 if (valid_col(its->collections + vpe->col_idx)) 333 return vpe; 334 335 return NULL; 336 } 337 338 /* 339 * ITS command descriptors - parameters to be encoded in a command 340 * block. 341 */ 342 struct its_cmd_desc { 343 union { 344 struct { 345 struct its_device *dev; 346 u32 event_id; 347 } its_inv_cmd; 348 349 struct { 350 struct its_device *dev; 351 u32 event_id; 352 } its_clear_cmd; 353 354 struct { 355 struct its_device *dev; 356 u32 event_id; 357 } its_int_cmd; 358 359 struct { 360 struct its_device *dev; 361 int valid; 362 } its_mapd_cmd; 363 364 struct { 365 struct its_collection *col; 366 int valid; 367 } its_mapc_cmd; 368 369 struct { 370 struct its_device *dev; 371 u32 phys_id; 372 u32 event_id; 373 } its_mapti_cmd; 374 375 struct { 376 struct its_device *dev; 377 struct its_collection *col; 378 u32 event_id; 379 } its_movi_cmd; 380 381 struct { 382 struct its_device *dev; 383 u32 event_id; 384 } its_discard_cmd; 385 386 struct { 387 struct its_collection *col; 388 } its_invall_cmd; 389 390 struct { 391 struct its_vpe *vpe; 392 } its_vinvall_cmd; 393 394 struct { 395 struct its_vpe *vpe; 396 struct its_collection *col; 397 bool valid; 398 } its_vmapp_cmd; 399 400 struct { 401 struct its_vpe *vpe; 402 struct its_device *dev; 403 u32 virt_id; 404 u32 event_id; 405 bool db_enabled; 406 } its_vmapti_cmd; 407 408 struct { 409 struct its_vpe *vpe; 410 struct its_device *dev; 411 u32 event_id; 412 bool db_enabled; 413 } its_vmovi_cmd; 414 415 struct { 416 struct its_vpe *vpe; 417 struct its_collection *col; 418 u16 seq_num; 419 u16 its_list; 420 } its_vmovp_cmd; 421 422 struct { 423 struct its_vpe *vpe; 424 } its_invdb_cmd; 425 426 struct { 427 struct its_vpe *vpe; 428 u8 sgi; 429 u8 priority; 430 bool enable; 431 bool group; 432 bool clear; 433 } its_vsgi_cmd; 434 }; 435 }; 436 437 /* 438 * The ITS command block, which is what the ITS actually parses. 439 */ 440 struct its_cmd_block { 441 union { 442 u64 raw_cmd[4]; 443 __le64 raw_cmd_le[4]; 444 }; 445 }; 446 447 #define ITS_CMD_QUEUE_SZ SZ_64K 448 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 449 450 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 451 struct its_cmd_block *, 452 struct its_cmd_desc *); 453 454 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 455 struct its_cmd_block *, 456 struct its_cmd_desc *); 457 458 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 459 { 460 u64 mask = GENMASK_ULL(h, l); 461 *raw_cmd &= ~mask; 462 *raw_cmd |= (val << l) & mask; 463 } 464 465 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 466 { 467 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 468 } 469 470 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 471 { 472 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 473 } 474 475 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 476 { 477 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 478 } 479 480 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 481 { 482 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 483 } 484 485 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 486 { 487 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 488 } 489 490 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 491 { 492 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 493 } 494 495 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 496 { 497 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 498 } 499 500 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 501 { 502 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 503 } 504 505 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 506 { 507 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 508 } 509 510 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 511 { 512 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 513 } 514 515 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 516 { 517 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 518 } 519 520 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 521 { 522 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 523 } 524 525 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 526 { 527 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 528 } 529 530 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 531 { 532 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 533 } 534 535 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 536 { 537 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 538 } 539 540 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 541 { 542 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 543 } 544 545 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 546 { 547 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 548 } 549 550 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 551 { 552 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 553 } 554 555 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 556 { 557 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 558 } 559 560 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 561 { 562 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 563 } 564 565 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 566 u32 vpe_db_lpi) 567 { 568 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 569 } 570 571 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 572 u32 vpe_db_lpi) 573 { 574 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 575 } 576 577 static void its_encode_db(struct its_cmd_block *cmd, bool db) 578 { 579 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 580 } 581 582 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 583 { 584 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 585 } 586 587 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 588 { 589 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 590 } 591 592 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 593 { 594 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 595 } 596 597 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 598 { 599 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 600 } 601 602 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 603 { 604 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 605 } 606 607 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 608 { 609 /* Let's fixup BE commands */ 610 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 611 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 612 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 613 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 614 } 615 616 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 617 struct its_cmd_block *cmd, 618 struct its_cmd_desc *desc) 619 { 620 unsigned long itt_addr; 621 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 622 623 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 624 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 625 626 its_encode_cmd(cmd, GITS_CMD_MAPD); 627 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 628 its_encode_size(cmd, size - 1); 629 its_encode_itt(cmd, itt_addr); 630 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 631 632 its_fixup_cmd(cmd); 633 634 return NULL; 635 } 636 637 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 638 struct its_cmd_block *cmd, 639 struct its_cmd_desc *desc) 640 { 641 its_encode_cmd(cmd, GITS_CMD_MAPC); 642 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 643 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 644 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 645 646 its_fixup_cmd(cmd); 647 648 return desc->its_mapc_cmd.col; 649 } 650 651 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 652 struct its_cmd_block *cmd, 653 struct its_cmd_desc *desc) 654 { 655 struct its_collection *col; 656 657 col = dev_event_to_col(desc->its_mapti_cmd.dev, 658 desc->its_mapti_cmd.event_id); 659 660 its_encode_cmd(cmd, GITS_CMD_MAPTI); 661 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 662 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 663 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 664 its_encode_collection(cmd, col->col_id); 665 666 its_fixup_cmd(cmd); 667 668 return valid_col(col); 669 } 670 671 static struct its_collection *its_build_movi_cmd(struct its_node *its, 672 struct its_cmd_block *cmd, 673 struct its_cmd_desc *desc) 674 { 675 struct its_collection *col; 676 677 col = dev_event_to_col(desc->its_movi_cmd.dev, 678 desc->its_movi_cmd.event_id); 679 680 its_encode_cmd(cmd, GITS_CMD_MOVI); 681 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 682 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 683 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 684 685 its_fixup_cmd(cmd); 686 687 return valid_col(col); 688 } 689 690 static struct its_collection *its_build_discard_cmd(struct its_node *its, 691 struct its_cmd_block *cmd, 692 struct its_cmd_desc *desc) 693 { 694 struct its_collection *col; 695 696 col = dev_event_to_col(desc->its_discard_cmd.dev, 697 desc->its_discard_cmd.event_id); 698 699 its_encode_cmd(cmd, GITS_CMD_DISCARD); 700 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 701 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 702 703 its_fixup_cmd(cmd); 704 705 return valid_col(col); 706 } 707 708 static struct its_collection *its_build_inv_cmd(struct its_node *its, 709 struct its_cmd_block *cmd, 710 struct its_cmd_desc *desc) 711 { 712 struct its_collection *col; 713 714 col = dev_event_to_col(desc->its_inv_cmd.dev, 715 desc->its_inv_cmd.event_id); 716 717 its_encode_cmd(cmd, GITS_CMD_INV); 718 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 719 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 720 721 its_fixup_cmd(cmd); 722 723 return valid_col(col); 724 } 725 726 static struct its_collection *its_build_int_cmd(struct its_node *its, 727 struct its_cmd_block *cmd, 728 struct its_cmd_desc *desc) 729 { 730 struct its_collection *col; 731 732 col = dev_event_to_col(desc->its_int_cmd.dev, 733 desc->its_int_cmd.event_id); 734 735 its_encode_cmd(cmd, GITS_CMD_INT); 736 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 737 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 738 739 its_fixup_cmd(cmd); 740 741 return valid_col(col); 742 } 743 744 static struct its_collection *its_build_clear_cmd(struct its_node *its, 745 struct its_cmd_block *cmd, 746 struct its_cmd_desc *desc) 747 { 748 struct its_collection *col; 749 750 col = dev_event_to_col(desc->its_clear_cmd.dev, 751 desc->its_clear_cmd.event_id); 752 753 its_encode_cmd(cmd, GITS_CMD_CLEAR); 754 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 755 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 756 757 its_fixup_cmd(cmd); 758 759 return valid_col(col); 760 } 761 762 static struct its_collection *its_build_invall_cmd(struct its_node *its, 763 struct its_cmd_block *cmd, 764 struct its_cmd_desc *desc) 765 { 766 its_encode_cmd(cmd, GITS_CMD_INVALL); 767 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 768 769 its_fixup_cmd(cmd); 770 771 return desc->its_invall_cmd.col; 772 } 773 774 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 775 struct its_cmd_block *cmd, 776 struct its_cmd_desc *desc) 777 { 778 its_encode_cmd(cmd, GITS_CMD_VINVALL); 779 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 780 781 its_fixup_cmd(cmd); 782 783 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 784 } 785 786 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 787 struct its_cmd_block *cmd, 788 struct its_cmd_desc *desc) 789 { 790 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); 791 unsigned long vpt_addr, vconf_addr; 792 u64 target; 793 bool alloc; 794 795 its_encode_cmd(cmd, GITS_CMD_VMAPP); 796 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 797 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 798 799 if (!desc->its_vmapp_cmd.valid) { 800 if (is_v4_1(its)) { 801 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 802 its_encode_alloc(cmd, alloc); 803 /* 804 * Unmapping a VPE is self-synchronizing on GICv4.1, 805 * no need to issue a VSYNC. 806 */ 807 vpe = NULL; 808 } 809 810 goto out; 811 } 812 813 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 814 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 815 816 its_encode_target(cmd, target); 817 its_encode_vpt_addr(cmd, vpt_addr); 818 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 819 820 if (!is_v4_1(its)) 821 goto out; 822 823 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 824 825 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 826 827 its_encode_alloc(cmd, alloc); 828 829 /* 830 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 831 * to be unmapped first, and in this case, we may remap the vPE 832 * back while the VPT is not empty. So we can't assume that the 833 * VPT is empty on map. This is why we never advertise PTZ. 834 */ 835 its_encode_ptz(cmd, false); 836 its_encode_vconf_addr(cmd, vconf_addr); 837 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 838 839 out: 840 its_fixup_cmd(cmd); 841 842 return vpe; 843 } 844 845 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 846 struct its_cmd_block *cmd, 847 struct its_cmd_desc *desc) 848 { 849 u32 db; 850 851 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 852 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 853 else 854 db = 1023; 855 856 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 857 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 858 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 859 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 860 its_encode_db_phys_id(cmd, db); 861 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 862 863 its_fixup_cmd(cmd); 864 865 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 866 } 867 868 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 869 struct its_cmd_block *cmd, 870 struct its_cmd_desc *desc) 871 { 872 u32 db; 873 874 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 875 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 876 else 877 db = 1023; 878 879 its_encode_cmd(cmd, GITS_CMD_VMOVI); 880 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 881 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 882 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 883 its_encode_db_phys_id(cmd, db); 884 its_encode_db_valid(cmd, true); 885 886 its_fixup_cmd(cmd); 887 888 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 889 } 890 891 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 892 struct its_cmd_block *cmd, 893 struct its_cmd_desc *desc) 894 { 895 u64 target; 896 897 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 898 its_encode_cmd(cmd, GITS_CMD_VMOVP); 899 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 900 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 901 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 902 its_encode_target(cmd, target); 903 904 if (is_v4_1(its)) { 905 its_encode_db(cmd, true); 906 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 907 } 908 909 its_fixup_cmd(cmd); 910 911 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 912 } 913 914 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 915 struct its_cmd_block *cmd, 916 struct its_cmd_desc *desc) 917 { 918 struct its_vlpi_map *map; 919 920 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 921 desc->its_inv_cmd.event_id); 922 923 its_encode_cmd(cmd, GITS_CMD_INV); 924 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 925 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 926 927 its_fixup_cmd(cmd); 928 929 return valid_vpe(its, map->vpe); 930 } 931 932 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 933 struct its_cmd_block *cmd, 934 struct its_cmd_desc *desc) 935 { 936 struct its_vlpi_map *map; 937 938 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 939 desc->its_int_cmd.event_id); 940 941 its_encode_cmd(cmd, GITS_CMD_INT); 942 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 943 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 944 945 its_fixup_cmd(cmd); 946 947 return valid_vpe(its, map->vpe); 948 } 949 950 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 951 struct its_cmd_block *cmd, 952 struct its_cmd_desc *desc) 953 { 954 struct its_vlpi_map *map; 955 956 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 957 desc->its_clear_cmd.event_id); 958 959 its_encode_cmd(cmd, GITS_CMD_CLEAR); 960 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 961 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 962 963 its_fixup_cmd(cmd); 964 965 return valid_vpe(its, map->vpe); 966 } 967 968 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 969 struct its_cmd_block *cmd, 970 struct its_cmd_desc *desc) 971 { 972 if (WARN_ON(!is_v4_1(its))) 973 return NULL; 974 975 its_encode_cmd(cmd, GITS_CMD_INVDB); 976 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 977 978 its_fixup_cmd(cmd); 979 980 return valid_vpe(its, desc->its_invdb_cmd.vpe); 981 } 982 983 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 984 struct its_cmd_block *cmd, 985 struct its_cmd_desc *desc) 986 { 987 if (WARN_ON(!is_v4_1(its))) 988 return NULL; 989 990 its_encode_cmd(cmd, GITS_CMD_VSGI); 991 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 992 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 993 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 994 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 995 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 996 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 997 998 its_fixup_cmd(cmd); 999 1000 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 1001 } 1002 1003 static u64 its_cmd_ptr_to_offset(struct its_node *its, 1004 struct its_cmd_block *ptr) 1005 { 1006 return (ptr - its->cmd_base) * sizeof(*ptr); 1007 } 1008 1009 static int its_queue_full(struct its_node *its) 1010 { 1011 int widx; 1012 int ridx; 1013 1014 widx = its->cmd_write - its->cmd_base; 1015 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1016 1017 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1018 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1019 return 1; 1020 1021 return 0; 1022 } 1023 1024 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1025 { 1026 struct its_cmd_block *cmd; 1027 u32 count = 1000000; /* 1s! */ 1028 1029 while (its_queue_full(its)) { 1030 count--; 1031 if (!count) { 1032 pr_err_ratelimited("ITS queue not draining\n"); 1033 return NULL; 1034 } 1035 cpu_relax(); 1036 udelay(1); 1037 } 1038 1039 cmd = its->cmd_write++; 1040 1041 /* Handle queue wrapping */ 1042 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1043 its->cmd_write = its->cmd_base; 1044 1045 /* Clear command */ 1046 cmd->raw_cmd[0] = 0; 1047 cmd->raw_cmd[1] = 0; 1048 cmd->raw_cmd[2] = 0; 1049 cmd->raw_cmd[3] = 0; 1050 1051 return cmd; 1052 } 1053 1054 static struct its_cmd_block *its_post_commands(struct its_node *its) 1055 { 1056 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1057 1058 writel_relaxed(wr, its->base + GITS_CWRITER); 1059 1060 return its->cmd_write; 1061 } 1062 1063 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1064 { 1065 /* 1066 * Make sure the commands written to memory are observable by 1067 * the ITS. 1068 */ 1069 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1070 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1071 else 1072 dsb(ishst); 1073 } 1074 1075 static int its_wait_for_range_completion(struct its_node *its, 1076 u64 prev_idx, 1077 struct its_cmd_block *to) 1078 { 1079 u64 rd_idx, to_idx, linear_idx; 1080 u32 count = 1000000; /* 1s! */ 1081 1082 /* Linearize to_idx if the command set has wrapped around */ 1083 to_idx = its_cmd_ptr_to_offset(its, to); 1084 if (to_idx < prev_idx) 1085 to_idx += ITS_CMD_QUEUE_SZ; 1086 1087 linear_idx = prev_idx; 1088 1089 while (1) { 1090 s64 delta; 1091 1092 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1093 1094 /* 1095 * Compute the read pointer progress, taking the 1096 * potential wrap-around into account. 