1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitmap.h> 10 #include <linux/cpu.h> 11 #include <linux/crash_dump.h> 12 #include <linux/delay.h> 13 #include <linux/dma-iommu.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/list.h> 18 #include <linux/log2.h> 19 #include <linux/memblock.h> 20 #include <linux/mm.h> 21 #include <linux/msi.h> 22 #include <linux/of.h> 23 #include <linux/of_address.h> 24 #include <linux/of_irq.h> 25 #include <linux/of_pci.h> 26 #include <linux/of_platform.h> 27 #include <linux/percpu.h> 28 #include <linux/slab.h> 29 #include <linux/syscore_ops.h> 30 31 #include <linux/irqchip.h> 32 #include <linux/irqchip/arm-gic-v3.h> 33 #include <linux/irqchip/arm-gic-v4.h> 34 35 #include <asm/cputype.h> 36 #include <asm/exception.h> 37 38 #include "irq-gic-common.h" 39 40 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 41 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 42 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 43 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) 44 45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 46 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 47 48 static u32 lpi_id_bits; 49 50 /* 51 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 52 * deal with (one configuration byte per interrupt). PENDBASE has to 53 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 54 */ 55 #define LPI_NRBITS lpi_id_bits 56 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 57 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 58 59 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 60 61 /* 62 * Collection structure - just an ID, and a redistributor address to 63 * ping. We use one per CPU as a bag of interrupts assigned to this 64 * CPU. 65 */ 66 struct its_collection { 67 u64 target_address; 68 u16 col_id; 69 }; 70 71 /* 72 * The ITS_BASER structure - contains memory information, cached 73 * value of BASER register configuration and ITS page size. 74 */ 75 struct its_baser { 76 void *base; 77 u64 val; 78 u32 order; 79 u32 psz; 80 }; 81 82 struct its_device; 83 84 /* 85 * The ITS structure - contains most of the infrastructure, with the 86 * top-level MSI domain, the command queue, the collections, and the 87 * list of devices writing to it. 88 * 89 * dev_alloc_lock has to be taken for device allocations, while the 90 * spinlock must be taken to parse data structures such as the device 91 * list. 92 */ 93 struct its_node { 94 raw_spinlock_t lock; 95 struct mutex dev_alloc_lock; 96 struct list_head entry; 97 void __iomem *base; 98 phys_addr_t phys_base; 99 struct its_cmd_block *cmd_base; 100 struct its_cmd_block *cmd_write; 101 struct its_baser tables[GITS_BASER_NR_REGS]; 102 struct its_collection *collections; 103 struct fwnode_handle *fwnode_handle; 104 u64 (*get_msi_base)(struct its_device *its_dev); 105 u64 cbaser_save; 106 u32 ctlr_save; 107 struct list_head its_device_list; 108 u64 flags; 109 unsigned long list_nr; 110 u32 ite_size; 111 u32 device_ids; 112 int numa_node; 113 unsigned int msi_domain_flags; 114 u32 pre_its_base; /* for Socionext Synquacer */ 115 bool is_v4; 116 int vlpi_redist_offset; 117 }; 118 119 #define ITS_ITT_ALIGN SZ_256 120 121 /* The maximum number of VPEID bits supported by VLPI commands */ 122 #define ITS_MAX_VPEID_BITS (16) 123 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 124 125 /* Convert page order to size in bytes */ 126 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 127 128 struct event_lpi_map { 129 unsigned long *lpi_map; 130 u16 *col_map; 131 irq_hw_number_t lpi_base; 132 int nr_lpis; 133 struct mutex vlpi_lock; 134 struct its_vm *vm; 135 struct its_vlpi_map *vlpi_maps; 136 int nr_vlpis; 137 }; 138 139 /* 140 * The ITS view of a device - belongs to an ITS, owns an interrupt 141 * translation table, and a list of interrupts. If it some of its 142 * LPIs are injected into a guest (GICv4), the event_map.vm field 143 * indicates which one. 144 */ 145 struct its_device { 146 struct list_head entry; 147 struct its_node *its; 148 struct event_lpi_map event_map; 149 void *itt; 150 u32 nr_ites; 151 u32 device_id; 152 bool shared; 153 }; 154 155 static struct { 156 raw_spinlock_t lock; 157 struct its_device *dev; 158 struct its_vpe **vpes; 159 int next_victim; 160 } vpe_proxy; 161 162 static LIST_HEAD(its_nodes); 163 static DEFINE_RAW_SPINLOCK(its_lock); 164 static struct rdists *gic_rdists; 165 static struct irq_domain *its_parent; 166 167 static unsigned long its_list_map; 168 static u16 vmovp_seq_num; 169 static DEFINE_RAW_SPINLOCK(vmovp_lock); 170 171 static DEFINE_IDA(its_vpeid_ida); 172 173 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 174 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 175 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 176 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 177 178 static u16 get_its_list(struct its_vm *vm) 179 { 180 struct its_node *its; 181 unsigned long its_list = 0; 182 183 list_for_each_entry(its, &its_nodes, entry) { 184 if (!its->is_v4) 185 continue; 186 187 if (vm->vlpi_count[its->list_nr]) 188 __set_bit(its->list_nr, &its_list); 189 } 190 191 return (u16)its_list; 192 } 193 194 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 195 u32 event) 196 { 197 struct its_node *its = its_dev->its; 198 199 return its->collections + its_dev->event_map.col_map[event]; 200 } 201 202 static struct its_collection *valid_col(struct its_collection *col) 203 { 204 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 205 return NULL; 206 207 return col; 208 } 209 210 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 211 { 212 if (valid_col(its->collections + vpe->col_idx)) 213 return vpe; 214 215 return NULL; 216 } 217 218 /* 219 * ITS command descriptors - parameters to be encoded in a command 220 * block. 221 */ 222 struct its_cmd_desc { 223 union { 224 struct { 225 struct its_device *dev; 226 u32 event_id; 227 } its_inv_cmd; 228 229 struct { 230 struct its_device *dev; 231 u32 event_id; 232 } its_clear_cmd; 233 234 struct { 235 struct its_device *dev; 236 u32 event_id; 237 } its_int_cmd; 238 239 struct { 240 struct its_device *dev; 241 int valid; 242 } its_mapd_cmd; 243 244 struct { 245 struct its_collection *col; 246 int valid; 247 } its_mapc_cmd; 248 249 struct { 250 struct its_device *dev; 251 u32 phys_id; 252 u32 event_id; 253 } its_mapti_cmd; 254 255 struct { 256 struct its_device *dev; 257 struct its_collection *col; 258 u32 event_id; 259 } its_movi_cmd; 260 261 struct { 262 struct its_device *dev; 263 u32 event_id; 264 } its_discard_cmd; 265 266 struct { 267 struct its_collection *col; 268 } its_invall_cmd; 269 270 struct { 271 struct its_vpe *vpe; 272 } its_vinvall_cmd; 273 274 struct { 275 struct its_vpe *vpe; 276 struct its_collection *col; 277 bool valid; 278 } its_vmapp_cmd; 279 280 struct { 281 struct its_vpe *vpe; 282 struct its_device *dev; 283 u32 virt_id; 284 u32 event_id; 285 bool db_enabled; 286 } its_vmapti_cmd; 287 288 struct { 289 struct its_vpe *vpe; 290 struct its_device *dev; 291 u32 event_id; 292 bool db_enabled; 293 } its_vmovi_cmd; 294 295 struct { 296 struct its_vpe *vpe; 297 struct its_collection *col; 298 u16 seq_num; 299 u16 its_list; 300 } its_vmovp_cmd; 301 }; 302 }; 303 304 /* 305 * The ITS command block, which is what the ITS actually parses. 306 */ 307 struct its_cmd_block { 308 u64 raw_cmd[4]; 309 }; 310 311 #define ITS_CMD_QUEUE_SZ SZ_64K 312 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 313 314 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 315 struct its_cmd_block *, 316 struct its_cmd_desc *); 317 318 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 319 struct its_cmd_block *, 320 struct its_cmd_desc *); 321 322 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 323 { 324 u64 mask = GENMASK_ULL(h, l); 325 *raw_cmd &= ~mask; 326 *raw_cmd |= (val << l) & mask; 327 } 328 329 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 330 { 331 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 332 } 333 334 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 335 { 336 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 337 } 338 339 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 340 { 341 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 342 } 343 344 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 345 { 346 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 347 } 348 349 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 350 { 351 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 352 } 353 354 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 355 { 356 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 357 } 358 359 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 360 { 361 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 362 } 363 364 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 365 { 366 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 367 } 368 369 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 370 { 371 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 372 } 373 374 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 375 { 376 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 377 } 378 379 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 380 { 381 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 382 } 383 384 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 385 { 386 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 387 } 388 389 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 390 { 391 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 392 } 393 394 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 395 { 396 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 397 } 398 399 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 400 { 401 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 402 } 403 404 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 405 { 406 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 407 } 408 409 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 410 { 411 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 412 } 413 414 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 415 { 416 /* Let's fixup BE commands */ 417 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 418 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 419 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 420 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 421 } 422 423 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 424 struct its_cmd_block *cmd, 425 struct its_cmd_desc *desc) 426 { 427 unsigned long itt_addr; 428 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 429 430 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 431 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 432 433 its_encode_cmd(cmd, GITS_CMD_MAPD); 434 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 435 its_encode_size(cmd, size - 1); 436 its_encode_itt(cmd, itt_addr); 437 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 438 439 its_fixup_cmd(cmd); 440 441 return NULL; 442 } 443 444 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 445 struct its_cmd_block *cmd, 446 struct its_cmd_desc *desc) 447 { 448 its_encode_cmd(cmd, GITS_CMD_MAPC); 449 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 450 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 451 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 452 453 its_fixup_cmd(cmd); 454 455 return desc->its_mapc_cmd.col; 456 } 457 458 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 459 struct its_cmd_block *cmd, 460 struct its_cmd_desc *desc) 461 { 462 struct its_collection *col; 463 464 col = dev_event_to_col(desc->its_mapti_cmd.dev, 465 desc->its_mapti_cmd.event_id); 466 467 its_encode_cmd(cmd, GITS_CMD_MAPTI); 468 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 469 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 470 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 471 its_encode_collection(cmd, col->col_id); 472 473 its_fixup_cmd(cmd); 474 475 return valid_col(col); 476 } 477 478 static struct its_collection *its_build_movi_cmd(struct its_node *its, 479 struct its_cmd_block *cmd, 480 struct its_cmd_desc *desc) 481 { 482 struct its_collection *col; 483 484 col = dev_event_to_col(desc->its_movi_cmd.dev, 485 desc->its_movi_cmd.event_id); 486 487 its_encode_cmd(cmd, GITS_CMD_MOVI); 488 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 489 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 490 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 491 492 its_fixup_cmd(cmd); 493 494 return valid_col(col); 495 } 496 497 static struct its_collection *its_build_discard_cmd(struct its_node *its, 498 struct its_cmd_block *cmd, 499 struct its_cmd_desc *desc) 500 { 501 struct its_collection *col; 502 503 col = dev_event_to_col(desc->its_discard_cmd.dev, 504 desc->its_discard_cmd.event_id); 505 506 its_encode_cmd(cmd, GITS_CMD_DISCARD); 507 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 508 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 509 510 its_fixup_cmd(cmd); 511 512 return valid_col(col); 513 } 514 515 static struct its_collection *its_build_inv_cmd(struct its_node *its, 516 struct its_cmd_block *cmd, 517 struct its_cmd_desc *desc) 518 { 519 struct its_collection *col; 520 521 col = dev_event_to_col(desc->its_inv_cmd.dev, 522 desc->its_inv_cmd.event_id); 523 524 its_encode_cmd(cmd, GITS_CMD_INV); 525 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 526 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 527 528 its_fixup_cmd(cmd); 529 530 return valid_col(col); 531 } 532 533 static struct its_collection *its_build_int_cmd(struct its_node *its, 534 struct its_cmd_block *cmd, 535 struct its_cmd_desc *desc) 536 { 537 struct its_collection *col; 538 539 col = dev_event_to_col(desc->its_int_cmd.dev, 540 