1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/genalloc.h> 16 #include <linux/interrupt.h> 17 #include <linux/iommu.h> 18 #include <linux/iopoll.h> 19 #include <linux/irqdomain.h> 20 #include <linux/list.h> 21 #include <linux/log2.h> 22 #include <linux/mem_encrypt.h> 23 #include <linux/memblock.h> 24 #include <linux/mm.h> 25 #include <linux/msi.h> 26 #include <linux/of.h> 27 #include <linux/of_address.h> 28 #include <linux/of_irq.h> 29 #include <linux/of_pci.h> 30 #include <linux/of_platform.h> 31 #include <linux/percpu.h> 32 #include <linux/set_memory.h> 33 #include <linux/slab.h> 34 #include <linux/syscore_ops.h> 35 36 #include <linux/irqchip.h> 37 #include <linux/irqchip/arm-gic-v3.h> 38 #include <linux/irqchip/arm-gic-v4.h> 39 40 #include <asm/cputype.h> 41 #include <asm/exception.h> 42 43 #include "irq-gic-common.h" 44 #include "irq-gic-its-msi-parent.h" 45 #include <linux/irqchip/irq-msi-lib.h> 46 47 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 48 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 49 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 50 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 51 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801 (1ULL << 4) 52 53 #define RD_LOCAL_LPI_ENABLED BIT(0) 54 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 55 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 56 57 static u32 lpi_id_bits; 58 59 /* 60 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 61 * deal with (one configuration byte per interrupt). PENDBASE has to 62 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 63 */ 64 #define LPI_NRBITS lpi_id_bits 65 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 66 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 67 68 static u8 __ro_after_init lpi_prop_prio; 69 static struct its_node *find_4_1_its(void); 70 71 /* 72 * Collection structure - just an ID, and a redistributor address to 73 * ping. We use one per CPU as a bag of interrupts assigned to this 74 * CPU. 75 */ 76 struct its_collection { 77 u64 target_address; 78 u16 col_id; 79 }; 80 81 /* 82 * The ITS_BASER structure - contains memory information, cached 83 * value of BASER register configuration and ITS page size. 84 */ 85 struct its_baser { 86 void *base; 87 u64 val; 88 u32 order; 89 u32 psz; 90 }; 91 92 struct its_device; 93 94 /* 95 * The ITS structure - contains most of the infrastructure, with the 96 * top-level MSI domain, the command queue, the collections, and the 97 * list of devices writing to it. 98 * 99 * dev_alloc_lock has to be taken for device allocations, while the 100 * spinlock must be taken to parse data structures such as the device 101 * list. 102 */ 103 struct its_node { 104 raw_spinlock_t lock; 105 struct mutex dev_alloc_lock; 106 struct list_head entry; 107 void __iomem *base; 108 void __iomem *sgir_base; 109 phys_addr_t phys_base; 110 struct its_cmd_block *cmd_base; 111 struct its_cmd_block *cmd_write; 112 struct its_baser tables[GITS_BASER_NR_REGS]; 113 struct its_collection *collections; 114 struct fwnode_handle *fwnode_handle; 115 u64 (*get_msi_base)(struct its_device *its_dev); 116 u64 typer; 117 u64 cbaser_save; 118 u32 ctlr_save; 119 u32 mpidr; 120 struct list_head its_device_list; 121 u64 flags; 122 unsigned long list_nr; 123 int numa_node; 124 unsigned int msi_domain_flags; 125 u32 pre_its_base; /* for Socionext Synquacer */ 126 int vlpi_redist_offset; 127 }; 128 129 static DEFINE_PER_CPU(struct its_node *, local_4_1_its); 130 131 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 132 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 133 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 134 135 #define ITS_ITT_ALIGN SZ_256 136 137 /* The maximum number of VPEID bits supported by VLPI commands */ 138 #define ITS_MAX_VPEID_BITS \ 139 ({ \ 140 int nvpeid = 16; \ 141 if (gic_rdists->has_rvpeid && \ 142 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 143 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 144 GICD_TYPER2_VID); \ 145 \ 146 nvpeid; \ 147 }) 148 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 149 150 /* Convert page order to size in bytes */ 151 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 152 153 struct event_lpi_map { 154 unsigned long *lpi_map; 155 u16 *col_map; 156 irq_hw_number_t lpi_base; 157 int nr_lpis; 158 raw_spinlock_t vlpi_lock; 159 struct its_vm *vm; 160 struct its_vlpi_map *vlpi_maps; 161 int nr_vlpis; 162 }; 163 164 /* 165 * The ITS view of a device - belongs to an ITS, owns an interrupt 166 * translation table, and a list of interrupts. If it some of its 167 * LPIs are injected into a guest (GICv4), the event_map.vm field 168 * indicates which one. 169 */ 170 struct its_device { 171 struct list_head entry; 172 struct its_node *its; 173 struct event_lpi_map event_map; 174 void *itt; 175 u32 itt_sz; 176 u32 nr_ites; 177 u32 device_id; 178 bool shared; 179 }; 180 181 static struct { 182 raw_spinlock_t lock; 183 struct its_device *dev; 184 struct its_vpe **vpes; 185 int next_victim; 186 } vpe_proxy; 187 188 struct cpu_lpi_count { 189 atomic_t managed; 190 atomic_t unmanaged; 191 }; 192 193 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 194 195 static LIST_HEAD(its_nodes); 196 static DEFINE_RAW_SPINLOCK(its_lock); 197 static struct rdists *gic_rdists; 198 static struct irq_domain *its_parent; 199 200 static unsigned long its_list_map; 201 static u16 vmovp_seq_num; 202 static DEFINE_RAW_SPINLOCK(vmovp_lock); 203 204 static DEFINE_IDA(its_vpeid_ida); 205 206 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 207 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 208 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 209 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 210 211 static gfp_t gfp_flags_quirk; 212 213 static struct page *its_alloc_pages_node(int node, gfp_t gfp, 214 unsigned int order) 215 { 216 struct page *page; 217 int ret = 0; 218 219 page = alloc_pages_node(node, gfp | gfp_flags_quirk, order); 220 221 if (!page) 222 return NULL; 223 224 ret = set_memory_decrypted((unsigned long)page_address(page), 225 1 << order); 226 /* 227 * If set_memory_decrypted() fails then we don't know what state the 228 * page is in, so we can't free it. Instead we leak it. 229 * set_memory_decrypted() will already have WARNed. 230 */ 231 if (ret) 232 return NULL; 233 234 return page; 235 } 236 237 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order) 238 { 239 return its_alloc_pages_node(NUMA_NO_NODE, gfp, order); 240 } 241 242 static void its_free_pages(void *addr, unsigned int order) 243 { 244 /* 245 * If the memory cannot be encrypted again then we must leak the pages. 246 * set_memory_encrypted() will already have WARNed. 247 */ 248 if (set_memory_encrypted((unsigned long)addr, 1 << order)) 249 return; 250 free_pages((unsigned long)addr, order); 251 } 252 253 static struct gen_pool *itt_pool; 254 255 static void *itt_alloc_pool(int node, int size) 256 { 257 unsigned long addr; 258 struct page *page; 259 260 if (size >= PAGE_SIZE) { 261 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size)); 262 263 return page ? page_address(page) : NULL; 264 } 265 266 do { 267 addr = gen_pool_alloc(itt_pool, size); 268 if (addr) 269 break; 270 271 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 272 if (!page) 273 break; 274 275 gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node); 276 } while (!addr); 277 278 return (void *)addr; 279 } 280 281 static void itt_free_pool(void *addr, int size) 282 { 283 if (!addr) 284 return; 285 286 if (size >= PAGE_SIZE) { 287 its_free_pages(addr, get_order(size)); 288 return; 289 } 290 291 gen_pool_free(itt_pool, (unsigned long)addr, size); 292 } 293 294 /* 295 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 296 * always have vSGIs mapped. 297 */ 298 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 299 { 300 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 301 } 302 303 static bool rdists_support_shareable(void) 304 { 305 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 306 } 307 308 static u16 get_its_list(struct its_vm *vm) 309 { 310 struct its_node *its; 311 unsigned long its_list = 0; 312 313 list_for_each_entry(its, &its_nodes, entry) { 314 if (!is_v4(its)) 315 continue; 316 317 if (require_its_list_vmovp(vm, its)) 318 __set_bit(its->list_nr, &its_list); 319 } 320 321 return (u16)its_list; 322 } 323 324 static inline u32 its_get_event_id(struct irq_data *d) 325 { 326 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 327 return d->hwirq - its_dev->event_map.lpi_base; 328 } 329 330 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 331 u32 event) 332 { 333 struct its_node *its = its_dev->its; 334 335 return its->collections + its_dev->event_map.col_map[event]; 336 } 337 338 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 339 u32 event) 340 { 341 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 342 return NULL; 343 344 return &its_dev->event_map.vlpi_maps[event]; 345 } 346 347 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 348 { 349 if (irqd_is_forwarded_to_vcpu(d)) { 350 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 351 u32 event = its_get_event_id(d); 352 353 return dev_event_to_vlpi_map(its_dev, event); 354 } 355 356 return NULL; 357 } 358 359 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 360 { 361 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 362 return vpe->col_idx; 363 } 364 365 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 366 { 367 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 368 } 369 370 static struct irq_chip its_vpe_irq_chip; 371 372 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 373 { 374 struct its_vpe *vpe = NULL; 375 int cpu; 376 377 if (d->chip == &its_vpe_irq_chip) { 378 vpe = irq_data_get_irq_chip_data(d); 379 } else { 380 struct its_vlpi_map *map = get_vlpi_map(d); 381 if (map) 382 vpe = map->vpe; 383 } 384 385 if (vpe) { 386 cpu = vpe_to_cpuid_lock(vpe, flags); 387 } else { 388 /* Physical LPIs are already locked via the irq_desc lock */ 389 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 390 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 391 /* Keep GCC quiet... */ 392 *flags = 0; 393 } 394 395 return cpu; 396 } 397 398 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 399 { 400 struct its_vpe *vpe = NULL; 401 402 if (d->chip == &its_vpe_irq_chip) { 403 vpe = irq_data_get_irq_chip_data(d); 404 } else { 405 struct its_vlpi_map *map = get_vlpi_map(d); 406 if (map) 407 vpe = map->vpe; 408 } 409 410 if (vpe) 411 vpe_to_cpuid_unlock(vpe, flags); 412 } 413 414 static struct its_collection *valid_col(struct its_collection *col) 415 { 416 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 417 return NULL; 418 419 return col; 420 } 421 422 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 423 { 424 if (valid_col(its->collections + vpe->col_idx)) 425 return vpe; 426 427 return NULL; 428 } 429 430 /* 431 * ITS command descriptors - parameters to be encoded in a command 432 * block. 433 */ 434 struct its_cmd_desc { 435 union { 436 struct { 437 struct its_device *dev; 438 u32 event_id; 439 } its_inv_cmd; 440 441 struct { 442 struct its_device *dev; 443 u32 event_id; 444 } its_clear_cmd; 445 446 struct { 447 struct its_device *dev; 448 u32 event_id; 449 } its_int_cmd; 450 451 struct { 452 struct its_device *dev; 453 int valid; 454 } its_mapd_cmd; 455 456 struct { 457 struct its_collection *col; 458 int valid; 459 } its_mapc_cmd; 460 461 struct { 462 struct its_device *dev; 463 u32 phys_id; 464 u32 event_id; 465 } its_mapti_cmd; 466 467 struct { 468 struct its_device *dev; 469 struct its_collection *col; 470 u32 event_id; 471 } its_movi_cmd; 472 473 struct { 474 struct its_device *dev; 475 u32 event_id; 476 } its_discard_cmd; 477 478 struct { 479 struct its_collection *col; 480 } its_invall_cmd; 481 482 struct { 483 struct its_vpe *vpe; 484 } its_vinvall_cmd; 485 486 struct { 487 struct its_vpe *vpe; 488 struct its_collection *col; 489 bool valid; 490 } its_vmapp_cmd; 491 492 struct { 493 struct its_vpe *vpe; 494 struct its_device *dev; 495 u32 virt_id; 496 u32 event_id; 497 bool db_enabled; 498 } its_vmapti_cmd; 499 500 struct { 501 struct its_vpe *vpe; 502 struct its_device *dev; 503 u32 event_id; 504 bool db_enabled; 505 } its_vmovi_cmd; 506 507 struct { 508 struct its_vpe *vpe; 509 struct its_collection *col; 510 u16 seq_num; 511 u16 its_list; 512 } its_vmovp_cmd; 513 514 struct { 515 struct its_vpe *vpe; 516 } its_invdb_cmd; 517 518 struct { 519 struct its_vpe *vpe; 520 u8 sgi; 521 u8 priority; 522 bool enable; 523 bool group; 524 bool clear; 525 } its_vsgi_cmd; 526 }; 527 }; 528 529 /* 530 * The ITS command block, which is what the ITS actually parses. 531 */ 532 struct its_cmd_block { 533 union { 534 u64 raw_cmd[4]; 535 __le64 raw_cmd_le[4]; 536 }; 537 }; 538 539 #define ITS_CMD_QUEUE_SZ SZ_64K 540 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 541 542 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 543 struct its_cmd_block *, 544 struct its_cmd_desc *); 545 546 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 547 struct its_cmd_block *, 548 struct its_cmd_desc *); 549 550 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 551 { 552 u64 mask = GENMASK_ULL(h, l); 553 *raw_cmd &= ~mask; 554 *raw_cmd |= (val << l) & mask; 555 } 556 557 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 558 { 559 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 560 } 561 562 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 563 { 564 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 565 } 566 567 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 568 { 569 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 570 } 571 572 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 573 { 574 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 575 } 576 577 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 578 { 579 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 580 } 581 582 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 583 { 584 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 585 } 586 587 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 588 { 589 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 590 } 591 592 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 593 { 594 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 595 } 596 597 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 598 { 599 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 600 } 601 602 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 603 { 604 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 605 } 606 607 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 608 { 609 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 610 } 611 612 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 613 { 614 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 615 } 616 617 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 618 { 619 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 620 } 621 622 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 623 { 624 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 625 } 626 627 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 628 { 629 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 630 } 631 632 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 633 { 634 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 635 } 636 637 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 638 { 639 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 640 } 641 642 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 643 { 644 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 645 } 646 647 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 648 { 649 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 650 } 651 652 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 653 { 654 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 655 } 656 657 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 658 u32 vpe_db_lpi) 659 { 660 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 661 } 662 663 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 664 u32 vpe_db_lpi) 665 { 666 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 667 } 668 669 static void its_encode_db(struct its_cmd_block *cmd, bool db) 670 { 671 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 672 } 673 674 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 675 { 676 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 677 } 678 679 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 680 { 681 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 682 } 683 684 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 685 { 686 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 687 } 688 689 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 690 { 691 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 692 } 693 694 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 695 { 696 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 697 } 698 699 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 700 { 701 /* Let's fixup BE commands */ 702 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 703 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 704 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 705 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 706 } 707 708 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 709 struct its_cmd_block *cmd, 710 struct its_cmd_desc *desc) 711 { 712 unsigned long itt_addr; 713 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 714 715 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 716 717 its_encode_cmd(cmd, GITS_CMD_MAPD); 718 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 719 its_encode_size(cmd, size - 1); 720 its_encode_itt(cmd, itt_addr); 721 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 722 723 its_fixup_cmd(cmd); 724 725 return NULL; 726 } 727 728 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 729 struct its_cmd_block *cmd, 730 struct its_cmd_desc *desc) 731 { 732 its_encode_cmd(cmd, GITS_CMD_MAPC); 733 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 734 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 735 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 736 737 its_fixup_cmd(cmd); 738 739 return desc->its_mapc_cmd.col; 740 } 741 742 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 743 struct its_cmd_block *cmd, 744 struct its_cmd_desc *desc) 745 { 746 struct its_collection *col; 747 748 col = dev_event_to_col(desc->its_mapti_cmd.dev, 749 desc->its_mapti_cmd.event_id); 750 751 its_encode_cmd(cmd, GITS_CMD_MAPTI); 752 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 753 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 754 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 755 its_encode_collection(cmd, col->col_id); 756 757 its_fixup_cmd(cmd); 758 759 return valid_col(col); 760 } 761 762 static struct its_collection *its_build_movi_cmd(struct its_node *its, 763 struct its_cmd_block *cmd, 764 struct its_cmd_desc *desc) 765 { 766 struct its_collection *col; 767 768 col = dev_event_to_col(desc->its_movi_cmd.dev, 769 desc->its_movi_cmd.event_id); 770 771 its_encode_cmd(cmd, GITS_CMD_MOVI); 772 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 773 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 774 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 775 776 its_fixup_cmd(cmd); 777 778 return valid_col(col); 779 } 780 781 static struct its_collection *its_build_discard_cmd(struct its_node *its, 782 struct its_cmd_block *cmd, 783 struct its_cmd_desc *desc) 784 { 785 struct its_collection *col; 786 787 col = dev_event_to_col(desc->its_discard_cmd.dev, 788 desc->its_discard_cmd.event_id); 789 790 its_encode_cmd(cmd, GITS_CMD_DISCARD); 791 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 792 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 793 794 its_fixup_cmd(cmd); 795 796 return valid_col(col); 797 } 798 799 static struct its_collection *its_build_inv_cmd(struct its_node *its, 800 struct its_cmd_block *cmd, 801 struct its_cmd_desc *desc) 802 { 803 struct its_collection *col; 804 805 col = dev_event_to_col(desc->its_inv_cmd.dev, 806 desc->its_inv_cmd.event_id); 807 808 its_encode_cmd(cmd, GITS_CMD_INV); 809 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 810 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 811 812 its_fixup_cmd(cmd); 813 814 return valid_col(col); 815 } 816 817 static struct its_collection *its_build_int_cmd(struct its_node *its, 818 struct its_cmd_block *cmd, 819 struct its_cmd_desc *desc) 820 { 821 struct its_collection *col; 822 823 col = dev_event_to_col(desc->its_int_cmd.dev, 824 desc->its_int_cmd.event_id); 825 826 its_encode_cmd(cmd, GITS_CMD_INT); 827 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 828 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 829 830 its_fixup_cmd(cmd); 831 832 return valid_col(col); 833 } 834 835 static struct its_collection *its_build_clear_cmd(struct its_node *its, 836 struct its_cmd_block *cmd, 837 struct its_cmd_desc *desc) 838 { 839 struct its_collection *col; 840 841 col = dev_event_to_col(desc->its_clear_cmd.dev, 842 desc->its_clear_cmd.event_id); 843 844 its_encode_cmd(cmd, GITS_CMD_CLEAR); 845 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 846 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 847 848 its_fixup_cmd(cmd); 849 850 return valid_col(col); 851 } 852 853 static struct its_collection *its_build_invall_cmd(struct its_node *its, 854 struct its_cmd_block *cmd, 855 struct its_cmd_desc *desc) 856 { 857 its_encode_cmd(cmd, GITS_CMD_INVALL); 858 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 859 860 its_fixup_cmd(cmd); 861 862 return desc->its_invall_cmd.col; 863 } 864 865 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 866 struct its_cmd_block *cmd, 867 struct its_cmd_desc *desc) 868 { 869 its_encode_cmd(cmd, GITS_CMD_VINVALL); 870 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 871 872 its_fixup_cmd(cmd); 873 874 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 875 } 876 877 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 878 struct its_cmd_block *cmd, 879 struct its_cmd_desc *desc) 880 { 881 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); 882 unsigned long vpt_addr, vconf_addr; 883 u64 target; 884 bool alloc; 885 886 its_encode_cmd(cmd, GITS_CMD_VMAPP); 887 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 888 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 889 890 if (!desc->its_vmapp_cmd.valid) { 891 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 892 if (is_v4_1(its)) { 893 its_encode_alloc(cmd, alloc); 894 /* 895 * Unmapping a VPE is self-synchronizing on GICv4.1, 896 * no need to issue a VSYNC. 