1097 */ 1098 delta = rd_idx - prev_idx; 1099 if (rd_idx < prev_idx) 1100 delta += ITS_CMD_QUEUE_SZ; 1101 1102 linear_idx += delta; 1103 if (linear_idx >= to_idx) 1104 break; 1105 1106 count--; 1107 if (!count) { 1108 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1109 to_idx, linear_idx); 1110 return -1; 1111 } 1112 prev_idx = rd_idx; 1113 cpu_relax(); 1114 udelay(1); 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* Warning, macro hell follows */ 1121 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1122 void name(struct its_node *its, \ 1123 buildtype builder, \ 1124 struct its_cmd_desc *desc) \ 1125 { \ 1126 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1127 synctype *sync_obj; \ 1128 unsigned long flags; \ 1129 u64 rd_idx; \ 1130 \ 1131 raw_spin_lock_irqsave(&its->lock, flags); \ 1132 \ 1133 cmd = its_allocate_entry(its); \ 1134 if (!cmd) { /* We're soooooo screewed... */ \ 1135 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1136 return; \ 1137 } \ 1138 sync_obj = builder(its, cmd, desc); \ 1139 its_flush_cmd(its, cmd); \ 1140 \ 1141 if (sync_obj) { \ 1142 sync_cmd = its_allocate_entry(its); \ 1143 if (!sync_cmd) \ 1144 goto post; \ 1145 \ 1146 buildfn(its, sync_cmd, sync_obj); \ 1147 its_flush_cmd(its, sync_cmd); \ 1148 } \ 1149 \ 1150 post: \ 1151 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1152 next_cmd = its_post_commands(its); \ 1153 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1154 \ 1155 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1156 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1157 } 1158 1159 static void its_build_sync_cmd(struct its_node *its, 1160 struct its_cmd_block *sync_cmd, 1161 struct its_collection *sync_col) 1162 { 1163 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1164 its_encode_target(sync_cmd, sync_col->target_address); 1165 1166 its_fixup_cmd(sync_cmd); 1167 } 1168 1169 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1170 struct its_collection, its_build_sync_cmd) 1171 1172 static void its_build_vsync_cmd(struct its_node *its, 1173 struct its_cmd_block *sync_cmd, 1174 struct its_vpe *sync_vpe) 1175 { 1176 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1177 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1178 1179 its_fixup_cmd(sync_cmd); 1180 } 1181 1182 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1183 struct its_vpe, its_build_vsync_cmd) 1184 1185 static void its_send_int(struct its_device *dev, u32 event_id) 1186 { 1187 struct its_cmd_desc desc; 1188 1189 desc.its_int_cmd.dev = dev; 1190 desc.its_int_cmd.event_id = event_id; 1191 1192 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1193 } 1194 1195 static void its_send_clear(struct its_device *dev, u32 event_id) 1196 { 1197 struct its_cmd_desc desc; 1198 1199 desc.its_clear_cmd.dev = dev; 1200 desc.its_clear_cmd.event_id = event_id; 1201 1202 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1203 } 1204 1205 static void its_send_inv(struct its_device *dev, u32 event_id) 1206 { 1207 struct its_cmd_desc desc; 1208 1209 desc.its_inv_cmd.dev = dev; 1210 desc.its_inv_cmd.event_id = event_id; 1211 1212 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1213 } 1214 1215 static void its_send_mapd(struct its_device *dev, int valid) 1216 { 1217 struct its_cmd_desc desc; 1218 1219 desc.its_mapd_cmd.dev = dev; 1220 desc.its_mapd_cmd.valid = !!valid; 1221 1222 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1223 } 1224 1225 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1226 int valid) 1227 { 1228 struct its_cmd_desc desc; 1229 1230 desc.its_mapc_cmd.col = col; 1231 desc.its_mapc_cmd.valid = !!valid; 1232 1233 its_send_single_command(its, its_build_mapc_cmd, &desc); 1234 } 1235 1236 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1237 { 1238 struct its_cmd_desc desc; 1239 1240 desc.its_mapti_cmd.dev = dev; 1241 desc.its_mapti_cmd.phys_id = irq_id; 1242 desc.its_mapti_cmd.event_id = id; 1243 1244 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1245 } 1246 1247 static void its_send_movi(struct its_device *dev, 1248 struct its_collection *col, u32 id) 1249 { 1250 struct its_cmd_desc desc; 1251 1252 desc.its_movi_cmd.dev = dev; 1253 desc.its_movi_cmd.col = col; 1254 desc.its_movi_cmd.event_id = id; 1255 1256 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1257 } 1258 1259 static void its_send_discard(struct its_device *dev, u32 id) 1260 { 1261 struct its_cmd_desc desc; 1262 1263 desc.its_discard_cmd.dev = dev; 1264 desc.its_discard_cmd.event_id = id; 1265 1266 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1267 } 1268 1269 static void its_send_invall(struct its_node *its, struct its_collection *col) 1270 { 1271 struct its_cmd_desc desc; 1272 1273 desc.its_invall_cmd.col = col; 1274 1275 its_send_single_command(its, its_build_invall_cmd, &desc); 1276 } 1277 1278 static void its_send_vmapti(struct its_device *dev, u32 id) 1279 { 1280 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1281 struct its_cmd_desc desc; 1282 1283 desc.its_vmapti_cmd.vpe = map->vpe; 1284 desc.its_vmapti_cmd.dev = dev; 1285 desc.its_vmapti_cmd.virt_id = map->vintid; 1286 desc.its_vmapti_cmd.event_id = id; 1287 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1288 1289 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1290 } 1291 1292 static void its_send_vmovi(struct its_device *dev, u32 id) 1293 { 1294 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1295 struct its_cmd_desc desc; 1296 1297 desc.its_vmovi_cmd.vpe = map->vpe; 1298 desc.its_vmovi_cmd.dev = dev; 1299 desc.its_vmovi_cmd.event_id = id; 1300 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1301 1302 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1303 } 1304 1305 static void its_send_vmapp(struct its_node *its, 1306 struct its_vpe *vpe, bool valid) 1307 { 1308 struct its_cmd_desc desc; 1309 1310 desc.its_vmapp_cmd.vpe = vpe; 1311 desc.its_vmapp_cmd.valid = valid; 1312 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1313 1314 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1315 } 1316 1317 static void its_send_vmovp(struct its_vpe *vpe) 1318 { 1319 struct its_cmd_desc desc = {}; 1320 struct its_node *its; 1321 int col_id = vpe->col_idx; 1322 1323 desc.its_vmovp_cmd.vpe = vpe; 1324 1325 if (!its_list_map) { 1326 its = list_first_entry(&its_nodes, struct its_node, entry); 1327 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1328 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1329 return; 1330 } 1331 1332 /* 1333 * Protect against concurrent updates of the mapping state on 1334 * individual VMs. 1335 */ 1336 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock); 1337 1338 /* 1339 * Yet another marvel of the architecture. If using the 1340 * its_list "feature", we need to make sure that all ITSs 1341 * receive all VMOVP commands in the same order. The only way 1342 * to guarantee this is to make vmovp a serialization point. 1343 * 1344 * Wall <-- Head. 1345 */ 1346 guard(raw_spinlock)(&vmovp_lock); 1347 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1348 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1349 1350 /* Emit VMOVPs */ 1351 list_for_each_entry(its, &its_nodes, entry) { 1352 if (!is_v4(its)) 1353 continue; 1354 1355 if (!require_its_list_vmovp(vpe->its_vm, its)) 1356 continue; 1357 1358 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1359 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1360 } 1361 } 1362 1363 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1364 { 1365 struct its_cmd_desc desc; 1366 1367 desc.its_vinvall_cmd.vpe = vpe; 1368 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1369 } 1370 1371 static void its_send_vinv(struct its_device *dev, u32 event_id) 1372 { 1373 struct its_cmd_desc desc; 1374 1375 /* 1376 * There is no real VINV command. This is just a normal INV, 1377 * with a VSYNC instead of a SYNC. 1378 */ 1379 desc.its_inv_cmd.dev = dev; 1380 desc.its_inv_cmd.event_id = event_id; 1381 1382 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1383 } 1384 1385 static void its_send_vint(struct its_device *dev, u32 event_id) 1386 { 1387 struct its_cmd_desc desc; 1388 1389 /* 1390 * There is no real VINT command. This is just a normal INT, 1391 * with a VSYNC instead of a SYNC. 1392 */ 1393 desc.its_int_cmd.dev = dev; 1394 desc.its_int_cmd.event_id = event_id; 1395 1396 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1397 } 1398 1399 static void its_send_vclear(struct its_device *dev, u32 event_id) 1400 { 1401 struct its_cmd_desc desc; 1402 1403 /* 1404 * There is no real VCLEAR command. This is just a normal CLEAR, 1405 * with a VSYNC instead of a SYNC. 1406 */ 1407 desc.its_clear_cmd.dev = dev; 1408 desc.its_clear_cmd.event_id = event_id; 1409 1410 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1411 } 1412 1413 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1414 { 1415 struct its_cmd_desc desc; 1416 1417 desc.its_invdb_cmd.vpe = vpe; 1418 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1419 } 1420 1421 /* 1422 * irqchip functions - assumes MSI, mostly. 1423 */ 1424 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1425 { 1426 struct its_vlpi_map *map = get_vlpi_map(d); 1427 irq_hw_number_t hwirq; 1428 void *va; 1429 u8 *cfg; 1430 1431 if (map) { 1432 va = page_address(map->vm->vprop_page); 1433 hwirq = map->vintid; 1434 1435 /* Remember the updated property */ 1436 map->properties &= ~clr; 1437 map->properties |= set | LPI_PROP_GROUP1; 1438 } else { 1439 va = gic_rdists->prop_table_va; 1440 hwirq = d->hwirq; 1441 } 1442 1443 cfg = va + hwirq - 8192; 1444 *cfg &= ~clr; 1445 *cfg |= set | LPI_PROP_GROUP1; 1446 1447 /* 1448 * Make the above write visible to the redistributors. 1449 * And yes, we're flushing exactly: One. Single. Byte. 1450 * Humpf... 1451 */ 1452 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1453 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1454 else 1455 dsb(ishst); 1456 } 1457 1458 static void wait_for_syncr(void __iomem *rdbase) 1459 { 1460 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1461 cpu_relax(); 1462 } 1463 1464 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1465 { 1466 void __iomem *rdbase; 1467 unsigned long flags; 1468 int cpu; 1469 1470 /* Target the redistributor this LPI is currently routed to */ 1471 cpu = irq_to_cpuid_lock(d, &flags); 1472 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1473 1474 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1475 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1476 wait_for_syncr(rdbase); 1477 1478 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1479 irq_to_cpuid_unlock(d, flags); 1480 } 1481 1482 static void direct_lpi_inv(struct irq_data *d) 1483 { 1484 struct its_vlpi_map *map = get_vlpi_map(d); 1485 u64 val; 1486 1487 if (map) { 1488 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1489 1490 WARN_ON(!is_v4_1(its_dev->its)); 1491 1492 val = GICR_INVLPIR_V; 1493 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1494 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1495 } else { 1496 val = d->hwirq; 1497 } 1498 1499 __direct_lpi_inv(d, val); 1500 } 1501 1502 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1503 { 1504 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1505 1506 lpi_write_config(d, clr, set); 1507 if (gic_rdists->has_direct_lpi && 1508 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1509 direct_lpi_inv(d); 1510 else if (!irqd_is_forwarded_to_vcpu(d)) 1511 its_send_inv(its_dev, its_get_event_id(d)); 1512 else 1513 its_send_vinv(its_dev, its_get_event_id(d)); 1514 } 1515 1516 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1517 { 1518 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1519 u32 event = its_get_event_id(d); 1520 struct its_vlpi_map *map; 1521 1522 /* 1523 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1524 * here. 1525 */ 1526 if (is_v4_1(its_dev->its)) 1527 return; 1528 1529 map = dev_event_to_vlpi_map(its_dev, event); 1530 1531 if (map->db_enabled == enable) 1532 return; 1533 1534 map->db_enabled = enable; 1535 1536 /* 1537 * More fun with the architecture: 1538 * 1539 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1540 * value or to 1023, depending on the enable bit. But that 1541 * would be issuing a mapping for an /existing/ DevID+EventID 1542 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1543 * to the /same/ vPE, using this opportunity to adjust the 1544 * doorbell. Mouahahahaha. We loves it, Precious. 1545 */ 1546 its_send_vmovi(its_dev, event); 1547 } 1548 1549 static void its_mask_irq(struct irq_data *d) 1550 { 1551 if (irqd_is_forwarded_to_vcpu(d)) 1552 its_vlpi_set_doorbell(d, false); 1553 1554 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1555 } 1556 1557 static void its_unmask_irq(struct irq_data *d) 1558 { 1559 if (irqd_is_forwarded_to_vcpu(d)) 1560 its_vlpi_set_doorbell(d, true); 1561 1562 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1563 } 1564 1565 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1566 { 1567 if (irqd_affinity_is_managed(d)) 1568 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1569 1570 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1571 } 1572 1573 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1574 { 1575 if (irqd_affinity_is_managed(d)) 1576 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1577 else 1578 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1579 } 1580 1581 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1582 { 1583 if (irqd_affinity_is_managed(d)) 1584 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1585 else 1586 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1587 } 1588 1589 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1590 const struct cpumask *cpu_mask) 1591 { 1592 unsigned int cpu = nr_cpu_ids, tmp; 1593 int count = S32_MAX; 1594 1595 for_each_cpu(tmp, cpu_mask) { 1596 int this_count = its_read_lpi_count(d, tmp); 1597 if (this_count < count) { 1598 cpu = tmp; 1599 count = this_count; 1600 } 1601 } 1602 1603 return cpu; 1604 } 1605 1606 /* 1607 * As suggested by Thomas Gleixner in: 1608 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1609 */ 1610 static int its_select_cpu(struct irq_data *d, 1611 const struct cpumask *aff_mask) 1612 { 1613 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1614 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1615 static struct cpumask __tmpmask; 1616 struct cpumask *tmpmask; 1617 unsigned long flags; 1618 int cpu, node; 1619 node = its_dev->its->numa_node; 1620 tmpmask = &__tmpmask; 1621 1622 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1623 1624 if (!irqd_affinity_is_managed(d)) { 1625 /* First try the NUMA node */ 1626 if (node != NUMA_NO_NODE) { 1627 /* 1628 * Try the intersection of the affinity mask and the 1629 * node mask (and the online mask, just to be safe). 1630 */ 1631 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1632 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1633 1634 /* 1635 * Ideally, we would check if the mask is empty, and 1636 * try again on the full node here. 1637 * 1638 * But it turns out that the way ACPI describes the 1639 * affinity for ITSs only deals about memory, and 1640 * not target CPUs, so it cannot describe a single 1641 * ITS placed next to two NUMA nodes. 1642 * 1643 * Instead, just fallback on the online mask. This 1644 * diverges from Thomas' suggestion above. 1645 */ 1646 cpu = cpumask_pick_least_loaded(d, tmpmask); 1647 if (cpu < nr_cpu_ids) 1648 goto out; 1649 1650 /* If we can't cross sockets, give up */ 1651 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1652 goto out; 1653 1654 /* If the above failed, expand the search */ 1655 } 1656 1657 /* Try the intersection of the affinity and online masks */ 1658 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1659 1660 /* If that doesn't fly, the online mask is the last resort */ 1661 if (cpumask_empty(tmpmask)) 1662 cpumask_copy(tmpmask, cpu_online_mask); 1663 1664 cpu = cpumask_pick_least_loaded(d, tmpmask); 1665 } else { 1666 cpumask_copy(tmpmask, aff_mask); 1667 1668 /* If we cannot cross sockets, limit the search to that node */ 1669 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1670 node != NUMA_NO_NODE) 1671 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1672 1673 cpu = cpumask_pick_least_loaded(d, tmpmask); 1674 } 1675 out: 1676 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1677 1678 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1679 return cpu; 1680 } 1681 1682 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1683 bool force) 1684 { 1685 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1686 struct its_collection *target_col; 1687 u32 id = its_get_event_id(d); 1688 int cpu, prev_cpu; 1689 1690 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1691 if (irqd_is_forwarded_to_vcpu(d)) 1692 return -EINVAL; 1693 1694 prev_cpu = its_dev->event_map.col_map[id]; 1695 its_dec_lpi_count(d, prev_cpu); 1696 1697 if (!force) 1698 cpu = its_select_cpu(d, mask_val); 1699 else 1700 cpu = cpumask_pick_least_loaded(d, mask_val); 1701 1702 if (cpu < 0 || cpu >= nr_cpu_ids) 1703 goto err; 1704 1705 /* don't set the affinity when the target cpu is same as current one */ 1706 if (cpu != prev_cpu) { 1707 target_col = &its_dev->its->collections[cpu]; 1708 its_send_movi(its_dev, target_col, id); 1709 its_dev->event_map.col_map[id] = cpu; 1710 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1711 } 1712 1713 its_inc_lpi_count(d, cpu); 1714 1715 return IRQ_SET_MASK_OK_DONE; 1716 1717 err: 1718 its_inc_lpi_count(d, prev_cpu); 1719 return -EINVAL; 1720 } 1721 1722 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1723 { 1724 struct its_node *its = its_dev->its; 1725 1726 return its->phys_base + GITS_TRANSLATER; 1727 } 1728 1729 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1730 { 1731 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1732 struct its_node *its; 1733 u64 addr; 1734 1735 its = its_dev->its; 1736 addr = its->get_msi_base(its_dev); 1737 1738 msg->address_lo = lower_32_bits(addr); 1739 msg->address_hi = upper_32_bits(addr); 1740 msg->data = its_get_event_id(d); 1741 1742 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1743 } 1744 1745 static int its_irq_set_irqchip_state(struct irq_data *d, 1746 enum irqchip_irq_state which, 1747 bool state) 1748 { 1749 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1750 u32 event = its_get_event_id(d); 1751 1752 if (which != IRQCHIP_STATE_PENDING) 1753 return -EINVAL; 1754 1755 if (irqd_is_forwarded_to_vcpu(d)) { 1756 if (state) 1757 its_send_vint(its_dev, event); 1758 else 1759 its_send_vclear(its_dev, event); 1760 } else { 1761 if (state) 1762 its_send_int(its_dev, event); 1763 else 1764 its_send_clear(its_dev, event); 1765 } 1766 1767 return 0; 1768 } 1769 1770 static int its_irq_retrigger(struct irq_data *d) 1771 { 1772 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1773 } 1774 1775 /* 1776 * Two favourable cases: 1777 * 1778 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1779 * for vSGI delivery 1780 * 1781 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1782 * and we're better off mapping all VPEs always 1783 * 1784 * If neither (a) nor (b) is true, then we map vPEs on demand. 