desc->its_int_cmd.event_id); 541 542 its_encode_cmd(cmd, GITS_CMD_INT); 543 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 544 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 545 546 its_fixup_cmd(cmd); 547 548 return valid_col(col); 549 } 550 551 static struct its_collection *its_build_clear_cmd(struct its_node *its, 552 struct its_cmd_block *cmd, 553 struct its_cmd_desc *desc) 554 { 555 struct its_collection *col; 556 557 col = dev_event_to_col(desc->its_clear_cmd.dev, 558 desc->its_clear_cmd.event_id); 559 560 its_encode_cmd(cmd, GITS_CMD_CLEAR); 561 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 562 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 563 564 its_fixup_cmd(cmd); 565 566 return valid_col(col); 567 } 568 569 static struct its_collection *its_build_invall_cmd(struct its_node *its, 570 struct its_cmd_block *cmd, 571 struct its_cmd_desc *desc) 572 { 573 its_encode_cmd(cmd, GITS_CMD_INVALL); 574 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 575 576 its_fixup_cmd(cmd); 577 578 return NULL; 579 } 580 581 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 582 struct its_cmd_block *cmd, 583 struct its_cmd_desc *desc) 584 { 585 its_encode_cmd(cmd, GITS_CMD_VINVALL); 586 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 587 588 its_fixup_cmd(cmd); 589 590 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 591 } 592 593 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 594 struct its_cmd_block *cmd, 595 struct its_cmd_desc *desc) 596 { 597 unsigned long vpt_addr; 598 u64 target; 599 600 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 601 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 602 603 its_encode_cmd(cmd, GITS_CMD_VMAPP); 604 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 605 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 606 its_encode_target(cmd, target); 607 its_encode_vpt_addr(cmd, vpt_addr); 608 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 609 610 its_fixup_cmd(cmd); 611 612 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 613 } 614 615 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 616 struct its_cmd_block *cmd, 617 struct its_cmd_desc *desc) 618 { 619 u32 db; 620 621 if (desc->its_vmapti_cmd.db_enabled) 622 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 623 else 624 db = 1023; 625 626 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 627 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 628 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 629 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 630 its_encode_db_phys_id(cmd, db); 631 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 632 633 its_fixup_cmd(cmd); 634 635 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 636 } 637 638 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 639 struct its_cmd_block *cmd, 640 struct its_cmd_desc *desc) 641 { 642 u32 db; 643 644 if (desc->its_vmovi_cmd.db_enabled) 645 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 646 else 647 db = 1023; 648 649 its_encode_cmd(cmd, GITS_CMD_VMOVI); 650 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 651 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 652 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 653 its_encode_db_phys_id(cmd, db); 654 its_encode_db_valid(cmd, true); 655 656 its_fixup_cmd(cmd); 657 658 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 659 } 660 661 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 662 struct its_cmd_block *cmd, 663 struct its_cmd_desc *desc) 664 { 665 u64 target; 666 667 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 668 its_encode_cmd(cmd, GITS_CMD_VMOVP); 669 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 670 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 671 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 672 its_encode_target(cmd, target); 673 674 its_fixup_cmd(cmd); 675 676 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 677 } 678 679 static u64 its_cmd_ptr_to_offset(struct its_node *its, 680 struct its_cmd_block *ptr) 681 { 682 return (ptr - its->cmd_base) * sizeof(*ptr); 683 } 684 685 static int its_queue_full(struct its_node *its) 686 { 687 int widx; 688 int ridx; 689 690 widx = its->cmd_write - its->cmd_base; 691 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 692 693 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 694 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 695 return 1; 696 697 return 0; 698 } 699 700 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 701 { 702 struct its_cmd_block *cmd; 703 u32 count = 1000000; /* 1s! */ 704 705 while (its_queue_full(its)) { 706 count--; 707 if (!count) { 708 pr_err_ratelimited("ITS queue not draining\n"); 709 return NULL; 710 } 711 cpu_relax(); 712 udelay(1); 713 } 714 715 cmd = its->cmd_write++; 716 717 /* Handle queue wrapping */ 718 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 719 its->cmd_write = its->cmd_base; 720 721 /* Clear command */ 722 cmd->raw_cmd[0] = 0; 723 cmd->raw_cmd[1] = 0; 724 cmd->raw_cmd[2] = 0; 725 cmd->raw_cmd[3] = 0; 726 727 return cmd; 728 } 729 730 static struct its_cmd_block *its_post_commands(struct its_node *its) 731 { 732 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 733 734 writel_relaxed(wr, its->base + GITS_CWRITER); 735 736 return its->cmd_write; 737 } 738 739 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 740 { 741 /* 742 * Make sure the commands written to memory are observable by 743 * the ITS. 744 */ 745 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 746 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 747 else 748 dsb(ishst); 749 } 750 751 static int its_wait_for_range_completion(struct its_node *its, 752 u64 prev_idx, 753 struct its_cmd_block *to) 754 { 755 u64 rd_idx, to_idx, linear_idx; 756 u32 count = 1000000; /* 1s! */ 757 758 /* Linearize to_idx if the command set has wrapped around */ 759 to_idx = its_cmd_ptr_to_offset(its, to); 760 if (to_idx < prev_idx) 761 to_idx += ITS_CMD_QUEUE_SZ; 762 763 linear_idx = prev_idx; 764 765 while (1) { 766 s64 delta; 767 768 rd_idx = readl_relaxed(its->base + GITS_CREADR); 769 770 /* 771 * Compute the read pointer progress, taking the 772 * potential wrap-around into account. 773 */ 774 delta = rd_idx - prev_idx; 775 if (rd_idx < prev_idx) 776 delta += ITS_CMD_QUEUE_SZ; 777 778 linear_idx += delta; 779 if (linear_idx >= to_idx) 780 break; 781 782 count--; 783 if (!count) { 784 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 785 to_idx, linear_idx); 786 return -1; 787 } 788 prev_idx = rd_idx; 789 cpu_relax(); 790 udelay(1); 791 } 792 793 return 0; 794 } 795 796 /* Warning, macro hell follows */ 797 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 798 void name(struct its_node *its, \ 799 buildtype builder, \ 800 struct its_cmd_desc *desc) \ 801 { \ 802 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 803 synctype *sync_obj; \ 804 unsigned long flags; \ 805 u64 rd_idx; \ 806 \ 807 raw_spin_lock_irqsave(&its->lock, flags); \ 808 \ 809 cmd = its_allocate_entry(its); \ 810 if (!cmd) { /* We're soooooo screewed... */ \ 811 raw_spin_unlock_irqrestore(&its->lock, flags); \ 812 return; \ 813 } \ 814 sync_obj = builder(its, cmd, desc); \ 815 its_flush_cmd(its, cmd); \ 816 \ 817 if (sync_obj) { \ 818 sync_cmd = its_allocate_entry(its); \ 819 if (!sync_cmd) \ 820 goto post; \ 821 \ 822 buildfn(its, sync_cmd, sync_obj); \ 823 its_flush_cmd(its, sync_cmd); \ 824 } \ 825 \ 826 post: \ 827 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 828 next_cmd = its_post_commands(its); \ 829 raw_spin_unlock_irqrestore(&its->lock, flags); \ 830 \ 831 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 832 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 833 } 834 835 static void its_build_sync_cmd(struct its_node *its, 836 struct its_cmd_block *sync_cmd, 837 struct its_collection *sync_col) 838 { 839 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 840 its_encode_target(sync_cmd, sync_col->target_address); 841 842 its_fixup_cmd(sync_cmd); 843 } 844 845 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 846 struct its_collection, its_build_sync_cmd) 847 848 static void its_build_vsync_cmd(struct its_node *its, 849 struct its_cmd_block *sync_cmd, 850 struct its_vpe *sync_vpe) 851 { 852 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 853 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 854 855 its_fixup_cmd(sync_cmd); 856 } 857 858 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 859 struct its_vpe, its_build_vsync_cmd) 860 861 static void its_send_int(struct its_device *dev, u32 event_id) 862 { 863 struct its_cmd_desc desc; 864 865 desc.its_int_cmd.dev = dev; 866 desc.its_int_cmd.event_id = event_id; 867 868 its_send_single_command(dev->its, its_build_int_cmd, &desc); 869 } 870 871 static void its_send_clear(struct its_device *dev, u32 event_id) 872 { 873 struct its_cmd_desc desc; 874 875 desc.its_clear_cmd.dev = dev; 876 desc.its_clear_cmd.event_id = event_id; 877 878 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 879 } 880 881 static void its_send_inv(struct its_device *dev, u32 event_id) 882 { 883 struct its_cmd_desc desc; 884 885 desc.its_inv_cmd.dev = dev; 886 desc.its_inv_cmd.event_id = event_id; 887 888 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 889 } 890 891 static void its_send_mapd(struct its_device *dev, int valid) 892 { 893 struct its_cmd_desc desc; 894 895 desc.its_mapd_cmd.dev = dev; 896 desc.its_mapd_cmd.valid = !!valid; 897 898 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 899 } 900 901 static void its_send_mapc(struct its_node *its, struct its_collection *col, 902 int valid) 903 { 904 struct its_cmd_desc desc; 905 906 desc.its_mapc_cmd.col = col; 907 desc.its_mapc_cmd.valid = !!valid; 908 909 its_send_single_command(its, its_build_mapc_cmd, &desc); 910 } 911 912 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 913 { 914 struct its_cmd_desc desc; 915 916 desc.its_mapti_cmd.dev = dev; 917 desc.its_mapti_cmd.phys_id = irq_id; 918 desc.its_mapti_cmd.event_id = id; 919 920 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 921 } 922 923 static void its_send_movi(struct its_device *dev, 924 struct its_collection *col, u32 id) 925 { 926 struct its_cmd_desc desc; 927 928 desc.its_movi_cmd.dev = dev; 929 desc.its_movi_cmd.col = col; 930 desc.its_movi_cmd.event_id = id; 931 932 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 933 } 934 935 static void its_send_discard(struct its_device *dev, u32 id) 936 { 937 struct its_cmd_desc desc; 938 939 desc.its_discard_cmd.dev = dev; 940 desc.its_discard_cmd.event_id = id; 941 942 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 943 } 944 945 static void its_send_invall(struct its_node *its, struct its_collection *col) 946 { 947 struct its_cmd_desc desc; 948 949 desc.its_invall_cmd.col = col; 950 951 its_send_single_command(its, its_build_invall_cmd, &desc); 952 } 953 954 static void its_send_vmapti(struct its_device *dev, u32 id) 955 { 956 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 957 struct its_cmd_desc desc; 958 959 desc.its_vmapti_cmd.vpe = map->vpe; 960 desc.its_vmapti_cmd.dev = dev; 961 desc.its_vmapti_cmd.virt_id = map->vintid; 962 desc.its_vmapti_cmd.event_id = id; 963 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 964 965 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 966 } 967 968 static void its_send_vmovi(struct its_device *dev, u32 id) 969 { 970 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 971 struct its_cmd_desc desc; 972 973 desc.its_vmovi_cmd.vpe = map->vpe; 974 desc.its_vmovi_cmd.dev = dev; 975 desc.its_vmovi_cmd.event_id = id; 976 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 977 978 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 979 } 980 981 static void its_send_vmapp(struct its_node *its, 982 struct its_vpe *vpe, bool valid) 983 { 984 struct its_cmd_desc desc; 985 986 desc.its_vmapp_cmd.vpe = vpe; 987 desc.its_vmapp_cmd.valid = valid; 988 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 989 990 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 991 } 992 993 static void its_send_vmovp(struct its_vpe *vpe) 994 { 995 struct its_cmd_desc desc = {}; 996 struct its_node *its; 997 unsigned long flags; 998 int col_id = vpe->col_idx; 999 1000 desc.its_vmovp_cmd.vpe = vpe; 1001 1002 if (!its_list_map) { 1003 its = list_first_entry(&its_nodes, struct its_node, entry); 1004 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1005 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1006 return; 1007 } 1008 1009 /* 1010 * Yet another marvel of the architecture. If using the 1011 * its_list "feature", we need to make sure that all ITSs 1012 * receive all VMOVP commands in the same order. The only way 1013 * to guarantee this is to make vmovp a serialization point. 1014 * 1015 * Wall <-- Head. 1016 */ 1017 raw_spin_lock_irqsave(&vmovp_lock, flags); 1018 1019 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1020 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1021 1022 /* Emit VMOVPs */ 1023 list_for_each_entry(its, &its_nodes, entry) { 1024 if (!its->is_v4) 1025 continue; 1026 1027 if (!vpe->its_vm->vlpi_count[its->list_nr]) 1028 continue; 1029 1030 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1031 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1032 } 1033 1034 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1035 } 1036 1037 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1038 { 1039 struct its_cmd_desc desc; 1040 1041 desc.its_vinvall_cmd.vpe = vpe; 1042 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1043 } 1044 1045 /* 1046 * irqchip functions - assumes MSI, mostly. 