1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 46 47 #define RD_LOCAL_LPI_ENABLED BIT(0) 48 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 49 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 50 51 static u32 lpi_id_bits; 52 53 /* 54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 55 * deal with (one configuration byte per interrupt). PENDBASE has to 56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 57 */ 58 #define LPI_NRBITS lpi_id_bits 59 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 60 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 61 62 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 63 64 /* 65 * Collection structure - just an ID, and a redistributor address to 66 * ping. We use one per CPU as a bag of interrupts assigned to this 67 * CPU. 68 */ 69 struct its_collection { 70 u64 target_address; 71 u16 col_id; 72 }; 73 74 /* 75 * The ITS_BASER structure - contains memory information, cached 76 * value of BASER register configuration and ITS page size. 77 */ 78 struct its_baser { 79 void *base; 80 u64 val; 81 u32 order; 82 u32 psz; 83 }; 84 85 struct its_device; 86 87 /* 88 * The ITS structure - contains most of the infrastructure, with the 89 * top-level MSI domain, the command queue, the collections, and the 90 * list of devices writing to it. 91 * 92 * dev_alloc_lock has to be taken for device allocations, while the 93 * spinlock must be taken to parse data structures such as the device 94 * list. 95 */ 96 struct its_node { 97 raw_spinlock_t lock; 98 struct mutex dev_alloc_lock; 99 struct list_head entry; 100 void __iomem *base; 101 void __iomem *sgir_base; 102 phys_addr_t phys_base; 103 struct its_cmd_block *cmd_base; 104 struct its_cmd_block *cmd_write; 105 struct its_baser tables[GITS_BASER_NR_REGS]; 106 struct its_collection *collections; 107 struct fwnode_handle *fwnode_handle; 108 u64 (*get_msi_base)(struct its_device *its_dev); 109 u64 typer; 110 u64 cbaser_save; 111 u32 ctlr_save; 112 u32 mpidr; 113 struct list_head its_device_list; 114 u64 flags; 115 unsigned long list_nr; 116 int numa_node; 117 unsigned int msi_domain_flags; 118 u32 pre_its_base; /* for Socionext Synquacer */ 119 int vlpi_redist_offset; 120 }; 121 122 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 123 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 124 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 125 126 #define ITS_ITT_ALIGN SZ_256 127 128 /* The maximum number of VPEID bits supported by VLPI commands */ 129 #define ITS_MAX_VPEID_BITS \ 130 ({ \ 131 int nvpeid = 16; \ 132 if (gic_rdists->has_rvpeid && \ 133 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 134 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 135 GICD_TYPER2_VID); \ 136 \ 137 nvpeid; \ 138 }) 139 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 140 141 /* Convert page order to size in bytes */ 142 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 143 144 struct event_lpi_map { 145 unsigned long *lpi_map; 146 u16 *col_map; 147 irq_hw_number_t lpi_base; 148 int nr_lpis; 149 raw_spinlock_t vlpi_lock; 150 struct its_vm *vm; 151 struct its_vlpi_map *vlpi_maps; 152 int nr_vlpis; 153 }; 154 155 /* 156 * The ITS view of a device - belongs to an ITS, owns an interrupt 157 * translation table, and a list of interrupts. If it some of its 158 * LPIs are injected into a guest (GICv4), the event_map.vm field 159 * indicates which one. 160 */ 161 struct its_device { 162 struct list_head entry; 163 struct its_node *its; 164 struct event_lpi_map event_map; 165 void *itt; 166 u32 nr_ites; 167 u32 device_id; 168 bool shared; 169 }; 170 171 static struct { 172 raw_spinlock_t lock; 173 struct its_device *dev; 174 struct its_vpe **vpes; 175 int next_victim; 176 } vpe_proxy; 177 178 struct cpu_lpi_count { 179 atomic_t managed; 180 atomic_t unmanaged; 181 }; 182 183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 184 185 static LIST_HEAD(its_nodes); 186 static DEFINE_RAW_SPINLOCK(its_lock); 187 static struct rdists *gic_rdists; 188 static struct irq_domain *its_parent; 189 190 static unsigned long its_list_map; 191 static u16 vmovp_seq_num; 192 static DEFINE_RAW_SPINLOCK(vmovp_lock); 193 194 static DEFINE_IDA(its_vpeid_ida); 195 196 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 197 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 198 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 199 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 200 201 /* 202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 203 * always have vSGIs mapped. 204 */ 205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 206 { 207 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 208 } 209 210 static u16 get_its_list(struct its_vm *vm) 211 { 212 struct its_node *its; 213 unsigned long its_list = 0; 214 215 list_for_each_entry(its, &its_nodes, entry) { 216 if (!is_v4(its)) 217 continue; 218 219 if (require_its_list_vmovp(vm, its)) 220 __set_bit(its->list_nr, &its_list); 221 } 222 223 return (u16)its_list; 224 } 225 226 static inline u32 its_get_event_id(struct irq_data *d) 227 { 228 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 229 return d->hwirq - its_dev->event_map.lpi_base; 230 } 231 232 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 233 u32 event) 234 { 235 struct its_node *its = its_dev->its; 236 237 return its->collections + its_dev->event_map.col_map[event]; 238 } 239 240 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 241 u32 event) 242 { 243 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 244 return NULL; 245 246 return &its_dev->event_map.vlpi_maps[event]; 247 } 248 249 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 250 { 251 if (irqd_is_forwarded_to_vcpu(d)) { 252 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 253 u32 event = its_get_event_id(d); 254 255 return dev_event_to_vlpi_map(its_dev, event); 256 } 257 258 return NULL; 259 } 260 261 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 262 { 263 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 264 return vpe->col_idx; 265 } 266 267 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 268 { 269 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 270 } 271 272 static struct irq_chip its_vpe_irq_chip; 273 274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 275 { 276 struct its_vpe *vpe = NULL; 277 int cpu; 278 279 if (d->chip == &its_vpe_irq_chip) { 280 vpe = irq_data_get_irq_chip_data(d); 281 } else { 282 struct its_vlpi_map *map = get_vlpi_map(d); 283 if (map) 284 vpe = map->vpe; 285 } 286 287 if (vpe) { 288 cpu = vpe_to_cpuid_lock(vpe, flags); 289 } else { 290 /* Physical LPIs are already locked via the irq_desc lock */ 291 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 292 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 293 /* Keep GCC quiet... */ 294 *flags = 0; 295 } 296 297 return cpu; 298 } 299 300 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 301 { 302 struct its_vpe *vpe = NULL; 303 304 if (d->chip == &its_vpe_irq_chip) { 305 vpe = irq_data_get_irq_chip_data(d); 306 } else { 307 struct its_vlpi_map *map = get_vlpi_map(d); 308 if (map) 309 vpe = map->vpe; 310 } 311 312 if (vpe) 313 vpe_to_cpuid_unlock(vpe, flags); 314 } 315 316 static struct its_collection *valid_col(struct its_collection *col) 317 { 318 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 319 return NULL; 320 321 return col; 322 } 323 324 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 325 { 326 if (valid_col(its->collections + vpe->col_idx)) 327 return vpe; 328 329 return NULL; 330 } 331 332 /* 333 * ITS command descriptors - parameters to be encoded in a command 334 * block. 335 */ 336 struct its_cmd_desc { 337 union { 338 struct { 339 struct its_device *dev; 340 u32 event_id; 341 } its_inv_cmd; 342 343 struct { 344 struct its_device *dev; 345 u32 event_id; 346 } its_clear_cmd; 347 348 struct { 349 struct its_device *dev; 350 u32 event_id; 351 } its_int_cmd; 352 353 struct { 354 struct its_device *dev; 355 int valid; 356 } its_mapd_cmd; 357 358 struct { 359 struct its_collection *col; 360 int valid; 361 } its_mapc_cmd; 362 363 struct { 364 struct its_device *dev; 365 u32 phys_id; 366 u32 event_id; 367 } its_mapti_cmd; 368 369 struct { 370 struct its_device *dev; 371 struct its_collection *col; 372 u32 event_id; 373 } its_movi_cmd; 374 375 struct { 376 struct its_device *dev; 377 u32 event_id; 378 } its_discard_cmd; 379 380 struct { 381 struct its_collection *col; 382 } its_invall_cmd; 383 384 struct { 385 struct its_vpe *vpe; 386 } its_vinvall_cmd; 387 388 struct { 389 struct its_vpe *vpe; 390 struct its_collection *col; 391 bool valid; 392 } its_vmapp_cmd; 393 394 struct { 395 struct its_vpe *vpe; 396 struct its_device *dev; 397 u32 virt_id; 398 u32 event_id; 399 bool db_enabled; 400 } its_vmapti_cmd; 401 402 struct { 403 struct its_vpe *vpe; 404 struct its_device *dev; 405 u32 event_id; 406 bool db_enabled; 407 } its_vmovi_cmd; 408 409 struct { 410 struct its_vpe *vpe; 411 struct its_collection *col; 412 u16 seq_num; 413 u16 its_list; 414 } its_vmovp_cmd; 415 416 struct { 417 struct its_vpe *vpe; 418 } its_invdb_cmd; 419 420 struct { 421 struct its_vpe *vpe; 422 u8 sgi; 423 u8 priority; 424 bool enable; 425 bool group; 426 bool clear; 427 } its_vsgi_cmd; 428 }; 429 }; 430 431 /* 432 * The ITS command block, which is what the ITS actually parses. 433 */ 434 struct its_cmd_block { 435 union { 436 u64 raw_cmd[4]; 437 __le64 raw_cmd_le[4]; 438 }; 439 }; 440 441 #define ITS_CMD_QUEUE_SZ SZ_64K 442 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 443 444 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 445 struct its_cmd_block *, 446 struct its_cmd_desc *); 447 448 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 449 struct its_cmd_block *, 450 struct its_cmd_desc *); 451 452 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 453 { 454 u64 mask = GENMASK_ULL(h, l); 455 *raw_cmd &= ~mask; 456 *raw_cmd |= (val << l) & mask; 457 } 458 459 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 460 { 461 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 462 } 463 464 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 465 { 466 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 467 } 468 469 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 470 { 471 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 472 } 473 474 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 475 { 476 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 477 } 478 479 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 480 { 481 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 482 } 483 484 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 485 { 486 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 487 } 488 489 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 490 { 491 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 492 } 493 494 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 495 { 496 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 497 } 498 499 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 500 { 501 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 502 } 503 504 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 505 { 506 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 507 } 508 509 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 510 { 511 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 512 } 513 514 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 515 { 516 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 517 } 518 519 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 520 { 521 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 522 } 523 524 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 525 { 526 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 527 } 528 529 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 530 { 531 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 532 } 533 534 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 535 { 536 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 537 } 538 539 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 540 { 541 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 542 } 543 544 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 545 { 546 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 547 } 548 549 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 550 { 551 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 552 } 553 554 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 555 { 556 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 557 } 558 559 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 560 u32 vpe_db_lpi) 561 { 562 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 563 } 564 565 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 566 u32 vpe_db_lpi) 567 { 568 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 569 } 570 571 static void its_encode_db(struct its_cmd_block *cmd, bool db) 572 { 573 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 574 } 575 576 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 577 { 578 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 579 } 580 581 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 582 { 583 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 584 } 585 586 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 587 { 588 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 589 } 590 591 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 592 { 593 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 594 } 595 596 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 597 { 598 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 599 } 600 601 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 602 { 603 /* Let's fixup BE commands */ 604 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 605 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 606 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 607 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 608 } 609 610 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 611 struct its_cmd_block *cmd, 612 struct its_cmd_desc *desc) 613 { 614 unsigned long itt_addr; 615 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 616 617 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 618 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 619 620 its_encode_cmd(cmd, GITS_CMD_MAPD); 621 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 622 its_encode_size(cmd, size - 1); 623 its_encode_itt(cmd, itt_addr); 624 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 625 626 its_fixup_cmd(cmd); 627 628 return NULL; 629 } 630 631 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 632 struct its_cmd_block *cmd, 633 struct its_cmd_desc *desc) 634 { 635 its_encode_cmd(cmd, GITS_CMD_MAPC); 636 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 637 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 638 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 639 640 its_fixup_cmd(cmd); 641 642 return desc->its_mapc_cmd.col; 643 } 644 645 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 646 struct its_cmd_block *cmd, 647 struct its_cmd_desc *desc) 648 { 649 struct its_collection *col; 650 651 col = dev_event_to_col(desc->its_mapti_cmd.dev, 652 desc->its_mapti_cmd.event_id); 653 654 its_encode_cmd(cmd, GITS_CMD_MAPTI); 655 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 656 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 657 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 658 its_encode_collection(cmd, col->col_id); 659 660 its_fixup_cmd(cmd); 661 662 return valid_col(col); 663 } 664 665 static struct its_collection *its_build_movi_cmd(struct its_node *its, 666 struct its_cmd_block *cmd, 667 struct its_cmd_desc *desc) 668 { 669 struct its_collection *col; 670 671 col = dev_event_to_col(desc->its_movi_cmd.dev, 672 desc->its_movi_cmd.event_id); 673 674 its_encode_cmd(cmd, GITS_CMD_MOVI); 675 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 676 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 677 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 678 679 its_fixup_cmd(cmd); 680 681 return valid_col(col); 682 } 683 684 static struct its_collection *its_build_discard_cmd(struct its_node *its, 685 struct its_cmd_block *cmd, 686 struct its_cmd_desc *desc) 687 { 688 struct its_collection *col; 689 690 col = dev_event_to_col(desc->its_discard_cmd.dev, 691 desc->its_discard_cmd.event_id); 692 693 its_encode_cmd(cmd, GITS_CMD_DISCARD); 694 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 695 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 696 697 its_fixup_cmd(cmd); 698 699 return valid_col(col); 700 } 701 702 static struct its_collection *its_build_inv_cmd(struct its_node *its, 703 struct its_cmd_block *cmd, 704 struct its_cmd_desc *desc) 705 { 706 struct its_collection *col; 707 708 col = dev_event_to_col(desc->its_inv_cmd.dev, 709 desc->its_inv_cmd.event_id); 710 711 its_encode_cmd(cmd, GITS_CMD_INV); 712 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 713 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 714 715 its_fixup_cmd(cmd); 716 717 return valid_col(col); 718 } 719 720 static struct its_collection *its_build_int_cmd(struct its_node *its, 721 struct its_cmd_block *cmd, 722 struct its_cmd_desc *desc) 723 { 724 struct its_collection *col; 725 726 col = dev_event_to_col(desc->its_int_cmd.dev, 727 desc->its_int_cmd.event_id); 728 729 its_encode_cmd(cmd, GITS_CMD_INT); 730 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 731 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 732 733 its_fixup_cmd(cmd); 734 735 return valid_col(col); 736 } 737 738 static struct its_collection *its_build_clear_cmd(struct its_node *its, 739 struct its_cmd_block *cmd, 740 struct its_cmd_desc *desc) 741 { 742 struct its_collection *col; 743 744 col = dev_event_to_col(desc->its_clear_cmd.dev, 745 desc->its_clear_cmd.event_id); 746 747 its_encode_cmd(cmd, GITS_CMD_CLEAR); 748 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 749 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 750 751 its_fixup_cmd(cmd); 752 753 return valid_col(col); 754 } 755 756 static struct its_collection *its_build_invall_cmd(struct its_node *its, 757 struct its_cmd_block *cmd, 758 struct its_cmd_desc *desc) 759 { 760 its_encode_cmd(cmd, GITS_CMD_INVALL); 761 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 762 763 its_fixup_cmd(cmd); 764 765 return desc->its_invall_cmd.col; 766 } 767 768 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 769 struct its_cmd_block *cmd, 770 struct its_cmd_desc *desc) 771 { 772 its_encode_cmd(cmd, GITS_CMD_VINVALL); 773 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 774 775 its_fixup_cmd(cmd); 776 777 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 778 } 779 780 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 781 struct its_cmd_block *cmd, 782 struct its_cmd_desc *desc) 783 { 784 unsigned long vpt_addr, vconf_addr; 785 u64 target; 786 bool alloc; 787 788 its_encode_cmd(cmd, GITS_CMD_VMAPP); 789 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 790 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 791 792 if (!desc->its_vmapp_cmd.valid) { 793 if (is_v4_1(its)) { 794 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 795 its_encode_alloc(cmd, alloc); 796 } 797 798 goto out; 799 } 800 801 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 802 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 803 804 its_encode_target(cmd, target); 805 its_encode_vpt_addr(cmd, vpt_addr); 