1785 * 1786 */ 1787 static bool gic_requires_eager_mapping(void) 1788 { 1789 if (!its_list_map || gic_rdists->has_rvpeid) 1790 return true; 1791 1792 return false; 1793 } 1794 1795 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1796 { 1797 if (gic_requires_eager_mapping()) 1798 return; 1799 1800 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1801 1802 /* 1803 * If the VM wasn't mapped yet, iterate over the vpes and get 1804 * them mapped now. 1805 */ 1806 vm->vlpi_count[its->list_nr]++; 1807 1808 if (vm->vlpi_count[its->list_nr] == 1) { 1809 int i; 1810 1811 for (i = 0; i < vm->nr_vpes; i++) { 1812 struct its_vpe *vpe = vm->vpes[i]; 1813 1814 scoped_guard(raw_spinlock, &vpe->vpe_lock) 1815 its_send_vmapp(its, vpe, true); 1816 1817 its_send_vinvall(its, vpe); 1818 } 1819 } 1820 } 1821 1822 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1823 { 1824 /* Not using the ITS list? Everything is always mapped. */ 1825 if (gic_requires_eager_mapping()) 1826 return; 1827 1828 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1829 1830 if (!--vm->vlpi_count[its->list_nr]) { 1831 int i; 1832 1833 for (i = 0; i < vm->nr_vpes; i++) { 1834 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock); 1835 its_send_vmapp(its, vm->vpes[i], false); 1836 } 1837 } 1838 } 1839 1840 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1841 { 1842 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1843 u32 event = its_get_event_id(d); 1844 1845 if (!info->map) 1846 return -EINVAL; 1847 1848 if (!its_dev->event_map.vm) { 1849 struct its_vlpi_map *maps; 1850 1851 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1852 GFP_ATOMIC); 1853 if (!maps) 1854 return -ENOMEM; 1855 1856 its_dev->event_map.vm = info->map->vm; 1857 its_dev->event_map.vlpi_maps = maps; 1858 } else if (its_dev->event_map.vm != info->map->vm) { 1859 return -EINVAL; 1860 } 1861 1862 /* Get our private copy of the mapping information */ 1863 its_dev->event_map.vlpi_maps[event] = *info->map; 1864 1865 if (irqd_is_forwarded_to_vcpu(d)) { 1866 /* Already mapped, move it around */ 1867 its_send_vmovi(its_dev, event); 1868 } else { 1869 /* Ensure all the VPEs are mapped on this ITS */ 1870 its_map_vm(its_dev->its, info->map->vm); 1871 1872 /* 1873 * Flag the interrupt as forwarded so that we can 1874 * start poking the virtual property table. 1875 */ 1876 irqd_set_forwarded_to_vcpu(d); 1877 1878 /* Write out the property to the prop table */ 1879 lpi_write_config(d, 0xff, info->map->properties); 1880 1881 /* Drop the physical mapping */ 1882 its_send_discard(its_dev, event); 1883 1884 /* and install the virtual one */ 1885 its_send_vmapti(its_dev, event); 1886 1887 /* Increment the number of VLPIs */ 1888 its_dev->event_map.nr_vlpis++; 1889 } 1890 1891 return 0; 1892 } 1893 1894 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1895 { 1896 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1897 struct its_vlpi_map *map; 1898 1899 map = get_vlpi_map(d); 1900 1901 if (!its_dev->event_map.vm || !map) 1902 return -EINVAL; 1903 1904 /* Copy our mapping information to the incoming request */ 1905 *info->map = *map; 1906 1907 return 0; 1908 } 1909 1910 static int its_vlpi_unmap(struct irq_data *d) 1911 { 1912 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1913 u32 event = its_get_event_id(d); 1914 1915 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1916 return -EINVAL; 1917 1918 /* Drop the virtual mapping */ 1919 its_send_discard(its_dev, event); 1920 1921 /* and restore the physical one */ 1922 irqd_clr_forwarded_to_vcpu(d); 1923 its_send_mapti(its_dev, d->hwirq, event); 1924 lpi_update_config(d, 0xff, (lpi_prop_prio | 1925 LPI_PROP_ENABLED | 1926 LPI_PROP_GROUP1)); 1927 1928 /* Potentially unmap the VM from this ITS */ 1929 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1930 1931 /* 1932 * Drop the refcount and make the device available again if 1933 * this was the last VLPI. 1934 */ 1935 if (!--its_dev->event_map.nr_vlpis) { 1936 its_dev->event_map.vm = NULL; 1937 kfree(its_dev->event_map.vlpi_maps); 1938 } 1939 1940 return 0; 1941 } 1942 1943 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1944 { 1945 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1946 1947 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1948 return -EINVAL; 1949 1950 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1951 lpi_update_config(d, 0xff, info->config); 1952 else 1953 lpi_write_config(d, 0xff, info->config); 1954 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1955 1956 return 0; 1957 } 1958 1959 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1960 { 1961 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1962 struct its_cmd_info *info = vcpu_info; 1963 1964 /* Need a v4 ITS */ 1965 if (!is_v4(its_dev->its)) 1966 return -EINVAL; 1967 1968 guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock); 1969 1970 /* Unmap request? */ 1971 if (!info) 1972 return its_vlpi_unmap(d); 1973 1974 switch (info->cmd_type) { 1975 case MAP_VLPI: 1976 return its_vlpi_map(d, info); 1977 1978 case GET_VLPI: 1979 return its_vlpi_get(d, info); 1980 1981 case PROP_UPDATE_VLPI: 1982 case PROP_UPDATE_AND_INV_VLPI: 1983 return its_vlpi_prop_update(d, info); 1984 1985 default: 1986 return -EINVAL; 1987 } 1988 } 1989 1990 static struct irq_chip its_irq_chip = { 1991 .name = "ITS", 1992 .irq_mask = its_mask_irq, 1993 .irq_unmask = its_unmask_irq, 1994 .irq_eoi = irq_chip_eoi_parent, 1995 .irq_set_affinity = its_set_affinity, 1996 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1997 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1998 .irq_retrigger = its_irq_retrigger, 1999 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2000 }; 2001 2002 2003 /* 2004 * How we allocate LPIs: 2005 * 2006 * lpi_range_list contains ranges of LPIs that are to available to 2007 * allocate from. To allocate LPIs, just pick the first range that 2008 * fits the required allocation, and reduce it by the required 2009 * amount. Once empty, remove the range from the list. 2010 * 2011 * To free a range of LPIs, add a free range to the list, sort it and 2012 * merge the result if the new range happens to be adjacent to an 2013 * already free block. 2014 * 2015 * The consequence of the above is that allocation is cost is low, but 2016 * freeing is expensive. We assumes that freeing rarely occurs. 2017 */ 2018 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2019 2020 static DEFINE_MUTEX(lpi_range_lock); 2021 static LIST_HEAD(lpi_range_list); 2022 2023 struct lpi_range { 2024 struct list_head entry; 2025 u32 base_id; 2026 u32 span; 2027 }; 2028 2029 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2030 { 2031 struct lpi_range *range; 2032 2033 range = kmalloc(sizeof(*range), GFP_KERNEL); 2034 if (range) { 2035 range->base_id = base; 2036 range->span = span; 2037 } 2038 2039 return range; 2040 } 2041 2042 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2043 { 2044 struct lpi_range *range, *tmp; 2045 int err = -ENOSPC; 2046 2047 mutex_lock(&lpi_range_lock); 2048 2049 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2050 if (range->span >= nr_lpis) { 2051 *base = range->base_id; 2052 range->base_id += nr_lpis; 2053 range->span -= nr_lpis; 2054 2055 if (range->span == 0) { 2056 list_del(&range->entry); 2057 kfree(range); 2058 } 2059 2060 err = 0; 2061 break; 2062 } 2063 } 2064 2065 mutex_unlock(&lpi_range_lock); 2066 2067 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2068 return err; 2069 } 2070 2071 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2072 { 2073 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2074 return; 2075 if (a->base_id + a->span != b->base_id) 2076 return; 2077 b->base_id = a->base_id; 2078 b->span += a->span; 2079 list_del(&a->entry); 2080 kfree(a); 2081 } 2082 2083 static int free_lpi_range(u32 base, u32 nr_lpis) 2084 { 2085 struct lpi_range *new, *old; 2086 2087 new = mk_lpi_range(base, nr_lpis); 2088 if (!new) 2089 return -ENOMEM; 2090 2091 mutex_lock(&lpi_range_lock); 2092 2093 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2094 if (old->base_id < base) 2095 break; 2096 } 2097 /* 2098 * old is the last element with ->base_id smaller than base, 2099 * so new goes right after it. If there are no elements with 2100 * ->base_id smaller than base, &old->entry ends up pointing 2101 * at the head of the list, and inserting new it the start of 2102 * the list is the right thing to do in that case as well. 2103 */ 2104 list_add(&new->entry, &old->entry); 2105 /* 2106 * Now check if we can merge with the preceding and/or 2107 * following ranges. 2108 */ 2109 merge_lpi_ranges(old, new); 2110 merge_lpi_ranges(new, list_next_entry(new, entry)); 2111 2112 mutex_unlock(&lpi_range_lock); 2113 return 0; 2114 } 2115 2116 static int __init its_lpi_init(u32 id_bits) 2117 { 2118 u32 lpis = (1UL << id_bits) - 8192; 2119 u32 numlpis; 2120 int err; 2121 2122 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2123 2124 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2125 lpis = numlpis; 2126 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2127 lpis); 2128 } 2129 2130 /* 2131 * Initializing the allocator is just the same as freeing the 2132 * full range of LPIs. 2133 */ 2134 err = free_lpi_range(8192, lpis); 2135 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2136 return err; 2137 } 2138 2139 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2140 { 2141 unsigned long *bitmap = NULL; 2142 int err = 0; 2143 2144 do { 2145 err = alloc_lpi_range(nr_irqs, base); 2146 if (!err) 2147 break; 2148 2149 nr_irqs /= 2; 2150 } while (nr_irqs > 0); 2151 2152 if (!nr_irqs) 2153 err = -ENOSPC; 2154 2155 if (err) 2156 goto out; 2157 2158 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2159 if (!bitmap) 2160 goto out; 2161 2162 *nr_ids = nr_irqs; 2163 2164 out: 2165 if (!bitmap) 2166 *base = *nr_ids = 0; 2167 2168 return bitmap; 2169 } 2170 2171 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2172 { 2173 WARN_ON(free_lpi_range(base, nr_ids)); 2174 bitmap_free(bitmap); 2175 } 2176 2177 static void gic_reset_prop_table(void *va) 2178 { 2179 /* Regular IRQ priority, Group-1, disabled */ 2180 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2181 2182 /* Make sure the GIC will observe the written configuration */ 2183 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2184 } 2185 2186 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2187 { 2188 struct page *prop_page; 2189 2190 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2191 if (!prop_page) 2192 return NULL; 2193 2194 gic_reset_prop_table(page_address(prop_page)); 2195 2196 return prop_page; 2197 } 2198 2199 static void its_free_prop_table(struct page *prop_page) 2200 { 2201 free_pages((unsigned long)page_address(prop_page), 2202 get_order(LPI_PROPBASE_SZ)); 2203 } 2204 2205 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2206 { 2207 phys_addr_t start, end, addr_end; 2208 u64 i; 2209 2210 /* 2211 * We don't bother checking for a kdump kernel as by 2212 * construction, the LPI tables are out of this kernel's 2213 * memory map. 2214 */ 2215 if (is_kdump_kernel()) 2216 return true; 2217 2218 addr_end = addr + size - 1; 2219 2220 for_each_reserved_mem_range(i, &start, &end) { 2221 if (addr >= start && addr_end <= end) 2222 return true; 2223 } 2224 2225 /* Not found, not a good sign... */ 2226 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2227 &addr, &addr_end); 2228 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2229 return false; 2230 } 2231 2232 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2233 { 2234 if (efi_enabled(EFI_CONFIG_TABLES)) 2235 return efi_mem_reserve_persistent(addr, size); 2236 2237 return 0; 2238 } 2239 2240 static int __init its_setup_lpi_prop_table(void) 2241 { 2242 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2243 u64 val; 2244 2245 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2246 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2247 2248 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2249 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2250 LPI_PROPBASE_SZ, 2251 MEMREMAP_WB); 2252 gic_reset_prop_table(gic_rdists->prop_table_va); 2253 } else { 2254 struct page *page; 2255 2256 lpi_id_bits = min_t(u32, 2257 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2258 ITS_MAX_LPI_NRBITS); 2259 page = its_allocate_prop_table(GFP_NOWAIT); 2260 if (!page) { 2261 pr_err("Failed to allocate PROPBASE\n"); 2262 return -ENOMEM; 2263 } 2264 2265 gic_rdists->prop_table_pa = page_to_phys(page); 2266 gic_rdists->prop_table_va = page_address(page); 2267 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2268 LPI_PROPBASE_SZ)); 2269 } 2270 2271 pr_info("GICv3: using LPI property table @%pa\n", 2272 &gic_rdists->prop_table_pa); 2273 2274 return its_lpi_init(lpi_id_bits); 2275 } 2276 2277 static const char *its_base_type_string[] = { 2278 [GITS_BASER_TYPE_DEVICE] = "Devices", 2279 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2280 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2281 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2282 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2283 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2284 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2285 }; 2286 2287 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2288 { 2289 u32 idx = baser - its->tables; 2290 2291 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2292 } 2293 2294 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2295 u64 val) 2296 { 2297 u32 idx = baser - its->tables; 2298 2299 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2300 baser->val = its_read_baser(its, baser); 2301 } 2302 2303 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2304 u64 cache, u64 shr, u32 order, bool indirect) 2305 { 2306 u64 val = its_read_baser(its, baser); 2307 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2308 u64 type = GITS_BASER_TYPE(val); 2309 u64 baser_phys, tmp; 2310 u32 alloc_pages, psz; 2311 struct page *page; 2312 void *base; 2313 2314 psz = baser->psz; 2315 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2316 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2317 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2318 &its->phys_base, its_base_type_string[type], 2319 alloc_pages, GITS_BASER_PAGES_MAX); 2320 alloc_pages = GITS_BASER_PAGES_MAX; 2321 order = get_order(GITS_BASER_PAGES_MAX * psz); 2322 } 2323 2324 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2325 if (!page) 2326 return -ENOMEM; 2327 2328 base = (void *)page_address(page); 2329 baser_phys = virt_to_phys(base); 2330 2331 /* Check if the physical address of the memory is above 48bits */ 2332 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2333 2334 /* 52bit PA is supported only when PageSize=64K */ 2335 if (psz != SZ_64K) { 2336 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2337 free_pages((unsigned long)base, order); 2338 return -ENXIO; 2339 } 2340 2341 /* Convert 52bit PA to 48bit field */ 2342 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2343 } 2344 2345 retry_baser: 2346 val = (baser_phys | 2347 (type << GITS_BASER_TYPE_SHIFT) | 2348 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2349 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2350 cache | 2351 shr | 2352 GITS_BASER_VALID); 2353 2354 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2355 2356 switch (psz) { 2357 case SZ_4K: 2358 val |= GITS_BASER_PAGE_SIZE_4K; 2359 break; 2360 case SZ_16K: 2361 val |= GITS_BASER_PAGE_SIZE_16K; 2362 break; 2363 case SZ_64K: 2364 val |= GITS_BASER_PAGE_SIZE_64K; 2365 break; 2366 } 2367 2368 if (!shr) 2369 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2370 2371 its_write_baser(its, baser, val); 2372 tmp = baser->val; 2373 2374 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2375 /* 2376 * Shareability didn't stick. Just use 2377 * whatever the read reported, which is likely 2378 * to be the only thing this redistributor 2379 * supports. If that's zero, make it 2380 * non-cacheable as well. 2381 */ 2382 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2383 if (!shr) 2384 cache = GITS_BASER_nC; 2385 2386 goto retry_baser; 2387 } 2388 2389 if (val != tmp) { 2390 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2391 &its->phys_base, its_base_type_string[type], 2392 val, tmp); 2393 free_pages((unsigned long)base, order); 2394 return -ENXIO; 2395 } 2396 2397 baser->order = order; 2398 baser->base = base; 2399 baser->psz = psz; 2400 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2401 2402 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2403 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2404 its_base_type_string[type], 2405 (unsigned long)virt_to_phys(base), 2406 indirect ? "indirect" : "flat", (int)esz, 2407 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2408 2409 return 0; 2410 } 2411 2412 static bool its_parse_indirect_baser(struct its_node *its, 2413 struct its_baser *baser, 2414 u32 *order, u32 ids) 2415 { 2416 u64 tmp = its_read_baser(its, baser); 2417 u64 type = GITS_BASER_TYPE(tmp); 2418 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2419 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2420 u32 new_order = *order; 2421 u32 psz = baser->psz; 2422 bool indirect = false; 2423 2424 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2425 if ((esz << ids) > (psz * 2)) { 2426 /* 2427 * Find out whether hw supports a single or two-level table by 2428 * table by reading bit at offset '62' after writing '1' to it. 2429 */ 2430 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2431 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2432 2433 if (indirect) { 2434 /* 2435 * The size of the lvl2 table is equal to ITS page size 2436 * which is 'psz'. For computing lvl1 table size, 2437 * subtract ID bits that sparse lvl2 table from 'ids' 2438 * which is reported by ITS hardware times lvl1 table 2439 * entry size. 2440 */ 2441 ids -= ilog2(psz / (int)esz); 2442 esz = GITS_LVL1_ENTRY_SIZE; 2443 } 2444 } 2445 2446 /* 2447 * Allocate as many entries as required to fit the 2448 * range of device IDs that the ITS can grok... The ID 2449 * space being incredibly sparse, this results in a 2450 * massive waste of memory if two-level device table 2451 * feature is not supported by hardware. 