1047 */ 1048 1049 static inline u32 its_get_event_id(struct irq_data *d) 1050 { 1051 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1052 return d->hwirq - its_dev->event_map.lpi_base; 1053 } 1054 1055 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1056 { 1057 irq_hw_number_t hwirq; 1058 void *va; 1059 u8 *cfg; 1060 1061 if (irqd_is_forwarded_to_vcpu(d)) { 1062 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1063 u32 event = its_get_event_id(d); 1064 struct its_vlpi_map *map; 1065 1066 va = page_address(its_dev->event_map.vm->vprop_page); 1067 map = &its_dev->event_map.vlpi_maps[event]; 1068 hwirq = map->vintid; 1069 1070 /* Remember the updated property */ 1071 map->properties &= ~clr; 1072 map->properties |= set | LPI_PROP_GROUP1; 1073 } else { 1074 va = gic_rdists->prop_table_va; 1075 hwirq = d->hwirq; 1076 } 1077 1078 cfg = va + hwirq - 8192; 1079 *cfg &= ~clr; 1080 *cfg |= set | LPI_PROP_GROUP1; 1081 1082 /* 1083 * Make the above write visible to the redistributors. 1084 * And yes, we're flushing exactly: One. Single. Byte. 1085 * Humpf... 1086 */ 1087 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1088 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1089 else 1090 dsb(ishst); 1091 } 1092 1093 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1094 { 1095 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1096 1097 lpi_write_config(d, clr, set); 1098 its_send_inv(its_dev, its_get_event_id(d)); 1099 } 1100 1101 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1102 { 1103 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1104 u32 event = its_get_event_id(d); 1105 1106 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) 1107 return; 1108 1109 its_dev->event_map.vlpi_maps[event].db_enabled = enable; 1110 1111 /* 1112 * More fun with the architecture: 1113 * 1114 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1115 * value or to 1023, depending on the enable bit. But that 1116 * would be issueing a mapping for an /existing/ DevID+EventID 1117 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1118 * to the /same/ vPE, using this opportunity to adjust the 1119 * doorbell. Mouahahahaha. We loves it, Precious. 1120 */ 1121 its_send_vmovi(its_dev, event); 1122 } 1123 1124 static void its_mask_irq(struct irq_data *d) 1125 { 1126 if (irqd_is_forwarded_to_vcpu(d)) 1127 its_vlpi_set_doorbell(d, false); 1128 1129 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1130 } 1131 1132 static void its_unmask_irq(struct irq_data *d) 1133 { 1134 if (irqd_is_forwarded_to_vcpu(d)) 1135 its_vlpi_set_doorbell(d, true); 1136 1137 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1138 } 1139 1140 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1141 bool force) 1142 { 1143 unsigned int cpu; 1144 const struct cpumask *cpu_mask = cpu_online_mask; 1145 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1146 struct its_collection *target_col; 1147 u32 id = its_get_event_id(d); 1148 1149 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1150 if (irqd_is_forwarded_to_vcpu(d)) 1151 return -EINVAL; 1152 1153 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1154 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1155 if (its_dev->its->numa_node >= 0) { 1156 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1157 if (!cpumask_intersects(mask_val, cpu_mask)) 1158 return -EINVAL; 1159 } 1160 } 1161 1162 cpu = cpumask_any_and(mask_val, cpu_mask); 1163 1164 if (cpu >= nr_cpu_ids) 1165 return -EINVAL; 1166 1167 /* don't set the affinity when the target cpu is same as current one */ 1168 if (cpu != its_dev->event_map.col_map[id]) { 1169 target_col = &its_dev->its->collections[cpu]; 1170 its_send_movi(its_dev, target_col, id); 1171 its_dev->event_map.col_map[id] = cpu; 1172 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1173 } 1174 1175 return IRQ_SET_MASK_OK_DONE; 1176 } 1177 1178 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1179 { 1180 struct its_node *its = its_dev->its; 1181 1182 return its->phys_base + GITS_TRANSLATER; 1183 } 1184 1185 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1186 { 1187 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1188 struct its_node *its; 1189 u64 addr; 1190 1191 its = its_dev->its; 1192 addr = its->get_msi_base(its_dev); 1193 1194 msg->address_lo = lower_32_bits(addr); 1195 msg->address_hi = upper_32_bits(addr); 1196 msg->data = its_get_event_id(d); 1197 1198 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1199 } 1200 1201 static int its_irq_set_irqchip_state(struct irq_data *d, 1202 enum irqchip_irq_state which, 1203 bool state) 1204 { 1205 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1206 u32 event = its_get_event_id(d); 1207 1208 if (which != IRQCHIP_STATE_PENDING) 1209 return -EINVAL; 1210 1211 if (state) 1212 its_send_int(its_dev, event); 1213 else 1214 its_send_clear(its_dev, event); 1215 1216 return 0; 1217 } 1218 1219 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1220 { 1221 unsigned long flags; 1222 1223 /* Not using the ITS list? Everything is always mapped. */ 1224 if (!its_list_map) 1225 return; 1226 1227 raw_spin_lock_irqsave(&vmovp_lock, flags); 1228 1229 /* 1230 * If the VM wasn't mapped yet, iterate over the vpes and get 1231 * them mapped now. 1232 */ 1233 vm->vlpi_count[its->list_nr]++; 1234 1235 if (vm->vlpi_count[its->list_nr] == 1) { 1236 int i; 1237 1238 for (i = 0; i < vm->nr_vpes; i++) { 1239 struct its_vpe *vpe = vm->vpes[i]; 1240 struct irq_data *d = irq_get_irq_data(vpe->irq); 1241 1242 /* Map the VPE to the first possible CPU */ 1243 vpe->col_idx = cpumask_first(cpu_online_mask); 1244 its_send_vmapp(its, vpe, true); 1245 its_send_vinvall(its, vpe); 1246 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1247 } 1248 } 1249 1250 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1251 } 1252 1253 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1254 { 1255 unsigned long flags; 1256 1257 /* Not using the ITS list? Everything is always mapped. */ 1258 if (!its_list_map) 1259 return; 1260 1261 raw_spin_lock_irqsave(&vmovp_lock, flags); 1262 1263 if (!--vm->vlpi_count[its->list_nr]) { 1264 int i; 1265 1266 for (i = 0; i < vm->nr_vpes; i++) 1267 its_send_vmapp(its, vm->vpes[i], false); 1268 } 1269 1270 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1271 } 1272 1273 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1274 { 1275 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1276 u32 event = its_get_event_id(d); 1277 int ret = 0; 1278 1279 if (!info->map) 1280 return -EINVAL; 1281 1282 mutex_lock(&its_dev->event_map.vlpi_lock); 1283 1284 if (!its_dev->event_map.vm) { 1285 struct its_vlpi_map *maps; 1286 1287 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1288 GFP_KERNEL); 1289 if (!maps) { 1290 ret = -ENOMEM; 1291 goto out; 1292 } 1293 1294 its_dev->event_map.vm = info->map->vm; 1295 its_dev->event_map.vlpi_maps = maps; 1296 } else if (its_dev->event_map.vm != info->map->vm) { 1297 ret = -EINVAL; 1298 goto out; 1299 } 1300 1301 /* Get our private copy of the mapping information */ 1302 its_dev->event_map.vlpi_maps[event] = *info->map; 1303 1304 if (irqd_is_forwarded_to_vcpu(d)) { 1305 /* Already mapped, move it around */ 1306 its_send_vmovi(its_dev, event); 1307 } else { 1308 /* Ensure all the VPEs are mapped on this ITS */ 1309 its_map_vm(its_dev->its, info->map->vm); 1310 1311 /* 1312 * Flag the interrupt as forwarded so that we can 1313 * start poking the virtual property table. 1314 */ 1315 irqd_set_forwarded_to_vcpu(d); 1316 1317 /* Write out the property to the prop table */ 1318 lpi_write_config(d, 0xff, info->map->properties); 1319 1320 /* Drop the physical mapping */ 1321 its_send_discard(its_dev, event); 1322 1323 /* and install the virtual one */ 1324 its_send_vmapti(its_dev, event); 1325 1326 /* Increment the number of VLPIs */ 1327 its_dev->event_map.nr_vlpis++; 1328 } 1329 1330 out: 1331 mutex_unlock(&its_dev->event_map.vlpi_lock); 1332 return ret; 1333 } 1334 1335 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1336 { 1337 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1338 u32 event = its_get_event_id(d); 1339 int ret = 0; 1340 1341 mutex_lock(&its_dev->event_map.vlpi_lock); 1342 1343 if (!its_dev->event_map.vm || 1344 !its_dev->event_map.vlpi_maps[event].vm) { 1345 ret = -EINVAL; 1346 goto out; 1347 } 1348 1349 /* Copy our mapping information to the incoming request */ 1350 *info->map = its_dev->event_map.vlpi_maps[event]; 1351 1352 out: 1353 mutex_unlock(&its_dev->event_map.vlpi_lock); 1354 return ret; 1355 } 1356 1357 static int its_vlpi_unmap(struct irq_data *d) 1358 { 1359 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1360 u32 event = its_get_event_id(d); 1361 int ret = 0; 1362 1363 mutex_lock(&its_dev->event_map.vlpi_lock); 1364 1365 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1366 ret = -EINVAL; 1367 goto out; 1368 } 1369 1370 /* Drop the virtual mapping */ 1371 its_send_discard(its_dev, event); 1372 1373 /* and restore the physical one */ 1374 irqd_clr_forwarded_to_vcpu(d); 1375 its_send_mapti(its_dev, d->hwirq, event); 1376 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1377 LPI_PROP_ENABLED | 1378 LPI_PROP_GROUP1)); 1379 1380 /* Potentially unmap the VM from this ITS */ 1381 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1382 1383 /* 1384 * Drop the refcount and make the device available again if 1385 * this was the last VLPI. 1386 */ 1387 if (!--its_dev->event_map.nr_vlpis) { 1388 its_dev->event_map.vm = NULL; 1389 kfree(its_dev->event_map.vlpi_maps); 1390 } 1391 1392 out: 1393 mutex_unlock(&its_dev->event_map.vlpi_lock); 1394 return ret; 1395 } 1396 1397 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1398 { 1399 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1400 1401 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1402 return -EINVAL; 1403 1404 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1405 lpi_update_config(d, 0xff, info->config); 1406 else 1407 lpi_write_config(d, 0xff, info->config); 1408 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1409 1410 return 0; 1411 } 1412 1413 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1414 { 1415 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1416 struct its_cmd_info *info = vcpu_info; 1417 1418 /* Need a v4 ITS */ 1419 if (!its_dev->its->is_v4) 1420 return -EINVAL; 1421 1422 /* Unmap request? */ 1423 if (!info) 1424 return its_vlpi_unmap(d); 1425 1426 switch (info->cmd_type) { 1427 case MAP_VLPI: 1428 return its_vlpi_map(d, info); 1429 1430 case GET_VLPI: 1431 return its_vlpi_get(d, info); 1432 1433 case PROP_UPDATE_VLPI: 1434 case PROP_UPDATE_AND_INV_VLPI: 1435 return its_vlpi_prop_update(d, info); 1436 1437 default: 1438 return -EINVAL; 1439 } 1440 } 1441 1442 static struct irq_chip its_irq_chip = { 1443 .name = "ITS", 1444 .irq_mask = its_mask_irq, 1445 .irq_unmask = its_unmask_irq, 1446 .irq_eoi = irq_chip_eoi_parent, 1447 .irq_set_affinity = its_set_affinity, 1448 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1449 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1450 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1451 }; 1452 1453 1454 /* 1455 * How we allocate LPIs: 1456 * 1457 * lpi_range_list contains ranges of LPIs that are to available to 1458 * allocate from. To allocate LPIs, just pick the first range that 1459 * fits the required allocation, and reduce it by the required 1460 * amount. Once empty, remove the range from the list. 1461 * 1462 * To free a range of LPIs, add a free range to the list, sort it and 1463 * merge the result if the new range happens to be adjacent to an 1464 * already free block. 1465 * 1466 * The consequence of the above is that allocation is cost is low, but 1467 * freeing is expensive. We assumes that freeing rarely occurs. 1468 */ 1469 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1470 1471 static DEFINE_MUTEX(lpi_range_lock); 1472 static LIST_HEAD(lpi_range_list); 1473 1474 struct lpi_range { 1475 struct list_head entry; 1476 u32 base_id; 1477 u32 span; 1478 }; 1479 1480 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 1481 { 1482 struct lpi_range *range; 1483 1484 range = kmalloc(sizeof(*range), GFP_KERNEL); 1485 if (range) { 1486 range->base_id = base; 1487 range->span = span; 1488 } 1489 1490 return range; 1491 } 1492 1493 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 1494 { 1495 struct lpi_range *range, *tmp; 1496 int err = -ENOSPC; 1497 1498 mutex_lock(&lpi_range_lock); 1499 1500 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 1501 if (range->span >= nr_lpis) { 1502 *base = range->base_id; 1503 range->base_id += nr_lpis; 1504 range->span -= nr_lpis; 1505 1506 if (range->span == 0) { 1507 list_del(&range->entry); 1508 kfree(range); 1509 } 1510 1511 err = 0; 1512 break; 1513 } 1514 } 1515 1516 mutex_unlock(&lpi_range_lock); 1517 1518 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 1519 return err; 1520 } 1521 1522 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 1523 { 1524 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 1525 return; 1526 if (a->base_id + a->span != b->base_id) 1527 return; 1528 b->base_id = a->base_id; 1529 b->span += a->span; 1530 list_del(&a->entry); 1531 kfree(a); 1532 } 1533 1534 static int free_lpi_range(u32 base, u32 nr_lpis) 1535 { 1536 struct lpi_range *new, *old; 1537 1538 new = mk_lpi_range(base, nr_lpis); 1539 if (!new) 1540 return -ENOMEM; 1541 1542 mutex_lock(&lpi_range_lock); 1543 1544 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 1545 if (old->base_id < base) 1546 break; 1547 } 1548 /* 1549 * old is the last element with ->base_id smaller than base, 1550 * so new goes right after it. If there are no elements with 1551 * ->base_id smaller than base, &old->entry ends up pointing 1552 * at the head of the list, and inserting new it the start of 1553 * the list is the right thing to do in that case as well. 1554 */ 1555 list_add(&new->entry, &old->entry); 1556 /* 1557 * Now check if we can merge with the preceding and/or 1558 * following ranges. 