xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 
33 #include <linux/irqchip/arm-gic-v3.h>
34 
35 #include <asm/cacheflush.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 
39 #include "irqchip.h"
40 
41 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1 << 0)
42 
43 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
44 
45 /*
46  * Collection structure - just an ID, and a redistributor address to
47  * ping. We use one per CPU as a bag of interrupts assigned to this
48  * CPU.
49  */
50 struct its_collection {
51 	u64			target_address;
52 	u16			col_id;
53 };
54 
55 /*
56  * The ITS structure - contains most of the infrastructure, with the
57  * msi_controller, the command queue, the collections, and the list of
58  * devices writing to it.
59  */
60 struct its_node {
61 	raw_spinlock_t		lock;
62 	struct list_head	entry;
63 	struct msi_controller	msi_chip;
64 	struct irq_domain	*domain;
65 	void __iomem		*base;
66 	unsigned long		phys_base;
67 	struct its_cmd_block	*cmd_base;
68 	struct its_cmd_block	*cmd_write;
69 	void			*tables[GITS_BASER_NR_REGS];
70 	struct its_collection	*collections;
71 	struct list_head	its_device_list;
72 	u64			flags;
73 	u32			ite_size;
74 };
75 
76 #define ITS_ITT_ALIGN		SZ_256
77 
78 struct event_lpi_map {
79 	unsigned long		*lpi_map;
80 	u16			*col_map;
81 	irq_hw_number_t		lpi_base;
82 	int			nr_lpis;
83 };
84 
85 /*
86  * The ITS view of a device - belongs to an ITS, a collection, owns an
87  * interrupt translation table, and a list of interrupts.
88  */
89 struct its_device {
90 	struct list_head	entry;
91 	struct its_node		*its;
92 	struct event_lpi_map	event_map;
93 	void			*itt;
94 	u32			nr_ites;
95 	u32			device_id;
96 };
97 
98 static LIST_HEAD(its_nodes);
99 static DEFINE_SPINLOCK(its_lock);
100 static struct device_node *gic_root_node;
101 static struct rdists *gic_rdists;
102 
103 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
104 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
105 
106 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
107 					       u32 event)
108 {
109 	struct its_node *its = its_dev->its;
110 
111 	return its->collections + its_dev->event_map.col_map[event];
112 }
113 
114 /*
115  * ITS command descriptors - parameters to be encoded in a command
116  * block.
117  */
118 struct its_cmd_desc {
119 	union {
120 		struct {
121 			struct its_device *dev;
122 			u32 event_id;
123 		} its_inv_cmd;
124 
125 		struct {
126 			struct its_device *dev;
127 			u32 event_id;
128 		} its_int_cmd;
129 
130 		struct {
131 			struct its_device *dev;
132 			int valid;
133 		} its_mapd_cmd;
134 
135 		struct {
136 			struct its_collection *col;
137 			int valid;
138 		} its_mapc_cmd;
139 
140 		struct {
141 			struct its_device *dev;
142 			u32 phys_id;
143 			u32 event_id;
144 		} its_mapvi_cmd;
145 
146 		struct {
147 			struct its_device *dev;
148 			struct its_collection *col;
149 			u32 event_id;
150 		} its_movi_cmd;
151 
152 		struct {
153 			struct its_device *dev;
154 			u32 event_id;
155 		} its_discard_cmd;
156 
157 		struct {
158 			struct its_collection *col;
159 		} its_invall_cmd;
160 	};
161 };
162 
163 /*
164  * The ITS command block, which is what the ITS actually parses.
165  */
166 struct its_cmd_block {
167 	u64	raw_cmd[4];
168 };
169 
170 #define ITS_CMD_QUEUE_SZ		SZ_64K
171 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
172 
173 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
174 						    struct its_cmd_desc *);
175 
176 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
177 {
178 	cmd->raw_cmd[0] &= ~0xffUL;
179 	cmd->raw_cmd[0] |= cmd_nr;
180 }
181 
182 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
183 {
184 	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
185 	cmd->raw_cmd[0] |= ((u64)devid) << 32;
186 }
187 
188 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
189 {
190 	cmd->raw_cmd[1] &= ~0xffffffffUL;
191 	cmd->raw_cmd[1] |= id;
192 }
193 
194 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
195 {
196 	cmd->raw_cmd[1] &= 0xffffffffUL;
197 	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
198 }
199 
200 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
201 {
202 	cmd->raw_cmd[1] &= ~0x1fUL;
203 	cmd->raw_cmd[1] |= size & 0x1f;
204 }
205 
206 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
207 {
208 	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
209 	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
210 }
211 
212 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
213 {
214 	cmd->raw_cmd[2] &= ~(1UL << 63);
215 	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
216 }
217 
218 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
219 {
220 	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
221 	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
222 }
223 
224 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
225 {
226 	cmd->raw_cmd[2] &= ~0xffffUL;
227 	cmd->raw_cmd[2] |= col;
228 }
229 
230 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
231 {
232 	/* Let's fixup BE commands */
233 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
234 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
235 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
236 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
237 }
238 
239 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
240 						 struct its_cmd_desc *desc)
241 {
242 	unsigned long itt_addr;
243 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
244 
245 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
246 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
247 
248 	its_encode_cmd(cmd, GITS_CMD_MAPD);
249 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
