1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/genalloc.h> 16 #include <linux/interrupt.h> 17 #include <linux/iommu.h> 18 #include <linux/iopoll.h> 19 #include <linux/irqdomain.h> 20 #include <linux/list.h> 21 #include <linux/log2.h> 22 #include <linux/mem_encrypt.h> 23 #include <linux/memblock.h> 24 #include <linux/mm.h> 25 #include <linux/msi.h> 26 #include <linux/of.h> 27 #include <linux/of_address.h> 28 #include <linux/of_irq.h> 29 #include <linux/of_pci.h> 30 #include <linux/of_platform.h> 31 #include <linux/percpu.h> 32 #include <linux/set_memory.h> 33 #include <linux/slab.h> 34 #include <linux/syscore_ops.h> 35 36 #include <linux/irqchip.h> 37 #include <linux/irqchip/arm-gic-v3.h> 38 #include <linux/irqchip/arm-gic-v4.h> 39 40 #include <asm/cputype.h> 41 #include <asm/exception.h> 42 43 #include "irq-gic-common.h" 44 #include "irq-msi-lib.h" 45 46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 49 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 50 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801 (1ULL << 4) 51 52 #define RD_LOCAL_LPI_ENABLED BIT(0) 53 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 54 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 55 56 static u32 lpi_id_bits; 57 58 /* 59 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 60 * deal with (one configuration byte per interrupt). PENDBASE has to 61 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 62 */ 63 #define LPI_NRBITS lpi_id_bits 64 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 65 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 66 67 static u8 __ro_after_init lpi_prop_prio; 68 static struct its_node *find_4_1_its(void); 69 70 /* 71 * Collection structure - just an ID, and a redistributor address to 72 * ping. We use one per CPU as a bag of interrupts assigned to this 73 * CPU. 74 */ 75 struct its_collection { 76 u64 target_address; 77 u16 col_id; 78 }; 79 80 /* 81 * The ITS_BASER structure - contains memory information, cached 82 * value of BASER register configuration and ITS page size. 83 */ 84 struct its_baser { 85 void *base; 86 u64 val; 87 u32 order; 88 u32 psz; 89 }; 90 91 struct its_device; 92 93 /* 94 * The ITS structure - contains most of the infrastructure, with the 95 * top-level MSI domain, the command queue, the collections, and the 96 * list of devices writing to it. 97 * 98 * dev_alloc_lock has to be taken for device allocations, while the 99 * spinlock must be taken to parse data structures such as the device 100 * list. 101 */ 102 struct its_node { 103 raw_spinlock_t lock; 104 struct mutex dev_alloc_lock; 105 struct list_head entry; 106 void __iomem *base; 107 void __iomem *sgir_base; 108 phys_addr_t phys_base; 109 struct its_cmd_block *cmd_base; 110 struct its_cmd_block *cmd_write; 111 struct its_baser tables[GITS_BASER_NR_REGS]; 112 struct its_collection *collections; 113 struct fwnode_handle *fwnode_handle; 114 u64 (*get_msi_base)(struct its_device *its_dev); 115 u64 typer; 116 u64 cbaser_save; 117 u32 ctlr_save; 118 u32 mpidr; 119 struct list_head its_device_list; 120 u64 flags; 121 unsigned long list_nr; 122 int numa_node; 123 unsigned int msi_domain_flags; 124 u32 pre_its_base; /* for Socionext Synquacer */ 125 int vlpi_redist_offset; 126 }; 127 128 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 129 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 130 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 131 132 #define ITS_ITT_ALIGN SZ_256 133 134 /* The maximum number of VPEID bits supported by VLPI commands */ 135 #define ITS_MAX_VPEID_BITS \ 136 ({ \ 137 int nvpeid = 16; \ 138 if (gic_rdists->has_rvpeid && \ 139 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 140 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 141 GICD_TYPER2_VID); \ 142 \ 143 nvpeid; \ 144 }) 145 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 146 147 /* Convert page order to size in bytes */ 148 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 149 150 struct event_lpi_map { 151 unsigned long *lpi_map; 152 u16 *col_map; 153 irq_hw_number_t lpi_base; 154 int nr_lpis; 155 raw_spinlock_t vlpi_lock; 156 struct its_vm *vm; 157 struct its_vlpi_map *vlpi_maps; 158 int nr_vlpis; 159 }; 160 161 /* 162 * The ITS view of a device - belongs to an ITS, owns an interrupt 163 * translation table, and a list of interrupts. If it some of its 164 * LPIs are injected into a guest (GICv4), the event_map.vm field 165 * indicates which one. 166 */ 167 struct its_device { 168 struct list_head entry; 169 struct its_node *its; 170 struct event_lpi_map event_map; 171 void *itt; 172 u32 itt_sz; 173 u32 nr_ites; 174 u32 device_id; 175 bool shared; 176 }; 177 178 static struct { 179 raw_spinlock_t lock; 180 struct its_device *dev; 181 struct its_vpe **vpes; 182 int next_victim; 183 } vpe_proxy; 184 185 struct cpu_lpi_count { 186 atomic_t managed; 187 atomic_t unmanaged; 188 }; 189 190 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 191 192 static LIST_HEAD(its_nodes); 193 static DEFINE_RAW_SPINLOCK(its_lock); 194 static struct rdists *gic_rdists; 195 static struct irq_domain *its_parent; 196 197 static unsigned long its_list_map; 198 static u16 vmovp_seq_num; 199 static DEFINE_RAW_SPINLOCK(vmovp_lock); 200 201 static DEFINE_IDA(its_vpeid_ida); 202 203 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 204 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 205 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 206 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 207 208 static struct page *its_alloc_pages_node(int node, gfp_t gfp, 209 unsigned int order) 210 { 211 struct page *page; 212 int ret = 0; 213 214 page = alloc_pages_node(node, gfp, order); 215 216 if (!page) 217 return NULL; 218 219 ret = set_memory_decrypted((unsigned long)page_address(page), 220 1 << order); 221 /* 222 * If set_memory_decrypted() fails then we don't know what state the 223 * page is in, so we can't free it. Instead we leak it. 224 * set_memory_decrypted() will already have WARNed. 225 */ 226 if (ret) 227 return NULL; 228 229 return page; 230 } 231 232 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order) 233 { 234 return its_alloc_pages_node(NUMA_NO_NODE, gfp, order); 235 } 236 237 static void its_free_pages(void *addr, unsigned int order) 238 { 239 /* 240 * If the memory cannot be encrypted again then we must leak the pages. 241 * set_memory_encrypted() will already have WARNed. 242 */ 243 if (set_memory_encrypted((unsigned long)addr, 1 << order)) 244 return; 245 free_pages((unsigned long)addr, order); 246 } 247 248 static struct gen_pool *itt_pool; 249 250 static void *itt_alloc_pool(int node, int size) 251 { 252 unsigned long addr; 253 struct page *page; 254 255 if (size >= PAGE_SIZE) { 256 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size)); 257 258 return page ? page_address(page) : NULL; 259 } 260 261 do { 262 addr = gen_pool_alloc(itt_pool, size); 263 if (addr) 264 break; 265 266 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 267 if (!page) 268 break; 269 270 gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node); 271 } while (!addr); 272 273 return (void *)addr; 274 } 275 276 static void itt_free_pool(void *addr, int size) 277 { 278 if (!addr) 279 return; 280 281 if (size >= PAGE_SIZE) { 282 its_free_pages(addr, get_order(size)); 283 return; 284 } 285 286 gen_pool_free(itt_pool, (unsigned long)addr, size); 287 } 288 289 /* 290 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 291 * always have vSGIs mapped. 292 */ 293 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 294 { 295 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 296 } 297 298 static bool rdists_support_shareable(void) 299 { 300 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 301 } 302 303 static u16 get_its_list(struct its_vm *vm) 304 { 305 struct its_node *its; 306 unsigned long its_list = 0; 307 308 list_for_each_entry(its, &its_nodes, entry) { 309 if (!is_v4(its)) 310 continue; 311 312 if (require_its_list_vmovp(vm, its)) 313 __set_bit(its->list_nr, &its_list); 314 } 315 316 return (u16)its_list; 317 } 318 319 static inline u32 its_get_event_id(struct irq_data *d) 320 { 321 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 322 return d->hwirq - its_dev->event_map.lpi_base; 323 } 324 325 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 326 u32 event) 327 { 328 struct its_node *its = its_dev->its; 329 330 return its->collections + its_dev->event_map.col_map[event]; 331 } 332 333 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 334 u32 event) 335 { 336 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 337 return NULL; 338 339 return &its_dev->event_map.vlpi_maps[event]; 340 } 341 342 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 343 { 344 if (irqd_is_forwarded_to_vcpu(d)) { 345 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 346 u32 event = its_get_event_id(d); 347 348 return dev_event_to_vlpi_map(its_dev, event); 349 } 350 351 return NULL; 352 } 353 354 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 355 { 356 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 357 return vpe->col_idx; 358 } 359 360 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 361 { 362 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 363 } 364 365 static struct irq_chip its_vpe_irq_chip; 366 367 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 368 { 369 struct its_vpe *vpe = NULL; 370 int cpu; 371 372 if (d->chip == &its_vpe_irq_chip) { 373 vpe = irq_data_get_irq_chip_data(d); 374 } else { 375 struct its_vlpi_map *map = get_vlpi_map(d); 376 if (map) 377 vpe = map->vpe; 378 } 379 380 if (vpe) { 381 cpu = vpe_to_cpuid_lock(vpe, flags); 382 } else { 383 /* Physical LPIs are already locked via the irq_desc lock */ 384 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 385 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 386 /* Keep GCC quiet... */ 387 *flags = 0; 388 } 389 390 return cpu; 391 } 392 393 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 394 { 395 struct its_vpe *vpe = NULL; 396 397 if (d->chip == &its_vpe_irq_chip) { 398 vpe = irq_data_get_irq_chip_data(d); 399 } else { 400 struct its_vlpi_map *map = get_vlpi_map(d); 401 if (map) 402 vpe = map->vpe; 403 } 404 405 if (vpe) 406 vpe_to_cpuid_unlock(vpe, flags); 407 } 408 409 static struct its_collection *valid_col(struct its_collection *col) 410 { 411 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 412 return NULL; 413 414 return col; 415 } 416 417 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 418 { 419 if (valid_col(its->collections + vpe->col_idx)) 420 return vpe; 421 422 return NULL; 423 } 424 425 /* 426 * ITS command descriptors - parameters to be encoded in a command 427 * block. 428 */ 429 struct its_cmd_desc { 430 union { 431 struct { 432 struct its_device *dev; 433 u32 event_id; 434 } its_inv_cmd; 435 436 struct { 437 struct its_device *dev; 438 u32 event_id; 439 } its_clear_cmd; 440 441 struct { 442 struct its_device *dev; 443 u32 event_id; 444 } its_int_cmd; 445 446 struct { 447 struct its_device *dev; 448 int valid; 449 } its_mapd_cmd; 450 451 struct { 452 struct its_collection *col; 453 int valid; 454 } its_mapc_cmd; 455 456 struct { 457 struct its_device *dev; 458 u32 phys_id; 459 u32 event_id; 460 } its_mapti_cmd; 461 462 struct { 463 struct its_device *dev; 464 struct its_collection *col; 465 u32 event_id; 466 } its_movi_cmd; 467 468 struct { 469 struct its_device *dev; 470 u32 event_id; 471 } its_discard_cmd; 472 473 struct { 474 struct its_collection *col; 475 } its_invall_cmd; 476 477 struct { 478 struct its_vpe *vpe; 479 } its_vinvall_cmd; 480 481 struct { 482 struct its_vpe *vpe; 483 struct its_collection *col; 484 bool valid; 485 } its_vmapp_cmd; 486 487 struct { 488 struct its_vpe *vpe; 489 struct its_device *dev; 490 u32 virt_id; 491 u32 event_id; 492 bool db_enabled; 493 } its_vmapti_cmd; 494 495 struct { 496 struct its_vpe *vpe; 497 struct its_device *dev; 498 u32 event_id; 499 bool db_enabled; 500 } its_vmovi_cmd; 501 502 struct { 503 struct its_vpe *vpe; 504 struct its_collection *col; 505 u16 seq_num; 506 u16 its_list; 507 } its_vmovp_cmd; 508 509 struct { 510 struct its_vpe *vpe; 511 } its_invdb_cmd; 512 513 struct { 514 struct its_vpe *vpe; 515 u8 sgi; 516 u8 priority; 517 bool enable; 518 bool group; 519 bool clear; 520 } its_vsgi_cmd; 521 }; 522 }; 523 524 /* 525 * The ITS command block, which is what the ITS actually parses. 