1 /* 2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/bitmap.h> 19 #include <linux/cpu.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/log2.h> 23 #include <linux/mm.h> 24 #include <linux/msi.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_pci.h> 29 #include <linux/of_platform.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 33 #include <linux/irqchip/arm-gic-v3.h> 34 35 #include <asm/cacheflush.h> 36 #include <asm/cputype.h> 37 #include <asm/exception.h> 38 39 #include "irqchip.h" 40 41 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1 << 0) 42 43 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 44 45 /* 46 * Collection structure - just an ID, and a redistributor address to 47 * ping. We use one per CPU as a bag of interrupts assigned to this 48 * CPU. 49 */ 50 struct its_collection { 51 u64 target_address; 52 u16 col_id; 53 }; 54 55 /* 56 * The ITS structure - contains most of the infrastructure, with the 57 * msi_controller, the command queue, the collections, and the list of 58 * devices writing to it. 59 */ 60 struct its_node { 61 raw_spinlock_t lock; 62 struct list_head entry; 63 struct msi_controller msi_chip; 64 struct irq_domain *domain; 65 void __iomem *base; 66 unsigned long phys_base; 67 struct its_cmd_block *cmd_base; 68 struct its_cmd_block *cmd_write; 69 void *tables[GITS_BASER_NR_REGS]; 70 struct its_collection *collections; 71 struct list_head its_device_list; 72 u64 flags; 73 u32 ite_size; 74 }; 75 76 #define ITS_ITT_ALIGN SZ_256 77 78 struct event_lpi_map { 79 unsigned long *lpi_map; 80 u16 *col_map; 81 irq_hw_number_t lpi_base; 82 int nr_lpis; 83 }; 84 85 /* 86 * The ITS view of a device - belongs to an ITS, a collection, owns an 87 * interrupt translation table, and a list of interrupts. 88 */ 89 struct its_device { 90 struct list_head entry; 91 struct its_node *its; 92 struct event_lpi_map event_map; 93 void *itt; 94 u32 nr_ites; 95 u32 device_id; 96 }; 97 98 static LIST_HEAD(its_nodes); 99 static DEFINE_SPINLOCK(its_lock); 100 static struct device_node *gic_root_node; 101 static struct rdists *gic_rdists; 102 103 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 104 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 105 106 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 107 u32 event) 108 { 109 struct its_node *its = its_dev->its; 110 111 return its->collections + its_dev->event_map.col_map[event]; 112 } 113 114 /* 115 * ITS command descriptors - parameters to be encoded in a command 116 * block. 117 */ 118 struct its_cmd_desc { 119 union { 120 struct { 121 struct its_device *dev; 122 u32 event_id; 123 } its_inv_cmd; 124 125 struct { 126 struct its_device *dev; 127 u32 event_id; 128 } its_int_cmd; 129 130 struct { 131 struct its_device *dev; 132 int valid; 133 } its_mapd_cmd; 134 135 struct { 136 struct its_collection *col; 137 int valid; 138 } its_mapc_cmd; 139 140 struct { 141 struct its_device *dev; 142 u32 phys_id; 143 u32 event_id; 144 } its_mapvi_cmd; 145 146 struct { 147 struct its_device *dev; 148 struct its_collection *col; 149 u32 event_id; 150 } its_movi_cmd; 151 152 struct { 153 struct its_device *dev; 154 u32 event_id; 155 } its_discard_cmd; 156 157 struct { 158 struct its_collection *col; 159 } its_invall_cmd; 160 }; 161 }; 162 163 /* 164 * The ITS command block, which is what the ITS actually parses. 165 */ 166 struct its_cmd_block { 167 u64 raw_cmd[4]; 168 }; 169 170 #define ITS_CMD_QUEUE_SZ SZ_64K 171 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 172 173 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *, 174 struct its_cmd_desc *); 175 176 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 177 { 178 cmd->raw_cmd[0] &= ~0xffUL; 179 cmd->raw_cmd[0] |= cmd_nr; 180 } 181 182 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 183 { 184 cmd->raw_cmd[0] &= BIT_ULL(32) - 1; 185 cmd->raw_cmd[0] |= ((u64)devid) << 32; 186 } 187 188 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 189 { 190 cmd->raw_cmd[1] &= ~0xffffffffUL; 191 cmd->raw_cmd[1] |= id; 192 } 193 194 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 195 { 196 cmd->raw_cmd[1] &= 0xffffffffUL; 197 cmd->raw_cmd[1] |= ((u64)phys_id) << 32; 198 } 199 200 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 201 { 202 cmd->raw_cmd[1] &= ~0x1fUL; 203 cmd->raw_cmd[1] |= size & 0x1f; 204 } 205 206 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 207 { 208 cmd->raw_cmd[2] &= ~0xffffffffffffUL; 209 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL; 210 } 211 212 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 213 { 214 cmd->raw_cmd[2] &= ~(1UL << 63); 215 cmd->raw_cmd[2] |= ((u64)!!valid) << 63; 216 } 217 218 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 219 { 220 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16); 221 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16)); 222 } 223 224 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 225 { 226 cmd->raw_cmd[2] &= ~0xffffUL; 227 cmd->raw_cmd[2] |= col; 228 } 229 230 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 231 { 232 /* Let's fixup BE commands */ 233 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 234 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 235 