250 	its_encode_size(cmd, size - 1);
251 	its_encode_itt(cmd, itt_addr);
252 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
253 
254 	its_fixup_cmd(cmd);
255 
256 	return NULL;
257 }
258 
259 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
260 						 struct its_cmd_desc *desc)
261 {
262 	its_encode_cmd(cmd, GITS_CMD_MAPC);
263 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
264 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
265 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
266 
267 	its_fixup_cmd(cmd);
268 
269 	return desc->its_mapc_cmd.col;
270 }
271 
272 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
273 						  struct its_cmd_desc *desc)
274 {
275 	struct its_collection *col;
276 
277 	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
278 			       desc->its_mapvi_cmd.event_id);
279 
280 	its_encode_cmd(cmd, GITS_CMD_MAPVI);
281 	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
282 	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
283 	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
284 	its_encode_collection(cmd, col->col_id);
285 
286 	its_fixup_cmd(cmd);
287 
288 	return col;
289 }
290 
291 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
292 						 struct its_cmd_desc *desc)
293 {
294 	struct its_collection *col;
295 
296 	col = dev_event_to_col(desc->its_movi_cmd.dev,
297 			       desc->its_movi_cmd.event_id);
298 
299 	its_encode_cmd(cmd, GITS_CMD_MOVI);
300 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
301 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
302 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
303 
304 	its_fixup_cmd(cmd);
305 
306 	return col;
307 }
308 
309 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
310 						    struct its_cmd_desc *desc)
311 {
312 	struct its_collection *col;
313 
314 	col = dev_event_to_col(desc->its_discard_cmd.dev,
315 			       desc->its_discard_cmd.event_id);
316 
317 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
318 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
319 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
320 
321 	its_fixup_cmd(cmd);
322 
323 	return col;
324 }
325 
326 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
327 						struct its_cmd_desc *desc)
328 {
329 	struct its_collection *col;
330 
331 	col = dev_event_to_col(desc->its_inv_cmd.dev,
332 			       desc->its_inv_cmd.event_id);
333 
334 	its_encode_cmd(cmd, GITS_CMD_INV);
335 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
336 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
337 
338 	its_fixup_cmd(cmd);
339 
340 	return col;
341 }
342 
343 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
344 						   struct its_cmd_desc *desc)
345 {
346 	its_encode_cmd(cmd, GITS_CMD_INVALL);
347 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
348 
349 	its_fixup_cmd(cmd);
350 
351 	return NULL;
352 }
353 
354 static u64 its_cmd_ptr_to_offset(struct its_node *its,
355 				 struct its_cmd_block *ptr)
356 {
357 	return (ptr - its->cmd_base) * sizeof(*ptr);
358 }
359 
360 static int its_queue_full(struct its_node *its)
361 {
362 	int widx;
363 	int ridx;
364 
365 	widx = its->cmd_write - its->cmd_base;
366 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
367 
368 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
369 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
370 		return 1;
371 
372 	return 0;
373 }
374 
375 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
376 {
377 	struct its_cmd_block *cmd;
378 	u32 count = 1000000;	/* 1s! */
379 
380 	while (its_queue_full(its)) {
381 		count--;
382 		if (!count) {
383 			pr_err_ratelimited("ITS queue not draining\n");
384 			return NULL;
385 		}
386 		cpu_relax();
387 		udelay(1);
388 	}
389 
390 	cmd = its->cmd_write++;
391 
392 	/* Handle queue wrapping */
393 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
394 		its->cmd_write = its->cmd_base;
395 
396 	return cmd;
397 }
398 
399 static struct its_cmd_block *its_post_commands(struct its_node *its)
400 {
401 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
402 
403 	writel_relaxed(wr, its->base + GITS_CWRITER);
404 
405 	return its->cmd_write;
406 }
407 
408 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
409 {
410 	/*
411 	 * Make sure the commands written to memory are observable by
412 	 * the ITS.
413 	 */
414 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
415 		__flush_dcache_area(cmd, sizeof(*cmd));
416 	else
417 		dsb(ishst);
418 }
419 
420 static void its_wait_for_range_completion(struct its_node *its,
421 					  struct its_cmd_block *from,
422 					  struct its_cmd_block *to)
423 {
424 	u64 rd_idx, from_idx, to_idx;
425 	u32 count = 1000000;	/* 1s! */
426 
427 	from_idx = its_cmd_ptr_to_offset(its, from);
428 	to_idx = its_cmd_ptr_to_offset(its, to);
429 
430 	while (1) {
431 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
432 		if (rd_idx >= to_idx || rd_idx < from_idx)
433 			break;
434 
435 		count--;
436 		if (!count) {
437 			pr_err_ratelimited("ITS queue timeout\n");
438 			return;
439 		}
440 		cpu_relax();
441 		udelay(1);
442 	}
443 }
444 
445 static void its_send_single_command(struct its_node *its,
446 				    its_cmd_builder_t builder,
447 				    struct its_cmd_desc *desc)
448 {
449 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
450 	struct its_collection *sync_col;
451 	unsigned long flags;
452 
453 	raw_spin_lock_irqsave(&its->lock, flags);
454 
455 	cmd = its_allocate_entry(its);
456 	if (!cmd) {		/* We're soooooo screewed... */
457 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
458 		raw_spin_unlock_irqrestore(&its->lock, flags);
459 		return;
460 	}