1559 */ 1560 merge_lpi_ranges(old, new); 1561 merge_lpi_ranges(new, list_next_entry(new, entry)); 1562 1563 mutex_unlock(&lpi_range_lock); 1564 return 0; 1565 } 1566 1567 static int __init its_lpi_init(u32 id_bits) 1568 { 1569 u32 lpis = (1UL << id_bits) - 8192; 1570 u32 numlpis; 1571 int err; 1572 1573 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 1574 1575 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 1576 lpis = numlpis; 1577 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 1578 lpis); 1579 } 1580 1581 /* 1582 * Initializing the allocator is just the same as freeing the 1583 * full range of LPIs. 1584 */ 1585 err = free_lpi_range(8192, lpis); 1586 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 1587 return err; 1588 } 1589 1590 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 1591 { 1592 unsigned long *bitmap = NULL; 1593 int err = 0; 1594 1595 do { 1596 err = alloc_lpi_range(nr_irqs, base); 1597 if (!err) 1598 break; 1599 1600 nr_irqs /= 2; 1601 } while (nr_irqs > 0); 1602 1603 if (!nr_irqs) 1604 err = -ENOSPC; 1605 1606 if (err) 1607 goto out; 1608 1609 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); 1610 if (!bitmap) 1611 goto out; 1612 1613 *nr_ids = nr_irqs; 1614 1615 out: 1616 if (!bitmap) 1617 *base = *nr_ids = 0; 1618 1619 return bitmap; 1620 } 1621 1622 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 1623 { 1624 WARN_ON(free_lpi_range(base, nr_ids)); 1625 kfree(bitmap); 1626 } 1627 1628 static void gic_reset_prop_table(void *va) 1629 { 1630 /* Priority 0xa0, Group-1, disabled */ 1631 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 1632 1633 /* Make sure the GIC will observe the written configuration */ 1634 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 1635 } 1636 1637 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 1638 { 1639 struct page *prop_page; 1640 1641 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 1642 if (!prop_page) 1643 return NULL; 1644 1645 gic_reset_prop_table(page_address(prop_page)); 1646 1647 return prop_page; 1648 } 1649 1650 static void its_free_prop_table(struct page *prop_page) 1651 { 1652 free_pages((unsigned long)page_address(prop_page), 1653 get_order(LPI_PROPBASE_SZ)); 1654 } 1655 1656 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 1657 { 1658 phys_addr_t start, end, addr_end; 1659 u64 i; 1660 1661 /* 1662 * We don't bother checking for a kdump kernel as by 1663 * construction, the LPI tables are out of this kernel's 1664 * memory map. 1665 */ 1666 if (is_kdump_kernel()) 1667 return true; 1668 1669 addr_end = addr + size - 1; 1670 1671 for_each_reserved_mem_region(i, &start, &end) { 1672 if (addr >= start && addr_end <= end) 1673 return true; 1674 } 1675 1676 /* Not found, not a good sign... */ 1677 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 1678 &addr, &addr_end); 1679 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 1680 return false; 1681 } 1682 1683 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 1684 { 1685 if (efi_enabled(EFI_CONFIG_TABLES)) 1686 return efi_mem_reserve_persistent(addr, size); 1687 1688 return 0; 1689 } 1690 1691 static int __init its_setup_lpi_prop_table(void) 1692 { 1693 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 1694 u64 val; 1695 1696 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 1697 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 1698 1699 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 1700 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 1701 LPI_PROPBASE_SZ, 1702 MEMREMAP_WB); 1703 gic_reset_prop_table(gic_rdists->prop_table_va); 1704 } else { 1705 struct page *page; 1706 1707 lpi_id_bits = min_t(u32, 1708 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 1709 ITS_MAX_LPI_NRBITS); 1710 page = its_allocate_prop_table(GFP_NOWAIT); 1711 if (!page) { 1712 pr_err("Failed to allocate PROPBASE\n"); 1713 return -ENOMEM; 1714 } 1715 1716 gic_rdists->prop_table_pa = page_to_phys(page); 1717 gic_rdists->prop_table_va = page_address(page); 1718 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 1719 LPI_PROPBASE_SZ)); 1720 } 1721 1722 pr_info("GICv3: using LPI property table @%pa\n", 1723 &gic_rdists->prop_table_pa); 1724 1725 return its_lpi_init(lpi_id_bits); 1726 } 1727 1728 static const char *its_base_type_string[] = { 1729 [GITS_BASER_TYPE_DEVICE] = "Devices", 1730 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 1731 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 1732 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 1733 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 1734 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 1735 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 1736 }; 1737 1738 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 1739 { 1740 u32 idx = baser - its->tables; 1741 1742 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 1743 } 1744 1745 static void its_write_baser(struct its_node *its, struct its_baser *baser, 1746 u64 val) 1747 { 1748 u32 idx = baser - its->tables; 1749 1750 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 1751 baser->val = its_read_baser(its, baser); 1752 } 1753 1754 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 1755 u64 cache, u64 shr, u32 psz, u32 order, 1756 bool indirect) 1757 { 1758 u64 val = its_read_baser(its, baser); 1759 u64 esz = GITS_BASER_ENTRY_SIZE(val); 1760 u64 type = GITS_BASER_TYPE(val); 1761 u64 baser_phys, tmp; 1762 u32 alloc_pages; 1763 struct page *page; 1764 void *base; 1765 1766 retry_alloc_baser: 1767 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 1768 if (alloc_pages > GITS_BASER_PAGES_MAX) { 1769 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 1770 &its->phys_base, its_base_type_string[type], 1771 alloc_pages, GITS_BASER_PAGES_MAX); 1772 alloc_pages = GITS_BASER_PAGES_MAX; 1773 order = get_order(GITS_BASER_PAGES_MAX * psz); 1774 } 1775 1776 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 1777 if (!page) 1778 return -ENOMEM; 1779 1780 base = (void *)page_address(page); 1781 baser_phys = virt_to_phys(base); 1782 1783 /* Check if the physical address of the memory is above 48bits */ 1784 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 1785 1786 /* 52bit PA is supported only when PageSize=64K */ 1787 if (psz != SZ_64K) { 1788 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 1789 free_pages((unsigned long)base, order); 1790 return -ENXIO; 1791 } 1792 1793 /* Convert 52bit PA to 48bit field */ 1794 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 1795 } 1796 1797 retry_baser: 1798 val = (baser_phys | 1799 (type << GITS_BASER_TYPE_SHIFT) | 1800 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 1801 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 1802 cache | 1803 shr | 1804 GITS_BASER_VALID); 1805 1806 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 1807 1808 switch (psz) { 1809 case SZ_4K: 1810 val |= GITS_BASER_PAGE_SIZE_4K; 1811 break; 1812 case SZ_16K: 1813 val |= GITS_BASER_PAGE_SIZE_16K; 1814 break; 1815 case SZ_64K: 1816 val |= GITS_BASER_PAGE_SIZE_64K; 1817 break; 1818 } 1819 1820 its_write_baser(its, baser, val); 1821 tmp = baser->val; 1822 1823 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 1824 /* 1825 * Shareability didn't stick. Just use 1826 * whatever the read reported, which is likely 1827 * to be the only thing this redistributor 1828 * supports. If that's zero, make it 1829 * non-cacheable as well. 1830 */ 1831 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 1832 if (!shr) { 1833 cache = GITS_BASER_nC; 1834 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 1835 } 1836 goto retry_baser; 1837 } 1838 1839 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 1840 /* 1841 * Page size didn't stick. Let's try a smaller 1842 * size and retry. If we reach 4K, then 1843 * something is horribly wrong... 1844 */ 1845 free_pages((unsigned long)base, order); 1846 baser->base = NULL; 1847 1848 switch (psz) { 1849 case SZ_16K: 1850 psz = SZ_4K; 1851 goto retry_alloc_baser; 1852 case SZ_64K: 1853 psz = SZ_16K; 1854 goto retry_alloc_baser; 1855 } 1856 } 1857 1858 if (val != tmp) { 1859 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 1860 &its->phys_base, its_base_type_string[type], 1861 val, tmp); 1862 free_pages((unsigned long)base, order); 1863 return -ENXIO; 1864 } 1865 1866 baser->order = order; 1867 baser->base = base; 1868 baser->psz = psz; 1869 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 1870 1871 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 1872 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 1873 its_base_type_string[type], 1874 (unsigned long)virt_to_phys(base), 1875 indirect ? "indirect" : "flat", (int)esz, 1876 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 1877 1878 return 0; 1879 } 1880 1881 static bool its_parse_indirect_baser(struct its_node *its, 1882 struct its_baser *baser, 1883 u32 psz, u32 *order, u32 ids) 1884 { 1885 u64 tmp = its_read_baser(its, baser); 1886 u64 type = GITS_BASER_TYPE(tmp); 1887 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 1888 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 1889 u32 new_order = *order; 1890 bool indirect = false; 1891 1892 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 1893 if ((esz << ids) > (psz * 2)) { 1894 /* 1895 * Find out whether hw supports a single or two-level table by 1896 * table by reading bit at offset '62' after writing '1' to it. 1897 */ 1898 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 1899 indirect = !!(baser->val & GITS_BASER_INDIRECT); 1900 1901 if (indirect) { 1902 /* 1903 * The size of the lvl2 table is equal to ITS page size 1904 * which is 'psz'. For computing lvl1 table size, 1905 * subtract ID bits that sparse lvl2 table from 'ids' 1906 * which is reported by ITS hardware times lvl1 table 1907 * entry size. 1908 */ 1909 ids -= ilog2(psz / (int)esz); 1910 esz = GITS_LVL1_ENTRY_SIZE; 1911 } 1912 } 1913 1914 /* 1915 * Allocate as many entries as required to fit the 1916 * range of device IDs that the ITS can grok... The ID 1917 * space being incredibly sparse, this results in a 1918 * massive waste of memory if two-level device table 1919 * feature is not supported by hardware. 1920 */ 1921 new_order = max_t(u32, get_order(esz << ids), new_order); 1922 if (new_order >= MAX_ORDER) { 1923 new_order = MAX_ORDER - 1; 1924 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 1925 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", 1926 &its->phys_base, its_base_type_string[type], 1927 its->device_ids, ids); 1928 } 1929 1930 *order = new_order; 1931 1932 return indirect; 1933 } 1934 1935 static void its_free_tables(struct its_node *its) 1936 { 1937 int i; 1938 1939 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1940 if (its->tables[i].base) { 1941 free_pages((unsigned long)its->tables[i].base, 1942 its->tables[i].order); 1943 its->tables[i].base = NULL; 1944 } 1945 } 1946 } 1947 1948 static int its_alloc_tables(struct its_node *its) 1949 { 1950 u64 shr = GITS_BASER_InnerShareable; 1951 u64 cache = GITS_BASER_RaWaWb; 1952 u32 psz = SZ_64K; 1953 int err, i; 1954 1955 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 1956 /* erratum 24313: ignore memory access type */ 1957 cache = GITS_BASER_nCnB; 1958 1959 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1960 struct its_baser *baser = its->tables + i; 1961 u64 val = its_read_baser(its, baser); 1962 u64 type = GITS_BASER_TYPE(val); 1963 u32 order = get_order(psz); 1964 bool indirect = false; 1965 1966 switch (type) { 1967 case GITS_BASER_TYPE_NONE: 1968 continue; 1969 1970 case GITS_BASER_TYPE_DEVICE: 1971 indirect = its_parse_indirect_baser(its, baser, 1972 psz, &order, 1973 its->device_ids); 1974 break; 1975 1976 case GITS_BASER_TYPE_VCPU: 1977 indirect = its_parse_indirect_baser(its, baser, 1978 psz, &order, 1979 ITS_MAX_VPEID_BITS); 1980 break; 1981 } 1982 1983 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1984 if (err < 0) { 1985 its_free_tables(its); 1986 return err; 1987 } 1988 1989 /* Update settings which will be used for next BASERn */ 1990 psz = baser->psz; 1991 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1992 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1993 } 1994 1995 return 0; 1996 } 1997 1998 static int its_alloc_collections(struct its_node *its) 1999 { 2000 int i; 2001 2002 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2003 GFP_KERNEL); 2004 if (!its->collections) 2005 return -ENOMEM; 2006 2007 for (i = 0; i < nr_cpu_ids; i++) 2008 its->collections[i].target_address = ~0ULL; 2009 2010 return 0; 2011 } 2012 2013 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2014 { 2015 struct page *pend_page; 2016 2017 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2018 get_order(LPI_PENDBASE_SZ)); 2019 if (!pend_page) 2020 return NULL; 2021 2022 /* Make sure the GIC will observe the zero-ed page */ 2023 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2024 2025 return pend_page; 2026 } 2027 2028 static void its_free_pending_table(struct page *pt) 2029 { 2030 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2031 } 2032 2033 /* 2034 * Booting with kdump and LPIs enabled is generally fine. Any other 2035 * case is wrong in the absence of firmware/EFI support. 2036 */ 2037 static bool enabled_lpis_allowed(void) 2038 { 2039 phys_addr_t addr; 2040 u64 val; 2041 2042 /* Check whether the property table is in a reserved region */ 2043 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2044 addr = val & GENMASK_ULL(51, 12); 2045 2046 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2047 } 2048 2049 static int __init allocate_lpi_tables(void) 2050 { 2051 u64 val; 2052 int err, cpu; 2053 2054 /* 2055 * If LPIs are enabled while we run this from the boot CPU, 2056 * flag the RD tables as pre-allocated if the stars do align. 