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 236 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 237 } 238 239 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd, 240 struct its_cmd_desc *desc) 241 { 242 unsigned long itt_addr; 243 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 244 245 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 246 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 247 248 its_encode_cmd(cmd, GITS_CMD_MAPD); 249 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 250 its_encode_size(cmd, size - 1); 251 its_encode_itt(cmd, itt_addr); 252 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 253 254 its_fixup_cmd(cmd); 255 256 return NULL; 257 } 258 259 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd, 260 struct its_cmd_desc *desc) 261 { 262 its_encode_cmd(cmd, GITS_CMD_MAPC); 263 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 264 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 265 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 266 267 its_fixup_cmd(cmd); 268 269 return desc->its_mapc_cmd.col; 270 } 271 272 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd, 273 struct its_cmd_desc *desc) 274 { 275 struct its_collection *col; 276 277 col = dev_event_to_col(desc->its_mapvi_cmd.dev, 278 desc->its_mapvi_cmd.event_id); 279 280 its_encode_cmd(cmd, GITS_CMD_MAPVI); 281 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id); 282 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id); 283 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id); 284 its_encode_collection(cmd, col->col_id); 285 286 its_fixup_cmd(cmd); 287 288 return col; 289 } 290 291 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd, 292 struct its_cmd_desc *desc) 293 { 294 struct its_collection *col; 295 296 col = dev_event_to_col(desc->its_movi_cmd.dev, 297 desc->its_movi_cmd.event_id); 298 299 its_encode_cmd(cmd, GITS_CMD_MOVI); 300 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 301 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 302 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 303 304 its_fixup_cmd(cmd); 305 306 return col; 307 } 308 309 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd, 310 struct its_cmd_desc *desc) 311 { 312 struct its_collection *col; 313 314 col = dev_event_to_col(desc->its_discard_cmd.dev, 315 desc->its_discard_cmd.event_id); 316 317 its_encode_cmd(cmd, GITS_CMD_DISCARD); 318 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 319 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 320 321 its_fixup_cmd(cmd); 322 323 return col; 324 } 325 326 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd, 327 struct its_cmd_desc *desc) 328 { 329 struct its_collection *col; 330 331 col = dev_event_to_col(desc->its_inv_cmd.dev, 332 desc->its_inv_cmd.event_id); 333 334 its_encode_cmd(cmd, GITS_CMD_INV); 335 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 336 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 337 338 its_fixup_cmd(cmd); 339 340 return col; 341 } 342 343 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd, 344 struct its_cmd_desc *desc) 345 { 346 its_encode_cmd(cmd, GITS_CMD_INVALL); 347 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 348 349 its_fixup_cmd(cmd); 350 351 return NULL; 352 } 353 354 static u64 its_cmd_ptr_to_offset(struct its_node *its, 355 struct its_cmd_block *ptr) 356 { 357 return (ptr - its->cmd_base) * sizeof(*ptr); 358 } 359 360 static int its_queue_full(struct its_node *its) 361 { 362 int widx; 363 int ridx; 364 365 widx = its->cmd_write - its->cmd_base; 366 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 367 368 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 369 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 370 return 1; 371 372 return 0; 373 } 374 375 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 376 { 377 struct its_cmd_block *cmd; 378 u32 count = 1000000; /* 1s! */ 379 380 while (its_queue_full(its)) { 381 count--; 382 if (!count) { 383 pr_err_ratelimited("ITS queue not draining\n"); 384 return NULL; 385 } 386 cpu_relax(); 387 udelay(1); 388 } 389 390 cmd = its->cmd_write++; 391 392 /* Handle queue wrapping */ 393 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 394 its->cmd_write = its->cmd_base; 395 396 return cmd; 397 } 398 399 static struct its_cmd_block *its_post_commands(struct its_node *its) 400 { 401 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 402 403 writel_relaxed(wr, its->base + GITS_CWRITER); 404 405 return its->cmd_write; 406 } 407 408 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 409 { 410 /* 411 * Make sure the commands written to memory are observable by 412 * the ITS. 413 */ 414 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 415 __flush_dcache_area(cmd, sizeof(*cmd)); 416 else 417 dsb(ishst); 418 } 419 420 static void its_wait_for_range_completion(struct its_node *its, 421 struct its_cmd_block *from, 422 struct its_cmd_block *to) 423 { 424 u64 rd_idx, from_idx, to_idx; 425 u32 count = 1000000; /* 1s! */ 426 427 from_idx = its_cmd_ptr_to_offset(its, from); 428 to_idx = its_cmd_ptr_to_offset(its, to); 429 430 while (1) { 431 rd_idx = readl_relaxed(its->base + GITS_CREADR); 432 if (rd_idx >= to_idx || rd_idx < from_idx) 433 break; 434 435 