461 	sync_col = builder(cmd, desc);
462 	its_flush_cmd(its, cmd);
463 
464 	if (sync_col) {
465 		sync_cmd = its_allocate_entry(its);
466 		if (!sync_cmd) {
467 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
468 			goto post;
469 		}
470 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
471 		its_encode_target(sync_cmd, sync_col->target_address);
472 		its_fixup_cmd(sync_cmd);
473 		its_flush_cmd(its, sync_cmd);
474 	}
475 
476 post:
477 	next_cmd = its_post_commands(its);
478 	raw_spin_unlock_irqrestore(&its->lock, flags);
479 
480 	its_wait_for_range_completion(its, cmd, next_cmd);
481 }
482 
483 static void its_send_inv(struct its_device *dev, u32 event_id)
484 {
485 	struct its_cmd_desc desc;
486 
487 	desc.its_inv_cmd.dev = dev;
488 	desc.its_inv_cmd.event_id = event_id;
489 
490 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
491 }
492 
493 static void its_send_mapd(struct its_device *dev, int valid)
494 {
495 	struct its_cmd_desc desc;
496 
497 	desc.its_mapd_cmd.dev = dev;
498 	desc.its_mapd_cmd.valid = !!valid;
499 
500 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
501 }
502 
503 static void its_send_mapc(struct its_node *its, struct its_collection *col,
504 			  int valid)
505 {
506 	struct its_cmd_desc desc;
507 
508 	desc.its_mapc_cmd.col = col;
509 	desc.its_mapc_cmd.valid = !!valid;
510 
511 	its_send_single_command(its, its_build_mapc_cmd, &desc);
512 }
513 
514 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
515 {
516 	struct its_cmd_desc desc;
517 
518 	desc.its_mapvi_cmd.dev = dev;
519 	desc.its_mapvi_cmd.phys_id = irq_id;
520 	desc.its_mapvi_cmd.event_id = id;
521 
522 	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
523 }
524 
525 static void its_send_movi(struct its_device *dev,
526 			  struct its_collection *col, u32 id)
527 {
528 	struct its_cmd_desc desc;
529 
530 	desc.its_movi_cmd.dev = dev;
531 	desc.its_movi_cmd.col = col;
532 	desc.its_movi_cmd.event_id = id;
533 
534 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
535 }
536 
537 static void its_send_discard(struct its_device *dev, u32 id)
538 {
539 	struct its_cmd_desc desc;
540 
541 	desc.its_discard_cmd.dev = dev;
542 	desc.its_discard_cmd.event_id = id;
543 
544 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
545 }
546 
547 static void its_send_invall(struct its_node *its, struct its_collection *col)
548 {
549 	struct its_cmd_desc desc;
550 
551 	desc.its_invall_cmd.col = col;
552 
553 	its_send_single_command(its, its_build_invall_cmd, &desc);
554 }
555 
556 /*
557  * irqchip functions - assumes MSI, mostly.
558  */
559 
560 static inline u32 its_get_event_id(struct irq_data *d)
561 {
562 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
563 	return d->hwirq - its_dev->event_map.lpi_base;
564 }
565 
566 static void lpi_set_config(struct irq_data *d, bool enable)
567 {
568 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
569 	irq_hw_number_t hwirq = d->hwirq;
570 	u32 id = its_get_event_id(d);
571 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
572 
573 	if (enable)
574 		*cfg |= LPI_PROP_ENABLED;
575 	else
576 		*cfg &= ~LPI_PROP_ENABLED;
577 
578 	/*
579 	 * Make the above write visible to the redistributors.
580 	 * And yes, we're flushing exactly: One. Single. Byte.
581 	 * Humpf...
582 	 */
583 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
584 		__flush_dcache_area(cfg, sizeof(*cfg));
585 	else
586 		dsb(ishst);
587 	its_send_inv(its_dev, id);
588 }
589 
590 static void its_mask_irq(struct irq_data *d)
591 {
592 	lpi_set_config(d, false);
593 }
594 
595 static void its_unmask_irq(struct irq_data *d)
596 {
597 	lpi_set_config(d, true);
598 }
599 
600 static void its_eoi_irq(struct irq_data *d)
601 {
602 	gic_write_eoir(d->hwirq);
603 }
604 
605 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
606 			    bool force)
607 {
608 	unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
609 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
610 	struct its_collection *target_col;
611 	u32 id = its_get_event_id(d);
612 
613 	if (cpu >= nr_cpu_ids)
614 		return -EINVAL;
615 
616 	target_col = &its_dev->its->collections[cpu];
617 	its_send_movi(its_dev, target_col, id);
618 	its_dev->event_map.col_map[id] = cpu;
619 
620 	return IRQ_SET_MASK_OK_DONE;
621 }
622 
623 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
624 {
625 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
626 	struct its_node *its;
627 	u64 addr;
628 
629 	its = its_dev->its;
630 	addr = its->phys_base + GITS_TRANSLATER;
631 
632 	msg->address_lo		= addr & ((1UL << 32) - 1);
633 	msg->address_hi		= addr >> 32;
634 	msg->data		= its_get_event_id(d);
635 }
636 
637 static struct irq_chip its_irq_chip = {
638 	.name			= "ITS",
639 	.irq_mask		= its_mask_irq,
640 	.irq_unmask		= its_unmask_irq,
641 	.irq_eoi		= its_eoi_irq,
642 	.irq_set_affinity	= its_set_affinity,
643 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
644 };
645 
646 static void its_mask_msi_irq(struct irq_data *d)
647 {
648 	pci_msi_mask_irq(d);
649 	irq_chip_mask_parent(d);
650 }
651 
652 static void its_unmask_msi_irq(struct irq_data *d)
653 {
654 	pci_msi_unmask_irq(d);
655 	irq_chip_unmask_parent(d);
656 }
657 
658 static struct irq_chip its_msi_irq_chip = {
659 	.name			= "ITS-MSI",
660 	.irq_unmask		= its_unmask_msi_irq,
661 	.irq_mask		= its_mask_msi_irq,
662 	.irq_eoi		= irq_chip_eoi_parent,
663 	.irq_write_msi_msg	= pci_msi_domain_write_msg,
664 };
665 
666 /*
667  * How we allocate LPIs:
668  *
669  * The GIC has id_bits bits for interrupt identifiers. From there, we
670  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
671  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
672  * bits to the right.