2452 */ 2453 new_order = max_t(u32, get_order(esz << ids), new_order); 2454 if (new_order > MAX_PAGE_ORDER) { 2455 new_order = MAX_PAGE_ORDER; 2456 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2457 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2458 &its->phys_base, its_base_type_string[type], 2459 device_ids(its), ids); 2460 } 2461 2462 *order = new_order; 2463 2464 return indirect; 2465 } 2466 2467 static u32 compute_common_aff(u64 val) 2468 { 2469 u32 aff, clpiaff; 2470 2471 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2472 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2473 2474 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2475 } 2476 2477 static u32 compute_its_aff(struct its_node *its) 2478 { 2479 u64 val; 2480 u32 svpet; 2481 2482 /* 2483 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2484 * the resulting affinity. We then use that to see if this match 2485 * our own affinity. 2486 */ 2487 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2488 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2489 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2490 return compute_common_aff(val); 2491 } 2492 2493 static struct its_node *find_sibling_its(struct its_node *cur_its) 2494 { 2495 struct its_node *its; 2496 u32 aff; 2497 2498 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2499 return NULL; 2500 2501 aff = compute_its_aff(cur_its); 2502 2503 list_for_each_entry(its, &its_nodes, entry) { 2504 u64 baser; 2505 2506 if (!is_v4_1(its) || its == cur_its) 2507 continue; 2508 2509 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2510 continue; 2511 2512 if (aff != compute_its_aff(its)) 2513 continue; 2514 2515 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2516 baser = its->tables[2].val; 2517 if (!(baser & GITS_BASER_VALID)) 2518 continue; 2519 2520 return its; 2521 } 2522 2523 return NULL; 2524 } 2525 2526 static void its_free_tables(struct its_node *its) 2527 { 2528 int i; 2529 2530 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2531 if (its->tables[i].base) { 2532 free_pages((unsigned long)its->tables[i].base, 2533 its->tables[i].order); 2534 its->tables[i].base = NULL; 2535 } 2536 } 2537 } 2538 2539 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2540 { 2541 u64 psz = SZ_64K; 2542 2543 while (psz) { 2544 u64 val, gpsz; 2545 2546 val = its_read_baser(its, baser); 2547 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2548 2549 switch (psz) { 2550 case SZ_64K: 2551 gpsz = GITS_BASER_PAGE_SIZE_64K; 2552 break; 2553 case SZ_16K: 2554 gpsz = GITS_BASER_PAGE_SIZE_16K; 2555 break; 2556 case SZ_4K: 2557 default: 2558 gpsz = GITS_BASER_PAGE_SIZE_4K; 2559 break; 2560 } 2561 2562 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2563 2564 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2565 its_write_baser(its, baser, val); 2566 2567 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2568 break; 2569 2570 switch (psz) { 2571 case SZ_64K: 2572 psz = SZ_16K; 2573 break; 2574 case SZ_16K: 2575 psz = SZ_4K; 2576 break; 2577 case SZ_4K: 2578 default: 2579 return -1; 2580 } 2581 } 2582 2583 baser->psz = psz; 2584 return 0; 2585 } 2586 2587 static int its_alloc_tables(struct its_node *its) 2588 { 2589 u64 shr = GITS_BASER_InnerShareable; 2590 u64 cache = GITS_BASER_RaWaWb; 2591 int err, i; 2592 2593 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2594 /* erratum 24313: ignore memory access type */ 2595 cache = GITS_BASER_nCnB; 2596 2597 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2598 cache = GITS_BASER_nC; 2599 shr = 0; 2600 } 2601 2602 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2603 struct its_baser *baser = its->tables + i; 2604 u64 val = its_read_baser(its, baser); 2605 u64 type = GITS_BASER_TYPE(val); 2606 bool indirect = false; 2607 u32 order; 2608 2609 if (type == GITS_BASER_TYPE_NONE) 2610 continue; 2611 2612 if (its_probe_baser_psz(its, baser)) { 2613 its_free_tables(its); 2614 return -ENXIO; 2615 } 2616 2617 order = get_order(baser->psz); 2618 2619 switch (type) { 2620 case GITS_BASER_TYPE_DEVICE: 2621 indirect = its_parse_indirect_baser(its, baser, &order, 2622 device_ids(its)); 2623 break; 2624 2625 case GITS_BASER_TYPE_VCPU: 2626 if (is_v4_1(its)) { 2627 struct its_node *sibling; 2628 2629 WARN_ON(i != 2); 2630 if ((sibling = find_sibling_its(its))) { 2631 *baser = sibling->tables[2]; 2632 its_write_baser(its, baser, baser->val); 2633 continue; 2634 } 2635 } 2636 2637 indirect = its_parse_indirect_baser(its, baser, &order, 2638 ITS_MAX_VPEID_BITS); 2639 break; 2640 } 2641 2642 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2643 if (err < 0) { 2644 its_free_tables(its); 2645 return err; 2646 } 2647 2648 /* Update settings which will be used for next BASERn */ 2649 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2650 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2651 } 2652 2653 return 0; 2654 } 2655 2656 static u64 inherit_vpe_l1_table_from_its(void) 2657 { 2658 struct its_node *its; 2659 u64 val; 2660 u32 aff; 2661 2662 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2663 aff = compute_common_aff(val); 2664 2665 list_for_each_entry(its, &its_nodes, entry) { 2666 u64 baser, addr; 2667 2668 if (!is_v4_1(its)) 2669 continue; 2670 2671 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2672 continue; 2673 2674 if (aff != compute_its_aff(its)) 2675 continue; 2676 2677 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2678 baser = its->tables[2].val; 2679 if (!(baser & GITS_BASER_VALID)) 2680 continue; 2681 2682 /* We have a winner! */ 2683 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2684 2685 val = GICR_VPROPBASER_4_1_VALID; 2686 if (baser & GITS_BASER_INDIRECT) 2687 val |= GICR_VPROPBASER_4_1_INDIRECT; 2688 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2689 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2690 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2691 case GIC_PAGE_SIZE_64K: 2692 addr = GITS_BASER_ADDR_48_to_52(baser); 2693 break; 2694 default: 2695 addr = baser & GENMASK_ULL(47, 12); 2696 break; 2697 } 2698 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2699 if (rdists_support_shareable()) { 2700 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2701 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2702 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2703 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2704 } 2705 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2706 2707 return val; 2708 } 2709 2710 return 0; 2711 } 2712 2713 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2714 { 2715 u32 aff; 2716 u64 val; 2717 int cpu; 2718 2719 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2720 aff = compute_common_aff(val); 2721 2722 for_each_possible_cpu(cpu) { 2723 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2724 2725 if (!base || cpu == smp_processor_id()) 2726 continue; 2727 2728 val = gic_read_typer(base + GICR_TYPER); 2729 if (aff != compute_common_aff(val)) 2730 continue; 2731 2732 /* 2733 * At this point, we have a victim. This particular CPU 2734 * has already booted, and has an affinity that matches 2735 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2736 * Make sure we don't write the Z bit in that case. 2737 */ 2738 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2739 val &= ~GICR_VPROPBASER_4_1_Z; 2740 2741 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2742 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2743 2744 return val; 2745 } 2746 2747 return 0; 2748 } 2749 2750 static bool allocate_vpe_l2_table(int cpu, u32 id) 2751 { 2752 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2753 unsigned int psz, esz, idx, npg, gpsz; 2754 u64 val; 2755 struct page *page; 2756 __le64 *table; 2757 2758 if (!gic_rdists->has_rvpeid) 2759 return true; 2760 2761 /* Skip non-present CPUs */ 2762 if (!base) 2763 return true; 2764 2765 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2766 2767 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2768 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2769 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2770 2771 switch (gpsz) { 2772 default: 2773 WARN_ON(1); 2774 fallthrough; 2775 case GIC_PAGE_SIZE_4K: 2776 psz = SZ_4K; 2777 break; 2778 case GIC_PAGE_SIZE_16K: 2779 psz = SZ_16K; 2780 break; 2781 case GIC_PAGE_SIZE_64K: 2782 psz = SZ_64K; 2783 break; 2784 } 2785 2786 /* Don't allow vpe_id that exceeds single, flat table limit */ 2787 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2788 return (id < (npg * psz / (esz * SZ_8))); 2789 2790 /* Compute 1st level table index & check if that exceeds table limit */ 2791 idx = id >> ilog2(psz / (esz * SZ_8)); 2792 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2793 return false; 2794 2795 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2796 2797 /* Allocate memory for 2nd level table */ 2798 if (!table[idx]) { 2799 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2800 if (!page) 2801 return false; 2802 2803 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2804 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2805 gic_flush_dcache_to_poc(page_address(page), psz); 2806 2807 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2808 2809 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2810 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2811 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2812 2813 /* Ensure updated table contents are visible to RD hardware */ 2814 dsb(sy); 2815 } 2816 2817 return true; 2818 } 2819 2820 static int allocate_vpe_l1_table(void) 2821 { 2822 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2823 u64 val, gpsz, npg, pa; 2824 unsigned int psz = SZ_64K; 2825 unsigned int np, epp, esz; 2826 struct page *page; 2827 2828 if (!gic_rdists->has_rvpeid) 2829 return 0; 2830 2831 /* 2832 * if VPENDBASER.Valid is set, disable any previously programmed 2833 * VPE by setting PendingLast while clearing Valid. This has the 2834 * effect of making sure no doorbell will be generated and we can 2835 * then safely clear VPROPBASER.Valid. 2836 */ 2837 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2838 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2839 vlpi_base + GICR_VPENDBASER); 2840 2841 /* 2842 * If we can inherit the configuration from another RD, let's do 2843 * so. Otherwise, we have to go through the allocation process. We 2844 * assume that all RDs have the exact same requirements, as 2845 * nothing will work otherwise. 2846 */ 2847 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2848 if (val & GICR_VPROPBASER_4_1_VALID) 2849 goto out; 2850 2851 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2852 if (!gic_data_rdist()->vpe_table_mask) 2853 return -ENOMEM; 2854 2855 val = inherit_vpe_l1_table_from_its(); 2856 if (val & GICR_VPROPBASER_4_1_VALID) 2857 goto out; 2858 2859 /* First probe the page size */ 2860 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2861 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2862 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2863 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2864 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2865 2866 switch (gpsz) { 2867 default: 2868 gpsz = GIC_PAGE_SIZE_4K; 2869 fallthrough; 2870 case GIC_PAGE_SIZE_4K: 2871 psz = SZ_4K; 2872 break; 2873 case GIC_PAGE_SIZE_16K: 2874 psz = SZ_16K; 2875 break; 2876 case GIC_PAGE_SIZE_64K: 2877 psz = SZ_64K; 2878 break; 2879 } 2880 2881 /* 2882 * Start populating the register from scratch, including RO fields 2883 * (which we want to print in debug cases...) 2884 */ 2885 val = 0; 2886 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2887 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2888 2889 /* How many entries per GIC page? */ 2890 esz++; 2891 epp = psz / (esz * SZ_8); 2892 2893 /* 2894 * If we need more than just a single L1 page, flag the table 2895 * as indirect and compute the number of required L1 pages. 2896 */ 2897 if (epp < ITS_MAX_VPEID) { 2898 int nl2; 2899 2900 val |= GICR_VPROPBASER_4_1_INDIRECT; 2901 2902 /* Number of L2 pages required to cover the VPEID space */ 2903 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2904 2905 /* Number of L1 pages to point to the L2 pages */ 2906 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2907 } else { 2908 npg = 1; 2909 } 2910 2911 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2912 2913 /* Right, that's the number of CPU pages we need for L1 */ 2914 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2915 2916 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2917 np, npg, psz, epp, esz); 2918 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2919 if (!page) 2920 return -ENOMEM; 2921 2922 gic_data_rdist()->vpe_l1_base = page_address(page); 2923 pa = virt_to_phys(page_address(page)); 2924 WARN_ON(!IS_ALIGNED(pa, psz)); 2925 2926 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2927 if (rdists_support_shareable()) { 2928 val |= GICR_VPROPBASER_RaWb; 2929 val |= GICR_VPROPBASER_InnerShareable; 2930 } 2931 val |= GICR_VPROPBASER_4_1_Z; 2932 val |= GICR_VPROPBASER_4_1_VALID; 2933 2934 out: 2935 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2936 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2937 2938 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2939 smp_processor_id(), val, 2940 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2941 2942 return 0; 2943 } 2944 2945 static int its_alloc_collections(struct its_node *its) 2946 { 2947 int i; 2948 2949 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2950 GFP_KERNEL); 2951 if (!its->collections) 2952 return -ENOMEM; 2953 2954 for (i = 0; i < nr_cpu_ids; i++) 2955 its->collections[i].target_address = ~0ULL; 2956 2957 return 0; 2958 } 2959 2960 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2961 { 2962 struct page *pend_page; 2963 2964 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2965 get_order(LPI_PENDBASE_SZ)); 2966 if (!pend_page) 2967 return NULL; 2968 2969 /* Make sure the GIC will observe the zero-ed page */ 2970 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2971 2972 return pend_page; 2973 } 2974 2975 static void its_free_pending_table(struct page *pt) 2976 { 2977 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2978 } 2979 2980 /* 2981 * Booting with kdump and LPIs enabled is generally fine. Any other 2982 * case is wrong in the absence of firmware/EFI support. 2983 */ 2984 static bool enabled_lpis_allowed(void) 2985 { 2986 phys_addr_t addr; 2987 u64 val; 2988 2989 /* Check whether the property table is in a reserved region */ 2990 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2991 addr = val & GENMASK_ULL(51, 12); 2992 2993 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2994 } 2995 2996 static int __init allocate_lpi_tables(void) 2997 { 2998 u64 val; 2999 int err, cpu; 3000 3001 /* 3002 * If LPIs are enabled while we run this from the boot CPU, 3003 * flag the RD tables as pre-allocated if the stars do align. 3004 */ 3005 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3006 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3007 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3008 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3009 pr_info("GICv3: Using preallocated redistributor tables\n"); 3010 } 3011 3012 err = its_setup_lpi_prop_table(); 3013 if (err) 3014 return err; 3015 3016 /* 3017 * We allocate all the pending tables anyway, as we may have a 3018 * mix of RDs that have had LPIs enabled, and some that 3019 * don't. We'll free the unused ones as each CPU comes online. 3020 */ 3021 for_each_possible_cpu(cpu) { 3022 struct page *pend_page; 3023 3024 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3025 if (!pend_page) { 3026 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3027 return -ENOMEM; 3028 } 3029 3030 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3031 } 3032 3033 return 0; 3034 } 3035 3036 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3037 { 3038 u32 count = 1000000; /* 1s! */ 3039 bool clean; 3040 u64 val; 3041 3042 do { 3043 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3044 clean = !(val & GICR_VPENDBASER_Dirty); 3045 if (!clean) { 3046 count--; 3047 cpu_relax(); 3048 udelay(1); 3049 } 3050 } while (!clean && count); 3051 3052 if (unlikely(!clean)) 3053 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3054 3055 return val; 3056 } 3057 3058 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3059 { 3060 u64 val; 3061 3062 /* Make sure we wait until the RD is done with the initial scan */ 3063 val = read_vpend_dirty_clear(vlpi_base); 3064 val &= ~GICR_VPENDBASER_Valid; 3065 val &= ~clr; 3066 val |= set; 3067 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3068 3069 val = read_vpend_dirty_clear(vlpi_base); 3070 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3071 val |= GICR_VPENDBASER_PendingLast; 3072 3073 return val; 3074 } 3075 3076 static void its_cpu_init_lpis(void) 3077 { 3078 void __iomem *rbase = gic_data_rdist_rd_base(); 3079 struct page *pend_page; 3080 phys_addr_t paddr; 3081 u64 val, tmp; 3082 3083 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3084 return; 3085 3086 val = readl_relaxed(rbase + GICR_CTLR); 3087 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3088 (val & GICR_CTLR_ENABLE_LPIS)) { 3089 /* 3090 * Check that we get the same property table on all 3091 * RDs. If we don't, this is hopeless. 