count--; 436 if (!count) { 437 pr_err_ratelimited("ITS queue timeout\n"); 438 return; 439 } 440 cpu_relax(); 441 udelay(1); 442 } 443 } 444 445 static void its_send_single_command(struct its_node *its, 446 its_cmd_builder_t builder, 447 struct its_cmd_desc *desc) 448 { 449 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; 450 struct its_collection *sync_col; 451 unsigned long flags; 452 453 raw_spin_lock_irqsave(&its->lock, flags); 454 455 cmd = its_allocate_entry(its); 456 if (!cmd) { /* We're soooooo screewed... */ 457 pr_err_ratelimited("ITS can't allocate, dropping command\n"); 458 raw_spin_unlock_irqrestore(&its->lock, flags); 459 return; 460 } 461 sync_col = builder(cmd, desc); 462 its_flush_cmd(its, cmd); 463 464 if (sync_col) { 465 sync_cmd = its_allocate_entry(its); 466 if (!sync_cmd) { 467 pr_err_ratelimited("ITS can't SYNC, skipping\n"); 468 goto post; 469 } 470 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 471 its_encode_target(sync_cmd, sync_col->target_address); 472 its_fixup_cmd(sync_cmd); 473 its_flush_cmd(its, sync_cmd); 474 } 475 476 post: 477 next_cmd = its_post_commands(its); 478 raw_spin_unlock_irqrestore(&its->lock, flags); 479 480 its_wait_for_range_completion(its, cmd, next_cmd); 481 } 482 483 static void its_send_inv(struct its_device *dev, u32 event_id) 484 { 485 struct its_cmd_desc desc; 486 487 desc.its_inv_cmd.dev = dev; 488 desc.its_inv_cmd.event_id = event_id; 489 490 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 491 } 492 493 static void its_send_mapd(struct its_device *dev, int valid) 494 { 495 struct its_cmd_desc desc; 496 497 desc.its_mapd_cmd.dev = dev; 498 desc.its_mapd_cmd.valid = !!valid; 499 500 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 501 } 502 503 static void its_send_mapc(struct its_node *its, struct its_collection *col, 504 int valid) 505 { 506 struct its_cmd_desc desc; 507 508 desc.its_mapc_cmd.col = col; 509 desc.its_mapc_cmd.valid = !!valid; 510 511 its_send_single_command(its, its_build_mapc_cmd, &desc); 512 } 513 514 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id) 515 { 516 struct its_cmd_desc desc; 517 518 desc.its_mapvi_cmd.dev = dev; 519 desc.its_mapvi_cmd.phys_id = irq_id; 520 desc.its_mapvi_cmd.event_id = id; 521 522 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc); 523 } 524 525 static void its_send_movi(struct its_device *dev, 526 struct its_collection *col, u32 id) 527 { 528 struct its_cmd_desc desc; 529 530 desc.its_movi_cmd.dev = dev; 531 desc.its_movi_cmd.col = col; 532 desc.its_movi_cmd.event_id = id; 533 534 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 535 } 536 537 static void its_send_discard(struct its_device *dev, u32 id) 538 { 539 struct its_cmd_desc desc; 540 541 desc.its_discard_cmd.dev = dev; 542 desc.its_discard_cmd.event_id = id; 543 544 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 545 } 546 547 static void its_send_invall(struct its_node *its, struct its_collection *col) 548 { 549 struct its_cmd_desc desc; 550 551 desc.its_invall_cmd.col = col; 552 553 its_send_single_command(its, its_build_invall_cmd, &desc); 554 } 555 556 /* 557 * irqchip functions - assumes MSI, mostly. 558 */ 559 560 static inline u32 its_get_event_id(struct irq_data *d) 561 { 562 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 563 return d->hwirq - its_dev->event_map.lpi_base; 564 } 565 566 static void lpi_set_config(struct irq_data *d, bool enable) 567 { 568 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 569 irq_hw_number_t hwirq = d->hwirq; 570 u32 id = its_get_event_id(d); 571 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192; 572 573 if (enable) 574 *cfg |= LPI_PROP_ENABLED; 575 else 576 *cfg &= ~LPI_PROP_ENABLED; 577 578 /* 579 * Make the above write visible to the redistributors. 580 * And yes, we're flushing exactly: One. Single. Byte. 581 * Humpf... 582 */ 583 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 584 __flush_dcache_area(cfg, sizeof(*cfg)); 585 else 586 dsb(ishst); 587 its_send_inv(its_dev, id); 588 } 589 590 static void its_mask_irq(struct irq_data *d) 591 { 592 lpi_set_config(d, false); 593 } 594 595 static void its_unmask_irq(struct irq_data *d) 596 { 597 lpi_set_config(d, true); 598 } 599 600 static void its_eoi_irq(struct irq_data *d) 601 { 602 gic_write_eoir(d->hwirq); 603 } 604 605 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 606 bool force) 607 { 608 unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask); 609 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 610 struct its_collection *target_col; 611 u32 id = its_get_event_id(d); 612 613 if (cpu >= nr_cpu_ids) 614 return -EINVAL; 615 616 target_col = &its_dev->its->collections[cpu]; 617 its_send_movi(its_dev, target_col, id); 618 its_dev->event_map.col_map[id] = cpu; 619 620 return IRQ_SET_MASK_OK_DONE; 621 } 622 623 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 624 { 625 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 626 struct its_node *its; 627 u64 addr; 628 629 its = its_dev->its; 630 addr = its->phys_base + GITS_TRANSLATER; 631 632 msg->address_lo = addr & ((1UL << 32) - 1); 633 msg->address_hi = addr >> 32; 634 msg->data = its_get_event_id(d); 635 } 636 637 static struct irq_chip its_irq_chip = { 