673  *
674  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
675  */
676 #define IRQS_PER_CHUNK_SHIFT	5
677 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
678 
679 static unsigned long *lpi_bitmap;
680 static u32 lpi_chunks;
681 static DEFINE_SPINLOCK(lpi_lock);
682 
683 static int its_lpi_to_chunk(int lpi)
684 {
685 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
686 }
687 
688 static int its_chunk_to_lpi(int chunk)
689 {
690 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
691 }
692 
693 static int its_lpi_init(u32 id_bits)
694 {
695 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
696 
697 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
698 			     GFP_KERNEL);
699 	if (!lpi_bitmap) {
700 		lpi_chunks = 0;
701 		return -ENOMEM;
702 	}
703 
704 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
705 	return 0;
706 }
707 
708 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
709 {
710 	unsigned long *bitmap = NULL;
711 	int chunk_id;
712 	int nr_chunks;
713 	int i;
714 
715 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
716 
717 	spin_lock(&lpi_lock);
718 
719 	do {
720 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
721 						      0, nr_chunks, 0);
722 		if (chunk_id < lpi_chunks)
723 			break;
724 
725 		nr_chunks--;
726 	} while (nr_chunks > 0);
727 
728 	if (!nr_chunks)
729 		goto out;
730 
731 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
732 			 GFP_ATOMIC);
733 	if (!bitmap)
734 		goto out;
735 
736 	for (i = 0; i < nr_chunks; i++)
737 		set_bit(chunk_id + i, lpi_bitmap);
738 
739 	*base = its_chunk_to_lpi(chunk_id);
740 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
741 
742 out:
743 	spin_unlock(&lpi_lock);
744 
745 	return bitmap;
746 }
747 
748 static void its_lpi_free(struct event_lpi_map *map)
749 {
750 	int base = map->lpi_base;
751 	int nr_ids = map->nr_lpis;
752 	int lpi;
753 
754 	spin_lock(&lpi_lock);
755 
756 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
757 		int chunk = its_lpi_to_chunk(lpi);
758 		BUG_ON(chunk > lpi_chunks);
759 		if (test_bit(chunk, lpi_bitmap)) {
760 			clear_bit(chunk, lpi_bitmap);
761 		} else {
762 			pr_err("Bad LPI chunk %d\n", chunk);
763 		}
764 	}
765 
766 	spin_unlock(&lpi_lock);
767 
768 	kfree(map->lpi_map);
769 	kfree(map->col_map);
770 }
771 
772 /*
773  * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
774  * deal with (one configuration byte per interrupt). PENDBASE has to
775  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
776  */
777 #define LPI_PROPBASE_SZ		SZ_64K
778 #define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
779 
780 /*
781  * This is how many bits of ID we need, including the useless ones.
782  */
783 #define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
784 
785 #define LPI_PROP_DEFAULT_PRIO	0xa0
786 
787 static int __init its_alloc_lpi_tables(void)
788 {
789 	phys_addr_t paddr;
790 
791 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
792 					   get_order(LPI_PROPBASE_SZ));
793 	if (!gic_rdists->prop_page) {
794 		pr_err("Failed to allocate PROPBASE\n");
795 		return -ENOMEM;
796 	}
797 
798 	paddr = page_to_phys(gic_rdists->prop_page);
799 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
800 
801 	/* Priority 0xa0, Group-1, disabled */
802 	memset(page_address(gic_rdists->prop_page),
803 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
804 	       LPI_PROPBASE_SZ);
805 
806 	/* Make sure the GIC will observe the written configuration */
807 	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
808 
809 	return 0;
810 }
811 
812 static const char *its_base_type_string[] = {
813 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
814 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
815 	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
816 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
817 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
818 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
819 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
820 };
821 
822 static void its_free_tables(struct its_node *its)
823 {
824 	int i;
825 
826 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
827 		if (its->tables[i]) {
828 			free_page((unsigned long)its->tables[i]);
829 			its->tables[i] = NULL;
830 		}
831 	}
832 }
833 
834 static int its_alloc_tables(struct its_node *its)
835 {
836 	int err;
837 	int i;
838 	int psz = SZ_64K;
839 	u64 shr = GITS_BASER_InnerShareable;
840 	u64 cache = GITS_BASER_WaWb;
841 
842 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
843 		u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
844 		u64 type = GITS_BASER_TYPE(val);
845 		u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
846 		int order = get_order(psz);
847 		int alloc_size;
848 		u64 tmp;
849 		void *base;
850 
851 		if (type == GITS_BASER_TYPE_NONE)
852 			continue;
853 
854 		/*
855 		 * Allocate as many entries as required to fit the
856 		 * range of device IDs that the ITS can grok... The ID
857 		 * space being incredibly sparse, this results in a
858 		 * massive waste of memory.
859 		 *
860 		 * For other tables, only allocate a single page.
861 		 */
862 		if (type == GITS_BASER_TYPE_DEVICE) {
863 			u64 typer = readq_relaxed(its->base + GITS_TYPER);
864 			u32 ids = GITS_TYPER_DEVBITS(typer);
865 
866 			/*
867 			 * 'order' was initialized earlier to the default page
868 			 * granule of the the ITS.  We can't have an allocation
869 			 * smaller than that.  If the requested allocation
870 			 * is smaller, round up to the default page granule.