806 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 807 808 if (!is_v4_1(its)) 809 goto out; 810 811 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 812 813 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 814 815 its_encode_alloc(cmd, alloc); 816 817 /* 818 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 819 * to be unmapped first, and in this case, we may remap the vPE 820 * back while the VPT is not empty. So we can't assume that the 821 * VPT is empty on map. This is why we never advertise PTZ. 822 */ 823 its_encode_ptz(cmd, false); 824 its_encode_vconf_addr(cmd, vconf_addr); 825 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 826 827 out: 828 its_fixup_cmd(cmd); 829 830 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 831 } 832 833 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 834 struct its_cmd_block *cmd, 835 struct its_cmd_desc *desc) 836 { 837 u32 db; 838 839 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 840 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 841 else 842 db = 1023; 843 844 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 845 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 846 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 847 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 848 its_encode_db_phys_id(cmd, db); 849 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 850 851 its_fixup_cmd(cmd); 852 853 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 854 } 855 856 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 857 struct its_cmd_block *cmd, 858 struct its_cmd_desc *desc) 859 { 860 u32 db; 861 862 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 863 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 864 else 865 db = 1023; 866 867 its_encode_cmd(cmd, GITS_CMD_VMOVI); 868 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 869 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 870 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 871 its_encode_db_phys_id(cmd, db); 872 its_encode_db_valid(cmd, true); 873 874 its_fixup_cmd(cmd); 875 876 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 877 } 878 879 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 880 struct its_cmd_block *cmd, 881 struct its_cmd_desc *desc) 882 { 883 u64 target; 884 885 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 886 its_encode_cmd(cmd, GITS_CMD_VMOVP); 887 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 888 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 889 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 890 its_encode_target(cmd, target); 891 892 if (is_v4_1(its)) { 893 its_encode_db(cmd, true); 894 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 895 } 896 897 its_fixup_cmd(cmd); 898 899 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 900 } 901 902 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 903 struct its_cmd_block *cmd, 904 struct its_cmd_desc *desc) 905 { 906 struct its_vlpi_map *map; 907 908 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 909 desc->its_inv_cmd.event_id); 910 911 its_encode_cmd(cmd, GITS_CMD_INV); 912 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 913 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 914 915 its_fixup_cmd(cmd); 916 917 return valid_vpe(its, map->vpe); 918 } 919 920 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 921 struct its_cmd_block *cmd, 922 struct its_cmd_desc *desc) 923 { 924 struct its_vlpi_map *map; 925 926 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 927 desc->its_int_cmd.event_id); 928 929 its_encode_cmd(cmd, GITS_CMD_INT); 930 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 931 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 932 933 its_fixup_cmd(cmd); 934 935 return valid_vpe(its, map->vpe); 936 } 937 938 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 939 struct its_cmd_block *cmd, 940 struct its_cmd_desc *desc) 941 { 942 struct its_vlpi_map *map; 943 944 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 945 desc->its_clear_cmd.event_id); 946 947 its_encode_cmd(cmd, GITS_CMD_CLEAR); 948 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 949 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 950 951 its_fixup_cmd(cmd); 952 953 return valid_vpe(its, map->vpe); 954 } 955 956 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 957 struct its_cmd_block *cmd, 958 struct its_cmd_desc *desc) 959 { 960 if (WARN_ON(!is_v4_1(its))) 961 return NULL; 962 963 its_encode_cmd(cmd, GITS_CMD_INVDB); 964 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 965 966 its_fixup_cmd(cmd); 967 968 return valid_vpe(its, desc->its_invdb_cmd.vpe); 969 } 970 971 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 972 struct its_cmd_block *cmd, 973 struct its_cmd_desc *desc) 974 { 975 if (WARN_ON(!is_v4_1(its))) 976 return NULL; 977 978 its_encode_cmd(cmd, GITS_CMD_VSGI); 979 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 980 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 981 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 982 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 983 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 984 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 985 986 its_fixup_cmd(cmd); 987 988 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 989 } 990 991 static u64 its_cmd_ptr_to_offset(struct its_node *its, 992 struct its_cmd_block *ptr) 993 { 994 return (ptr - its->cmd_base) * sizeof(*ptr); 995 } 996 997 static int its_queue_full(struct its_node *its) 998 { 999 int widx; 1000 int ridx; 1001 1002 widx = its->cmd_write - its->cmd_base; 1003 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1004 1005 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1006 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1007 return 1; 1008 1009 return 0; 1010 } 1011 1012 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1013 { 1014 struct its_cmd_block *cmd; 1015 u32 count = 1000000; /* 1s! */ 1016 1017 while (its_queue_full(its)) { 1018 count--; 1019 if (!count) { 1020 pr_err_ratelimited("ITS queue not draining\n"); 1021 return NULL; 1022 } 1023 cpu_relax(); 1024 udelay(1); 1025 } 1026 1027 cmd = its->cmd_write++; 1028 1029 /* Handle queue wrapping */ 1030 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1031 its->cmd_write = its->cmd_base; 1032 1033 /* Clear command */ 1034 cmd->raw_cmd[0] = 0; 1035 cmd->raw_cmd[1] = 0; 1036 cmd->raw_cmd[2] = 0; 1037 cmd->raw_cmd[3] = 0; 1038 1039 return cmd; 1040 } 1041 1042 static struct its_cmd_block *its_post_commands(struct its_node *its) 1043 { 1044 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1045 1046 writel_relaxed(wr, its->base + GITS_CWRITER); 1047 1048 return its->cmd_write; 1049 } 1050 1051 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1052 { 1053 /* 1054 * Make sure the commands written to memory are observable by 1055 * the ITS. 1056 */ 1057 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1058 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1059 else 1060 dsb(ishst); 1061 } 1062 1063 static int its_wait_for_range_completion(struct its_node *its, 1064 u64 prev_idx, 1065 struct its_cmd_block *to) 1066 { 1067 u64 rd_idx, to_idx, linear_idx; 1068 u32 count = 1000000; /* 1s! */ 1069 1070 /* Linearize to_idx if the command set has wrapped around */ 1071 to_idx = its_cmd_ptr_to_offset(its, to); 1072 if (to_idx < prev_idx) 1073 to_idx += ITS_CMD_QUEUE_SZ; 1074 1075 linear_idx = prev_idx; 1076 1077 while (1) { 1078 s64 delta; 1079 1080 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1081 1082 /* 1083 * Compute the read pointer progress, taking the 1084 * potential wrap-around into account. 1085 */ 1086 delta = rd_idx - prev_idx; 1087 if (rd_idx < prev_idx) 1088 delta += ITS_CMD_QUEUE_SZ; 1089 1090 linear_idx += delta; 1091 if (linear_idx >= to_idx) 1092 break; 1093 1094 count--; 1095 if (!count) { 1096 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1097 to_idx, linear_idx); 1098 return -1; 1099 } 1100 prev_idx = rd_idx; 1101 cpu_relax(); 1102 udelay(1); 1103 } 1104 1105 return 0; 1106 } 1107 1108 /* Warning, macro hell follows */ 1109 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1110 void name(struct its_node *its, \ 1111 buildtype builder, \ 1112 struct its_cmd_desc *desc) \ 1113 { \ 1114 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1115 synctype *sync_obj; \ 1116 unsigned long flags; \ 1117 u64 rd_idx; \ 1118 \ 1119 raw_spin_lock_irqsave(&its->lock, flags); \ 1120 \ 1121 cmd = its_allocate_entry(its); \ 1122 if (!cmd) { /* We're soooooo screewed... */ \ 1123 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1124 return; \ 1125 } \ 1126 sync_obj = builder(its, cmd, desc); \ 1127 its_flush_cmd(its, cmd); \ 1128 \ 1129 if (sync_obj) { \ 1130 sync_cmd = its_allocate_entry(its); \ 1131 if (!sync_cmd) \ 1132 goto post; \ 1133 \ 1134 buildfn(its, sync_cmd, sync_obj); \ 1135 its_flush_cmd(its, sync_cmd); \ 1136 } \ 1137 \ 1138 post: \ 1139 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1140 next_cmd = its_post_commands(its); \ 1141 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1142 \ 1143 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1144 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1145 } 1146 1147 static void its_build_sync_cmd(struct its_node *its, 1148 struct its_cmd_block *sync_cmd, 1149 struct its_collection *sync_col) 1150 { 1151 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1152 its_encode_target(sync_cmd, sync_col->target_address); 1153 1154 its_fixup_cmd(sync_cmd); 1155 } 1156 1157 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1158 struct its_collection, its_build_sync_cmd) 1159 1160 static void its_build_vsync_cmd(struct its_node *its, 1161 struct its_cmd_block *sync_cmd, 1162 struct its_vpe *sync_vpe) 1163 { 1164 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1165 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1166 1167 its_fixup_cmd(sync_cmd); 1168 } 1169 1170 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1171 struct its_vpe, its_build_vsync_cmd) 1172 1173 static void its_send_int(struct its_device *dev, u32 event_id) 1174 { 1175 struct its_cmd_desc desc; 1176 1177 desc.its_int_cmd.dev = dev; 1178 desc.its_int_cmd.event_id = event_id; 1179 1180 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1181 } 1182 1183 static void its_send_clear(struct its_device *dev, u32 event_id) 1184 { 1185 struct its_cmd_desc desc; 1186 1187 desc.its_clear_cmd.dev = dev; 1188 desc.its_clear_cmd.event_id = event_id; 1189 1190 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1191 } 1192 1193 static void its_send_inv(struct its_device *dev, u32 event_id) 1194 { 1195 struct its_cmd_desc desc; 1196 1197 desc.its_inv_cmd.dev = dev; 1198 desc.its_inv_cmd.event_id = event_id; 1199 1200 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1201 } 1202 1203 static void its_send_mapd(struct its_device *dev, int valid) 1204 { 1205 struct its_cmd_desc desc; 1206 1207 desc.its_mapd_cmd.dev = dev; 1208 desc.its_mapd_cmd.valid = !!valid; 1209 1210 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1211 } 1212 1213 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1214 int valid) 1215 { 1216 struct its_cmd_desc desc; 1217 1218 desc.its_mapc_cmd.col = col; 1219 desc.its_mapc_cmd.valid = !!valid; 1220 1221 its_send_single_command(its, its_build_mapc_cmd, &desc); 1222 } 1223 1224 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1225 { 1226 struct its_cmd_desc desc; 1227 1228 desc.its_mapti_cmd.dev = dev; 1229 desc.its_mapti_cmd.phys_id = irq_id; 1230 desc.its_mapti_cmd.event_id = id; 1231 1232 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1233 } 1234 1235 static void its_send_movi(struct its_device *dev, 1236 struct its_collection *col, u32 id) 1237 { 1238 struct its_cmd_desc desc; 1239 1240 desc.its_movi_cmd.dev = dev; 1241 desc.its_movi_cmd.col = col; 1242 desc.its_movi_cmd.event_id = id; 1243 1244 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1245 } 1246 1247 static void its_send_discard(struct its_device *dev, u32 id) 1248 { 1249 struct its_cmd_desc desc; 1250 1251 desc.its_discard_cmd.dev = dev; 1252 desc.its_discard_cmd.event_id = id; 1253 1254 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1255 } 1256 1257 static void its_send_invall(struct its_node *its, struct its_collection *col) 1258 { 1259 struct its_cmd_desc desc; 1260 1261 desc.its_invall_cmd.col = col; 1262 1263 its_send_single_command(its, its_build_invall_cmd, &desc); 1264 } 1265 1266 static void its_send_vmapti(struct its_device *dev, u32 id) 1267 { 1268 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1269 struct its_cmd_desc desc; 1270 1271 desc.its_vmapti_cmd.vpe = map->vpe; 1272 desc.its_vmapti_cmd.dev = dev; 1273 desc.its_vmapti_cmd.virt_id = map->vintid; 1274 desc.its_vmapti_cmd.event_id = id; 1275 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1276 1277 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1278 } 1279 1280 static void its_send_vmovi(struct its_device *dev, u32 id) 1281 { 1282 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1283 struct its_cmd_desc desc; 1284 1285 desc.its_vmovi_cmd.vpe = map->vpe; 1286 desc.its_vmovi_cmd.dev = dev; 1287 desc.its_vmovi_cmd.event_id = id; 1288 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1289 1290 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1291 } 1292 1293 static void its_send_vmapp(struct its_node *its, 1294 struct its_vpe *vpe, bool valid) 1295 { 1296 struct its_cmd_desc desc; 1297 1298 desc.its_vmapp_cmd.vpe = vpe; 1299 desc.its_vmapp_cmd.valid = valid; 1300 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1301 1302 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1303 } 1304 1305 static void its_send_vmovp(struct its_vpe *vpe) 1306 { 1307 struct its_cmd_desc desc = {}; 1308 struct its_node *its; 1309 unsigned long flags; 1310 int col_id = vpe->col_idx; 1311 1312 desc.its_vmovp_cmd.vpe = vpe; 1313 1314 if (!its_list_map) { 1315 its = list_first_entry(&its_nodes, struct its_node, entry); 1316 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1317 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1318 return; 1319 } 1320 1321 /* 1322 * Yet another marvel of the architecture. If using the 1323 * its_list "feature", we need to make sure that all ITSs 1324 * receive all VMOVP commands in the same order. The only way 1325 * to guarantee this is to make vmovp a serialization point. 1326 * 1327 * Wall <-- Head. 1328 */ 1329 raw_spin_lock_irqsave(&vmovp_lock, flags); 1330 1331 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1332 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1333 1334 /* Emit VMOVPs */ 1335 list_for_each_entry(its, &its_nodes, entry) { 1336 if (!is_v4(its)) 1337 continue; 1338 1339 if (!require_its_list_vmovp(vpe->its_vm, its)) 1340 continue; 1341 1342 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1343 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1344 } 1345 1346 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1347 } 1348 1349 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1350 { 1351 struct its_cmd_desc desc; 1352 1353 desc.its_vinvall_cmd.vpe = vpe; 1354 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1355 } 1356 1357 static void its_send_vinv(struct its_device *dev, u32 event_id) 1358 { 1359 struct its_cmd_desc desc; 1360 1361 /* 1362 * There is no real VINV command. This is just a normal INV, 1363 * with a VSYNC instead of a SYNC. 1364 */ 1365 desc.its_inv_cmd.dev = dev; 1366 desc.its_inv_cmd.event_id = event_id; 1367 1368 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1369 } 1370 1371 static void its_send_vint(struct its_device *dev, u32 event_id) 1372 { 1373 struct its_cmd_desc desc; 1374 1375 /* 1376 * There is no real VINT command. This is just a normal INT, 1377 * with a VSYNC instead of a SYNC. 1378 */ 1379 desc.its_int_cmd.dev = dev; 1380 desc.its_int_cmd.event_id = event_id; 1381 1382 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1383 } 1384 1385 static void its_send_vclear(struct its_device *dev, u32 event_id) 1386 { 1387 struct its_cmd_desc desc; 1388 1389 /* 1390 * There is no real VCLEAR command. This is just a normal CLEAR, 1391 * with a VSYNC instead of a SYNC. 1392 */ 1393 desc.its_clear_cmd.dev = dev; 1394 desc.its_clear_cmd.event_id = event_id; 1395 1396 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1397 } 1398 1399 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1400 { 1401 struct its_cmd_desc desc; 1402 1403 desc.its_invdb_cmd.vpe = vpe; 1404 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1405 } 1406 1407 /* 1408 * irqchip functions - assumes MSI, mostly. 1409 */ 1410 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1411 { 1412 struct its_vlpi_map *map = get_vlpi_map(d); 1413 irq_hw_number_t hwirq; 1414 void *va; 1415 u8 *cfg; 1416 1417 if (map) { 1418 va = page_address(map->vm->vprop_page); 1419 hwirq = map->vintid; 1420 1421 /* Remember the updated property */ 1422 map->properties &= ~clr; 1423 map->properties |= set | LPI_PROP_GROUP1; 1424 } else { 1425 va = gic_rdists->prop_table_va; 1426 hwirq = d->hwirq; 1427 } 1428 1429 cfg = va + hwirq - 8192; 1430 *cfg &= ~clr; 1431 *cfg |= set | LPI_PROP_GROUP1; 1432 1433 /* 1434 * Make the above write visible to the redistributors. 1435 * And yes, we're flushing exactly: One. Single. Byte. 1436 * Humpf... 1437 */ 1438 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1439 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1440 else 1441 dsb(ishst); 1442 } 1443 1444 static void wait_for_syncr(void __iomem *rdbase) 1445 { 1446 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1447 cpu_relax(); 1448 } 1449 1450 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1451 { 1452 void __iomem *rdbase; 1453 unsigned long flags; 1454 int cpu; 1455 1456 /* Target the redistributor this LPI is currently routed to */ 1457 cpu = irq_to_cpuid_lock(d, &flags); 1458 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1459 1460 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1461 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1462 wait_for_syncr(rdbase); 1463 1464 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1465 irq_to_cpuid_unlock(d, flags); 1466 } 1467 1468 static void direct_lpi_inv(struct irq_data *d) 1469 { 1470 struct its_vlpi_map *map = get_vlpi_map(d); 1471 u64 val; 1472 1473 if (map) { 1474 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1475 1476 WARN_ON(!is_v4_1(its_dev->its)); 1477 1478 val = GICR_INVLPIR_V; 1479 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1480 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1481 } else { 1482 val = d->hwirq; 1483 } 1484 1485 __direct_lpi_inv(d, val); 1486 } 1487 1488 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1489 { 1490 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1491 1492 lpi_write_config(d, clr, set); 1493 if (gic_rdists->has_direct_lpi && 1494 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1495 direct_lpi_inv(d); 1496 else if (!irqd_is_forwarded_to_vcpu(d)) 1497 its_send_inv(its_dev, its_get_event_id(d)); 1498 else 1499 its_send_vinv(its_dev, its_get_event_id(d)); 1500 } 1501 1502 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1503 { 1504 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1505 u32 event = its_get_event_id(d); 1506 struct its_vlpi_map *map; 1507 1508 /* 1509 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1510 * here. 1511 */ 1512 if (is_v4_1(its_dev->its)) 1513 return; 1514 1515 map = dev_event_to_vlpi_map(its_dev, event); 1516 1517 if (map->db_enabled == enable) 1518 return; 1519 1520 map->db_enabled = enable; 1521 1522 /* 1523 * More fun with the architecture: 1524 * 1525 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1526 * value or to 1023, depending on the enable bit. But that 1527 * would be issuing a mapping for an /existing/ DevID+EventID 1528 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1529 * to the /same/ vPE, using this opportunity to adjust the 1530 * doorbell. Mouahahahaha. We loves it, Precious. 