638 .name = "ITS", 639 .irq_mask = its_mask_irq, 640 .irq_unmask = its_unmask_irq, 641 .irq_eoi = its_eoi_irq, 642 .irq_set_affinity = its_set_affinity, 643 .irq_compose_msi_msg = its_irq_compose_msi_msg, 644 }; 645 646 static void its_mask_msi_irq(struct irq_data *d) 647 { 648 pci_msi_mask_irq(d); 649 irq_chip_mask_parent(d); 650 } 651 652 static void its_unmask_msi_irq(struct irq_data *d) 653 { 654 pci_msi_unmask_irq(d); 655 irq_chip_unmask_parent(d); 656 } 657 658 static struct irq_chip its_msi_irq_chip = { 659 .name = "ITS-MSI", 660 .irq_unmask = its_unmask_msi_irq, 661 .irq_mask = its_mask_msi_irq, 662 .irq_eoi = irq_chip_eoi_parent, 663 .irq_write_msi_msg = pci_msi_domain_write_msg, 664 }; 665 666 /* 667 * How we allocate LPIs: 668 * 669 * The GIC has id_bits bits for interrupt identifiers. From there, we 670 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as 671 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5 672 * bits to the right. 673 * 674 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations. 675 */ 676 #define IRQS_PER_CHUNK_SHIFT 5 677 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT) 678 679 static unsigned long *lpi_bitmap; 680 static u32 lpi_chunks; 681 static DEFINE_SPINLOCK(lpi_lock); 682 683 static int its_lpi_to_chunk(int lpi) 684 { 685 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT; 686 } 687 688 static int its_chunk_to_lpi(int chunk) 689 { 690 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192; 691 } 692 693 static int its_lpi_init(u32 id_bits) 694 { 695 lpi_chunks = its_lpi_to_chunk(1UL << id_bits); 696 697 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long), 698 GFP_KERNEL); 699 if (!lpi_bitmap) { 700 lpi_chunks = 0; 701 return -ENOMEM; 702 } 703 704 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks); 705 return 0; 706 } 707 708 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids) 709 { 710 unsigned long *bitmap = NULL; 711 int chunk_id; 712 int nr_chunks; 713 int i; 714 715 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK); 716 717 spin_lock(&lpi_lock); 718 719 do { 720 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks, 721 0, nr_chunks, 0); 722 if (chunk_id < lpi_chunks) 723 break; 724 725 nr_chunks--; 726 } while (nr_chunks > 0); 727 728 if (!nr_chunks) 729 goto out; 730 731 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long), 732 GFP_ATOMIC); 733 if (!bitmap) 734 goto out; 735 736 for (i = 0; i < nr_chunks; i++) 737 set_bit(chunk_id + i, lpi_bitmap); 738 739 *base = its_chunk_to_lpi(chunk_id); 740 *nr_ids = nr_chunks * IRQS_PER_CHUNK; 741 742 out: 743 spin_unlock(&lpi_lock); 744 745 return bitmap; 746 } 747 748 static void its_lpi_free(struct event_lpi_map *map) 749 { 750 int base = map->lpi_base; 751 int nr_ids = map->nr_lpis; 752 int lpi; 753 754 spin_lock(&lpi_lock); 755 756 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) { 757 int chunk = its_lpi_to_chunk(lpi); 758 BUG_ON(chunk > lpi_chunks); 759 if (test_bit(chunk, lpi_bitmap)) { 760 clear_bit(chunk, lpi_bitmap); 761 } else { 762 pr_err("Bad LPI chunk %d\n", chunk); 763 } 764 } 765 766 spin_unlock(&lpi_lock); 767 768 kfree(map->lpi_map); 769 kfree(map->col_map); 770 } 771 772 /* 773 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to 774 * deal with (one configuration byte per interrupt). PENDBASE has to 775 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 776 */ 777 #define LPI_PROPBASE_SZ SZ_64K 778 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K) 779 780 /* 781 * This is how many bits of ID we need, including the useless ones. 782 */ 783 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K) 784 785 #define LPI_PROP_DEFAULT_PRIO 0xa0 786 787 static int __init its_alloc_lpi_tables(void) 788 { 789 phys_addr_t paddr; 790 791 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT, 792 get_order(LPI_PROPBASE_SZ)); 793 if (!gic_rdists->prop_page) { 794 pr_err("Failed to allocate PROPBASE\n"); 795 return -ENOMEM; 796 } 797 798 paddr = page_to_phys(gic_rdists->prop_page); 799 pr_info("GIC: using LPI property table @%pa\n", &paddr); 800 801 /* Priority 0xa0, Group-1, disabled */ 802 memset(page_address(gic_rdists->prop_page), 803 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 804 LPI_PROPBASE_SZ); 805 806 /* Make sure the GIC will observe the written configuration */ 807 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ); 808 809 return 0; 810 } 811 812 static const char *its_base_type_string[] = { 813 [GITS_BASER_TYPE_DEVICE] = "Devices", 814 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 815 [GITS_BASER_TYPE_CPU] = "Physical CPUs", 816 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 817 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 818 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 819 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 820 }; 821 822 static void its_free_tables(struct its_node *its) 823 { 824 int i; 825 826 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 827 if (its->tables[i]) { 828 free_page((unsigned long)its->tables[i]); 829 its->tables[i] = NULL; 830 } 831 } 832 } 833 834 static int its_alloc_tables(struct its_node *its) 835 { 836 int err; 837 int i; 838 int psz = SZ_64K; 839 u64 shr = GITS_BASER_InnerShareable; 840 u64 cache = GITS_BASER_WaWb; 841 842 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 843 u64 val = readq_relaxed(its->base + GITS_BASER + i * 8); 844 u64 type = GITS_BASER_TYPE(val); 845 u64 entry_size = GITS_BASER_ENTRY_SIZE(val); 846 int order = get_order(psz); 847 int alloc_size; 848 u64 tmp; 849 void *base; 850 851 if (type == GITS_BASER_TYPE_NONE) 852 continue; 853 854 /* 855 * Allocate as many entries as required to fit the 856 * range of device IDs that the ITS can grok... The ID 857 * space being incredibly sparse, this results in a 858 * massive waste of memory. 