871 			 */
872 			order = max(get_order((1UL << ids) * entry_size),
873 				    order);
874 			if (order >= MAX_ORDER) {
875 				order = MAX_ORDER - 1;
876 				pr_warn("%s: Device Table too large, reduce its page order to %u\n",
877 					its->msi_chip.of_node->full_name, order);
878 			}
879 		}
880 
881 		alloc_size = (1 << order) * PAGE_SIZE;
882 		base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
883 		if (!base) {
884 			err = -ENOMEM;
885 			goto out_free;
886 		}
887 
888 		its->tables[i] = base;
889 
890 retry_baser:
891 		val = (virt_to_phys(base) 				 |
892 		       (type << GITS_BASER_TYPE_SHIFT)			 |
893 		       ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
894 		       cache						 |
895 		       shr						 |
896 		       GITS_BASER_VALID);
897 
898 		switch (psz) {
899 		case SZ_4K:
900 			val |= GITS_BASER_PAGE_SIZE_4K;
901 			break;
902 		case SZ_16K:
903 			val |= GITS_BASER_PAGE_SIZE_16K;
904 			break;
905 		case SZ_64K:
906 			val |= GITS_BASER_PAGE_SIZE_64K;
907 			break;
908 		}
909 
910 		val |= (alloc_size / psz) - 1;
911 
912 		writeq_relaxed(val, its->base + GITS_BASER + i * 8);
913 		tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
914 
915 		if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
916 			/*
917 			 * Shareability didn't stick. Just use
918 			 * whatever the read reported, which is likely
919 			 * to be the only thing this redistributor
920 			 * supports. If that's zero, make it
921 			 * non-cacheable as well.
922 			 */
923 			shr = tmp & GITS_BASER_SHAREABILITY_MASK;
924 			if (!shr)
925 				cache = GITS_BASER_nC;
926 			goto retry_baser;
927 		}
928 
929 		if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
930 			/*
931 			 * Page size didn't stick. Let's try a smaller
932 			 * size and retry. If we reach 4K, then
933 			 * something is horribly wrong...
934 			 */
935 			switch (psz) {
936 			case SZ_16K:
937 				psz = SZ_4K;
938 				goto retry_baser;
939 			case SZ_64K:
940 				psz = SZ_16K;
941 				goto retry_baser;
942 			}
943 		}
944 
945 		if (val != tmp) {
946 			pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
947 			       its->msi_chip.of_node->full_name, i,
948 			       (unsigned long) val, (unsigned long) tmp);
949 			err = -ENXIO;
950 			goto out_free;
951 		}
952 
953 		pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
954 			(int)(alloc_size / entry_size),
955 			its_base_type_string[type],
956 			(unsigned long)virt_to_phys(base),
957 			psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
958 	}
959 
960 	return 0;
961 
962 out_free:
963 	its_free_tables(its);
964 
965 	return err;
966 }
967 
968 static int its_alloc_collections(struct its_node *its)
969 {
970 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
971 				   GFP_KERNEL);
972 	if (!its->collections)
973 		return -ENOMEM;
974 
975 	return 0;
976 }
977 
978 static void its_cpu_init_lpis(void)
979 {
980 	void __iomem *rbase = gic_data_rdist_rd_base();
981 	struct page *pend_page;
982 	u64 val, tmp;
983 
984 	/* If we didn't allocate the pending table yet, do it now */
985 	pend_page = gic_data_rdist()->pend_page;
986 	if (!pend_page) {
987 		phys_addr_t paddr;
988 		/*
989 		 * The pending pages have to be at least 64kB aligned,
990 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
991 		 */
992 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
993 					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
994 		if (!pend_page) {
995 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
996 			       smp_processor_id());
997 			return;
998 		}
999 
1000 		/* Make sure the GIC will observe the zero-ed page */
1001 		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1002 
1003 		paddr = page_to_phys(pend_page);
1004 		pr_info("CPU%d: using LPI pending table @%pa\n",
1005 			smp_processor_id(), &paddr);
1006 		gic_data_rdist()->pend_page = pend_page;
1007 	}
1008 
1009 	/* Disable LPIs */
1010 	val = readl_relaxed(rbase + GICR_CTLR);
1011 	val &= ~GICR_CTLR_ENABLE_LPIS;
1012 	writel_relaxed(val, rbase + GICR_CTLR);
1013 
1014 	/*
1015 	 * Make sure any change to the table is observable by the GIC.
1016 	 */
1017 	dsb(sy);
1018 
1019 	/* set PROPBASE */
1020 	val = (page_to_phys(gic_rdists->prop_page) |
1021 	       GICR_PROPBASER_InnerShareable |
1022 	       GICR_PROPBASER_WaWb |
1023 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1024 
1025 	writeq_relaxed(val, rbase + GICR_PROPBASER);
1026 	tmp = readq_relaxed(rbase + GICR_PROPBASER);
1027 
1028 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1029 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1030 			/*
1031 			 * The HW reports non-shareable, we must
1032 			 * remove the cacheability attributes as
1033 			 * well.
1034 			 */
1035 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1036 				 GICR_PROPBASER_CACHEABILITY_MASK);
1037 			val |= GICR_PROPBASER_nC;
1038 			writeq_relaxed(val, rbase + GICR_PROPBASER);
1039 		}
1040 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1041 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1042 	}
1043 
1044 	/* set PENDBASE */
1045 	val = (page_to_phys(pend_page) |
1046 	       GICR_PENDBASER_InnerShareable |
1047 	       GICR_PENDBASER_WaWb);
1048 
1049 	writeq_relaxed(val, rbase + GICR_PENDBASER);
1050 	tmp = readq_relaxed(rbase + GICR_PENDBASER);
1051 
1052 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1053 		/*
1054 		 * The HW reports non-shareable, we must remove the
1055 		 * cacheability attributes as well.
1056 		 */
1057 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1058 			 GICR_PENDBASER_CACHEABILITY_MASK);
1059 		val |= GICR_PENDBASER_nC;
1060 		writeq_relaxed(val, rbase + GICR_PENDBASER);
1061 	}
1062 
1063 	/* Enable LPIs */
1064 	val = readl_relaxed(rbase + GICR_CTLR);
1065 	val |= GICR_CTLR_ENABLE_LPIS;
1066 	writel_relaxed(val, rbase + GICR_CTLR);
1067 
1068 	/* Make sure the GIC has seen the above */
1069 	dsb(sy);
1070 }
1071 
1072 static void its_cpu_init_collection(void)
1073 {
1074 	struct its_node *its;
1075 	int cpu;
1076 
1077 	spin_lock(&its_lock);
1078 	cpu = smp_processor_id();
1079 
1080 	list_for_each_entry(its, &its_nodes, entry) {
1081 		u64 target;
1082 
1083 		/*
1084 		 * We now have to bind each collection to its target
1085 		 * redistributor.