1531 */ 1532 its_send_vmovi(its_dev, event); 1533 } 1534 1535 static void its_mask_irq(struct irq_data *d) 1536 { 1537 if (irqd_is_forwarded_to_vcpu(d)) 1538 its_vlpi_set_doorbell(d, false); 1539 1540 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1541 } 1542 1543 static void its_unmask_irq(struct irq_data *d) 1544 { 1545 if (irqd_is_forwarded_to_vcpu(d)) 1546 its_vlpi_set_doorbell(d, true); 1547 1548 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1549 } 1550 1551 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1552 { 1553 if (irqd_affinity_is_managed(d)) 1554 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1555 1556 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1557 } 1558 1559 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1560 { 1561 if (irqd_affinity_is_managed(d)) 1562 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1563 else 1564 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1565 } 1566 1567 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1568 { 1569 if (irqd_affinity_is_managed(d)) 1570 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1571 else 1572 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1573 } 1574 1575 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1576 const struct cpumask *cpu_mask) 1577 { 1578 unsigned int cpu = nr_cpu_ids, tmp; 1579 int count = S32_MAX; 1580 1581 for_each_cpu(tmp, cpu_mask) { 1582 int this_count = its_read_lpi_count(d, tmp); 1583 if (this_count < count) { 1584 cpu = tmp; 1585 count = this_count; 1586 } 1587 } 1588 1589 return cpu; 1590 } 1591 1592 /* 1593 * As suggested by Thomas Gleixner in: 1594 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1595 */ 1596 static int its_select_cpu(struct irq_data *d, 1597 const struct cpumask *aff_mask) 1598 { 1599 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1600 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1601 static struct cpumask __tmpmask; 1602 struct cpumask *tmpmask; 1603 unsigned long flags; 1604 int cpu, node; 1605 node = its_dev->its->numa_node; 1606 tmpmask = &__tmpmask; 1607 1608 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1609 1610 if (!irqd_affinity_is_managed(d)) { 1611 /* First try the NUMA node */ 1612 if (node != NUMA_NO_NODE) { 1613 /* 1614 * Try the intersection of the affinity mask and the 1615 * node mask (and the online mask, just to be safe). 1616 */ 1617 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1618 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1619 1620 /* 1621 * Ideally, we would check if the mask is empty, and 1622 * try again on the full node here. 1623 * 1624 * But it turns out that the way ACPI describes the 1625 * affinity for ITSs only deals about memory, and 1626 * not target CPUs, so it cannot describe a single 1627 * ITS placed next to two NUMA nodes. 1628 * 1629 * Instead, just fallback on the online mask. This 1630 * diverges from Thomas' suggestion above. 1631 */ 1632 cpu = cpumask_pick_least_loaded(d, tmpmask); 1633 if (cpu < nr_cpu_ids) 1634 goto out; 1635 1636 /* If we can't cross sockets, give up */ 1637 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1638 goto out; 1639 1640 /* If the above failed, expand the search */ 1641 } 1642 1643 /* Try the intersection of the affinity and online masks */ 1644 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1645 1646 /* If that doesn't fly, the online mask is the last resort */ 1647 if (cpumask_empty(tmpmask)) 1648 cpumask_copy(tmpmask, cpu_online_mask); 1649 1650 cpu = cpumask_pick_least_loaded(d, tmpmask); 1651 } else { 1652 cpumask_copy(tmpmask, aff_mask); 1653 1654 /* If we cannot cross sockets, limit the search to that node */ 1655 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1656 node != NUMA_NO_NODE) 1657 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1658 1659 cpu = cpumask_pick_least_loaded(d, tmpmask); 1660 } 1661 out: 1662 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1663 1664 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1665 return cpu; 1666 } 1667 1668 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1669 bool force) 1670 { 1671 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1672 struct its_collection *target_col; 1673 u32 id = its_get_event_id(d); 1674 int cpu, prev_cpu; 1675 1676 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1677 if (irqd_is_forwarded_to_vcpu(d)) 1678 return -EINVAL; 1679 1680 prev_cpu = its_dev->event_map.col_map[id]; 1681 its_dec_lpi_count(d, prev_cpu); 1682 1683 if (!force) 1684 cpu = its_select_cpu(d, mask_val); 1685 else 1686 cpu = cpumask_pick_least_loaded(d, mask_val); 1687 1688 if (cpu < 0 || cpu >= nr_cpu_ids) 1689 goto err; 1690 1691 /* don't set the affinity when the target cpu is same as current one */ 1692 if (cpu != prev_cpu) { 1693 target_col = &its_dev->its->collections[cpu]; 1694 its_send_movi(its_dev, target_col, id); 1695 its_dev->event_map.col_map[id] = cpu; 1696 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1697 } 1698 1699 its_inc_lpi_count(d, cpu); 1700 1701 return IRQ_SET_MASK_OK_DONE; 1702 1703 err: 1704 its_inc_lpi_count(d, prev_cpu); 1705 return -EINVAL; 1706 } 1707 1708 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1709 { 1710 struct its_node *its = its_dev->its; 1711 1712 return its->phys_base + GITS_TRANSLATER; 1713 } 1714 1715 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1716 { 1717 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1718 struct its_node *its; 1719 u64 addr; 1720 1721 its = its_dev->its; 1722 addr = its->get_msi_base(its_dev); 1723 1724 msg->address_lo = lower_32_bits(addr); 1725 msg->address_hi = upper_32_bits(addr); 1726 msg->data = its_get_event_id(d); 1727 1728 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1729 } 1730 1731 static int its_irq_set_irqchip_state(struct irq_data *d, 1732 enum irqchip_irq_state which, 1733 bool state) 1734 { 1735 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1736 u32 event = its_get_event_id(d); 1737 1738 if (which != IRQCHIP_STATE_PENDING) 1739 return -EINVAL; 1740 1741 if (irqd_is_forwarded_to_vcpu(d)) { 1742 if (state) 1743 its_send_vint(its_dev, event); 1744 else 1745 its_send_vclear(its_dev, event); 1746 } else { 1747 if (state) 1748 its_send_int(its_dev, event); 1749 else 1750 its_send_clear(its_dev, event); 1751 } 1752 1753 return 0; 1754 } 1755 1756 static int its_irq_retrigger(struct irq_data *d) 1757 { 1758 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1759 } 1760 1761 /* 1762 * Two favourable cases: 1763 * 1764 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1765 * for vSGI delivery 1766 * 1767 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1768 * and we're better off mapping all VPEs always 1769 * 1770 * If neither (a) nor (b) is true, then we map vPEs on demand. 1771 * 1772 */ 1773 static bool gic_requires_eager_mapping(void) 1774 { 1775 if (!its_list_map || gic_rdists->has_rvpeid) 1776 return true; 1777 1778 return false; 1779 } 1780 1781 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1782 { 1783 unsigned long flags; 1784 1785 if (gic_requires_eager_mapping()) 1786 return; 1787 1788 raw_spin_lock_irqsave(&vmovp_lock, flags); 1789 1790 /* 1791 * If the VM wasn't mapped yet, iterate over the vpes and get 1792 * them mapped now. 1793 */ 1794 vm->vlpi_count[its->list_nr]++; 1795 1796 if (vm->vlpi_count[its->list_nr] == 1) { 1797 int i; 1798 1799 for (i = 0; i < vm->nr_vpes; i++) { 1800 struct its_vpe *vpe = vm->vpes[i]; 1801 struct irq_data *d = irq_get_irq_data(vpe->irq); 1802 1803 /* Map the VPE to the first possible CPU */ 1804 vpe->col_idx = cpumask_first(cpu_online_mask); 1805 its_send_vmapp(its, vpe, true); 1806 its_send_vinvall(its, vpe); 1807 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1808 } 1809 } 1810 1811 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1812 } 1813 1814 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1815 { 1816 unsigned long flags; 1817 1818 /* Not using the ITS list? Everything is always mapped. */ 1819 if (gic_requires_eager_mapping()) 1820 return; 1821 1822 raw_spin_lock_irqsave(&vmovp_lock, flags); 1823 1824 if (!--vm->vlpi_count[its->list_nr]) { 1825 int i; 1826 1827 for (i = 0; i < vm->nr_vpes; i++) 1828 its_send_vmapp(its, vm->vpes[i], false); 1829 } 1830 1831 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1832 } 1833 1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1835 { 1836 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1837 u32 event = its_get_event_id(d); 1838 int ret = 0; 1839 1840 if (!info->map) 1841 return -EINVAL; 1842 1843 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1844 1845 if (!its_dev->event_map.vm) { 1846 struct its_vlpi_map *maps; 1847 1848 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1849 GFP_ATOMIC); 1850 if (!maps) { 1851 ret = -ENOMEM; 1852 goto out; 1853 } 1854 1855 its_dev->event_map.vm = info->map->vm; 1856 its_dev->event_map.vlpi_maps = maps; 1857 } else if (its_dev->event_map.vm != info->map->vm) { 1858 ret = -EINVAL; 1859 goto out; 1860 } 1861 1862 /* Get our private copy of the mapping information */ 1863 its_dev->event_map.vlpi_maps[event] = *info->map; 1864 1865 if (irqd_is_forwarded_to_vcpu(d)) { 1866 /* Already mapped, move it around */ 1867 its_send_vmovi(its_dev, event); 1868 } else { 1869 /* Ensure all the VPEs are mapped on this ITS */ 1870 its_map_vm(its_dev->its, info->map->vm); 1871 1872 /* 1873 * Flag the interrupt as forwarded so that we can 1874 * start poking the virtual property table. 1875 */ 1876 irqd_set_forwarded_to_vcpu(d); 1877 1878 /* Write out the property to the prop table */ 1879 lpi_write_config(d, 0xff, info->map->properties); 1880 1881 /* Drop the physical mapping */ 1882 its_send_discard(its_dev, event); 1883 1884 /* and install the virtual one */ 1885 its_send_vmapti(its_dev, event); 1886 1887 /* Increment the number of VLPIs */ 1888 its_dev->event_map.nr_vlpis++; 1889 } 1890 1891 out: 1892 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1893 return ret; 1894 } 1895 1896 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1897 { 1898 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1899 struct its_vlpi_map *map; 1900 int ret = 0; 1901 1902 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1903 1904 map = get_vlpi_map(d); 1905 1906 if (!its_dev->event_map.vm || !map) { 1907 ret = -EINVAL; 1908 goto out; 1909 } 1910 1911 /* Copy our mapping information to the incoming request */ 1912 *info->map = *map; 1913 1914 out: 1915 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1916 return ret; 1917 } 1918 1919 static int its_vlpi_unmap(struct irq_data *d) 1920 { 1921 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1922 u32 event = its_get_event_id(d); 1923 int ret = 0; 1924 1925 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1926 1927 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1928 ret = -EINVAL; 1929 goto out; 1930 } 1931 1932 /* Drop the virtual mapping */ 1933 its_send_discard(its_dev, event); 1934 1935 /* and restore the physical one */ 1936 irqd_clr_forwarded_to_vcpu(d); 1937 its_send_mapti(its_dev, d->hwirq, event); 1938 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1939 LPI_PROP_ENABLED | 1940 LPI_PROP_GROUP1)); 1941 1942 /* Potentially unmap the VM from this ITS */ 1943 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1944 1945 /* 1946 * Drop the refcount and make the device available again if 1947 * this was the last VLPI. 1948 */ 1949 if (!--its_dev->event_map.nr_vlpis) { 1950 its_dev->event_map.vm = NULL; 1951 kfree(its_dev->event_map.vlpi_maps); 1952 } 1953 1954 out: 1955 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1956 return ret; 1957 } 1958 1959 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1960 { 1961 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1962 1963 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1964 return -EINVAL; 1965 1966 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1967 lpi_update_config(d, 0xff, info->config); 1968 else 1969 lpi_write_config(d, 0xff, info->config); 1970 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1971 1972 return 0; 1973 } 1974 1975 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1976 { 1977 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1978 struct its_cmd_info *info = vcpu_info; 1979 1980 /* Need a v4 ITS */ 1981 if (!is_v4(its_dev->its)) 1982 return -EINVAL; 1983 1984 /* Unmap request? */ 1985 if (!info) 1986 return its_vlpi_unmap(d); 1987 1988 switch (info->cmd_type) { 1989 case MAP_VLPI: 1990 return its_vlpi_map(d, info); 1991 1992 case GET_VLPI: 1993 return its_vlpi_get(d, info); 1994 1995 case PROP_UPDATE_VLPI: 1996 case PROP_UPDATE_AND_INV_VLPI: 1997 return its_vlpi_prop_update(d, info); 1998 1999 default: 2000 return -EINVAL; 2001 } 2002 } 2003 2004 static struct irq_chip its_irq_chip = { 2005 .name = "ITS", 2006 .irq_mask = its_mask_irq, 2007 .irq_unmask = its_unmask_irq, 2008 .irq_eoi = irq_chip_eoi_parent, 2009 .irq_set_affinity = its_set_affinity, 2010 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2011 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2012 .irq_retrigger = its_irq_retrigger, 2013 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2014 }; 2015 2016 2017 /* 2018 * How we allocate LPIs: 2019 * 2020 * lpi_range_list contains ranges of LPIs that are to available to 2021 * allocate from. To allocate LPIs, just pick the first range that 2022 * fits the required allocation, and reduce it by the required 2023 * amount. Once empty, remove the range from the list. 2024 * 2025 * To free a range of LPIs, add a free range to the list, sort it and 2026 * merge the result if the new range happens to be adjacent to an 2027 * already free block. 2028 * 2029 * The consequence of the above is that allocation is cost is low, but 2030 * freeing is expensive. We assumes that freeing rarely occurs. 2031 */ 2032 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2033 2034 static DEFINE_MUTEX(lpi_range_lock); 2035 static LIST_HEAD(lpi_range_list); 2036 2037 struct lpi_range { 2038 struct list_head entry; 2039 u32 base_id; 2040 u32 span; 2041 }; 2042 2043 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2044 { 2045 struct lpi_range *range; 2046 2047 range = kmalloc(sizeof(*range), GFP_KERNEL); 2048 if (range) { 2049 range->base_id = base; 2050 range->span = span; 2051 } 2052 2053 return range; 2054 } 2055 2056 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2057 { 2058 struct lpi_range *range, *tmp; 2059 int err = -ENOSPC; 2060 2061 mutex_lock(&lpi_range_lock); 2062 2063 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2064 if (range->span >= nr_lpis) { 2065 *base = range->base_id; 2066 range->base_id += nr_lpis; 2067 range->span -= nr_lpis; 2068 2069 if (range->span == 0) { 2070 list_del(&range->entry); 2071 kfree(range); 2072 } 2073 2074 err = 0; 2075 break; 2076 } 2077 } 2078 2079 mutex_unlock(&lpi_range_lock); 2080 2081 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2082 return err; 2083 } 2084 2085 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2086 { 2087 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2088 return; 2089 if (a->base_id + a->span != b->base_id) 2090 return; 2091 b->base_id = a->base_id; 2092 b->span += a->span; 2093 list_del(&a->entry); 2094 kfree(a); 2095 } 2096 2097 static int free_lpi_range(u32 base, u32 nr_lpis) 2098 { 2099 struct lpi_range *new, *old; 2100 2101 new = mk_lpi_range(base, nr_lpis); 2102 if (!new) 2103 return -ENOMEM; 2104 2105 mutex_lock(&lpi_range_lock); 2106 2107 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2108 if (old->base_id < base) 2109 break; 2110 } 2111 /* 2112 * old is the last element with ->base_id smaller than base, 2113 * so new goes right after it. If there are no elements with 2114 * ->base_id smaller than base, &old->entry ends up pointing 2115 * at the head of the list, and inserting new it the start of 2116 * the list is the right thing to do in that case as well. 2117 */ 2118 list_add(&new->entry, &old->entry); 2119 /* 2120 * Now check if we can merge with the preceding and/or 2121 * following ranges. 2122 */ 2123 merge_lpi_ranges(old, new); 2124 merge_lpi_ranges(new, list_next_entry(new, entry)); 2125 2126 mutex_unlock(&lpi_range_lock); 2127 return 0; 2128 } 2129 2130 static int __init its_lpi_init(u32 id_bits) 2131 { 2132 u32 lpis = (1UL << id_bits) - 8192; 2133 u32 numlpis; 2134 int err; 2135 2136 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2137 2138 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2139 lpis = numlpis; 2140 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2141 lpis); 2142 } 2143 2144 /* 2145 * Initializing the allocator is just the same as freeing the 2146 * full range of LPIs. 2147 */ 2148 err = free_lpi_range(8192, lpis); 2149 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2150 return err; 2151 } 2152 2153 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2154 { 2155 unsigned long *bitmap = NULL; 2156 int err = 0; 2157 2158 do { 2159 err = alloc_lpi_range(nr_irqs, base); 2160 if (!err) 2161 break; 2162 2163 nr_irqs /= 2; 2164 } while (nr_irqs > 0); 2165 2166 if (!nr_irqs) 2167 err = -ENOSPC; 2168 2169 if (err) 2170 goto out; 2171 2172 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2173 if (!bitmap) 2174 goto out; 2175 2176 *nr_ids = nr_irqs; 2177 2178 out: 2179 if (!bitmap) 2180 *base = *nr_ids = 0; 2181 2182 return bitmap; 2183 } 2184 2185 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2186 { 2187 WARN_ON(free_lpi_range(base, nr_ids)); 2188 bitmap_free(bitmap); 2189 } 2190 2191 static void gic_reset_prop_table(void *va) 2192 { 2193 /* Priority 0xa0, Group-1, disabled */ 2194 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2195 2196 /* Make sure the GIC will observe the written configuration */ 2197 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2198 } 2199 2200 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2201 { 2202 struct page *prop_page; 2203 2204 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2205 if (!prop_page) 2206 return NULL; 2207 2208 gic_reset_prop_table(page_address(prop_page)); 2209 2210 return prop_page; 2211 } 2212 2213 static void its_free_prop_table(struct page *prop_page) 2214 { 2215 free_pages((unsigned long)page_address(prop_page), 2216 get_order(LPI_PROPBASE_SZ)); 2217 } 2218 2219 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2220 { 2221 phys_addr_t start, end, addr_end; 2222 u64 i; 2223 2224 /* 2225 * We don't bother checking for a kdump kernel as by 2226 * construction, the LPI tables are out of this kernel's 2227 * memory map. 2228 */ 2229 if (is_kdump_kernel()) 2230 return true; 2231 2232 addr_end = addr + size - 1; 2233 2234 for_each_reserved_mem_range(i, &start, &end) { 2235 if (addr >= start && addr_end <= end) 2236 return true; 2237 } 2238 2239 /* Not found, not a good sign... */ 2240 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2241 &addr, &addr_end); 2242 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2243 return false; 2244 } 2245 2246 