859 * 860 * For other tables, only allocate a single page. 861 */ 862 if (type == GITS_BASER_TYPE_DEVICE) { 863 u64 typer = readq_relaxed(its->base + GITS_TYPER); 864 u32 ids = GITS_TYPER_DEVBITS(typer); 865 866 /* 867 * 'order' was initialized earlier to the default page 868 * granule of the the ITS. We can't have an allocation 869 * smaller than that. If the requested allocation 870 * is smaller, round up to the default page granule. 871 */ 872 order = max(get_order((1UL << ids) * entry_size), 873 order); 874 if (order >= MAX_ORDER) { 875 order = MAX_ORDER - 1; 876 pr_warn("%s: Device Table too large, reduce its page order to %u\n", 877 its->msi_chip.of_node->full_name, order); 878 } 879 } 880 881 alloc_size = (1 << order) * PAGE_SIZE; 882 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 883 if (!base) { 884 err = -ENOMEM; 885 goto out_free; 886 } 887 888 its->tables[i] = base; 889 890 retry_baser: 891 val = (virt_to_phys(base) | 892 (type << GITS_BASER_TYPE_SHIFT) | 893 ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 894 cache | 895 shr | 896 GITS_BASER_VALID); 897 898 switch (psz) { 899 case SZ_4K: 900 val |= GITS_BASER_PAGE_SIZE_4K; 901 break; 902 case SZ_16K: 903 val |= GITS_BASER_PAGE_SIZE_16K; 904 break; 905 case SZ_64K: 906 val |= GITS_BASER_PAGE_SIZE_64K; 907 break; 908 } 909 910 val |= (alloc_size / psz) - 1; 911 912 writeq_relaxed(val, its->base + GITS_BASER + i * 8); 913 tmp = readq_relaxed(its->base + GITS_BASER + i * 8); 914 915 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 916 /* 917 * Shareability didn't stick. Just use 918 * whatever the read reported, which is likely 919 * to be the only thing this redistributor 920 * supports. If that's zero, make it 921 * non-cacheable as well. 922 */ 923 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 924 if (!shr) 925 cache = GITS_BASER_nC; 926 goto retry_baser; 927 } 928 929 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 930 /* 931 * Page size didn't stick. Let's try a smaller 932 * size and retry. If we reach 4K, then 933 * something is horribly wrong... 934 */ 935 switch (psz) { 936 case SZ_16K: 937 psz = SZ_4K; 938 goto retry_baser; 939 case SZ_64K: 940 psz = SZ_16K; 941 goto retry_baser; 942 } 943 } 944 945 if (val != tmp) { 946 pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n", 947 its->msi_chip.of_node->full_name, i, 948 (unsigned long) val, (unsigned long) tmp); 949 err = -ENXIO; 950 goto out_free; 951 } 952 953 pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n", 954 (int)(alloc_size / entry_size), 955 its_base_type_string[type], 956 (unsigned long)virt_to_phys(base), 957 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 958 } 959 960 return 0; 961 962 out_free: 963 its_free_tables(its); 964 965 return err; 966 } 967 968 static int its_alloc_collections(struct its_node *its) 969 { 970 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections), 971 GFP_KERNEL); 972 if (!its->collections) 973 return -ENOMEM; 974 975 return 0; 976 } 977 978 static void its_cpu_init_lpis(void) 979 { 980 void __iomem *rbase = gic_data_rdist_rd_base(); 981 struct page *pend_page; 982 u64 val, tmp; 983 984 /* If we didn't allocate the pending table yet, do it now */ 985 pend_page = gic_data_rdist()->pend_page; 986 if (!pend_page) { 987 phys_addr_t paddr; 988 /* 989 * The pending pages have to be at least 64kB aligned, 990 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 991 */ 992 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO, 993 get_order(max(LPI_PENDBASE_SZ, SZ_64K))); 994 if (!pend_page) { 995 pr_err("Failed to allocate PENDBASE for CPU%d\n", 996 smp_processor_id()); 997 return; 998 } 999 1000 /* Make sure the GIC will observe the zero-ed page */ 1001 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ); 1002 1003 paddr = page_to_phys(pend_page); 1004 pr_info("CPU%d: using LPI pending table @%pa\n", 1005 smp_processor_id(), &paddr); 1006 gic_data_rdist()->pend_page = pend_page; 1007 } 1008 1009 /* Disable LPIs */ 1010 val = readl_relaxed(rbase + GICR_CTLR); 1011 val &= ~GICR_CTLR_ENABLE_LPIS; 1012 writel_relaxed(val, rbase + GICR_CTLR); 1013 1014 /* 1015 * Make sure any change to the table is observable by the GIC. 1016 */ 1017 dsb(sy); 1018 1019 /* set PROPBASE */ 1020 val = (page_to_phys(gic_rdists->prop_page) | 1021 GICR_PROPBASER_InnerShareable | 1022 GICR_PROPBASER_WaWb | 1023 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1024 1025 writeq_relaxed(val, rbase + GICR_PROPBASER); 1026 tmp = readq_relaxed(rbase + GICR_PROPBASER); 1027 1028 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1029 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1030 /* 1031 * The HW reports non-shareable, we must 1032 * remove the cacheability attributes as 1033 * well. 1034 */ 1035 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1036 GICR_PROPBASER_CACHEABILITY_MASK); 1037 val |= GICR_PROPBASER_nC; 1038 writeq_relaxed(val, rbase + GICR_PROPBASER); 1039 } 1040 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1041 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1042 } 1043 1044 /* set PENDBASE */ 1045 val = (page_to_phys(pend_page) | 1046 GICR_PENDBASER_InnerShareable | 1047 GICR_PENDBASER_WaWb); 1048 1049 writeq_relaxed(val, rbase + GICR_PENDBASER); 1050 tmp = readq_relaxed(rbase + GICR_PENDBASER); 1051 1052 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 1053 /* 1054 * The HW reports non-shareable, we must remove the 1055 * cacheability attributes as well. 1056 */ 1057 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 1058 GICR_PENDBASER_CACHEABILITY_MASK); 1059 val |= GICR_PENDBASER_nC; 1060 writeq_relaxed(val, rbase + GICR_PENDBASER); 1061 } 1062 1063 /* Enable LPIs */ 1064 val = readl_relaxed(rbase + GICR_CTLR); 1065 val |= GICR_CTLR_ENABLE_LPIS; 1066 writel_relaxed(val, rbase + GICR_CTLR); 1067 1068 /* Make sure the GIC has seen the above */ 1069 dsb(sy); 1070 } 1071 1072 static void its_cpu_init_collection(void) 1073 { 1074 struct its_node *its; 1075 int cpu; 1076 1077 spin_lock(&its_lock); 1078 cpu = smp_processor_id(); 1079 1080 list_for_each_entry(its, &its_nodes, entry) { 1081 u64 target; 1082 1083 /* 1084 * We now have to bind each collection to its target 1085 * redistributor. 1086 */ 1087 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 1088 /* 1089 * This ITS wants the physical address of the 1090 * redistributor. 1091 */ 1092 target = gic_data_rdist()->phys_base; 1093 } else { 1094 /* 1095 * This ITS wants a linear CPU number. 1096 */ 1097 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER); 1098 target = GICR_TYPER_CPU_NUMBER(target) << 16; 1099 } 1100 1101 /* Perform collection mapping */ 1102 its->collections[cpu].target_address = target; 1103 its->collections[cpu].col_id = cpu; 1104 1105 its_send_mapc(its, &its->collections[cpu], 1); 1106 its_send_invall(its, &its->collections[cpu]); 1107 } 1108 1109 spin_unlock(&its_lock); 1110 } 1111 1112 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 1113 { 1114 struct its_device *its_dev = NULL, *tmp; 1115 unsigned long flags; 1116 1117 raw_spin_lock_irqsave(&its->lock, flags); 1118 1119 list_for_each_entry(tmp, &its->its_device_list, entry) { 1120 if (tmp->device_id == dev_id) { 1121 its_dev = tmp; 1122 break; 1123 } 1124 } 1125 1126 raw_spin_unlock_irqrestore(&its->lock, flags); 1127 1128 return its_dev; 1129 } 1130 1131 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 1132 int nvecs) 1133 { 1134 struct its_device *dev; 1135 unsigned long *lpi_map; 1136 unsigned long flags; 1137 u16 *col_map = NULL; 1138 void *itt; 1139 int lpi_base; 1140 int nr_lpis; 1141 int nr_ites; 1142 int sz; 1143 1144 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1145 /* 1146 * At least one bit of EventID is being used, hence a minimum 1147 * of two entries. No, the architecture doesn't let you 1148 * express an ITT with a single entry. 1149 */ 1150 nr_ites = max(2UL, roundup_pow_of_two(nvecs)); 1151 sz = nr_ites * its->ite_size; 1152 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 1153 itt = kzalloc(sz, GFP_KERNEL); 1154 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis); 1155 if (lpi_map) 1156 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL); 1157 1158 if (!dev || !itt || !lpi_map || !col_map) { 1159 kfree(dev); 1160 kfree(itt); 1161 kfree(lpi_map); 1162 kfree(col_map); 1163 return NULL; 1164 } 1165 1166 dev->its = its; 1167 dev->itt = itt; 1168 dev->nr_ites = nr_ites; 1169 dev->event_map.lpi_map = lpi_map; 1170 dev->event_map.col_map = col_map; 1171 dev->event_map.lpi_base = lpi_base; 1172 dev->event_map.nr_lpis = nr_lpis; 1173 dev->device_id = dev_id; 1174 INIT_LIST_HEAD(&dev->entry); 1175 1176 raw_spin_lock_irqsave(&its->lock, flags); 1177 list_add(&dev->entry, &its->its_device_list); 1178 raw_spin_unlock_irqrestore(&its->lock, flags); 1179 1180 /* Map device to its ITT */ 1181 its_send_mapd(dev, 1); 1182 1183 return dev; 1184 } 1185 1186 static void its_free_device(struct its_device *its_dev) 1187 { 1188 unsigned long flags; 1189 1190 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 1191 list_del(&its_dev->entry); 1192 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 1193 kfree(its_dev->itt); 1194 kfree(its_dev); 1195 } 1196 1197 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 1198 { 1199 int idx; 1200 1201 idx = find_first_zero_bit(dev->event_map.lpi_map, 1202 dev->event_map.nr_lpis); 1203 if (idx == dev->event_map.nr_lpis) 1204 return -ENOSPC; 1205 1206 *hwirq = dev->event_map.lpi_base + idx; 1207 set_bit(idx, dev->event_map.lpi_map); 1208 1209 return 0; 1210 } 1211 1212 struct its_pci_alias { 1213 struct pci_dev *pdev; 1214 u32 dev_id; 1215 u32 count; 1216 }; 1217 1218 static int its_pci_msi_vec_count(struct pci_dev *pdev) 1219 { 1220 int msi, msix; 1221 1222 msi = max(pci_msi_vec_count(pdev), 0); 1223 msix = max(pci_msix_vec_count(pdev), 0); 1224 1225 return