1086 		 */
1087 		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1088 			/*
1089 			 * This ITS wants the physical address of the
1090 			 * redistributor.
1091 			 */
1092 			target = gic_data_rdist()->phys_base;
1093 		} else {
1094 			/*
1095 			 * This ITS wants a linear CPU number.
1096 			 */
1097 			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1098 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1099 		}
1100 
1101 		/* Perform collection mapping */
1102 		its->collections[cpu].target_address = target;
1103 		its->collections[cpu].col_id = cpu;
1104 
1105 		its_send_mapc(its, &its->collections[cpu], 1);
1106 		its_send_invall(its, &its->collections[cpu]);
1107 	}
1108 
1109 	spin_unlock(&its_lock);
1110 }
1111 
1112 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1113 {
1114 	struct its_device *its_dev = NULL, *tmp;
1115 	unsigned long flags;
1116 
1117 	raw_spin_lock_irqsave(&its->lock, flags);
1118 
1119 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1120 		if (tmp->device_id == dev_id) {
1121 			its_dev = tmp;
1122 			break;
1123 		}
1124 	}
1125 
1126 	raw_spin_unlock_irqrestore(&its->lock, flags);
1127 
1128 	return its_dev;
1129 }
1130 
1131 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1132 					    int nvecs)
1133 {
1134 	struct its_device *dev;
1135 	unsigned long *lpi_map;
1136 	unsigned long flags;
1137 	u16 *col_map = NULL;
1138 	void *itt;
1139 	int lpi_base;
1140 	int nr_lpis;
1141 	int nr_ites;
1142 	int sz;
1143 
1144 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1145 	/*
1146 	 * At least one bit of EventID is being used, hence a minimum
1147 	 * of two entries. No, the architecture doesn't let you
1148 	 * express an ITT with a single entry.
1149 	 */
1150 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1151 	sz = nr_ites * its->ite_size;
1152 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1153 	itt = kzalloc(sz, GFP_KERNEL);
1154 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1155 	if (lpi_map)
1156 		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1157 
1158 	if (!dev || !itt || !lpi_map || !col_map) {
1159 		kfree(dev);
1160 		kfree(itt);
1161 		kfree(lpi_map);
1162 		kfree(col_map);
1163 		return NULL;
1164 	}
1165 
1166 	dev->its = its;
1167 	dev->itt = itt;
1168 	dev->nr_ites = nr_ites;
1169 	dev->event_map.lpi_map = lpi_map;
1170 	dev->event_map.col_map = col_map;
1171 	dev->event_map.lpi_base = lpi_base;
1172 	dev->event_map.nr_lpis = nr_lpis;
1173 	dev->device_id = dev_id;
1174 	INIT_LIST_HEAD(&dev->entry);
1175 
1176 	raw_spin_lock_irqsave(&its->lock, flags);
1177 	list_add(&dev->entry, &its->its_device_list);
1178 	raw_spin_unlock_irqrestore(&its->lock, flags);
1179 
1180 	/* Map device to its ITT */
1181 	its_send_mapd(dev, 1);
1182 
1183 	return dev;
1184 }
1185 
1186 static void its_free_device(struct its_device *its_dev)
1187 {
1188 	unsigned long flags;
1189 
1190 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1191 	list_del(&its_dev->entry);
1192 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1193 	kfree(its_dev->itt);
1194 	kfree(its_dev);
1195 }
1196 
1197 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1198 {
1199 	int idx;
1200 
1201 	idx = find_first_zero_bit(dev->event_map.lpi_map,
1202 				  dev->event_map.nr_lpis);
1203 	if (idx == dev->event_map.nr_lpis)
1204 		return -ENOSPC;
1205 
1206 	*hwirq = dev->event_map.lpi_base + idx;
1207 	set_bit(idx, dev->event_map.lpi_map);
1208 
1209 	return 0;
1210 }
1211 
1212 struct its_pci_alias {
1213 	struct pci_dev	*pdev;
1214 	u32		dev_id;
1215 	u32		count;
1216 };
1217 
1218 static int its_pci_msi_vec_count(struct pci_dev *pdev)
1219 {
1220 	int msi, msix;
1221 
1222 	msi = max(pci_msi_vec_count(pdev), 0);
1223 	msix = max(pci_msix_vec_count(pdev), 0);
1224 
1225 	return max(msi, msix);
1226 }
1227 
1228 static int its_get_pci_alias(struct pci_dev *pdev, u16 alias, void *data)
1229 {
1230 	struct its_pci_alias *dev_alias = data;
1231 
1232 	dev_alias->dev_id = alias;
1233 	if (pdev != dev_alias->pdev)
1234 		dev_alias->count += its_pci_msi_vec_count(dev_alias->pdev);
1235 
1236 	return 0;
1237 }
1238 
1239 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1240 			   int nvec, msi_alloc_info_t *info)
1241 {
1242 	struct pci_dev *pdev;
1243 	struct its_node *its;
1244 	struct its_device *its_dev;
1245 	struct its_pci_alias dev_alias;
1246 
1247 	if (!dev_is_pci(dev))
1248 		return -EINVAL;
1249 
1250 	pdev = to_pci_dev(dev);
1251 	dev_alias.pdev = pdev;
1252 	dev_alias.count = nvec;
1253 
1254 	pci_for_each_dma_alias(pdev, its_get_pci_alias, &dev_alias);
1255 	its = domain->parent->host_data;
1256 
1257 	its_dev = its_find_device(its, dev_alias.dev_id);
1258 	if (its_dev) {
1259 		/*
1260 		 * We already have seen this ID, probably through
1261 		 * another alias (PCI bridge of some sort). No need to
1262 		 * create the device.