526 */ 527 struct its_cmd_block { 528 union { 529 u64 raw_cmd[4]; 530 __le64 raw_cmd_le[4]; 531 }; 532 }; 533 534 #define ITS_CMD_QUEUE_SZ SZ_64K 535 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 536 537 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 538 struct its_cmd_block *, 539 struct its_cmd_desc *); 540 541 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 542 struct its_cmd_block *, 543 struct its_cmd_desc *); 544 545 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 546 { 547 u64 mask = GENMASK_ULL(h, l); 548 *raw_cmd &= ~mask; 549 *raw_cmd |= (val << l) & mask; 550 } 551 552 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 553 { 554 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 555 } 556 557 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 558 { 559 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 560 } 561 562 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 563 { 564 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 565 } 566 567 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 568 { 569 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 570 } 571 572 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 573 { 574 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 575 } 576 577 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 578 { 579 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 580 } 581 582 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 583 { 584 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 585 } 586 587 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 588 { 589 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 590 } 591 592 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 593 { 594 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 595 } 596 597 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 598 { 599 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 600 } 601 602 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 603 { 604 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 605 } 606 607 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 608 { 609 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 610 } 611 612 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 613 { 614 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 615 } 616 617 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 618 { 619 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 620 } 621 622 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 623 { 624 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 625 } 626 627 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 628 { 629 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 630 } 631 632 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 633 { 634 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 635 } 636 637 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 638 { 639 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 640 } 641 642 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 643 { 644 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 645 } 646 647 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 648 { 649 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 650 } 651 652 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 653 u32 vpe_db_lpi) 654 { 655 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 656 } 657 658 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 659 u32 vpe_db_lpi) 660 { 661 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 662 } 663 664 static void its_encode_db(struct its_cmd_block *cmd, bool db) 665 { 666 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 667 } 668 669 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 670 { 671 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 672 } 673 674 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 675 { 676 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 677 } 678 679 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 680 { 681 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 682 } 683 684 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 685 { 686 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 687 } 688 689 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 690 { 691 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 692 } 693 694 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 695 { 696 /* Let's fixup BE commands */ 697 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 698 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 699 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 700 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 701 } 702 703 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 704 struct its_cmd_block *cmd, 705 struct its_cmd_desc *desc) 706 { 707 unsigned long itt_addr; 708 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 709 710 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 711 712 its_encode_cmd(cmd, GITS_CMD_MAPD); 713 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 714 its_encode_size(cmd, size - 1); 715 its_encode_itt(cmd, itt_addr); 716 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 717 718 its_fixup_cmd(cmd); 719 720 return NULL; 721 } 722 723 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 724 struct its_cmd_block *cmd, 725 struct its_cmd_desc *desc) 726 { 727 its_encode_cmd(cmd, GITS_CMD_MAPC); 728 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 729 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 730 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 731 732 its_fixup_cmd(cmd); 733 734 return desc->its_mapc_cmd.col; 735 } 736 737 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 738 struct its_cmd_block *cmd, 739 struct its_cmd_desc *desc) 740 { 741 struct its_collection *col; 742 743 col = dev_event_to_col(desc->its_mapti_cmd.dev, 744 desc->its_mapti_cmd.event_id); 745 746 its_encode_cmd(cmd, GITS_CMD_MAPTI); 747 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 748 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 749 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 750 its_encode_collection(cmd, col->col_id); 751 752 its_fixup_cmd(cmd); 753 754 return valid_col(col); 755 } 756 757 static struct its_collection *its_build_movi_cmd(struct its_node *its, 758 struct its_cmd_block *cmd, 759 struct its_cmd_desc *desc) 760 { 761 struct its_collection *col; 762 763 col = dev_event_to_col(desc->its_movi_cmd.dev, 764 desc->its_movi_cmd.event_id); 765 766 its_encode_cmd(cmd, GITS_CMD_MOVI); 767 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 768 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 769 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 770 771 its_fixup_cmd(cmd); 772 773 return valid_col(col); 774 } 775 776 static struct its_collection *its_build_discard_cmd(struct its_node *its, 777 struct its_cmd_block *cmd, 778 struct its_cmd_desc *desc) 779 { 780 struct its_collection *col; 781 782 col = dev_event_to_col(desc->its_discard_cmd.dev, 783 desc->its_discard_cmd.event_id); 784 785 its_encode_cmd(cmd, GITS_CMD_DISCARD); 786 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 787 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 788 789 its_fixup_cmd(cmd); 790 791 return valid_col(col); 792 } 793 794 static struct its_collection *its_build_inv_cmd(struct its_node *its, 795 struct its_cmd_block *cmd, 796 struct its_cmd_desc *desc) 797 { 798 struct its_collection *col; 799 800 col = dev_event_to_col(desc->its_inv_cmd.dev, 801 desc->its_inv_cmd.event_id); 802 803 its_encode_cmd(cmd, GITS_CMD_INV); 804 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 805 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 806 807 its_fixup_cmd(cmd); 808 809 return valid_col(col); 810 } 811 812 static struct its_collection *its_build_int_cmd(struct its_node *its, 813 struct its_cmd_block *cmd, 814 struct its_cmd_desc *desc) 815 { 816 struct its_collection *col; 817 818 col = dev_event_to_col(desc->its_int_cmd.dev, 819 desc->its_int_cmd.event_id); 820 821 its_encode_cmd(cmd, GITS_CMD_INT); 822 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 823 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 824 825 its_fixup_cmd(cmd); 826 827 return valid_col(col); 828 } 829 830 static struct its_collection *its_build_clear_cmd(struct its_node *its, 831 struct its_cmd_block *cmd, 832 struct its_cmd_desc *desc) 833 { 834 struct its_collection *col; 835 836 col = dev_event_to_col(desc->its_clear_cmd.dev, 837 desc->its_clear_cmd.event_id); 838 839 its_encode_cmd(cmd, GITS_CMD_CLEAR); 840 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 841 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 842 843 its_fixup_cmd(cmd); 844 845 return valid_col(col); 846 } 847 848 static struct its_collection *its_build_invall_cmd(struct its_node *its, 849 struct its_cmd_block *cmd, 850 struct its_cmd_desc *desc) 851 { 852 its_encode_cmd(cmd, GITS_CMD_INVALL); 853 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 854 855 its_fixup_cmd(cmd); 856 857 return desc->its_invall_cmd.col; 858 } 859 860 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 861 struct its_cmd_block *cmd, 862 struct its_cmd_desc *desc) 863 { 864 its_encode_cmd(cmd, GITS_CMD_VINVALL); 865 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 866 867 its_fixup_cmd(cmd); 868 869 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 870 } 871 872 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 873 struct its_cmd_block *cmd, 874 struct its_cmd_desc *desc) 875 { 876 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); 877 unsigned long vpt_addr, vconf_addr; 878 u64 target; 879 bool alloc; 880 881 its_encode_cmd(cmd, GITS_CMD_VMAPP); 882 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 883 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 884 885 if (!desc->its_vmapp_cmd.valid) { 886 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 887 if (is_v4_1(its)) { 888 its_encode_alloc(cmd, alloc); 889 /* 890 * Unmapping a VPE is self-synchronizing on GICv4.1, 891 * no need to issue a VSYNC. 892 */ 893 vpe = NULL; 894 } 895 896 goto out; 897 } 898 899 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 900 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 901 902 its_encode_target(cmd, target); 903 its_encode_vpt_addr(cmd, vpt_addr); 904 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 905 906 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 907 908 if (!is_v4_1(its)) 909 goto out; 910 911 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 912 913 its_encode_alloc(cmd, alloc); 914 915 /* 916 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 917 * to be unmapped first, and in this case, we may remap the vPE 918 * back while the VPT is not empty. So we can't assume that the 919 * VPT is empty on map. This is why we never advertise PTZ. 920 */ 921 its_encode_ptz(cmd, false); 922 its_encode_vconf_addr(cmd, vconf_addr); 923 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 924 925 out: 926 its_fixup_cmd(cmd); 927 928 return vpe; 929 } 930 931 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 932 struct its_cmd_block *cmd, 933 struct its_cmd_desc *desc) 934 { 935 u32 db; 936 937 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 938 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 939 else 940 db = 1023; 941 942 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 943 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 944 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 945 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 946 its_encode_db_phys_id(cmd, db); 947 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 948 949 its_fixup_cmd(cmd); 950 951 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 952 } 953 954 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 955 struct its_cmd_block *cmd, 956 struct its_cmd_desc *desc) 957 { 958 u32 db; 959 960 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 961 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 962 else 963 db = 1023; 964 965 its_encode_cmd(cmd, GITS_CMD_VMOVI); 966 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 967 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 968 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 969 its_encode_db_phys_id(cmd, db); 970 its_encode_db_valid(cmd, true); 971 972 its_fixup_cmd(cmd); 973 974 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 975 } 976 977 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 978 struct its_cmd_block *cmd, 979 struct its_cmd_desc *desc) 980 { 981 u64 target; 982 983 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 984 its_encode_cmd(cmd, GITS_CMD_VMOVP); 985 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 986 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 987 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 988 its_encode_target(cmd, target); 989 990 if (is_v4_1(its)) { 991 its_encode_db(cmd, true); 992 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 993 } 994 995 its_fixup_cmd(cmd); 996 997 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 998 } 999 1000 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 1001 struct its_cmd_block *cmd, 1002 struct its_cmd_desc *desc) 1003 { 1004 struct its_vlpi_map *map; 1005 1006 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 1007 desc->its_inv_cmd.event_id); 1008 1009 its_encode_cmd(cmd, GITS_CMD_INV); 1010 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 1011 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 1012 1013 its_fixup_cmd(cmd); 1014 1015 return valid_vpe(its, map->vpe); 1016 } 1017 1018 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 1019 struct its_cmd_block *cmd, 1020 struct its_cmd_desc *desc) 1021 { 1022 struct its_vlpi_map *map; 1023 1024 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 1025 desc->its_int_cmd.event_id); 1026 1027 its_encode_cmd(cmd, GITS_CMD_INT); 1028 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 1029 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 1030 1031 its_fixup_cmd(cmd); 1032 1033 return valid_vpe(its, map->vpe); 1034 } 1035 1036 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 1037 struct its_cmd_block *cmd, 1038 struct its_cmd_desc *desc) 1039 { 1040 struct its_vlpi_map *map; 1041 1042 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 1043 desc->its_clear_cmd.event_id); 1044 1045 its_encode_cmd(cmd, GITS_CMD_CLEAR); 1046 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 1047 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 1048 1049 its_fixup_cmd(cmd); 1050 1051 return valid_vpe(its, map->vpe); 1052 } 1053 1054 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 1055 struct its_cmd_block *cmd, 1056 struct its_cmd_desc *desc) 1057 { 1058 if (WARN_ON(!is_v4_1(its))) 1059 return NULL; 1060 1061 its_encode_cmd(cmd, GITS_CMD_INVDB); 1062 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 1063 1064 its_fixup_cmd(cmd); 1065 1066 return valid_vpe(its, desc->its_invdb_cmd.vpe); 1067 } 1068 1069 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 1070 struct its_cmd_block *cmd, 1071 struct its_cmd_desc *desc) 1072 { 1073 if (WARN_ON(!is_v4_1(its))) 1074 return NULL; 1075 1076 its_encode_cmd(cmd, GITS_CMD_VSGI); 1077 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 1078 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 1079 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 1080 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 1081 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 1082 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 1083 1084 its_fixup_cmd(cmd); 1085 1086 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 1087 } 1088 1089 static u64 its_cmd_ptr_to_offset(struct its_node *its, 1090 struct its_cmd_block *ptr) 1091 { 1092 return (ptr - its->cmd_base) * sizeof(*ptr); 1093 } 1094 1095 static int its_queue_full(struct its_node *its) 1096 { 1097 int widx; 1098 int ridx; 1099 1100 widx = its->cmd_write - its->cmd_base; 1101 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1102 1103 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1104 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1105 return 1; 1106 1107 return 0; 1108 } 1109 1110 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1111 { 1112 struct its_cmd_block *cmd; 1113 u32 count = 1000000; /* 1s! */ 1114 1115 while (its_queue_full(its)) { 1116 count--; 1117 if (!count) { 1118 pr_err_ratelimited("ITS queue not draining\n"); 1119 return NULL; 1120 } 1121 cpu_relax(); 1122 udelay(1); 1123 } 1124 1125 cmd = its->cmd_write++; 1126 1127 /* Handle queue wrapping */ 1128 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1129 its->cmd_write = its->cmd_base; 1130 1131 /* Clear command */ 1132 cmd->raw_cmd[0] = 0; 1133 cmd->raw_cmd[1] = 0; 1134 cmd->raw_cmd[2] = 0; 1135 cmd->raw_cmd[3] = 0; 1136 1137 return cmd; 1138 } 1139 1140 static struct its_cmd_block *its_post_commands(struct its_node *its) 1141 { 1142 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1143 1144 writel_relaxed(wr, its->base + GITS_CWRITER); 1145 1146 return its->cmd_write; 1147 } 1148 1149 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1150 { 1151 /* 1152 * Make sure the commands written to memory are observable by 1153 * the ITS. 1154 */ 1155 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1156 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1157 else 1158 dsb(ishst); 1159 } 1160 1161 static int its_wait_for_range_completion(struct its_node *its, 1162 u64 prev_idx, 1163 struct its_cmd_block *to) 1164 { 1165 u64 rd_idx, to_idx, linear_idx; 1166 u32 count = 1000000; /* 1s! */ 1167 1168 /* Linearize to_idx if the command set has wrapped around */ 1169 to_idx = its_cmd_ptr_to_offset(its, to); 1170 if (to_idx < prev_idx) 1171 to_idx += ITS_CMD_QUEUE_SZ; 1172 1173 linear_idx = prev_idx; 1174 1175 while (1) { 1176 s64 delta; 1177 1178 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1179 1180 /* 1181 * Compute the read pointer progress, taking the 1182 * potential wrap-around into account. 