3092 */ 3093 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3094 paddr &= GENMASK_ULL(51, 12); 3095 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3096 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3097 3098 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3099 paddr &= GENMASK_ULL(51, 16); 3100 3101 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3102 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3103 3104 goto out; 3105 } 3106 3107 pend_page = gic_data_rdist()->pend_page; 3108 paddr = page_to_phys(pend_page); 3109 3110 /* set PROPBASE */ 3111 val = (gic_rdists->prop_table_pa | 3112 GICR_PROPBASER_InnerShareable | 3113 GICR_PROPBASER_RaWaWb | 3114 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3115 3116 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3117 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3118 3119 if (!rdists_support_shareable()) 3120 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3121 3122 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3123 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3124 /* 3125 * The HW reports non-shareable, we must 3126 * remove the cacheability attributes as 3127 * well. 3128 */ 3129 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3130 GICR_PROPBASER_CACHEABILITY_MASK); 3131 val |= GICR_PROPBASER_nC; 3132 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3133 } 3134 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3135 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3136 } 3137 3138 /* set PENDBASE */ 3139 val = (page_to_phys(pend_page) | 3140 GICR_PENDBASER_InnerShareable | 3141 GICR_PENDBASER_RaWaWb); 3142 3143 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3144 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3145 3146 if (!rdists_support_shareable()) 3147 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3148 3149 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3150 /* 3151 * The HW reports non-shareable, we must remove the 3152 * cacheability attributes as well. 3153 */ 3154 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3155 GICR_PENDBASER_CACHEABILITY_MASK); 3156 val |= GICR_PENDBASER_nC; 3157 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3158 } 3159 3160 /* Enable LPIs */ 3161 val = readl_relaxed(rbase + GICR_CTLR); 3162 val |= GICR_CTLR_ENABLE_LPIS; 3163 writel_relaxed(val, rbase + GICR_CTLR); 3164 3165 out: 3166 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3167 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3168 3169 /* 3170 * It's possible for CPU to receive VLPIs before it is 3171 * scheduled as a vPE, especially for the first CPU, and the 3172 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3173 * as out of range and dropped by GIC. 3174 * So we initialize IDbits to known value to avoid VLPI drop. 3175 */ 3176 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3177 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3178 smp_processor_id(), val); 3179 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3180 3181 /* 3182 * Also clear Valid bit of GICR_VPENDBASER, in case some 3183 * ancient programming gets left in and has possibility of 3184 * corrupting memory. 3185 */ 3186 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3187 } 3188 3189 if (allocate_vpe_l1_table()) { 3190 /* 3191 * If the allocation has failed, we're in massive trouble. 3192 * Disable direct injection, and pray that no VM was 3193 * already running... 3194 */ 3195 gic_rdists->has_rvpeid = false; 3196 gic_rdists->has_vlpis = false; 3197 } 3198 3199 /* Make sure the GIC has seen the above */ 3200 dsb(sy); 3201 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3202 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3203 smp_processor_id(), 3204 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3205 "reserved" : "allocated", 3206 &paddr); 3207 } 3208 3209 static void its_cpu_init_collection(struct its_node *its) 3210 { 3211 int cpu = smp_processor_id(); 3212 u64 target; 3213 3214 /* avoid cross node collections and its mapping */ 3215 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3216 struct device_node *cpu_node; 3217 3218 cpu_node = of_get_cpu_node(cpu, NULL); 3219 if (its->numa_node != NUMA_NO_NODE && 3220 its->numa_node != of_node_to_nid(cpu_node)) 3221 return; 3222 } 3223 3224 /* 3225 * We now have to bind each collection to its target 3226 * redistributor. 3227 */ 3228 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3229 /* 3230 * This ITS wants the physical address of the 3231 * redistributor. 3232 */ 3233 target = gic_data_rdist()->phys_base; 3234 } else { 3235 /* This ITS wants a linear CPU number. */ 3236 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3237 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3238 } 3239 3240 /* Perform collection mapping */ 3241 its->collections[cpu].target_address = target; 3242 its->collections[cpu].col_id = cpu; 3243 3244 its_send_mapc(its, &its->collections[cpu], 1); 3245 its_send_invall(its, &its->collections[cpu]); 3246 } 3247 3248 static void its_cpu_init_collections(void) 3249 { 3250 struct its_node *its; 3251 3252 raw_spin_lock(&its_lock); 3253 3254 list_for_each_entry(its, &its_nodes, entry) 3255 its_cpu_init_collection(its); 3256 3257 raw_spin_unlock(&its_lock); 3258 } 3259 3260 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3261 { 3262 struct its_device *its_dev = NULL, *tmp; 3263 unsigned long flags; 3264 3265 raw_spin_lock_irqsave(&its->lock, flags); 3266 3267 list_for_each_entry(tmp, &its->its_device_list, entry) { 3268 if (tmp->device_id == dev_id) { 3269 its_dev = tmp; 3270 break; 3271 } 3272 } 3273 3274 raw_spin_unlock_irqrestore(&its->lock, flags); 3275 3276 return its_dev; 3277 } 3278 3279 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3280 { 3281 int i; 3282 3283 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3284 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3285 return &its->tables[i]; 3286 } 3287 3288 return NULL; 3289 } 3290 3291 static bool its_alloc_table_entry(struct its_node *its, 3292 struct its_baser *baser, u32 id) 3293 { 3294 struct page *page; 3295 u32 esz, idx; 3296 __le64 *table; 3297 3298 /* Don't allow device id that exceeds single, flat table limit */ 3299 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3300 if (!(baser->val & GITS_BASER_INDIRECT)) 3301 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3302 3303 /* Compute 1st level table index & check if that exceeds table limit */ 3304 idx = id >> ilog2(baser->psz / esz); 3305 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3306 return false; 3307 3308 table = baser->base; 3309 3310 /* Allocate memory for 2nd level table */ 3311 if (!table[idx]) { 3312 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3313 get_order(baser->psz)); 3314 if (!page) 3315 return false; 3316 3317 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3318 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3319 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3320 3321 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3322 3323 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3324 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3325 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3326 3327 /* Ensure updated table contents are visible to ITS hardware */ 3328 dsb(sy); 3329 } 3330 3331 return true; 3332 } 3333 3334 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3335 { 3336 struct its_baser *baser; 3337 3338 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3339 3340 /* Don't allow device id that exceeds ITS hardware limit */ 3341 if (!baser) 3342 return (ilog2(dev_id) < device_ids(its)); 3343 3344 return its_alloc_table_entry(its, baser, dev_id); 3345 } 3346 3347 static bool its_alloc_vpe_table(u32 vpe_id) 3348 { 3349 struct its_node *its; 3350 int cpu; 3351 3352 /* 3353 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3354 * could try and only do it on ITSs corresponding to devices 3355 * that have interrupts targeted at this VPE, but the 3356 * complexity becomes crazy (and you have tons of memory 3357 * anyway, right?). 3358 */ 3359 list_for_each_entry(its, &its_nodes, entry) { 3360 struct its_baser *baser; 3361 3362 if (!is_v4(its)) 3363 continue; 3364 3365 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3366 if (!baser) 3367 return false; 3368 3369 if (!its_alloc_table_entry(its, baser, vpe_id)) 3370 return false; 3371 } 3372 3373 /* Non v4.1? No need to iterate RDs and go back early. */ 3374 if (!gic_rdists->has_rvpeid) 3375 return true; 3376 3377 /* 3378 * Make sure the L2 tables are allocated for all copies of 3379 * the L1 table on *all* v4.1 RDs. 3380 */ 3381 for_each_possible_cpu(cpu) { 3382 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3383 return false; 3384 } 3385 3386 return true; 3387 } 3388 3389 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3390 int nvecs, bool alloc_lpis) 3391 { 3392 struct its_device *dev; 3393 unsigned long *lpi_map = NULL; 3394 unsigned long flags; 3395 u16 *col_map = NULL; 3396 void *itt; 3397 int lpi_base; 3398 int nr_lpis; 3399 int nr_ites; 3400 int sz; 3401 3402 if (!its_alloc_device_table(its, dev_id)) 3403 return NULL; 3404 3405 if (WARN_ON(!is_power_of_2(nvecs))) 3406 nvecs = roundup_pow_of_two(nvecs); 3407 3408 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3409 /* 3410 * Even if the device wants a single LPI, the ITT must be 3411 * sized as a power of two (and you need at least one bit...). 3412 */ 3413 nr_ites = max(2, nvecs); 3414 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3415 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3416 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3417 if (alloc_lpis) { 3418 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3419 if (lpi_map) 3420 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3421 GFP_KERNEL); 3422 } else { 3423 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3424 nr_lpis = 0; 3425 lpi_base = 0; 3426 } 3427 3428 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3429 kfree(dev); 3430 kfree(itt); 3431 bitmap_free(lpi_map); 3432 kfree(col_map); 3433 return NULL; 3434 } 3435 3436 gic_flush_dcache_to_poc(itt, sz); 3437 3438 dev->its = its; 3439 dev->itt = itt; 3440 dev->nr_ites = nr_ites; 3441 dev->event_map.lpi_map = lpi_map; 3442 dev->event_map.col_map = col_map; 3443 dev->event_map.lpi_base = lpi_base; 3444 dev->event_map.nr_lpis = nr_lpis; 3445 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3446 dev->device_id = dev_id; 3447 INIT_LIST_HEAD(&dev->entry); 3448 3449 raw_spin_lock_irqsave(&its->lock, flags); 3450 list_add(&dev->entry, &its->its_device_list); 3451 raw_spin_unlock_irqrestore(&its->lock, flags); 3452 3453 /* Map device to its ITT */ 3454 its_send_mapd(dev, 1); 3455 3456 return dev; 3457 } 3458 3459 static void its_free_device(struct its_device *its_dev) 3460 { 3461 unsigned long flags; 3462 3463 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3464 list_del(&its_dev->entry); 3465 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3466 kfree(its_dev->event_map.col_map); 3467 kfree(its_dev->itt); 3468 kfree(its_dev); 3469 } 3470 3471 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3472 { 3473 int idx; 3474 3475 /* Find a free LPI region in lpi_map and allocate them. */ 3476 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3477 dev->event_map.nr_lpis, 3478 get_count_order(nvecs)); 3479 if (idx < 0) 3480 return -ENOSPC; 3481 3482 *hwirq = dev->event_map.lpi_base + idx; 3483 3484 return 0; 3485 } 3486 3487 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3488 int nvec, msi_alloc_info_t *info) 3489 { 3490 struct its_node *its; 3491 struct its_device *its_dev; 3492 struct msi_domain_info *msi_info; 3493 u32 dev_id; 3494 int err = 0; 3495 3496 /* 3497 * We ignore "dev" entirely, and rely on the dev_id that has 3498 * been passed via the scratchpad. This limits this domain's 3499 * usefulness to upper layers that definitely know that they 3500 * are built on top of the ITS. 3501 */ 3502 dev_id = info->scratchpad[0].ul; 3503 3504 msi_info = msi_get_domain_info(domain); 3505 its = msi_info->data; 3506 3507 if (!gic_rdists->has_direct_lpi && 3508 vpe_proxy.dev && 3509 vpe_proxy.dev->its == its && 3510 dev_id == vpe_proxy.dev->device_id) { 3511 /* Bad luck. Get yourself a better implementation */ 3512 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3513 dev_id); 3514 return -EINVAL; 3515 } 3516 3517 mutex_lock(&its->dev_alloc_lock); 3518 its_dev = its_find_device(its, dev_id); 3519 if (its_dev) { 3520 /* 3521 * We already have seen this ID, probably through 3522 * another alias (PCI bridge of some sort). No need to 3523 * create the device. 3524 */ 3525 its_dev->shared = true; 3526 pr_debug("Reusing ITT for devID %x\n", dev_id); 3527 goto out; 3528 } 3529 3530 its_dev = its_create_device(its, dev_id, nvec, true); 3531 if (!its_dev) { 3532 err = -ENOMEM; 3533 goto out; 3534 } 3535 3536 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3537 its_dev->shared = true; 3538 3539 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3540 out: 3541 mutex_unlock(&its->dev_alloc_lock); 3542 info->scratchpad[0].ptr = its_dev; 3543 return err; 3544 } 3545 3546 static struct msi_domain_ops its_msi_domain_ops = { 3547 .msi_prepare = its_msi_prepare, 3548 }; 3549 3550 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3551 unsigned int virq, 3552 irq_hw_number_t hwirq) 3553 { 3554 struct irq_fwspec fwspec; 3555 3556 if (irq_domain_get_of_node(domain->parent)) { 3557 fwspec.fwnode = domain->parent->fwnode; 3558 fwspec.param_count = 3; 3559 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3560 fwspec.param[1] = hwirq; 3561 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3562 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3563 fwspec.fwnode = domain->parent->fwnode; 3564 fwspec.param_count = 2; 3565 fwspec.param[0] = hwirq; 3566 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3567 } else { 3568 return -EINVAL; 3569 } 3570 3571 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3572 } 3573 3574 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3575 unsigned int nr_irqs, void *args) 3576 { 3577 msi_alloc_info_t *info = args; 3578 struct its_device *its_dev = info->scratchpad[0].ptr; 3579 struct its_node *its = its_dev->its; 3580 struct irq_data *irqd; 3581 irq_hw_number_t hwirq; 3582 int err; 3583 int i; 3584 3585 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3586 if (err) 3587 return err; 3588 3589 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3590 if (err) 3591 return err; 3592 3593 for (i = 0; i < nr_irqs; i++) { 3594 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3595 if (err) 3596 return err; 3597 3598 irq_domain_set_hwirq_and_chip(domain, virq + i, 3599 hwirq + i, &its_irq_chip, its_dev); 3600 irqd = irq_get_irq_data(virq + i); 3601 irqd_set_single_target(irqd); 3602 irqd_set_affinity_on_activate(irqd); 3603 irqd_set_resend_when_in_progress(irqd); 3604 pr_debug("ID:%d pID:%d vID:%d\n", 3605 (int)(hwirq + i - its_dev->event_map.lpi_base), 3606 (int)(hwirq + i), virq + i); 3607 } 3608 3609 return 0; 3610 } 3611 3612 static int its_irq_domain_activate(struct irq_domain *domain, 3613 struct irq_data *d, bool reserve) 3614 { 3615 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3616 u32 event = its_get_event_id(d); 3617 int cpu; 3618 3619 cpu = its_select_cpu(d, cpu_online_mask); 3620 if (cpu < 0 || cpu >= nr_cpu_ids) 3621 return -EINVAL; 3622 3623 its_inc_lpi_count(d, cpu); 3624 its_dev->event_map.col_map[event] = cpu; 3625 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3626 3627 /* Map the GIC IRQ and event to the device */ 3628 its_send_mapti(its_dev, d->hwirq, event); 3629 return 0; 3630 } 3631 3632 static void its_irq_domain_deactivate(struct irq_domain *domain, 3633 struct irq_data *d) 3634 { 3635 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3636 u32 event = its_get_event_id(d); 3637 3638 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3639 /* Stop the delivery of interrupts */ 3640 its_send_discard(its_dev, event); 3641 } 3642 3643 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3644 unsigned int nr_irqs) 3645 { 3646 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3647 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3648 struct its_node *its = its_dev->its; 3649 int i; 3650 3651 bitmap_release_region(its_dev->event_map.lpi_map, 3652 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3653 get_count_order(nr_irqs)); 3654 3655 for (i = 0; i < nr_irqs; i++) { 3656 struct irq_data *data = irq_domain_get_irq_data(domain, 3657 virq + i); 3658 /* Nuke the entry in the domain */ 3659 irq_domain_reset_irq_data(data); 3660 } 3661 3662 mutex_lock(&its->dev_alloc_lock); 3663 3664 /* 3665 * If all interrupts have been freed, start mopping the 3666 * floor. This is conditioned on the device not being shared. 3667 */ 3668 if (!its_dev->shared && 3669 bitmap_empty(its_dev->event_map.lpi_map, 3670 its_dev->event_map.nr_lpis)) { 3671 its_lpi_free(its_dev->event_map.lpi_map, 3672 its_dev->event_map.lpi_base, 3673 its_dev->event_map.nr_lpis); 3674 3675 /* Unmap device/itt */ 3676 its_send_mapd(its_dev, 0); 3677 its_free_device(its_dev); 3678 } 3679 3680 mutex_unlock(&its->dev_alloc_lock); 3681 3682 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3683 } 3684 3685 static const struct irq_domain_ops its_domain_ops = { 3686 .select = msi_lib_irq_domain_select, 3687 .alloc = its_irq_domain_alloc, 3688 .free = its_irq_domain_free, 3689 .activate = its_irq_domain_activate, 3690 .deactivate = its_irq_domain_deactivate, 3691 }; 3692 3693 /* 3694 * This is insane. 3695 * 3696 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3697 * likely), the only way to perform an invalidate is to use a fake 3698 * device to issue an INV command, implying that the LPI has first 3699 * been mapped to some event on that device. Since this is not exactly 3700 * cheap, we try to keep that mapping around as long as possible, and 3701 * only issue an UNMAP if we're short on available slots. 3702 * 3703 * Broken by design(tm). 3704 * 3705 * GICv4.1, on the other hand, mandates that we're able to invalidate 3706 * by writing to a MMIO register. It doesn't implement the whole of 3707 * DirectLPI, but that's good enough. And most of the time, we don't 3708 * even have to invalidate anything, as the redistributor can be told 3709 * whether to generate a doorbell or not (we thus leave it enabled, 3710 * always). 