1263 		 */
1264 		dev_dbg(dev, "Reusing ITT for devID %x\n", dev_alias.dev_id);
1265 		goto out;
1266 	}
1267 
1268 	its_dev = its_create_device(its, dev_alias.dev_id, dev_alias.count);
1269 	if (!its_dev)
1270 		return -ENOMEM;
1271 
1272 	dev_dbg(&pdev->dev, "ITT %d entries, %d bits\n",
1273 		dev_alias.count, ilog2(dev_alias.count));
1274 out:
1275 	info->scratchpad[0].ptr = its_dev;
1276 	info->scratchpad[1].ptr = dev;
1277 	return 0;
1278 }
1279 
1280 static struct msi_domain_ops its_pci_msi_ops = {
1281 	.msi_prepare	= its_msi_prepare,
1282 };
1283 
1284 static struct msi_domain_info its_pci_msi_domain_info = {
1285 	.flags	= (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
1286 		   MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX),
1287 	.ops	= &its_pci_msi_ops,
1288 	.chip	= &its_msi_irq_chip,
1289 };
1290 
1291 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1292 				    unsigned int virq,
1293 				    irq_hw_number_t hwirq)
1294 {
1295 	struct of_phandle_args args;
1296 
1297 	args.np = domain->parent->of_node;
1298 	args.args_count = 3;
1299 	args.args[0] = GIC_IRQ_TYPE_LPI;
1300 	args.args[1] = hwirq;
1301 	args.args[2] = IRQ_TYPE_EDGE_RISING;
1302 
1303 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &args);
1304 }
1305 
1306 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1307 				unsigned int nr_irqs, void *args)
1308 {
1309 	msi_alloc_info_t *info = args;
1310 	struct its_device *its_dev = info->scratchpad[0].ptr;
1311 	irq_hw_number_t hwirq;
1312 	int err;
1313 	int i;
1314 
1315 	for (i = 0; i < nr_irqs; i++) {
1316 		err = its_alloc_device_irq(its_dev, &hwirq);
1317 		if (err)
1318 			return err;
1319 
1320 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1321 		if (err)
1322 			return err;
1323 
1324 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1325 					      hwirq, &its_irq_chip, its_dev);
1326 		dev_dbg(info->scratchpad[1].ptr, "ID:%d pID:%d vID:%d\n",
1327 			(int)(hwirq - its_dev->event_map.lpi_base),
1328 			(int)hwirq, virq + i);
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static void its_irq_domain_activate(struct irq_domain *domain,
1335 				    struct irq_data *d)
1336 {
1337 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1338 	u32 event = its_get_event_id(d);
1339 
1340 	/* Bind the LPI to the first possible CPU */
1341 	its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1342 
1343 	/* Map the GIC IRQ and event to the device */
1344 	its_send_mapvi(its_dev, d->hwirq, event);
1345 }
1346 
1347 static void its_irq_domain_deactivate(struct irq_domain *domain,
1348 				      struct irq_data *d)
1349 {
1350 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1351 	u32 event = its_get_event_id(d);
1352 
1353 	/* Stop the delivery of interrupts */
1354 	its_send_discard(its_dev, event);
1355 }
1356 
1357 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1358 				unsigned int nr_irqs)
1359 {
1360 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1361 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1362 	int i;
1363 
1364 	for (i = 0; i < nr_irqs; i++) {
1365 		struct irq_data *data = irq_domain_get_irq_data(domain,
1366 								virq + i);
1367 		u32 event = its_get_event_id(data);
1368 
1369 		/* Mark interrupt index as unused */
1370 		clear_bit(event, its_dev->event_map.lpi_map);
1371 
1372 		/* Nuke the entry in the domain */
1373 		irq_domain_reset_irq_data(data);
1374 	}
1375 
1376 	/* If all interrupts have been freed, start mopping the floor */
1377 	if (bitmap_empty(its_dev->event_map.lpi_map,
1378 			 its_dev->event_map.nr_lpis)) {
1379 		its_lpi_free(&its_dev->event_map);
1380 
1381 		/* Unmap device/itt */
1382 		its_send_mapd(its_dev, 0);
1383 		its_free_device(its_dev);
1384 	}
1385 
1386 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1387 }
1388 
1389 static const struct irq_domain_ops its_domain_ops = {
1390 	.alloc			= its_irq_domain_alloc,
1391 	.free			= its_irq_domain_free,
1392 	.activate		= its_irq_domain_activate,
1393 	.deactivate		= its_irq_domain_deactivate,
1394 };
1395 
1396 static int its_force_quiescent(void __iomem *base)
1397 {
1398 	u32 count = 1000000;	/* 1s */
1399 	u32 val;
1400 
1401 	val = readl_relaxed(base + GITS_CTLR);
1402 	if (val & GITS_CTLR_QUIESCENT)
1403 		return 0;
1404 
1405 	/* Disable the generation of all interrupts to this ITS */
1406 	val &= ~GITS_CTLR_ENABLE;
1407 	writel_relaxed(val, base + GITS_CTLR);
1408 
1409 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1410 	while (1) {
1411 		val = readl_relaxed(base + GITS_CTLR);
1412 		if (val & GITS_CTLR_QUIESCENT)
1413 			return 0;
1414 
1415 		count--;
1416 		if (!count)
1417 			return -EBUSY;
1418 
1419 		cpu_relax();
1420 		udelay(1);
1421 	}
1422 }
1423 
1424 static int its_probe(struct device_node *node, struct irq_domain *parent)
1425 {
1426 	struct resource res;
1427 	struct its_node *its;
1428 	void __iomem *its_base;
1429 	u32 val;
1430 	u64 baser, tmp;