897 */ 898 vpe = NULL; 899 } 900 901 goto out; 902 } 903 904 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 905 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 906 907 its_encode_target(cmd, target); 908 its_encode_vpt_addr(cmd, vpt_addr); 909 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 910 911 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 912 913 if (!is_v4_1(its)) 914 goto out; 915 916 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 917 918 its_encode_alloc(cmd, alloc); 919 920 /* 921 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 922 * to be unmapped first, and in this case, we may remap the vPE 923 * back while the VPT is not empty. So we can't assume that the 924 * VPT is empty on map. This is why we never advertise PTZ. 925 */ 926 its_encode_ptz(cmd, false); 927 its_encode_vconf_addr(cmd, vconf_addr); 928 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 929 930 out: 931 its_fixup_cmd(cmd); 932 933 return vpe; 934 } 935 936 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 937 struct its_cmd_block *cmd, 938 struct its_cmd_desc *desc) 939 { 940 u32 db; 941 942 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 943 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 944 else 945 db = 1023; 946 947 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 948 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 949 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 950 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 951 its_encode_db_phys_id(cmd, db); 952 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 953 954 its_fixup_cmd(cmd); 955 956 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 957 } 958 959 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 960 struct its_cmd_block *cmd, 961 struct its_cmd_desc *desc) 962 { 963 u32 db; 964 965 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 966 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 967 else 968 db = 1023; 969 970 its_encode_cmd(cmd, GITS_CMD_VMOVI); 971 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 972 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 973 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 974 its_encode_db_phys_id(cmd, db); 975 its_encode_db_valid(cmd, true); 976 977 its_fixup_cmd(cmd); 978 979 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 980 } 981 982 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 983 struct its_cmd_block *cmd, 984 struct its_cmd_desc *desc) 985 { 986 u64 target; 987 988 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 989 its_encode_cmd(cmd, GITS_CMD_VMOVP); 990 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 991 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 992 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 993 its_encode_target(cmd, target); 994 995 if (is_v4_1(its)) { 996 its_encode_db(cmd, true); 997 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 998 } 999 1000 its_fixup_cmd(cmd); 1001 1002 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 1003 } 1004 1005 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 1006 struct its_cmd_block *cmd, 1007 struct its_cmd_desc *desc) 1008 { 1009 struct its_vlpi_map *map; 1010 1011 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 1012 desc->its_inv_cmd.event_id); 1013 1014 its_encode_cmd(cmd, GITS_CMD_INV); 1015 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 1016 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 1017 1018 its_fixup_cmd(cmd); 1019 1020 return valid_vpe(its, map->vpe); 1021 } 1022 1023 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 1024 struct its_cmd_block *cmd, 1025 struct its_cmd_desc *desc) 1026 { 1027 struct its_vlpi_map *map; 1028 1029 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 1030 desc->its_int_cmd.event_id); 1031 1032 its_encode_cmd(cmd, GITS_CMD_INT); 1033 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 1034 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 1035 1036 its_fixup_cmd(cmd); 1037 1038 return valid_vpe(its, map->vpe); 1039 } 1040 1041 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 1042 struct its_cmd_block *cmd, 1043 struct its_cmd_desc *desc) 1044 { 1045 struct its_vlpi_map *map; 1046 1047 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 1048 desc->its_clear_cmd.event_id); 1049 1050 its_encode_cmd(cmd, GITS_CMD_CLEAR); 1051 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 1052 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 1053 1054 its_fixup_cmd(cmd); 1055 1056 return valid_vpe(its, map->vpe); 1057 } 1058 1059 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 1060 struct its_cmd_block *cmd, 1061 struct its_cmd_desc *desc) 1062 { 1063 if (WARN_ON(!is_v4_1(its))) 1064 return NULL; 1065 1066 its_encode_cmd(cmd, GITS_CMD_INVDB); 1067 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 1068 1069 its_fixup_cmd(cmd); 1070 1071 return valid_vpe(its, desc->its_invdb_cmd.vpe); 1072 } 1073 1074 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 1075 struct its_cmd_block *cmd, 1076 struct its_cmd_desc *desc) 1077 { 1078 if (WARN_ON(!is_v4_1(its))) 1079 return NULL; 1080 1081 its_encode_cmd(cmd, GITS_CMD_VSGI); 1082 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 1083 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 1084 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 1085 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 1086 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 1087 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 1088 1089 its_fixup_cmd(cmd); 1090 1091 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 1092 } 1093 1094 static u64 its_cmd_ptr_to_offset(struct its_node *its, 1095 struct its_cmd_block *ptr) 1096 { 1097 return (ptr - its->cmd_base) * sizeof(*ptr); 1098 } 1099 1100 static int its_queue_full(struct its_node *its) 1101 { 1102 int widx; 1103 int ridx; 1104 1105 widx = its->cmd_write - its->cmd_base; 1106 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1107 1108 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1109 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1110 return 1; 1111 1112 return 0; 1113 } 1114 1115 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1116 { 1117 struct its_cmd_block *cmd; 1118 u32 count = 1000000; /* 1s! */ 1119 1120 while (its_queue_full(its)) { 1121 count--; 1122 if (!count) { 1123 pr_err_ratelimited("ITS queue not draining\n"); 1124 return NULL; 1125 } 1126 cpu_relax(); 1127 udelay(1); 1128 } 1129 1130 cmd = its->cmd_write++; 1131 1132 /* Handle queue wrapping */ 1133 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1134 its->cmd_write = its->cmd_base; 1135 1136 /* Clear command */ 1137 cmd->raw_cmd[0] = 0; 1138 cmd->raw_cmd[1] = 0; 1139 cmd->raw_cmd[2] = 0; 1140 cmd->raw_cmd[3] = 0; 1141 1142 return cmd; 1143 } 1144 1145 static struct its_cmd_block *its_post_commands(struct its_node *its) 1146 { 1147 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1148 1149 writel_relaxed(wr, its->base + GITS_CWRITER); 1150 1151 return its->cmd_write; 1152 } 1153 1154 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1155 { 1156 /* 1157 * Make sure the commands written to memory are observable by 1158 * the ITS. 1159 */ 1160 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1161 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1162 else 1163 dsb(ishst); 1164 } 1165 1166 static int its_wait_for_range_completion(struct its_node *its, 1167 u64 prev_idx, 1168 struct its_cmd_block *to) 1169 { 1170 u64 rd_idx, to_idx, linear_idx; 1171 u32 count = 1000000; /* 1s! */ 1172 1173 /* Linearize to_idx if the command set has wrapped around */ 1174 to_idx = its_cmd_ptr_to_offset(its, to); 1175 if (to_idx < prev_idx) 1176 to_idx += ITS_CMD_QUEUE_SZ; 1177 1178 linear_idx = prev_idx; 1179 1180 while (1) { 1181 s64 delta; 1182 1183 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1184 1185 /* 1186 * Compute the read pointer progress, taking the 1187 * potential wrap-around into account. 1188 */ 1189 delta = rd_idx - prev_idx; 1190 if (rd_idx < prev_idx) 1191 delta += ITS_CMD_QUEUE_SZ; 1192 1193 linear_idx += delta; 1194 if (linear_idx >= to_idx) 1195 break; 1196 1197 count--; 1198 if (!count) { 1199 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1200 to_idx, linear_idx); 1201 return -1; 1202 } 1203 prev_idx = rd_idx; 1204 cpu_relax(); 1205 udelay(1); 1206 } 1207 1208 return 0; 1209 } 1210 1211 /* Warning, macro hell follows */ 1212 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1213 void name(struct its_node *its, \ 1214 buildtype builder, \ 1215 struct its_cmd_desc *desc) \ 1216 { \ 1217 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1218 synctype *sync_obj; \ 1219 unsigned long flags; \ 1220 u64 rd_idx; \ 1221 \ 1222 raw_spin_lock_irqsave(&its->lock, flags); \ 1223 \ 1224 cmd = its_allocate_entry(its); \ 1225 if (!cmd) { /* We're soooooo screewed... */ \ 1226 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1227 return; \ 1228 } \ 1229 sync_obj = builder(its, cmd, desc); \ 1230 its_flush_cmd(its, cmd); \ 1231 \ 1232 if (sync_obj) { \ 1233 sync_cmd = its_allocate_entry(its); \ 1234 if (!sync_cmd) \ 1235 goto post; \ 1236 \ 1237 buildfn(its, sync_cmd, sync_obj); \ 1238 its_flush_cmd(its, sync_cmd); \ 1239 } \ 1240 \ 1241 post: \ 1242 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1243 next_cmd = its_post_commands(its); \ 1244 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1245 \ 1246 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1247 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1248 } 1249 1250 static void its_build_sync_cmd(struct its_node *its, 1251 struct its_cmd_block *sync_cmd, 1252 struct its_collection *sync_col) 1253 { 1254 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1255 its_encode_target(sync_cmd, sync_col->target_address); 1256 1257 its_fixup_cmd(sync_cmd); 1258 } 1259 1260 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1261 struct its_collection, its_build_sync_cmd) 1262 1263 static void its_build_vsync_cmd(struct its_node *its, 1264 struct its_cmd_block *sync_cmd, 1265 struct its_vpe *sync_vpe) 1266 { 1267 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1268 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1269 1270 its_fixup_cmd(sync_cmd); 1271 } 1272 1273 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1274 struct its_vpe, its_build_vsync_cmd) 1275 1276 static void its_send_int(struct its_device *dev, u32 event_id) 1277 { 1278 struct its_cmd_desc desc; 1279 1280 desc.its_int_cmd.dev = dev; 1281 desc.its_int_cmd.event_id = event_id; 1282 1283 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1284 } 1285 1286 static void its_send_clear(struct its_device *dev, u32 event_id) 1287 { 1288 struct its_cmd_desc desc; 1289 1290 desc.its_clear_cmd.dev = dev; 1291 desc.its_clear_cmd.event_id = event_id; 1292 1293 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1294 } 1295 1296 static void its_send_inv(struct its_device *dev, u32 event_id) 1297 { 1298 struct its_cmd_desc desc; 1299 1300 desc.its_inv_cmd.dev = dev; 1301 desc.its_inv_cmd.event_id = event_id; 1302 1303 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1304 } 1305 1306 static void its_send_mapd(struct its_device *dev, int valid) 1307 { 1308 struct its_cmd_desc desc; 1309 1310 desc.its_mapd_cmd.dev = dev; 1311 desc.its_mapd_cmd.valid = !!valid; 1312 1313 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1314 } 1315 1316 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1317 int valid) 1318 { 1319 struct its_cmd_desc desc; 1320 1321 desc.its_mapc_cmd.col = col; 1322 desc.its_mapc_cmd.valid = !!valid; 1323 1324 its_send_single_command(its, its_build_mapc_cmd, &desc); 1325 } 1326 1327 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1328 { 1329 struct its_cmd_desc desc; 1330 1331 desc.its_mapti_cmd.dev = dev; 1332 desc.its_mapti_cmd.phys_id = irq_id; 1333 desc.its_mapti_cmd.event_id = id; 1334 1335 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1336 } 1337 1338 static void its_send_movi(struct its_device *dev, 1339 struct its_collection *col, u32 id) 1340 { 1341 struct its_cmd_desc desc; 1342 1343 desc.its_movi_cmd.dev = dev; 1344 desc.its_movi_cmd.col = col; 1345 desc.its_movi_cmd.event_id = id; 1346 1347 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1348 } 1349 1350 static void its_send_discard(struct its_device *dev, u32 id) 1351 { 1352 struct its_cmd_desc desc; 1353 1354 desc.its_discard_cmd.dev = dev; 1355 desc.its_discard_cmd.event_id = id; 1356 1357 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1358 } 1359 1360 static void its_send_invall(struct its_node *its, struct its_collection *col) 1361 { 1362 struct its_cmd_desc desc; 1363 1364 desc.its_invall_cmd.col = col; 1365 1366 its_send_single_command(its, its_build_invall_cmd, &desc); 1367 } 1368 1369 static void its_send_vmapti(struct its_device *dev, u32 id) 1370 { 1371 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1372 struct its_cmd_desc desc; 1373 1374 desc.its_vmapti_cmd.vpe = map->vpe; 1375 desc.its_vmapti_cmd.dev = dev; 1376 desc.its_vmapti_cmd.virt_id = map->vintid; 1377 desc.its_vmapti_cmd.event_id = id; 1378 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1379 1380 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1381 } 1382 1383 static void its_send_vmovi(struct its_device *dev, u32 id) 1384 { 1385 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1386 struct its_cmd_desc desc; 1387 1388 desc.its_vmovi_cmd.vpe = map->vpe; 1389 desc.its_vmovi_cmd.dev = dev; 1390 desc.its_vmovi_cmd.event_id = id; 1391 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1392 1393 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1394 } 1395 1396 static void its_send_vmapp(struct its_node *its, 1397 struct its_vpe *vpe, bool valid) 1398 { 1399 struct its_cmd_desc desc; 1400 1401 desc.its_vmapp_cmd.vpe = vpe; 1402 desc.its_vmapp_cmd.valid = valid; 1403 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1404 1405 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1406 } 1407 1408 static void its_send_vmovp(struct its_vpe *vpe) 1409 { 1410 struct its_cmd_desc desc = {}; 1411 struct its_node *its; 1412 int col_id = vpe->col_idx; 1413 1414 desc.its_vmovp_cmd.vpe = vpe; 1415 1416 if (!its_list_map) { 1417 its = list_first_entry(&its_nodes, struct its_node, entry); 1418 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1419 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1420 return; 1421 } 1422 1423 /* 1424 * Yet another marvel of the architecture. If using the 1425 * its_list "feature", we need to make sure that all ITSs 1426 * receive all VMOVP commands in the same order. The only way 1427 * to guarantee this is to make vmovp a serialization point. 1428 * 1429 * Wall <-- Head. 1430 */ 1431 guard(raw_spinlock)(&vmovp_lock); 1432 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1433 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1434 1435 /* Emit VMOVPs */ 1436 list_for_each_entry(its, &its_nodes, entry) { 1437 if (!is_v4(its)) 1438 continue; 1439 1440 if (!require_its_list_vmovp(vpe->its_vm, its)) 1441 continue; 1442 1443 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1444 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1445 } 1446 } 1447 1448 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1449 { 1450 struct its_cmd_desc desc; 1451 1452 desc.its_vinvall_cmd.vpe = vpe; 1453 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1454 } 1455 1456 static void its_send_vinv(struct its_device *dev, u32 event_id) 1457 { 1458 struct its_cmd_desc desc; 1459 1460 /* 1461 * There is no real VINV command. This is just a normal INV, 1462 * with a VSYNC instead of a SYNC. 1463 */ 1464 desc.its_inv_cmd.dev = dev; 1465 desc.its_inv_cmd.event_id = event_id; 1466 1467 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1468 } 1469 1470 static void its_send_vint(struct its_device *dev, u32 event_id) 1471 { 1472 struct its_cmd_desc desc; 1473 1474 /* 1475 * There is no real VINT command. This is just a normal INT, 1476 * with a VSYNC instead of a SYNC. 1477 */ 1478 desc.its_int_cmd.dev = dev; 1479 desc.its_int_cmd.event_id = event_id; 1480 1481 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1482 } 1483 1484 static void its_send_vclear(struct its_device *dev, u32 event_id) 1485 { 1486 struct its_cmd_desc desc; 1487 1488 /* 1489 * There is no real VCLEAR command. This is just a normal CLEAR, 1490 * with a VSYNC instead of a SYNC. 1491 */ 1492 desc.its_clear_cmd.dev = dev; 1493 desc.its_clear_cmd.event_id = event_id; 1494 1495 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1496 } 1497 1498 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1499 { 1500 struct its_cmd_desc desc; 1501 1502 desc.its_invdb_cmd.vpe = vpe; 1503 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1504 } 1505 1506 /* 1507 * irqchip functions - assumes MSI, mostly. 1508 */ 1509 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1510 { 1511 struct its_vlpi_map *map = get_vlpi_map(d); 1512 irq_hw_number_t hwirq; 1513 void *va; 1514 u8 *cfg; 1515 1516 if (map) { 1517 va = page_address(map->vm->vprop_page); 1518 hwirq = map->vintid; 1519 1520 /* Remember the updated property */ 1521 map->properties &= ~clr; 1522 map->properties |= set | LPI_PROP_GROUP1; 1523 } else { 1524 va = gic_rdists->prop_table_va; 1525 hwirq = d->hwirq; 1526 } 1527 1528 cfg = va + hwirq - 8192; 1529 *cfg &= ~clr; 1530 *cfg |= set | LPI_PROP_GROUP1; 1531 1532 /* 1533 * Make the above write visible to the redistributors. 1534 * And yes, we're flushing exactly: One. Single. Byte. 1535 * Humpf... 