2057 */ 2058 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 2059 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 2060 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 2061 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 2062 pr_info("GICv3: Using preallocated redistributor tables\n"); 2063 } 2064 2065 err = its_setup_lpi_prop_table(); 2066 if (err) 2067 return err; 2068 2069 /* 2070 * We allocate all the pending tables anyway, as we may have a 2071 * mix of RDs that have had LPIs enabled, and some that 2072 * don't. We'll free the unused ones as each CPU comes online. 2073 */ 2074 for_each_possible_cpu(cpu) { 2075 struct page *pend_page; 2076 2077 pend_page = its_allocate_pending_table(GFP_NOWAIT); 2078 if (!pend_page) { 2079 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 2080 return -ENOMEM; 2081 } 2082 2083 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 2084 } 2085 2086 return 0; 2087 } 2088 2089 static u64 its_clear_vpend_valid(void __iomem *vlpi_base) 2090 { 2091 u32 count = 1000000; /* 1s! */ 2092 bool clean; 2093 u64 val; 2094 2095 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2096 val &= ~GICR_VPENDBASER_Valid; 2097 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2098 2099 do { 2100 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2101 clean = !(val & GICR_VPENDBASER_Dirty); 2102 if (!clean) { 2103 count--; 2104 cpu_relax(); 2105 udelay(1); 2106 } 2107 } while (!clean && count); 2108 2109 return val; 2110 } 2111 2112 static void its_cpu_init_lpis(void) 2113 { 2114 void __iomem *rbase = gic_data_rdist_rd_base(); 2115 struct page *pend_page; 2116 phys_addr_t paddr; 2117 u64 val, tmp; 2118 2119 if (gic_data_rdist()->lpi_enabled) 2120 return; 2121 2122 val = readl_relaxed(rbase + GICR_CTLR); 2123 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 2124 (val & GICR_CTLR_ENABLE_LPIS)) { 2125 /* 2126 * Check that we get the same property table on all 2127 * RDs. If we don't, this is hopeless. 2128 */ 2129 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 2130 paddr &= GENMASK_ULL(51, 12); 2131 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 2132 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2133 2134 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2135 paddr &= GENMASK_ULL(51, 16); 2136 2137 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 2138 its_free_pending_table(gic_data_rdist()->pend_page); 2139 gic_data_rdist()->pend_page = NULL; 2140 2141 goto out; 2142 } 2143 2144 pend_page = gic_data_rdist()->pend_page; 2145 paddr = page_to_phys(pend_page); 2146 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 2147 2148 /* set PROPBASE */ 2149 val = (gic_rdists->prop_table_pa | 2150 GICR_PROPBASER_InnerShareable | 2151 GICR_PROPBASER_RaWaWb | 2152 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 2153 2154 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 2155 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 2156 2157 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 2158 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 2159 /* 2160 * The HW reports non-shareable, we must 2161 * remove the cacheability attributes as 2162 * well. 2163 */ 2164 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 2165 GICR_PROPBASER_CACHEABILITY_MASK); 2166 val |= GICR_PROPBASER_nC; 2167 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 2168 } 2169 pr_info_once("GIC: using cache flushing for LPI property table\n"); 2170 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 2171 } 2172 2173 /* set PENDBASE */ 2174 val = (page_to_phys(pend_page) | 2175 GICR_PENDBASER_InnerShareable | 2176 GICR_PENDBASER_RaWaWb); 2177 2178 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2179 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2180 2181 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 2182 /* 2183 * The HW reports non-shareable, we must remove the 2184 * cacheability attributes as well. 2185 */ 2186 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 2187 GICR_PENDBASER_CACHEABILITY_MASK); 2188 val |= GICR_PENDBASER_nC; 2189 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2190 } 2191 2192 /* Enable LPIs */ 2193 val = readl_relaxed(rbase + GICR_CTLR); 2194 val |= GICR_CTLR_ENABLE_LPIS; 2195 writel_relaxed(val, rbase + GICR_CTLR); 2196 2197 if (gic_rdists->has_vlpis) { 2198 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2199 2200 /* 2201 * It's possible for CPU to receive VLPIs before it is 2202 * sheduled as a vPE, especially for the first CPU, and the 2203 * VLPI with INTID larger than 2^(IDbits+1) will be considered 2204 * as out of range and dropped by GIC. 2205 * So we initialize IDbits to known value to avoid VLPI drop. 2206 */ 2207 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2208 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 2209 smp_processor_id(), val); 2210 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2211 2212 /* 2213 * Also clear Valid bit of GICR_VPENDBASER, in case some 2214 * ancient programming gets left in and has possibility of 2215 * corrupting memory. 2216 */ 2217 val = its_clear_vpend_valid(vlpi_base); 2218 WARN_ON(val & GICR_VPENDBASER_Dirty); 2219 } 2220 2221 /* Make sure the GIC has seen the above */ 2222 dsb(sy); 2223 out: 2224 gic_data_rdist()->lpi_enabled = true; 2225 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 2226 smp_processor_id(), 2227 gic_data_rdist()->pend_page ? "allocated" : "reserved", 2228 &paddr); 2229 } 2230 2231 static void its_cpu_init_collection(struct its_node *its) 2232 { 2233 int cpu = smp_processor_id(); 2234 u64 target; 2235 2236 /* avoid cross node collections and its mapping */ 2237 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 2238 struct device_node *cpu_node; 2239 2240 cpu_node = of_get_cpu_node(cpu, NULL); 2241 if (its->numa_node != NUMA_NO_NODE && 2242 its->numa_node != of_node_to_nid(cpu_node)) 2243 return; 2244 } 2245 2246 /* 2247 * We now have to bind each collection to its target 2248 * redistributor. 2249 */ 2250 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 2251 /* 2252 * This ITS wants the physical address of the 2253 * redistributor. 2254 */ 2255 target = gic_data_rdist()->phys_base; 2256 } else { 2257 /* This ITS wants a linear CPU number. */ 2258 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2259 target = GICR_TYPER_CPU_NUMBER(target) << 16; 2260 } 2261 2262 /* Perform collection mapping */ 2263 its->collections[cpu].target_address = target; 2264 its->collections[cpu].col_id = cpu; 2265 2266 its_send_mapc(its, &its->collections[cpu], 1); 2267 its_send_invall(its, &its->collections[cpu]); 2268 } 2269 2270 static void its_cpu_init_collections(void) 2271 { 2272 struct its_node *its; 2273 2274 raw_spin_lock(&its_lock); 2275 2276 list_for_each_entry(its, &its_nodes, entry) 2277 its_cpu_init_collection(its); 2278 2279 raw_spin_unlock(&its_lock); 2280 } 2281 2282 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 2283 { 2284 struct its_device *its_dev = NULL, *tmp; 2285 unsigned long flags; 2286 2287 raw_spin_lock_irqsave(&its->lock, flags); 2288 2289 list_for_each_entry(tmp, &its->its_device_list, entry) { 2290 if (tmp->device_id == dev_id) { 2291 its_dev = tmp; 2292 break; 2293 } 2294 } 2295 2296 raw_spin_unlock_irqrestore(&its->lock, flags); 2297 2298 return its_dev; 2299 } 2300 2301 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 2302 { 2303 int i; 2304 2305 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2306 if (GITS_BASER_TYPE(its->tables[i].val) == type) 2307 return &its->tables[i]; 2308 } 2309 2310 return NULL; 2311 } 2312 2313 static bool its_alloc_table_entry(struct its_node *its, 2314 struct its_baser *baser, u32 id) 2315 { 2316 struct page *page; 2317 u32 esz, idx; 2318 __le64 *table; 2319 2320 /* Don't allow device id that exceeds single, flat table limit */ 2321 esz = GITS_BASER_ENTRY_SIZE(baser->val); 2322 if (!(baser->val & GITS_BASER_INDIRECT)) 2323 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 2324 2325 /* Compute 1st level table index & check if that exceeds table limit */ 2326 idx = id >> ilog2(baser->psz / esz); 2327 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 2328 return false; 2329 2330 table = baser->base; 2331 2332 /* Allocate memory for 2nd level table */ 2333 if (!table[idx]) { 2334 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 2335 get_order(baser->psz)); 2336 if (!page) 2337 return false; 2338 2339 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2340 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2341 gic_flush_dcache_to_poc(page_address(page), baser->psz); 2342 2343 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2344 2345 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2346 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2347 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2348 2349 /* Ensure updated table contents are visible to ITS hardware */ 2350 dsb(sy); 2351 } 2352 2353 return true; 2354 } 2355 2356 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 2357 { 2358 struct its_baser *baser; 2359 2360 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 2361 2362 /* Don't allow device id that exceeds ITS hardware limit */ 2363 if (!baser) 2364 return (ilog2(dev_id) < its->device_ids); 2365 2366 return its_alloc_table_entry(its, baser, dev_id); 2367 } 2368 2369 static bool its_alloc_vpe_table(u32 vpe_id) 2370 { 2371 struct its_node *its; 2372 2373 /* 2374 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 2375 * could try and only do it on ITSs corresponding to devices 2376 * that have interrupts targeted at this VPE, but the 2377 * complexity becomes crazy (and you have tons of memory 2378 * anyway, right?). 2379 */ 2380 list_for_each_entry(its, &its_nodes, entry) { 2381 struct its_baser *baser; 2382 2383 if (!its->is_v4) 2384 continue; 2385 2386 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 2387 if (!baser) 2388 return false; 2389 2390 if (!its_alloc_table_entry(its, baser, vpe_id)) 2391 return false; 2392 } 2393 2394 return true; 2395 } 2396 2397 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 2398 int nvecs, bool alloc_lpis) 2399 { 2400 struct its_device *dev; 2401 unsigned long *lpi_map = NULL; 2402 unsigned long flags; 2403 u16 *col_map = NULL; 2404 void *itt; 2405 int lpi_base; 2406 int nr_lpis; 2407 int nr_ites; 2408 int sz; 2409 2410 if (!its_alloc_device_table(its, dev_id)) 2411 return NULL; 2412 2413 if (WARN_ON(!is_power_of_2(nvecs))) 2414 nvecs = roundup_pow_of_two(nvecs); 2415 2416 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2417 /* 2418 * Even if the device wants a single LPI, the ITT must be 2419 * sized as a power of two (and you need at least one bit...). 2420 */ 2421 nr_ites = max(2, nvecs); 2422 sz = nr_ites * its->ite_size; 2423 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 2424 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 2425 if (alloc_lpis) { 2426 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 2427 if (lpi_map) 2428 col_map = kcalloc(nr_lpis, sizeof(*col_map), 2429 GFP_KERNEL); 2430 } else { 2431 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 2432 nr_lpis = 0; 2433 lpi_base = 0; 2434 } 2435 2436 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 2437 kfree(dev); 2438 kfree(itt); 2439 kfree(lpi_map); 2440 kfree(col_map); 2441 return NULL; 2442 } 2443 2444 gic_flush_dcache_to_poc(itt, sz); 2445 2446 dev->its = its; 2447 dev->itt = itt; 2448 dev->nr_ites = nr_ites; 2449 dev->event_map.lpi_map = lpi_map; 2450 dev->event_map.col_map = col_map; 2451 dev->event_map.lpi_base = lpi_base; 2452 dev->event_map.nr_lpis = nr_lpis; 2453 mutex_init(&dev->event_map.vlpi_lock); 2454 dev->device_id = dev_id; 2455 INIT_LIST_HEAD(&dev->entry); 2456 2457 raw_spin_lock_irqsave(&its->lock, flags); 2458 list_add(&dev->entry, &its->its_device_list); 2459 raw_spin_unlock_irqrestore(&its->lock, flags); 2460 2461 /* Map device to its ITT */ 2462 its_send_mapd(dev, 1); 2463 2464 return dev; 2465 } 2466 2467 static void its_free_device(struct its_device *its_dev) 2468 { 2469 unsigned long flags; 2470 2471 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 2472 list_del(&its_dev->entry); 2473 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 2474 kfree(its_dev->itt); 2475 kfree(its_dev); 2476 } 2477 2478 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 2479 { 2480 int idx; 2481 2482 /* Find a free LPI region in lpi_map and allocate them. */ 2483 idx = bitmap_find_free_region(dev->event_map.lpi_map, 2484 dev->event_map.nr_lpis, 2485 get_count_order(nvecs)); 2486 if (idx < 0) 2487 return -ENOSPC; 2488 2489 *hwirq = dev->event_map.lpi_base + idx; 2490 2491 return 0; 2492 } 2493 2494 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 2495 int nvec, msi_alloc_info_t *info) 2496 { 2497 struct its_node *its; 2498 struct its_device *its_dev; 2499 struct msi_domain_info *msi_info; 2500 u32 dev_id; 2501 int err = 0; 2502 2503 /* 2504 * We ignore "dev" entirely, and rely on the dev_id that has 2505 * been passed via the scratchpad. This limits this domain's 2506 * usefulness to upper layers that definitely know that they 2507 * are built on top of the ITS. 2508 */ 2509 dev_id = info->scratchpad[0].ul; 2510 2511 msi_info = msi_get_domain_info(domain); 2512 its = msi_info->data; 2513 2514 if (!gic_rdists->has_direct_lpi && 2515 vpe_proxy.dev && 2516 vpe_proxy.dev->its == its && 2517 dev_id == vpe_proxy.dev->device_id) { 2518 /* Bad luck. Get yourself a better implementation */ 2519 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 2520 dev_id); 2521 return -EINVAL; 2522 } 2523 2524 mutex_lock(&its->dev_alloc_lock); 2525 its_dev = its_find_device(its, dev_id); 2526 if (its_dev) { 2527 /* 2528 * We already have seen this ID, probably through 2529 * another alias (PCI bridge of some sort). No need to 2530 * create the device. 