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2247 { 2248 if (efi_enabled(EFI_CONFIG_TABLES)) 2249 return efi_mem_reserve_persistent(addr, size); 2250 2251 return 0; 2252 } 2253 2254 static int __init its_setup_lpi_prop_table(void) 2255 { 2256 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2257 u64 val; 2258 2259 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2260 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2261 2262 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2263 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2264 LPI_PROPBASE_SZ, 2265 MEMREMAP_WB); 2266 gic_reset_prop_table(gic_rdists->prop_table_va); 2267 } else { 2268 struct page *page; 2269 2270 lpi_id_bits = min_t(u32, 2271 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2272 ITS_MAX_LPI_NRBITS); 2273 page = its_allocate_prop_table(GFP_NOWAIT); 2274 if (!page) { 2275 pr_err("Failed to allocate PROPBASE\n"); 2276 return -ENOMEM; 2277 } 2278 2279 gic_rdists->prop_table_pa = page_to_phys(page); 2280 gic_rdists->prop_table_va = page_address(page); 2281 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2282 LPI_PROPBASE_SZ)); 2283 } 2284 2285 pr_info("GICv3: using LPI property table @%pa\n", 2286 &gic_rdists->prop_table_pa); 2287 2288 return its_lpi_init(lpi_id_bits); 2289 } 2290 2291 static const char *its_base_type_string[] = { 2292 [GITS_BASER_TYPE_DEVICE] = "Devices", 2293 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2294 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2295 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2296 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2297 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2298 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2299 }; 2300 2301 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2302 { 2303 u32 idx = baser - its->tables; 2304 2305 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2306 } 2307 2308 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2309 u64 val) 2310 { 2311 u32 idx = baser - its->tables; 2312 2313 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2314 baser->val = its_read_baser(its, baser); 2315 } 2316 2317 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2318 u64 cache, u64 shr, u32 order, bool indirect) 2319 { 2320 u64 val = its_read_baser(its, baser); 2321 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2322 u64 type = GITS_BASER_TYPE(val); 2323 u64 baser_phys, tmp; 2324 u32 alloc_pages, psz; 2325 struct page *page; 2326 void *base; 2327 2328 psz = baser->psz; 2329 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2330 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2331 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2332 &its->phys_base, its_base_type_string[type], 2333 alloc_pages, GITS_BASER_PAGES_MAX); 2334 alloc_pages = GITS_BASER_PAGES_MAX; 2335 order = get_order(GITS_BASER_PAGES_MAX * psz); 2336 } 2337 2338 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2339 if (!page) 2340 return -ENOMEM; 2341 2342 base = (void *)page_address(page); 2343 baser_phys = virt_to_phys(base); 2344 2345 /* Check if the physical address of the memory is above 48bits */ 2346 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2347 2348 /* 52bit PA is supported only when PageSize=64K */ 2349 if (psz != SZ_64K) { 2350 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2351 free_pages((unsigned long)base, order); 2352 return -ENXIO; 2353 } 2354 2355 /* Convert 52bit PA to 48bit field */ 2356 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2357 } 2358 2359 retry_baser: 2360 val = (baser_phys | 2361 (type << GITS_BASER_TYPE_SHIFT) | 2362 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2363 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2364 cache | 2365 shr | 2366 GITS_BASER_VALID); 2367 2368 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2369 2370 switch (psz) { 2371 case SZ_4K: 2372 val |= GITS_BASER_PAGE_SIZE_4K; 2373 break; 2374 case SZ_16K: 2375 val |= GITS_BASER_PAGE_SIZE_16K; 2376 break; 2377 case SZ_64K: 2378 val |= GITS_BASER_PAGE_SIZE_64K; 2379 break; 2380 } 2381 2382 its_write_baser(its, baser, val); 2383 tmp = baser->val; 2384 2385 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 2386 tmp &= ~GITS_BASER_SHAREABILITY_MASK; 2387 2388 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2389 /* 2390 * Shareability didn't stick. Just use 2391 * whatever the read reported, which is likely 2392 * to be the only thing this redistributor 2393 * supports. If that's zero, make it 2394 * non-cacheable as well. 2395 */ 2396 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2397 if (!shr) { 2398 cache = GITS_BASER_nC; 2399 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2400 } 2401 goto retry_baser; 2402 } 2403 2404 if (val != tmp) { 2405 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2406 &its->phys_base, its_base_type_string[type], 2407 val, tmp); 2408 free_pages((unsigned long)base, order); 2409 return -ENXIO; 2410 } 2411 2412 baser->order = order; 2413 baser->base = base; 2414 baser->psz = psz; 2415 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2416 2417 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2418 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2419 its_base_type_string[type], 2420 (unsigned long)virt_to_phys(base), 2421 indirect ? "indirect" : "flat", (int)esz, 2422 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2423 2424 return 0; 2425 } 2426 2427 static bool its_parse_indirect_baser(struct its_node *its, 2428 struct its_baser *baser, 2429 u32 *order, u32 ids) 2430 { 2431 u64 tmp = its_read_baser(its, baser); 2432 u64 type = GITS_BASER_TYPE(tmp); 2433 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2434 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2435 u32 new_order = *order; 2436 u32 psz = baser->psz; 2437 bool indirect = false; 2438 2439 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2440 if ((esz << ids) > (psz * 2)) { 2441 /* 2442 * Find out whether hw supports a single or two-level table by 2443 * table by reading bit at offset '62' after writing '1' to it. 2444 */ 2445 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2446 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2447 2448 if (indirect) { 2449 /* 2450 * The size of the lvl2 table is equal to ITS page size 2451 * which is 'psz'. For computing lvl1 table size, 2452 * subtract ID bits that sparse lvl2 table from 'ids' 2453 * which is reported by ITS hardware times lvl1 table 2454 * entry size. 2455 */ 2456 ids -= ilog2(psz / (int)esz); 2457 esz = GITS_LVL1_ENTRY_SIZE; 2458 } 2459 } 2460 2461 /* 2462 * Allocate as many entries as required to fit the 2463 * range of device IDs that the ITS can grok... The ID 2464 * space being incredibly sparse, this results in a 2465 * massive waste of memory if two-level device table 2466 * feature is not supported by hardware. 2467 */ 2468 new_order = max_t(u32, get_order(esz << ids), new_order); 2469 if (new_order > MAX_ORDER) { 2470 new_order = MAX_ORDER; 2471 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2472 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2473 &its->phys_base, its_base_type_string[type], 2474 device_ids(its), ids); 2475 } 2476 2477 *order = new_order; 2478 2479 return indirect; 2480 } 2481 2482 static u32 compute_common_aff(u64 val) 2483 { 2484 u32 aff, clpiaff; 2485 2486 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2487 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2488 2489 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2490 } 2491 2492 static u32 compute_its_aff(struct its_node *its) 2493 { 2494 u64 val; 2495 u32 svpet; 2496 2497 /* 2498 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2499 * the resulting affinity. We then use that to see if this match 2500 * our own affinity. 2501 */ 2502 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2503 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2504 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2505 return compute_common_aff(val); 2506 } 2507 2508 static struct its_node *find_sibling_its(struct its_node *cur_its) 2509 { 2510 struct its_node *its; 2511 u32 aff; 2512 2513 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2514 return NULL; 2515 2516 aff = compute_its_aff(cur_its); 2517 2518 list_for_each_entry(its, &its_nodes, entry) { 2519 u64 baser; 2520 2521 if (!is_v4_1(its) || its == cur_its) 2522 continue; 2523 2524 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2525 continue; 2526 2527 if (aff != compute_its_aff(its)) 2528 continue; 2529 2530 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2531 baser = its->tables[2].val; 2532 if (!(baser & GITS_BASER_VALID)) 2533 continue; 2534 2535 return its; 2536 } 2537 2538 return NULL; 2539 } 2540 2541 static void its_free_tables(struct its_node *its) 2542 { 2543 int i; 2544 2545 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2546 if (its->tables[i].base) { 2547 free_pages((unsigned long)its->tables[i].base, 2548 its->tables[i].order); 2549 its->tables[i].base = NULL; 2550 } 2551 } 2552 } 2553 2554 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2555 { 2556 u64 psz = SZ_64K; 2557 2558 while (psz) { 2559 u64 val, gpsz; 2560 2561 val = its_read_baser(its, baser); 2562 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2563 2564 switch (psz) { 2565 case SZ_64K: 2566 gpsz = GITS_BASER_PAGE_SIZE_64K; 2567 break; 2568 case SZ_16K: 2569 gpsz = GITS_BASER_PAGE_SIZE_16K; 2570 break; 2571 case SZ_4K: 2572 default: 2573 gpsz = GITS_BASER_PAGE_SIZE_4K; 2574 break; 2575 } 2576 2577 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2578 2579 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2580 its_write_baser(its, baser, val); 2581 2582 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2583 break; 2584 2585 switch (psz) { 2586 case SZ_64K: 2587 psz = SZ_16K; 2588 break; 2589 case SZ_16K: 2590 psz = SZ_4K; 2591 break; 2592 case SZ_4K: 2593 default: 2594 return -1; 2595 } 2596 } 2597 2598 baser->psz = psz; 2599 return 0; 2600 } 2601 2602 static int its_alloc_tables(struct its_node *its) 2603 { 2604 u64 shr = GITS_BASER_InnerShareable; 2605 u64 cache = GITS_BASER_RaWaWb; 2606 int err, i; 2607 2608 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2609 /* erratum 24313: ignore memory access type */ 2610 cache = GITS_BASER_nCnB; 2611 2612 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2613 struct its_baser *baser = its->tables + i; 2614 u64 val = its_read_baser(its, baser); 2615 u64 type = GITS_BASER_TYPE(val); 2616 bool indirect = false; 2617 u32 order; 2618 2619 if (type == GITS_BASER_TYPE_NONE) 2620 continue; 2621 2622 if (its_probe_baser_psz(its, baser)) { 2623 its_free_tables(its); 2624 return -ENXIO; 2625 } 2626 2627 order = get_order(baser->psz); 2628 2629 switch (type) { 2630 case GITS_BASER_TYPE_DEVICE: 2631 indirect = its_parse_indirect_baser(its, baser, &order, 2632 device_ids(its)); 2633 break; 2634 2635 case GITS_BASER_TYPE_VCPU: 2636 if (is_v4_1(its)) { 2637 struct its_node *sibling; 2638 2639 WARN_ON(i != 2); 2640 if ((sibling = find_sibling_its(its))) { 2641 *baser = sibling->tables[2]; 2642 its_write_baser(its, baser, baser->val); 2643 continue; 2644 } 2645 } 2646 2647 indirect = its_parse_indirect_baser(its, baser, &order, 2648 ITS_MAX_VPEID_BITS); 2649 break; 2650 } 2651 2652 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2653 if (err < 0) { 2654 its_free_tables(its); 2655 return err; 2656 } 2657 2658 /* Update settings which will be used for next BASERn */ 2659 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2660 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2661 } 2662 2663 return 0; 2664 } 2665 2666 static u64 inherit_vpe_l1_table_from_its(void) 2667 { 2668 struct its_node *its; 2669 u64 val; 2670 u32 aff; 2671 2672 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2673 aff = compute_common_aff(val); 2674 2675 list_for_each_entry(its, &its_nodes, entry) { 2676 u64 baser, addr; 2677 2678 if (!is_v4_1(its)) 2679 continue; 2680 2681 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2682 continue; 2683 2684 if (aff != compute_its_aff(its)) 2685 continue; 2686 2687 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2688 baser = its->tables[2].val; 2689 if (!(baser & GITS_BASER_VALID)) 2690 continue; 2691 2692 /* We have a winner! */ 2693 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2694 2695 val = GICR_VPROPBASER_4_1_VALID; 2696 if (baser & GITS_BASER_INDIRECT) 2697 val |= GICR_VPROPBASER_4_1_INDIRECT; 2698 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2699 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2700 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2701 case GIC_PAGE_SIZE_64K: 2702 addr = GITS_BASER_ADDR_48_to_52(baser); 2703 break; 2704 default: 2705 addr = baser & GENMASK_ULL(47, 12); 2706 break; 2707 } 2708 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2709 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2710 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2711 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2712 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2713 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2714 2715 return val; 2716 } 2717 2718 return 0; 2719 } 2720 2721 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2722 { 2723 u32 aff; 2724 u64 val; 2725 int cpu; 2726 2727 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2728 aff = compute_common_aff(val); 2729 2730 for_each_possible_cpu(cpu) { 2731 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2732 2733 if (!base || cpu == smp_processor_id()) 2734 continue; 2735 2736 val = gic_read_typer(base + GICR_TYPER); 2737 if (aff != compute_common_aff(val)) 2738 continue; 2739 2740 /* 2741 * At this point, we have a victim. This particular CPU 2742 * has already booted, and has an affinity that matches 2743 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2744 * Make sure we don't write the Z bit in that case. 2745 */ 2746 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2747 val &= ~GICR_VPROPBASER_4_1_Z; 2748 2749 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2750 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2751 2752 return val; 2753 } 2754 2755 return 0; 2756 } 2757 2758 static bool allocate_vpe_l2_table(int cpu, u32 id) 2759 { 2760 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2761 unsigned int psz, esz, idx, npg, gpsz; 2762 u64 val; 2763 struct page *page; 2764 __le64 *table; 2765 2766 if (!gic_rdists->has_rvpeid) 2767 return true; 2768 2769 /* Skip non-present CPUs */ 2770 if (!base) 2771 return true; 2772 2773 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2774 2775 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2776 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2777 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2778 2779 switch (gpsz) { 2780 default: 2781 WARN_ON(1); 2782 fallthrough; 2783 case GIC_PAGE_SIZE_4K: 2784 psz = SZ_4K; 2785 break; 2786 case GIC_PAGE_SIZE_16K: 2787 psz = SZ_16K; 2788 break; 2789 case GIC_PAGE_SIZE_64K: 2790 psz = SZ_64K; 2791 break; 2792 } 2793 2794 /* Don't allow vpe_id that exceeds single, flat table limit */ 2795 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2796 return (id < (npg * psz / (esz * SZ_8))); 2797 2798 /* Compute 1st level table index & check if that exceeds table limit */ 2799 idx = id >> ilog2(psz / (esz * SZ_8)); 2800 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2801 return false; 2802 2803 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2804 2805 /* Allocate memory for 2nd level table */ 2806 if (!table[idx]) { 2807 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2808 if (!page) 2809 return false; 2810 2811 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2812 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2813 gic_flush_dcache_to_poc(page_address(page), psz); 2814 2815 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2816 2817 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2818 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2819 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2820 2821 /* Ensure updated table contents are visible to RD hardware */ 2822 dsb(sy); 2823 } 2824 2825 return true; 2826 } 2827 2828 static int allocate_vpe_l1_table(void) 2829 { 2830 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2831 u64 val, gpsz, npg, pa; 2832 unsigned int psz = SZ_64K; 2833 unsigned int np, epp, esz; 2834 struct page *page; 2835 2836 if (!gic_rdists->has_rvpeid) 2837 return 0; 2838 2839 /* 2840 * if VPENDBASER.Valid is set, disable any previously programmed 2841 * VPE by setting PendingLast while clearing Valid. This has the 2842 * effect of making sure no doorbell will be generated and we can 2843 * then safely clear VPROPBASER.Valid. 2844 */ 2845 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2846 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2847 vlpi_base + GICR_VPENDBASER); 2848 2849 /* 2850 * If we can inherit the configuration from another RD, let's do 2851 * so. Otherwise, we have to go through the allocation process. We 2852 * assume that all RDs have the exact same requirements, as 2853 * nothing will work otherwise. 2854 */ 2855 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2856 if (val & GICR_VPROPBASER_4_1_VALID) 2857 goto out; 2858 2859 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2860 if (!gic_data_rdist()->vpe_table_mask) 2861 return -ENOMEM; 2862 2863 val = inherit_vpe_l1_table_from_its(); 2864 if (val & GICR_VPROPBASER_4_1_VALID) 2865 goto out; 2866 2867 /* First probe the page size */ 2868 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2869 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2870 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2871 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2872 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2873 2874 switch (gpsz) { 2875 default: 2876 gpsz = GIC_PAGE_SIZE_4K; 2877 fallthrough; 2878 case GIC_PAGE_SIZE_4K: 2879 psz = SZ_4K; 2880 break; 2881 case GIC_PAGE_SIZE_16K: 2882 psz = SZ_16K; 2883 break; 2884 case GIC_PAGE_SIZE_64K: 2885 psz = SZ_64K; 2886 break; 2887 } 2888 2889 /* 2890 * Start populating the register from scratch, including RO fields 2891 * (which we want to print in debug cases...) 2892 */ 2893 val = 0; 2894 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2895 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2896 2897 /* How many entries per GIC page? */ 2898 esz++; 2899 epp = psz / (esz * SZ_8); 2900 2901 /* 2902 * If we need more than just a single L1 page, flag the table 2903 * as indirect and compute the number of required L1 pages. 