1183 */ 1184 delta = rd_idx - prev_idx; 1185 if (rd_idx < prev_idx) 1186 delta += ITS_CMD_QUEUE_SZ; 1187 1188 linear_idx += delta; 1189 if (linear_idx >= to_idx) 1190 break; 1191 1192 count--; 1193 if (!count) { 1194 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1195 to_idx, linear_idx); 1196 return -1; 1197 } 1198 prev_idx = rd_idx; 1199 cpu_relax(); 1200 udelay(1); 1201 } 1202 1203 return 0; 1204 } 1205 1206 /* Warning, macro hell follows */ 1207 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1208 void name(struct its_node *its, \ 1209 buildtype builder, \ 1210 struct its_cmd_desc *desc) \ 1211 { \ 1212 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1213 synctype *sync_obj; \ 1214 unsigned long flags; \ 1215 u64 rd_idx; \ 1216 \ 1217 raw_spin_lock_irqsave(&its->lock, flags); \ 1218 \ 1219 cmd = its_allocate_entry(its); \ 1220 if (!cmd) { /* We're soooooo screewed... */ \ 1221 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1222 return; \ 1223 } \ 1224 sync_obj = builder(its, cmd, desc); \ 1225 its_flush_cmd(its, cmd); \ 1226 \ 1227 if (sync_obj) { \ 1228 sync_cmd = its_allocate_entry(its); \ 1229 if (!sync_cmd) \ 1230 goto post; \ 1231 \ 1232 buildfn(its, sync_cmd, sync_obj); \ 1233 its_flush_cmd(its, sync_cmd); \ 1234 } \ 1235 \ 1236 post: \ 1237 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1238 next_cmd = its_post_commands(its); \ 1239 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1240 \ 1241 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1242 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1243 } 1244 1245 static void its_build_sync_cmd(struct its_node *its, 1246 struct its_cmd_block *sync_cmd, 1247 struct its_collection *sync_col) 1248 { 1249 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1250 its_encode_target(sync_cmd, sync_col->target_address); 1251 1252 its_fixup_cmd(sync_cmd); 1253 } 1254 1255 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1256 struct its_collection, its_build_sync_cmd) 1257 1258 static void its_build_vsync_cmd(struct its_node *its, 1259 struct its_cmd_block *sync_cmd, 1260 struct its_vpe *sync_vpe) 1261 { 1262 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1263 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1264 1265 its_fixup_cmd(sync_cmd); 1266 } 1267 1268 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1269 struct its_vpe, its_build_vsync_cmd) 1270 1271 static void its_send_int(struct its_device *dev, u32 event_id) 1272 { 1273 struct its_cmd_desc desc; 1274 1275 desc.its_int_cmd.dev = dev; 1276 desc.its_int_cmd.event_id = event_id; 1277 1278 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1279 } 1280 1281 static void its_send_clear(struct its_device *dev, u32 event_id) 1282 { 1283 struct its_cmd_desc desc; 1284 1285 desc.its_clear_cmd.dev = dev; 1286 desc.its_clear_cmd.event_id = event_id; 1287 1288 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1289 } 1290 1291 static void its_send_inv(struct its_device *dev, u32 event_id) 1292 { 1293 struct its_cmd_desc desc; 1294 1295 desc.its_inv_cmd.dev = dev; 1296 desc.its_inv_cmd.event_id = event_id; 1297 1298 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1299 } 1300 1301 static void its_send_mapd(struct its_device *dev, int valid) 1302 { 1303 struct its_cmd_desc desc; 1304 1305 desc.its_mapd_cmd.dev = dev; 1306 desc.its_mapd_cmd.valid = !!valid; 1307 1308 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1309 } 1310 1311 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1312 int valid) 1313 { 1314 struct its_cmd_desc desc; 1315 1316 desc.its_mapc_cmd.col = col; 1317 desc.its_mapc_cmd.valid = !!valid; 1318 1319 its_send_single_command(its, its_build_mapc_cmd, &desc); 1320 } 1321 1322 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1323 { 1324 struct its_cmd_desc desc; 1325 1326 desc.its_mapti_cmd.dev = dev; 1327 desc.its_mapti_cmd.phys_id = irq_id; 1328 desc.its_mapti_cmd.event_id = id; 1329 1330 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1331 } 1332 1333 static void its_send_movi(struct its_device *dev, 1334 struct its_collection *col, u32 id) 1335 { 1336 struct its_cmd_desc desc; 1337 1338 desc.its_movi_cmd.dev = dev; 1339 desc.its_movi_cmd.col = col; 1340 desc.its_movi_cmd.event_id = id; 1341 1342 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1343 } 1344 1345 static void its_send_discard(struct its_device *dev, u32 id) 1346 { 1347 struct its_cmd_desc desc; 1348 1349 desc.its_discard_cmd.dev = dev; 1350 desc.its_discard_cmd.event_id = id; 1351 1352 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1353 } 1354 1355 static void its_send_invall(struct its_node *its, struct its_collection *col) 1356 { 1357 struct its_cmd_desc desc; 1358 1359 desc.its_invall_cmd.col = col; 1360 1361 its_send_single_command(its, its_build_invall_cmd, &desc); 1362 } 1363 1364 static void its_send_vmapti(struct its_device *dev, u32 id) 1365 { 1366 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1367 struct its_cmd_desc desc; 1368 1369 desc.its_vmapti_cmd.vpe = map->vpe; 1370 desc.its_vmapti_cmd.dev = dev; 1371 desc.its_vmapti_cmd.virt_id = map->vintid; 1372 desc.its_vmapti_cmd.event_id = id; 1373 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1374 1375 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1376 } 1377 1378 static void its_send_vmovi(struct its_device *dev, u32 id) 1379 { 1380 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1381 struct its_cmd_desc desc; 1382 1383 desc.its_vmovi_cmd.vpe = map->vpe; 1384 desc.its_vmovi_cmd.dev = dev; 1385 desc.its_vmovi_cmd.event_id = id; 1386 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1387 1388 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1389 } 1390 1391 static void its_send_vmapp(struct its_node *its, 1392 struct its_vpe *vpe, bool valid) 1393 { 1394 struct its_cmd_desc desc; 1395 1396 desc.its_vmapp_cmd.vpe = vpe; 1397 desc.its_vmapp_cmd.valid = valid; 1398 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1399 1400 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1401 } 1402 1403 static void its_send_vmovp(struct its_vpe *vpe) 1404 { 1405 struct its_cmd_desc desc = {}; 1406 struct its_node *its; 1407 int col_id = vpe->col_idx; 1408 1409 desc.its_vmovp_cmd.vpe = vpe; 1410 1411 if (!its_list_map) { 1412 its = list_first_entry(&its_nodes, struct its_node, entry); 1413 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1414 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1415 return; 1416 } 1417 1418 /* 1419 * Yet another marvel of the architecture. If using the 1420 * its_list "feature", we need to make sure that all ITSs 1421 * receive all VMOVP commands in the same order. The only way 1422 * to guarantee this is to make vmovp a serialization point. 1423 * 1424 * Wall <-- Head. 1425 */ 1426 guard(raw_spinlock)(&vmovp_lock); 1427 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1428 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1429 1430 /* Emit VMOVPs */ 1431 list_for_each_entry(its, &its_nodes, entry) { 1432 if (!is_v4(its)) 1433 continue; 1434 1435 if (!require_its_list_vmovp(vpe->its_vm, its)) 1436 continue; 1437 1438 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1439 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1440 } 1441 } 1442 1443 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1444 { 1445 struct its_cmd_desc desc; 1446 1447 desc.its_vinvall_cmd.vpe = vpe; 1448 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1449 } 1450 1451 static void its_send_vinv(struct its_device *dev, u32 event_id) 1452 { 1453 struct its_cmd_desc desc; 1454 1455 /* 1456 * There is no real VINV command. This is just a normal INV, 1457 * with a VSYNC instead of a SYNC. 1458 */ 1459 desc.its_inv_cmd.dev = dev; 1460 desc.its_inv_cmd.event_id = event_id; 1461 1462 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1463 } 1464 1465 static void its_send_vint(struct its_device *dev, u32 event_id) 1466 { 1467 struct its_cmd_desc desc; 1468 1469 /* 1470 * There is no real VINT command. This is just a normal INT, 1471 * with a VSYNC instead of a SYNC. 1472 */ 1473 desc.its_int_cmd.dev = dev; 1474 desc.its_int_cmd.event_id = event_id; 1475 1476 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1477 } 1478 1479 static void its_send_vclear(struct its_device *dev, u32 event_id) 1480 { 1481 struct its_cmd_desc desc; 1482 1483 /* 1484 * There is no real VCLEAR command. This is just a normal CLEAR, 1485 * with a VSYNC instead of a SYNC. 1486 */ 1487 desc.its_clear_cmd.dev = dev; 1488 desc.its_clear_cmd.event_id = event_id; 1489 1490 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1491 } 1492 1493 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1494 { 1495 struct its_cmd_desc desc; 1496 1497 desc.its_invdb_cmd.vpe = vpe; 1498 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1499 } 1500 1501 /* 1502 * irqchip functions - assumes MSI, mostly. 1503 */ 1504 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1505 { 1506 struct its_vlpi_map *map = get_vlpi_map(d); 1507 irq_hw_number_t hwirq; 1508 void *va; 1509 u8 *cfg; 1510 1511 if (map) { 1512 va = page_address(map->vm->vprop_page); 1513 hwirq = map->vintid; 1514 1515 /* Remember the updated property */ 1516 map->properties &= ~clr; 1517 map->properties |= set | LPI_PROP_GROUP1; 1518 } else { 1519 va = gic_rdists->prop_table_va; 1520 hwirq = d->hwirq; 1521 } 1522 1523 cfg = va + hwirq - 8192; 1524 *cfg &= ~clr; 1525 *cfg |= set | LPI_PROP_GROUP1; 1526 1527 /* 1528 * Make the above write visible to the redistributors. 1529 * And yes, we're flushing exactly: One. Single. Byte. 1530 * Humpf... 1531 */ 1532 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1533 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1534 else 1535 dsb(ishst); 1536 } 1537 1538 static void wait_for_syncr(void __iomem *rdbase) 1539 { 1540 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1541 cpu_relax(); 1542 } 1543 1544 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1545 { 1546 void __iomem *rdbase; 1547 unsigned long flags; 1548 int cpu; 1549 1550 /* Target the redistributor this LPI is currently routed to */ 1551 cpu = irq_to_cpuid_lock(d, &flags); 1552 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1553 1554 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1555 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1556 wait_for_syncr(rdbase); 1557 1558 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1559 irq_to_cpuid_unlock(d, flags); 1560 } 1561 1562 static void direct_lpi_inv(struct irq_data *d) 1563 { 1564 struct its_vlpi_map *map = get_vlpi_map(d); 1565 u64 val; 1566 1567 if (map) { 1568 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1569 1570 WARN_ON(!is_v4_1(its_dev->its)); 1571 1572 val = GICR_INVLPIR_V; 1573 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1574 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1575 } else { 1576 val = d->hwirq; 1577 } 1578 1579 __direct_lpi_inv(d, val); 1580 } 1581 1582 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1583 { 1584 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1585 1586 lpi_write_config(d, clr, set); 1587 if (gic_rdists->has_direct_lpi && 1588 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1589 direct_lpi_inv(d); 1590 else if (!irqd_is_forwarded_to_vcpu(d)) 1591 its_send_inv(its_dev, its_get_event_id(d)); 1592 else 1593 its_send_vinv(its_dev, its_get_event_id(d)); 1594 } 1595 1596 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1597 { 1598 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1599 u32 event = its_get_event_id(d); 1600 struct its_vlpi_map *map; 1601 1602 /* 1603 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1604 * here. 1605 */ 1606 if (is_v4_1(its_dev->its)) 1607 return; 1608 1609 map = dev_event_to_vlpi_map(its_dev, event); 1610 1611 if (map->db_enabled == enable) 1612 return; 1613 1614 map->db_enabled = enable; 1615 1616 /* 1617 * More fun with the architecture: 1618 * 1619 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1620 * value or to 1023, depending on the enable bit. But that 1621 * would be issuing a mapping for an /existing/ DevID+EventID 1622 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1623 * to the /same/ vPE, using this opportunity to adjust the 1624 * doorbell. Mouahahahaha. We loves it, Precious. 