1536 */ 1537 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1538 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1539 else 1540 dsb(ishst); 1541 } 1542 1543 static void wait_for_syncr(void __iomem *rdbase) 1544 { 1545 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1546 cpu_relax(); 1547 } 1548 1549 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1550 { 1551 void __iomem *rdbase; 1552 unsigned long flags; 1553 int cpu; 1554 1555 /* Target the redistributor this LPI is currently routed to */ 1556 cpu = irq_to_cpuid_lock(d, &flags); 1557 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1558 1559 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1560 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1561 wait_for_syncr(rdbase); 1562 1563 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1564 irq_to_cpuid_unlock(d, flags); 1565 } 1566 1567 static void direct_lpi_inv(struct irq_data *d) 1568 { 1569 struct its_vlpi_map *map = get_vlpi_map(d); 1570 u64 val; 1571 1572 if (map) { 1573 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1574 1575 WARN_ON(!is_v4_1(its_dev->its)); 1576 1577 val = GICR_INVLPIR_V; 1578 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1579 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1580 } else { 1581 val = d->hwirq; 1582 } 1583 1584 __direct_lpi_inv(d, val); 1585 } 1586 1587 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1588 { 1589 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1590 1591 lpi_write_config(d, clr, set); 1592 if (gic_rdists->has_direct_lpi && 1593 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1594 direct_lpi_inv(d); 1595 else if (!irqd_is_forwarded_to_vcpu(d)) 1596 its_send_inv(its_dev, its_get_event_id(d)); 1597 else 1598 its_send_vinv(its_dev, its_get_event_id(d)); 1599 } 1600 1601 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1602 { 1603 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1604 u32 event = its_get_event_id(d); 1605 struct its_vlpi_map *map; 1606 1607 /* 1608 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1609 * here. 1610 */ 1611 if (is_v4_1(its_dev->its)) 1612 return; 1613 1614 map = dev_event_to_vlpi_map(its_dev, event); 1615 1616 if (map->db_enabled == enable) 1617 return; 1618 1619 map->db_enabled = enable; 1620 1621 /* 1622 * More fun with the architecture: 1623 * 1624 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1625 * value or to 1023, depending on the enable bit. But that 1626 * would be issuing a mapping for an /existing/ DevID+EventID 1627 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1628 * to the /same/ vPE, using this opportunity to adjust the 1629 * doorbell. Mouahahahaha. We loves it, Precious. 1630 */ 1631 its_send_vmovi(its_dev, event); 1632 } 1633 1634 static void its_mask_irq(struct irq_data *d) 1635 { 1636 if (irqd_is_forwarded_to_vcpu(d)) 1637 its_vlpi_set_doorbell(d, false); 1638 1639 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1640 } 1641 1642 static void its_unmask_irq(struct irq_data *d) 1643 { 1644 if (irqd_is_forwarded_to_vcpu(d)) 1645 its_vlpi_set_doorbell(d, true); 1646 1647 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1648 } 1649 1650 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1651 { 1652 if (irqd_affinity_is_managed(d)) 1653 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1654 1655 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1656 } 1657 1658 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1659 { 1660 if (irqd_affinity_is_managed(d)) 1661 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1662 else 1663 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1664 } 1665 1666 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1667 { 1668 if (irqd_affinity_is_managed(d)) 1669 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1670 else 1671 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1672 } 1673 1674 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1675 const struct cpumask *cpu_mask) 1676 { 1677 unsigned int cpu = nr_cpu_ids, tmp; 1678 int count = S32_MAX; 1679 1680 for_each_cpu(tmp, cpu_mask) { 1681 int this_count = its_read_lpi_count(d, tmp); 1682 if (this_count < count) { 1683 cpu = tmp; 1684 count = this_count; 1685 } 1686 } 1687 1688 return cpu; 1689 } 1690 1691 /* 1692 * As suggested by Thomas Gleixner in: 1693 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1694 */ 1695 static int its_select_cpu(struct irq_data *d, 1696 const struct cpumask *aff_mask) 1697 { 1698 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1699 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1700 static struct cpumask __tmpmask; 1701 struct cpumask *tmpmask; 1702 unsigned long flags; 1703 int cpu, node; 1704 node = its_dev->its->numa_node; 1705 tmpmask = &__tmpmask; 1706 1707 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1708 1709 if (!irqd_affinity_is_managed(d)) { 1710 /* First try the NUMA node */ 1711 if (node != NUMA_NO_NODE) { 1712 /* 1713 * Try the intersection of the affinity mask and the 1714 * node mask (and the online mask, just to be safe). 1715 */ 1716 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1717 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1718 1719 /* 1720 * Ideally, we would check if the mask is empty, and 1721 * try again on the full node here. 1722 * 1723 * But it turns out that the way ACPI describes the 1724 * affinity for ITSs only deals about memory, and 1725 * not target CPUs, so it cannot describe a single 1726 * ITS placed next to two NUMA nodes. 1727 * 1728 * Instead, just fallback on the online mask. This 1729 * diverges from Thomas' suggestion above. 1730 */ 1731 cpu = cpumask_pick_least_loaded(d, tmpmask); 1732 if (cpu < nr_cpu_ids) 1733 goto out; 1734 1735 /* If we can't cross sockets, give up */ 1736 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1737 goto out; 1738 1739 /* If the above failed, expand the search */ 1740 } 1741 1742 /* Try the intersection of the affinity and online masks */ 1743 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1744 1745 /* If that doesn't fly, the online mask is the last resort */ 1746 if (cpumask_empty(tmpmask)) 1747 cpumask_copy(tmpmask, cpu_online_mask); 1748 1749 cpu = cpumask_pick_least_loaded(d, tmpmask); 1750 } else { 1751 cpumask_copy(tmpmask, aff_mask); 1752 1753 /* If we cannot cross sockets, limit the search to that node */ 1754 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1755 node != NUMA_NO_NODE) 1756 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1757 1758 cpu = cpumask_pick_least_loaded(d, tmpmask); 1759 } 1760 out: 1761 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1762 1763 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1764 return cpu; 1765 } 1766 1767 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1768 bool force) 1769 { 1770 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1771 struct its_collection *target_col; 1772 u32 id = its_get_event_id(d); 1773 int cpu, prev_cpu; 1774 1775 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1776 if (irqd_is_forwarded_to_vcpu(d)) 1777 return -EINVAL; 1778 1779 prev_cpu = its_dev->event_map.col_map[id]; 1780 its_dec_lpi_count(d, prev_cpu); 1781 1782 if (!force) 1783 cpu = its_select_cpu(d, mask_val); 1784 else 1785 cpu = cpumask_pick_least_loaded(d, mask_val); 1786 1787 if (cpu < 0 || cpu >= nr_cpu_ids) 1788 goto err; 1789 1790 /* don't set the affinity when the target cpu is same as current one */ 1791 if (cpu != prev_cpu) { 1792 target_col = &its_dev->its->collections[cpu]; 1793 its_send_movi(its_dev, target_col, id); 1794 its_dev->event_map.col_map[id] = cpu; 1795 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1796 } 1797 1798 its_inc_lpi_count(d, cpu); 1799 1800 return IRQ_SET_MASK_OK_DONE; 1801 1802 err: 1803 its_inc_lpi_count(d, prev_cpu); 1804 return -EINVAL; 1805 } 1806 1807 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1808 { 1809 struct its_node *its = its_dev->its; 1810 1811 return its->phys_base + GITS_TRANSLATER; 1812 } 1813 1814 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1815 { 1816 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1817 1818 msg->data = its_get_event_id(d); 1819 msi_msg_set_addr(irq_data_get_msi_desc(d), msg, 1820 its_dev->its->get_msi_base(its_dev)); 1821 } 1822 1823 static int its_irq_set_irqchip_state(struct irq_data *d, 1824 enum irqchip_irq_state which, 1825 bool state) 1826 { 1827 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1828 u32 event = its_get_event_id(d); 1829 1830 if (which != IRQCHIP_STATE_PENDING) 1831 return -EINVAL; 1832 1833 if (irqd_is_forwarded_to_vcpu(d)) { 1834 if (state) 1835 its_send_vint(its_dev, event); 1836 else 1837 its_send_vclear(its_dev, event); 1838 } else { 1839 if (state) 1840 its_send_int(its_dev, event); 1841 else 1842 its_send_clear(its_dev, event); 1843 } 1844 1845 return 0; 1846 } 1847 1848 static int its_irq_retrigger(struct irq_data *d) 1849 { 1850 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1851 } 1852 1853 /* 1854 * Two favourable cases: 1855 * 1856 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1857 * for vSGI delivery 1858 * 1859 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1860 * and we're better off mapping all VPEs always 1861 * 1862 * If neither (a) nor (b) is true, then we map vPEs on demand. 1863 * 1864 */ 1865 static bool gic_requires_eager_mapping(void) 1866 { 1867 if (!its_list_map || gic_rdists->has_rvpeid) 1868 return true; 1869 1870 return false; 1871 } 1872 1873 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1874 { 1875 if (gic_requires_eager_mapping()) 1876 return; 1877 1878 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1879 1880 /* 1881 * If the VM wasn't mapped yet, iterate over the vpes and get 1882 * them mapped now. 1883 */ 1884 vm->vlpi_count[its->list_nr]++; 1885 1886 if (vm->vlpi_count[its->list_nr] == 1) { 1887 int i; 1888 1889 for (i = 0; i < vm->nr_vpes; i++) { 1890 struct its_vpe *vpe = vm->vpes[i]; 1891 1892 scoped_guard(raw_spinlock, &vpe->vpe_lock) 1893 its_send_vmapp(its, vpe, true); 1894 1895 its_send_vinvall(its, vpe); 1896 } 1897 } 1898 } 1899 1900 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1901 { 1902 /* Not using the ITS list? Everything is always mapped. */ 1903 if (gic_requires_eager_mapping()) 1904 return; 1905 1906 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1907 1908 if (!--vm->vlpi_count[its->list_nr]) { 1909 int i; 1910 1911 for (i = 0; i < vm->nr_vpes; i++) { 1912 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock); 1913 its_send_vmapp(its, vm->vpes[i], false); 1914 } 1915 } 1916 } 1917 1918 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1919 { 1920 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1921 u32 event = its_get_event_id(d); 1922 1923 if (!info->map) 1924 return -EINVAL; 1925 1926 if (!its_dev->event_map.vm) { 1927 struct its_vlpi_map *maps; 1928 1929 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1930 GFP_ATOMIC); 1931 if (!maps) 1932 return -ENOMEM; 1933 1934 its_dev->event_map.vm = info->map->vm; 1935 its_dev->event_map.vlpi_maps = maps; 1936 } else if (its_dev->event_map.vm != info->map->vm) { 1937 return -EINVAL; 1938 } 1939 1940 /* Get our private copy of the mapping information */ 1941 its_dev->event_map.vlpi_maps[event] = *info->map; 1942 1943 if (irqd_is_forwarded_to_vcpu(d)) { 1944 /* Already mapped, move it around */ 1945 its_send_vmovi(its_dev, event); 1946 } else { 1947 /* Ensure all the VPEs are mapped on this ITS */ 1948 its_map_vm(its_dev->its, info->map->vm); 1949 1950 /* 1951 * Flag the interrupt as forwarded so that we can 1952 * start poking the virtual property table. 1953 */ 1954 irqd_set_forwarded_to_vcpu(d); 1955 1956 /* Write out the property to the prop table */ 1957 lpi_write_config(d, 0xff, info->map->properties); 1958 1959 /* Drop the physical mapping */ 1960 its_send_discard(its_dev, event); 1961 1962 /* and install the virtual one */ 1963 its_send_vmapti(its_dev, event); 1964 1965 /* Increment the number of VLPIs */ 1966 its_dev->event_map.nr_vlpis++; 1967 } 1968 1969 return 0; 1970 } 1971 1972 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1973 { 1974 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1975 struct its_vlpi_map *map; 1976 1977 map = get_vlpi_map(d); 1978 1979 if (!its_dev->event_map.vm || !map) 1980 return -EINVAL; 1981 1982 /* Copy our mapping information to the incoming request */ 1983 *info->map = *map; 1984 1985 return 0; 1986 } 1987 1988 static int its_vlpi_unmap(struct irq_data *d) 1989 { 1990 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1991 u32 event = its_get_event_id(d); 1992 1993 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1994 return -EINVAL; 1995 1996 /* Drop the virtual mapping */ 1997 its_send_discard(its_dev, event); 1998 1999 /* and restore the physical one */ 2000 irqd_clr_forwarded_to_vcpu(d); 2001 its_send_mapti(its_dev, d->hwirq, event); 2002 lpi_update_config(d, 0xff, (lpi_prop_prio | 2003 LPI_PROP_ENABLED | 2004 LPI_PROP_GROUP1)); 2005 2006 /* Potentially unmap the VM from this ITS */ 2007 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 2008 2009 /* 2010 * Drop the refcount and make the device available again if 2011 * this was the last VLPI. 2012 */ 2013 if (!--its_dev->event_map.nr_vlpis) { 2014 its_dev->event_map.vm = NULL; 2015 kfree(its_dev->event_map.vlpi_maps); 2016 } 2017 2018 return 0; 2019 } 2020 2021 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 2022 { 2023 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2024 2025 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 2026 return -EINVAL; 2027 2028 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 2029 lpi_update_config(d, 0xff, info->config); 2030 else 2031 lpi_write_config(d, 0xff, info->config); 2032 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 2033 2034 return 0; 2035 } 2036 2037 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2038 { 2039 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2040 struct its_cmd_info *info = vcpu_info; 2041 2042 /* Need a v4 ITS */ 2043 if (!is_v4(its_dev->its)) 2044 return -EINVAL; 2045 2046 guard(raw_spinlock)(&its_dev->event_map.vlpi_lock); 2047 2048 /* Unmap request? */ 2049 if (!info) 2050 return its_vlpi_unmap(d); 2051 2052 switch (info->cmd_type) { 2053 case MAP_VLPI: 2054 return its_vlpi_map(d, info); 2055 2056 case GET_VLPI: 2057 return its_vlpi_get(d, info); 2058 2059 case PROP_UPDATE_VLPI: 2060 case PROP_UPDATE_AND_INV_VLPI: 2061 return its_vlpi_prop_update(d, info); 2062 2063 default: 2064 return -EINVAL; 2065 } 2066 } 2067 2068 static struct irq_chip its_irq_chip = { 2069 .name = "ITS", 2070 .irq_mask = its_mask_irq, 2071 .irq_unmask = its_unmask_irq, 2072 .irq_eoi = irq_chip_eoi_parent, 2073 .irq_set_affinity = its_set_affinity, 2074 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2075 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2076 .irq_retrigger = its_irq_retrigger, 2077 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2078 }; 2079 2080 2081 /* 2082 * How we allocate LPIs: 2083 * 2084 * lpi_range_list contains ranges of LPIs that are to available to 2085 * allocate from. To allocate LPIs, just pick the first range that 2086 * fits the required allocation, and reduce it by the required 2087 * amount. Once empty, remove the range from the list. 2088 * 2089 * To free a range of LPIs, add a free range to the list, sort it and 2090 * merge the result if the new range happens to be adjacent to an 2091 * already free block. 2092 * 2093 * The consequence of the above is that allocation is cost is low, but 2094 * freeing is expensive. We assumes that freeing rarely occurs. 2095 */ 2096 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2097 2098 static DEFINE_MUTEX(lpi_range_lock); 2099 static LIST_HEAD(lpi_range_list); 2100 2101 struct lpi_range { 2102 struct list_head entry; 2103 u32 base_id; 2104 u32 span; 2105 }; 2106 2107 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2108 { 2109 struct lpi_range *range; 2110 2111 range = kmalloc(sizeof(*range), GFP_KERNEL); 2112 if (range) { 2113 range->base_id = base; 2114 range->span = span; 2115 } 2116 2117 return range; 2118 } 2119 2120 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2121 { 2122 struct lpi_range *range, *tmp; 2123 int err = -ENOSPC; 2124 2125 mutex_lock(&lpi_range_lock); 2126 2127 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2128 if (range->span >= nr_lpis) { 2129 *base = range->base_id; 2130 range->base_id += nr_lpis; 2131 range->span -= nr_lpis; 2132 2133 if (range->span == 0) { 2134 list_del(&range->entry); 2135 kfree(range); 2136 } 2137 2138 err = 0; 2139 break; 2140 } 2141 } 2142 2143 mutex_unlock(&lpi_range_lock); 2144 2145 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2146 return err; 2147 } 2148 2149 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2150 { 2151 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2152 return; 2153 if (a->base_id + a->span != b->base_id) 2154 return; 2155 b->base_id = a->base_id; 2156 b->span += a->span; 2157 list_del(&a->entry); 2158 kfree(a); 2159 } 2160 2161 static int free_lpi_range(u32 base, u32 nr_lpis) 2162 { 2163 struct lpi_range *new, *old; 2164 2165 new = mk_lpi_range(base, nr_lpis); 2166 if (!new) 2167 return -ENOMEM; 2168 2169 mutex_lock(&lpi_range_lock); 2170 2171 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2172 if (old->base_id < base) 2173 break; 2174 } 2175 /* 2176 * old is the last element with ->base_id smaller than base, 2177 * so new goes right after it. If there are no elements with 2178 * ->base_id smaller than base, &old->entry ends up pointing 2179 * at the head of the list, and inserting new it the start of 2180 * the list is the right thing to do in that case as well. 2181 */ 2182 list_add(&new->entry, &old->entry); 2183 /* 2184 * Now check if we can merge with the preceding and/or 2185 * following ranges. 