2904 */ 2905 if (epp < ITS_MAX_VPEID) { 2906 int nl2; 2907 2908 val |= GICR_VPROPBASER_4_1_INDIRECT; 2909 2910 /* Number of L2 pages required to cover the VPEID space */ 2911 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2912 2913 /* Number of L1 pages to point to the L2 pages */ 2914 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2915 } else { 2916 npg = 1; 2917 } 2918 2919 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2920 2921 /* Right, that's the number of CPU pages we need for L1 */ 2922 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2923 2924 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2925 np, npg, psz, epp, esz); 2926 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2927 if (!page) 2928 return -ENOMEM; 2929 2930 gic_data_rdist()->vpe_l1_base = page_address(page); 2931 pa = virt_to_phys(page_address(page)); 2932 WARN_ON(!IS_ALIGNED(pa, psz)); 2933 2934 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2935 val |= GICR_VPROPBASER_RaWb; 2936 val |= GICR_VPROPBASER_InnerShareable; 2937 val |= GICR_VPROPBASER_4_1_Z; 2938 val |= GICR_VPROPBASER_4_1_VALID; 2939 2940 out: 2941 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2942 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2943 2944 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2945 smp_processor_id(), val, 2946 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2947 2948 return 0; 2949 } 2950 2951 static int its_alloc_collections(struct its_node *its) 2952 { 2953 int i; 2954 2955 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2956 GFP_KERNEL); 2957 if (!its->collections) 2958 return -ENOMEM; 2959 2960 for (i = 0; i < nr_cpu_ids; i++) 2961 its->collections[i].target_address = ~0ULL; 2962 2963 return 0; 2964 } 2965 2966 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2967 { 2968 struct page *pend_page; 2969 2970 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2971 get_order(LPI_PENDBASE_SZ)); 2972 if (!pend_page) 2973 return NULL; 2974 2975 /* Make sure the GIC will observe the zero-ed page */ 2976 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2977 2978 return pend_page; 2979 } 2980 2981 static void its_free_pending_table(struct page *pt) 2982 { 2983 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2984 } 2985 2986 /* 2987 * Booting with kdump and LPIs enabled is generally fine. Any other 2988 * case is wrong in the absence of firmware/EFI support. 2989 */ 2990 static bool enabled_lpis_allowed(void) 2991 { 2992 phys_addr_t addr; 2993 u64 val; 2994 2995 /* Check whether the property table is in a reserved region */ 2996 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2997 addr = val & GENMASK_ULL(51, 12); 2998 2999 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 3000 } 3001 3002 static int __init allocate_lpi_tables(void) 3003 { 3004 u64 val; 3005 int err, cpu; 3006 3007 /* 3008 * If LPIs are enabled while we run this from the boot CPU, 3009 * flag the RD tables as pre-allocated if the stars do align. 3010 */ 3011 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3012 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3013 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3014 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3015 pr_info("GICv3: Using preallocated redistributor tables\n"); 3016 } 3017 3018 err = its_setup_lpi_prop_table(); 3019 if (err) 3020 return err; 3021 3022 /* 3023 * We allocate all the pending tables anyway, as we may have a 3024 * mix of RDs that have had LPIs enabled, and some that 3025 * don't. We'll free the unused ones as each CPU comes online. 3026 */ 3027 for_each_possible_cpu(cpu) { 3028 struct page *pend_page; 3029 3030 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3031 if (!pend_page) { 3032 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3033 return -ENOMEM; 3034 } 3035 3036 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3037 } 3038 3039 return 0; 3040 } 3041 3042 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3043 { 3044 u32 count = 1000000; /* 1s! */ 3045 bool clean; 3046 u64 val; 3047 3048 do { 3049 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3050 clean = !(val & GICR_VPENDBASER_Dirty); 3051 if (!clean) { 3052 count--; 3053 cpu_relax(); 3054 udelay(1); 3055 } 3056 } while (!clean && count); 3057 3058 if (unlikely(!clean)) 3059 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3060 3061 return val; 3062 } 3063 3064 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3065 { 3066 u64 val; 3067 3068 /* Make sure we wait until the RD is done with the initial scan */ 3069 val = read_vpend_dirty_clear(vlpi_base); 3070 val &= ~GICR_VPENDBASER_Valid; 3071 val &= ~clr; 3072 val |= set; 3073 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3074 3075 val = read_vpend_dirty_clear(vlpi_base); 3076 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3077 val |= GICR_VPENDBASER_PendingLast; 3078 3079 return val; 3080 } 3081 3082 static void its_cpu_init_lpis(void) 3083 { 3084 void __iomem *rbase = gic_data_rdist_rd_base(); 3085 struct page *pend_page; 3086 phys_addr_t paddr; 3087 u64 val, tmp; 3088 3089 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3090 return; 3091 3092 val = readl_relaxed(rbase + GICR_CTLR); 3093 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3094 (val & GICR_CTLR_ENABLE_LPIS)) { 3095 /* 3096 * Check that we get the same property table on all 3097 * RDs. If we don't, this is hopeless. 3098 */ 3099 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3100 paddr &= GENMASK_ULL(51, 12); 3101 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3102 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3103 3104 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3105 paddr &= GENMASK_ULL(51, 16); 3106 3107 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3108 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3109 3110 goto out; 3111 } 3112 3113 pend_page = gic_data_rdist()->pend_page; 3114 paddr = page_to_phys(pend_page); 3115 3116 /* set PROPBASE */ 3117 val = (gic_rdists->prop_table_pa | 3118 GICR_PROPBASER_InnerShareable | 3119 GICR_PROPBASER_RaWaWb | 3120 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3121 3122 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3123 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3124 3125 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE) 3126 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3127 3128 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3129 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3130 /* 3131 * The HW reports non-shareable, we must 3132 * remove the cacheability attributes as 3133 * well. 3134 */ 3135 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3136 GICR_PROPBASER_CACHEABILITY_MASK); 3137 val |= GICR_PROPBASER_nC; 3138 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3139 } 3140 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3141 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3142 } 3143 3144 /* set PENDBASE */ 3145 val = (page_to_phys(pend_page) | 3146 GICR_PENDBASER_InnerShareable | 3147 GICR_PENDBASER_RaWaWb); 3148 3149 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3150 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3151 3152 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE) 3153 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3154 3155 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3156 /* 3157 * The HW reports non-shareable, we must remove the 3158 * cacheability attributes as well. 3159 */ 3160 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3161 GICR_PENDBASER_CACHEABILITY_MASK); 3162 val |= GICR_PENDBASER_nC; 3163 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3164 } 3165 3166 /* Enable LPIs */ 3167 val = readl_relaxed(rbase + GICR_CTLR); 3168 val |= GICR_CTLR_ENABLE_LPIS; 3169 writel_relaxed(val, rbase + GICR_CTLR); 3170 3171 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3172 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3173 3174 /* 3175 * It's possible for CPU to receive VLPIs before it is 3176 * scheduled as a vPE, especially for the first CPU, and the 3177 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3178 * as out of range and dropped by GIC. 3179 * So we initialize IDbits to known value to avoid VLPI drop. 3180 */ 3181 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3182 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3183 smp_processor_id(), val); 3184 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3185 3186 /* 3187 * Also clear Valid bit of GICR_VPENDBASER, in case some 3188 * ancient programming gets left in and has possibility of 3189 * corrupting memory. 3190 */ 3191 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3192 } 3193 3194 if (allocate_vpe_l1_table()) { 3195 /* 3196 * If the allocation has failed, we're in massive trouble. 3197 * Disable direct injection, and pray that no VM was 3198 * already running... 3199 */ 3200 gic_rdists->has_rvpeid = false; 3201 gic_rdists->has_vlpis = false; 3202 } 3203 3204 /* Make sure the GIC has seen the above */ 3205 dsb(sy); 3206 out: 3207 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3208 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3209 smp_processor_id(), 3210 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3211 "reserved" : "allocated", 3212 &paddr); 3213 } 3214 3215 static void its_cpu_init_collection(struct its_node *its) 3216 { 3217 int cpu = smp_processor_id(); 3218 u64 target; 3219 3220 /* avoid cross node collections and its mapping */ 3221 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3222 struct device_node *cpu_node; 3223 3224 cpu_node = of_get_cpu_node(cpu, NULL); 3225 if (its->numa_node != NUMA_NO_NODE && 3226 its->numa_node != of_node_to_nid(cpu_node)) 3227 return; 3228 } 3229 3230 /* 3231 * We now have to bind each collection to its target 3232 * redistributor. 3233 */ 3234 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3235 /* 3236 * This ITS wants the physical address of the 3237 * redistributor. 3238 */ 3239 target = gic_data_rdist()->phys_base; 3240 } else { 3241 /* This ITS wants a linear CPU number. */ 3242 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3243 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3244 } 3245 3246 /* Perform collection mapping */ 3247 its->collections[cpu].target_address = target; 3248 its->collections[cpu].col_id = cpu; 3249 3250 its_send_mapc(its, &its->collections[cpu], 1); 3251 its_send_invall(its, &its->collections[cpu]); 3252 } 3253 3254 static void its_cpu_init_collections(void) 3255 { 3256 struct its_node *its; 3257 3258 raw_spin_lock(&its_lock); 3259 3260 list_for_each_entry(its, &its_nodes, entry) 3261 its_cpu_init_collection(its); 3262 3263 raw_spin_unlock(&its_lock); 3264 } 3265 3266 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3267 { 3268 struct its_device *its_dev = NULL, *tmp; 3269 unsigned long flags; 3270 3271 raw_spin_lock_irqsave(&its->lock, flags); 3272 3273 list_for_each_entry(tmp, &its->its_device_list, entry) { 3274 if (tmp->device_id == dev_id) { 3275 its_dev = tmp; 3276 break; 3277 } 3278 } 3279 3280 raw_spin_unlock_irqrestore(&its->lock, flags); 3281 3282 return its_dev; 3283 } 3284 3285 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3286 { 3287 int i; 3288 3289 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3290 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3291 return &its->tables[i]; 3292 } 3293 3294 return NULL; 3295 } 3296 3297 static bool its_alloc_table_entry(struct its_node *its, 3298 struct its_baser *baser, u32 id) 3299 { 3300 struct page *page; 3301 u32 esz, idx; 3302 __le64 *table; 3303 3304 /* Don't allow device id that exceeds single, flat table limit */ 3305 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3306 if (!(baser->val & GITS_BASER_INDIRECT)) 3307 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3308 3309 /* Compute 1st level table index & check if that exceeds table limit */ 3310 idx = id >> ilog2(baser->psz / esz); 3311 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3312 return false; 3313 3314 table = baser->base; 3315 3316 /* Allocate memory for 2nd level table */ 3317 if (!table[idx]) { 3318 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3319 get_order(baser->psz)); 3320 if (!page) 3321 return false; 3322 3323 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3324 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3325 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3326 3327 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3328 3329 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3330 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3331 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3332 3333 /* Ensure updated table contents are visible to ITS hardware */ 3334 dsb(sy); 3335 } 3336 3337 return true; 3338 } 3339 3340 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3341 { 3342 struct its_baser *baser; 3343 3344 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3345 3346 /* Don't allow device id that exceeds ITS hardware limit */ 3347 if (!baser) 3348 return (ilog2(dev_id) < device_ids(its)); 3349 3350 return its_alloc_table_entry(its, baser, dev_id); 3351 } 3352 3353 static bool its_alloc_vpe_table(u32 vpe_id) 3354 { 3355 struct its_node *its; 3356 int cpu; 3357 3358 /* 3359 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3360 * could try and only do it on ITSs corresponding to devices 3361 * that have interrupts targeted at this VPE, but the 3362 * complexity becomes crazy (and you have tons of memory 3363 * anyway, right?). 3364 */ 3365 list_for_each_entry(its, &its_nodes, entry) { 3366 struct its_baser *baser; 3367 3368 if (!is_v4(its)) 3369 continue; 3370 3371 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3372 if (!baser) 3373 return false; 3374 3375 if (!its_alloc_table_entry(its, baser, vpe_id)) 3376 return false; 3377 } 3378 3379 /* Non v4.1? No need to iterate RDs and go back early. */ 3380 if (!gic_rdists->has_rvpeid) 3381 return true; 3382 3383 /* 3384 * Make sure the L2 tables are allocated for all copies of 3385 * the L1 table on *all* v4.1 RDs. 3386 */ 3387 for_each_possible_cpu(cpu) { 3388 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3389 return false; 3390 } 3391 3392 return true; 3393 } 3394 3395 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3396 int nvecs, bool alloc_lpis) 3397 { 3398 struct its_device *dev; 3399 unsigned long *lpi_map = NULL; 3400 unsigned long flags; 3401 u16 *col_map = NULL; 3402 void *itt; 3403 int lpi_base; 3404 int nr_lpis; 3405 int nr_ites; 3406 int sz; 3407 3408 if (!its_alloc_device_table(its, dev_id)) 3409 return NULL; 3410 3411 if (WARN_ON(!is_power_of_2(nvecs))) 3412 nvecs = roundup_pow_of_two(nvecs); 3413 3414 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3415 /* 3416 * Even if the device wants a single LPI, the ITT must be 3417 * sized as a power of two (and you need at least one bit...). 3418 */ 3419 nr_ites = max(2, nvecs); 3420 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3421 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3422 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3423 if (alloc_lpis) { 3424 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3425 if (lpi_map) 3426 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3427 GFP_KERNEL); 3428 } else { 3429 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3430 nr_lpis = 0; 3431 lpi_base = 0; 3432 } 3433 3434 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3435 kfree(dev); 3436 kfree(itt); 3437 bitmap_free(lpi_map); 3438 kfree(col_map); 3439 return NULL; 3440 } 3441 3442 gic_flush_dcache_to_poc(itt, sz); 3443 3444 dev->its = its; 3445 dev->itt = itt; 3446 dev->nr_ites = nr_ites; 3447 dev->event_map.lpi_map = lpi_map; 3448 dev->event_map.col_map = col_map; 3449 dev->event_map.lpi_base = lpi_base; 3450 dev->event_map.nr_lpis = nr_lpis; 3451 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3452 dev->device_id = dev_id; 3453 INIT_LIST_HEAD(&dev->entry); 3454 3455 raw_spin_lock_irqsave(&its->lock, flags); 3456 list_add(&dev->entry, &its->its_device_list); 3457 raw_spin_unlock_irqrestore(&its->lock, flags); 3458 3459 /* Map device to its ITT */ 3460 its_send_mapd(dev, 1); 3461 3462 return dev; 3463 } 3464 3465 static void its_free_device(struct its_device *its_dev) 3466 { 3467 unsigned long flags; 3468 3469 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3470 list_del(&its_dev->entry); 3471 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3472 kfree(its_dev->event_map.col_map); 3473 kfree(its_dev->itt); 3474 kfree(its_dev); 3475 } 3476 3477 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3478 { 3479 int idx; 3480 3481 /* Find a free LPI region in lpi_map and allocate them. */ 3482 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3483 dev->event_map.nr_lpis, 3484 get_count_order(nvecs)); 3485 if (idx < 0) 3486 return -ENOSPC; 3487 3488 *hwirq = dev->event_map.lpi_base + idx; 3489 3490 return 0; 3491 } 3492 3493 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3494 int nvec, msi_alloc_info_t *info) 3495 { 3496 struct its_node *its; 3497 struct its_device *its_dev; 3498 struct msi_domain_info *msi_info; 3499 u32 dev_id; 3500 int err = 0; 3501 3502 /* 3503 * We ignore "dev" entirely, and rely on the dev_id that has 3504 * been passed via the scratchpad. This limits this domain's 3505 * usefulness to upper layers that definitely know that they 3506 * are built on top of the ITS. 3507 */ 3508 dev_id = info->scratchpad[0].ul; 3509 3510 msi_info = msi_get_domain_info(domain); 3511 its = msi_info->data; 3512 3513 if (!gic_rdists->has_direct_lpi && 3514 vpe_proxy.dev && 3515 vpe_proxy.dev->its == its && 3516 dev_id == vpe_proxy.dev->device_id) { 3517 /* Bad luck. Get yourself a better implementation */ 3518 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3519 dev_id); 3520 return -EINVAL; 3521 } 3522 3523 mutex_lock(&its->dev_alloc_lock); 3524 its_dev = its_find_device(its, dev_id); 3525 if (its_dev) { 3526 /* 3527 * We already have seen this ID, probably through 3528 * another alias (PCI bridge of some sort). No need to 3529 * create the device. 3530 */ 3531 its_dev->shared = true; 3532 pr_debug("Reusing ITT for devID %x\n", dev_id); 3533 goto out; 3534 } 3535 3536 its_dev = its_create_device(its, dev_id, nvec, true); 3537 if (!its_dev) { 3538 err = -ENOMEM; 3539 goto out; 3540 } 3541 3542 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3543 its_dev->shared = true; 3544 3545 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3546 out: 3547 mutex_unlock(&its->dev_alloc_lock); 3548 info->scratchpad[0].ptr = its_dev; 3549 return err; 3550 } 3551 3552 static struct msi_domain_ops its_msi_domain_ops = { 3553 .msi_prepare = its_msi_prepare, 3554 }; 3555 3556 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3557 unsigned int virq, 3558 irq_hw_number_t hwirq) 3559 { 3560 struct irq_fwspec fwspec; 3561 3562 if (irq_domain_get_of_node(domain->parent)) { 3563 fwspec.fwnode = domain->parent->fwnode; 3564 fwspec.param_count = 3; 3565 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3566 fwspec.param[1] = hwirq; 3567 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3568 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3569 fwspec.fwnode = domain->parent->fwnode; 3570 fwspec.param_count = 2; 3571 fwspec.param[0] = hwirq; 3572 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3573 } else { 3574 return -EINVAL; 3575 } 3576 3577 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3578 } 3579 3580 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3581 unsigned int nr_irqs, void *args) 3582 { 3583 msi_alloc_info_t *info = args; 3584 struct its_device *its_dev = info->scratchpad[0].ptr; 3585 struct its_node *its = its_dev->its; 3586 struct irq_data *irqd; 3587 irq_hw_number_t hwirq; 3588 int err; 3589 int i; 3590 3591 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3592 if (err) 3593 return err; 3594 3595 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3596 if (err) 3597 return err; 3598 3599 for (i = 0; i < nr_irqs; i++) { 3600 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3601 if (err) 3602 return err; 3603 3604 irq_domain_set_hwirq_and_chip(domain, virq + i, 3605 hwirq + i, &its_irq_chip, its_dev); 3606 irqd = irq_get_irq_data(virq + i); 3607 irqd_set_single_target(irqd); 3608 irqd_set_affinity_on_activate(irqd); 3609 irqd_set_resend_when_in_progress(irqd); 3610 pr_debug("ID:%d pID:%d vID:%d\n", 3611 (int)(hwirq + i - its_dev->event_map.lpi_base), 3612 (int)(hwirq + i), virq + i); 3613 } 3614 3615 return 0; 3616 } 3617 3618 static int its_irq_domain_activate(struct irq_domain *domain, 3619 struct irq_data *d, bool reserve) 3620 { 3621 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3622 u32 event = its_get_event_id(d); 3623 int cpu; 3624 3625 cpu = its_select_cpu(d, cpu_online_mask); 3626 if (cpu < 0 || cpu >= nr_cpu_ids) 3627 return -EINVAL; 3628 3629 its_inc_lpi_count(d, cpu); 3630 its_dev->event_map.col_map[event] = cpu; 3631 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3632 3633 /* Map the GIC IRQ and event to the device */ 3634 its_send_mapti(its_dev, d->hwirq, event); 3635 return 0; 3636 } 3637 3638 static void its_irq_domain_deactivate(struct irq_domain *domain, 3639 struct irq_data *d) 3640 { 3641 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3642 u32 event = its_get_event_id(d); 3643 3644 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3645 /* Stop the delivery of interrupts */ 3646 its_send_discard(its_dev, event); 3647 } 3648 3649 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3650 unsigned int nr_irqs) 3651 { 3652 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3653 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3654 struct its_node *its = its_dev->its; 3655 int i; 3656 3657 bitmap_release_region(its_dev->event_map.lpi_map, 3658 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3659 get_count_order(nr_irqs)); 3660 3661 for (i = 0; i < nr_irqs; i++) { 3662 struct irq_data *data = irq_domain_get_irq_data(domain, 3663 virq + i); 3664 /* Nuke the entry in the domain */ 3665 irq_domain_reset_irq_data(data); 3666 } 3667 3668 mutex_lock(&its->dev_alloc_lock); 3669 3670 /* 3671 * If all interrupts have been freed, start mopping the 3672 * floor. This is conditioned on the device not being shared. 