1625 */ 1626 its_send_vmovi(its_dev, event); 1627 } 1628 1629 static void its_mask_irq(struct irq_data *d) 1630 { 1631 if (irqd_is_forwarded_to_vcpu(d)) 1632 its_vlpi_set_doorbell(d, false); 1633 1634 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1635 } 1636 1637 static void its_unmask_irq(struct irq_data *d) 1638 { 1639 if (irqd_is_forwarded_to_vcpu(d)) 1640 its_vlpi_set_doorbell(d, true); 1641 1642 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1643 } 1644 1645 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1646 { 1647 if (irqd_affinity_is_managed(d)) 1648 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1649 1650 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1651 } 1652 1653 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1654 { 1655 if (irqd_affinity_is_managed(d)) 1656 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1657 else 1658 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1659 } 1660 1661 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1662 { 1663 if (irqd_affinity_is_managed(d)) 1664 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1665 else 1666 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1667 } 1668 1669 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1670 const struct cpumask *cpu_mask) 1671 { 1672 unsigned int cpu = nr_cpu_ids, tmp; 1673 int count = S32_MAX; 1674 1675 for_each_cpu(tmp, cpu_mask) { 1676 int this_count = its_read_lpi_count(d, tmp); 1677 if (this_count < count) { 1678 cpu = tmp; 1679 count = this_count; 1680 } 1681 } 1682 1683 return cpu; 1684 } 1685 1686 /* 1687 * As suggested by Thomas Gleixner in: 1688 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1689 */ 1690 static int its_select_cpu(struct irq_data *d, 1691 const struct cpumask *aff_mask) 1692 { 1693 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1694 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1695 static struct cpumask __tmpmask; 1696 struct cpumask *tmpmask; 1697 unsigned long flags; 1698 int cpu, node; 1699 node = its_dev->its->numa_node; 1700 tmpmask = &__tmpmask; 1701 1702 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1703 1704 if (!irqd_affinity_is_managed(d)) { 1705 /* First try the NUMA node */ 1706 if (node != NUMA_NO_NODE) { 1707 /* 1708 * Try the intersection of the affinity mask and the 1709 * node mask (and the online mask, just to be safe). 1710 */ 1711 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1712 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1713 1714 /* 1715 * Ideally, we would check if the mask is empty, and 1716 * try again on the full node here. 1717 * 1718 * But it turns out that the way ACPI describes the 1719 * affinity for ITSs only deals about memory, and 1720 * not target CPUs, so it cannot describe a single 1721 * ITS placed next to two NUMA nodes. 1722 * 1723 * Instead, just fallback on the online mask. This 1724 * diverges from Thomas' suggestion above. 1725 */ 1726 cpu = cpumask_pick_least_loaded(d, tmpmask); 1727 if (cpu < nr_cpu_ids) 1728 goto out; 1729 1730 /* If we can't cross sockets, give up */ 1731 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1732 goto out; 1733 1734 /* If the above failed, expand the search */ 1735 } 1736 1737 /* Try the intersection of the affinity and online masks */ 1738 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1739 1740 /* If that doesn't fly, the online mask is the last resort */ 1741 if (cpumask_empty(tmpmask)) 1742 cpumask_copy(tmpmask, cpu_online_mask); 1743 1744 cpu = cpumask_pick_least_loaded(d, tmpmask); 1745 } else { 1746 cpumask_copy(tmpmask, aff_mask); 1747 1748 /* If we cannot cross sockets, limit the search to that node */ 1749 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1750 node != NUMA_NO_NODE) 1751 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1752 1753 cpu = cpumask_pick_least_loaded(d, tmpmask); 1754 } 1755 out: 1756 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1757 1758 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1759 return cpu; 1760 } 1761 1762 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1763 bool force) 1764 { 1765 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1766 struct its_collection *target_col; 1767 u32 id = its_get_event_id(d); 1768 int cpu, prev_cpu; 1769 1770 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1771 if (irqd_is_forwarded_to_vcpu(d)) 1772 return -EINVAL; 1773 1774 prev_cpu = its_dev->event_map.col_map[id]; 1775 its_dec_lpi_count(d, prev_cpu); 1776 1777 if (!force) 1778 cpu = its_select_cpu(d, mask_val); 1779 else 1780 cpu = cpumask_pick_least_loaded(d, mask_val); 1781 1782 if (cpu < 0 || cpu >= nr_cpu_ids) 1783 goto err; 1784 1785 /* don't set the affinity when the target cpu is same as current one */ 1786 if (cpu != prev_cpu) { 1787 target_col = &its_dev->its->collections[cpu]; 1788 its_send_movi(its_dev, target_col, id); 1789 its_dev->event_map.col_map[id] = cpu; 1790 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1791 } 1792 1793 its_inc_lpi_count(d, cpu); 1794 1795 return IRQ_SET_MASK_OK_DONE; 1796 1797 err: 1798 its_inc_lpi_count(d, prev_cpu); 1799 return -EINVAL; 1800 } 1801 1802 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1803 { 1804 struct its_node *its = its_dev->its; 1805 1806 return its->phys_base + GITS_TRANSLATER; 1807 } 1808 1809 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1810 { 1811 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1812 struct its_node *its; 1813 u64 addr; 1814 1815 its = its_dev->its; 1816 addr = its->get_msi_base(its_dev); 1817 1818 msg->address_lo = lower_32_bits(addr); 1819 msg->address_hi = upper_32_bits(addr); 1820 msg->data = its_get_event_id(d); 1821 1822 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1823 } 1824 1825 static int its_irq_set_irqchip_state(struct irq_data *d, 1826 enum irqchip_irq_state which, 1827 bool state) 1828 { 1829 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1830 u32 event = its_get_event_id(d); 1831 1832 if (which != IRQCHIP_STATE_PENDING) 1833 return -EINVAL; 1834 1835 if (irqd_is_forwarded_to_vcpu(d)) { 1836 if (state) 1837 its_send_vint(its_dev, event); 1838 else 1839 its_send_vclear(its_dev, event); 1840 } else { 1841 if (state) 1842 its_send_int(its_dev, event); 1843 else 1844 its_send_clear(its_dev, event); 1845 } 1846 1847 return 0; 1848 } 1849 1850 static int its_irq_retrigger(struct irq_data *d) 1851 { 1852 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1853 } 1854 1855 /* 1856 * Two favourable cases: 1857 * 1858 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1859 * for vSGI delivery 1860 * 1861 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1862 * and we're better off mapping all VPEs always 1863 * 1864 * If neither (a) nor (b) is true, then we map vPEs on demand. 1865 * 1866 */ 1867 static bool gic_requires_eager_mapping(void) 1868 { 1869 if (!its_list_map || gic_rdists->has_rvpeid) 1870 return true; 1871 1872 return false; 1873 } 1874 1875 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1876 { 1877 if (gic_requires_eager_mapping()) 1878 return; 1879 1880 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1881 1882 /* 1883 * If the VM wasn't mapped yet, iterate over the vpes and get 1884 * them mapped now. 1885 */ 1886 vm->vlpi_count[its->list_nr]++; 1887 1888 if (vm->vlpi_count[its->list_nr] == 1) { 1889 int i; 1890 1891 for (i = 0; i < vm->nr_vpes; i++) { 1892 struct its_vpe *vpe = vm->vpes[i]; 1893 1894 scoped_guard(raw_spinlock, &vpe->vpe_lock) 1895 its_send_vmapp(its, vpe, true); 1896 1897 its_send_vinvall(its, vpe); 1898 } 1899 } 1900 } 1901 1902 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1903 { 1904 /* Not using the ITS list? Everything is always mapped. */ 1905 if (gic_requires_eager_mapping()) 1906 return; 1907 1908 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1909 1910 if (!--vm->vlpi_count[its->list_nr]) { 1911 int i; 1912 1913 for (i = 0; i < vm->nr_vpes; i++) { 1914 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock); 1915 its_send_vmapp(its, vm->vpes[i], false); 1916 } 1917 } 1918 } 1919 1920 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1921 { 1922 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1923 u32 event = its_get_event_id(d); 1924 1925 if (!info->map) 1926 return -EINVAL; 1927 1928 if (!its_dev->event_map.vm) { 1929 struct its_vlpi_map *maps; 1930 1931 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1932 GFP_ATOMIC); 1933 if (!maps) 1934 return -ENOMEM; 1935 1936 its_dev->event_map.vm = info->map->vm; 1937 its_dev->event_map.vlpi_maps = maps; 1938 } else if (its_dev->event_map.vm != info->map->vm) { 1939 return -EINVAL; 1940 } 1941 1942 /* Get our private copy of the mapping information */ 1943 its_dev->event_map.vlpi_maps[event] = *info->map; 1944 1945 if (irqd_is_forwarded_to_vcpu(d)) { 1946 /* Already mapped, move it around */ 1947 its_send_vmovi(its_dev, event); 1948 } else { 1949 /* Ensure all the VPEs are mapped on this ITS */ 1950 its_map_vm(its_dev->its, info->map->vm); 1951 1952 /* 1953 * Flag the interrupt as forwarded so that we can 1954 * start poking the virtual property table. 1955 */ 1956 irqd_set_forwarded_to_vcpu(d); 1957 1958 /* Write out the property to the prop table */ 1959 lpi_write_config(d, 0xff, info->map->properties); 1960 1961 /* Drop the physical mapping */ 1962 its_send_discard(its_dev, event); 1963 1964 /* and install the virtual one */ 1965 its_send_vmapti(its_dev, event); 1966 1967 /* Increment the number of VLPIs */ 1968 its_dev->event_map.nr_vlpis++; 1969 } 1970 1971 return 0; 1972 } 1973 1974 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1975 { 1976 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1977 struct its_vlpi_map *map; 1978 1979 map = get_vlpi_map(d); 1980 1981 if (!its_dev->event_map.vm || !map) 1982 return -EINVAL; 1983 1984 /* Copy our mapping information to the incoming request */ 1985 *info->map = *map; 1986 1987 return 0; 1988 } 1989 1990 static int its_vlpi_unmap(struct irq_data *d) 1991 { 1992 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1993 u32 event = its_get_event_id(d); 1994 1995 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1996 return -EINVAL; 1997 1998 /* Drop the virtual mapping */ 1999 its_send_discard(its_dev, event); 2000 2001 /* and restore the physical one */ 2002 irqd_clr_forwarded_to_vcpu(d); 2003 its_send_mapti(its_dev, d->hwirq, event); 2004 lpi_update_config(d, 0xff, (lpi_prop_prio | 2005 LPI_PROP_ENABLED | 2006 LPI_PROP_GROUP1)); 2007 2008 /* Potentially unmap the VM from this ITS */ 2009 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 2010 2011 /* 2012 * Drop the refcount and make the device available again if 2013 * this was the last VLPI. 2014 */ 2015 if (!--its_dev->event_map.nr_vlpis) { 2016 its_dev->event_map.vm = NULL; 2017 kfree(its_dev->event_map.vlpi_maps); 2018 } 2019 2020 return 0; 2021 } 2022 2023 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 2024 { 2025 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2026 2027 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 2028 return -EINVAL; 2029 2030 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 2031 lpi_update_config(d, 0xff, info->config); 2032 else 2033 lpi_write_config(d, 0xff, info->config); 2034 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 2035 2036 return 0; 2037 } 2038 2039 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2040 { 2041 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2042 struct its_cmd_info *info = vcpu_info; 2043 2044 /* Need a v4 ITS */ 2045 if (!is_v4(its_dev->its)) 2046 return -EINVAL; 2047 2048 guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock); 2049 2050 /* Unmap request? */ 2051 if (!info) 2052 return its_vlpi_unmap(d); 2053 2054 switch (info->cmd_type) { 2055 case MAP_VLPI: 2056 return its_vlpi_map(d, info); 2057 2058 case GET_VLPI: 2059 return its_vlpi_get(d, info); 2060 2061 case PROP_UPDATE_VLPI: 2062 case PROP_UPDATE_AND_INV_VLPI: 2063 return its_vlpi_prop_update(d, info); 2064 2065 default: 2066 return -EINVAL; 2067 } 2068 } 2069 2070 static struct irq_chip its_irq_chip = { 2071 .name = "ITS", 2072 .irq_mask = its_mask_irq, 2073 .irq_unmask = its_unmask_irq, 2074 .irq_eoi = irq_chip_eoi_parent, 2075 .irq_set_affinity = its_set_affinity, 2076 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2077 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2078 .irq_retrigger = its_irq_retrigger, 2079 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2080 }; 2081 2082 2083 /* 2084 * How we allocate LPIs: 2085 * 2086 * lpi_range_list contains ranges of LPIs that are to available to 2087 * allocate from. To allocate LPIs, just pick the first range that 2088 * fits the required allocation, and reduce it by the required 2089 * amount. Once empty, remove the range from the list. 2090 * 2091 * To free a range of LPIs, add a free range to the list, sort it and 2092 * merge the result if the new range happens to be adjacent to an 2093 * already free block. 2094 * 2095 * The consequence of the above is that allocation is cost is low, but 2096 * freeing is expensive. We assumes that freeing rarely occurs. 