2186 */ 2187 merge_lpi_ranges(old, new); 2188 merge_lpi_ranges(new, list_next_entry(new, entry)); 2189 2190 mutex_unlock(&lpi_range_lock); 2191 return 0; 2192 } 2193 2194 static int __init its_lpi_init(u32 id_bits) 2195 { 2196 u32 lpis = (1UL << id_bits) - 8192; 2197 u32 numlpis; 2198 int err; 2199 2200 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2201 2202 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2203 lpis = numlpis; 2204 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2205 lpis); 2206 } 2207 2208 /* 2209 * Initializing the allocator is just the same as freeing the 2210 * full range of LPIs. 2211 */ 2212 err = free_lpi_range(8192, lpis); 2213 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2214 return err; 2215 } 2216 2217 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2218 { 2219 unsigned long *bitmap = NULL; 2220 int err = 0; 2221 2222 do { 2223 err = alloc_lpi_range(nr_irqs, base); 2224 if (!err) 2225 break; 2226 2227 nr_irqs /= 2; 2228 } while (nr_irqs > 0); 2229 2230 if (!nr_irqs) 2231 err = -ENOSPC; 2232 2233 if (err) 2234 goto out; 2235 2236 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2237 if (!bitmap) 2238 goto out; 2239 2240 *nr_ids = nr_irqs; 2241 2242 out: 2243 if (!bitmap) 2244 *base = *nr_ids = 0; 2245 2246 return bitmap; 2247 } 2248 2249 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2250 { 2251 WARN_ON(free_lpi_range(base, nr_ids)); 2252 bitmap_free(bitmap); 2253 } 2254 2255 static void gic_reset_prop_table(void *va) 2256 { 2257 /* Regular IRQ priority, Group-1, disabled */ 2258 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2259 2260 /* Make sure the GIC will observe the written configuration */ 2261 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2262 } 2263 2264 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2265 { 2266 struct page *prop_page; 2267 2268 prop_page = its_alloc_pages(gfp_flags, 2269 get_order(LPI_PROPBASE_SZ)); 2270 if (!prop_page) 2271 return NULL; 2272 2273 gic_reset_prop_table(page_address(prop_page)); 2274 2275 return prop_page; 2276 } 2277 2278 static void its_free_prop_table(struct page *prop_page) 2279 { 2280 its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ)); 2281 } 2282 2283 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2284 { 2285 phys_addr_t start, end, addr_end; 2286 u64 i; 2287 2288 /* 2289 * We don't bother checking for a kdump kernel as by 2290 * construction, the LPI tables are out of this kernel's 2291 * memory map. 2292 */ 2293 if (is_kdump_kernel()) 2294 return true; 2295 2296 addr_end = addr + size - 1; 2297 2298 for_each_reserved_mem_range(i, &start, &end) { 2299 if (addr >= start && addr_end <= end) 2300 return true; 2301 } 2302 2303 /* Not found, not a good sign... */ 2304 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2305 &addr, &addr_end); 2306 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2307 return false; 2308 } 2309 2310 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2311 { 2312 if (efi_enabled(EFI_CONFIG_TABLES)) 2313 return efi_mem_reserve_persistent(addr, size); 2314 2315 return 0; 2316 } 2317 2318 static int __init its_setup_lpi_prop_table(void) 2319 { 2320 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2321 u64 val; 2322 2323 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2324 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2325 2326 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2327 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2328 LPI_PROPBASE_SZ, 2329 MEMREMAP_WB); 2330 gic_reset_prop_table(gic_rdists->prop_table_va); 2331 } else { 2332 struct page *page; 2333 2334 lpi_id_bits = min_t(u32, 2335 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2336 ITS_MAX_LPI_NRBITS); 2337 page = its_allocate_prop_table(GFP_NOWAIT); 2338 if (!page) { 2339 pr_err("Failed to allocate PROPBASE\n"); 2340 return -ENOMEM; 2341 } 2342 2343 gic_rdists->prop_table_pa = page_to_phys(page); 2344 gic_rdists->prop_table_va = page_address(page); 2345 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2346 LPI_PROPBASE_SZ)); 2347 } 2348 2349 pr_info("GICv3: using LPI property table @%pa\n", 2350 &gic_rdists->prop_table_pa); 2351 2352 return its_lpi_init(lpi_id_bits); 2353 } 2354 2355 static const char *its_base_type_string[] = { 2356 [GITS_BASER_TYPE_DEVICE] = "Devices", 2357 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2358 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2359 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2360 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2361 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2362 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2363 }; 2364 2365 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2366 { 2367 u32 idx = baser - its->tables; 2368 2369 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2370 } 2371 2372 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2373 u64 val) 2374 { 2375 u32 idx = baser - its->tables; 2376 2377 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2378 baser->val = its_read_baser(its, baser); 2379 } 2380 2381 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2382 u64 cache, u64 shr, u32 order, bool indirect) 2383 { 2384 u64 val = its_read_baser(its, baser); 2385 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2386 u64 type = GITS_BASER_TYPE(val); 2387 u64 baser_phys, tmp; 2388 u32 alloc_pages, psz; 2389 struct page *page; 2390 void *base; 2391 2392 psz = baser->psz; 2393 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2394 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2395 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2396 &its->phys_base, its_base_type_string[type], 2397 alloc_pages, GITS_BASER_PAGES_MAX); 2398 alloc_pages = GITS_BASER_PAGES_MAX; 2399 order = get_order(GITS_BASER_PAGES_MAX * psz); 2400 } 2401 2402 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2403 if (!page) 2404 return -ENOMEM; 2405 2406 base = (void *)page_address(page); 2407 baser_phys = virt_to_phys(base); 2408 2409 /* Check if the physical address of the memory is above 48bits */ 2410 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2411 2412 /* 52bit PA is supported only when PageSize=64K */ 2413 if (psz != SZ_64K) { 2414 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2415 its_free_pages(base, order); 2416 return -ENXIO; 2417 } 2418 2419 /* Convert 52bit PA to 48bit field */ 2420 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2421 } 2422 2423 retry_baser: 2424 val = (baser_phys | 2425 (type << GITS_BASER_TYPE_SHIFT) | 2426 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2427 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2428 cache | 2429 shr | 2430 GITS_BASER_VALID); 2431 2432 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2433 2434 switch (psz) { 2435 case SZ_4K: 2436 val |= GITS_BASER_PAGE_SIZE_4K; 2437 break; 2438 case SZ_16K: 2439 val |= GITS_BASER_PAGE_SIZE_16K; 2440 break; 2441 case SZ_64K: 2442 val |= GITS_BASER_PAGE_SIZE_64K; 2443 break; 2444 } 2445 2446 if (!shr) 2447 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2448 2449 its_write_baser(its, baser, val); 2450 tmp = baser->val; 2451 2452 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2453 /* 2454 * Shareability didn't stick. Just use 2455 * whatever the read reported, which is likely 2456 * to be the only thing this redistributor 2457 * supports. If that's zero, make it 2458 * non-cacheable as well. 2459 */ 2460 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2461 if (!shr) 2462 cache = GITS_BASER_nC; 2463 2464 goto retry_baser; 2465 } 2466 2467 if (val != tmp) { 2468 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2469 &its->phys_base, its_base_type_string[type], 2470 val, tmp); 2471 its_free_pages(base, order); 2472 return -ENXIO; 2473 } 2474 2475 baser->order = order; 2476 baser->base = base; 2477 baser->psz = psz; 2478 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2479 2480 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2481 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2482 its_base_type_string[type], 2483 (unsigned long)virt_to_phys(base), 2484 indirect ? "indirect" : "flat", (int)esz, 2485 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2486 2487 return 0; 2488 } 2489 2490 static bool its_parse_indirect_baser(struct its_node *its, 2491 struct its_baser *baser, 2492 u32 *order, u32 ids) 2493 { 2494 u64 tmp = its_read_baser(its, baser); 2495 u64 type = GITS_BASER_TYPE(tmp); 2496 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2497 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2498 u32 new_order = *order; 2499 u32 psz = baser->psz; 2500 bool indirect = false; 2501 2502 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2503 if ((esz << ids) > (psz * 2)) { 2504 /* 2505 * Find out whether hw supports a single or two-level table by 2506 * table by reading bit at offset '62' after writing '1' to it. 2507 */ 2508 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2509 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2510 2511 if (indirect) { 2512 /* 2513 * The size of the lvl2 table is equal to ITS page size 2514 * which is 'psz'. For computing lvl1 table size, 2515 * subtract ID bits that sparse lvl2 table from 'ids' 2516 * which is reported by ITS hardware times lvl1 table 2517 * entry size. 2518 */ 2519 ids -= ilog2(psz / (int)esz); 2520 esz = GITS_LVL1_ENTRY_SIZE; 2521 } 2522 } 2523 2524 /* 2525 * Allocate as many entries as required to fit the 2526 * range of device IDs that the ITS can grok... The ID 2527 * space being incredibly sparse, this results in a 2528 * massive waste of memory if two-level device table 2529 * feature is not supported by hardware. 2530 */ 2531 new_order = max_t(u32, get_order(esz << ids), new_order); 2532 if (new_order > MAX_PAGE_ORDER) { 2533 new_order = MAX_PAGE_ORDER; 2534 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2535 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2536 &its->phys_base, its_base_type_string[type], 2537 device_ids(its), ids); 2538 } 2539 2540 *order = new_order; 2541 2542 return indirect; 2543 } 2544 2545 static u32 compute_common_aff(u64 val) 2546 { 2547 u32 aff, clpiaff; 2548 2549 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2550 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2551 2552 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2553 } 2554 2555 static u32 compute_its_aff(struct its_node *its) 2556 { 2557 u64 val; 2558 u32 svpet; 2559 2560 /* 2561 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2562 * the resulting affinity. We then use that to see if this match 2563 * our own affinity. 2564 */ 2565 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2566 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2567 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2568 return compute_common_aff(val); 2569 } 2570 2571 static struct its_node *find_sibling_its(struct its_node *cur_its) 2572 { 2573 struct its_node *its; 2574 u32 aff; 2575 2576 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2577 return NULL; 2578 2579 aff = compute_its_aff(cur_its); 2580 2581 list_for_each_entry(its, &its_nodes, entry) { 2582 u64 baser; 2583 2584 if (!is_v4_1(its) || its == cur_its) 2585 continue; 2586 2587 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2588 continue; 2589 2590 if (aff != compute_its_aff(its)) 2591 continue; 2592 2593 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2594 baser = its->tables[2].val; 2595 if (!(baser & GITS_BASER_VALID)) 2596 continue; 2597 2598 return its; 2599 } 2600 2601 return NULL; 2602 } 2603 2604 static void its_free_tables(struct its_node *its) 2605 { 2606 int i; 2607 2608 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2609 if (its->tables[i].base) { 2610 its_free_pages(its->tables[i].base, its->tables[i].order); 2611 its->tables[i].base = NULL; 2612 } 2613 } 2614 } 2615 2616 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2617 { 2618 u64 psz = SZ_64K; 2619 2620 while (psz) { 2621 u64 val, gpsz; 2622 2623 val = its_read_baser(its, baser); 2624 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2625 2626 switch (psz) { 2627 case SZ_64K: 2628 gpsz = GITS_BASER_PAGE_SIZE_64K; 2629 break; 2630 case SZ_16K: 2631 gpsz = GITS_BASER_PAGE_SIZE_16K; 2632 break; 2633 case SZ_4K: 2634 default: 2635 gpsz = GITS_BASER_PAGE_SIZE_4K; 2636 break; 2637 } 2638 2639 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2640 2641 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2642 its_write_baser(its, baser, val); 2643 2644 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2645 break; 2646 2647 switch (psz) { 2648 case SZ_64K: 2649 psz = SZ_16K; 2650 break; 2651 case SZ_16K: 2652 psz = SZ_4K; 2653 break; 2654 case SZ_4K: 2655 default: 2656 return -1; 2657 } 2658 } 2659 2660 baser->psz = psz; 2661 return 0; 2662 } 2663 2664 static int its_alloc_tables(struct its_node *its) 2665 { 2666 u64 shr = GITS_BASER_InnerShareable; 2667 u64 cache = GITS_BASER_RaWaWb; 2668 int err, i; 2669 2670 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2671 /* erratum 24313: ignore memory access type */ 2672 cache = GITS_BASER_nCnB; 2673 2674 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2675 cache = GITS_BASER_nC; 2676 shr = 0; 2677 } 2678 2679 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2680 struct its_baser *baser = its->tables + i; 2681 u64 val = its_read_baser(its, baser); 2682 u64 type = GITS_BASER_TYPE(val); 2683 bool indirect = false; 2684 u32 order; 2685 2686 if (type == GITS_BASER_TYPE_NONE) 2687 continue; 2688 2689 if (its_probe_baser_psz(its, baser)) { 2690 its_free_tables(its); 2691 return -ENXIO; 2692 } 2693 2694 order = get_order(baser->psz); 2695 2696 switch (type) { 2697 case GITS_BASER_TYPE_DEVICE: 2698 indirect = its_parse_indirect_baser(its, baser, &order, 2699 device_ids(its)); 2700 break; 2701 2702 case GITS_BASER_TYPE_VCPU: 2703 if (is_v4_1(its)) { 2704 struct its_node *sibling; 2705 2706 WARN_ON(i != 2); 2707 if ((sibling = find_sibling_its(its))) { 2708 *baser = sibling->tables[2]; 2709 its_write_baser(its, baser, baser->val); 2710 continue; 2711 } 2712 } 2713 2714 indirect = its_parse_indirect_baser(its, baser, &order, 2715 ITS_MAX_VPEID_BITS); 2716 break; 2717 } 2718 2719 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2720 if (err < 0) { 2721 its_free_tables(its); 2722 return err; 2723 } 2724 2725 /* Update settings which will be used for next BASERn */ 2726 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2727 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2728 } 2729 2730 return 0; 2731 } 2732 2733 static u64 inherit_vpe_l1_table_from_its(void) 2734 { 2735 struct its_node *its; 2736 u64 val; 2737 u32 aff; 2738 2739 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2740 aff = compute_common_aff(val); 2741 2742 list_for_each_entry(its, &its_nodes, entry) { 2743 u64 baser, addr; 2744 2745 if (!is_v4_1(its)) 2746 continue; 2747 2748 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2749 continue; 2750 2751 if (aff != compute_its_aff(its)) 2752 continue; 2753 2754 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2755 baser = its->tables[2].val; 2756 if (!(baser & GITS_BASER_VALID)) 2757 continue; 2758 2759 /* We have a winner! */ 2760 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2761 2762 val = GICR_VPROPBASER_4_1_VALID; 2763 if (baser & GITS_BASER_INDIRECT) 2764 val |= GICR_VPROPBASER_4_1_INDIRECT; 2765 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2766 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2767 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2768 case GIC_PAGE_SIZE_64K: 2769 addr = GITS_BASER_ADDR_48_to_52(baser); 2770 break; 2771 default: 2772 addr = baser & GENMASK_ULL(47, 12); 2773 break; 2774 } 2775 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2776 if (rdists_support_shareable()) { 2777 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2778 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2779 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2780 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2781 } 2782 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2783 2784 *this_cpu_ptr(&local_4_1_its) = its; 2785 return val; 2786 } 2787 2788 return 0; 2789 } 2790 2791 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2792 { 2793 u32 aff; 2794 u64 val; 2795 int cpu; 2796 2797 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2798 aff = compute_common_aff(val); 2799 2800 for_each_possible_cpu(cpu) { 2801 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2802 2803 if (!base || cpu == smp_processor_id()) 2804 continue; 2805 2806 val = gic_read_typer(base + GICR_TYPER); 2807 if (aff != compute_common_aff(val)) 2808 continue; 2809 2810 /* 2811 * At this point, we have a victim. This particular CPU 2812 * has already booted, and has an affinity that matches 2813 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2814 * Make sure we don't write the Z bit in that case. 2815 */ 2816 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2817 val &= ~GICR_VPROPBASER_4_1_Z; 2818 2819 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2820 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2821 2822 *this_cpu_ptr(&local_4_1_its) = *per_cpu_ptr(&local_4_1_its, cpu); 2823 return val; 2824 } 2825 2826 return 0; 2827 } 2828 2829 static bool allocate_vpe_l2_table(int cpu, u32 id) 2830 { 2831 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2832 unsigned int psz, esz, idx, npg, gpsz; 2833 u64 val; 2834 struct page *page; 2835 __le64 *table; 2836 2837 if (!gic_rdists->has_rvpeid) 2838 return true; 2839 2840 /* Skip non-present CPUs */ 2841 if (!base) 2842 return true; 2843 2844 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2845 2846 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2847 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2848 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2849 2850 switch (gpsz) { 2851 default: 2852 WARN_ON(1); 2853 fallthrough; 2854 case GIC_PAGE_SIZE_4K: 2855 psz = SZ_4K; 2856 break; 2857 case GIC_PAGE_SIZE_16K: 2858 psz = SZ_16K; 2859 break; 2860 case GIC_PAGE_SIZE_64K: 2861 psz = SZ_64K; 2862 break; 2863 } 2864 2865 /* Don't allow vpe_id that exceeds single, flat table limit */ 2866 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2867 return (id < (npg * psz / (esz * SZ_8))); 2868 2869 /* Compute 1st level table index & check if that exceeds table limit */ 2870 idx = id >> ilog2(psz / (esz * SZ_8)); 2871 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2872 return false; 2873 2874 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2875 2876 /* Allocate memory for 2nd level table */ 2877 if (!table[idx]) { 2878 page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2879 if (!page) 2880 return false; 2881 2882 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2883 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2884 gic_flush_dcache_to_poc(page_address(page), psz); 2885 2886 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2887 2888 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2889 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2890 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2891 2892 /* Ensure updated table contents are visible to RD hardware */ 2893 dsb(sy); 2894 } 2895 2896 return true; 2897 } 2898 2899 static int allocate_vpe_l1_table(void) 2900 { 2901 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2902 u64 val, gpsz, npg, pa; 2903 unsigned int psz = SZ_64K; 2904 unsigned int np, epp, esz; 2905 struct page *page; 2906 2907 if (!gic_rdists->has_rvpeid) 2908 return 0; 2909 2910 /* 2911 * if VPENDBASER.Valid is set, disable any previously programmed 2912 * VPE by setting PendingLast while clearing Valid. This has the 2913 * effect of making sure no doorbell will be generated and we can 2914 * then safely clear VPROPBASER.Valid. 2915 */ 2916 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2917 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2918 vlpi_base + GICR_VPENDBASER); 2919 2920 /* 2921 * If we can inherit the configuration from another RD, let's do 2922 * so. Otherwise, we have to go through the allocation process. We 2923 * assume that all RDs have the exact same requirements, as 2924 * nothing will work otherwise. 2925 */ 2926 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2927 if (val & GICR_VPROPBASER_4_1_VALID) 2928 goto out; 2929 2930 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2931 if (!gic_data_rdist()->vpe_table_mask) 2932 return -ENOMEM; 2933 2934 val = inherit_vpe_l1_table_from_its(); 2935 if (val & GICR_VPROPBASER_4_1_VALID) 2936 goto out; 2937 2938 /* First probe the page size */ 2939 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2940 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2941 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2942 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2943 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2944 2945 switch (gpsz) { 2946 default: 2947 gpsz = GIC_PAGE_SIZE_4K; 2948 fallthrough; 2949 case GIC_PAGE_SIZE_4K: 2950 psz = SZ_4K; 2951 break; 2952 case GIC_PAGE_SIZE_16K: 2953 psz = SZ_16K; 2954 break; 2955 case GIC_PAGE_SIZE_64K: 2956 psz = SZ_64K; 2957 break; 2958 } 2959 2960 /* 2961 * Start populating the register from scratch, including RO fields 2962 * (which we want to print in debug cases...) 2963 */ 2964 val = 0; 2965 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2966 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2967 2968 /* How many entries per GIC page? */ 2969 esz++; 2970 epp = psz / (esz * SZ_8); 2971 2972 /* 2973 * If we need more than just a single L1 page, flag the table 2974 * as indirect and compute the number of required L1 pages. 