3673 */ 3674 if (!its_dev->shared && 3675 bitmap_empty(its_dev->event_map.lpi_map, 3676 its_dev->event_map.nr_lpis)) { 3677 its_lpi_free(its_dev->event_map.lpi_map, 3678 its_dev->event_map.lpi_base, 3679 its_dev->event_map.nr_lpis); 3680 3681 /* Unmap device/itt */ 3682 its_send_mapd(its_dev, 0); 3683 its_free_device(its_dev); 3684 } 3685 3686 mutex_unlock(&its->dev_alloc_lock); 3687 3688 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3689 } 3690 3691 static const struct irq_domain_ops its_domain_ops = { 3692 .alloc = its_irq_domain_alloc, 3693 .free = its_irq_domain_free, 3694 .activate = its_irq_domain_activate, 3695 .deactivate = its_irq_domain_deactivate, 3696 }; 3697 3698 /* 3699 * This is insane. 3700 * 3701 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3702 * likely), the only way to perform an invalidate is to use a fake 3703 * device to issue an INV command, implying that the LPI has first 3704 * been mapped to some event on that device. Since this is not exactly 3705 * cheap, we try to keep that mapping around as long as possible, and 3706 * only issue an UNMAP if we're short on available slots. 3707 * 3708 * Broken by design(tm). 3709 * 3710 * GICv4.1, on the other hand, mandates that we're able to invalidate 3711 * by writing to a MMIO register. It doesn't implement the whole of 3712 * DirectLPI, but that's good enough. And most of the time, we don't 3713 * even have to invalidate anything, as the redistributor can be told 3714 * whether to generate a doorbell or not (we thus leave it enabled, 3715 * always). 3716 */ 3717 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3718 { 3719 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3720 if (gic_rdists->has_rvpeid) 3721 return; 3722 3723 /* Already unmapped? */ 3724 if (vpe->vpe_proxy_event == -1) 3725 return; 3726 3727 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3728 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3729 3730 /* 3731 * We don't track empty slots at all, so let's move the 3732 * next_victim pointer if we can quickly reuse that slot 3733 * instead of nuking an existing entry. Not clear that this is 3734 * always a win though, and this might just generate a ripple 3735 * effect... Let's just hope VPEs don't migrate too often. 3736 */ 3737 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3738 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3739 3740 vpe->vpe_proxy_event = -1; 3741 } 3742 3743 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3744 { 3745 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3746 if (gic_rdists->has_rvpeid) 3747 return; 3748 3749 if (!gic_rdists->has_direct_lpi) { 3750 unsigned long flags; 3751 3752 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3753 its_vpe_db_proxy_unmap_locked(vpe); 3754 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3755 } 3756 } 3757 3758 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3759 { 3760 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3761 if (gic_rdists->has_rvpeid) 3762 return; 3763 3764 /* Already mapped? */ 3765 if (vpe->vpe_proxy_event != -1) 3766 return; 3767 3768 /* This slot was already allocated. Kick the other VPE out. */ 3769 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3770 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3771 3772 /* Map the new VPE instead */ 3773 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3774 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3775 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3776 3777 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3778 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3779 } 3780 3781 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3782 { 3783 unsigned long flags; 3784 struct its_collection *target_col; 3785 3786 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3787 if (gic_rdists->has_rvpeid) 3788 return; 3789 3790 if (gic_rdists->has_direct_lpi) { 3791 void __iomem *rdbase; 3792 3793 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3794 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3795 wait_for_syncr(rdbase); 3796 3797 return; 3798 } 3799 3800 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3801 3802 its_vpe_db_proxy_map_locked(vpe); 3803 3804 target_col = &vpe_proxy.dev->its->collections[to]; 3805 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3806 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3807 3808 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3809 } 3810 3811 static int its_vpe_set_affinity(struct irq_data *d, 3812 const struct cpumask *mask_val, 3813 bool force) 3814 { 3815 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3816 int from, cpu = cpumask_first(mask_val); 3817 unsigned long flags; 3818 3819 /* 3820 * Changing affinity is mega expensive, so let's be as lazy as 3821 * we can and only do it if we really have to. Also, if mapped 3822 * into the proxy device, we need to move the doorbell 3823 * interrupt to its new location. 3824 * 3825 * Another thing is that changing the affinity of a vPE affects 3826 * *other interrupts* such as all the vLPIs that are routed to 3827 * this vPE. This means that the irq_desc lock is not enough to 3828 * protect us, and that we must ensure nobody samples vpe->col_idx 3829 * during the update, hence the lock below which must also be 3830 * taken on any vLPI handling path that evaluates vpe->col_idx. 3831 */ 3832 from = vpe_to_cpuid_lock(vpe, &flags); 3833 if (from == cpu) 3834 goto out; 3835 3836 vpe->col_idx = cpu; 3837 3838 /* 3839 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD 3840 * is sharing its VPE table with the current one. 3841 */ 3842 if (gic_data_rdist_cpu(cpu)->vpe_table_mask && 3843 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) 3844 goto out; 3845 3846 its_send_vmovp(vpe); 3847 its_vpe_db_proxy_move(vpe, from, cpu); 3848 3849 out: 3850 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3851 vpe_to_cpuid_unlock(vpe, flags); 3852 3853 return IRQ_SET_MASK_OK_DONE; 3854 } 3855 3856 static void its_wait_vpt_parse_complete(void) 3857 { 3858 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3859 u64 val; 3860 3861 if (!gic_rdists->has_vpend_valid_dirty) 3862 return; 3863 3864 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3865 val, 3866 !(val & GICR_VPENDBASER_Dirty), 3867 1, 500)); 3868 } 3869 3870 static void its_vpe_schedule(struct its_vpe *vpe) 3871 { 3872 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3873 u64 val; 3874 3875 /* Schedule the VPE */ 3876 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3877 GENMASK_ULL(51, 12); 3878 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3879 val |= GICR_VPROPBASER_RaWb; 3880 val |= GICR_VPROPBASER_InnerShareable; 3881 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3882 3883 val = virt_to_phys(page_address(vpe->vpt_page)) & 3884 GENMASK_ULL(51, 16); 3885 val |= GICR_VPENDBASER_RaWaWb; 3886 val |= GICR_VPENDBASER_InnerShareable; 3887 /* 3888 * There is no good way of finding out if the pending table is 3889 * empty as we can race against the doorbell interrupt very 3890 * easily. So in the end, vpe->pending_last is only an 3891 * indication that the vcpu has something pending, not one 3892 * that the pending table is empty. A good implementation 3893 * would be able to read its coarse map pretty quickly anyway, 3894 * making this a tolerable issue. 3895 */ 3896 val |= GICR_VPENDBASER_PendingLast; 3897 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3898 val |= GICR_VPENDBASER_Valid; 3899 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3900 } 3901 3902 static void its_vpe_deschedule(struct its_vpe *vpe) 3903 { 3904 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3905 u64 val; 3906 3907 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3908 3909 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3910 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3911 } 3912 3913 static void its_vpe_invall(struct its_vpe *vpe) 3914 { 3915 struct its_node *its; 3916 3917 list_for_each_entry(its, &its_nodes, entry) { 3918 if (!is_v4(its)) 3919 continue; 3920 3921 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3922 continue; 3923 3924 /* 3925 * Sending a VINVALL to a single ITS is enough, as all 3926 * we need is to reach the redistributors. 3927 */ 3928 its_send_vinvall(its, vpe); 3929 return; 3930 } 3931 } 3932 3933 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3934 { 3935 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3936 struct its_cmd_info *info = vcpu_info; 3937 3938 switch (info->cmd_type) { 3939 case SCHEDULE_VPE: 3940 its_vpe_schedule(vpe); 3941 return 0; 3942 3943 case DESCHEDULE_VPE: 3944 its_vpe_deschedule(vpe); 3945 return 0; 3946 3947 case COMMIT_VPE: 3948 its_wait_vpt_parse_complete(); 3949 return 0; 3950 3951 case INVALL_VPE: 3952 its_vpe_invall(vpe); 3953 return 0; 3954 3955 default: 3956 return -EINVAL; 3957 } 3958 } 3959 3960 static void its_vpe_send_cmd(struct its_vpe *vpe, 3961 void (*cmd)(struct its_device *, u32)) 3962 { 3963 unsigned long flags; 3964 3965 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3966 3967 its_vpe_db_proxy_map_locked(vpe); 3968 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3969 3970 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3971 } 3972 3973 static void its_vpe_send_inv(struct irq_data *d) 3974 { 3975 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3976 3977 if (gic_rdists->has_direct_lpi) 3978 __direct_lpi_inv(d, d->parent_data->hwirq); 3979 else 3980 its_vpe_send_cmd(vpe, its_send_inv); 3981 } 3982 3983 static void its_vpe_mask_irq(struct irq_data *d) 3984 { 3985 /* 3986 * We need to unmask the LPI, which is described by the parent 3987 * irq_data. Instead of calling into the parent (which won't 3988 * exactly do the right thing, let's simply use the 3989 * parent_data pointer. Yes, I'm naughty. 3990 */ 3991 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3992 its_vpe_send_inv(d); 3993 } 3994 3995 static void its_vpe_unmask_irq(struct irq_data *d) 3996 { 3997 /* Same hack as above... */ 3998 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 3999 its_vpe_send_inv(d); 4000 } 4001 4002 static int its_vpe_set_irqchip_state(struct irq_data *d, 4003 enum irqchip_irq_state which, 4004 bool state) 4005 { 4006 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4007 4008 if (which != IRQCHIP_STATE_PENDING) 4009 return -EINVAL; 4010 4011 if (gic_rdists->has_direct_lpi) { 4012 void __iomem *rdbase; 4013 4014 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4015 if (state) { 4016 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4017 } else { 4018 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4019 wait_for_syncr(rdbase); 4020 } 4021 } else { 4022 if (state) 4023 its_vpe_send_cmd(vpe, its_send_int); 4024 else 4025 its_vpe_send_cmd(vpe, its_send_clear); 4026 } 4027 4028 return 0; 4029 } 4030 4031 static int its_vpe_retrigger(struct irq_data *d) 4032 { 4033 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4034 } 4035 4036 static struct irq_chip its_vpe_irq_chip = { 4037 .name = "GICv4-vpe", 4038 .irq_mask = its_vpe_mask_irq, 4039 .irq_unmask = its_vpe_unmask_irq, 4040 .irq_eoi = irq_chip_eoi_parent, 4041 .irq_set_affinity = its_vpe_set_affinity, 4042 .irq_retrigger = its_vpe_retrigger, 4043 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4044 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4045 }; 4046 4047 static struct its_node *find_4_1_its(void) 4048 { 4049 static struct its_node *its = NULL; 4050 4051 if (!its) { 4052 list_for_each_entry(its, &its_nodes, entry) { 4053 if (is_v4_1(its)) 4054 return its; 4055 } 4056 4057 /* Oops? */ 4058 its = NULL; 4059 } 4060 4061 return its; 4062 } 4063 4064 static void its_vpe_4_1_send_inv(struct irq_data *d) 4065 { 4066 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4067 struct its_node *its; 4068 4069 /* 4070 * GICv4.1 wants doorbells to be invalidated using the 4071 * INVDB command in order to be broadcast to all RDs. Send 4072 * it to the first valid ITS, and let the HW do its magic. 4073 */ 4074 its = find_4_1_its(); 4075 if (its) 4076 its_send_invdb(its, vpe); 4077 } 4078 4079 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4080 { 4081 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4082 its_vpe_4_1_send_inv(d); 4083 } 4084 4085 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4086 { 4087 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4088 its_vpe_4_1_send_inv(d); 4089 } 4090 4091 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4092 struct its_cmd_info *info) 4093 { 4094 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4095 u64 val = 0; 4096 4097 /* Schedule the VPE */ 4098 val |= GICR_VPENDBASER_Valid; 4099 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4100 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4101 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4102 4103 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4104 } 4105 4106 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4107 struct its_cmd_info *info) 4108 { 4109 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4110 u64 val; 4111 4112 if (info->req_db) { 4113 unsigned long flags; 4114 4115 /* 4116 * vPE is going to block: make the vPE non-resident with 4117 * PendingLast clear and DB set. The GIC guarantees that if 4118 * we read-back PendingLast clear, then a doorbell will be 4119 * delivered when an interrupt comes. 4120 * 4121 * Note the locking to deal with the concurrent update of 4122 * pending_last from the doorbell interrupt handler that can 4123 * run concurrently. 4124 */ 4125 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4126 val = its_clear_vpend_valid(vlpi_base, 4127 GICR_VPENDBASER_PendingLast, 4128 GICR_VPENDBASER_4_1_DB); 4129 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4130 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4131 } else { 4132 /* 4133 * We're not blocking, so just make the vPE non-resident 4134 * with PendingLast set, indicating that we'll be back. 4135 */ 4136 val = its_clear_vpend_valid(vlpi_base, 4137 0, 4138 GICR_VPENDBASER_PendingLast); 4139 vpe->pending_last = true; 4140 } 4141 } 4142 4143 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4144 { 4145 void __iomem *rdbase; 4146 unsigned long flags; 4147 u64 val; 4148 int cpu; 4149 4150 val = GICR_INVALLR_V; 4151 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4152 4153 /* Target the redistributor this vPE is currently known on */ 4154 cpu = vpe_to_cpuid_lock(vpe, &flags); 4155 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4156 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4157 gic_write_lpir(val, rdbase + GICR_INVALLR); 4158 4159 wait_for_syncr(rdbase); 4160 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4161 vpe_to_cpuid_unlock(vpe, flags); 4162 } 4163 4164 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4165 { 4166 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4167 struct its_cmd_info *info = vcpu_info; 4168 4169 switch (info->cmd_type) { 4170 case SCHEDULE_VPE: 4171 its_vpe_4_1_schedule(vpe, info); 4172 return 0; 4173 4174 case DESCHEDULE_VPE: 4175 its_vpe_4_1_deschedule(vpe, info); 4176 return 0; 4177 4178 case COMMIT_VPE: 4179 its_wait_vpt_parse_complete(); 4180 return 0; 4181 4182 case INVALL_VPE: 4183 its_vpe_4_1_invall(vpe); 4184 return 0; 4185 4186 default: 4187 return -EINVAL; 4188 } 4189 } 4190 4191 static struct irq_chip its_vpe_4_1_irq_chip = { 4192 .name = "GICv4.1-vpe", 4193 .irq_mask = its_vpe_4_1_mask_irq, 4194 .irq_unmask = its_vpe_4_1_unmask_irq, 4195 .irq_eoi = irq_chip_eoi_parent, 4196 .irq_set_affinity = its_vpe_set_affinity, 4197 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4198 }; 4199 4200 static void its_configure_sgi(struct irq_data *d, bool clear) 4201 { 4202 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4203 struct its_cmd_desc desc; 4204 4205 desc.its_vsgi_cmd.vpe = vpe; 4206 desc.its_vsgi_cmd.sgi = d->hwirq; 4207 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4208 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4209 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4210 desc.its_vsgi_cmd.clear = clear; 4211 4212 /* 4213 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4214 * destination VPE is mapped there. Since we map them eagerly at 4215 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4216 */ 4217 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4218 } 4219 4220 static void its_sgi_mask_irq(struct irq_data *d) 4221 { 4222 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4223 4224 vpe->sgi_config[d->hwirq].enabled = false; 4225 its_configure_sgi(d, false); 4226 } 4227 4228 static void its_sgi_unmask_irq(struct irq_data *d) 4229 { 4230 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4231 4232 vpe->sgi_config[d->hwirq].enabled = true; 4233 its_configure_sgi(d, false); 4234 } 4235 4236 static int its_sgi_set_affinity(struct irq_data *d, 4237 const struct cpumask *mask_val, 4238 bool force) 4239 { 4240 /* 4241 * There is no notion of affinity for virtual SGIs, at least 4242 * not on the host (since they can only be targeting a vPE). 