2097 */ 2098 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2099 2100 static DEFINE_MUTEX(lpi_range_lock); 2101 static LIST_HEAD(lpi_range_list); 2102 2103 struct lpi_range { 2104 struct list_head entry; 2105 u32 base_id; 2106 u32 span; 2107 }; 2108 2109 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2110 { 2111 struct lpi_range *range; 2112 2113 range = kmalloc(sizeof(*range), GFP_KERNEL); 2114 if (range) { 2115 range->base_id = base; 2116 range->span = span; 2117 } 2118 2119 return range; 2120 } 2121 2122 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2123 { 2124 struct lpi_range *range, *tmp; 2125 int err = -ENOSPC; 2126 2127 mutex_lock(&lpi_range_lock); 2128 2129 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2130 if (range->span >= nr_lpis) { 2131 *base = range->base_id; 2132 range->base_id += nr_lpis; 2133 range->span -= nr_lpis; 2134 2135 if (range->span == 0) { 2136 list_del(&range->entry); 2137 kfree(range); 2138 } 2139 2140 err = 0; 2141 break; 2142 } 2143 } 2144 2145 mutex_unlock(&lpi_range_lock); 2146 2147 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2148 return err; 2149 } 2150 2151 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2152 { 2153 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2154 return; 2155 if (a->base_id + a->span != b->base_id) 2156 return; 2157 b->base_id = a->base_id; 2158 b->span += a->span; 2159 list_del(&a->entry); 2160 kfree(a); 2161 } 2162 2163 static int free_lpi_range(u32 base, u32 nr_lpis) 2164 { 2165 struct lpi_range *new, *old; 2166 2167 new = mk_lpi_range(base, nr_lpis); 2168 if (!new) 2169 return -ENOMEM; 2170 2171 mutex_lock(&lpi_range_lock); 2172 2173 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2174 if (old->base_id < base) 2175 break; 2176 } 2177 /* 2178 * old is the last element with ->base_id smaller than base, 2179 * so new goes right after it. If there are no elements with 2180 * ->base_id smaller than base, &old->entry ends up pointing 2181 * at the head of the list, and inserting new it the start of 2182 * the list is the right thing to do in that case as well. 2183 */ 2184 list_add(&new->entry, &old->entry); 2185 /* 2186 * Now check if we can merge with the preceding and/or 2187 * following ranges. 2188 */ 2189 merge_lpi_ranges(old, new); 2190 merge_lpi_ranges(new, list_next_entry(new, entry)); 2191 2192 mutex_unlock(&lpi_range_lock); 2193 return 0; 2194 } 2195 2196 static int __init its_lpi_init(u32 id_bits) 2197 { 2198 u32 lpis = (1UL << id_bits) - 8192; 2199 u32 numlpis; 2200 int err; 2201 2202 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2203 2204 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2205 lpis = numlpis; 2206 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2207 lpis); 2208 } 2209 2210 /* 2211 * Initializing the allocator is just the same as freeing the 2212 * full range of LPIs. 2213 */ 2214 err = free_lpi_range(8192, lpis); 2215 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2216 return err; 2217 } 2218 2219 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2220 { 2221 unsigned long *bitmap = NULL; 2222 int err = 0; 2223 2224 do { 2225 err = alloc_lpi_range(nr_irqs, base); 2226 if (!err) 2227 break; 2228 2229 nr_irqs /= 2; 2230 } while (nr_irqs > 0); 2231 2232 if (!nr_irqs) 2233 err = -ENOSPC; 2234 2235 if (err) 2236 goto out; 2237 2238 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2239 if (!bitmap) 2240 goto out; 2241 2242 *nr_ids = nr_irqs; 2243 2244 out: 2245 if (!bitmap) 2246 *base = *nr_ids = 0; 2247 2248 return bitmap; 2249 } 2250 2251 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2252 { 2253 WARN_ON(free_lpi_range(base, nr_ids)); 2254 bitmap_free(bitmap); 2255 } 2256 2257 static void gic_reset_prop_table(void *va) 2258 { 2259 /* Regular IRQ priority, Group-1, disabled */ 2260 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2261 2262 /* Make sure the GIC will observe the written configuration */ 2263 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2264 } 2265 2266 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2267 { 2268 struct page *prop_page; 2269 2270 prop_page = its_alloc_pages(gfp_flags, 2271 get_order(LPI_PROPBASE_SZ)); 2272 if (!prop_page) 2273 return NULL; 2274 2275 gic_reset_prop_table(page_address(prop_page)); 2276 2277 return prop_page; 2278 } 2279 2280 static void its_free_prop_table(struct page *prop_page) 2281 { 2282 its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ)); 2283 } 2284 2285 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2286 { 2287 phys_addr_t start, end, addr_end; 2288 u64 i; 2289 2290 /* 2291 * We don't bother checking for a kdump kernel as by 2292 * construction, the LPI tables are out of this kernel's 2293 * memory map. 2294 */ 2295 if (is_kdump_kernel()) 2296 return true; 2297 2298 addr_end = addr + size - 1; 2299 2300 for_each_reserved_mem_range(i, &start, &end) { 2301 if (addr >= start && addr_end <= end) 2302 return true; 2303 } 2304 2305 /* Not found, not a good sign... */ 2306 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2307 &addr, &addr_end); 2308 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2309 return false; 2310 } 2311 2312 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2313 { 2314 if (efi_enabled(EFI_CONFIG_TABLES)) 2315 return efi_mem_reserve_persistent(addr, size); 2316 2317 return 0; 2318 } 2319 2320 static int __init its_setup_lpi_prop_table(void) 2321 { 2322 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2323 u64 val; 2324 2325 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2326 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2327 2328 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2329 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2330 LPI_PROPBASE_SZ, 2331 MEMREMAP_WB); 2332 gic_reset_prop_table(gic_rdists->prop_table_va); 2333 } else { 2334 struct page *page; 2335 2336 lpi_id_bits = min_t(u32, 2337 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2338 ITS_MAX_LPI_NRBITS); 2339 page = its_allocate_prop_table(GFP_NOWAIT); 2340 if (!page) { 2341 pr_err("Failed to allocate PROPBASE\n"); 2342 return -ENOMEM; 2343 } 2344 2345 gic_rdists->prop_table_pa = page_to_phys(page); 2346 gic_rdists->prop_table_va = page_address(page); 2347 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2348 LPI_PROPBASE_SZ)); 2349 } 2350 2351 pr_info("GICv3: using LPI property table @%pa\n", 2352 &gic_rdists->prop_table_pa); 2353 2354 return its_lpi_init(lpi_id_bits); 2355 } 2356 2357 static const char *its_base_type_string[] = { 2358 [GITS_BASER_TYPE_DEVICE] = "Devices", 2359 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2360 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2361 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2362 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2363 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2364 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2365 }; 2366 2367 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2368 { 2369 u32 idx = baser - its->tables; 2370 2371 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2372 } 2373 2374 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2375 u64 val) 2376 { 2377 u32 idx = baser - its->tables; 2378 2379 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2380 baser->val = its_read_baser(its, baser); 2381 } 2382 2383 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2384 u64 cache, u64 shr, u32 order, bool indirect) 2385 { 2386 u64 val = its_read_baser(its, baser); 2387 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2388 u64 type = GITS_BASER_TYPE(val); 2389 u64 baser_phys, tmp; 2390 u32 alloc_pages, psz; 2391 struct page *page; 2392 void *base; 2393 2394 psz = baser->psz; 2395 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2396 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2397 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2398 &its->phys_base, its_base_type_string[type], 2399 alloc_pages, GITS_BASER_PAGES_MAX); 2400 alloc_pages = GITS_BASER_PAGES_MAX; 2401 order = get_order(GITS_BASER_PAGES_MAX * psz); 2402 } 2403 2404 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2405 if (!page) 2406 return -ENOMEM; 2407 2408 base = (void *)page_address(page); 2409 baser_phys = virt_to_phys(base); 2410 2411 /* Check if the physical address of the memory is above 48bits */ 2412 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2413 2414 /* 52bit PA is supported only when PageSize=64K */ 2415 if (psz != SZ_64K) { 2416 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2417 its_free_pages(base, order); 2418 return -ENXIO; 2419 } 2420 2421 /* Convert 52bit PA to 48bit field */ 2422 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2423 } 2424 2425 retry_baser: 2426 val = (baser_phys | 2427 (type << GITS_BASER_TYPE_SHIFT) | 2428 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2429 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2430 cache | 2431 shr | 2432 GITS_BASER_VALID); 2433 2434 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2435 2436 switch (psz) { 2437 case SZ_4K: 2438 val |= GITS_BASER_PAGE_SIZE_4K; 2439 break; 2440 case SZ_16K: 2441 val |= GITS_BASER_PAGE_SIZE_16K; 2442 break; 2443 case SZ_64K: 2444 val |= GITS_BASER_PAGE_SIZE_64K; 2445 break; 2446 } 2447 2448 if (!shr) 2449 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2450 2451 its_write_baser(its, baser, val); 2452 tmp = baser->val; 2453 2454 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2455 /* 2456 * Shareability didn't stick. Just use 2457 * whatever the read reported, which is likely 2458 * to be the only thing this redistributor 2459 * supports. If that's zero, make it 2460 * non-cacheable as well. 2461 */ 2462 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2463 if (!shr) 2464 cache = GITS_BASER_nC; 2465 2466 goto retry_baser; 2467 } 2468 2469 if (val != tmp) { 2470 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2471 &its->phys_base, its_base_type_string[type], 2472 val, tmp); 2473 its_free_pages(base, order); 2474 return -ENXIO; 2475 } 2476 2477 baser->order = order; 2478 baser->base = base; 2479 baser->psz = psz; 2480 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2481 2482 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2483 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2484 its_base_type_string[type], 2485 (unsigned long)virt_to_phys(base), 2486 indirect ? "indirect" : "flat", (int)esz, 2487 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2488 2489 return 0; 2490 } 2491 2492 static bool its_parse_indirect_baser(struct its_node *its, 2493 struct its_baser *baser, 2494 u32 *order, u32 ids) 2495 { 2496 u64 tmp = its_read_baser(its, baser); 2497 u64 type = GITS_BASER_TYPE(tmp); 2498 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2499 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2500 u32 new_order = *order; 2501 u32 psz = baser->psz; 2502 bool indirect = false; 2503 2504 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2505 if ((esz << ids) > (psz * 2)) { 2506 /* 2507 * Find out whether hw supports a single or two-level table by 2508 * table by reading bit at offset '62' after writing '1' to it. 2509 */ 2510 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2511 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2512 2513 if (indirect) { 2514 /* 2515 * The size of the lvl2 table is equal to ITS page size 2516 * which is 'psz'. For computing lvl1 table size, 2517 * subtract ID bits that sparse lvl2 table from 'ids' 2518 * which is reported by ITS hardware times lvl1 table 2519 * entry size. 2520 */ 2521 ids -= ilog2(psz / (int)esz); 2522 esz = GITS_LVL1_ENTRY_SIZE; 2523 } 2524 } 2525 2526 /* 2527 * Allocate as many entries as required to fit the 2528 * range of device IDs that the ITS can grok... The ID 2529 * space being incredibly sparse, this results in a 2530 * massive waste of memory if two-level device table 2531 * feature is not supported by hardware. 2532 */ 2533 new_order = max_t(u32, get_order(esz << ids), new_order); 2534 if (new_order > MAX_PAGE_ORDER) { 2535 new_order = MAX_PAGE_ORDER; 2536 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2537 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2538 &its->phys_base, its_base_type_string[type], 2539 device_ids(its), ids); 2540 } 2541 2542 *order = new_order; 2543 2544 return indirect; 2545 } 2546 2547 static u32 compute_common_aff(u64 val) 2548 { 2549 u32 aff, clpiaff; 2550 2551 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2552 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2553 2554 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2555 } 2556 2557 static u32 compute_its_aff(struct its_node *its) 2558 { 2559 u64 val; 2560 u32 svpet; 2561 2562 /* 2563 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2564 * the resulting affinity. We then use that to see if this match 2565 * our own affinity. 2566 */ 2567 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2568 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2569 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2570 return compute_common_aff(val); 2571 } 2572 2573 static struct its_node *find_sibling_its(struct its_node *cur_its) 2574 { 2575 struct its_node *its; 2576 u32 aff; 2577 2578 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2579 return NULL; 2580 2581 aff = compute_its_aff(cur_its); 2582 2583 list_for_each_entry(its, &its_nodes, entry) { 2584 u64 baser; 2585 2586 if (!is_v4_1(its) || its == cur_its) 2587 continue; 2588 2589 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2590 continue; 2591 2592 if (aff != compute_its_aff(its)) 2593 continue; 2594 2595 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2596 baser = its->tables[2].val; 2597 if (!