2975 */ 2976 if (epp < ITS_MAX_VPEID) { 2977 int nl2; 2978 2979 val |= GICR_VPROPBASER_4_1_INDIRECT; 2980 2981 /* Number of L2 pages required to cover the VPEID space */ 2982 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2983 2984 /* Number of L1 pages to point to the L2 pages */ 2985 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2986 } else { 2987 npg = 1; 2988 } 2989 2990 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2991 2992 /* Right, that's the number of CPU pages we need for L1 */ 2993 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2994 2995 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2996 np, npg, psz, epp, esz); 2997 page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2998 if (!page) 2999 return -ENOMEM; 3000 3001 gic_data_rdist()->vpe_l1_base = page_address(page); 3002 pa = virt_to_phys(page_address(page)); 3003 WARN_ON(!IS_ALIGNED(pa, psz)); 3004 3005 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 3006 if (rdists_support_shareable()) { 3007 val |= GICR_VPROPBASER_RaWb; 3008 val |= GICR_VPROPBASER_InnerShareable; 3009 } 3010 val |= GICR_VPROPBASER_4_1_Z; 3011 val |= GICR_VPROPBASER_4_1_VALID; 3012 3013 out: 3014 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3015 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 3016 3017 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 3018 smp_processor_id(), val, 3019 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 3020 3021 return 0; 3022 } 3023 3024 static int its_alloc_collections(struct its_node *its) 3025 { 3026 int i; 3027 3028 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 3029 GFP_KERNEL); 3030 if (!its->collections) 3031 return -ENOMEM; 3032 3033 for (i = 0; i < nr_cpu_ids; i++) 3034 its->collections[i].target_address = ~0ULL; 3035 3036 return 0; 3037 } 3038 3039 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 3040 { 3041 struct page *pend_page; 3042 3043 pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ)); 3044 if (!pend_page) 3045 return NULL; 3046 3047 /* Make sure the GIC will observe the zero-ed page */ 3048 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 3049 3050 return pend_page; 3051 } 3052 3053 static void its_free_pending_table(struct page *pt) 3054 { 3055 its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ)); 3056 } 3057 3058 /* 3059 * Booting with kdump and LPIs enabled is generally fine. Any other 3060 * case is wrong in the absence of firmware/EFI support. 3061 */ 3062 static bool enabled_lpis_allowed(void) 3063 { 3064 phys_addr_t addr; 3065 u64 val; 3066 3067 /* Check whether the property table is in a reserved region */ 3068 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 3069 addr = val & GENMASK_ULL(51, 12); 3070 3071 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 3072 } 3073 3074 static int __init allocate_lpi_tables(void) 3075 { 3076 u64 val; 3077 int err, cpu; 3078 3079 /* 3080 * If LPIs are enabled while we run this from the boot CPU, 3081 * flag the RD tables as pre-allocated if the stars do align. 3082 */ 3083 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3084 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3085 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3086 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3087 pr_info("GICv3: Using preallocated redistributor tables\n"); 3088 } 3089 3090 err = its_setup_lpi_prop_table(); 3091 if (err) 3092 return err; 3093 3094 /* 3095 * We allocate all the pending tables anyway, as we may have a 3096 * mix of RDs that have had LPIs enabled, and some that 3097 * don't. We'll free the unused ones as each CPU comes online. 3098 */ 3099 for_each_possible_cpu(cpu) { 3100 struct page *pend_page; 3101 3102 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3103 if (!pend_page) { 3104 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3105 return -ENOMEM; 3106 } 3107 3108 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3109 } 3110 3111 return 0; 3112 } 3113 3114 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3115 { 3116 u32 count = 1000000; /* 1s! */ 3117 bool clean; 3118 u64 val; 3119 3120 do { 3121 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3122 clean = !(val & GICR_VPENDBASER_Dirty); 3123 if (!clean) { 3124 count--; 3125 cpu_relax(); 3126 udelay(1); 3127 } 3128 } while (!clean && count); 3129 3130 if (unlikely(!clean)) 3131 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3132 3133 return val; 3134 } 3135 3136 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3137 { 3138 u64 val; 3139 3140 /* Make sure we wait until the RD is done with the initial scan */ 3141 val = read_vpend_dirty_clear(vlpi_base); 3142 val &= ~GICR_VPENDBASER_Valid; 3143 val &= ~clr; 3144 val |= set; 3145 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3146 3147 val = read_vpend_dirty_clear(vlpi_base); 3148 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3149 val |= GICR_VPENDBASER_PendingLast; 3150 3151 return val; 3152 } 3153 3154 static void its_cpu_init_lpis(void) 3155 { 3156 void __iomem *rbase = gic_data_rdist_rd_base(); 3157 struct page *pend_page; 3158 phys_addr_t paddr; 3159 u64 val, tmp; 3160 3161 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3162 return; 3163 3164 val = readl_relaxed(rbase + GICR_CTLR); 3165 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3166 (val & GICR_CTLR_ENABLE_LPIS)) { 3167 /* 3168 * Check that we get the same property table on all 3169 * RDs. If we don't, this is hopeless. 3170 */ 3171 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3172 paddr &= GENMASK_ULL(51, 12); 3173 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3174 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3175 3176 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3177 paddr &= GENMASK_ULL(51, 16); 3178 3179 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3180 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3181 3182 goto out; 3183 } 3184 3185 pend_page = gic_data_rdist()->pend_page; 3186 paddr = page_to_phys(pend_page); 3187 3188 /* set PROPBASE */ 3189 val = (gic_rdists->prop_table_pa | 3190 GICR_PROPBASER_InnerShareable | 3191 GICR_PROPBASER_RaWaWb | 3192 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3193 3194 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3195 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3196 3197 if (!rdists_support_shareable()) 3198 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3199 3200 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3201 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3202 /* 3203 * The HW reports non-shareable, we must 3204 * remove the cacheability attributes as 3205 * well. 3206 */ 3207 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3208 GICR_PROPBASER_CACHEABILITY_MASK); 3209 val |= GICR_PROPBASER_nC; 3210 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3211 } 3212 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3213 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3214 } 3215 3216 /* set PENDBASE */ 3217 val = (page_to_phys(pend_page) | 3218 GICR_PENDBASER_InnerShareable | 3219 GICR_PENDBASER_RaWaWb); 3220 3221 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3222 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3223 3224 if (!rdists_support_shareable()) 3225 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3226 3227 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3228 /* 3229 * The HW reports non-shareable, we must remove the 3230 * cacheability attributes as well. 3231 */ 3232 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3233 GICR_PENDBASER_CACHEABILITY_MASK); 3234 val |= GICR_PENDBASER_nC; 3235 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3236 } 3237 3238 /* Enable LPIs */ 3239 val = readl_relaxed(rbase + GICR_CTLR); 3240 val |= GICR_CTLR_ENABLE_LPIS; 3241 writel_relaxed(val, rbase + GICR_CTLR); 3242 3243 out: 3244 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3245 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3246 3247 /* 3248 * It's possible for CPU to receive VLPIs before it is 3249 * scheduled as a vPE, especially for the first CPU, and the 3250 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3251 * as out of range and dropped by GIC. 3252 * So we initialize IDbits to known value to avoid VLPI drop. 3253 */ 3254 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3255 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3256 smp_processor_id(), val); 3257 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3258 3259 /* 3260 * Also clear Valid bit of GICR_VPENDBASER, in case some 3261 * ancient programming gets left in and has possibility of 3262 * corrupting memory. 3263 */ 3264 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3265 } 3266 3267 if (allocate_vpe_l1_table()) { 3268 /* 3269 * If the allocation has failed, we're in massive trouble. 3270 * Disable direct injection, and pray that no VM was 3271 * already running... 3272 */ 3273 gic_rdists->has_rvpeid = false; 3274 gic_rdists->has_vlpis = false; 3275 } 3276 3277 /* Make sure the GIC has seen the above */ 3278 dsb(sy); 3279 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3280 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3281 smp_processor_id(), 3282 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3283 "reserved" : "allocated", 3284 &paddr); 3285 } 3286 3287 static void its_cpu_init_collection(struct its_node *its) 3288 { 3289 int cpu = smp_processor_id(); 3290 u64 target; 3291 3292 /* avoid cross node collections and its mapping */ 3293 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3294 struct device_node *cpu_node; 3295 3296 cpu_node = of_get_cpu_node(cpu, NULL); 3297 if (its->numa_node != NUMA_NO_NODE && 3298 its->numa_node != of_node_to_nid(cpu_node)) 3299 return; 3300 } 3301 3302 /* 3303 * We now have to bind each collection to its target 3304 * redistributor. 3305 */ 3306 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3307 /* 3308 * This ITS wants the physical address of the 3309 * redistributor. 3310 */ 3311 target = gic_data_rdist()->phys_base; 3312 } else { 3313 /* This ITS wants a linear CPU number. */ 3314 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3315 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3316 } 3317 3318 /* Perform collection mapping */ 3319 its->collections[cpu].target_address = target; 3320 its->collections[cpu].col_id = cpu; 3321 3322 its_send_mapc(its, &its->collections[cpu], 1); 3323 its_send_invall(its, &its->collections[cpu]); 3324 } 3325 3326 static void its_cpu_init_collections(void) 3327 { 3328 struct its_node *its; 3329 3330 raw_spin_lock(&its_lock); 3331 3332 list_for_each_entry(its, &its_nodes, entry) 3333 its_cpu_init_collection(its); 3334 3335 raw_spin_unlock(&its_lock); 3336 } 3337 3338 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3339 { 3340 struct its_device *its_dev = NULL, *tmp; 3341 unsigned long flags; 3342 3343 raw_spin_lock_irqsave(&its->lock, flags); 3344 3345 list_for_each_entry(tmp, &its->its_device_list, entry) { 3346 if (tmp->device_id == dev_id) { 3347 its_dev = tmp; 3348 break; 3349 } 3350 } 3351 3352 raw_spin_unlock_irqrestore(&its->lock, flags); 3353 3354 return its_dev; 3355 } 3356 3357 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3358 { 3359 int i; 3360 3361 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3362 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3363 return &its->tables[i]; 3364 } 3365 3366 return NULL; 3367 } 3368 3369 static bool its_alloc_table_entry(struct its_node *its, 3370 struct its_baser *baser, u32 id) 3371 { 3372 struct page *page; 3373 u32 esz, idx; 3374 __le64 *table; 3375 3376 /* Don't allow device id that exceeds single, flat table limit */ 3377 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3378 if (!(baser->val & GITS_BASER_INDIRECT)) 3379 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3380 3381 /* Compute 1st level table index & check if that exceeds table limit */ 3382 idx = id >> ilog2(baser->psz / esz); 3383 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3384 return false; 3385 3386 table = baser->base; 3387 3388 /* Allocate memory for 2nd level table */ 3389 if (!table[idx]) { 3390 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3391 get_order(baser->psz)); 3392 if (!page) 3393 return false; 3394 3395 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3396 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3397 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3398 3399 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3400 3401 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3402 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3403 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3404 3405 /* Ensure updated table contents are visible to ITS hardware */ 3406 dsb(sy); 3407 } 3408 3409 return true; 3410 } 3411 3412 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3413 { 3414 struct its_baser *baser; 3415 3416 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3417 3418 /* Don't allow device id that exceeds ITS hardware limit */ 3419 if (!baser) 3420 return (ilog2(dev_id) < device_ids(its)); 3421 3422 return its_alloc_table_entry(its, baser, dev_id); 3423 } 3424 3425 static bool its_alloc_vpe_table(u32 vpe_id) 3426 { 3427 struct its_node *its; 3428 int cpu; 3429 3430 /* 3431 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3432 * could try and only do it on ITSs corresponding to devices 3433 * that have interrupts targeted at this VPE, but the 3434 * complexity becomes crazy (and you have tons of memory 3435 * anyway, right?). 3436 */ 3437 list_for_each_entry(its, &its_nodes, entry) { 3438 struct its_baser *baser; 3439 3440 if (!is_v4(its)) 3441 continue; 3442 3443 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3444 if (!baser) 3445 return false; 3446 3447 if (!its_alloc_table_entry(its, baser, vpe_id)) 3448 return false; 3449 } 3450 3451 /* Non v4.1? No need to iterate RDs and go back early. */ 3452 if (!gic_rdists->has_rvpeid) 3453 return true; 3454 3455 /* 3456 * Make sure the L2 tables are allocated for all copies of 3457 * the L1 table on *all* v4.1 RDs. 3458 */ 3459 for_each_possible_cpu(cpu) { 3460 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3461 return false; 3462 } 3463 3464 return true; 3465 } 3466 3467 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3468 int nvecs, bool alloc_lpis) 3469 { 3470 struct its_device *dev; 3471 unsigned long *lpi_map = NULL; 3472 unsigned long flags; 3473 u16 *col_map = NULL; 3474 void *itt; 3475 int lpi_base; 3476 int nr_lpis; 3477 int nr_ites; 3478 int sz; 3479 3480 if (!its_alloc_device_table(its, dev_id)) 3481 return NULL; 3482 3483 if (WARN_ON(!is_power_of_2(nvecs))) 3484 nvecs = roundup_pow_of_two(nvecs); 3485 3486 /* 3487 * Even if the device wants a single LPI, the ITT must be 3488 * sized as a power of two (and you need at least one bit...). 3489 */ 3490 nr_ites = max(2, nvecs); 3491 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3492 sz = max(sz, ITS_ITT_ALIGN); 3493 3494 itt = itt_alloc_pool(its->numa_node, sz); 3495 3496 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3497 3498 if (alloc_lpis) { 3499 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3500 if (lpi_map) 3501 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3502 GFP_KERNEL); 3503 } else { 3504 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3505 nr_lpis = 0; 3506 lpi_base = 0; 3507 } 3508 3509 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3510 kfree(dev); 3511 itt_free_pool(itt, sz); 3512 bitmap_free(lpi_map); 3513 kfree(col_map); 3514 return NULL; 3515 } 3516 3517 gic_flush_dcache_to_poc(itt, sz); 3518 3519 dev->its = its; 3520 dev->itt = itt; 3521 dev->itt_sz = sz; 3522 dev->nr_ites = nr_ites; 3523 dev->event_map.lpi_map = lpi_map; 3524 dev->event_map.col_map = col_map; 3525 dev->event_map.lpi_base = lpi_base; 3526 dev->event_map.nr_lpis = nr_lpis; 3527 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3528 dev->device_id = dev_id; 3529 INIT_LIST_HEAD(&dev->entry); 3530 3531 raw_spin_lock_irqsave(&its->lock, flags); 3532 list_add(&dev->entry, &its->its_device_list); 3533 raw_spin_unlock_irqrestore(&its->lock, flags); 3534 3535 /* Map device to its ITT */ 3536 its_send_mapd(dev, 1); 3537 3538 return dev; 3539 } 3540 3541 static void its_free_device(struct its_device *its_dev) 3542 { 3543 unsigned long flags; 3544 3545 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3546 list_del(&its_dev->entry); 3547 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3548 kfree(its_dev->event_map.col_map); 3549 itt_free_pool(its_dev->itt, its_dev->itt_sz); 3550 kfree(its_dev); 3551 } 3552 3553 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3554 { 3555 int idx; 3556 3557 /* Find a free LPI region in lpi_map and allocate them. */ 3558 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3559 dev->event_map.nr_lpis, 3560 get_count_order(nvecs)); 3561 if (idx < 0) 3562 return -ENOSPC; 3563 3564 *hwirq = dev->event_map.lpi_base + idx; 3565 3566 return 0; 3567 } 3568 3569 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3570 int nvec, msi_alloc_info_t *info) 3571 { 3572 struct its_node *its; 3573 struct its_device *its_dev; 3574 struct msi_domain_info *msi_info; 3575 u32 dev_id; 3576 int err = 0; 3577 3578 /* 3579 * We ignore "dev" entirely, and rely on the dev_id that has 3580 * been passed via the scratchpad. This limits this domain's 3581 * usefulness to upper layers that definitely know that they 3582 * are built on top of the ITS. 3583 */ 3584 dev_id = info->scratchpad[0].ul; 3585 3586 msi_info = msi_get_domain_info(domain); 3587 its = msi_info->data; 3588 3589 if (!gic_rdists->has_direct_lpi && 3590 vpe_proxy.dev && 3591 vpe_proxy.dev->its == its && 3592 dev_id == vpe_proxy.dev->device_id) { 3593 /* Bad luck. Get yourself a better implementation */ 3594 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3595 dev_id); 3596 return -EINVAL; 3597 } 3598 3599 mutex_lock(&its->dev_alloc_lock); 3600 its_dev = its_find_device(its, dev_id); 3601 if (its_dev) { 3602 /* 3603 * We already have seen this ID, probably through 3604 * another alias (PCI bridge of some sort). No need to 3605 * create the device. 3606 */ 3607 its_dev->shared = true; 3608 pr_debug("Reusing ITT for devID %x\n", dev_id); 3609 goto out; 3610 } 3611 3612 its_dev = its_create_device(its, dev_id, nvec, true); 3613 if (!its_dev) { 3614 err = -ENOMEM; 3615 goto out; 3616 } 3617 3618 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3619 its_dev->shared = true; 3620 3621 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3622 out: 3623 mutex_unlock(&its->dev_alloc_lock); 3624 info->scratchpad[0].ptr = its_dev; 3625 return err; 3626 } 3627 3628 static void its_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *info) 3629 { 3630 struct its_device *its_dev = info->scratchpad[0].ptr; 3631 3632 guard(mutex)(&its_dev->its->dev_alloc_lock); 3633 3634 /* If the device is shared, keep everything around */ 3635 if (its_dev->shared) 3636 return; 3637 3638 /* LPIs should have been already unmapped at this stage */ 3639 if (WARN_ON_ONCE(!bitmap_empty(its_dev->event_map.lpi_map, 3640 its_dev->event_map.nr_lpis))) 3641 return; 3642 3643 its_lpi_free(its_dev->event_map.lpi_map, 3644 its_dev->event_map.lpi_base, 3645 its_dev->event_map.nr_lpis); 3646 3647 /* Unmap device/itt, and get rid of the tracking */ 3648 its_send_mapd(its_dev, 0); 3649 its_free_device(its_dev); 3650 } 3651 3652 static struct msi_domain_ops its_msi_domain_ops = { 3653 .msi_prepare = its_msi_prepare, 3654 .msi_teardown = its_msi_teardown, 3655 }; 3656 3657 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3658 unsigned int virq, 3659 irq_hw_number_t hwirq) 3660 { 3661 struct irq_fwspec fwspec; 3662 3663 if (irq_domain_get_of_node(domain->parent)) { 3664 fwspec.fwnode = domain->parent->fwnode; 3665 fwspec.param_count = 3; 3666 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3667 fwspec.param[1] = hwirq; 3668 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3669 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3670 fwspec.fwnode = domain->parent->fwnode; 3671 fwspec.param_count = 2; 3672 fwspec.param[0] = hwirq; 3673 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3674 } else { 3675 return -EINVAL; 3676 } 3677 3678 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3679 } 3680 3681 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3682 unsigned int nr_irqs, void *args) 3683 { 3684 msi_alloc_info_t *info = args; 3685 struct its_device *its_dev = info->scratchpad[0].ptr; 3686 struct its_node *its = its_dev->its; 3687 struct irq_data *irqd; 3688 irq_hw_number_t hwirq; 3689 int err; 3690 int i; 3691 3692 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3693 if (err) 3694 return err; 3695 3696 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3697 if (err) 3698 return err; 3699 3700 for (i = 0; i < nr_irqs; i++) { 3701 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3702 if (err) 3703 return err; 3704 3705 irq_domain_set_hwirq_and_chip(domain, virq + i, 3706 hwirq + i, &its_irq_chip, its_dev); 3707 irqd = irq_get_irq_data(virq + i); 3708 irqd_set_single_target(irqd); 3709 irqd_set_affinity_on_activate(irqd); 3710 irqd_set_resend_when_in_progress(irqd); 3711 pr_debug("ID:%d pID:%d vID:%d\n", 3712 (int)(hwirq + i - its_dev->event_map.lpi_base), 3713 (int)(hwirq + i), virq + i); 3714 } 3715 3716 return 0; 3717 } 3718 3719 static int its_irq_domain_activate(struct irq_domain *domain, 3720 struct irq_data *d, bool reserve) 3721 { 3722 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3723 u32 event = its_get_event_id(d); 3724 int cpu; 3725 3726 cpu = its_select_cpu(d, cpu_online_mask); 3727 if (cpu < 0 || cpu >= nr_cpu_ids) 3728 return -EINVAL; 3729 3730 its_inc_lpi_count(d, cpu); 3731 its_dev->event_map.col_map[event] = cpu; 3732 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3733 3734 /* Map the GIC IRQ and event to the device */ 3735 its_send_mapti(its_dev, d->hwirq, event); 3736 return 0; 3737 } 3738 3739 static void its_irq_domain_deactivate(struct irq_domain *domain, 3740 struct irq_data *d) 3741 { 3742 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3743 u32 event = its_get_event_id(d); 3744 3745 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3746 /* Stop the delivery of interrupts */ 3747 its_send_discard(its_dev, event); 3748 } 3749 3750 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3751 unsigned int nr_irqs) 3752 { 3753 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3754 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3755 int i; 3756 3757 bitmap_release_region(its_dev->event_map.lpi_map, 3758 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3759 get_count_order(nr_irqs)); 3760 3761 for (i = 0; i < nr_irqs; i++) { 3762 struct irq_data *data = irq_domain_get_irq_data(domain, 3763 virq + i); 3764 /* Nuke the entry in the domain */ 3765 irq_domain_reset_irq_data(data); 3766 } 3767 3768 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3769 } 3770 3771 static const struct irq_domain_ops its_domain_ops = { 3772 .select = msi_lib_irq_domain_select, 3773 .alloc = its_irq_domain_alloc, 3774 .free = its_irq_domain_free, 3775 .activate = its_irq_domain_activate, 3776 .deactivate = its_irq_domain_deactivate, 3777 }; 3778 3779 /* 3780 * This is insane. 