4243 * Tell the kernel we've done whatever it asked for. 4244 */ 4245 irq_data_update_effective_affinity(d, mask_val); 4246 return IRQ_SET_MASK_OK; 4247 } 4248 4249 static int its_sgi_set_irqchip_state(struct irq_data *d, 4250 enum irqchip_irq_state which, 4251 bool state) 4252 { 4253 if (which != IRQCHIP_STATE_PENDING) 4254 return -EINVAL; 4255 4256 if (state) { 4257 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4258 struct its_node *its = find_4_1_its(); 4259 u64 val; 4260 4261 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4262 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4263 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4264 } else { 4265 its_configure_sgi(d, true); 4266 } 4267 4268 return 0; 4269 } 4270 4271 static int its_sgi_get_irqchip_state(struct irq_data *d, 4272 enum irqchip_irq_state which, bool *val) 4273 { 4274 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4275 void __iomem *base; 4276 unsigned long flags; 4277 u32 count = 1000000; /* 1s! */ 4278 u32 status; 4279 int cpu; 4280 4281 if (which != IRQCHIP_STATE_PENDING) 4282 return -EINVAL; 4283 4284 /* 4285 * Locking galore! We can race against two different events: 4286 * 4287 * - Concurrent vPE affinity change: we must make sure it cannot 4288 * happen, or we'll talk to the wrong redistributor. This is 4289 * identical to what happens with vLPIs. 4290 * 4291 * - Concurrent VSGIPENDR access: As it involves accessing two 4292 * MMIO registers, this must be made atomic one way or another. 4293 */ 4294 cpu = vpe_to_cpuid_lock(vpe, &flags); 4295 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4296 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4297 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4298 do { 4299 status = readl_relaxed(base + GICR_VSGIPENDR); 4300 if (!(status & GICR_VSGIPENDR_BUSY)) 4301 goto out; 4302 4303 count--; 4304 if (!count) { 4305 pr_err_ratelimited("Unable to get SGI status\n"); 4306 goto out; 4307 } 4308 cpu_relax(); 4309 udelay(1); 4310 } while (count); 4311 4312 out: 4313 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4314 vpe_to_cpuid_unlock(vpe, flags); 4315 4316 if (!count) 4317 return -ENXIO; 4318 4319 *val = !!(status & (1 << d->hwirq)); 4320 4321 return 0; 4322 } 4323 4324 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4325 { 4326 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4327 struct its_cmd_info *info = vcpu_info; 4328 4329 switch (info->cmd_type) { 4330 case PROP_UPDATE_VSGI: 4331 vpe->sgi_config[d->hwirq].priority = info->priority; 4332 vpe->sgi_config[d->hwirq].group = info->group; 4333 its_configure_sgi(d, false); 4334 return 0; 4335 4336 default: 4337 return -EINVAL; 4338 } 4339 } 4340 4341 static struct irq_chip its_sgi_irq_chip = { 4342 .name = "GICv4.1-sgi", 4343 .irq_mask = its_sgi_mask_irq, 4344 .irq_unmask = its_sgi_unmask_irq, 4345 .irq_set_affinity = its_sgi_set_affinity, 4346 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4347 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4348 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4349 }; 4350 4351 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4352 unsigned int virq, unsigned int nr_irqs, 4353 void *args) 4354 { 4355 struct its_vpe *vpe = args; 4356 int i; 4357 4358 /* Yes, we do want 16 SGIs */ 4359 WARN_ON(nr_irqs != 16); 4360 4361 for (i = 0; i < 16; i++) { 4362 vpe->sgi_config[i].priority = 0; 4363 vpe->sgi_config[i].enabled = false; 4364 vpe->sgi_config[i].group = false; 4365 4366 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4367 &its_sgi_irq_chip, vpe); 4368 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4369 } 4370 4371 return 0; 4372 } 4373 4374 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4375 unsigned int virq, 4376 unsigned int nr_irqs) 4377 { 4378 /* Nothing to do */ 4379 } 4380 4381 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4382 struct irq_data *d, bool reserve) 4383 { 4384 /* Write out the initial SGI configuration */ 4385 its_configure_sgi(d, false); 4386 return 0; 4387 } 4388 4389 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4390 struct irq_data *d) 4391 { 4392 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4393 4394 /* 4395 * The VSGI command is awkward: 4396 * 4397 * - To change the configuration, CLEAR must be set to false, 4398 * leaving the pending bit unchanged. 4399 * - To clear the pending bit, CLEAR must be set to true, leaving 4400 * the configuration unchanged. 4401 * 4402 * You just can't do both at once, hence the two commands below. 4403 */ 4404 vpe->sgi_config[d->hwirq].enabled = false; 4405 its_configure_sgi(d, false); 4406 its_configure_sgi(d, true); 4407 } 4408 4409 static const struct irq_domain_ops its_sgi_domain_ops = { 4410 .alloc = its_sgi_irq_domain_alloc, 4411 .free = its_sgi_irq_domain_free, 4412 .activate = its_sgi_irq_domain_activate, 4413 .deactivate = its_sgi_irq_domain_deactivate, 4414 }; 4415 4416 static int its_vpe_id_alloc(void) 4417 { 4418 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4419 } 4420 4421 static void its_vpe_id_free(u16 id) 4422 { 4423 ida_simple_remove(&its_vpeid_ida, id); 4424 } 4425 4426 static int its_vpe_init(struct its_vpe *vpe) 4427 { 4428 struct page *vpt_page; 4429 int vpe_id; 4430 4431 /* Allocate vpe_id */ 4432 vpe_id = its_vpe_id_alloc(); 4433 if (vpe_id < 0) 4434 return vpe_id; 4435 4436 /* Allocate VPT */ 4437 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4438 if (!vpt_page) { 4439 its_vpe_id_free(vpe_id); 4440 return -ENOMEM; 4441 } 4442 4443 if (!its_alloc_vpe_table(vpe_id)) { 4444 its_vpe_id_free(vpe_id); 4445 its_free_pending_table(vpt_page); 4446 return -ENOMEM; 4447 } 4448 4449 raw_spin_lock_init(&vpe->vpe_lock); 4450 vpe->vpe_id = vpe_id; 4451 vpe->vpt_page = vpt_page; 4452 if (gic_rdists->has_rvpeid) 4453 atomic_set(&vpe->vmapp_count, 0); 4454 else 4455 vpe->vpe_proxy_event = -1; 4456 4457 return 0; 4458 } 4459 4460 static void its_vpe_teardown(struct its_vpe *vpe) 4461 { 4462 its_vpe_db_proxy_unmap(vpe); 4463 its_vpe_id_free(vpe->vpe_id); 4464 its_free_pending_table(vpe->vpt_page); 4465 } 4466 4467 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4468 unsigned int virq, 4469 unsigned int nr_irqs) 4470 { 4471 struct its_vm *vm = domain->host_data; 4472 int i; 4473 4474 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4475 4476 for (i = 0; i < nr_irqs; i++) { 4477 struct irq_data *data = irq_domain_get_irq_data(domain, 4478 virq + i); 4479 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4480 4481 BUG_ON(vm != vpe->its_vm); 4482 4483 clear_bit(data->hwirq, vm->db_bitmap); 4484 its_vpe_teardown(vpe); 4485 irq_domain_reset_irq_data(data); 4486 } 4487 4488 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4489 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4490 its_free_prop_table(vm->vprop_page); 4491 } 4492 } 4493 4494 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4495 unsigned int nr_irqs, void *args) 4496 { 4497 struct irq_chip *irqchip = &its_vpe_irq_chip; 4498 struct its_vm *vm = args; 4499 unsigned long *bitmap; 4500 struct page *vprop_page; 4501 int base, nr_ids, i, err = 0; 4502 4503 BUG_ON(!vm); 4504 4505 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4506 if (!bitmap) 4507 return -ENOMEM; 4508 4509 if (nr_ids < nr_irqs) { 4510 its_lpi_free(bitmap, base, nr_ids); 4511 return -ENOMEM; 4512 } 4513 4514 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4515 if (!vprop_page) { 4516 its_lpi_free(bitmap, base, nr_ids); 4517 return -ENOMEM; 4518 } 4519 4520 vm->db_bitmap = bitmap; 4521 vm->db_lpi_base = base; 4522 vm->nr_db_lpis = nr_ids; 4523 vm->vprop_page = vprop_page; 4524 4525 if (gic_rdists->has_rvpeid) 4526 irqchip = &its_vpe_4_1_irq_chip; 4527 4528 for (i = 0; i < nr_irqs; i++) { 4529 vm->vpes[i]->vpe_db_lpi = base + i; 4530 err = its_vpe_init(vm->vpes[i]); 4531 if (err) 4532 break; 4533 err = its_irq_gic_domain_alloc(domain, virq + i, 4534 vm->vpes[i]->vpe_db_lpi); 4535 if (err) 4536 break; 4537 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4538 irqchip, vm->vpes[i]); 4539 set_bit(i, bitmap); 4540 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4541 } 4542 4543 if (err) { 4544 if (i > 0) 4545 its_vpe_irq_domain_free(domain, virq, i); 4546 4547 its_lpi_free(bitmap, base, nr_ids); 4548 its_free_prop_table(vprop_page); 4549 } 4550 4551 return err; 4552 } 4553 4554 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4555 struct irq_data *d, bool reserve) 4556 { 4557 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4558 struct its_node *its; 4559 4560 /* 4561 * If we use the list map, we issue VMAPP on demand... Unless 4562 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4563 * so that VSGIs can work. 4564 */ 4565 if (!gic_requires_eager_mapping()) 4566 return 0; 4567 4568 /* Map the VPE to the first possible CPU */ 4569 vpe->col_idx = cpumask_first(cpu_online_mask); 4570 4571 list_for_each_entry(its, &its_nodes, entry) { 4572 if (!is_v4(its)) 4573 continue; 4574 4575 its_send_vmapp(its, vpe, true); 4576 its_send_vinvall(its, vpe); 4577 } 4578 4579 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4580 4581 return 0; 4582 } 4583 4584 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4585 struct irq_data *d) 4586 { 4587 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4588 struct its_node *its; 4589 4590 /* 4591 * If we use the list map on GICv4.0, we unmap the VPE once no 4592 * VLPIs are associated with the VM. 4593 */ 4594 if (!gic_requires_eager_mapping()) 4595 return; 4596 4597 list_for_each_entry(its, &its_nodes, entry) { 4598 if (!is_v4(its)) 4599 continue; 4600 4601 its_send_vmapp(its, vpe, false); 4602 } 4603 4604 /* 4605 * There may be a direct read to the VPT after unmapping the 4606 * vPE, to guarantee the validity of this, we make the VPT 4607 * memory coherent with the CPU caches here. 4608 */ 4609 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4610 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4611 LPI_PENDBASE_SZ); 4612 } 4613 4614 static const struct irq_domain_ops its_vpe_domain_ops = { 4615 .alloc = its_vpe_irq_domain_alloc, 4616 .free = its_vpe_irq_domain_free, 4617 .activate = its_vpe_irq_domain_activate, 4618 .deactivate = its_vpe_irq_domain_deactivate, 4619 }; 4620 4621 static int its_force_quiescent(void __iomem *base) 4622 { 4623 u32 count = 1000000; /* 1s */ 4624 u32 val; 4625 4626 val = readl_relaxed(base + GITS_CTLR); 4627 /* 4628 * GIC architecture specification requires the ITS to be both 4629 * disabled and quiescent for writes to GITS_BASER<n> or 4630 * GITS_CBASER to not have UNPREDICTABLE results. 4631 */ 4632 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4633 return 0; 4634 4635 /* Disable the generation of all interrupts to this ITS */ 4636 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4637 writel_relaxed(val, base + GITS_CTLR); 4638 4639 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4640 while (1) { 4641 val = readl_relaxed(base + GITS_CTLR); 4642 if (val & GITS_CTLR_QUIESCENT) 4643 return 0; 4644 4645 count--; 4646 if (!count) 4647 return -EBUSY; 4648 4649 cpu_relax(); 4650 udelay(1); 4651 } 4652 } 4653 4654 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4655 { 4656 struct its_node *its = data; 4657 4658 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4659 its->typer &= ~GITS_TYPER_DEVBITS; 4660 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4661 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4662 4663 return true; 4664 } 4665 4666 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4667 { 4668 struct its_node *its = data; 4669 4670 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4671 4672 return true; 4673 } 4674 4675 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4676 { 4677 struct its_node *its = data; 4678 4679 /* On QDF2400, the size of the ITE is 16Bytes */ 4680 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4681 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4682 4683 return true; 4684 } 4685 4686 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4687 { 4688 struct its_node *its = its_dev->its; 4689 4690 /* 4691 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4692 * which maps 32-bit writes targeted at a separate window of 4693 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4694 * with device ID taken from bits [device_id_bits + 1:2] of 4695 * the window offset. 4696 */ 4697 return its->pre_its_base + (its_dev->device_id << 2); 4698 } 4699 4700 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4701 { 4702 struct its_node *its = data; 4703 u32 pre_its_window[2]; 4704 u32 ids; 4705 4706 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4707 "socionext,synquacer-pre-its", 4708 pre_its_window, 4709 ARRAY_SIZE(pre_its_window))) { 4710 4711 its->pre_its_base = pre_its_window[0]; 4712 its->get_msi_base = its_irq_get_msi_base_pre_its; 4713 4714 ids = ilog2(pre_its_window[1]) - 2; 4715 if (device_ids(its) > ids) { 4716 its->typer &= ~GITS_TYPER_DEVBITS; 4717 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4718 } 4719 4720 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4721 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4722 return true; 4723 } 4724 return false; 4725 } 4726 4727 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4728 { 4729 struct its_node *its = data; 4730 4731 /* 4732 * Hip07 insists on using the wrong address for the VLPI 4733 * page. Trick it into doing the right thing... 4734 */ 4735 its->vlpi_redist_offset = SZ_128K; 4736 return true; 4737 } 4738 4739 static bool __maybe_unused its_enable_rk3588001(void *data) 4740 { 4741 struct its_node *its = data; 4742 4743 if (!of_machine_is_compatible("rockchip,rk3588") && 4744 !of_machine_is_compatible("rockchip,rk3588s")) 4745 return false; 4746 4747 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4748 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4749 4750 return true; 4751 } 4752 4753 static bool its_set_non_coherent(void *data) 4754 { 4755 struct its_node *its = data; 4756 4757 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4758 return true; 4759 } 4760 4761 static const struct gic_quirk its_quirks[] = { 4762 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4763 { 4764 .desc = "ITS: Cavium errata 22375, 24313", 4765 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4766 .mask = 0xffff0fff, 4767 .init = its_enable_quirk_cavium_22375, 4768 }, 4769 #endif 4770 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4771 { 4772 .desc = "ITS: Cavium erratum 23144", 4773 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4774 .mask = 0xffff0fff, 4775 .init = its_enable_quirk_cavium_23144, 4776 }, 4777 #endif 4778 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4779 { 4780 .desc = "ITS: QDF2400 erratum 0065", 4781 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4782 .mask = 0xffffffff, 4783 .init = its_enable_quirk_qdf2400_e0065, 4784 }, 4785 #endif 4786 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4787 { 4788 /* 4789 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4790 * implementation, but with a 'pre-ITS' added that requires 4791 * special handling in software. 4792 */ 4793 .desc = "ITS: Socionext Synquacer pre-ITS", 4794 .iidr = 0x0001143b, 4795 .mask = 0xffffffff, 4796 .init = its_enable_quirk_socionext_synquacer, 4797 }, 4798 #endif 4799 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4800 { 4801 .desc = "ITS: Hip07 erratum 161600802", 4802 .iidr = 0x00000004, 4803 .mask = 0xffffffff, 4804 .init = its_enable_quirk_hip07_161600802, 4805 }, 4806 #endif 4807 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4808 { 4809 .desc = "ITS: Rockchip erratum RK3588001", 4810 .iidr = 0x0201743b, 4811 .mask = 0xffffffff, 4812 .init = its_enable_rk3588001, 4813 }, 4814 #endif 4815 { 4816 .desc = "ITS: non-coherent attribute", 4817 .property = "dma-noncoherent", 4818 .init = its_set_non_coherent, 4819 }, 4820 { 4821 } 4822 }; 4823 4824 static void its_enable_quirks(struct its_node *its) 4825 { 4826 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4827 4828 gic_enable_quirks(iidr, its_quirks, its); 4829 4830 if (is_of_node(its->fwnode_handle)) 4831 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4832 its_quirks, its); 4833 } 4834 4835 static int its_save_disable(void) 4836 { 4837 struct its_node *its; 4838 int err = 0; 4839 4840 raw_spin_lock(&its_lock); 4841 list_for_each_entry(its, &its_nodes, entry) { 4842 void __iomem *base; 4843 4844 base = its->base; 4845 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4846 err = its_force_quiescent(base); 4847 if (err) { 4848 pr_err("ITS@%pa: failed to quiesce: %d\n", 4849 &its->phys_base, err); 4850 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4851 goto err; 4852 } 4853 4854 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4855 } 4856 4857 err: 4858 if (err) { 4859 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4860 void __iomem *base; 4861 4862 base = its->base; 4863 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4864 } 4865 } 4866 raw_spin_unlock(&its_lock); 4867 4868 return err; 4869 } 4870 4871 static void its_restore_enable(void) 4872 { 4873 struct its_node *its; 4874 int ret; 4875 4876 raw_spin_lock(&its_lock); 4877 list_for_each_entry(its, &its_nodes, entry) { 4878 void __iomem *base; 4879 int i; 4880 4881 base = its->base; 4882 4883 /* 4884 * Make sure that the ITS is disabled. If it fails to quiesce, 4885 * don't restore it since writing to CBASER or BASER<n> 4886 * registers is undefined according to the GIC v3 ITS 4887 * Specification. 4888 * 4889 * Firmware resuming with the ITS enabled is terminally broken. 4890 */ 4891 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4892 ret = its_force_quiescent(base); 4893 if (ret) { 4894 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4895 &its->phys_base, ret); 4896 continue; 4897 } 4898 4899 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4900 4901 /* 4902 * Writing CBASER resets CREADR to 0, so make CWRITER and 4903 * cmd_write line up with it. 4904 */ 4905 its->cmd_write = its->cmd_base; 4906 gits_write_cwriter(0, base + GITS_CWRITER); 4907 4908 /* Restore GITS_BASER from the value cache. */ 4909 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4910 struct its_baser *baser = &its->tables[i]; 4911 4912 if (!(baser->val & GITS_BASER_VALID)) 4913 continue; 4914 4915 its_write_baser(its, baser, baser->val); 4916 } 4917 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4918 4919 /* 4920 * Reinit the collection if it's stored in the ITS. This is 4921 * indicated by the col_id being less than the HCC field. 4922 * CID < HCC as specified in the GIC v3 Documentation. 