3711 */ 3712 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3713 { 3714 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3715 if (gic_rdists->has_rvpeid) 3716 return; 3717 3718 /* Already unmapped? */ 3719 if (vpe->vpe_proxy_event == -1) 3720 return; 3721 3722 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3723 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3724 3725 /* 3726 * We don't track empty slots at all, so let's move the 3727 * next_victim pointer if we can quickly reuse that slot 3728 * instead of nuking an existing entry. Not clear that this is 3729 * always a win though, and this might just generate a ripple 3730 * effect... Let's just hope VPEs don't migrate too often. 3731 */ 3732 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3733 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3734 3735 vpe->vpe_proxy_event = -1; 3736 } 3737 3738 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3739 { 3740 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3741 if (gic_rdists->has_rvpeid) 3742 return; 3743 3744 if (!gic_rdists->has_direct_lpi) { 3745 unsigned long flags; 3746 3747 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3748 its_vpe_db_proxy_unmap_locked(vpe); 3749 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3750 } 3751 } 3752 3753 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3754 { 3755 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3756 if (gic_rdists->has_rvpeid) 3757 return; 3758 3759 /* Already mapped? */ 3760 if (vpe->vpe_proxy_event != -1) 3761 return; 3762 3763 /* This slot was already allocated. Kick the other VPE out. */ 3764 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3765 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3766 3767 /* Map the new VPE instead */ 3768 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3769 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3770 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3771 3772 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3773 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3774 } 3775 3776 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3777 { 3778 unsigned long flags; 3779 struct its_collection *target_col; 3780 3781 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3782 if (gic_rdists->has_rvpeid) 3783 return; 3784 3785 if (gic_rdists->has_direct_lpi) { 3786 void __iomem *rdbase; 3787 3788 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3789 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3790 wait_for_syncr(rdbase); 3791 3792 return; 3793 } 3794 3795 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3796 3797 its_vpe_db_proxy_map_locked(vpe); 3798 3799 target_col = &vpe_proxy.dev->its->collections[to]; 3800 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3801 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3802 3803 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3804 } 3805 3806 static int its_vpe_set_affinity(struct irq_data *d, 3807 const struct cpumask *mask_val, 3808 bool force) 3809 { 3810 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3811 unsigned int from, cpu = nr_cpu_ids; 3812 struct cpumask *table_mask; 3813 unsigned long flags; 3814 3815 /* 3816 * Changing affinity is mega expensive, so let's be as lazy as 3817 * we can and only do it if we really have to. Also, if mapped 3818 * into the proxy device, we need to move the doorbell 3819 * interrupt to its new location. 3820 * 3821 * Another thing is that changing the affinity of a vPE affects 3822 * *other interrupts* such as all the vLPIs that are routed to 3823 * this vPE. This means that the irq_desc lock is not enough to 3824 * protect us, and that we must ensure nobody samples vpe->col_idx 3825 * during the update, hence the lock below which must also be 3826 * taken on any vLPI handling path that evaluates vpe->col_idx. 3827 */ 3828 from = vpe_to_cpuid_lock(vpe, &flags); 3829 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3830 3831 /* 3832 * If we are offered another CPU in the same GICv4.1 ITS 3833 * affinity, pick this one. Otherwise, any CPU will do. 3834 */ 3835 if (table_mask) 3836 cpu = cpumask_any_and(mask_val, table_mask); 3837 if (cpu < nr_cpu_ids) { 3838 if (cpumask_test_cpu(from, mask_val) && 3839 cpumask_test_cpu(from, table_mask)) 3840 cpu = from; 3841 } else { 3842 cpu = cpumask_first(mask_val); 3843 } 3844 3845 if (from == cpu) 3846 goto out; 3847 3848 vpe->col_idx = cpu; 3849 3850 its_send_vmovp(vpe); 3851 its_vpe_db_proxy_move(vpe, from, cpu); 3852 3853 out: 3854 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3855 vpe_to_cpuid_unlock(vpe, flags); 3856 3857 return IRQ_SET_MASK_OK_DONE; 3858 } 3859 3860 static void its_wait_vpt_parse_complete(void) 3861 { 3862 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3863 u64 val; 3864 3865 if (!gic_rdists->has_vpend_valid_dirty) 3866 return; 3867 3868 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3869 val, 3870 !(val & GICR_VPENDBASER_Dirty), 3871 1, 500)); 3872 } 3873 3874 static void its_vpe_schedule(struct its_vpe *vpe) 3875 { 3876 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3877 u64 val; 3878 3879 /* Schedule the VPE */ 3880 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3881 GENMASK_ULL(51, 12); 3882 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3883 if (rdists_support_shareable()) { 3884 val |= GICR_VPROPBASER_RaWb; 3885 val |= GICR_VPROPBASER_InnerShareable; 3886 } 3887 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3888 3889 val = virt_to_phys(page_address(vpe->vpt_page)) & 3890 GENMASK_ULL(51, 16); 3891 if (rdists_support_shareable()) { 3892 val |= GICR_VPENDBASER_RaWaWb; 3893 val |= GICR_VPENDBASER_InnerShareable; 3894 } 3895 /* 3896 * There is no good way of finding out if the pending table is 3897 * empty as we can race against the doorbell interrupt very 3898 * easily. So in the end, vpe->pending_last is only an 3899 * indication that the vcpu has something pending, not one 3900 * that the pending table is empty. A good implementation 3901 * would be able to read its coarse map pretty quickly anyway, 3902 * making this a tolerable issue. 3903 */ 3904 val |= GICR_VPENDBASER_PendingLast; 3905 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3906 val |= GICR_VPENDBASER_Valid; 3907 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3908 } 3909 3910 static void its_vpe_deschedule(struct its_vpe *vpe) 3911 { 3912 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3913 u64 val; 3914 3915 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3916 3917 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3918 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3919 } 3920 3921 static void its_vpe_invall(struct its_vpe *vpe) 3922 { 3923 struct its_node *its; 3924 3925 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock); 3926 3927 list_for_each_entry(its, &its_nodes, entry) { 3928 if (!is_v4(its)) 3929 continue; 3930 3931 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3932 continue; 3933 3934 /* 3935 * Sending a VINVALL to a single ITS is enough, as all 3936 * we need is to reach the redistributors. 3937 */ 3938 its_send_vinvall(its, vpe); 3939 return; 3940 } 3941 } 3942 3943 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3944 { 3945 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3946 struct its_cmd_info *info = vcpu_info; 3947 3948 switch (info->cmd_type) { 3949 case SCHEDULE_VPE: 3950 its_vpe_schedule(vpe); 3951 return 0; 3952 3953 case DESCHEDULE_VPE: 3954 its_vpe_deschedule(vpe); 3955 return 0; 3956 3957 case COMMIT_VPE: 3958 its_wait_vpt_parse_complete(); 3959 return 0; 3960 3961 case INVALL_VPE: 3962 its_vpe_invall(vpe); 3963 return 0; 3964 3965 default: 3966 return -EINVAL; 3967 } 3968 } 3969 3970 static void its_vpe_send_cmd(struct its_vpe *vpe, 3971 void (*cmd)(struct its_device *, u32)) 3972 { 3973 unsigned long flags; 3974 3975 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3976 3977 its_vpe_db_proxy_map_locked(vpe); 3978 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3979 3980 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3981 } 3982 3983 static void its_vpe_send_inv(struct irq_data *d) 3984 { 3985 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3986 3987 if (gic_rdists->has_direct_lpi) 3988 __direct_lpi_inv(d, d->parent_data->hwirq); 3989 else 3990 its_vpe_send_cmd(vpe, its_send_inv); 3991 } 3992 3993 static void its_vpe_mask_irq(struct irq_data *d) 3994 { 3995 /* 3996 * We need to unmask the LPI, which is described by the parent 3997 * irq_data. Instead of calling into the parent (which won't 3998 * exactly do the right thing, let's simply use the 3999 * parent_data pointer. Yes, I'm naughty. 4000 */ 4001 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4002 its_vpe_send_inv(d); 4003 } 4004 4005 static void its_vpe_unmask_irq(struct irq_data *d) 4006 { 4007 /* Same hack as above... */ 4008 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4009 its_vpe_send_inv(d); 4010 } 4011 4012 static int its_vpe_set_irqchip_state(struct irq_data *d, 4013 enum irqchip_irq_state which, 4014 bool state) 4015 { 4016 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4017 4018 if (which != IRQCHIP_STATE_PENDING) 4019 return -EINVAL; 4020 4021 if (gic_rdists->has_direct_lpi) { 4022 void __iomem *rdbase; 4023 4024 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4025 if (state) { 4026 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4027 } else { 4028 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4029 wait_for_syncr(rdbase); 4030 } 4031 } else { 4032 if (state) 4033 its_vpe_send_cmd(vpe, its_send_int); 4034 else 4035 its_vpe_send_cmd(vpe, its_send_clear); 4036 } 4037 4038 return 0; 4039 } 4040 4041 static int its_vpe_retrigger(struct irq_data *d) 4042 { 4043 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4044 } 4045 4046 static struct irq_chip its_vpe_irq_chip = { 4047 .name = "GICv4-vpe", 4048 .irq_mask = its_vpe_mask_irq, 4049 .irq_unmask = its_vpe_unmask_irq, 4050 .irq_eoi = irq_chip_eoi_parent, 4051 .irq_set_affinity = its_vpe_set_affinity, 4052 .irq_retrigger = its_vpe_retrigger, 4053 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4054 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4055 }; 4056 4057 static struct its_node *find_4_1_its(void) 4058 { 4059 static struct its_node *its = NULL; 4060 4061 if (!its) { 4062 list_for_each_entry(its, &its_nodes, entry) { 4063 if (is_v4_1(its)) 4064 return its; 4065 } 4066 4067 /* Oops? */ 4068 its = NULL; 4069 } 4070 4071 return its; 4072 } 4073 4074 static void its_vpe_4_1_send_inv(struct irq_data *d) 4075 { 4076 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4077 struct its_node *its; 4078 4079 /* 4080 * GICv4.1 wants doorbells to be invalidated using the 4081 * INVDB command in order to be broadcast to all RDs. Send 4082 * it to the first valid ITS, and let the HW do its magic. 4083 */ 4084 its = find_4_1_its(); 4085 if (its) 4086 its_send_invdb(its, vpe); 4087 } 4088 4089 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4090 { 4091 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4092 its_vpe_4_1_send_inv(d); 4093 } 4094 4095 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4096 { 4097 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4098 its_vpe_4_1_send_inv(d); 4099 } 4100 4101 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4102 struct its_cmd_info *info) 4103 { 4104 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4105 u64 val = 0; 4106 4107 /* Schedule the VPE */ 4108 val |= GICR_VPENDBASER_Valid; 4109 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4110 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4111 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4112 4113 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4114 } 4115 4116 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4117 struct its_cmd_info *info) 4118 { 4119 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4120 u64 val; 4121 4122 if (info->req_db) { 4123 unsigned long flags; 4124 4125 /* 4126 * vPE is going to block: make the vPE non-resident with 4127 * PendingLast clear and DB set. The GIC guarantees that if 4128 * we read-back PendingLast clear, then a doorbell will be 4129 * delivered when an interrupt comes. 4130 * 4131 * Note the locking to deal with the concurrent update of 4132 * pending_last from the doorbell interrupt handler that can 4133 * run concurrently. 4134 */ 4135 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4136 val = its_clear_vpend_valid(vlpi_base, 4137 GICR_VPENDBASER_PendingLast, 4138 GICR_VPENDBASER_4_1_DB); 4139 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4140 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4141 } else { 4142 /* 4143 * We're not blocking, so just make the vPE non-resident 4144 * with PendingLast set, indicating that we'll be back. 4145 */ 4146 val = its_clear_vpend_valid(vlpi_base, 4147 0, 4148 GICR_VPENDBASER_PendingLast); 4149 vpe->pending_last = true; 4150 } 4151 } 4152 4153 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4154 { 4155 void __iomem *rdbase; 4156 unsigned long flags; 4157 u64 val; 4158 int cpu; 4159 4160 val = GICR_INVALLR_V; 4161 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4162 4163 /* Target the redistributor this vPE is currently known on */ 4164 cpu = vpe_to_cpuid_lock(vpe, &flags); 4165 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4166 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4167 gic_write_lpir(val, rdbase + GICR_INVALLR); 4168 4169 wait_for_syncr(rdbase); 4170 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4171 vpe_to_cpuid_unlock(vpe, flags); 4172 } 4173 4174 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4175 { 4176 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4177 struct its_cmd_info *info = vcpu_info; 4178 4179 switch (info->cmd_type) { 4180 case SCHEDULE_VPE: 4181 its_vpe_4_1_schedule(vpe, info); 4182 return 0; 4183 4184 case DESCHEDULE_VPE: 4185 its_vpe_4_1_deschedule(vpe, info); 4186 return 0; 4187 4188 case COMMIT_VPE: 4189 its_wait_vpt_parse_complete(); 4190 return 0; 4191 4192 case INVALL_VPE: 4193 its_vpe_4_1_invall(vpe); 4194 return 0; 4195 4196 default: 4197 return -EINVAL; 4198 } 4199 } 4200 4201 static struct irq_chip its_vpe_4_1_irq_chip = { 4202 .name = "GICv4.1-vpe", 4203 .irq_mask = its_vpe_4_1_mask_irq, 4204 .irq_unmask = its_vpe_4_1_unmask_irq, 4205 .irq_eoi = irq_chip_eoi_parent, 4206 .irq_set_affinity = its_vpe_set_affinity, 4207 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4208 }; 4209 4210 static void its_configure_sgi(struct irq_data *d, bool clear) 4211 { 4212 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4213 struct its_cmd_desc desc; 4214 4215 desc.its_vsgi_cmd.vpe = vpe; 4216 desc.its_vsgi_cmd.sgi = d->hwirq; 4217 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4218 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4219 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4220 desc.its_vsgi_cmd.clear = clear; 4221 4222 /* 4223 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4224 * destination VPE is mapped there. Since we map them eagerly at 4225 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4226 */ 4227 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4228 } 4229 4230 static void its_sgi_mask_irq(struct irq_data *d) 4231 { 4232 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4233 4234 vpe->sgi_config[d->hwirq].enabled = false; 4235 its_configure_sgi(d, false); 4236 } 4237 4238 static void its_sgi_unmask_irq(struct irq_data *d) 4239 { 4240 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4241 4242 vpe->sgi_config[d->hwirq].enabled = true; 4243 its_configure_sgi(d, false); 4244 } 4245 4246 static int its_sgi_set_affinity(struct irq_data *d, 4247 const struct cpumask *mask_val, 4248 bool force) 4249 { 4250 /* 4251 * There is no notion of affinity for virtual SGIs, at least 4252 * not on the host (since they can only be targeting a vPE). 4253 * Tell the kernel we've done whatever it asked for. 4254 */ 4255 irq_data_update_effective_affinity(d, mask_val); 4256 return IRQ_SET_MASK_OK; 4257 } 4258 4259 static int its_sgi_set_irqchip_state(struct irq_data *d, 4260 enum irqchip_irq_state which, 4261 bool state) 4262 { 4263 if (which != IRQCHIP_STATE_PENDING) 4264 return -EINVAL; 4265 4266 if (state) { 4267 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4268 struct its_node *its = find_4_1_its(); 4269 u64 val; 4270 4271 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4272 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4273 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4274 } else { 4275 its_configure_sgi(d, true); 4276 } 4277 4278 return 0; 4279 } 4280 4281 static int its_sgi_get_irqchip_state(struct irq_data *d, 4282 enum irqchip_irq_state which, bool *val) 4283 { 4284 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4285 void __iomem *base; 4286 unsigned long flags; 4287 u32 count = 1000000; /* 1s! */ 4288 u32 status; 4289 int cpu; 4290 4291 if (which != IRQCHIP_STATE_PENDING) 4292 return -EINVAL; 4293 4294 /* 4295 * Locking galore! We can race against two different events: 4296 * 4297 * - Concurrent vPE affinity change: we must make sure it cannot 4298 * happen, or we'll talk to the wrong redistributor. This is 4299 * identical to what happens with vLPIs. 4300 * 4301 * - Concurrent VSGIPENDR access: As it involves accessing two 4302 * MMIO registers, this must be made atomic one way or another. 4303 */ 4304 cpu = vpe_to_cpuid_lock(vpe, &flags); 4305 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4306 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4307 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4308 do { 4309 status = readl_relaxed(base + GICR_VSGIPENDR); 4310 if (!(status & GICR_VSGIPENDR_BUSY)) 4311 goto out; 4312 4313 count--; 4314 if (!count) { 4315 pr_err_ratelimited("Unable to get SGI status\n"); 4316 goto out; 4317 } 4318 cpu_relax(); 4319 udelay(1); 4320 } while (count); 4321 4322 out: 4323 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4324 vpe_to_cpuid_unlock(vpe, flags); 4325 4326 if (!count) 4327 return -ENXIO; 4328 4329 *val = !!