(baser & GITS_BASER_VALID)) 2598 continue; 2599 2600 return its; 2601 } 2602 2603 return NULL; 2604 } 2605 2606 static void its_free_tables(struct its_node *its) 2607 { 2608 int i; 2609 2610 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2611 if (its->tables[i].base) { 2612 its_free_pages(its->tables[i].base, its->tables[i].order); 2613 its->tables[i].base = NULL; 2614 } 2615 } 2616 } 2617 2618 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2619 { 2620 u64 psz = SZ_64K; 2621 2622 while (psz) { 2623 u64 val, gpsz; 2624 2625 val = its_read_baser(its, baser); 2626 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2627 2628 switch (psz) { 2629 case SZ_64K: 2630 gpsz = GITS_BASER_PAGE_SIZE_64K; 2631 break; 2632 case SZ_16K: 2633 gpsz = GITS_BASER_PAGE_SIZE_16K; 2634 break; 2635 case SZ_4K: 2636 default: 2637 gpsz = GITS_BASER_PAGE_SIZE_4K; 2638 break; 2639 } 2640 2641 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2642 2643 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2644 its_write_baser(its, baser, val); 2645 2646 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2647 break; 2648 2649 switch (psz) { 2650 case SZ_64K: 2651 psz = SZ_16K; 2652 break; 2653 case SZ_16K: 2654 psz = SZ_4K; 2655 break; 2656 case SZ_4K: 2657 default: 2658 return -1; 2659 } 2660 } 2661 2662 baser->psz = psz; 2663 return 0; 2664 } 2665 2666 static int its_alloc_tables(struct its_node *its) 2667 { 2668 u64 shr = GITS_BASER_InnerShareable; 2669 u64 cache = GITS_BASER_RaWaWb; 2670 int err, i; 2671 2672 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2673 /* erratum 24313: ignore memory access type */ 2674 cache = GITS_BASER_nCnB; 2675 2676 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2677 cache = GITS_BASER_nC; 2678 shr = 0; 2679 } 2680 2681 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2682 struct its_baser *baser = its->tables + i; 2683 u64 val = its_read_baser(its, baser); 2684 u64 type = GITS_BASER_TYPE(val); 2685 bool indirect = false; 2686 u32 order; 2687 2688 if (type == GITS_BASER_TYPE_NONE) 2689 continue; 2690 2691 if (its_probe_baser_psz(its, baser)) { 2692 its_free_tables(its); 2693 return -ENXIO; 2694 } 2695 2696 order = get_order(baser->psz); 2697 2698 switch (type) { 2699 case GITS_BASER_TYPE_DEVICE: 2700 indirect = its_parse_indirect_baser(its, baser, &order, 2701 device_ids(its)); 2702 break; 2703 2704 case GITS_BASER_TYPE_VCPU: 2705 if (is_v4_1(its)) { 2706 struct its_node *sibling; 2707 2708 WARN_ON(i != 2); 2709 if ((sibling = find_sibling_its(its))) { 2710 *baser = sibling->tables[2]; 2711 its_write_baser(its, baser, baser->val); 2712 continue; 2713 } 2714 } 2715 2716 indirect = its_parse_indirect_baser(its, baser, &order, 2717 ITS_MAX_VPEID_BITS); 2718 break; 2719 } 2720 2721 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2722 if (err < 0) { 2723 its_free_tables(its); 2724 return err; 2725 } 2726 2727 /* Update settings which will be used for next BASERn */ 2728 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2729 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2730 } 2731 2732 return 0; 2733 } 2734 2735 static u64 inherit_vpe_l1_table_from_its(void) 2736 { 2737 struct its_node *its; 2738 u64 val; 2739 u32 aff; 2740 2741 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2742 aff = compute_common_aff(val); 2743 2744 list_for_each_entry(its, &its_nodes, entry) { 2745 u64 baser, addr; 2746 2747 if (!is_v4_1(its)) 2748 continue; 2749 2750 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2751 continue; 2752 2753 if (aff != compute_its_aff(its)) 2754 continue; 2755 2756 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2757 baser = its->tables[2].val; 2758 if (!(baser & GITS_BASER_VALID)) 2759 continue; 2760 2761 /* We have a winner! */ 2762 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2763 2764 val = GICR_VPROPBASER_4_1_VALID; 2765 if (baser & GITS_BASER_INDIRECT) 2766 val |= GICR_VPROPBASER_4_1_INDIRECT; 2767 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2768 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2769 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2770 case GIC_PAGE_SIZE_64K: 2771 addr = GITS_BASER_ADDR_48_to_52(baser); 2772 break; 2773 default: 2774 addr = baser & GENMASK_ULL(47, 12); 2775 break; 2776 } 2777 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2778 if (rdists_support_shareable()) { 2779 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2780 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2781 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2782 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2783 } 2784 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2785 2786 return val; 2787 } 2788 2789 return 0; 2790 } 2791 2792 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2793 { 2794 u32 aff; 2795 u64 val; 2796 int cpu; 2797 2798 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2799 aff = compute_common_aff(val); 2800 2801 for_each_possible_cpu(cpu) { 2802 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2803 2804 if (!base || cpu == smp_processor_id()) 2805 continue; 2806 2807 val = gic_read_typer(base + GICR_TYPER); 2808 if (aff != compute_common_aff(val)) 2809 continue; 2810 2811 /* 2812 * At this point, we have a victim. This particular CPU 2813 * has already booted, and has an affinity that matches 2814 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2815 * Make sure we don't write the Z bit in that case. 2816 */ 2817 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2818 val &= ~GICR_VPROPBASER_4_1_Z; 2819 2820 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2821 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2822 2823 return val; 2824 } 2825 2826 return 0; 2827 } 2828 2829 static bool allocate_vpe_l2_table(int cpu, u32 id) 2830 { 2831 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2832 unsigned int psz, esz, idx, npg, gpsz; 2833 u64 val; 2834 struct page *page; 2835 __le64 *table; 2836 2837 if (!gic_rdists->has_rvpeid) 2838 return true; 2839 2840 /* Skip non-present CPUs */ 2841 if (!base) 2842 return true; 2843 2844 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2845 2846 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2847 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2848 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2849 2850 switch (gpsz) { 2851 default: 2852 WARN_ON(1); 2853 fallthrough; 2854 case GIC_PAGE_SIZE_4K: 2855 psz = SZ_4K; 2856 break; 2857 case GIC_PAGE_SIZE_16K: 2858 psz = SZ_16K; 2859 break; 2860 case GIC_PAGE_SIZE_64K: 2861 psz = SZ_64K; 2862 break; 2863 } 2864 2865 /* Don't allow vpe_id that exceeds single, flat table limit */ 2866 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2867 return (id < (npg * psz / (esz * SZ_8))); 2868 2869 /* Compute 1st level table index & check if that exceeds table limit */ 2870 idx = id >> ilog2(psz / (esz * SZ_8)); 2871 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2872 return false; 2873 2874 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2875 2876 /* Allocate memory for 2nd level table */ 2877 if (!table[idx]) { 2878 page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2879 if (!page) 2880 return false; 2881 2882 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2883 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2884 gic_flush_dcache_to_poc(page_address(page), psz); 2885 2886 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2887 2888 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2889 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2890 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2891 2892 /* Ensure updated table contents are visible to RD hardware */ 2893 dsb(sy); 2894 } 2895 2896 return true; 2897 } 2898 2899 static int allocate_vpe_l1_table(void) 2900 { 2901 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2902 u64 val, gpsz, npg, pa; 2903 unsigned int psz = SZ_64K; 2904 unsigned int np, epp, esz; 2905 struct page *page; 2906 2907 if (!gic_rdists->has_rvpeid) 2908 return 0; 2909 2910 /* 2911 * if VPENDBASER.Valid is set, disable any previously programmed 2912 * VPE by setting PendingLast while clearing Valid. This has the 2913 * effect of making sure no doorbell will be generated and we can 2914 * then safely clear VPROPBASER.Valid. 2915 */ 2916 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2917 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2918 vlpi_base + GICR_VPENDBASER); 2919 2920 /* 2921 * If we can inherit the configuration from another RD, let's do 2922 * so. Otherwise, we have to go through the allocation process. We 2923 * assume that all RDs have the exact same requirements, as 2924 * nothing will work otherwise. 2925 */ 2926 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2927 if (val & GICR_VPROPBASER_4_1_VALID) 2928 goto out; 2929 2930 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2931 if (!gic_data_rdist()->vpe_table_mask) 2932 return -ENOMEM; 2933 2934 val = inherit_vpe_l1_table_from_its(); 2935 if (val & GICR_VPROPBASER_4_1_VALID) 2936 goto out; 2937 2938 /* First probe the page size */ 2939 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2940 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2941 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2942 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2943 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2944 2945 switch (gpsz) { 2946 default: 2947 gpsz = GIC_PAGE_SIZE_4K; 2948 fallthrough; 2949 case GIC_PAGE_SIZE_4K: 2950 psz = SZ_4K; 2951 break; 2952 case GIC_PAGE_SIZE_16K: 2953 psz = SZ_16K; 2954 break; 2955 case GIC_PAGE_SIZE_64K: 2956 psz = SZ_64K; 2957 break; 2958 } 2959 2960 /* 2961 * Start populating the register from scratch, including RO fields 2962 * (which we want to print in debug cases...) 2963 */ 2964 val = 0; 2965 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2966 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2967 2968 /* How many entries per GIC page? */ 2969 esz++; 2970 epp = psz / (esz * SZ_8); 2971 2972 /* 2973 * If we need more than just a single L1 page, flag the table 2974 * as indirect and compute the number of required L1 pages. 2975 */ 2976 if (epp < ITS_MAX_VPEID) { 2977 int nl2; 2978 2979 val |= GICR_VPROPBASER_4_1_INDIRECT; 2980 2981 /* Number of L2 pages required to cover the VPEID space */ 2982 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2983 2984 /* Number of L1 pages to point to the L2 pages */ 2985 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2986 } else { 2987 npg = 1; 2988 } 2989 2990 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2991 2992 /* Right, that's the number of CPU pages we need for L1 */ 2993 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2994 2995 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2996 np, npg, psz, epp, esz); 2997 page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2998 if (!page) 2999 return -ENOMEM; 3000 3001 gic_data_rdist()->vpe_l1_base = page_address(page); 3002 pa = virt_to_phys(page_address(page)); 3003 WARN_ON(!IS_ALIGNED(pa, psz)); 3004 3005 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 3006 if (rdists_support_shareable()) { 3007 val |= GICR_VPROPBASER_RaWb; 3008 val |= GICR_VPROPBASER_InnerShareable; 3009 } 3010 val |= GICR_VPROPBASER_4_1_Z; 3011 val |= GICR_VPROPBASER_4_1_VALID; 3012 3013 out: 3014 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3015 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 3016 3017 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 3018 smp_processor_id(), val, 3019 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 3020 3021 return 0; 3022 } 3023 3024 static int its_alloc_collections(struct its_node *its) 3025 { 3026 int i; 3027 3028 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 3029 GFP_KERNEL); 3030 if (!its->collections) 3031 return -ENOMEM; 3032 3033 for (i = 0; i < nr_cpu_ids; i++) 3034 its->collections[i].target_address = ~0ULL; 3035 3036 return 0; 3037 } 3038 3039 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 3040 { 3041 struct page *pend_page; 3042 3043 pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ)); 3044 if (!pend_page) 3045 return NULL; 3046 3047 /* Make sure the GIC will observe the zero-ed page */ 3048 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 3049 3050 return pend_page; 3051 } 3052 3053 static void its_free_pending_table(struct page *pt) 3054 { 3055 its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ)); 3056 } 3057 3058 /* 3059 * Booting with kdump and LPIs enabled is generally fine. Any other 3060 * case is wrong in the absence of firmware/EFI support. 3061 */ 3062 static bool enabled_lpis_allowed(void) 3063 { 3064 phys_addr_t addr; 3065 u64 val; 3066 3067 /* Check whether the property table is in a reserved region */ 3068 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 3069 addr = val & GENMASK_ULL(51, 12); 3070 3071 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 3072 } 3073 3074 static int __init allocate_lpi_tables(void) 3075 { 3076 u64 val; 3077 int err, cpu; 3078 3079 /* 3080 * If LPIs are enabled while we run this from the boot CPU, 3081 * flag the RD tables as pre-allocated if the stars do align. 3082 */ 3083 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3084 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3085 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3086 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3087 pr_info("GICv3: Using preallocated redistributor tables\n"); 3088 } 3089 3090 err = its_setup_lpi_prop_table(); 3091 if (err) 3092 return err; 3093 3094 /* 3095 * We allocate all the pending tables anyway, as we may have a 3096 * mix of RDs that have had LPIs enabled, and some that 3097 * don't. We'll free the unused ones as each CPU comes online. 3098 */ 3099 for_each_possible_cpu(cpu) { 3100 struct page *pend_page; 3101 3102 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3103 if (!pend_page) { 3104 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3105 return -ENOMEM; 3106 } 3107 3108 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3109 } 3110 3111 return 0; 3112 } 3113 3114 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3115 { 3116 u32 count = 1000000; /* 1s! */ 3117 bool clean; 3118 u64 val; 3119 3120 do { 3121 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3122 clean = !(val & GICR_VPENDBASER_Dirty); 3123 if (!clean) { 3124 count--; 3125 cpu_relax(); 3126 udelay(1); 3127 } 3128 } while (!clean && count); 3129 3130 if (unlikely(!clean)) 3131 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3132 3133 return val; 3134 } 3135 3136 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3137 { 3138 u64 val; 3139 3140 /* Make sure we wait until the RD is done with the initial scan */ 3141 val = read_vpend_dirty_clear(vlpi_base); 3142 val &= ~GICR_VPENDBASER_Valid; 3143 val &= ~clr; 3144 val |= set; 3145 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3146 3147 val = read_vpend_dirty_clear(vlpi_base); 3148 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3149 val |= GICR_VPENDBASER_PendingLast; 3150 3151 return val; 3152 } 3153 3154 static void its_cpu_init_lpis(void) 3155 { 3156 void __iomem *rbase = gic_data_rdist_rd_base(); 3157 struct page *pend_page; 3158 phys_addr_t paddr; 3159 u64 val, tmp; 3160 3161 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3162 return; 3163 3164 val = readl_relaxed(rbase + GICR_CTLR); 3165 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3166 (val & GICR_CTLR_ENABLE_LPIS)) { 3167 /* 3168 * Check that we get the same property table on all 3169 * RDs. If we don't, this is hopeless. 