4923 */ 4924 if (its->collections[smp_processor_id()].col_id < 4925 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4926 its_cpu_init_collection(its); 4927 } 4928 raw_spin_unlock(&its_lock); 4929 } 4930 4931 static struct syscore_ops its_syscore_ops = { 4932 .suspend = its_save_disable, 4933 .resume = its_restore_enable, 4934 }; 4935 4936 static void __init __iomem *its_map_one(struct resource *res, int *err) 4937 { 4938 void __iomem *its_base; 4939 u32 val; 4940 4941 its_base = ioremap(res->start, SZ_64K); 4942 if (!its_base) { 4943 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4944 *err = -ENOMEM; 4945 return NULL; 4946 } 4947 4948 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4949 if (val != 0x30 && val != 0x40) { 4950 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4951 *err = -ENODEV; 4952 goto out_unmap; 4953 } 4954 4955 *err = its_force_quiescent(its_base); 4956 if (*err) { 4957 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4958 goto out_unmap; 4959 } 4960 4961 return its_base; 4962 4963 out_unmap: 4964 iounmap(its_base); 4965 return NULL; 4966 } 4967 4968 static int its_init_domain(struct its_node *its) 4969 { 4970 struct irq_domain *inner_domain; 4971 struct msi_domain_info *info; 4972 4973 info = kzalloc(sizeof(*info), GFP_KERNEL); 4974 if (!info) 4975 return -ENOMEM; 4976 4977 info->ops = &its_msi_domain_ops; 4978 info->data = its; 4979 4980 inner_domain = irq_domain_create_hierarchy(its_parent, 4981 its->msi_domain_flags, 0, 4982 its->fwnode_handle, &its_domain_ops, 4983 info); 4984 if (!inner_domain) { 4985 kfree(info); 4986 return -ENOMEM; 4987 } 4988 4989 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4990 4991 return 0; 4992 } 4993 4994 static int its_init_vpe_domain(void) 4995 { 4996 struct its_node *its; 4997 u32 devid; 4998 int entries; 4999 5000 if (gic_rdists->has_direct_lpi) { 5001 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5002 return 0; 5003 } 5004 5005 /* Any ITS will do, even if not v4 */ 5006 its = list_first_entry(&its_nodes, struct its_node, entry); 5007 5008 entries = roundup_pow_of_two(nr_cpu_ids); 5009 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5010 GFP_KERNEL); 5011 if (!vpe_proxy.vpes) 5012 return -ENOMEM; 5013 5014 /* Use the last possible DevID */ 5015 devid = GENMASK(device_ids(its) - 1, 0); 5016 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5017 if (!vpe_proxy.dev) { 5018 kfree(vpe_proxy.vpes); 5019 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5020 return -ENOMEM; 5021 } 5022 5023 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5024 5025 raw_spin_lock_init(&vpe_proxy.lock); 5026 vpe_proxy.next_victim = 0; 5027 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5028 devid, vpe_proxy.dev->nr_ites); 5029 5030 return 0; 5031 } 5032 5033 static int __init its_compute_its_list_map(struct its_node *its) 5034 { 5035 int its_number; 5036 u32 ctlr; 5037 5038 /* 5039 * This is assumed to be done early enough that we're 5040 * guaranteed to be single-threaded, hence no 5041 * locking. Should this change, we should address 5042 * this. 5043 */ 5044 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5045 if (its_number >= GICv4_ITS_LIST_MAX) { 5046 pr_err("ITS@%pa: No ITSList entry available!\n", 5047 &its->phys_base); 5048 return -EINVAL; 5049 } 5050 5051 ctlr = readl_relaxed(its->base + GITS_CTLR); 5052 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5053 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5054 writel_relaxed(ctlr, its->base + GITS_CTLR); 5055 ctlr = readl_relaxed(its->base + GITS_CTLR); 5056 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5057 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5058 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5059 } 5060 5061 if (test_and_set_bit(its_number, &its_list_map)) { 5062 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5063 &its->phys_base, its_number); 5064 return -EINVAL; 5065 } 5066 5067 return its_number; 5068 } 5069 5070 static int __init its_probe_one(struct its_node *its) 5071 { 5072 u64 baser, tmp; 5073 struct page *page; 5074 u32 ctlr; 5075 int err; 5076 5077 if (is_v4(its)) { 5078 if (!(its->typer & GITS_TYPER_VMOVP)) { 5079 err = its_compute_its_list_map(its); 5080 if (err < 0) 5081 goto out; 5082 5083 its->list_nr = err; 5084 5085 pr_info("ITS@%pa: Using ITS number %d\n", 5086 &its->phys_base, err); 5087 } else { 5088 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5089 } 5090 5091 if (is_v4_1(its)) { 5092 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5093 5094 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5095 if (!its->sgir_base) { 5096 err = -ENOMEM; 5097 goto out; 5098 } 5099 5100 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5101 5102 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5103 &its->phys_base, its->mpidr, svpet); 5104 } 5105 } 5106 5107 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5108 get_order(ITS_CMD_QUEUE_SZ)); 5109 if (!page) { 5110 err = -ENOMEM; 5111 goto out_unmap_sgir; 5112 } 5113 its->cmd_base = (void *)page_address(page); 5114 its->cmd_write = its->cmd_base; 5115 5116 err = its_alloc_tables(its); 5117 if (err) 5118 goto out_free_cmd; 5119 5120 err = its_alloc_collections(its); 5121 if (err) 5122 goto out_free_tables; 5123 5124 baser = (virt_to_phys(its->cmd_base) | 5125 GITS_CBASER_RaWaWb | 5126 GITS_CBASER_InnerShareable | 5127 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5128 GITS_CBASER_VALID); 5129 5130 gits_write_cbaser(baser, its->base + GITS_CBASER); 5131 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5132 5133 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5134 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5135 5136 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5137 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5138 /* 5139 * The HW reports non-shareable, we must 5140 * remove the cacheability attributes as 5141 * well. 5142 */ 5143 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5144 GITS_CBASER_CACHEABILITY_MASK); 5145 baser |= GITS_CBASER_nC; 5146 gits_write_cbaser(baser, its->base + GITS_CBASER); 5147 } 5148 pr_info("ITS: using cache flushing for cmd queue\n"); 5149 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5150 } 5151 5152 gits_write_cwriter(0, its->base + GITS_CWRITER); 5153 ctlr = readl_relaxed(its->base + GITS_CTLR); 5154 ctlr |= GITS_CTLR_ENABLE; 5155 if (is_v4(its)) 5156 ctlr |= GITS_CTLR_ImDe; 5157 writel_relaxed(ctlr, its->base + GITS_CTLR); 5158 5159 err = its_init_domain(its); 5160 if (err) 5161 goto out_free_tables; 5162 5163 raw_spin_lock(&its_lock); 5164 list_add(&its->entry, &its_nodes); 5165 raw_spin_unlock(&its_lock); 5166 5167 return 0; 5168 5169 out_free_tables: 5170 its_free_tables(its); 5171 out_free_cmd: 5172 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5173 out_unmap_sgir: 5174 if (its->sgir_base) 5175 iounmap(its->sgir_base); 5176 out: 5177 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5178 return err; 5179 } 5180 5181 static bool gic_rdists_supports_plpis(void) 5182 { 5183 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5184 } 5185 5186 static int redist_disable_lpis(void) 5187 { 5188 void __iomem *rbase = gic_data_rdist_rd_base(); 5189 u64 timeout = USEC_PER_SEC; 5190 u64 val; 5191 5192 if (!gic_rdists_supports_plpis()) { 5193 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5194 return -ENXIO; 5195 } 5196 5197 val = readl_relaxed(rbase + GICR_CTLR); 5198 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5199 return 0; 5200 5201 /* 5202 * If coming via a CPU hotplug event, we don't need to disable 5203 * LPIs before trying to re-enable them. They are already 5204 * configured and all is well in the world. 5205 * 5206 * If running with preallocated tables, there is nothing to do. 5207 */ 5208 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5209 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5210 return 0; 5211 5212 /* 5213 * From that point on, we only try to do some damage control. 5214 */ 5215 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5216 smp_processor_id()); 5217 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5218 5219 /* Disable LPIs */ 5220 val &= ~GICR_CTLR_ENABLE_LPIS; 5221 writel_relaxed(val, rbase + GICR_CTLR); 5222 5223 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5224 dsb(sy); 5225 5226 /* 5227 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5228 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5229 * Error out if we time out waiting for RWP to clear. 5230 */ 5231 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5232 if (!timeout) { 5233 pr_err("CPU%d: Timeout while disabling LPIs\n", 5234 smp_processor_id()); 5235 return -ETIMEDOUT; 5236 } 5237 udelay(1); 5238 timeout--; 5239 } 5240 5241 /* 5242 * After it has been written to 1, it is IMPLEMENTATION 5243 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5244 * cleared to 0. Error out if clearing the bit failed. 5245 */ 5246 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5247 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5248 return -EBUSY; 5249 } 5250 5251 return 0; 5252 } 5253 5254 int its_cpu_init(void) 5255 { 5256 if (!list_empty(&its_nodes)) { 5257 int ret; 5258 5259 ret = redist_disable_lpis(); 5260 if (ret) 5261 return ret; 5262 5263 its_cpu_init_lpis(); 5264 its_cpu_init_collections(); 5265 } 5266 5267 return 0; 5268 } 5269 5270 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5271 { 5272 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5273 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5274 } 5275 5276 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5277 rdist_memreserve_cpuhp_cleanup_workfn); 5278 5279 static int its_cpu_memreserve_lpi(unsigned int cpu) 5280 { 5281 struct page *pend_page; 5282 int ret = 0; 5283 5284 /* This gets to run exactly once per CPU */ 5285 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5286 return 0; 5287 5288 pend_page = gic_data_rdist()->pend_page; 5289 if (WARN_ON(!pend_page)) { 5290 ret = -ENOMEM; 5291 goto out; 5292 } 5293 /* 5294 * If the pending table was pre-programmed, free the memory we 5295 * preemptively allocated. Otherwise, reserve that memory for 5296 * later kexecs. 5297 */ 5298 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5299 its_free_pending_table(pend_page); 5300 gic_data_rdist()->pend_page = NULL; 5301 } else { 5302 phys_addr_t paddr = page_to_phys(pend_page); 5303 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5304 } 5305 5306 out: 5307 /* Last CPU being brought up gets to issue the cleanup */ 5308 if (!IS_ENABLED(CONFIG_SMP) || 5309 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5310 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5311 5312 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5313 return ret; 5314 } 5315 5316 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5317 static int __init its_reset_one(struct resource *res) 5318 { 5319 void __iomem *its_base; 5320 int err, i; 5321 5322 its_base = its_map_one(res, &err); 5323 if (!its_base) 5324 return err; 5325 5326 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5327 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5328 5329 iounmap(its_base); 5330 return 0; 5331 } 5332 5333 static const struct of_device_id its_device_id[] = { 5334 { .compatible = "arm,gic-v3-its", }, 5335 {}, 5336 }; 5337 5338 static struct its_node __init *its_node_init(struct resource *res, 5339 struct fwnode_handle *handle, int numa_node) 5340 { 5341 void __iomem *its_base; 5342 struct its_node *its; 5343 int err; 5344 5345 its_base = its_map_one(res, &err); 5346 if (!its_base) 5347 return NULL; 5348 5349 pr_info("ITS %pR\n", res); 5350 5351 its = kzalloc(sizeof(*its), GFP_KERNEL); 5352 if (!its) 5353 goto out_unmap; 5354 5355 raw_spin_lock_init(&its->lock); 5356 mutex_init(&its->dev_alloc_lock); 5357 INIT_LIST_HEAD(&its->entry); 5358 INIT_LIST_HEAD(&its->its_device_list); 5359 5360 its->typer = gic_read_typer(its_base + GITS_TYPER); 5361 its->base = its_base; 5362 its->phys_base = res->start; 5363 its->get_msi_base = its_irq_get_msi_base; 5364 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5365 5366 its->numa_node = numa_node; 5367 its->fwnode_handle = handle; 5368 5369 return its; 5370 5371 out_unmap: 5372 iounmap(its_base); 5373 return NULL; 5374 } 5375 5376 static void its_node_destroy(struct its_node *its) 5377 { 5378 iounmap(its->base); 5379 kfree(its); 5380 } 5381 5382 static int __init its_of_probe(struct device_node *node) 5383 { 5384 struct device_node *np; 5385 struct resource res; 5386 int err; 5387 5388 /* 5389 * Make sure *all* the ITS are reset before we probe any, as 5390 * they may be sharing memory. If any of the ITS fails to 5391 * reset, don't even try to go any further, as this could 5392 * result in something even worse. 5393 */ 5394 for (np = of_find_matching_node(node, its_device_id); np; 5395 np = of_find_matching_node(np, its_device_id)) { 5396 if (!of_device_is_available(np) || 5397 !of_property_read_bool(np, "msi-controller") || 5398 of_address_to_resource(np, 0, &res)) 5399 continue; 5400 5401 err = its_reset_one(&res); 5402 if (err) 5403 return err; 5404 } 5405 5406 for (np = of_find_matching_node(node, its_device_id); np; 5407 np = of_find_matching_node(np, its_device_id)) { 5408 struct its_node *its; 5409 5410 if (!of_device_is_available(np)) 5411 continue; 5412 if (!of_property_read_bool(np, "msi-controller")) { 5413 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5414 np); 5415 continue; 5416 } 5417 5418 if (of_address_to_resource(np, 0, &res)) { 5419 pr_warn("%pOF: no regs?\n", np); 5420 continue; 5421 } 5422 5423 5424 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5425 if (!its) 5426 return -ENOMEM; 5427 5428 its_enable_quirks(its); 5429 err = its_probe_one(its); 5430 if (err) { 5431 its_node_destroy(its); 5432 return err; 5433 } 5434 } 5435 return 0; 5436 } 5437 5438 #ifdef CONFIG_ACPI 5439 5440 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5441 5442 #ifdef CONFIG_ACPI_NUMA 5443 struct its_srat_map { 5444 /* numa node id */ 5445 u32 numa_node; 5446 /* GIC ITS ID */ 5447 u32 its_id; 5448 }; 5449 5450 static struct its_srat_map *its_srat_maps __initdata; 5451 static int its_in_srat __initdata; 5452 5453 static int __init acpi_get_its_numa_node(u32 its_id) 5454 { 5455 int i; 5456 5457 for (i = 0; i < its_in_srat; i++) { 5458 if (its_id == its_srat_maps[i].its_id) 5459 return its_srat_maps[i].numa_node; 5460 } 5461 return NUMA_NO_NODE; 5462 } 5463 5464 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5465 const unsigned long end) 5466 { 5467 return 0; 5468 } 5469 5470 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5471 const unsigned long end) 5472 { 5473 int node; 5474 struct acpi_srat_gic_its_affinity *its_affinity; 5475 5476 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5477 if (!its_affinity) 5478 return -EINVAL; 5479 5480 if (its_affinity->header.length < sizeof(*its_affinity)) { 5481 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5482 its_affinity->header.length); 5483 return -EINVAL; 5484 } 5485 5486 /* 5487 * Note that in theory a new proximity node could be created by this 5488 * entry as it is an SRAT resource allocation structure. 5489 * We do not currently support doing so. 5490 */ 5491 node = pxm_to_node(its_affinity->proximity_domain); 5492 5493 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5494 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5495 return 0; 5496 } 5497 5498 its_srat_maps[its_in_srat].numa_node = node; 5499 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5500 its_in_srat++; 5501 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5502 its_affinity->proximity_domain, its_affinity->its_id, node); 5503 5504 return 0; 5505 } 5506 5507 static void __init acpi_table_parse_srat_its(void) 5508 { 5509 int count; 5510 5511 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5512 sizeof(struct acpi_table_srat), 5513 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5514 gic_acpi_match_srat_its, 0); 5515 if (count <= 0) 5516 return; 5517 5518 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5519 GFP_KERNEL); 5520 if (!its_srat_maps) 5521 return; 5522 5523 acpi_table_parse_entries(ACPI_SIG_SRAT, 5524 sizeof(struct acpi_table_srat), 5525 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5526 gic_acpi_parse_srat_its, 0); 5527 } 5528 5529 /* free the its_srat_maps after ITS probing */ 5530 static void __init acpi_its_srat_maps_free(void) 5531 { 5532 kfree(its_srat_maps); 5533 } 5534 #else 5535 static void __init acpi_table_parse_srat_its(void) { } 5536 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5537 static void __init acpi_its_srat_maps_free(void) { } 5538 #endif 5539 5540 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5541 const unsigned long end) 5542 { 5543 struct acpi_madt_generic_translator *its_entry; 5544 struct fwnode_handle *dom_handle; 5545 struct its_node *its; 5546 struct resource res; 5547 int err; 5548 5549 its_entry = (struct acpi_madt_generic_translator *)header; 5550 memset(&res, 0, sizeof(res)); 5551 res.start = its_entry->base_address; 5552 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5553 res.flags = IORESOURCE_MEM; 5554 5555 dom_handle = irq_domain_alloc_fwnode(&res.start); 5556 if (!dom_handle) { 5557 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5558 &res.start); 5559 return -ENOMEM; 5560 } 5561 5562 err = iort_register_domain_token(its_entry->translation_id, res.start, 5563 dom_handle); 5564 if (err) { 5565 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5566 &res.start, its_entry->translation_id); 5567 goto dom_err; 5568 } 5569 5570 its = its_node_init(&res, dom_handle, 5571 acpi_get_its_numa_node(its_entry->translation_id)); 5572 if (!its) { 5573 err = -ENOMEM; 5574 goto node_err; 5575 } 5576 5577 err = its_probe_one(its); 5578 if (!err) 5579 return 0; 5580 5581 node_err: 5582 iort_deregister_domain_token(its_entry->translation_id); 5583 dom_err: 5584 irq_domain_free_fwnode(dom_handle); 5585 return err; 5586 } 5587 5588 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5589 const unsigned long end) 5590 { 5591 struct acpi_madt_generic_translator *its_entry; 5592 struct resource res; 5593 5594 its_entry = (struct acpi_madt_generic_translator *)header; 5595 res = (struct resource) { 5596 .start = its_entry->base_address, 5597 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5598 .flags = IORESOURCE_MEM, 5599 }; 5600 5601 return its_reset_one(&res); 5602 } 5603 5604 static void __init its_acpi_probe(void) 5605 { 5606 acpi_table_parse_srat_its(); 5607 /* 5608 * Make sure *all* the ITS are reset before we probe any, as 5609 * they may be sharing memory. If any of the ITS fails to 5610 * reset, don't even try to go any further, as this could 5611 * result in something even worse. 5612 */ 5613 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5614 its_acpi_reset, 0) > 0) 5615 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5616 gic_acpi_parse_madt_its, 0); 5617 acpi_its_srat_maps_free(); 5618 } 5619 #else 5620 static void __init its_acpi_probe(void) { } 5621 #endif 5622 5623 int __init its_lpi_memreserve_init(void) 5624 { 5625 int state; 5626 5627 if (!efi_enabled(EFI_CONFIG_TABLES)) 5628 return 0; 5629 5630 if (list_empty(&its_nodes)) 5631 return 0; 5632 5633 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5634 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5635 "irqchip/arm/gicv3/memreserve:online", 5636 its_cpu_memreserve_lpi, 5637 NULL); 5638 if (state < 0) 5639 return state; 5640 5641 gic_rdists->cpuhp_memreserve_state = state; 5642 5643 return 0; 5644 } 5645 5646 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5647 struct irq_domain *parent_domain) 5648 { 5649 struct device_node *of_node; 5650 struct its_node *its; 5651 bool has_v4 = false; 5652 bool has_v4_1 = false; 5653 int err; 5654 5655 gic_rdists = rdists; 5656 5657 its_parent = parent_domain; 5658 of_node = to_of_node(handle); 5659 if (of_node) 5660 its_of_probe(of_node); 5661 else 5662 its_acpi_probe(); 5663 5664 if (list_empty(&its_nodes)) { 5665 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5666 return -ENXIO; 5667 } 5668 5669 err = allocate_lpi_tables(); 5670 if (err) 5671 return err; 5672 5673 list_for_each_entry(its, &its_nodes, entry) { 5674 has_v4 |= is_v4(its); 5675 has_v4_1 |= is_v4_1(its); 5676 } 5677 5678 /* Don't bother with inconsistent systems */ 5679 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5680 rdists->has_rvpeid = false; 5681 5682 if (has_v4 & rdists->has_vlpis) { 5683 const struct irq_domain_ops *sgi_ops; 5684 5685 if (has_v4_1) 5686 sgi_ops = &its_sgi_domain_ops; 5687 else 5688 sgi_ops = NULL; 5689 5690 if (its_init_vpe_domain() || 5691 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5692 rdists->has_vlpis = false; 5693 pr_err("ITS: Disabling GICv4 support\n"); 5694 } 5695 } 5696 5697 register_syscore_ops(&its_syscore_ops); 5698 5699 return 0; 5700 } 5701