(status & (1 << d->hwirq)); 4330 4331 return 0; 4332 } 4333 4334 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4335 { 4336 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4337 struct its_cmd_info *info = vcpu_info; 4338 4339 switch (info->cmd_type) { 4340 case PROP_UPDATE_VSGI: 4341 vpe->sgi_config[d->hwirq].priority = info->priority; 4342 vpe->sgi_config[d->hwirq].group = info->group; 4343 its_configure_sgi(d, false); 4344 return 0; 4345 4346 default: 4347 return -EINVAL; 4348 } 4349 } 4350 4351 static struct irq_chip its_sgi_irq_chip = { 4352 .name = "GICv4.1-sgi", 4353 .irq_mask = its_sgi_mask_irq, 4354 .irq_unmask = its_sgi_unmask_irq, 4355 .irq_set_affinity = its_sgi_set_affinity, 4356 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4357 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4358 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4359 }; 4360 4361 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4362 unsigned int virq, unsigned int nr_irqs, 4363 void *args) 4364 { 4365 struct its_vpe *vpe = args; 4366 int i; 4367 4368 /* Yes, we do want 16 SGIs */ 4369 WARN_ON(nr_irqs != 16); 4370 4371 for (i = 0; i < 16; i++) { 4372 vpe->sgi_config[i].priority = 0; 4373 vpe->sgi_config[i].enabled = false; 4374 vpe->sgi_config[i].group = false; 4375 4376 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4377 &its_sgi_irq_chip, vpe); 4378 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4379 } 4380 4381 return 0; 4382 } 4383 4384 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4385 unsigned int virq, 4386 unsigned int nr_irqs) 4387 { 4388 /* Nothing to do */ 4389 } 4390 4391 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4392 struct irq_data *d, bool reserve) 4393 { 4394 /* Write out the initial SGI configuration */ 4395 its_configure_sgi(d, false); 4396 return 0; 4397 } 4398 4399 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4400 struct irq_data *d) 4401 { 4402 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4403 4404 /* 4405 * The VSGI command is awkward: 4406 * 4407 * - To change the configuration, CLEAR must be set to false, 4408 * leaving the pending bit unchanged. 4409 * - To clear the pending bit, CLEAR must be set to true, leaving 4410 * the configuration unchanged. 4411 * 4412 * You just can't do both at once, hence the two commands below. 4413 */ 4414 vpe->sgi_config[d->hwirq].enabled = false; 4415 its_configure_sgi(d, false); 4416 its_configure_sgi(d, true); 4417 } 4418 4419 static const struct irq_domain_ops its_sgi_domain_ops = { 4420 .alloc = its_sgi_irq_domain_alloc, 4421 .free = its_sgi_irq_domain_free, 4422 .activate = its_sgi_irq_domain_activate, 4423 .deactivate = its_sgi_irq_domain_deactivate, 4424 }; 4425 4426 static int its_vpe_id_alloc(void) 4427 { 4428 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL); 4429 } 4430 4431 static void its_vpe_id_free(u16 id) 4432 { 4433 ida_free(&its_vpeid_ida, id); 4434 } 4435 4436 static int its_vpe_init(struct its_vpe *vpe) 4437 { 4438 struct page *vpt_page; 4439 int vpe_id; 4440 4441 /* Allocate vpe_id */ 4442 vpe_id = its_vpe_id_alloc(); 4443 if (vpe_id < 0) 4444 return vpe_id; 4445 4446 /* Allocate VPT */ 4447 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4448 if (!vpt_page) { 4449 its_vpe_id_free(vpe_id); 4450 return -ENOMEM; 4451 } 4452 4453 if (!its_alloc_vpe_table(vpe_id)) { 4454 its_vpe_id_free(vpe_id); 4455 its_free_pending_table(vpt_page); 4456 return -ENOMEM; 4457 } 4458 4459 raw_spin_lock_init(&vpe->vpe_lock); 4460 vpe->vpe_id = vpe_id; 4461 vpe->vpt_page = vpt_page; 4462 if (gic_rdists->has_rvpeid) 4463 atomic_set(&vpe->vmapp_count, 0); 4464 else 4465 vpe->vpe_proxy_event = -1; 4466 4467 return 0; 4468 } 4469 4470 static void its_vpe_teardown(struct its_vpe *vpe) 4471 { 4472 its_vpe_db_proxy_unmap(vpe); 4473 its_vpe_id_free(vpe->vpe_id); 4474 its_free_pending_table(vpe->vpt_page); 4475 } 4476 4477 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4478 unsigned int virq, 4479 unsigned int nr_irqs) 4480 { 4481 struct its_vm *vm = domain->host_data; 4482 int i; 4483 4484 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4485 4486 for (i = 0; i < nr_irqs; i++) { 4487 struct irq_data *data = irq_domain_get_irq_data(domain, 4488 virq + i); 4489 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4490 4491 BUG_ON(vm != vpe->its_vm); 4492 4493 clear_bit(data->hwirq, vm->db_bitmap); 4494 its_vpe_teardown(vpe); 4495 irq_domain_reset_irq_data(data); 4496 } 4497 4498 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4499 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4500 its_free_prop_table(vm->vprop_page); 4501 } 4502 } 4503 4504 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4505 unsigned int nr_irqs, void *args) 4506 { 4507 struct irq_chip *irqchip = &its_vpe_irq_chip; 4508 struct its_vm *vm = args; 4509 unsigned long *bitmap; 4510 struct page *vprop_page; 4511 int base, nr_ids, i, err = 0; 4512 4513 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4514 if (!bitmap) 4515 return -ENOMEM; 4516 4517 if (nr_ids < nr_irqs) { 4518 its_lpi_free(bitmap, base, nr_ids); 4519 return -ENOMEM; 4520 } 4521 4522 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4523 if (!vprop_page) { 4524 its_lpi_free(bitmap, base, nr_ids); 4525 return -ENOMEM; 4526 } 4527 4528 vm->db_bitmap = bitmap; 4529 vm->db_lpi_base = base; 4530 vm->nr_db_lpis = nr_ids; 4531 vm->vprop_page = vprop_page; 4532 raw_spin_lock_init(&vm->vmapp_lock); 4533 4534 if (gic_rdists->has_rvpeid) 4535 irqchip = &its_vpe_4_1_irq_chip; 4536 4537 for (i = 0; i < nr_irqs; i++) { 4538 vm->vpes[i]->vpe_db_lpi = base + i; 4539 err = its_vpe_init(vm->vpes[i]); 4540 if (err) 4541 break; 4542 err = its_irq_gic_domain_alloc(domain, virq + i, 4543 vm->vpes[i]->vpe_db_lpi); 4544 if (err) 4545 break; 4546 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4547 irqchip, vm->vpes[i]); 4548 set_bit(i, bitmap); 4549 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4550 } 4551 4552 if (err) 4553 its_vpe_irq_domain_free(domain, virq, i); 4554 4555 return err; 4556 } 4557 4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4559 struct irq_data *d, bool reserve) 4560 { 4561 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4562 struct its_node *its; 4563 4564 /* Map the VPE to the first possible CPU */ 4565 vpe->col_idx = cpumask_first(cpu_online_mask); 4566 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4567 4568 /* 4569 * If we use the list map, we issue VMAPP on demand... Unless 4570 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4571 * so that VSGIs can work. 4572 */ 4573 if (!gic_requires_eager_mapping()) 4574 return 0; 4575 4576 list_for_each_entry(its, &its_nodes, entry) { 4577 if (!is_v4(its)) 4578 continue; 4579 4580 its_send_vmapp(its, vpe, true); 4581 its_send_vinvall(its, vpe); 4582 } 4583 4584 return 0; 4585 } 4586 4587 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4588 struct irq_data *d) 4589 { 4590 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4591 struct its_node *its; 4592 4593 /* 4594 * If we use the list map on GICv4.0, we unmap the VPE once no 4595 * VLPIs are associated with the VM. 4596 */ 4597 if (!gic_requires_eager_mapping()) 4598 return; 4599 4600 list_for_each_entry(its, &its_nodes, entry) { 4601 if (!is_v4(its)) 4602 continue; 4603 4604 its_send_vmapp(its, vpe, false); 4605 } 4606 4607 /* 4608 * There may be a direct read to the VPT after unmapping the 4609 * vPE, to guarantee the validity of this, we make the VPT 4610 * memory coherent with the CPU caches here. 4611 */ 4612 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4613 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4614 LPI_PENDBASE_SZ); 4615 } 4616 4617 static const struct irq_domain_ops its_vpe_domain_ops = { 4618 .alloc = its_vpe_irq_domain_alloc, 4619 .free = its_vpe_irq_domain_free, 4620 .activate = its_vpe_irq_domain_activate, 4621 .deactivate = its_vpe_irq_domain_deactivate, 4622 }; 4623 4624 static int its_force_quiescent(void __iomem *base) 4625 { 4626 u32 count = 1000000; /* 1s */ 4627 u32 val; 4628 4629 val = readl_relaxed(base + GITS_CTLR); 4630 /* 4631 * GIC architecture specification requires the ITS to be both 4632 * disabled and quiescent for writes to GITS_BASER<n> or 4633 * GITS_CBASER to not have UNPREDICTABLE results. 4634 */ 4635 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4636 return 0; 4637 4638 /* Disable the generation of all interrupts to this ITS */ 4639 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4640 writel_relaxed(val, base + GITS_CTLR); 4641 4642 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4643 while (1) { 4644 val = readl_relaxed(base + GITS_CTLR); 4645 if (val & GITS_CTLR_QUIESCENT) 4646 return 0; 4647 4648 count--; 4649 if (!count) 4650 return -EBUSY; 4651 4652 cpu_relax(); 4653 udelay(1); 4654 } 4655 } 4656 4657 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4658 { 4659 struct its_node *its = data; 4660 4661 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4662 its->typer &= ~GITS_TYPER_DEVBITS; 4663 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4664 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4665 4666 return true; 4667 } 4668 4669 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4670 { 4671 struct its_node *its = data; 4672 4673 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4674 4675 return true; 4676 } 4677 4678 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4679 { 4680 struct its_node *its = data; 4681 4682 /* On QDF2400, the size of the ITE is 16Bytes */ 4683 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4684 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4685 4686 return true; 4687 } 4688 4689 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4690 { 4691 struct its_node *its = its_dev->its; 4692 4693 /* 4694 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4695 * which maps 32-bit writes targeted at a separate window of 4696 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4697 * with device ID taken from bits [device_id_bits + 1:2] of 4698 * the window offset. 4699 */ 4700 return its->pre_its_base + (its_dev->device_id << 2); 4701 } 4702 4703 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4704 { 4705 struct its_node *its = data; 4706 u32 pre_its_window[2]; 4707 u32 ids; 4708 4709 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4710 "socionext,synquacer-pre-its", 4711 pre_its_window, 4712 ARRAY_SIZE(pre_its_window))) { 4713 4714 its->pre_its_base = pre_its_window[0]; 4715 its->get_msi_base = its_irq_get_msi_base_pre_its; 4716 4717 ids = ilog2(pre_its_window[1]) - 2; 4718 if (device_ids(its) > ids) { 4719 its->typer &= ~GITS_TYPER_DEVBITS; 4720 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4721 } 4722 4723 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4724 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4725 return true; 4726 } 4727 return false; 4728 } 4729 4730 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4731 { 4732 struct its_node *its = data; 4733 4734 /* 4735 * Hip07 insists on using the wrong address for the VLPI 4736 * page. Trick it into doing the right thing... 4737 */ 4738 its->vlpi_redist_offset = SZ_128K; 4739 return true; 4740 } 4741 4742 static bool __maybe_unused its_enable_rk3588001(void *data) 4743 { 4744 struct its_node *its = data; 4745 4746 if (!of_machine_is_compatible("rockchip,rk3588") && 4747 !of_machine_is_compatible("rockchip,rk3588s")) 4748 return false; 4749 4750 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4751 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4752 4753 return true; 4754 } 4755 4756 static bool its_set_non_coherent(void *data) 4757 { 4758 struct its_node *its = data; 4759 4760 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4761 return true; 4762 } 4763 4764 static const struct gic_quirk its_quirks[] = { 4765 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4766 { 4767 .desc = "ITS: Cavium errata 22375, 24313", 4768 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4769 .mask = 0xffff0fff, 4770 .init = its_enable_quirk_cavium_22375, 4771 }, 4772 #endif 4773 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4774 { 4775 .desc = "ITS: Cavium erratum 23144", 4776 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4777 .mask = 0xffff0fff, 4778 .init = its_enable_quirk_cavium_23144, 4779 }, 4780 #endif 4781 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4782 { 4783 .desc = "ITS: QDF2400 erratum 0065", 4784 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4785 .mask = 0xffffffff, 4786 .init = its_enable_quirk_qdf2400_e0065, 4787 }, 4788 #endif 4789 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4790 { 4791 /* 4792 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4793 * implementation, but with a 'pre-ITS' added that requires 4794 * special handling in software. 4795 */ 4796 .desc = "ITS: Socionext Synquacer pre-ITS", 4797 .iidr = 0x0001143b, 4798 .mask = 0xffffffff, 4799 .init = its_enable_quirk_socionext_synquacer, 4800 }, 4801 #endif 4802 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4803 { 4804 .desc = "ITS: Hip07 erratum 161600802", 4805 .iidr = 0x00000004, 4806 .mask = 0xffffffff, 4807 .init = its_enable_quirk_hip07_161600802, 4808 }, 4809 #endif 4810 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4811 { 4812 .desc = "ITS: Rockchip erratum RK3588001", 4813 .iidr = 0x0201743b, 4814 .mask = 0xffffffff, 4815 .init = its_enable_rk3588001, 4816 }, 4817 #endif 4818 { 4819 .desc = "ITS: non-coherent attribute", 4820 .property = "dma-noncoherent", 4821 .init = its_set_non_coherent, 4822 }, 4823 { 4824 } 4825 }; 4826 4827 static void its_enable_quirks(struct its_node *its) 4828 { 4829 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4830 4831 gic_enable_quirks(iidr, its_quirks, its); 4832 4833 if (is_of_node(its->fwnode_handle)) 4834 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4835 its_quirks, its); 4836 } 4837 4838 static int its_save_disable(void) 4839 { 4840 struct its_node *its; 4841 int err = 0; 4842 4843 raw_spin_lock(&its_lock); 4844 list_for_each_entry(its, &its_nodes, entry) { 4845 void __iomem *base; 4846 4847 base = its->base; 4848 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4849 err = its_force_quiescent(base); 4850 if (err) { 4851 pr_err("ITS@%pa: failed to quiesce: %d\n", 4852 &its->phys_base, err); 4853 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4854 goto err; 4855 } 4856 4857 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4858 } 4859 4860 err: 4861 if (err) { 4862 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4863 void __iomem *base; 4864 4865 base = its->base; 4866 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4867 } 4868 } 4869 raw_spin_unlock(&its_lock); 4870 4871 return err; 4872 } 4873 4874 static void its_restore_enable(void) 4875 { 4876 struct its_node *its; 4877 int ret; 4878 4879 raw_spin_lock(&its_lock); 4880 list_for_each_entry(its, &its_nodes, entry) { 4881 void __iomem *base; 4882 int i; 4883 4884 base = its->base; 4885 4886 /* 4887 * Make sure that the ITS is disabled. If it fails to quiesce, 4888 * don't restore it since writing to CBASER or BASER<n> 4889 * registers is undefined according to the GIC v3 ITS 4890 * Specification. 4891 * 4892 * Firmware resuming with the ITS enabled is terminally broken. 4893 */ 4894 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4895 ret = its_force_quiescent(base); 4896 if (ret) { 4897 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4898 &its->phys_base, ret); 4899 continue; 4900 } 4901 4902 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4903 4904 /* 4905 * Writing CBASER resets CREADR to 0, so make CWRITER and 4906 * cmd_write line up with it. 4907 */ 4908 its->cmd_write = its->cmd_base; 4909 gits_write_cwriter(0, base + GITS_CWRITER); 4910 4911 /* Restore GITS_BASER from the value cache. */ 4912 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4913 struct its_baser *baser = &its->tables[i]; 4914 4915 if (!(baser->val & GITS_BASER_VALID)) 4916 continue; 4917 4918 its_write_baser(its, baser, baser->val); 4919 } 4920 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4921 4922 /* 4923 * Reinit the collection if it's stored in the ITS. This is 4924 * indicated by the col_id being less than the HCC field. 4925 * CID < HCC as specified in the GIC v3 Documentation. 4926 */ 4927 if (its->collections[smp_processor_id()].col_id < 4928 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4929 its_cpu_init_collection(its); 4930 } 4931 raw_spin_unlock(&its_lock); 4932 } 4933 4934 static struct syscore_ops its_syscore_ops = { 4935 .suspend = its_save_disable, 4936 .resume = its_restore_enable, 4937 }; 4938 4939 static void __init __iomem *its_map_one(struct resource *res, int *err) 4940 { 4941 void __iomem *its_base; 4942 u32 val; 4943 4944 its_base = ioremap(res->start, SZ_64K); 4945 if (!its_base) { 4946 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4947 *err = -ENOMEM; 4948 return NULL; 4949 } 4950 4951 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4952 if (val != 0x30 && val != 0x40) { 4953 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4954 *err = -ENODEV; 4955 goto out_unmap; 4956 } 4957 4958 *err = its_force_quiescent(its_base); 4959 if (*err) { 4960 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4961 goto out_unmap; 4962 } 4963 4964 return its_base; 4965 4966 out_unmap: 4967 iounmap(its_base); 4968 return NULL; 4969 } 4970 4971 static int its_init_domain(struct its_node *its) 4972 { 4973 struct irq_domain *inner_domain; 4974 struct msi_domain_info *info; 4975 4976 info = kzalloc(sizeof(*info), GFP_KERNEL); 4977 if (!info) 4978 return -ENOMEM; 4979 4980 info->ops = &its_msi_domain_ops; 4981 info->data = its; 4982 4983 inner_domain = irq_domain_create_hierarchy(its_parent, 4984 its->msi_domain_flags, 0, 4985 its->fwnode_handle, &its_domain_ops, 4986 info); 4987 if (!inner_domain) { 4988 kfree(info); 4989 return -ENOMEM; 4990 } 4991 4992 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4993 4994 inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops; 4995 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT; 4996 4997 return 0; 4998 } 4999 5000 static int its_init_vpe_domain(void) 5001 { 5002 struct its_node *its; 5003 u32 devid; 5004 int entries; 5005 5006 if (gic_rdists->has_direct_lpi) { 5007 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5008 return 0; 5009 } 5010 5011 /* Any ITS will do, even if not v4 */ 5012 its = list_first_entry(&its_nodes, struct its_node, entry); 5013 5014 entries = roundup_pow_of_two(nr_cpu_ids); 5015 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5016 GFP_KERNEL); 5017 if (!vpe_proxy.vpes) 5018 return -ENOMEM; 5019 5020 /* Use the last possible DevID */ 5021 devid = GENMASK(device_ids(its) - 1, 0); 5022 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5023 if (!vpe_proxy.dev) { 5024 kfree(vpe_proxy.vpes); 5025 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5026 return -ENOMEM; 5027 } 5028 5029 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5030 5031 raw_spin_lock_init(&vpe_proxy.lock); 5032 vpe_proxy.next_victim = 0; 5033 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5034 devid, vpe_proxy.dev->nr_ites); 5035 5036 return 0; 5037 } 5038 5039 static int __init its_compute_its_list_map(struct its_node *its) 5040 { 5041 int its_number; 5042 u32 ctlr; 5043 5044 /* 5045 * This is assumed to be done early enough that we're 5046 * guaranteed to be single-threaded, hence no 5047 * locking. Should this change, we should address 5048 * this. 5049 */ 5050 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5051 if (its_number >= GICv4_ITS_LIST_MAX) { 5052 pr_err("ITS@%pa: No ITSList entry available!