3170 */ 3171 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3172 paddr &= GENMASK_ULL(51, 12); 3173 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3174 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3175 3176 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3177 paddr &= GENMASK_ULL(51, 16); 3178 3179 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3180 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3181 3182 goto out; 3183 } 3184 3185 pend_page = gic_data_rdist()->pend_page; 3186 paddr = page_to_phys(pend_page); 3187 3188 /* set PROPBASE */ 3189 val = (gic_rdists->prop_table_pa | 3190 GICR_PROPBASER_InnerShareable | 3191 GICR_PROPBASER_RaWaWb | 3192 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3193 3194 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3195 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3196 3197 if (!rdists_support_shareable()) 3198 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3199 3200 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3201 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3202 /* 3203 * The HW reports non-shareable, we must 3204 * remove the cacheability attributes as 3205 * well. 3206 */ 3207 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3208 GICR_PROPBASER_CACHEABILITY_MASK); 3209 val |= GICR_PROPBASER_nC; 3210 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3211 } 3212 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3213 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3214 } 3215 3216 /* set PENDBASE */ 3217 val = (page_to_phys(pend_page) | 3218 GICR_PENDBASER_InnerShareable | 3219 GICR_PENDBASER_RaWaWb); 3220 3221 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3222 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3223 3224 if (!rdists_support_shareable()) 3225 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3226 3227 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3228 /* 3229 * The HW reports non-shareable, we must remove the 3230 * cacheability attributes as well. 3231 */ 3232 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3233 GICR_PENDBASER_CACHEABILITY_MASK); 3234 val |= GICR_PENDBASER_nC; 3235 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3236 } 3237 3238 /* Enable LPIs */ 3239 val = readl_relaxed(rbase + GICR_CTLR); 3240 val |= GICR_CTLR_ENABLE_LPIS; 3241 writel_relaxed(val, rbase + GICR_CTLR); 3242 3243 out: 3244 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3245 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3246 3247 /* 3248 * It's possible for CPU to receive VLPIs before it is 3249 * scheduled as a vPE, especially for the first CPU, and the 3250 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3251 * as out of range and dropped by GIC. 3252 * So we initialize IDbits to known value to avoid VLPI drop. 3253 */ 3254 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3255 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3256 smp_processor_id(), val); 3257 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3258 3259 /* 3260 * Also clear Valid bit of GICR_VPENDBASER, in case some 3261 * ancient programming gets left in and has possibility of 3262 * corrupting memory. 3263 */ 3264 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3265 } 3266 3267 if (allocate_vpe_l1_table()) { 3268 /* 3269 * If the allocation has failed, we're in massive trouble. 3270 * Disable direct injection, and pray that no VM was 3271 * already running... 3272 */ 3273 gic_rdists->has_rvpeid = false; 3274 gic_rdists->has_vlpis = false; 3275 } 3276 3277 /* Make sure the GIC has seen the above */ 3278 dsb(sy); 3279 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3280 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3281 smp_processor_id(), 3282 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3283 "reserved" : "allocated", 3284 &paddr); 3285 } 3286 3287 static void its_cpu_init_collection(struct its_node *its) 3288 { 3289 int cpu = smp_processor_id(); 3290 u64 target; 3291 3292 /* avoid cross node collections and its mapping */ 3293 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3294 struct device_node *cpu_node; 3295 3296 cpu_node = of_get_cpu_node(cpu, NULL); 3297 if (its->numa_node != NUMA_NO_NODE && 3298 its->numa_node != of_node_to_nid(cpu_node)) 3299 return; 3300 } 3301 3302 /* 3303 * We now have to bind each collection to its target 3304 * redistributor. 3305 */ 3306 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3307 /* 3308 * This ITS wants the physical address of the 3309 * redistributor. 3310 */ 3311 target = gic_data_rdist()->phys_base; 3312 } else { 3313 /* This ITS wants a linear CPU number. */ 3314 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3315 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3316 } 3317 3318 /* Perform collection mapping */ 3319 its->collections[cpu].target_address = target; 3320 its->collections[cpu].col_id = cpu; 3321 3322 its_send_mapc(its, &its->collections[cpu], 1); 3323 its_send_invall(its, &its->collections[cpu]); 3324 } 3325 3326 static void its_cpu_init_collections(void) 3327 { 3328 struct its_node *its; 3329 3330 raw_spin_lock(&its_lock); 3331 3332 list_for_each_entry(its, &its_nodes, entry) 3333 its_cpu_init_collection(its); 3334 3335 raw_spin_unlock(&its_lock); 3336 } 3337 3338 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3339 { 3340 struct its_device *its_dev = NULL, *tmp; 3341 unsigned long flags; 3342 3343 raw_spin_lock_irqsave(&its->lock, flags); 3344 3345 list_for_each_entry(tmp, &its->its_device_list, entry) { 3346 if (tmp->device_id == dev_id) { 3347 its_dev = tmp; 3348 break; 3349 } 3350 } 3351 3352 raw_spin_unlock_irqrestore(&its->lock, flags); 3353 3354 return its_dev; 3355 } 3356 3357 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3358 { 3359 int i; 3360 3361 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3362 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3363 return &its->tables[i]; 3364 } 3365 3366 return NULL; 3367 } 3368 3369 static bool its_alloc_table_entry(struct its_node *its, 3370 struct its_baser *baser, u32 id) 3371 { 3372 struct page *page; 3373 u32 esz, idx; 3374 __le64 *table; 3375 3376 /* Don't allow device id that exceeds single, flat table limit */ 3377 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3378 if (!(baser->val & GITS_BASER_INDIRECT)) 3379 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3380 3381 /* Compute 1st level table index & check if that exceeds table limit */ 3382 idx = id >> ilog2(baser->psz / esz); 3383 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3384 return false; 3385 3386 table = baser->base; 3387 3388 /* Allocate memory for 2nd level table */ 3389 if (!table[idx]) { 3390 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3391 get_order(baser->psz)); 3392 if (!page) 3393 return false; 3394 3395 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3396 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3397 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3398 3399 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3400 3401 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3402 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3403 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3404 3405 /* Ensure updated table contents are visible to ITS hardware */ 3406 dsb(sy); 3407 } 3408 3409 return true; 3410 } 3411 3412 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3413 { 3414 struct its_baser *baser; 3415 3416 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3417 3418 /* Don't allow device id that exceeds ITS hardware limit */ 3419 if (!baser) 3420 return (ilog2(dev_id) < device_ids(its)); 3421 3422 return its_alloc_table_entry(its, baser, dev_id); 3423 } 3424 3425 static bool its_alloc_vpe_table(u32 vpe_id) 3426 { 3427 struct its_node *its; 3428 int cpu; 3429 3430 /* 3431 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3432 * could try and only do it on ITSs corresponding to devices 3433 * that have interrupts targeted at this VPE, but the 3434 * complexity becomes crazy (and you have tons of memory 3435 * anyway, right?). 3436 */ 3437 list_for_each_entry(its, &its_nodes, entry) { 3438 struct its_baser *baser; 3439 3440 if (!is_v4(its)) 3441 continue; 3442 3443 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3444 if (!baser) 3445 return false; 3446 3447 if (!its_alloc_table_entry(its, baser, vpe_id)) 3448 return false; 3449 } 3450 3451 /* Non v4.1? No need to iterate RDs and go back early. */ 3452 if (!gic_rdists->has_rvpeid) 3453 return true; 3454 3455 /* 3456 * Make sure the L2 tables are allocated for all copies of 3457 * the L1 table on *all* v4.1 RDs. 3458 */ 3459 for_each_possible_cpu(cpu) { 3460 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3461 return false; 3462 } 3463 3464 return true; 3465 } 3466 3467 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3468 int nvecs, bool alloc_lpis) 3469 { 3470 struct its_device *dev; 3471 unsigned long *lpi_map = NULL; 3472 unsigned long flags; 3473 u16 *col_map = NULL; 3474 void *itt; 3475 int lpi_base; 3476 int nr_lpis; 3477 int nr_ites; 3478 int sz; 3479 3480 if (!its_alloc_device_table(its, dev_id)) 3481 return NULL; 3482 3483 if (WARN_ON(!is_power_of_2(nvecs))) 3484 nvecs = roundup_pow_of_two(nvecs); 3485 3486 /* 3487 * Even if the device wants a single LPI, the ITT must be 3488 * sized as a power of two (and you need at least one bit...). 3489 */ 3490 nr_ites = max(2, nvecs); 3491 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3492 sz = max(sz, ITS_ITT_ALIGN); 3493 3494 itt = itt_alloc_pool(its->numa_node, sz); 3495 3496 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3497 3498 if (alloc_lpis) { 3499 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3500 if (lpi_map) 3501 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3502 GFP_KERNEL); 3503 } else { 3504 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3505 nr_lpis = 0; 3506 lpi_base = 0; 3507 } 3508 3509 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3510 kfree(dev); 3511 itt_free_pool(itt, sz); 3512 bitmap_free(lpi_map); 3513 kfree(col_map); 3514 return NULL; 3515 } 3516 3517 gic_flush_dcache_to_poc(itt, sz); 3518 3519 dev->its = its; 3520 dev->itt = itt; 3521 dev->itt_sz = sz; 3522 dev->nr_ites = nr_ites; 3523 dev->event_map.lpi_map = lpi_map; 3524 dev->event_map.col_map = col_map; 3525 dev->event_map.lpi_base = lpi_base; 3526 dev->event_map.nr_lpis = nr_lpis; 3527 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3528 dev->device_id = dev_id; 3529 INIT_LIST_HEAD(&dev->entry); 3530 3531 raw_spin_lock_irqsave(&its->lock, flags); 3532 list_add(&dev->entry, &its->its_device_list); 3533 raw_spin_unlock_irqrestore(&its->lock, flags); 3534 3535 /* Map device to its ITT */ 3536 its_send_mapd(dev, 1); 3537 3538 return dev; 3539 } 3540 3541 static void its_free_device(struct its_device *its_dev) 3542 { 3543 unsigned long flags; 3544 3545 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3546 list_del(&its_dev->entry); 3547 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3548 kfree(its_dev->event_map.col_map); 3549 itt_free_pool(its_dev->itt, its_dev->itt_sz); 3550 kfree(its_dev); 3551 } 3552 3553 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3554 { 3555 int idx; 3556 3557 /* Find a free LPI region in lpi_map and allocate them. */ 3558 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3559 dev->event_map.nr_lpis, 3560 get_count_order(nvecs)); 3561 if (idx < 0) 3562 return -ENOSPC; 3563 3564 *hwirq = dev->event_map.lpi_base + idx; 3565 3566 return 0; 3567 } 3568 3569 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3570 int nvec, msi_alloc_info_t *info) 3571 { 3572 struct its_node *its; 3573 struct its_device *its_dev; 3574 struct msi_domain_info *msi_info; 3575 u32 dev_id; 3576 int err = 0; 3577 3578 /* 3579 * We ignore "dev" entirely, and rely on the dev_id that has 3580 * been passed via the scratchpad. This limits this domain's 3581 * usefulness to upper layers that definitely know that they 3582 * are built on top of the ITS. 3583 */ 3584 dev_id = info->scratchpad[0].ul; 3585 3586 msi_info = msi_get_domain_info(domain); 3587 its = msi_info->data; 3588 3589 if (!gic_rdists->has_direct_lpi && 3590 vpe_proxy.dev && 3591 vpe_proxy.dev->its == its && 3592 dev_id == vpe_proxy.dev->device_id) { 3593 /* Bad luck. Get yourself a better implementation */ 3594 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3595 dev_id); 3596 return -EINVAL; 3597 } 3598 3599 mutex_lock(&its->dev_alloc_lock); 3600 its_dev = its_find_device(its, dev_id); 3601 if (its_dev) { 3602 /* 3603 * We already have seen this ID, probably through 3604 * another alias (PCI bridge of some sort). No need to 3605 * create the device. 