2531 */ 2532 its_dev->shared = true; 2533 pr_debug("Reusing ITT for devID %x\n", dev_id); 2534 goto out; 2535 } 2536 2537 its_dev = its_create_device(its, dev_id, nvec, true); 2538 if (!its_dev) { 2539 err = -ENOMEM; 2540 goto out; 2541 } 2542 2543 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 2544 out: 2545 mutex_unlock(&its->dev_alloc_lock); 2546 info->scratchpad[0].ptr = its_dev; 2547 return err; 2548 } 2549 2550 static struct msi_domain_ops its_msi_domain_ops = { 2551 .msi_prepare = its_msi_prepare, 2552 }; 2553 2554 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 2555 unsigned int virq, 2556 irq_hw_number_t hwirq) 2557 { 2558 struct irq_fwspec fwspec; 2559 2560 if (irq_domain_get_of_node(domain->parent)) { 2561 fwspec.fwnode = domain->parent->fwnode; 2562 fwspec.param_count = 3; 2563 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 2564 fwspec.param[1] = hwirq; 2565 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 2566 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 2567 fwspec.fwnode = domain->parent->fwnode; 2568 fwspec.param_count = 2; 2569 fwspec.param[0] = hwirq; 2570 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 2571 } else { 2572 return -EINVAL; 2573 } 2574 2575 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 2576 } 2577 2578 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2579 unsigned int nr_irqs, void *args) 2580 { 2581 msi_alloc_info_t *info = args; 2582 struct its_device *its_dev = info->scratchpad[0].ptr; 2583 struct its_node *its = its_dev->its; 2584 irq_hw_number_t hwirq; 2585 int err; 2586 int i; 2587 2588 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 2589 if (err) 2590 return err; 2591 2592 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 2593 if (err) 2594 return err; 2595 2596 for (i = 0; i < nr_irqs; i++) { 2597 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 2598 if (err) 2599 return err; 2600 2601 irq_domain_set_hwirq_and_chip(domain, virq + i, 2602 hwirq + i, &its_irq_chip, its_dev); 2603 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 2604 pr_debug("ID:%d pID:%d vID:%d\n", 2605 (int)(hwirq + i - its_dev->event_map.lpi_base), 2606 (int)(hwirq + i), virq + i); 2607 } 2608 2609 return 0; 2610 } 2611 2612 static int its_irq_domain_activate(struct irq_domain *domain, 2613 struct irq_data *d, bool reserve) 2614 { 2615 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2616 u32 event = its_get_event_id(d); 2617 const struct cpumask *cpu_mask = cpu_online_mask; 2618 int cpu; 2619 2620 /* get the cpu_mask of local node */ 2621 if (its_dev->its->numa_node >= 0) 2622 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 2623 2624 /* Bind the LPI to the first possible CPU */ 2625 cpu = cpumask_first_and(cpu_mask, cpu_online_mask); 2626 if (cpu >= nr_cpu_ids) { 2627 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) 2628 return -EINVAL; 2629 2630 cpu = cpumask_first(cpu_online_mask); 2631 } 2632 2633 its_dev->event_map.col_map[event] = cpu; 2634 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2635 2636 /* Map the GIC IRQ and event to the device */ 2637 its_send_mapti(its_dev, d->hwirq, event); 2638 return 0; 2639 } 2640 2641 static void its_irq_domain_deactivate(struct irq_domain *domain, 2642 struct irq_data *d) 2643 { 2644 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2645 u32 event = its_get_event_id(d); 2646 2647 /* Stop the delivery of interrupts */ 2648 its_send_discard(its_dev, event); 2649 } 2650 2651 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 2652 unsigned int nr_irqs) 2653 { 2654 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 2655 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2656 struct its_node *its = its_dev->its; 2657 int i; 2658 2659 bitmap_release_region(its_dev->event_map.lpi_map, 2660 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 2661 get_count_order(nr_irqs)); 2662 2663 for (i = 0; i < nr_irqs; i++) { 2664 struct irq_data *data = irq_domain_get_irq_data(domain, 2665 virq + i); 2666 /* Nuke the entry in the domain */ 2667 irq_domain_reset_irq_data(data); 2668 } 2669 2670 mutex_lock(&its->dev_alloc_lock); 2671 2672 /* 2673 * If all interrupts have been freed, start mopping the 2674 * floor. This is conditionned on the device not being shared. 2675 */ 2676 if (!its_dev->shared && 2677 bitmap_empty(its_dev->event_map.lpi_map, 2678 its_dev->event_map.nr_lpis)) { 2679 its_lpi_free(its_dev->event_map.lpi_map, 2680 its_dev->event_map.lpi_base, 2681 its_dev->event_map.nr_lpis); 2682 kfree(its_dev->event_map.col_map); 2683 2684 /* Unmap device/itt */ 2685 its_send_mapd(its_dev, 0); 2686 its_free_device(its_dev); 2687 } 2688 2689 mutex_unlock(&its->dev_alloc_lock); 2690 2691 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2692 } 2693 2694 static const struct irq_domain_ops its_domain_ops = { 2695 .alloc = its_irq_domain_alloc, 2696 .free = its_irq_domain_free, 2697 .activate = its_irq_domain_activate, 2698 .deactivate = its_irq_domain_deactivate, 2699 }; 2700 2701 /* 2702 * This is insane. 2703 * 2704 * If a GICv4 doesn't implement Direct LPIs (which is extremely 2705 * likely), the only way to perform an invalidate is to use a fake 2706 * device to issue an INV command, implying that the LPI has first 2707 * been mapped to some event on that device. Since this is not exactly 2708 * cheap, we try to keep that mapping around as long as possible, and 2709 * only issue an UNMAP if we're short on available slots. 2710 * 2711 * Broken by design(tm). 2712 */ 2713 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 2714 { 2715 /* Already unmapped? */ 2716 if (vpe->vpe_proxy_event == -1) 2717 return; 2718 2719 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 2720 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 2721 2722 /* 2723 * We don't track empty slots at all, so let's move the 2724 * next_victim pointer if we can quickly reuse that slot 2725 * instead of nuking an existing entry. Not clear that this is 2726 * always a win though, and this might just generate a ripple 2727 * effect... Let's just hope VPEs don't migrate too often. 2728 */ 2729 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2730 vpe_proxy.next_victim = vpe->vpe_proxy_event; 2731 2732 vpe->vpe_proxy_event = -1; 2733 } 2734 2735 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 2736 { 2737 if (!gic_rdists->has_direct_lpi) { 2738 unsigned long flags; 2739 2740 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2741 its_vpe_db_proxy_unmap_locked(vpe); 2742 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2743 } 2744 } 2745 2746 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 2747 { 2748 /* Already mapped? */ 2749 if (vpe->vpe_proxy_event != -1) 2750 return; 2751 2752 /* This slot was already allocated. Kick the other VPE out. */ 2753 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2754 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 2755 2756 /* Map the new VPE instead */ 2757 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 2758 vpe->vpe_proxy_event = vpe_proxy.next_victim; 2759 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 2760 2761 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 2762 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 2763 } 2764 2765 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 2766 { 2767 unsigned long flags; 2768 struct its_collection *target_col; 2769 2770 if (gic_rdists->has_direct_lpi) { 2771 void __iomem *rdbase; 2772 2773 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 2774 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2775 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2776 cpu_relax(); 2777 2778 return; 2779 } 2780 2781 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2782 2783 its_vpe_db_proxy_map_locked(vpe); 2784 2785 target_col = &vpe_proxy.dev->its->collections[to]; 2786 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 2787 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 2788 2789 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2790 } 2791 2792 static int its_vpe_set_affinity(struct irq_data *d, 2793 const struct cpumask *mask_val, 2794 bool force) 2795 { 2796 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2797 int cpu = cpumask_first(mask_val); 2798 2799 /* 2800 * Changing affinity is mega expensive, so let's be as lazy as 2801 * we can and only do it if we really have to. Also, if mapped 2802 * into the proxy device, we need to move the doorbell 2803 * interrupt to its new location. 2804 */ 2805 if (vpe->col_idx != cpu) { 2806 int from = vpe->col_idx; 2807 2808 vpe->col_idx = cpu; 2809 its_send_vmovp(vpe); 2810 its_vpe_db_proxy_move(vpe, from, cpu); 2811 } 2812 2813 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2814 2815 return IRQ_SET_MASK_OK_DONE; 2816 } 2817 2818 static void its_vpe_schedule(struct its_vpe *vpe) 2819 { 2820 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2821 u64 val; 2822 2823 /* Schedule the VPE */ 2824 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 2825 GENMASK_ULL(51, 12); 2826 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2827 val |= GICR_VPROPBASER_RaWb; 2828 val |= GICR_VPROPBASER_InnerShareable; 2829 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2830 2831 val = virt_to_phys(page_address(vpe->vpt_page)) & 2832 GENMASK_ULL(51, 16); 2833 val |= GICR_VPENDBASER_RaWaWb; 2834 val |= GICR_VPENDBASER_NonShareable; 2835 /* 2836 * There is no good way of finding out if the pending table is 2837 * empty as we can race against the doorbell interrupt very 2838 * easily. So in the end, vpe->pending_last is only an 2839 * indication that the vcpu has something pending, not one 2840 * that the pending table is empty. A good implementation 2841 * would be able to read its coarse map pretty quickly anyway, 2842 * making this a tolerable issue. 2843 */ 2844 val |= GICR_VPENDBASER_PendingLast; 2845 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 2846 val |= GICR_VPENDBASER_Valid; 2847 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2848 } 2849 2850 static void its_vpe_deschedule(struct its_vpe *vpe) 2851 { 2852 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2853 u64 val; 2854 2855 val = its_clear_vpend_valid(vlpi_base); 2856 2857 if (unlikely(val & GICR_VPENDBASER_Dirty)) { 2858 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 2859 vpe->idai = false; 2860 vpe->pending_last = true; 2861 } else { 2862 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 2863 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 2864 } 2865 } 2866 2867 static void its_vpe_invall(struct its_vpe *vpe) 2868 { 2869 struct its_node *its; 2870 2871 list_for_each_entry(its, &its_nodes, entry) { 2872 if (!its->is_v4) 2873 continue; 2874 2875 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 2876 continue; 2877 2878 /* 2879 * Sending a VINVALL to a single ITS is enough, as all 2880 * we need is to reach the redistributors. 2881 */ 2882 its_send_vinvall(its, vpe); 2883 return; 2884 } 2885 } 2886 2887 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2888 { 2889 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2890 struct its_cmd_info *info = vcpu_info; 2891 2892 switch (info->cmd_type) { 2893 case SCHEDULE_VPE: 2894 its_vpe_schedule(vpe); 2895 return 0; 2896 2897 case DESCHEDULE_VPE: 2898 its_vpe_deschedule(vpe); 2899 return 0; 2900 2901 case INVALL_VPE: 2902 its_vpe_invall(vpe); 2903 return 0; 2904 2905 default: 2906 return -EINVAL; 2907 } 2908 } 2909 2910 static void its_vpe_send_cmd(struct its_vpe *vpe, 2911 void (*cmd)(struct its_device *, u32)) 2912 { 2913 unsigned long flags; 2914 2915 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2916 2917 its_vpe_db_proxy_map_locked(vpe); 2918 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 2919 2920 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2921 } 2922 2923 static void its_vpe_send_inv(struct irq_data *d) 2924 { 2925 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2926 2927 if (gic_rdists->has_direct_lpi) { 2928 void __iomem *rdbase; 2929 2930 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2931 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); 2932 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2933 cpu_relax(); 2934 } else { 2935 its_vpe_send_cmd(vpe, its_send_inv); 2936 } 2937 } 2938 2939 static void its_vpe_mask_irq(struct irq_data *d) 2940 { 2941 /* 2942 * We need to unmask the LPI, which is described by the parent 2943 * irq_data. Instead of calling into the parent (which won't 2944 * exactly do the right thing, let's simply use the 2945 * parent_data pointer. Yes, I'm naughty. 