1431 	int err;
1432 
1433 	err = of_address_to_resource(node, 0, &res);
1434 	if (err) {
1435 		pr_warn("%s: no regs?\n", node->full_name);
1436 		return -ENXIO;
1437 	}
1438 
1439 	its_base = ioremap(res.start, resource_size(&res));
1440 	if (!its_base) {
1441 		pr_warn("%s: unable to map registers\n", node->full_name);
1442 		return -ENOMEM;
1443 	}
1444 
1445 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1446 	if (val != 0x30 && val != 0x40) {
1447 		pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1448 		err = -ENODEV;
1449 		goto out_unmap;
1450 	}
1451 
1452 	err = its_force_quiescent(its_base);
1453 	if (err) {
1454 		pr_warn("%s: failed to quiesce, giving up\n",
1455 			node->full_name);
1456 		goto out_unmap;
1457 	}
1458 
1459 	pr_info("ITS: %s\n", node->full_name);
1460 
1461 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1462 	if (!its) {
1463 		err = -ENOMEM;
1464 		goto out_unmap;
1465 	}
1466 
1467 	raw_spin_lock_init(&its->lock);
1468 	INIT_LIST_HEAD(&its->entry);
1469 	INIT_LIST_HEAD(&its->its_device_list);
1470 	its->base = its_base;
1471 	its->phys_base = res.start;
1472 	its->msi_chip.of_node = node;
1473 	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1474 
1475 	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1476 	if (!its->cmd_base) {
1477 		err = -ENOMEM;
1478 		goto out_free_its;
1479 	}
1480 	its->cmd_write = its->cmd_base;
1481 
1482 	err = its_alloc_tables(its);
1483 	if (err)
1484 		goto out_free_cmd;
1485 
1486 	err = its_alloc_collections(its);
1487 	if (err)
1488 		goto out_free_tables;
1489 
1490 	baser = (virt_to_phys(its->cmd_base)	|
1491 		 GITS_CBASER_WaWb		|
1492 		 GITS_CBASER_InnerShareable	|
1493 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1494 		 GITS_CBASER_VALID);
1495 
1496 	writeq_relaxed(baser, its->base + GITS_CBASER);
1497 	tmp = readq_relaxed(its->base + GITS_CBASER);
1498 
1499 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1500 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1501 			/*
1502 			 * The HW reports non-shareable, we must
1503 			 * remove the cacheability attributes as
1504 			 * well.
1505 			 */
1506 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1507 				   GITS_CBASER_CACHEABILITY_MASK);
1508 			baser |= GITS_CBASER_nC;
1509 			writeq_relaxed(baser, its->base + GITS_CBASER);
1510 		}
1511 		pr_info("ITS: using cache flushing for cmd queue\n");
1512 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1513 	}
1514 
1515 	writeq_relaxed(0, its->base + GITS_CWRITER);
1516 	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1517 
1518 	if (of_property_read_bool(its->msi_chip.of_node, "msi-controller")) {
1519 		its->domain = irq_domain_add_tree(NULL, &its_domain_ops, its);
1520 		if (!its->domain) {
1521 			err = -ENOMEM;
1522 			goto out_free_tables;
1523 		}
1524 
1525 		its->domain->parent = parent;
1526 
1527 		its->msi_chip.domain = pci_msi_create_irq_domain(node,
1528 								 &its_pci_msi_domain_info,
1529 								 its->domain);
1530 		if (!its->msi_chip.domain) {
1531 			err = -ENOMEM;
1532 			goto out_free_domains;
1533 		}
1534 
1535 		err = of_pci_msi_chip_add(&its->msi_chip);
1536 		if (err)
1537 			goto out_free_domains;
1538 	}
1539 
1540 	spin_lock(&its_lock);
1541 	list_add(&its->entry, &its_nodes);
1542 	spin_unlock(&its_lock);
1543 
1544 	return 0;
1545 
1546 out_free_domains:
1547 	if (its->msi_chip.domain)
1548 		irq_domain_remove(its->msi_chip.domain);
1549 	if (its->domain)
1550 		irq_domain_remove(its->domain);
1551 out_free_tables:
1552 	its_free_tables(its);
1553 out_free_cmd:
1554 	kfree(its->cmd_base);
1555 out_free_its:
1556 	kfree(its);
1557 out_unmap:
1558 	iounmap(its_base);
1559 	pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1560 	return err;
1561 }
1562 
1563 static bool gic_rdists_supports_plpis(void)
1564 {
1565 	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1566 }
1567 
1568 int its_cpu_init(void)
1569 {
1570 	if (!list_empty(&its_nodes)) {
1571 		if (!gic_rdists_supports_plpis()) {
1572 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1573 			return -ENXIO;
1574 		}
1575 		its_cpu_init_lpis();
1576 		its_cpu_init_collection();
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 static struct of_device_id its_device_id[] = {
1583 	{	.compatible	= "arm,gic-v3-its",	},
1584 	{},
1585 };
1586 
1587 int its_init(struct device_node *node, struct rdists *rdists,
1588 	     struct irq_domain *parent_domain)
1589 {
1590 	struct device_node *np;
1591 
1592 	for (np = of_find_matching_node(node, its_device_id); np;
1593 	     np = of_find_matching_node(np, its_device_id)) {
1594 		its_probe(np, parent_domain);
1595 	}
1596 
1597 	if (list_empty(&its_nodes)) {
1598 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1599 		return -ENXIO;
1600 	}
1601 
1602 	gic_rdists = rdists;
1603 	gic_root_node = node;
1604 
1605 	its_alloc_lpi_tables();
1606 	its_lpi_init(rdists->id_bits);
1607 
1608 	return 0;
1609 }
1610