3781 * 3782 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3783 * likely), the only way to perform an invalidate is to use a fake 3784 * device to issue an INV command, implying that the LPI has first 3785 * been mapped to some event on that device. Since this is not exactly 3786 * cheap, we try to keep that mapping around as long as possible, and 3787 * only issue an UNMAP if we're short on available slots. 3788 * 3789 * Broken by design(tm). 3790 * 3791 * GICv4.1, on the other hand, mandates that we're able to invalidate 3792 * by writing to a MMIO register. It doesn't implement the whole of 3793 * DirectLPI, but that's good enough. And most of the time, we don't 3794 * even have to invalidate anything, as the redistributor can be told 3795 * whether to generate a doorbell or not (we thus leave it enabled, 3796 * always). 3797 */ 3798 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3799 { 3800 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3801 if (gic_rdists->has_rvpeid) 3802 return; 3803 3804 /* Already unmapped? */ 3805 if (vpe->vpe_proxy_event == -1) 3806 return; 3807 3808 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3809 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3810 3811 /* 3812 * We don't track empty slots at all, so let's move the 3813 * next_victim pointer if we can quickly reuse that slot 3814 * instead of nuking an existing entry. Not clear that this is 3815 * always a win though, and this might just generate a ripple 3816 * effect... Let's just hope VPEs don't migrate too often. 3817 */ 3818 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3819 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3820 3821 vpe->vpe_proxy_event = -1; 3822 } 3823 3824 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3825 { 3826 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3827 if (gic_rdists->has_rvpeid) 3828 return; 3829 3830 if (!gic_rdists->has_direct_lpi) { 3831 unsigned long flags; 3832 3833 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3834 its_vpe_db_proxy_unmap_locked(vpe); 3835 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3836 } 3837 } 3838 3839 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3840 { 3841 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3842 if (gic_rdists->has_rvpeid) 3843 return; 3844 3845 /* Already mapped? */ 3846 if (vpe->vpe_proxy_event != -1) 3847 return; 3848 3849 /* This slot was already allocated. Kick the other VPE out. */ 3850 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3851 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3852 3853 /* Map the new VPE instead */ 3854 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3855 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3856 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3857 3858 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3859 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3860 } 3861 3862 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3863 { 3864 unsigned long flags; 3865 struct its_collection *target_col; 3866 3867 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3868 if (gic_rdists->has_rvpeid) 3869 return; 3870 3871 if (gic_rdists->has_direct_lpi) { 3872 void __iomem *rdbase; 3873 3874 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3875 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3876 wait_for_syncr(rdbase); 3877 3878 return; 3879 } 3880 3881 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3882 3883 its_vpe_db_proxy_map_locked(vpe); 3884 3885 target_col = &vpe_proxy.dev->its->collections[to]; 3886 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3887 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3888 3889 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3890 } 3891 3892 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe) 3893 { 3894 void __iomem *rdbase; 3895 u64 val; 3896 3897 val = GICR_INVALLR_V; 3898 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 3899 3900 guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock); 3901 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 3902 gic_write_lpir(val, rdbase + GICR_INVALLR); 3903 wait_for_syncr(rdbase); 3904 } 3905 3906 static int its_vpe_set_affinity(struct irq_data *d, 3907 const struct cpumask *mask_val, 3908 bool force) 3909 { 3910 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3911 unsigned int from, cpu = nr_cpu_ids; 3912 struct cpumask *table_mask; 3913 struct its_node *its; 3914 unsigned long flags; 3915 3916 /* 3917 * Check if we're racing against a VPE being destroyed, for 3918 * which we don't want to allow a VMOVP. 3919 */ 3920 if (!atomic_read(&vpe->vmapp_count)) { 3921 if (gic_requires_eager_mapping()) 3922 return -EINVAL; 3923 3924 /* 3925 * If we lazily map the VPEs, this isn't an error and 3926 * we can exit cleanly. 3927 */ 3928 cpu = cpumask_first(mask_val); 3929 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3930 return IRQ_SET_MASK_OK_DONE; 3931 } 3932 3933 /* 3934 * Changing affinity is mega expensive, so let's be as lazy as 3935 * we can and only do it if we really have to. Also, if mapped 3936 * into the proxy device, we need to move the doorbell 3937 * interrupt to its new location. 3938 * 3939 * Another thing is that changing the affinity of a vPE affects 3940 * *other interrupts* such as all the vLPIs that are routed to 3941 * this vPE. This means that the irq_desc lock is not enough to 3942 * protect us, and that we must ensure nobody samples vpe->col_idx 3943 * during the update, hence the lock below which must also be 3944 * taken on any vLPI handling path that evaluates vpe->col_idx. 3945 * 3946 * Finally, we must protect ourselves against concurrent updates of 3947 * the mapping state on this VM should the ITS list be in use (see 3948 * the shortcut in its_send_vmovp() otherewise). 3949 */ 3950 if (its_list_map) 3951 raw_spin_lock(&vpe->its_vm->vmapp_lock); 3952 3953 from = vpe_to_cpuid_lock(vpe, &flags); 3954 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3955 3956 /* 3957 * If we are offered another CPU in the same GICv4.1 ITS 3958 * affinity, pick this one. Otherwise, any CPU will do. 3959 */ 3960 if (table_mask) 3961 cpu = cpumask_any_and(mask_val, table_mask); 3962 if (cpu < nr_cpu_ids) { 3963 if (cpumask_test_cpu(from, mask_val) && 3964 cpumask_test_cpu(from, table_mask)) 3965 cpu = from; 3966 } else { 3967 cpu = cpumask_first(mask_val); 3968 } 3969 3970 if (from == cpu) 3971 goto out; 3972 3973 vpe->col_idx = cpu; 3974 3975 its_send_vmovp(vpe); 3976 3977 its = find_4_1_its(); 3978 if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801) 3979 its_vpe_4_1_invall_locked(cpu, vpe); 3980 3981 its_vpe_db_proxy_move(vpe, from, cpu); 3982 3983 out: 3984 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3985 vpe_to_cpuid_unlock(vpe, flags); 3986 3987 if (its_list_map) 3988 raw_spin_unlock(&vpe->its_vm->vmapp_lock); 3989 3990 return IRQ_SET_MASK_OK_DONE; 3991 } 3992 3993 static void its_wait_vpt_parse_complete(void) 3994 { 3995 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3996 u64 val; 3997 3998 if (!gic_rdists->has_vpend_valid_dirty) 3999 return; 4000 4001 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 4002 val, 4003 !(val & GICR_VPENDBASER_Dirty), 4004 1, 500)); 4005 } 4006 4007 static void its_vpe_schedule(struct its_vpe *vpe) 4008 { 4009 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4010 u64 val; 4011 4012 /* Schedule the VPE */ 4013 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 4014 GENMASK_ULL(51, 12); 4015 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 4016 if (rdists_support_shareable()) { 4017 val |= GICR_VPROPBASER_RaWb; 4018 val |= GICR_VPROPBASER_InnerShareable; 4019 } 4020 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 4021 4022 val = virt_to_phys(page_address(vpe->vpt_page)) & 4023 GENMASK_ULL(51, 16); 4024 if (rdists_support_shareable()) { 4025 val |= GICR_VPENDBASER_RaWaWb; 4026 val |= GICR_VPENDBASER_InnerShareable; 4027 } 4028 /* 4029 * There is no good way of finding out if the pending table is 4030 * empty as we can race against the doorbell interrupt very 4031 * easily. So in the end, vpe->pending_last is only an 4032 * indication that the vcpu has something pending, not one 4033 * that the pending table is empty. A good implementation 4034 * would be able to read its coarse map pretty quickly anyway, 4035 * making this a tolerable issue. 4036 */ 4037 val |= GICR_VPENDBASER_PendingLast; 4038 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 4039 val |= GICR_VPENDBASER_Valid; 4040 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4041 } 4042 4043 static void its_vpe_deschedule(struct its_vpe *vpe) 4044 { 4045 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4046 u64 val; 4047 4048 val = its_clear_vpend_valid(vlpi_base, 0, 0); 4049 4050 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 4051 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4052 } 4053 4054 static void its_vpe_invall(struct its_vpe *vpe) 4055 { 4056 struct its_node *its; 4057 4058 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock); 4059 4060 list_for_each_entry(its, &its_nodes, entry) { 4061 if (!is_v4(its)) 4062 continue; 4063 4064 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 4065 continue; 4066 4067 /* 4068 * Sending a VINVALL to a single ITS is enough, as all 4069 * we need is to reach the redistributors. 4070 */ 4071 its_send_vinvall(its, vpe); 4072 return; 4073 } 4074 } 4075 4076 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4077 { 4078 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4079 struct its_cmd_info *info = vcpu_info; 4080 4081 switch (info->cmd_type) { 4082 case SCHEDULE_VPE: 4083 its_vpe_schedule(vpe); 4084 return 0; 4085 4086 case DESCHEDULE_VPE: 4087 its_vpe_deschedule(vpe); 4088 return 0; 4089 4090 case COMMIT_VPE: 4091 its_wait_vpt_parse_complete(); 4092 return 0; 4093 4094 case INVALL_VPE: 4095 its_vpe_invall(vpe); 4096 return 0; 4097 4098 default: 4099 return -EINVAL; 4100 } 4101 } 4102 4103 static void its_vpe_send_cmd(struct its_vpe *vpe, 4104 void (*cmd)(struct its_device *, u32)) 4105 { 4106 unsigned long flags; 4107 4108 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 4109 4110 its_vpe_db_proxy_map_locked(vpe); 4111 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 4112 4113 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 4114 } 4115 4116 static void its_vpe_send_inv(struct irq_data *d) 4117 { 4118 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4119 4120 if (gic_rdists->has_direct_lpi) 4121 __direct_lpi_inv(d, d->parent_data->hwirq); 4122 else 4123 its_vpe_send_cmd(vpe, its_send_inv); 4124 } 4125 4126 static void its_vpe_mask_irq(struct irq_data *d) 4127 { 4128 /* 4129 * We need to unmask the LPI, which is described by the parent 4130 * irq_data. Instead of calling into the parent (which won't 4131 * exactly do the right thing, let's simply use the 4132 * parent_data pointer. Yes, I'm naughty. 4133 */ 4134 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4135 its_vpe_send_inv(d); 4136 } 4137 4138 static void its_vpe_unmask_irq(struct irq_data *d) 4139 { 4140 /* Same hack as above... */ 4141 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4142 its_vpe_send_inv(d); 4143 } 4144 4145 static int its_vpe_set_irqchip_state(struct irq_data *d, 4146 enum irqchip_irq_state which, 4147 bool state) 4148 { 4149 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4150 4151 if (which != IRQCHIP_STATE_PENDING) 4152 return -EINVAL; 4153 4154 if (gic_rdists->has_direct_lpi) { 4155 void __iomem *rdbase; 4156 4157 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4158 if (state) { 4159 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4160 } else { 4161 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4162 wait_for_syncr(rdbase); 4163 } 4164 } else { 4165 if (state) 4166 its_vpe_send_cmd(vpe, its_send_int); 4167 else 4168 its_vpe_send_cmd(vpe, its_send_clear); 4169 } 4170 4171 return 0; 4172 } 4173 4174 static int its_vpe_retrigger(struct irq_data *d) 4175 { 4176 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4177 } 4178 4179 static struct irq_chip its_vpe_irq_chip = { 4180 .name = "GICv4-vpe", 4181 .irq_mask = its_vpe_mask_irq, 4182 .irq_unmask = its_vpe_unmask_irq, 4183 .irq_eoi = irq_chip_eoi_parent, 4184 .irq_set_affinity = its_vpe_set_affinity, 4185 .irq_retrigger = its_vpe_retrigger, 4186 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4187 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4188 }; 4189 4190 static struct its_node *find_4_1_its(void) 4191 { 4192 struct its_node *its = *this_cpu_ptr(&local_4_1_its); 4193 4194 if (!its) { 4195 list_for_each_entry(its, &its_nodes, entry) { 4196 if (is_v4_1(its)) 4197 return its; 4198 } 4199 4200 /* Oops? */ 4201 its = NULL; 4202 } 4203 4204 return its; 4205 } 4206 4207 static void its_vpe_4_1_send_inv(struct irq_data *d) 4208 { 4209 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4210 struct its_node *its; 4211 4212 /* 4213 * GICv4.1 wants doorbells to be invalidated using the 4214 * INVDB command in order to be broadcast to all RDs. Send 4215 * it to the first valid ITS, and let the HW do its magic. 4216 */ 4217 its = find_4_1_its(); 4218 if (its) 4219 its_send_invdb(its, vpe); 4220 } 4221 4222 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4223 { 4224 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4225 its_vpe_4_1_send_inv(d); 4226 } 4227 4228 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4229 { 4230 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4231 its_vpe_4_1_send_inv(d); 4232 } 4233 4234 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4235 struct its_cmd_info *info) 4236 { 4237 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4238 u64 val = 0; 4239 4240 /* Schedule the VPE */ 4241 val |= GICR_VPENDBASER_Valid; 4242 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4243 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4244 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4245 4246 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4247 } 4248 4249 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4250 struct its_cmd_info *info) 4251 { 4252 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4253 u64 val; 4254 4255 if (info->req_db) { 4256 unsigned long flags; 4257 4258 /* 4259 * vPE is going to block: make the vPE non-resident with 4260 * PendingLast clear and DB set. The GIC guarantees that if 4261 * we read-back PendingLast clear, then a doorbell will be 4262 * delivered when an interrupt comes. 4263 * 4264 * Note the locking to deal with the concurrent update of 4265 * pending_last from the doorbell interrupt handler that can 4266 * run concurrently. 4267 */ 4268 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4269 val = its_clear_vpend_valid(vlpi_base, 4270 GICR_VPENDBASER_PendingLast, 4271 GICR_VPENDBASER_4_1_DB); 4272 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4273 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4274 } else { 4275 /* 4276 * We're not blocking, so just make the vPE non-resident 4277 * with PendingLast set, indicating that we'll be back. 4278 */ 4279 val = its_clear_vpend_valid(vlpi_base, 4280 0, 4281 GICR_VPENDBASER_PendingLast); 4282 vpe->pending_last = true; 4283 } 4284 } 4285 4286 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4287 { 4288 unsigned long flags; 4289 int cpu; 4290 4291 /* Target the redistributor this vPE is currently known on */ 4292 cpu = vpe_to_cpuid_lock(vpe, &flags); 4293 its_vpe_4_1_invall_locked(cpu, vpe); 4294 vpe_to_cpuid_unlock(vpe, flags); 4295 } 4296 4297 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4298 { 4299 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4300 struct its_cmd_info *info = vcpu_info; 4301 4302 switch (info->cmd_type) { 4303 case SCHEDULE_VPE: 4304 its_vpe_4_1_schedule(vpe, info); 4305 return 0; 4306 4307 case DESCHEDULE_VPE: 4308 its_vpe_4_1_deschedule(vpe, info); 4309 return 0; 4310 4311 case COMMIT_VPE: 4312 its_wait_vpt_parse_complete(); 4313 return 0; 4314 4315 case INVALL_VPE: 4316 its_vpe_4_1_invall(vpe); 4317 return 0; 4318 4319 default: 4320 return -EINVAL; 4321 } 4322 } 4323 4324 static struct irq_chip its_vpe_4_1_irq_chip = { 4325 .name = "GICv4.1-vpe", 4326 .irq_mask = its_vpe_4_1_mask_irq, 4327 .irq_unmask = its_vpe_4_1_unmask_irq, 4328 .irq_eoi = irq_chip_eoi_parent, 4329 .irq_set_affinity = its_vpe_set_affinity, 4330 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4331 }; 4332 4333 static void its_configure_sgi(struct irq_data *d, bool clear) 4334 { 4335 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4336 struct its_cmd_desc desc; 4337 4338 desc.its_vsgi_cmd.vpe = vpe; 4339 desc.its_vsgi_cmd.sgi = d->hwirq; 4340 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4341 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4342 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4343 desc.its_vsgi_cmd.clear = clear; 4344 4345 /* 4346 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4347 * destination VPE is mapped there. Since we map them eagerly at 4348 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4349 */ 4350 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4351 } 4352 4353 static void its_sgi_mask_irq(struct irq_data *d) 4354 { 4355 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4356 4357 vpe->sgi_config[d->hwirq].enabled = false; 4358 its_configure_sgi(d, false); 4359 } 4360 4361 static void its_sgi_unmask_irq(struct irq_data *d) 4362 { 4363 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4364 4365 vpe->sgi_config[d->hwirq].enabled = true; 4366 its_configure_sgi(d, false); 4367 } 4368 4369 static int its_sgi_set_affinity(struct irq_data *d, 4370 const struct cpumask *mask_val, 4371 bool force) 4372 { 4373 /* 4374 * There is no notion of affinity for virtual SGIs, at least 4375 * not on the host (since they can only be targeting a vPE). 