2946 */ 2947 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 2948 its_vpe_send_inv(d); 2949 } 2950 2951 static void its_vpe_unmask_irq(struct irq_data *d) 2952 { 2953 /* Same hack as above... */ 2954 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 2955 its_vpe_send_inv(d); 2956 } 2957 2958 static int its_vpe_set_irqchip_state(struct irq_data *d, 2959 enum irqchip_irq_state which, 2960 bool state) 2961 { 2962 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2963 2964 if (which != IRQCHIP_STATE_PENDING) 2965 return -EINVAL; 2966 2967 if (gic_rdists->has_direct_lpi) { 2968 void __iomem *rdbase; 2969 2970 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2971 if (state) { 2972 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 2973 } else { 2974 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2975 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2976 cpu_relax(); 2977 } 2978 } else { 2979 if (state) 2980 its_vpe_send_cmd(vpe, its_send_int); 2981 else 2982 its_vpe_send_cmd(vpe, its_send_clear); 2983 } 2984 2985 return 0; 2986 } 2987 2988 static struct irq_chip its_vpe_irq_chip = { 2989 .name = "GICv4-vpe", 2990 .irq_mask = its_vpe_mask_irq, 2991 .irq_unmask = its_vpe_unmask_irq, 2992 .irq_eoi = irq_chip_eoi_parent, 2993 .irq_set_affinity = its_vpe_set_affinity, 2994 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 2995 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 2996 }; 2997 2998 static int its_vpe_id_alloc(void) 2999 { 3000 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 3001 } 3002 3003 static void its_vpe_id_free(u16 id) 3004 { 3005 ida_simple_remove(&its_vpeid_ida, id); 3006 } 3007 3008 static int its_vpe_init(struct its_vpe *vpe) 3009 { 3010 struct page *vpt_page; 3011 int vpe_id; 3012 3013 /* Allocate vpe_id */ 3014 vpe_id = its_vpe_id_alloc(); 3015 if (vpe_id < 0) 3016 return vpe_id; 3017 3018 /* Allocate VPT */ 3019 vpt_page = its_allocate_pending_table(GFP_KERNEL); 3020 if (!vpt_page) { 3021 its_vpe_id_free(vpe_id); 3022 return -ENOMEM; 3023 } 3024 3025 if (!its_alloc_vpe_table(vpe_id)) { 3026 its_vpe_id_free(vpe_id); 3027 its_free_pending_table(vpt_page); 3028 return -ENOMEM; 3029 } 3030 3031 vpe->vpe_id = vpe_id; 3032 vpe->vpt_page = vpt_page; 3033 vpe->vpe_proxy_event = -1; 3034 3035 return 0; 3036 } 3037 3038 static void its_vpe_teardown(struct its_vpe *vpe) 3039 { 3040 its_vpe_db_proxy_unmap(vpe); 3041 its_vpe_id_free(vpe->vpe_id); 3042 its_free_pending_table(vpe->vpt_page); 3043 } 3044 3045 static void its_vpe_irq_domain_free(struct irq_domain *domain, 3046 unsigned int virq, 3047 unsigned int nr_irqs) 3048 { 3049 struct its_vm *vm = domain->host_data; 3050 int i; 3051 3052 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3053 3054 for (i = 0; i < nr_irqs; i++) { 3055 struct irq_data *data = irq_domain_get_irq_data(domain, 3056 virq + i); 3057 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 3058 3059 BUG_ON(vm != vpe->its_vm); 3060 3061 clear_bit(data->hwirq, vm->db_bitmap); 3062 its_vpe_teardown(vpe); 3063 irq_domain_reset_irq_data(data); 3064 } 3065 3066 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 3067 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 3068 its_free_prop_table(vm->vprop_page); 3069 } 3070 } 3071 3072 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3073 unsigned int nr_irqs, void *args) 3074 { 3075 struct its_vm *vm = args; 3076 unsigned long *bitmap; 3077 struct page *vprop_page; 3078 int base, nr_ids, i, err = 0; 3079 3080 BUG_ON(!vm); 3081 3082 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 3083 if (!bitmap) 3084 return -ENOMEM; 3085 3086 if (nr_ids < nr_irqs) { 3087 its_lpi_free(bitmap, base, nr_ids); 3088 return -ENOMEM; 3089 } 3090 3091 vprop_page = its_allocate_prop_table(GFP_KERNEL); 3092 if (!vprop_page) { 3093 its_lpi_free(bitmap, base, nr_ids); 3094 return -ENOMEM; 3095 } 3096 3097 vm->db_bitmap = bitmap; 3098 vm->db_lpi_base = base; 3099 vm->nr_db_lpis = nr_ids; 3100 vm->vprop_page = vprop_page; 3101 3102 for (i = 0; i < nr_irqs; i++) { 3103 vm->vpes[i]->vpe_db_lpi = base + i; 3104 err = its_vpe_init(vm->vpes[i]); 3105 if (err) 3106 break; 3107 err = its_irq_gic_domain_alloc(domain, virq + i, 3108 vm->vpes[i]->vpe_db_lpi); 3109 if (err) 3110 break; 3111 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 3112 &its_vpe_irq_chip, vm->vpes[i]); 3113 set_bit(i, bitmap); 3114 } 3115 3116 if (err) { 3117 if (i > 0) 3118 its_vpe_irq_domain_free(domain, virq, i - 1); 3119 3120 its_lpi_free(bitmap, base, nr_ids); 3121 its_free_prop_table(vprop_page); 3122 } 3123 3124 return err; 3125 } 3126 3127 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 3128 struct irq_data *d, bool reserve) 3129 { 3130 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3131 struct its_node *its; 3132 3133 /* If we use the list map, we issue VMAPP on demand... */ 3134 if (its_list_map) 3135 return 0; 3136 3137 /* Map the VPE to the first possible CPU */ 3138 vpe->col_idx = cpumask_first(cpu_online_mask); 3139 3140 list_for_each_entry(its, &its_nodes, entry) { 3141 if (!its->is_v4) 3142 continue; 3143 3144 its_send_vmapp(its, vpe, true); 3145 its_send_vinvall(its, vpe); 3146 } 3147 3148 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 3149 3150 return 0; 3151 } 3152 3153 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 3154 struct irq_data *d) 3155 { 3156 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3157 struct its_node *its; 3158 3159 /* 3160 * If we use the list map, we unmap the VPE once no VLPIs are 3161 * associated with the VM. 3162 */ 3163 if (its_list_map) 3164 return; 3165 3166 list_for_each_entry(its, &its_nodes, entry) { 3167 if (!its->is_v4) 3168 continue; 3169 3170 its_send_vmapp(its, vpe, false); 3171 } 3172 } 3173 3174 static const struct irq_domain_ops its_vpe_domain_ops = { 3175 .alloc = its_vpe_irq_domain_alloc, 3176 .free = its_vpe_irq_domain_free, 3177 .activate = its_vpe_irq_domain_activate, 3178 .deactivate = its_vpe_irq_domain_deactivate, 3179 }; 3180 3181 static int its_force_quiescent(void __iomem *base) 3182 { 3183 u32 count = 1000000; /* 1s */ 3184 u32 val; 3185 3186 val = readl_relaxed(base + GITS_CTLR); 3187 /* 3188 * GIC architecture specification requires the ITS to be both 3189 * disabled and quiescent for writes to GITS_BASER<n> or 3190 * GITS_CBASER to not have UNPREDICTABLE results. 3191 */ 3192 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 3193 return 0; 3194 3195 /* Disable the generation of all interrupts to this ITS */ 3196 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 3197 writel_relaxed(val, base + GITS_CTLR); 3198 3199 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 3200 while (1) { 3201 val = readl_relaxed(base + GITS_CTLR); 3202 if (val & GITS_CTLR_QUIESCENT) 3203 return 0; 3204 3205 count--; 3206 if (!count) 3207 return -EBUSY; 3208 3209 cpu_relax(); 3210 udelay(1); 3211 } 3212 } 3213 3214 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 3215 { 3216 struct its_node *its = data; 3217 3218 /* erratum 22375: only alloc 8MB table size */ 3219 its->device_ids = 0x14; /* 20 bits, 8MB */ 3220 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 3221 3222 return true; 3223 } 3224 3225 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 3226 { 3227 struct its_node *its = data; 3228 3229 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 3230 3231 return true; 3232 } 3233 3234 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 3235 { 3236 struct its_node *its = data; 3237 3238 /* On QDF2400, the size of the ITE is 16Bytes */ 3239 its->ite_size = 16; 3240 3241 return true; 3242 } 3243 3244 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 3245 { 3246 struct its_node *its = its_dev->its; 3247 3248 /* 3249 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 3250 * which maps 32-bit writes targeted at a separate window of 3251 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 3252 * with device ID taken from bits [device_id_bits + 1:2] of 3253 * the window offset. 3254 */ 3255 return its->pre_its_base + (its_dev->device_id << 2); 3256 } 3257 3258 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 3259 { 3260 struct its_node *its = data; 3261 u32 pre_its_window[2]; 3262 u32 ids; 3263 3264 if (!fwnode_property_read_u32_array(its->fwnode_handle, 3265 "socionext,synquacer-pre-its", 3266 pre_its_window, 3267 ARRAY_SIZE(pre_its_window))) { 3268 3269 its->pre_its_base = pre_its_window[0]; 3270 its->get_msi_base = its_irq_get_msi_base_pre_its; 3271 3272 ids = ilog2(pre_its_window[1]) - 2; 3273 if (its->device_ids > ids) 3274 its->device_ids = ids; 3275 3276 /* the pre-ITS breaks isolation, so disable MSI remapping */ 3277 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 3278 return true; 3279 } 3280 return false; 3281 } 3282 3283 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 3284 { 3285 struct its_node *its = data; 3286 3287 /* 3288 * Hip07 insists on using the wrong address for the VLPI 3289 * page. Trick it into doing the right thing... 3290 */ 3291 its->vlpi_redist_offset = SZ_128K; 3292 return true; 3293 } 3294 3295 static const struct gic_quirk its_quirks[] = { 3296 #ifdef CONFIG_CAVIUM_ERRATUM_22375 3297 { 3298 .desc = "ITS: Cavium errata 22375, 24313", 3299 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3300 .mask = 0xffff0fff, 3301 .init = its_enable_quirk_cavium_22375, 3302 }, 3303 #endif 3304 #ifdef CONFIG_CAVIUM_ERRATUM_23144 3305 { 3306 .desc = "ITS: Cavium erratum 23144", 3307 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3308 .mask = 0xffff0fff, 3309 .init = its_enable_quirk_cavium_23144, 3310 }, 3311 #endif 3312 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 3313 { 3314 .desc = "ITS: QDF2400 erratum 0065", 3315 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 3316 .mask = 0xffffffff, 3317 .init = its_enable_quirk_qdf2400_e0065, 3318 }, 3319 #endif 3320 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 3321 { 3322 /* 3323 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 3324 * implementation, but with a 'pre-ITS' added that requires 3325 * special handling in software. 3326 */ 3327 .desc = "ITS: Socionext Synquacer pre-ITS", 3328 .iidr = 0x0001143b, 3329 .mask = 0xffffffff, 3330 .init = its_enable_quirk_socionext_synquacer, 3331 }, 3332 #endif 3333 #ifdef CONFIG_HISILICON_ERRATUM_161600802 3334 { 3335 .desc = "ITS: Hip07 erratum 161600802", 3336 .iidr = 0x00000004, 3337 .mask = 0xffffffff, 3338 .init = its_enable_quirk_hip07_161600802, 3339 }, 3340 #endif 3341 { 3342 } 3343 }; 3344 3345 static void its_enable_quirks(struct its_node *its) 3346 { 3347 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 3348 3349 gic_enable_quirks(iidr, its_quirks, its); 3350 } 3351 3352 static int its_save_disable(void) 3353 { 3354 struct its_node *its; 3355 int err = 0; 3356 3357 raw_spin_lock(&its_lock); 3358 list_for_each_entry(its, &its_nodes, entry) { 3359 void __iomem *base; 3360 3361 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3362 continue; 3363 3364 base = its->base; 3365 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 3366 err = its_force_quiescent(base); 3367 if (err) { 3368 pr_err("ITS@%pa: failed to quiesce: %d\n", 3369 &its->phys_base, err); 3370 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3371 goto err; 3372 } 3373 3374 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 3375 } 3376 3377 err: 3378 if (err) { 3379 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 3380 void __iomem *base; 3381 3382 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3383 continue; 3384 3385 base = its->base; 3386 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3387 } 3388 } 3389 raw_spin_unlock(&its_lock); 3390 3391 return err; 3392 } 3393 3394 static void its_restore_enable(void) 3395 { 3396 struct its_node *its; 3397 int ret; 3398 3399 raw_spin_lock(&its_lock); 3400 list_for_each_entry(its, &its_nodes, entry) { 3401 void __iomem *base; 3402 int i; 3403 3404 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3405 continue; 3406 3407 base = its->base; 3408 3409 /* 3410 * Make sure that the ITS is disabled. If it fails to quiesce, 3411 * don't restore it since writing to CBASER or BASER<n> 3412 * registers is undefined according to the GIC v3 ITS 3413 * Specification. 3414 */ 3415 ret = its_force_quiescent(base); 3416 if (ret) { 3417 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 3418 &its->phys_base, ret); 3419 continue; 3420 } 3421 3422 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 3423 3424 /* 3425 * Writing CBASER resets CREADR to 0, so make CWRITER and 3426 * cmd_write line up with it. 3427 */ 3428 its->cmd_write = its->cmd_base; 3429 gits_write_cwriter(0, base + GITS_CWRITER); 3430 3431 /* Restore GITS_BASER from the value cache. */ 3432 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3433 struct its_baser *baser = &its->tables[i]; 3434 3435 if (!(baser->val & GITS_BASER_VALID)) 3436 continue; 3437 3438 its_write_baser(its, baser, baser->val); 3439 } 3440 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3441 3442 /* 3443 * Reinit the collection if it's stored in the ITS. This is 3444 * indicated by the col_id being less than the HCC field. 3445 * CID < HCC as specified in the GIC v3 Documentation. 3446 */ 3447 if (its->collections[smp_processor_id()].col_id < 3448 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 3449 its_cpu_init_collection(its); 3450 } 3451 raw_spin_unlock(&its_lock); 3452 } 3453 3454 static struct syscore_ops its_syscore_ops = { 3455 .suspend = its_save_disable, 3456 .resume = its_restore_enable, 3457 }; 3458 3459 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 3460 { 3461 struct irq_domain *inner_domain; 3462 struct msi_domain_info *info; 3463 3464 info = kzalloc(sizeof(*info), GFP_KERNEL); 3465 if (!info) 3466 return -ENOMEM; 3467 3468 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 3469 if (!inner_domain) { 3470 kfree(info); 3471 return -ENOMEM; 3472 } 3473 3474 inner_domain->parent = its_parent; 3475 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 3476 inner_domain->flags |= its->msi_domain_flags; 3477 info->ops = &its_msi_domain_ops; 3478 info->data = its; 3479 inner_domain->host_data = info; 3480 3481 return 0; 3482 } 3483 3484 static int its_init_vpe_domain(void) 3485 { 3486 struct its_node *its; 3487 u32 devid; 3488 int entries; 3489 3490 if (gic_rdists->has_direct_lpi) { 3491 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 3492 return 0; 3493 } 3494 3495 /* Any ITS will do, even if not v4 */ 3496 its = list_first_entry(&its_nodes, struct its_node, entry); 3497 3498 entries = roundup_pow_of_two(nr_cpu_ids); 3499 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 3500 GFP_KERNEL); 3501 if (!vpe_proxy.vpes) { 3502 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 3503 return -ENOMEM; 3504 } 3505 3506 /* Use the last possible DevID */ 3507 devid = GENMASK(its->device_ids - 1, 0); 3508 vpe_proxy.dev = its_create_device(its, devid, entries, false); 3509 if (!vpe_proxy.dev) { 3510 kfree(vpe_proxy.vpes); 3511 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 3512 return -ENOMEM; 3513 } 3514 3515 BUG_ON(entries > vpe_proxy.dev->nr_ites); 3516 3517 raw_spin_lock_init(&vpe_proxy.lock); 3518 vpe_proxy.next_victim = 0; 3519 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 3520 devid, vpe_proxy.dev->nr_ites); 3521 3522 return 0; 3523 } 3524 3525 static int __init its_compute_its_list_map(struct resource *res, 3526 void __iomem *its_base) 3527 { 3528 int its_number; 3529 u32 ctlr; 3530 3531 /* 3532 * This is assumed to be done early enough that we're 3533 * guaranteed to be single-threaded, hence no 3534 * locking. Should this change, we should address 3535 * this. 3536 */ 3537 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 3538 if (its_number >= GICv4_ITS_LIST_MAX) { 3539 pr_err("ITS@%pa: No ITSList entry available!