\n", 5053 &its->phys_base); 5054 return -EINVAL; 5055 } 5056 5057 ctlr = readl_relaxed(its->base + GITS_CTLR); 5058 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5059 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5060 writel_relaxed(ctlr, its->base + GITS_CTLR); 5061 ctlr = readl_relaxed(its->base + GITS_CTLR); 5062 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5063 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5064 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5065 } 5066 5067 if (test_and_set_bit(its_number, &its_list_map)) { 5068 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5069 &its->phys_base, its_number); 5070 return -EINVAL; 5071 } 5072 5073 return its_number; 5074 } 5075 5076 static int __init its_probe_one(struct its_node *its) 5077 { 5078 u64 baser, tmp; 5079 struct page *page; 5080 u32 ctlr; 5081 int err; 5082 5083 its_enable_quirks(its); 5084 5085 if (is_v4(its)) { 5086 if (!(its->typer & GITS_TYPER_VMOVP)) { 5087 err = its_compute_its_list_map(its); 5088 if (err < 0) 5089 goto out; 5090 5091 its->list_nr = err; 5092 5093 pr_info("ITS@%pa: Using ITS number %d\n", 5094 &its->phys_base, err); 5095 } else { 5096 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5097 } 5098 5099 if (is_v4_1(its)) { 5100 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5101 5102 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5103 if (!its->sgir_base) { 5104 err = -ENOMEM; 5105 goto out; 5106 } 5107 5108 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5109 5110 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5111 &its->phys_base, its->mpidr, svpet); 5112 } 5113 } 5114 5115 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5116 get_order(ITS_CMD_QUEUE_SZ)); 5117 if (!page) { 5118 err = -ENOMEM; 5119 goto out_unmap_sgir; 5120 } 5121 its->cmd_base = (void *)page_address(page); 5122 its->cmd_write = its->cmd_base; 5123 5124 err = its_alloc_tables(its); 5125 if (err) 5126 goto out_free_cmd; 5127 5128 err = its_alloc_collections(its); 5129 if (err) 5130 goto out_free_tables; 5131 5132 baser = (virt_to_phys(its->cmd_base) | 5133 GITS_CBASER_RaWaWb | 5134 GITS_CBASER_InnerShareable | 5135 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5136 GITS_CBASER_VALID); 5137 5138 gits_write_cbaser(baser, its->base + GITS_CBASER); 5139 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5140 5141 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5142 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5143 5144 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5145 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5146 /* 5147 * The HW reports non-shareable, we must 5148 * remove the cacheability attributes as 5149 * well. 5150 */ 5151 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5152 GITS_CBASER_CACHEABILITY_MASK); 5153 baser |= GITS_CBASER_nC; 5154 gits_write_cbaser(baser, its->base + GITS_CBASER); 5155 } 5156 pr_info("ITS: using cache flushing for cmd queue\n"); 5157 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5158 } 5159 5160 gits_write_cwriter(0, its->base + GITS_CWRITER); 5161 ctlr = readl_relaxed(its->base + GITS_CTLR); 5162 ctlr |= GITS_CTLR_ENABLE; 5163 if (is_v4(its)) 5164 ctlr |= GITS_CTLR_ImDe; 5165 writel_relaxed(ctlr, its->base + GITS_CTLR); 5166 5167 err = its_init_domain(its); 5168 if (err) 5169 goto out_free_tables; 5170 5171 raw_spin_lock(&its_lock); 5172 list_add(&its->entry, &its_nodes); 5173 raw_spin_unlock(&its_lock); 5174 5175 return 0; 5176 5177 out_free_tables: 5178 its_free_tables(its); 5179 out_free_cmd: 5180 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5181 out_unmap_sgir: 5182 if (its->sgir_base) 5183 iounmap(its->sgir_base); 5184 out: 5185 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5186 return err; 5187 } 5188 5189 static bool gic_rdists_supports_plpis(void) 5190 { 5191 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5192 } 5193 5194 static int redist_disable_lpis(void) 5195 { 5196 void __iomem *rbase = gic_data_rdist_rd_base(); 5197 u64 timeout = USEC_PER_SEC; 5198 u64 val; 5199 5200 if (!gic_rdists_supports_plpis()) { 5201 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5202 return -ENXIO; 5203 } 5204 5205 val = readl_relaxed(rbase + GICR_CTLR); 5206 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5207 return 0; 5208 5209 /* 5210 * If coming via a CPU hotplug event, we don't need to disable 5211 * LPIs before trying to re-enable them. They are already 5212 * configured and all is well in the world. 5213 * 5214 * If running with preallocated tables, there is nothing to do. 5215 */ 5216 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5217 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5218 return 0; 5219 5220 /* 5221 * From that point on, we only try to do some damage control. 5222 */ 5223 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5224 smp_processor_id()); 5225 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5226 5227 /* Disable LPIs */ 5228 val &= ~GICR_CTLR_ENABLE_LPIS; 5229 writel_relaxed(val, rbase + GICR_CTLR); 5230 5231 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5232 dsb(sy); 5233 5234 /* 5235 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5236 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5237 * Error out if we time out waiting for RWP to clear. 5238 */ 5239 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5240 if (!timeout) { 5241 pr_err("CPU%d: Timeout while disabling LPIs\n", 5242 smp_processor_id()); 5243 return -ETIMEDOUT; 5244 } 5245 udelay(1); 5246 timeout--; 5247 } 5248 5249 /* 5250 * After it has been written to 1, it is IMPLEMENTATION 5251 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5252 * cleared to 0. Error out if clearing the bit failed. 5253 */ 5254 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5255 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5256 return -EBUSY; 5257 } 5258 5259 return 0; 5260 } 5261 5262 int its_cpu_init(void) 5263 { 5264 if (!list_empty(&its_nodes)) { 5265 int ret; 5266 5267 ret = redist_disable_lpis(); 5268 if (ret) 5269 return ret; 5270 5271 its_cpu_init_lpis(); 5272 its_cpu_init_collections(); 5273 } 5274 5275 return 0; 5276 } 5277 5278 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5279 { 5280 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5281 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5282 } 5283 5284 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5285 rdist_memreserve_cpuhp_cleanup_workfn); 5286 5287 static int its_cpu_memreserve_lpi(unsigned int cpu) 5288 { 5289 struct page *pend_page; 5290 int ret = 0; 5291 5292 /* This gets to run exactly once per CPU */ 5293 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5294 return 0; 5295 5296 pend_page = gic_data_rdist()->pend_page; 5297 if (WARN_ON(!pend_page)) { 5298 ret = -ENOMEM; 5299 goto out; 5300 } 5301 /* 5302 * If the pending table was pre-programmed, free the memory we 5303 * preemptively allocated. Otherwise, reserve that memory for 5304 * later kexecs. 5305 */ 5306 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5307 its_free_pending_table(pend_page); 5308 gic_data_rdist()->pend_page = NULL; 5309 } else { 5310 phys_addr_t paddr = page_to_phys(pend_page); 5311 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5312 } 5313 5314 out: 5315 /* Last CPU being brought up gets to issue the cleanup */ 5316 if (!IS_ENABLED(CONFIG_SMP) || 5317 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5318 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5319 5320 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5321 return ret; 5322 } 5323 5324 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5325 static int __init its_reset_one(struct resource *res) 5326 { 5327 void __iomem *its_base; 5328 int err, i; 5329 5330 its_base = its_map_one(res, &err); 5331 if (!its_base) 5332 return err; 5333 5334 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5335 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5336 5337 iounmap(its_base); 5338 return 0; 5339 } 5340 5341 static const struct of_device_id its_device_id[] = { 5342 { .compatible = "arm,gic-v3-its", }, 5343 {}, 5344 }; 5345 5346 static struct its_node __init *its_node_init(struct resource *res, 5347 struct fwnode_handle *handle, int numa_node) 5348 { 5349 void __iomem *its_base; 5350 struct its_node *its; 5351 int err; 5352 5353 its_base = its_map_one(res, &err); 5354 if (!its_base) 5355 return NULL; 5356 5357 pr_info("ITS %pR\n", res); 5358 5359 its = kzalloc(sizeof(*its), GFP_KERNEL); 5360 if (!its) 5361 goto out_unmap; 5362 5363 raw_spin_lock_init(&its->lock); 5364 mutex_init(&its->dev_alloc_lock); 5365 INIT_LIST_HEAD(&its->entry); 5366 INIT_LIST_HEAD(&its->its_device_list); 5367 5368 its->typer = gic_read_typer(its_base + GITS_TYPER); 5369 its->base = its_base; 5370 its->phys_base = res->start; 5371 its->get_msi_base = its_irq_get_msi_base; 5372 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5373 5374 its->numa_node = numa_node; 5375 its->fwnode_handle = handle; 5376 5377 return its; 5378 5379 out_unmap: 5380 iounmap(its_base); 5381 return NULL; 5382 } 5383 5384 static void its_node_destroy(struct its_node *its) 5385 { 5386 iounmap(its->base); 5387 kfree(its); 5388 } 5389 5390 static int __init its_of_probe(struct device_node *node) 5391 { 5392 struct device_node *np; 5393 struct resource res; 5394 int err; 5395 5396 /* 5397 * Make sure *all* the ITS are reset before we probe any, as 5398 * they may be sharing memory. If any of the ITS fails to 5399 * reset, don't even try to go any further, as this could 5400 * result in something even worse. 5401 */ 5402 for (np = of_find_matching_node(node, its_device_id); np; 5403 np = of_find_matching_node(np, its_device_id)) { 5404 if (!of_device_is_available(np) || 5405 !of_property_read_bool(np, "msi-controller") || 5406 of_address_to_resource(np, 0, &res)) 5407 continue; 5408 5409 err = its_reset_one(&res); 5410 if (err) 5411 return err; 5412 } 5413 5414 for (np = of_find_matching_node(node, its_device_id); np; 5415 np = of_find_matching_node(np, its_device_id)) { 5416 struct its_node *its; 5417 5418 if (!of_device_is_available(np)) 5419 continue; 5420 if (!of_property_read_bool(np, "msi-controller")) { 5421 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5422 np); 5423 continue; 5424 } 5425 5426 if (of_address_to_resource(np, 0, &res)) { 5427 pr_warn("%pOF: no regs?\n", np); 5428 continue; 5429 } 5430 5431 5432 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5433 if (!its) 5434 return -ENOMEM; 5435 5436 err = its_probe_one(its); 5437 if (err) { 5438 its_node_destroy(its); 5439 return err; 5440 } 5441 } 5442 return 0; 5443 } 5444 5445 #ifdef CONFIG_ACPI 5446 5447 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5448 5449 #ifdef CONFIG_ACPI_NUMA 5450 struct its_srat_map { 5451 /* numa node id */ 5452 u32 numa_node; 5453 /* GIC ITS ID */ 5454 u32 its_id; 5455 }; 5456 5457 static struct its_srat_map *its_srat_maps __initdata; 5458 static int its_in_srat __initdata; 5459 5460 static int __init acpi_get_its_numa_node(u32 its_id) 5461 { 5462 int i; 5463 5464 for (i = 0; i < its_in_srat; i++) { 5465 if (its_id == its_srat_maps[i].its_id) 5466 return its_srat_maps[i].numa_node; 5467 } 5468 return NUMA_NO_NODE; 5469 } 5470 5471 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5472 const unsigned long end) 5473 { 5474 return 0; 5475 } 5476 5477 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5478 const unsigned long end) 5479 { 5480 int node; 5481 struct acpi_srat_gic_its_affinity *its_affinity; 5482 5483 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5484 if (!its_affinity) 5485 return -EINVAL; 5486 5487 if (its_affinity->header.length < sizeof(*its_affinity)) { 5488 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5489 its_affinity->header.length); 5490 return -EINVAL; 5491 } 5492 5493 /* 5494 * Note that in theory a new proximity node could be created by this 5495 * entry as it is an SRAT resource allocation structure. 5496 * We do not currently support doing so. 5497 */ 5498 node = pxm_to_node(its_affinity->proximity_domain); 5499 5500 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5501 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5502 return 0; 5503 } 5504 5505 its_srat_maps[its_in_srat].numa_node = node; 5506 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5507 its_in_srat++; 5508 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5509 its_affinity->proximity_domain, its_affinity->its_id, node); 5510 5511 return 0; 5512 } 5513 5514 static void __init acpi_table_parse_srat_its(void) 5515 { 5516 int count; 5517 5518 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5519 sizeof(struct acpi_table_srat), 5520 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5521 gic_acpi_match_srat_its, 0); 5522 if (count <= 0) 5523 return; 5524 5525 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5526 GFP_KERNEL); 5527 if (!its_srat_maps) 5528 return; 5529 5530 acpi_table_parse_entries(ACPI_SIG_SRAT, 5531 sizeof(struct acpi_table_srat), 5532 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5533 gic_acpi_parse_srat_its, 0); 5534 } 5535 5536 /* free the its_srat_maps after ITS probing */ 5537 static void __init acpi_its_srat_maps_free(void) 5538 { 5539 kfree(its_srat_maps); 5540 } 5541 #else 5542 static void __init acpi_table_parse_srat_its(void) { } 5543 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5544 static void __init acpi_its_srat_maps_free(void) { } 5545 #endif 5546 5547 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5548 const unsigned long end) 5549 { 5550 struct acpi_madt_generic_translator *its_entry; 5551 struct fwnode_handle *dom_handle; 5552 struct its_node *its; 5553 struct resource res; 5554 int err; 5555 5556 its_entry = (struct acpi_madt_generic_translator *)header; 5557 memset(&res, 0, sizeof(res)); 5558 res.start = its_entry->base_address; 5559 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5560 res.flags = IORESOURCE_MEM; 5561 5562 dom_handle = irq_domain_alloc_fwnode(&res.start); 5563 if (!dom_handle) { 5564 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5565 &res.start); 5566 return -ENOMEM; 5567 } 5568 5569 err = iort_register_domain_token(its_entry->translation_id, res.start, 5570 dom_handle); 5571 if (err) { 5572 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5573 &res.start, its_entry->translation_id); 5574 goto dom_err; 5575 } 5576 5577 its = its_node_init(&res, dom_handle, 5578 acpi_get_its_numa_node(its_entry->translation_id)); 5579 if (!its) { 5580 err = -ENOMEM; 5581 goto node_err; 5582 } 5583 5584 if (acpi_get_madt_revision() >= 7 && 5585 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT)) 5586 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 5587 5588 err = its_probe_one(its); 5589 if (!err) 5590 return 0; 5591 5592 node_err: 5593 iort_deregister_domain_token(its_entry->translation_id); 5594 dom_err: 5595 irq_domain_free_fwnode(dom_handle); 5596 return err; 5597 } 5598 5599 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5600 const unsigned long end) 5601 { 5602 struct acpi_madt_generic_translator *its_entry; 5603 struct resource res; 5604 5605 its_entry = (struct acpi_madt_generic_translator *)header; 5606 res = (struct resource) { 5607 .start = its_entry->base_address, 5608 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5609 .flags = IORESOURCE_MEM, 5610 }; 5611 5612 return its_reset_one(&res); 5613 } 5614 5615 static void __init its_acpi_probe(void) 5616 { 5617 acpi_table_parse_srat_its(); 5618 /* 5619 * Make sure *all* the ITS are reset before we probe any, as 5620 * they may be sharing memory. If any of the ITS fails to 5621 * reset, don't even try to go any further, as this could 5622 * result in something even worse. 5623 */ 5624 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5625 its_acpi_reset, 0) > 0) 5626 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5627 gic_acpi_parse_madt_its, 0); 5628 acpi_its_srat_maps_free(); 5629 } 5630 #else 5631 static void __init its_acpi_probe(void) { } 5632 #endif 5633 5634 int __init its_lpi_memreserve_init(void) 5635 { 5636 int state; 5637 5638 if (!efi_enabled(EFI_CONFIG_TABLES)) 5639 return 0; 5640 5641 if (list_empty(&its_nodes)) 5642 return 0; 5643 5644 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5645 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5646 "irqchip/arm/gicv3/memreserve:online", 5647 its_cpu_memreserve_lpi, 5648 NULL); 5649 if (state < 0) 5650 return state; 5651 5652 gic_rdists->cpuhp_memreserve_state = state; 5653 5654 return 0; 5655 } 5656 5657 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5658 struct irq_domain *parent_domain, u8 irq_prio) 5659 { 5660 struct device_node *of_node; 5661 struct its_node *its; 5662 bool has_v4 = false; 5663 bool has_v4_1 = false; 5664 int err; 5665 5666 gic_rdists = rdists; 5667 5668 lpi_prop_prio = irq_prio; 5669 its_parent = parent_domain; 5670 of_node = to_of_node(handle); 5671 if (of_node) 5672 its_of_probe(of_node); 5673 else 5674 its_acpi_probe(); 5675 5676 if (list_empty(&its_nodes)) { 5677 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5678 return -ENXIO; 5679 } 5680 5681 err = allocate_lpi_tables(); 5682 if (err) 5683 return err; 5684 5685 list_for_each_entry(its, &its_nodes, entry) { 5686 has_v4 |= is_v4(its); 5687 has_v4_1 |= is_v4_1(its); 5688 } 5689 5690 /* Don't bother with inconsistent systems */ 5691 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5692 rdists->has_rvpeid = false; 5693 5694 if (has_v4 & rdists->has_vlpis) { 5695 const struct irq_domain_ops *sgi_ops; 5696 5697 if (has_v4_1) 5698 sgi_ops = &its_sgi_domain_ops; 5699 else 5700 sgi_ops = NULL; 5701 5702 if (its_init_vpe_domain() || 5703 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5704 rdists->has_vlpis = false; 5705 pr_err("ITS: Disabling GICv4 support\n"); 5706 } 5707 } 5708 5709 register_syscore_ops(&its_syscore_ops); 5710 5711 return 0; 5712 } 5713