4376 * Tell the kernel we've done whatever it asked for. 4377 */ 4378 irq_data_update_effective_affinity(d, mask_val); 4379 return IRQ_SET_MASK_OK; 4380 } 4381 4382 static int its_sgi_set_irqchip_state(struct irq_data *d, 4383 enum irqchip_irq_state which, 4384 bool state) 4385 { 4386 if (which != IRQCHIP_STATE_PENDING) 4387 return -EINVAL; 4388 4389 if (state) { 4390 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4391 struct its_node *its = find_4_1_its(); 4392 u64 val; 4393 4394 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4395 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4396 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4397 } else { 4398 its_configure_sgi(d, true); 4399 } 4400 4401 return 0; 4402 } 4403 4404 static int its_sgi_get_irqchip_state(struct irq_data *d, 4405 enum irqchip_irq_state which, bool *val) 4406 { 4407 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4408 void __iomem *base; 4409 unsigned long flags; 4410 u32 count = 1000000; /* 1s! */ 4411 u32 status; 4412 int cpu; 4413 4414 if (which != IRQCHIP_STATE_PENDING) 4415 return -EINVAL; 4416 4417 /* 4418 * Locking galore! We can race against two different events: 4419 * 4420 * - Concurrent vPE affinity change: we must make sure it cannot 4421 * happen, or we'll talk to the wrong redistributor. This is 4422 * identical to what happens with vLPIs. 4423 * 4424 * - Concurrent VSGIPENDR access: As it involves accessing two 4425 * MMIO registers, this must be made atomic one way or another. 4426 */ 4427 cpu = vpe_to_cpuid_lock(vpe, &flags); 4428 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4429 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4430 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4431 do { 4432 status = readl_relaxed(base + GICR_VSGIPENDR); 4433 if (!(status & GICR_VSGIPENDR_BUSY)) 4434 goto out; 4435 4436 count--; 4437 if (!count) { 4438 pr_err_ratelimited("Unable to get SGI status\n"); 4439 goto out; 4440 } 4441 cpu_relax(); 4442 udelay(1); 4443 } while (count); 4444 4445 out: 4446 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4447 vpe_to_cpuid_unlock(vpe, flags); 4448 4449 if (!count) 4450 return -ENXIO; 4451 4452 *val = !!(status & (1 << d->hwirq)); 4453 4454 return 0; 4455 } 4456 4457 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4458 { 4459 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4460 struct its_cmd_info *info = vcpu_info; 4461 4462 switch (info->cmd_type) { 4463 case PROP_UPDATE_VSGI: 4464 vpe->sgi_config[d->hwirq].priority = info->priority; 4465 vpe->sgi_config[d->hwirq].group = info->group; 4466 its_configure_sgi(d, false); 4467 return 0; 4468 4469 default: 4470 return -EINVAL; 4471 } 4472 } 4473 4474 static struct irq_chip its_sgi_irq_chip = { 4475 .name = "GICv4.1-sgi", 4476 .irq_mask = its_sgi_mask_irq, 4477 .irq_unmask = its_sgi_unmask_irq, 4478 .irq_set_affinity = its_sgi_set_affinity, 4479 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4480 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4481 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4482 }; 4483 4484 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4485 unsigned int virq, unsigned int nr_irqs, 4486 void *args) 4487 { 4488 struct its_vpe *vpe = args; 4489 int i; 4490 4491 /* Yes, we do want 16 SGIs */ 4492 WARN_ON(nr_irqs != 16); 4493 4494 for (i = 0; i < 16; i++) { 4495 vpe->sgi_config[i].priority = 0; 4496 vpe->sgi_config[i].enabled = false; 4497 vpe->sgi_config[i].group = false; 4498 4499 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4500 &its_sgi_irq_chip, vpe); 4501 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4502 } 4503 4504 return 0; 4505 } 4506 4507 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4508 unsigned int virq, 4509 unsigned int nr_irqs) 4510 { 4511 /* Nothing to do */ 4512 } 4513 4514 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4515 struct irq_data *d, bool reserve) 4516 { 4517 /* Write out the initial SGI configuration */ 4518 its_configure_sgi(d, false); 4519 return 0; 4520 } 4521 4522 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4523 struct irq_data *d) 4524 { 4525 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4526 4527 /* 4528 * The VSGI command is awkward: 4529 * 4530 * - To change the configuration, CLEAR must be set to false, 4531 * leaving the pending bit unchanged. 4532 * - To clear the pending bit, CLEAR must be set to true, leaving 4533 * the configuration unchanged. 4534 * 4535 * You just can't do both at once, hence the two commands below. 4536 */ 4537 vpe->sgi_config[d->hwirq].enabled = false; 4538 its_configure_sgi(d, false); 4539 its_configure_sgi(d, true); 4540 } 4541 4542 static const struct irq_domain_ops its_sgi_domain_ops = { 4543 .alloc = its_sgi_irq_domain_alloc, 4544 .free = its_sgi_irq_domain_free, 4545 .activate = its_sgi_irq_domain_activate, 4546 .deactivate = its_sgi_irq_domain_deactivate, 4547 }; 4548 4549 static int its_vpe_id_alloc(void) 4550 { 4551 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL); 4552 } 4553 4554 static void its_vpe_id_free(u16 id) 4555 { 4556 ida_free(&its_vpeid_ida, id); 4557 } 4558 4559 static int its_vpe_init(struct its_vpe *vpe) 4560 { 4561 struct page *vpt_page; 4562 int vpe_id; 4563 4564 /* Allocate vpe_id */ 4565 vpe_id = its_vpe_id_alloc(); 4566 if (vpe_id < 0) 4567 return vpe_id; 4568 4569 /* Allocate VPT */ 4570 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4571 if (!vpt_page) { 4572 its_vpe_id_free(vpe_id); 4573 return -ENOMEM; 4574 } 4575 4576 if (!its_alloc_vpe_table(vpe_id)) { 4577 its_vpe_id_free(vpe_id); 4578 its_free_pending_table(vpt_page); 4579 return -ENOMEM; 4580 } 4581 4582 raw_spin_lock_init(&vpe->vpe_lock); 4583 vpe->vpe_id = vpe_id; 4584 vpe->vpt_page = vpt_page; 4585 atomic_set(&vpe->vmapp_count, 0); 4586 if (!gic_rdists->has_rvpeid) 4587 vpe->vpe_proxy_event = -1; 4588 4589 return 0; 4590 } 4591 4592 static void its_vpe_teardown(struct its_vpe *vpe) 4593 { 4594 its_vpe_db_proxy_unmap(vpe); 4595 its_vpe_id_free(vpe->vpe_id); 4596 its_free_pending_table(vpe->vpt_page); 4597 } 4598 4599 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4600 unsigned int virq, 4601 unsigned int nr_irqs) 4602 { 4603 struct its_vm *vm = domain->host_data; 4604 int i; 4605 4606 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4607 4608 for (i = 0; i < nr_irqs; i++) { 4609 struct irq_data *data = irq_domain_get_irq_data(domain, 4610 virq + i); 4611 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4612 4613 BUG_ON(vm != vpe->its_vm); 4614 4615 clear_bit(data->hwirq, vm->db_bitmap); 4616 its_vpe_teardown(vpe); 4617 irq_domain_reset_irq_data(data); 4618 } 4619 4620 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4621 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4622 its_free_prop_table(vm->vprop_page); 4623 } 4624 } 4625 4626 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4627 unsigned int nr_irqs, void *args) 4628 { 4629 struct irq_chip *irqchip = &its_vpe_irq_chip; 4630 struct its_vm *vm = args; 4631 unsigned long *bitmap; 4632 struct page *vprop_page; 4633 int base, nr_ids, i, err = 0; 4634 4635 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4636 if (!bitmap) 4637 return -ENOMEM; 4638 4639 if (nr_ids < nr_irqs) { 4640 its_lpi_free(bitmap, base, nr_ids); 4641 return -ENOMEM; 4642 } 4643 4644 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4645 if (!vprop_page) { 4646 its_lpi_free(bitmap, base, nr_ids); 4647 return -ENOMEM; 4648 } 4649 4650 vm->db_bitmap = bitmap; 4651 vm->db_lpi_base = base; 4652 vm->nr_db_lpis = nr_ids; 4653 vm->vprop_page = vprop_page; 4654 raw_spin_lock_init(&vm->vmapp_lock); 4655 4656 if (gic_rdists->has_rvpeid) 4657 irqchip = &its_vpe_4_1_irq_chip; 4658 4659 for (i = 0; i < nr_irqs; i++) { 4660 vm->vpes[i]->vpe_db_lpi = base + i; 4661 err = its_vpe_init(vm->vpes[i]); 4662 if (err) 4663 break; 4664 err = its_irq_gic_domain_alloc(domain, virq + i, 4665 vm->vpes[i]->vpe_db_lpi); 4666 if (err) 4667 break; 4668 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4669 irqchip, vm->vpes[i]); 4670 set_bit(i, bitmap); 4671 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4672 } 4673 4674 if (err) 4675 its_vpe_irq_domain_free(domain, virq, i); 4676 4677 return err; 4678 } 4679 4680 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4681 struct irq_data *d, bool reserve) 4682 { 4683 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4684 struct its_node *its; 4685 4686 /* Map the VPE to the first possible CPU */ 4687 vpe->col_idx = cpumask_first(cpu_online_mask); 4688 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4689 4690 /* 4691 * If we use the list map, we issue VMAPP on demand... Unless 4692 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4693 * so that VSGIs can work. 4694 */ 4695 if (!gic_requires_eager_mapping()) 4696 return 0; 4697 4698 list_for_each_entry(its, &its_nodes, entry) { 4699 if (!is_v4(its)) 4700 continue; 4701 4702 its_send_vmapp(its, vpe, true); 4703 its_send_vinvall(its, vpe); 4704 } 4705 4706 return 0; 4707 } 4708 4709 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4710 struct irq_data *d) 4711 { 4712 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4713 struct its_node *its; 4714 4715 /* 4716 * If we use the list map on GICv4.0, we unmap the VPE once no 4717 * VLPIs are associated with the VM. 4718 */ 4719 if (!gic_requires_eager_mapping()) 4720 return; 4721 4722 list_for_each_entry(its, &its_nodes, entry) { 4723 if (!is_v4(its)) 4724 continue; 4725 4726 its_send_vmapp(its, vpe, false); 4727 } 4728 4729 /* 4730 * There may be a direct read to the VPT after unmapping the 4731 * vPE, to guarantee the validity of this, we make the VPT 4732 * memory coherent with the CPU caches here. 4733 */ 4734 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4735 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4736 LPI_PENDBASE_SZ); 4737 } 4738 4739 static const struct irq_domain_ops its_vpe_domain_ops = { 4740 .alloc = its_vpe_irq_domain_alloc, 4741 .free = its_vpe_irq_domain_free, 4742 .activate = its_vpe_irq_domain_activate, 4743 .deactivate = its_vpe_irq_domain_deactivate, 4744 }; 4745 4746 static int its_force_quiescent(void __iomem *base) 4747 { 4748 u32 count = 1000000; /* 1s */ 4749 u32 val; 4750 4751 val = readl_relaxed(base + GITS_CTLR); 4752 /* 4753 * GIC architecture specification requires the ITS to be both 4754 * disabled and quiescent for writes to GITS_BASER<n> or 4755 * GITS_CBASER to not have UNPREDICTABLE results. 4756 */ 4757 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4758 return 0; 4759 4760 /* Disable the generation of all interrupts to this ITS */ 4761 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4762 writel_relaxed(val, base + GITS_CTLR); 4763 4764 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4765 while (1) { 4766 val = readl_relaxed(base + GITS_CTLR); 4767 if (val & GITS_CTLR_QUIESCENT) 4768 return 0; 4769 4770 count--; 4771 if (!count) 4772 return -EBUSY; 4773 4774 cpu_relax(); 4775 udelay(1); 4776 } 4777 } 4778 4779 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4780 { 4781 struct its_node *its = data; 4782 4783 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4784 its->typer &= ~GITS_TYPER_DEVBITS; 4785 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4786 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4787 4788 return true; 4789 } 4790 4791 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4792 { 4793 struct its_node *its = data; 4794 4795 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4796 4797 return true; 4798 } 4799 4800 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4801 { 4802 struct its_node *its = data; 4803 4804 /* On QDF2400, the size of the ITE is 16Bytes */ 4805 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4806 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4807 4808 return true; 4809 } 4810 4811 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4812 { 4813 struct its_node *its = its_dev->its; 4814 4815 /* 4816 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4817 * which maps 32-bit writes targeted at a separate window of 4818 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4819 * with device ID taken from bits [device_id_bits + 1:2] of 4820 * the window offset. 4821 */ 4822 return its->pre_its_base + (its_dev->device_id << 2); 4823 } 4824 4825 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4826 { 4827 struct its_node *its = data; 4828 u32 pre_its_window[2]; 4829 u32 ids; 4830 4831 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4832 "socionext,synquacer-pre-its", 4833 pre_its_window, 4834 ARRAY_SIZE(pre_its_window))) { 4835 4836 its->pre_its_base = pre_its_window[0]; 4837 its->get_msi_base = its_irq_get_msi_base_pre_its; 4838 4839 ids = ilog2(pre_its_window[1]) - 2; 4840 if (device_ids(its) > ids) { 4841 its->typer &= ~GITS_TYPER_DEVBITS; 4842 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4843 } 4844 4845 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4846 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4847 return true; 4848 } 4849 return false; 4850 } 4851 4852 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4853 { 4854 struct its_node *its = data; 4855 4856 /* 4857 * Hip07 insists on using the wrong address for the VLPI 4858 * page. Trick it into doing the right thing... 4859 */ 4860 its->vlpi_redist_offset = SZ_128K; 4861 return true; 4862 } 4863 4864 static bool __maybe_unused its_enable_rk3588001(void *data) 4865 { 4866 struct its_node *its = data; 4867 4868 if (!of_machine_is_compatible("rockchip,rk3588") && 4869 !of_machine_is_compatible("rockchip,rk3588s")) 4870 return false; 4871 4872 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4873 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4874 4875 return true; 4876 } 4877 4878 static bool its_set_non_coherent(void *data) 4879 { 4880 struct its_node *its = data; 4881 4882 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4883 return true; 4884 } 4885 4886 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data) 4887 { 4888 struct its_node *its = data; 4889 4890 its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801; 4891 return true; 4892 } 4893 4894 static bool __maybe_unused its_enable_rk3568002(void *data) 4895 { 4896 if (!of_machine_is_compatible("rockchip,rk3566") && 4897 !of_machine_is_compatible("rockchip,rk3568")) 4898 return false; 4899 4900 gfp_flags_quirk |= GFP_DMA32; 4901 4902 return true; 4903 } 4904 4905 static const struct gic_quirk its_quirks[] = { 4906 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4907 { 4908 .desc = "ITS: Cavium errata 22375, 24313", 4909 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4910 .mask = 0xffff0fff, 4911 .init = its_enable_quirk_cavium_22375, 4912 }, 4913 #endif 4914 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4915 { 4916 .desc = "ITS: Cavium erratum 23144", 4917 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4918 .mask = 0xffff0fff, 4919 .init = its_enable_quirk_cavium_23144, 4920 }, 4921 #endif 4922 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4923 { 4924 .desc = "ITS: QDF2400 erratum 0065", 4925 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4926 .mask = 0xffffffff, 4927 .init = its_enable_quirk_qdf2400_e0065, 4928 }, 4929 #endif 4930 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4931 { 4932 /* 4933 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4934 * implementation, but with a 'pre-ITS' added that requires 4935 * special handling in software. 4936 */ 4937 .desc = "ITS: Socionext Synquacer pre-ITS", 4938 .iidr = 0x0001143b, 4939 .mask = 0xffffffff, 4940 .init = its_enable_quirk_socionext_synquacer, 4941 }, 4942 #endif 4943 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4944 { 4945 .desc = "ITS: Hip07 erratum 161600802", 4946 .iidr = 0x00000004, 4947 .mask = 0xffffffff, 4948 .init = its_enable_quirk_hip07_161600802, 4949 }, 4950 #endif 4951 #ifdef CONFIG_HISILICON_ERRATUM_162100801 4952 { 4953 .desc = "ITS: Hip09 erratum 162100801", 4954 .iidr = 0x00051736, 4955 .mask = 0xffffffff, 4956 .init = its_enable_quirk_hip09_162100801, 4957 }, 4958 #endif 4959 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4960 { 4961 .desc = "ITS: Rockchip erratum RK3588001", 4962 .iidr = 0x0201743b, 4963 .mask = 0xffffffff, 4964 .init = its_enable_rk3588001, 4965 }, 4966 #endif 4967 { 4968 .desc = "ITS: non-coherent attribute", 4969 .property = "dma-noncoherent", 4970 .init = its_set_non_coherent, 4971 }, 4972 #ifdef CONFIG_ROCKCHIP_ERRATUM_3568002 4973 { 4974 .desc = "ITS: Rockchip erratum RK3568002", 4975 .iidr = 0x0201743b, 4976 .mask = 0xffffffff, 4977 .init = its_enable_rk3568002, 4978 }, 4979 #endif 4980 { 4981 } 4982 }; 4983 4984 static void its_enable_quirks(struct its_node *its) 4985 { 4986 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4987 4988 gic_enable_quirks(iidr, its_quirks, its); 4989 4990 if (is_of_node(its->fwnode_handle)) 4991 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4992 its_quirks, its); 4993 } 4994 4995 static int its_save_disable(void) 4996 { 4997 struct its_node *its; 4998 int err = 0; 4999 5000 raw_spin_lock(&its_lock); 5001 list_for_each_entry(its, &its_nodes, entry) { 5002 void __iomem *base; 5003 5004 base = its->base; 5005 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 5006 err = its_force_quiescent(base); 5007 if (err) { 5008 pr_err("ITS@%pa: failed to quiesce: %d\n", 5009 &its->phys_base, err); 5010 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5011 goto err; 5012 } 5013 5014 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 5015 } 5016 5017 err: 5018 if (err) { 5019 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 5020 void __iomem *base; 5021 5022 base = its->base; 5023 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5024 } 5025 } 5026 raw_spin_unlock(&its_lock); 5027 5028 return err; 5029 } 5030 5031 static void its_restore_enable(void) 5032 { 5033 struct its_node *its; 5034 int ret; 5035 5036 raw_spin_lock(&its_lock); 5037 list_for_each_entry(its, &its_nodes, entry) { 5038 void __iomem *base; 5039 int i; 5040 5041 base = its->base; 5042 5043 /* 5044 * Make sure that the ITS is disabled. If it fails to quiesce, 5045 * don't restore it since writing to CBASER or BASER<n> 5046 * registers is undefined according to the GIC v3 ITS 5047 * Specification. 5048 * 5049 * Firmware resuming with the ITS enabled is terminally broken. 5050 */ 5051 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 5052 ret = its_force_quiescent(base); 5053 if (ret) { 5054 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 5055 &its->phys_base, ret); 5056 continue; 5057 } 5058 5059 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 5060 5061 /* 5062 * Writing CBASER resets CREADR to 0, so make CWRITER and 5063 * cmd_write line up with it. 5064 */ 5065 its->cmd_write = its->cmd_base; 5066 gits_write_cwriter(0, base + GITS_CWRITER); 5067 5068 /* Restore GITS_BASER from the value cache. */ 5069 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 5070 struct its_baser *baser = &its->tables[i]; 5071 5072 if (!(baser->val & GITS_BASER_VALID)) 5073 continue; 5074 5075 its_write_baser(its, baser, baser->val); 5076 } 5077 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5078 5079 /* 5080 * Reinit the collection if it's stored in the ITS. This is 5081 * indicated by the col_id being less than the HCC field. 5082 * CID < HCC as specified in the GIC v3 Documentation. 