max(msi, msix); 1226 } 1227 1228 static int its_get_pci_alias(struct pci_dev *pdev, u16 alias, void *data) 1229 { 1230 struct its_pci_alias *dev_alias = data; 1231 1232 dev_alias->dev_id = alias; 1233 if (pdev != dev_alias->pdev) 1234 dev_alias->count += its_pci_msi_vec_count(dev_alias->pdev); 1235 1236 return 0; 1237 } 1238 1239 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 1240 int nvec, msi_alloc_info_t *info) 1241 { 1242 struct pci_dev *pdev; 1243 struct its_node *its; 1244 struct its_device *its_dev; 1245 struct its_pci_alias dev_alias; 1246 1247 if (!dev_is_pci(dev)) 1248 return -EINVAL; 1249 1250 pdev = to_pci_dev(dev); 1251 dev_alias.pdev = pdev; 1252 dev_alias.count = nvec; 1253 1254 pci_for_each_dma_alias(pdev, its_get_pci_alias, &dev_alias); 1255 its = domain->parent->host_data; 1256 1257 its_dev = its_find_device(its, dev_alias.dev_id); 1258 if (its_dev) { 1259 /* 1260 * We already have seen this ID, probably through 1261 * another alias (PCI bridge of some sort). No need to 1262 * create the device. 1263 */ 1264 dev_dbg(dev, "Reusing ITT for devID %x\n", dev_alias.dev_id); 1265 goto out; 1266 } 1267 1268 its_dev = its_create_device(its, dev_alias.dev_id, dev_alias.count); 1269 if (!its_dev) 1270 return -ENOMEM; 1271 1272 dev_dbg(&pdev->dev, "ITT %d entries, %d bits\n", 1273 dev_alias.count, ilog2(dev_alias.count)); 1274 out: 1275 info->scratchpad[0].ptr = its_dev; 1276 info->scratchpad[1].ptr = dev; 1277 return 0; 1278 } 1279 1280 static struct msi_domain_ops its_pci_msi_ops = { 1281 .msi_prepare = its_msi_prepare, 1282 }; 1283 1284 static struct msi_domain_info its_pci_msi_domain_info = { 1285 .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 1286 MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX), 1287 .ops = &its_pci_msi_ops, 1288 .chip = &its_msi_irq_chip, 1289 }; 1290 1291 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 1292 unsigned int virq, 1293 irq_hw_number_t hwirq) 1294 { 1295 struct of_phandle_args args; 1296 1297 args.np = domain->parent->of_node; 1298 args.args_count = 3; 1299 args.args[0] = GIC_IRQ_TYPE_LPI; 1300 args.args[1] = hwirq; 1301 args.args[2] = IRQ_TYPE_EDGE_RISING; 1302 1303 return irq_domain_alloc_irqs_parent(domain, virq, 1, &args); 1304 } 1305 1306 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1307 unsigned int nr_irqs, void *args) 1308 { 1309 msi_alloc_info_t *info = args; 1310 struct its_device *its_dev = info->scratchpad[0].ptr; 1311 irq_hw_number_t hwirq; 1312 int err; 1313 int i; 1314 1315 for (i = 0; i < nr_irqs; i++) { 1316 err = its_alloc_device_irq(its_dev, &hwirq); 1317 if (err) 1318 return err; 1319 1320 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 1321 if (err) 1322 return err; 1323 1324 irq_domain_set_hwirq_and_chip(domain, virq + i, 1325 hwirq, &its_irq_chip, its_dev); 1326 dev_dbg(info->scratchpad[1].ptr, "ID:%d pID:%d vID:%d\n", 1327 (int)(hwirq - its_dev->event_map.lpi_base), 1328 (int)hwirq, virq + i); 1329 } 1330 1331 return 0; 1332 } 1333 1334 static void its_irq_domain_activate(struct irq_domain *domain, 1335 struct irq_data *d) 1336 { 1337 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1338 u32 event = its_get_event_id(d); 1339 1340 /* Bind the LPI to the first possible CPU */ 1341 its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask); 1342 1343 /* Map the GIC IRQ and event to the device */ 1344 its_send_mapvi(its_dev, d->hwirq, event); 1345 } 1346 1347 static void its_irq_domain_deactivate(struct irq_domain *domain, 1348 struct irq_data *d) 1349 { 1350 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1351 u32 event = its_get_event_id(d); 1352 1353 /* Stop the delivery of interrupts */ 1354 its_send_discard(its_dev, event); 1355 } 1356 1357 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1358 unsigned int nr_irqs) 1359 { 1360 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 1361 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1362 int i; 1363 1364 for (i = 0; i < nr_irqs; i++) { 1365 struct irq_data *data = irq_domain_get_irq_data(domain, 1366 virq + i); 1367 u32 event = its_get_event_id(data); 1368 1369 /* Mark interrupt index as unused */ 1370 clear_bit(event, its_dev->event_map.lpi_map); 1371 1372 /* Nuke the entry in the domain */ 1373 irq_domain_reset_irq_data(data); 1374 } 1375 1376 /* If all interrupts have been freed, start mopping the floor */ 1377 if (bitmap_empty(its_dev->event_map.lpi_map, 1378 its_dev->event_map.nr_lpis)) { 1379 its_lpi_free(&its_dev->event_map); 1380 1381 /* Unmap device/itt */ 1382 its_send_mapd(its_dev, 0); 1383 its_free_device(its_dev); 1384 } 1385 1386 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 1387 } 1388 1389 static const struct irq_domain_ops its_domain_ops = { 1390 .alloc = its_irq_domain_alloc, 1391 .free = its_irq_domain_free, 1392 .activate = its_irq_domain_activate, 1393 .deactivate = its_irq_domain_deactivate, 1394 }; 1395 1396 static int its_force_quiescent(void __iomem *base) 1397 { 1398 u32 count = 1000000; /* 1s */ 1399 u32 val; 1400 1401 val = readl_relaxed(base + GITS_CTLR); 1402 if (val & GITS_CTLR_QUIESCENT) 1403 return 0; 1404 1405 /* Disable the generation of all interrupts to this ITS */ 1406 val &= ~GITS_CTLR_ENABLE; 1407 writel_relaxed(val, base + GITS_CTLR); 1408 1409 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 1410 while (1) { 1411 val = readl_relaxed(base + GITS_CTLR); 1412 if (val & GITS_CTLR_QUIESCENT) 1413 return 0; 1414 1415 count--; 1416 if (!count) 1417 return -EBUSY; 1418 1419 cpu_relax(); 1420 udelay(1); 1421 } 1422 } 1423 1424 static int its_probe(struct device_node *node, struct irq_domain *parent) 1425 { 1426 struct resource res; 1427 struct its_node *its; 1428 void __iomem *its_base; 1429 u32 val; 1430 u64 baser, tmp; 1431 int err; 1432 1433 err = of_address_to_resource(node, 0, &res); 1434 if (err) { 1435 pr_warn("%s: no regs?