\n", 3540 &res->start); 3541 return -EINVAL; 3542 } 3543 3544 ctlr = readl_relaxed(its_base + GITS_CTLR); 3545 ctlr &= ~GITS_CTLR_ITS_NUMBER; 3546 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 3547 writel_relaxed(ctlr, its_base + GITS_CTLR); 3548 ctlr = readl_relaxed(its_base + GITS_CTLR); 3549 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 3550 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 3551 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 3552 } 3553 3554 if (test_and_set_bit(its_number, &its_list_map)) { 3555 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 3556 &res->start, its_number); 3557 return -EINVAL; 3558 } 3559 3560 return its_number; 3561 } 3562 3563 static int __init its_probe_one(struct resource *res, 3564 struct fwnode_handle *handle, int numa_node) 3565 { 3566 struct its_node *its; 3567 void __iomem *its_base; 3568 u32 val, ctlr; 3569 u64 baser, tmp, typer; 3570 struct page *page; 3571 int err; 3572 3573 its_base = ioremap(res->start, resource_size(res)); 3574 if (!its_base) { 3575 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 3576 return -ENOMEM; 3577 } 3578 3579 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 3580 if (val != 0x30 && val != 0x40) { 3581 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 3582 err = -ENODEV; 3583 goto out_unmap; 3584 } 3585 3586 err = its_force_quiescent(its_base); 3587 if (err) { 3588 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 3589 goto out_unmap; 3590 } 3591 3592 pr_info("ITS %pR\n", res); 3593 3594 its = kzalloc(sizeof(*its), GFP_KERNEL); 3595 if (!its) { 3596 err = -ENOMEM; 3597 goto out_unmap; 3598 } 3599 3600 raw_spin_lock_init(&its->lock); 3601 mutex_init(&its->dev_alloc_lock); 3602 INIT_LIST_HEAD(&its->entry); 3603 INIT_LIST_HEAD(&its->its_device_list); 3604 typer = gic_read_typer(its_base + GITS_TYPER); 3605 its->base = its_base; 3606 its->phys_base = res->start; 3607 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); 3608 its->device_ids = GITS_TYPER_DEVBITS(typer); 3609 its->is_v4 = !!(typer & GITS_TYPER_VLPIS); 3610 if (its->is_v4) { 3611 if (!(typer & GITS_TYPER_VMOVP)) { 3612 err = its_compute_its_list_map(res, its_base); 3613 if (err < 0) 3614 goto out_free_its; 3615 3616 its->list_nr = err; 3617 3618 pr_info("ITS@%pa: Using ITS number %d\n", 3619 &res->start, err); 3620 } else { 3621 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 3622 } 3623 } 3624 3625 its->numa_node = numa_node; 3626 3627 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3628 get_order(ITS_CMD_QUEUE_SZ)); 3629 if (!page) { 3630 err = -ENOMEM; 3631 goto out_free_its; 3632 } 3633 its->cmd_base = (void *)page_address(page); 3634 its->cmd_write = its->cmd_base; 3635 its->fwnode_handle = handle; 3636 its->get_msi_base = its_irq_get_msi_base; 3637 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 3638 3639 its_enable_quirks(its); 3640 3641 err = its_alloc_tables(its); 3642 if (err) 3643 goto out_free_cmd; 3644 3645 err = its_alloc_collections(its); 3646 if (err) 3647 goto out_free_tables; 3648 3649 baser = (virt_to_phys(its->cmd_base) | 3650 GITS_CBASER_RaWaWb | 3651 GITS_CBASER_InnerShareable | 3652 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 3653 GITS_CBASER_VALID); 3654 3655 gits_write_cbaser(baser, its->base + GITS_CBASER); 3656 tmp = gits_read_cbaser(its->base + GITS_CBASER); 3657 3658 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 3659 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 3660 /* 3661 * The HW reports non-shareable, we must 3662 * remove the cacheability attributes as 3663 * well. 3664 */ 3665 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 3666 GITS_CBASER_CACHEABILITY_MASK); 3667 baser |= GITS_CBASER_nC; 3668 gits_write_cbaser(baser, its->base + GITS_CBASER); 3669 } 3670 pr_info("ITS: using cache flushing for cmd queue\n"); 3671 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 3672 } 3673 3674 gits_write_cwriter(0, its->base + GITS_CWRITER); 3675 ctlr = readl_relaxed(its->base + GITS_CTLR); 3676 ctlr |= GITS_CTLR_ENABLE; 3677 if (its->is_v4) 3678 ctlr |= GITS_CTLR_ImDe; 3679 writel_relaxed(ctlr, its->base + GITS_CTLR); 3680 3681 if (GITS_TYPER_HCC(typer)) 3682 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; 3683 3684 err = its_init_domain(handle, its); 3685 if (err) 3686 goto out_free_tables; 3687 3688 raw_spin_lock(&its_lock); 3689 list_add(&its->entry, &its_nodes); 3690 raw_spin_unlock(&its_lock); 3691 3692 return 0; 3693 3694 out_free_tables: 3695 its_free_tables(its); 3696 out_free_cmd: 3697 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 3698 out_free_its: 3699 kfree(its); 3700 out_unmap: 3701 iounmap(its_base); 3702 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 3703 return err; 3704 } 3705 3706 static bool gic_rdists_supports_plpis(void) 3707 { 3708 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 3709 } 3710 3711 static int redist_disable_lpis(void) 3712 { 3713 void __iomem *rbase = gic_data_rdist_rd_base(); 3714 u64 timeout = USEC_PER_SEC; 3715 u64 val; 3716 3717 if (!gic_rdists_supports_plpis()) { 3718 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 3719 return -ENXIO; 3720 } 3721 3722 val = readl_relaxed(rbase + GICR_CTLR); 3723 if (!(val & GICR_CTLR_ENABLE_LPIS)) 3724 return 0; 3725 3726 /* 3727 * If coming via a CPU hotplug event, we don't need to disable 3728 * LPIs before trying to re-enable them. They are already 3729 * configured and all is well in the world. 3730 * 3731 * If running with preallocated tables, there is nothing to do. 3732 */ 3733 if (gic_data_rdist()->lpi_enabled || 3734 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 3735 return 0; 3736 3737 /* 3738 * From that point on, we only try to do some damage control. 3739 */ 3740 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 3741 smp_processor_id()); 3742 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3743 3744 /* Disable LPIs */ 3745 val &= ~GICR_CTLR_ENABLE_LPIS; 3746 writel_relaxed(val, rbase + GICR_CTLR); 3747 3748 /* Make sure any change to GICR_CTLR is observable by the GIC */ 3749 dsb(sy); 3750 3751 /* 3752 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 3753 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 3754 * Error out if we time out waiting for RWP to clear. 3755 */ 3756 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 3757 if (!timeout) { 3758 pr_err("CPU%d: Timeout while disabling LPIs\n", 3759 smp_processor_id()); 3760 return -ETIMEDOUT; 3761 } 3762 udelay(1); 3763 timeout--; 3764 } 3765 3766 /* 3767 * After it has been written to 1, it is IMPLEMENTATION 3768 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 3769 * cleared to 0. Error out if clearing the bit failed. 3770 */ 3771 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 3772 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 3773 return -EBUSY; 3774 } 3775 3776 return 0; 3777 } 3778 3779 int its_cpu_init(void) 3780 { 3781 if (!list_empty(&its_nodes)) { 3782 int ret; 3783 3784 ret = redist_disable_lpis(); 3785 if (ret) 3786 return ret; 3787 3788 its_cpu_init_lpis(); 3789 its_cpu_init_collections(); 3790 } 3791 3792 return 0; 3793 } 3794 3795 static const struct of_device_id its_device_id[] = { 3796 { .compatible = "arm,gic-v3-its", }, 3797 {}, 3798 }; 3799 3800 static int __init its_of_probe(struct device_node *node) 3801 { 3802 struct device_node *np; 3803 struct resource res; 3804 3805 for (np = of_find_matching_node(node, its_device_id); np; 3806 np = of_find_matching_node(np, its_device_id)) { 3807 if (!of_device_is_available(np)) 3808 continue; 3809 if (!of_property_read_bool(np, "msi-controller")) { 3810 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 3811 np); 3812 continue; 3813 } 3814 3815 if (of_address_to_resource(np, 0, &res)) { 3816 pr_warn("%pOF: no regs?\n", np); 3817 continue; 3818 } 3819 3820 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 3821 } 3822 return 0; 3823 } 3824 3825 #ifdef CONFIG_ACPI 3826 3827 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 3828 3829 #ifdef CONFIG_ACPI_NUMA 3830 struct its_srat_map { 3831 /* numa node id */ 3832 u32 numa_node; 3833 /* GIC ITS ID */ 3834 u32 its_id; 3835 }; 3836 3837 static struct its_srat_map *its_srat_maps __initdata; 3838 static int its_in_srat __initdata; 3839 3840 static int __init acpi_get_its_numa_node(u32 its_id) 3841 { 3842 int i; 3843 3844 for (i = 0; i < its_in_srat; i++) { 3845 if (its_id == its_srat_maps[i].its_id) 3846 return its_srat_maps[i].numa_node; 3847 } 3848 return NUMA_NO_NODE; 3849 } 3850 3851 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 3852 const unsigned long end) 3853 { 3854 return 0; 3855 } 3856 3857 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 3858 const unsigned long end) 3859 { 3860 int node; 3861 struct acpi_srat_gic_its_affinity *its_affinity; 3862 3863 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 3864 if (!its_affinity) 3865 return -EINVAL; 3866 3867 if (its_affinity->header.length < sizeof(*its_affinity)) { 3868 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 3869 its_affinity->header.length); 3870 return -EINVAL; 3871 } 3872 3873 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 3874 3875 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 3876 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 3877 return 0; 3878 } 3879 3880 its_srat_maps[its_in_srat].numa_node = node; 3881 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 3882 its_in_srat++; 3883 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 3884 its_affinity->proximity_domain, its_affinity->its_id, node); 3885 3886 return 0; 3887 } 3888 3889 static void __init acpi_table_parse_srat_its(void) 3890 { 3891 int count; 3892 3893 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 3894 sizeof(struct acpi_table_srat), 3895 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3896 gic_acpi_match_srat_its, 0); 3897 if (count <= 0) 3898 return; 3899 3900 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 3901 GFP_KERNEL); 3902 if (!its_srat_maps) { 3903 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 3904 return; 3905 } 3906 3907 acpi_table_parse_entries(ACPI_SIG_SRAT, 3908 sizeof(struct acpi_table_srat), 3909 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3910 gic_acpi_parse_srat_its, 0); 3911 } 3912 3913 /* free the its_srat_maps after ITS probing */ 3914 static void __init acpi_its_srat_maps_free(void) 3915 { 3916 kfree(its_srat_maps); 3917 } 3918 #else 3919 static void __init acpi_table_parse_srat_its(void) { } 3920 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 3921 static void __init acpi_its_srat_maps_free(void) { } 3922 #endif 3923 3924 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 3925 const unsigned long end) 3926 { 3927 struct acpi_madt_generic_translator *its_entry; 3928 struct fwnode_handle *dom_handle; 3929 struct resource res; 3930 int err; 3931 3932 its_entry = (struct acpi_madt_generic_translator *)header; 3933 memset(&res, 0, sizeof(res)); 3934 res.start = its_entry->base_address; 3935 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 3936 res.flags = IORESOURCE_MEM; 3937 3938 dom_handle = irq_domain_alloc_fwnode(&res.start); 3939 if (!dom_handle) { 3940 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 3941 &res.start); 3942 return -ENOMEM; 3943 } 3944 3945 err = iort_register_domain_token(its_entry->translation_id, res.start, 3946 dom_handle); 3947 if (err) { 3948 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 3949 &res.start, its_entry->translation_id); 3950 goto dom_err; 3951 } 3952 3953 err = its_probe_one(&res, dom_handle, 3954 acpi_get_its_numa_node(its_entry->translation_id)); 3955 if (!err) 3956 return 0; 3957 3958 iort_deregister_domain_token(its_entry->translation_id); 3959 dom_err: 3960 irq_domain_free_fwnode(dom_handle); 3961 return err; 3962 } 3963 3964 static void __init its_acpi_probe(void) 3965 { 3966 acpi_table_parse_srat_its(); 3967 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 3968 gic_acpi_parse_madt_its, 0); 3969 acpi_its_srat_maps_free(); 3970 } 3971 #else 3972 static void __init its_acpi_probe(void) { } 3973 #endif 3974 3975 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 3976 struct irq_domain *parent_domain) 3977 { 3978 struct device_node *of_node; 3979 struct its_node *its; 3980 bool has_v4 = false; 3981 int err; 3982 3983 its_parent = parent_domain; 3984 of_node = to_of_node(handle); 3985 if (of_node) 3986 its_of_probe(of_node); 3987 else 3988 its_acpi_probe(); 3989 3990 if (list_empty(&its_nodes)) { 3991 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 3992 return -ENXIO; 3993 } 3994 3995 gic_rdists = rdists; 3996 3997 err = allocate_lpi_tables(); 3998 if (err) 3999 return err; 4000 4001 list_for_each_entry(its, &its_nodes, entry) 4002 has_v4 |= its->is_v4; 4003 4004 if (has_v4 & rdists->has_vlpis) { 4005 if (its_init_vpe_domain() || 4006 its_init_v4(parent_domain, &its_vpe_domain_ops)) { 4007 rdists->has_vlpis = false; 4008 pr_err("ITS: Disabling GICv4 support\n"); 4009 } 4010 } 4011 4012 register_syscore_ops(&its_syscore_ops); 4013 4014 return 0; 4015 } 4016