5083 */ 5084 if (its->collections[smp_processor_id()].col_id < 5085 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 5086 its_cpu_init_collection(its); 5087 } 5088 raw_spin_unlock(&its_lock); 5089 } 5090 5091 static struct syscore_ops its_syscore_ops = { 5092 .suspend = its_save_disable, 5093 .resume = its_restore_enable, 5094 }; 5095 5096 static void __init __iomem *its_map_one(struct resource *res, int *err) 5097 { 5098 void __iomem *its_base; 5099 u32 val; 5100 5101 its_base = ioremap(res->start, SZ_64K); 5102 if (!its_base) { 5103 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 5104 *err = -ENOMEM; 5105 return NULL; 5106 } 5107 5108 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 5109 if (val != 0x30 && val != 0x40) { 5110 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 5111 *err = -ENODEV; 5112 goto out_unmap; 5113 } 5114 5115 *err = its_force_quiescent(its_base); 5116 if (*err) { 5117 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 5118 goto out_unmap; 5119 } 5120 5121 return its_base; 5122 5123 out_unmap: 5124 iounmap(its_base); 5125 return NULL; 5126 } 5127 5128 static int its_init_domain(struct its_node *its) 5129 { 5130 struct irq_domain_info dom_info = { 5131 .fwnode = its->fwnode_handle, 5132 .ops = &its_domain_ops, 5133 .domain_flags = its->msi_domain_flags, 5134 .parent = its_parent, 5135 }; 5136 struct msi_domain_info *info; 5137 5138 info = kzalloc(sizeof(*info), GFP_KERNEL); 5139 if (!info) 5140 return -ENOMEM; 5141 5142 info->ops = &its_msi_domain_ops; 5143 info->data = its; 5144 dom_info.host_data = info; 5145 5146 if (!msi_create_parent_irq_domain(&dom_info, &gic_v3_its_msi_parent_ops)) { 5147 kfree(info); 5148 return -ENOMEM; 5149 } 5150 return 0; 5151 } 5152 5153 static int its_init_vpe_domain(void) 5154 { 5155 struct its_node *its; 5156 u32 devid; 5157 int entries; 5158 5159 if (gic_rdists->has_direct_lpi) { 5160 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5161 return 0; 5162 } 5163 5164 /* Any ITS will do, even if not v4 */ 5165 its = list_first_entry(&its_nodes, struct its_node, entry); 5166 5167 entries = roundup_pow_of_two(nr_cpu_ids); 5168 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5169 GFP_KERNEL); 5170 if (!vpe_proxy.vpes) 5171 return -ENOMEM; 5172 5173 /* Use the last possible DevID */ 5174 devid = GENMASK(device_ids(its) - 1, 0); 5175 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5176 if (!vpe_proxy.dev) { 5177 kfree(vpe_proxy.vpes); 5178 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5179 return -ENOMEM; 5180 } 5181 5182 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5183 5184 raw_spin_lock_init(&vpe_proxy.lock); 5185 vpe_proxy.next_victim = 0; 5186 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5187 devid, vpe_proxy.dev->nr_ites); 5188 5189 return 0; 5190 } 5191 5192 static int __init its_compute_its_list_map(struct its_node *its) 5193 { 5194 int its_number; 5195 u32 ctlr; 5196 5197 /* 5198 * This is assumed to be done early enough that we're 5199 * guaranteed to be single-threaded, hence no 5200 * locking. Should this change, we should address 5201 * this. 5202 */ 5203 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5204 if (its_number >= GICv4_ITS_LIST_MAX) { 5205 pr_err("ITS@%pa: No ITSList entry available!\n", 5206 &its->phys_base); 5207 return -EINVAL; 5208 } 5209 5210 ctlr = readl_relaxed(its->base + GITS_CTLR); 5211 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5212 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5213 writel_relaxed(ctlr, its->base + GITS_CTLR); 5214 ctlr = readl_relaxed(its->base + GITS_CTLR); 5215 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5216 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5217 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5218 } 5219 5220 if (test_and_set_bit(its_number, &its_list_map)) { 5221 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5222 &its->phys_base, its_number); 5223 return -EINVAL; 5224 } 5225 5226 return its_number; 5227 } 5228 5229 static int __init its_probe_one(struct its_node *its) 5230 { 5231 u64 baser, tmp; 5232 struct page *page; 5233 u32 ctlr; 5234 int err; 5235 5236 its_enable_quirks(its); 5237 5238 if (is_v4(its)) { 5239 if (!(its->typer & GITS_TYPER_VMOVP)) { 5240 err = its_compute_its_list_map(its); 5241 if (err < 0) 5242 goto out; 5243 5244 its->list_nr = err; 5245 5246 pr_info("ITS@%pa: Using ITS number %d\n", 5247 &its->phys_base, err); 5248 } else { 5249 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5250 } 5251 5252 if (is_v4_1(its)) { 5253 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5254 5255 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5256 if (!its->sgir_base) { 5257 err = -ENOMEM; 5258 goto out; 5259 } 5260 5261 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5262 5263 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5264 &its->phys_base, its->mpidr, svpet); 5265 } 5266 } 5267 5268 page = its_alloc_pages_node(its->numa_node, 5269 GFP_KERNEL | __GFP_ZERO, 5270 get_order(ITS_CMD_QUEUE_SZ)); 5271 if (!page) { 5272 err = -ENOMEM; 5273 goto out_unmap_sgir; 5274 } 5275 its->cmd_base = (void *)page_address(page); 5276 its->cmd_write = its->cmd_base; 5277 5278 err = its_alloc_tables(its); 5279 if (err) 5280 goto out_free_cmd; 5281 5282 err = its_alloc_collections(its); 5283 if (err) 5284 goto out_free_tables; 5285 5286 baser = (virt_to_phys(its->cmd_base) | 5287 GITS_CBASER_RaWaWb | 5288 GITS_CBASER_InnerShareable | 5289 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5290 GITS_CBASER_VALID); 5291 5292 gits_write_cbaser(baser, its->base + GITS_CBASER); 5293 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5294 5295 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5296 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5297 5298 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5299 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5300 /* 5301 * The HW reports non-shareable, we must 5302 * remove the cacheability attributes as 5303 * well. 5304 */ 5305 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5306 GITS_CBASER_CACHEABILITY_MASK); 5307 baser |= GITS_CBASER_nC; 5308 gits_write_cbaser(baser, its->base + GITS_CBASER); 5309 } 5310 pr_info("ITS: using cache flushing for cmd queue\n"); 5311 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5312 } 5313 5314 gits_write_cwriter(0, its->base + GITS_CWRITER); 5315 ctlr = readl_relaxed(its->base + GITS_CTLR); 5316 ctlr |= GITS_CTLR_ENABLE; 5317 if (is_v4(its)) 5318 ctlr |= GITS_CTLR_ImDe; 5319 writel_relaxed(ctlr, its->base + GITS_CTLR); 5320 5321 err = its_init_domain(its); 5322 if (err) 5323 goto out_free_tables; 5324 5325 raw_spin_lock(&its_lock); 5326 list_add(&its->entry, &its_nodes); 5327 raw_spin_unlock(&its_lock); 5328 5329 return 0; 5330 5331 out_free_tables: 5332 its_free_tables(its); 5333 out_free_cmd: 5334 its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5335 out_unmap_sgir: 5336 if (its->sgir_base) 5337 iounmap(its->sgir_base); 5338 out: 5339 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5340 return err; 5341 } 5342 5343 static bool gic_rdists_supports_plpis(void) 5344 { 5345 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5346 } 5347 5348 static int redist_disable_lpis(void) 5349 { 5350 void __iomem *rbase = gic_data_rdist_rd_base(); 5351 u64 timeout = USEC_PER_SEC; 5352 u64 val; 5353 5354 if (!gic_rdists_supports_plpis()) { 5355 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5356 return -ENXIO; 5357 } 5358 5359 val = readl_relaxed(rbase + GICR_CTLR); 5360 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5361 return 0; 5362 5363 /* 5364 * If coming via a CPU hotplug event, we don't need to disable 5365 * LPIs before trying to re-enable them. They are already 5366 * configured and all is well in the world. 5367 * 5368 * If running with preallocated tables, there is nothing to do. 5369 */ 5370 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5371 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5372 return 0; 5373 5374 /* 5375 * From that point on, we only try to do some damage control. 5376 */ 5377 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5378 smp_processor_id()); 5379 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5380 5381 /* Disable LPIs */ 5382 val &= ~GICR_CTLR_ENABLE_LPIS; 5383 writel_relaxed(val, rbase + GICR_CTLR); 5384 5385 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5386 dsb(sy); 5387 5388 /* 5389 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5390 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5391 * Error out if we time out waiting for RWP to clear. 5392 */ 5393 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5394 if (!timeout) { 5395 pr_err("CPU%d: Timeout while disabling LPIs\n", 5396 smp_processor_id()); 5397 return -ETIMEDOUT; 5398 } 5399 udelay(1); 5400 timeout--; 5401 } 5402 5403 /* 5404 * After it has been written to 1, it is IMPLEMENTATION 5405 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5406 * cleared to 0. Error out if clearing the bit failed. 5407 */ 5408 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5409 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5410 return -EBUSY; 5411 } 5412 5413 return 0; 5414 } 5415 5416 int its_cpu_init(void) 5417 { 5418 if (!list_empty(&its_nodes)) { 5419 int ret; 5420 5421 ret = redist_disable_lpis(); 5422 if (ret) 5423 return ret; 5424 5425 its_cpu_init_lpis(); 5426 its_cpu_init_collections(); 5427 } 5428 5429 return 0; 5430 } 5431 5432 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5433 { 5434 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5435 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5436 } 5437 5438 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5439 rdist_memreserve_cpuhp_cleanup_workfn); 5440 5441 static int its_cpu_memreserve_lpi(unsigned int cpu) 5442 { 5443 struct page *pend_page; 5444 int ret = 0; 5445 5446 /* This gets to run exactly once per CPU */ 5447 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5448 return 0; 5449 5450 pend_page = gic_data_rdist()->pend_page; 5451 if (WARN_ON(!pend_page)) { 5452 ret = -ENOMEM; 5453 goto out; 5454 } 5455 /* 5456 * If the pending table was pre-programmed, free the memory we 5457 * preemptively allocated. Otherwise, reserve that memory for 5458 * later kexecs. 5459 */ 5460 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5461 its_free_pending_table(pend_page); 5462 gic_data_rdist()->pend_page = NULL; 5463 } else { 5464 phys_addr_t paddr = page_to_phys(pend_page); 5465 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5466 } 5467 5468 out: 5469 /* Last CPU being brought up gets to issue the cleanup */ 5470 if (!IS_ENABLED(CONFIG_SMP) || 5471 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5472 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5473 5474 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5475 return ret; 5476 } 5477 5478 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5479 static int __init its_reset_one(struct resource *res) 5480 { 5481 void __iomem *its_base; 5482 int err, i; 5483 5484 its_base = its_map_one(res, &err); 5485 if (!its_base) 5486 return err; 5487 5488 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5489 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5490 5491 iounmap(its_base); 5492 return 0; 5493 } 5494 5495 static const struct of_device_id its_device_id[] = { 5496 { .compatible = "arm,gic-v3-its", }, 5497 {}, 5498 }; 5499 5500 static struct its_node __init *its_node_init(struct resource *res, 5501 struct fwnode_handle *handle, int numa_node) 5502 { 5503 void __iomem *its_base; 5504 struct its_node *its; 5505 int err; 5506 5507 its_base = its_map_one(res, &err); 5508 if (!its_base) 5509 return NULL; 5510 5511 pr_info("ITS %pR\n", res); 5512 5513 its = kzalloc(sizeof(*its), GFP_KERNEL); 5514 if (!its) 5515 goto out_unmap; 5516 5517 raw_spin_lock_init(&its->lock); 5518 mutex_init(&its->dev_alloc_lock); 5519 INIT_LIST_HEAD(&its->entry); 5520 INIT_LIST_HEAD(&its->its_device_list); 5521 5522 its->typer = gic_read_typer(its_base + GITS_TYPER); 5523 its->base = its_base; 5524 its->phys_base = res->start; 5525 its->get_msi_base = its_irq_get_msi_base; 5526 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI | IRQ_DOMAIN_FLAG_MSI_IMMUTABLE; 5527 5528 its->numa_node = numa_node; 5529 its->fwnode_handle = handle; 5530 5531 return its; 5532 5533 out_unmap: 5534 iounmap(its_base); 5535 return NULL; 5536 } 5537 5538 static void its_node_destroy(struct its_node *its) 5539 { 5540 iounmap(its->base); 5541 kfree(its); 5542 } 5543 5544 static int __init its_of_probe(struct device_node *node) 5545 { 5546 struct device_node *np; 5547 struct resource res; 5548 int err; 5549 5550 /* 5551 * Make sure *all* the ITS are reset before we probe any, as 5552 * they may be sharing memory. If any of the ITS fails to 5553 * reset, don't even try to go any further, as this could 5554 * result in something even worse. 5555 */ 5556 for (np = of_find_matching_node(node, its_device_id); np; 5557 np = of_find_matching_node(np, its_device_id)) { 5558 if (!of_device_is_available(np) || 5559 !of_property_read_bool(np, "msi-controller") || 5560 of_address_to_resource(np, 0, &res)) 5561 continue; 5562 5563 err = its_reset_one(&res); 5564 if (err) 5565 return err; 5566 } 5567 5568 for (np = of_find_matching_node(node, its_device_id); np; 5569 np = of_find_matching_node(np, its_device_id)) { 5570 struct its_node *its; 5571 5572 if (!of_device_is_available(np)) 5573 continue; 5574 if (!of_property_read_bool(np, "msi-controller")) { 5575 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5576 np); 5577 continue; 5578 } 5579 5580 if (of_address_to_resource(np, 0, &res)) { 5581 pr_warn("%pOF: no regs?\n", np); 5582 continue; 5583 } 5584 5585 5586 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5587 if (!its) 5588 return -ENOMEM; 5589 5590 err = its_probe_one(its); 5591 if (err) { 5592 its_node_destroy(its); 5593 return err; 5594 } 5595 } 5596 return 0; 5597 } 5598 5599 #ifdef CONFIG_ACPI 5600 5601 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5602 5603 #ifdef CONFIG_ACPI_NUMA 5604 struct its_srat_map { 5605 /* numa node id */ 5606 u32 numa_node; 5607 /* GIC ITS ID */ 5608 u32 its_id; 5609 }; 5610 5611 static struct its_srat_map *its_srat_maps __initdata; 5612 static int its_in_srat __initdata; 5613 5614 static int __init acpi_get_its_numa_node(u32 its_id) 5615 { 5616 int i; 5617 5618 for (i = 0; i < its_in_srat; i++) { 5619 if (its_id == its_srat_maps[i].its_id) 5620 return its_srat_maps[i].numa_node; 5621 } 5622 return NUMA_NO_NODE; 5623 } 5624 5625 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5626 const unsigned long end) 5627 { 5628 return 0; 5629 } 5630 5631 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5632 const unsigned long end) 5633 { 5634 int node; 5635 struct acpi_srat_gic_its_affinity *its_affinity; 5636 5637 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5638 if (!its_affinity) 5639 return -EINVAL; 5640 5641 if (its_affinity->header.length < sizeof(*its_affinity)) { 5642 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5643 its_affinity->header.length); 5644 return -EINVAL; 5645 } 5646 5647 /* 5648 * Note that in theory a new proximity node could be created by this 5649 * entry as it is an SRAT resource allocation structure. 5650 * We do not currently support doing so. 5651 */ 5652 node = pxm_to_node(its_affinity->proximity_domain); 5653 5654 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5655 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5656 return 0; 5657 } 5658 5659 its_srat_maps[its_in_srat].numa_node = node; 5660 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5661 its_in_srat++; 5662 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5663 its_affinity->proximity_domain, its_affinity->its_id, node); 5664 5665 return 0; 5666 } 5667 5668 static void __init acpi_table_parse_srat_its(void) 5669 { 5670 int count; 5671 5672 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5673 sizeof(struct acpi_table_srat), 5674 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5675 gic_acpi_match_srat_its, 0); 5676 if (count <= 0) 5677 return; 5678 5679 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5680 GFP_KERNEL); 5681 if (!its_srat_maps) 5682 return; 5683 5684 acpi_table_parse_entries(ACPI_SIG_SRAT, 5685 sizeof(struct acpi_table_srat), 5686 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5687 gic_acpi_parse_srat_its, 0); 5688 } 5689 5690 /* free the its_srat_maps after ITS probing */ 5691 static void __init acpi_its_srat_maps_free(void) 5692 { 5693 kfree(its_srat_maps); 5694 } 5695 #else 5696 static void __init acpi_table_parse_srat_its(void) { } 5697 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5698 static void __init acpi_its_srat_maps_free(void) { } 5699 #endif 5700 5701 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5702 const unsigned long end) 5703 { 5704 struct acpi_madt_generic_translator *its_entry; 5705 struct fwnode_handle *dom_handle; 5706 struct its_node *its; 5707 struct resource res; 5708 int err; 5709 5710 its_entry = (struct acpi_madt_generic_translator *)header; 5711 memset(&res, 0, sizeof(res)); 5712 res.start = its_entry->base_address; 5713 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5714 res.flags = IORESOURCE_MEM; 5715 5716 dom_handle = irq_domain_alloc_fwnode(&res.start); 5717 if (!dom_handle) { 5718 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5719 &res.start); 5720 return -ENOMEM; 5721 } 5722 5723 err = iort_register_domain_token(its_entry->translation_id, res.start, 5724 dom_handle); 5725 if (err) { 5726 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5727 &res.start, its_entry->translation_id); 5728 goto dom_err; 5729 } 5730 5731 its = its_node_init(&res, dom_handle, 5732 acpi_get_its_numa_node(its_entry->translation_id)); 5733 if (!its) { 5734 err = -ENOMEM; 5735 goto node_err; 5736 } 5737 5738 if (acpi_get_madt_revision() >= 7 && 5739 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT)) 5740 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 5741 5742 err = its_probe_one(its); 5743 if (!err) 5744 return 0; 5745 5746 node_err: 5747 iort_deregister_domain_token(its_entry->translation_id); 5748 dom_err: 5749 irq_domain_free_fwnode(dom_handle); 5750 return err; 5751 } 5752 5753 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5754 const unsigned long end) 5755 { 5756 struct acpi_madt_generic_translator *its_entry; 5757 struct resource res; 5758 5759 its_entry = (struct acpi_madt_generic_translator *)header; 5760 res = (struct resource) { 5761 .start = its_entry->base_address, 5762 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5763 .flags = IORESOURCE_MEM, 5764 }; 5765 5766 return its_reset_one(&res); 5767 } 5768 5769 static void __init its_acpi_probe(void) 5770 { 5771 acpi_table_parse_srat_its(); 5772 /* 5773 * Make sure *all* the ITS are reset before we probe any, as 5774 * they may be sharing memory. If any of the ITS fails to 5775 * reset, don't even try to go any further, as this could 5776 * result in something even worse. 5777 */ 5778 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5779 its_acpi_reset, 0) > 0) 5780 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5781 gic_acpi_parse_madt_its, 0); 5782 acpi_its_srat_maps_free(); 5783 } 5784 #else 5785 static void __init its_acpi_probe(void) { } 5786 #endif 5787 5788 int __init its_lpi_memreserve_init(void) 5789 { 5790 int state; 5791 5792 if (!efi_enabled(EFI_CONFIG_TABLES)) 5793 return 0; 5794 5795 if (list_empty(&its_nodes)) 5796 return 0; 5797 5798 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5799 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5800 "irqchip/arm/gicv3/memreserve:online", 5801 its_cpu_memreserve_lpi, 5802 NULL); 5803 if (state < 0) 5804 return state; 5805 5806 gic_rdists->cpuhp_memreserve_state = state; 5807 5808 return 0; 5809 } 5810 5811 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5812 struct irq_domain *parent_domain, u8 irq_prio) 5813 { 5814 struct device_node *of_node; 5815 struct its_node *its; 5816 bool has_v4 = false; 5817 bool has_v4_1 = false; 5818 int err; 5819 5820 itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1); 5821 if (!itt_pool) 5822 return -ENOMEM; 5823 5824 gic_rdists = rdists; 5825 5826 lpi_prop_prio = irq_prio; 5827 its_parent = parent_domain; 5828 of_node = to_of_node(handle); 5829 if (of_node) 5830 its_of_probe(of_node); 5831 else 5832 its_acpi_probe(); 5833 5834 if (list_empty(&its_nodes)) { 5835 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5836 return -ENXIO; 5837 } 5838 5839 err = allocate_lpi_tables(); 5840 if (err) 5841 return err; 5842 5843 list_for_each_entry(its, &its_nodes, entry) { 5844 has_v4 |= is_v4(its); 5845 has_v4_1 |= is_v4_1(its); 5846 } 5847 5848 /* Don't bother with inconsistent systems */ 5849 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5850 rdists->has_rvpeid = false; 5851 5852 if (has_v4 & rdists->has_vlpis) { 5853 const struct irq_domain_ops *sgi_ops; 5854 5855 if (has_v4_1) 5856 sgi_ops = &its_sgi_domain_ops; 5857 else 5858 sgi_ops = NULL; 5859 5860 if (its_init_vpe_domain() || 5861 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5862 rdists->has_vlpis = false; 5863 pr_err("ITS: Disabling GICv4 support\n"); 5864 } 5865 } 5866 5867 register_syscore_ops(&its_syscore_ops); 5868 5869 return 0; 5870 } 5871