\n", node->full_name); 1436 return -ENXIO; 1437 } 1438 1439 its_base = ioremap(res.start, resource_size(&res)); 1440 if (!its_base) { 1441 pr_warn("%s: unable to map registers\n", node->full_name); 1442 return -ENOMEM; 1443 } 1444 1445 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 1446 if (val != 0x30 && val != 0x40) { 1447 pr_warn("%s: no ITS detected, giving up\n", node->full_name); 1448 err = -ENODEV; 1449 goto out_unmap; 1450 } 1451 1452 err = its_force_quiescent(its_base); 1453 if (err) { 1454 pr_warn("%s: failed to quiesce, giving up\n", 1455 node->full_name); 1456 goto out_unmap; 1457 } 1458 1459 pr_info("ITS: %s\n", node->full_name); 1460 1461 its = kzalloc(sizeof(*its), GFP_KERNEL); 1462 if (!its) { 1463 err = -ENOMEM; 1464 goto out_unmap; 1465 } 1466 1467 raw_spin_lock_init(&its->lock); 1468 INIT_LIST_HEAD(&its->entry); 1469 INIT_LIST_HEAD(&its->its_device_list); 1470 its->base = its_base; 1471 its->phys_base = res.start; 1472 its->msi_chip.of_node = node; 1473 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1; 1474 1475 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL); 1476 if (!its->cmd_base) { 1477 err = -ENOMEM; 1478 goto out_free_its; 1479 } 1480 its->cmd_write = its->cmd_base; 1481 1482 err = its_alloc_tables(its); 1483 if (err) 1484 goto out_free_cmd; 1485 1486 err = its_alloc_collections(its); 1487 if (err) 1488 goto out_free_tables; 1489 1490 baser = (virt_to_phys(its->cmd_base) | 1491 GITS_CBASER_WaWb | 1492 GITS_CBASER_InnerShareable | 1493 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 1494 GITS_CBASER_VALID); 1495 1496 writeq_relaxed(baser, its->base + GITS_CBASER); 1497 tmp = readq_relaxed(its->base + GITS_CBASER); 1498 1499 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 1500 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 1501 /* 1502 * The HW reports non-shareable, we must 1503 * remove the cacheability attributes as 1504 * well. 1505 */ 1506 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 1507 GITS_CBASER_CACHEABILITY_MASK); 1508 baser |= GITS_CBASER_nC; 1509 writeq_relaxed(baser, its->base + GITS_CBASER); 1510 } 1511 pr_info("ITS: using cache flushing for cmd queue\n"); 1512 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 1513 } 1514 1515 writeq_relaxed(0, its->base + GITS_CWRITER); 1516 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR); 1517 1518 if (of_property_read_bool(its->msi_chip.of_node, "msi-controller")) { 1519 its->domain = irq_domain_add_tree(NULL, &its_domain_ops, its); 1520 if (!its->domain) { 1521 err = -ENOMEM; 1522 goto out_free_tables; 1523 } 1524 1525 its->domain->parent = parent; 1526 1527 its->msi_chip.domain = pci_msi_create_irq_domain(node, 1528 &its_pci_msi_domain_info, 1529 its->domain); 1530 if (!its->msi_chip.domain) { 1531 err = -ENOMEM; 1532 goto out_free_domains; 1533 } 1534 1535 err = of_pci_msi_chip_add(&its->msi_chip); 1536 if (err) 1537 goto out_free_domains; 1538 } 1539 1540 spin_lock(&its_lock); 1541 list_add(&its->entry, &its_nodes); 1542 spin_unlock(&its_lock); 1543 1544 return 0; 1545 1546 out_free_domains: 1547 if (its->msi_chip.domain) 1548 irq_domain_remove(its->msi_chip.domain); 1549 if (its->domain) 1550 irq_domain_remove(its->domain); 1551 out_free_tables: 1552 its_free_tables(its); 1553 out_free_cmd: 1554 kfree(its->cmd_base); 1555 out_free_its: 1556 kfree(its); 1557 out_unmap: 1558 iounmap(its_base); 1559 pr_err("ITS: failed probing %s (%d)\n", node->full_name, err); 1560 return err; 1561 } 1562 1563 static bool gic_rdists_supports_plpis(void) 1564 { 1565 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 1566 } 1567 1568 int its_cpu_init(void) 1569 { 1570 if (!list_empty(&its_nodes)) { 1571 if (!gic_rdists_supports_plpis()) { 1572 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 1573 return -ENXIO; 1574 } 1575 its_cpu_init_lpis(); 1576 its_cpu_init_collection(); 1577 } 1578 1579 return 0; 1580 } 1581 1582 static struct of_device_id its_device_id[] = { 1583 { .compatible = "arm,gic-v3-its", }, 1584 {}, 1585 }; 1586 1587 int its_init(struct device_node *node, struct rdists *rdists, 1588 struct irq_domain *parent_domain) 1589 { 1590 struct device_node *np; 1591 1592 for (np = of_find_matching_node(node, its_device_id); np; 1593 np = of_find_matching_node(np, its_device_id)) { 1594 its_probe(np, parent_domain); 1595 } 1596 1597 if (list_empty(&its_nodes)) { 1598 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 1599 return -ENXIO; 1600 } 1601 1602 gic_rdists = rdists; 1603 gic_root_node = node; 1604 1605 its_alloc_lpi_tables(); 1606 its_lpi_init(rdists->id_bits); 1607 1608 return 0; 1609 } 1610