3606 */ 3607 its_dev->shared = true; 3608 pr_debug("Reusing ITT for devID %x\n", dev_id); 3609 goto out; 3610 } 3611 3612 its_dev = its_create_device(its, dev_id, nvec, true); 3613 if (!its_dev) { 3614 err = -ENOMEM; 3615 goto out; 3616 } 3617 3618 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3619 its_dev->shared = true; 3620 3621 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3622 out: 3623 mutex_unlock(&its->dev_alloc_lock); 3624 info->scratchpad[0].ptr = its_dev; 3625 return err; 3626 } 3627 3628 static struct msi_domain_ops its_msi_domain_ops = { 3629 .msi_prepare = its_msi_prepare, 3630 }; 3631 3632 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3633 unsigned int virq, 3634 irq_hw_number_t hwirq) 3635 { 3636 struct irq_fwspec fwspec; 3637 3638 if (irq_domain_get_of_node(domain->parent)) { 3639 fwspec.fwnode = domain->parent->fwnode; 3640 fwspec.param_count = 3; 3641 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3642 fwspec.param[1] = hwirq; 3643 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3644 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3645 fwspec.fwnode = domain->parent->fwnode; 3646 fwspec.param_count = 2; 3647 fwspec.param[0] = hwirq; 3648 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3649 } else { 3650 return -EINVAL; 3651 } 3652 3653 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3654 } 3655 3656 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3657 unsigned int nr_irqs, void *args) 3658 { 3659 msi_alloc_info_t *info = args; 3660 struct its_device *its_dev = info->scratchpad[0].ptr; 3661 struct its_node *its = its_dev->its; 3662 struct irq_data *irqd; 3663 irq_hw_number_t hwirq; 3664 int err; 3665 int i; 3666 3667 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3668 if (err) 3669 return err; 3670 3671 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3672 if (err) 3673 return err; 3674 3675 for (i = 0; i < nr_irqs; i++) { 3676 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3677 if (err) 3678 return err; 3679 3680 irq_domain_set_hwirq_and_chip(domain, virq + i, 3681 hwirq + i, &its_irq_chip, its_dev); 3682 irqd = irq_get_irq_data(virq + i); 3683 irqd_set_single_target(irqd); 3684 irqd_set_affinity_on_activate(irqd); 3685 irqd_set_resend_when_in_progress(irqd); 3686 pr_debug("ID:%d pID:%d vID:%d\n", 3687 (int)(hwirq + i - its_dev->event_map.lpi_base), 3688 (int)(hwirq + i), virq + i); 3689 } 3690 3691 return 0; 3692 } 3693 3694 static int its_irq_domain_activate(struct irq_domain *domain, 3695 struct irq_data *d, bool reserve) 3696 { 3697 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3698 u32 event = its_get_event_id(d); 3699 int cpu; 3700 3701 cpu = its_select_cpu(d, cpu_online_mask); 3702 if (cpu < 0 || cpu >= nr_cpu_ids) 3703 return -EINVAL; 3704 3705 its_inc_lpi_count(d, cpu); 3706 its_dev->event_map.col_map[event] = cpu; 3707 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3708 3709 /* Map the GIC IRQ and event to the device */ 3710 its_send_mapti(its_dev, d->hwirq, event); 3711 return 0; 3712 } 3713 3714 static void its_irq_domain_deactivate(struct irq_domain *domain, 3715 struct irq_data *d) 3716 { 3717 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3718 u32 event = its_get_event_id(d); 3719 3720 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3721 /* Stop the delivery of interrupts */ 3722 its_send_discard(its_dev, event); 3723 } 3724 3725 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3726 unsigned int nr_irqs) 3727 { 3728 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3729 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3730 struct its_node *its = its_dev->its; 3731 int i; 3732 3733 bitmap_release_region(its_dev->event_map.lpi_map, 3734 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3735 get_count_order(nr_irqs)); 3736 3737 for (i = 0; i < nr_irqs; i++) { 3738 struct irq_data *data = irq_domain_get_irq_data(domain, 3739 virq + i); 3740 /* Nuke the entry in the domain */ 3741 irq_domain_reset_irq_data(data); 3742 } 3743 3744 mutex_lock(&its->dev_alloc_lock); 3745 3746 /* 3747 * If all interrupts have been freed, start mopping the 3748 * floor. This is conditioned on the device not being shared. 3749 */ 3750 if (!its_dev->shared && 3751 bitmap_empty(its_dev->event_map.lpi_map, 3752 its_dev->event_map.nr_lpis)) { 3753 its_lpi_free(its_dev->event_map.lpi_map, 3754 its_dev->event_map.lpi_base, 3755 its_dev->event_map.nr_lpis); 3756 3757 /* Unmap device/itt */ 3758 its_send_mapd(its_dev, 0); 3759 its_free_device(its_dev); 3760 } 3761 3762 mutex_unlock(&its->dev_alloc_lock); 3763 3764 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3765 } 3766 3767 static const struct irq_domain_ops its_domain_ops = { 3768 .select = msi_lib_irq_domain_select, 3769 .alloc = its_irq_domain_alloc, 3770 .free = its_irq_domain_free, 3771 .activate = its_irq_domain_activate, 3772 .deactivate = its_irq_domain_deactivate, 3773 }; 3774 3775 /* 3776 * This is insane. 3777 * 3778 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3779 * likely), the only way to perform an invalidate is to use a fake 3780 * device to issue an INV command, implying that the LPI has first 3781 * been mapped to some event on that device. Since this is not exactly 3782 * cheap, we try to keep that mapping around as long as possible, and 3783 * only issue an UNMAP if we're short on available slots. 3784 * 3785 * Broken by design(tm). 3786 * 3787 * GICv4.1, on the other hand, mandates that we're able to invalidate 3788 * by writing to a MMIO register. It doesn't implement the whole of 3789 * DirectLPI, but that's good enough. And most of the time, we don't 3790 * even have to invalidate anything, as the redistributor can be told 3791 * whether to generate a doorbell or not (we thus leave it enabled, 3792 * always). 3793 */ 3794 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3795 { 3796 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3797 if (gic_rdists->has_rvpeid) 3798 return; 3799 3800 /* Already unmapped? */ 3801 if (vpe->vpe_proxy_event == -1) 3802 return; 3803 3804 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3805 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3806 3807 /* 3808 * We don't track empty slots at all, so let's move the 3809 * next_victim pointer if we can quickly reuse that slot 3810 * instead of nuking an existing entry. Not clear that this is 3811 * always a win though, and this might just generate a ripple 3812 * effect... Let's just hope VPEs don't migrate too often. 3813 */ 3814 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3815 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3816 3817 vpe->vpe_proxy_event = -1; 3818 } 3819 3820 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3821 { 3822 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3823 if (gic_rdists->has_rvpeid) 3824 return; 3825 3826 if (!gic_rdists->has_direct_lpi) { 3827 unsigned long flags; 3828 3829 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3830 its_vpe_db_proxy_unmap_locked(vpe); 3831 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3832 } 3833 } 3834 3835 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3836 { 3837 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3838 if (gic_rdists->has_rvpeid) 3839 return; 3840 3841 /* Already mapped? */ 3842 if (vpe->vpe_proxy_event != -1) 3843 return; 3844 3845 /* This slot was already allocated. Kick the other VPE out. */ 3846 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3847 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3848 3849 /* Map the new VPE instead */ 3850 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3851 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3852 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3853 3854 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3855 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3856 } 3857 3858 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3859 { 3860 unsigned long flags; 3861 struct its_collection *target_col; 3862 3863 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3864 if (gic_rdists->has_rvpeid) 3865 return; 3866 3867 if (gic_rdists->has_direct_lpi) { 3868 void __iomem *rdbase; 3869 3870 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3871 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3872 wait_for_syncr(rdbase); 3873 3874 return; 3875 } 3876 3877 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3878 3879 its_vpe_db_proxy_map_locked(vpe); 3880 3881 target_col = &vpe_proxy.dev->its->collections[to]; 3882 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3883 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3884 3885 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3886 } 3887 3888 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe) 3889 { 3890 void __iomem *rdbase; 3891 u64 val; 3892 3893 val = GICR_INVALLR_V; 3894 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 3895 3896 guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock); 3897 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 3898 gic_write_lpir(val, rdbase + GICR_INVALLR); 3899 wait_for_syncr(rdbase); 3900 } 3901 3902 static int its_vpe_set_affinity(struct irq_data *d, 3903 const struct cpumask *mask_val, 3904 bool force) 3905 { 3906 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3907 unsigned int from, cpu = nr_cpu_ids; 3908 struct cpumask *table_mask; 3909 struct its_node *its; 3910 unsigned long flags; 3911 3912 /* 3913 * Check if we're racing against a VPE being destroyed, for 3914 * which we don't want to allow a VMOVP. 3915 */ 3916 if (!atomic_read(&vpe->vmapp_count)) { 3917 if (gic_requires_eager_mapping()) 3918 return -EINVAL; 3919 3920 /* 3921 * If we lazily map the VPEs, this isn't an error and 3922 * we can exit cleanly. 3923 */ 3924 cpu = cpumask_first(mask_val); 3925 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3926 return IRQ_SET_MASK_OK_DONE; 3927 } 3928 3929 /* 3930 * Changing affinity is mega expensive, so let's be as lazy as 3931 * we can and only do it if we really have to. Also, if mapped 3932 * into the proxy device, we need to move the doorbell 3933 * interrupt to its new location. 3934 * 3935 * Another thing is that changing the affinity of a vPE affects 3936 * *other interrupts* such as all the vLPIs that are routed to 3937 * this vPE. This means that the irq_desc lock is not enough to 3938 * protect us, and that we must ensure nobody samples vpe->col_idx 3939 * during the update, hence the lock below which must also be 3940 * taken on any vLPI handling path that evaluates vpe->col_idx. 3941 * 3942 * Finally, we must protect ourselves against concurrent updates of 3943 * the mapping state on this VM should the ITS list be in use (see 3944 * the shortcut in its_send_vmovp() otherewise). 3945 */ 3946 if (its_list_map) 3947 raw_spin_lock(&vpe->its_vm->vmapp_lock); 3948 3949 from = vpe_to_cpuid_lock(vpe, &flags); 3950 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3951 3952 /* 3953 * If we are offered another CPU in the same GICv4.1 ITS 3954 * affinity, pick this one. Otherwise, any CPU will do. 3955 */ 3956 if (table_mask) 3957 cpu = cpumask_any_and(mask_val, table_mask); 3958 if (cpu < nr_cpu_ids) { 3959 if (cpumask_test_cpu(from, mask_val) && 3960 cpumask_test_cpu(from, table_mask)) 3961 cpu = from; 3962 } else { 3963 cpu = cpumask_first(mask_val); 3964 } 3965 3966 if (from == cpu) 3967 goto out; 3968 3969 vpe->col_idx = cpu; 3970 3971 its_send_vmovp(vpe); 3972 3973 its = find_4_1_its(); 3974 if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801) 3975 its_vpe_4_1_invall_locked(cpu, vpe); 3976 3977 its_vpe_db_proxy_move(vpe, from, cpu); 3978 3979 out: 3980 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3981 vpe_to_cpuid_unlock(vpe, flags); 3982 3983 if (its_list_map) 3984 raw_spin_unlock(&vpe->its_vm->vmapp_lock); 3985 3986 return IRQ_SET_MASK_OK_DONE; 3987 } 3988 3989 static void its_wait_vpt_parse_complete(void) 3990 { 3991 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3992 u64 val; 3993 3994 if (!gic_rdists->has_vpend_valid_dirty) 3995 return; 3996 3997 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3998 val, 3999 !(val & GICR_VPENDBASER_Dirty), 4000 1, 500)); 4001 } 4002 4003 static void its_vpe_schedule(struct its_vpe *vpe) 4004 { 4005 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4006 u64 val; 4007 4008 /* Schedule the VPE */ 4009 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 4010 GENMASK_ULL(51, 12); 4011 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 4012 if (rdists_support_shareable()) { 4013 val |= GICR_VPROPBASER_RaWb; 4014 val |= GICR_VPROPBASER_InnerShareable; 4015 } 4016 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 4017 4018 val = virt_to_phys(page_address(vpe->vpt_page)) & 4019 GENMASK_ULL(51, 16); 4020 if (rdists_support_shareable()) { 4021 val |= GICR_VPENDBASER_RaWaWb; 4022 val |= GICR_VPENDBASER_InnerShareable; 4023 } 4024 /* 4025 * There is no good way of finding out if the pending table is 4026 * empty as we can race against the doorbell interrupt very 4027 * easily. So in the end, vpe->pending_last is only an 4028 * indication that the vcpu has something pending, not one 4029 * that the pending table is empty. A good implementation 4030 * would be able to read its coarse map pretty quickly anyway, 4031 * making this a tolerable issue. 4032 */ 4033 val |= GICR_VPENDBASER_PendingLast; 4034 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 4035 val |= GICR_VPENDBASER_Valid; 4036 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4037 } 4038 4039 static void its_vpe_deschedule(struct its_vpe *vpe) 4040 { 4041 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4042 u64 val; 4043 4044 val = its_clear_vpend_valid(vlpi_base, 0, 0); 4045 4046 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 4047 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4048 } 4049 4050 static void its_vpe_invall(struct its_vpe *vpe) 4051 { 4052 struct its_node *its; 4053 4054 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock); 4055 4056 list_for_each_entry(its, &its_nodes, entry) { 4057 if (!is_v4(its)) 4058 continue; 4059 4060 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 4061 continue; 4062 4063 /* 4064 * Sending a VINVALL to a single ITS is enough, as all 4065 * we need is to reach the redistributors. 4066 */ 4067 its_send_vinvall(its, vpe); 4068 return; 4069 } 4070 } 4071 4072 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4073 { 4074 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4075 struct its_cmd_info *info = vcpu_info; 4076 4077 switch (info->cmd_type) { 4078 case SCHEDULE_VPE: 4079 its_vpe_schedule(vpe); 4080 return 0; 4081 4082 case DESCHEDULE_VPE: 4083 its_vpe_deschedule(vpe); 4084 return 0; 4085 4086 case COMMIT_VPE: 4087 its_wait_vpt_parse_complete(); 4088 return 0; 4089 4090 case INVALL_VPE: 4091 its_vpe_invall(vpe); 4092 return 0; 4093 4094 default: 4095 return -EINVAL; 4096 } 4097 } 4098 4099 static void its_vpe_send_cmd(struct its_vpe *vpe, 4100 void (*cmd)(struct its_device *, u32)) 4101 { 4102 unsigned long flags; 4103 4104 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 4105 4106 its_vpe_db_proxy_map_locked(vpe); 4107 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 4108 4109 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 4110 } 4111 4112 static void its_vpe_send_inv(struct irq_data *d) 4113 { 4114 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4115 4116 if (gic_rdists->has_direct_lpi) 4117 __direct_lpi_inv(d, d->parent_data->hwirq); 4118 else 4119 its_vpe_send_cmd(vpe, its_send_inv); 4120 } 4121 4122 static void its_vpe_mask_irq(struct irq_data *d) 4123 { 4124 /* 4125 * We need to unmask the LPI, which is described by the parent 4126 * irq_data. Instead of calling into the parent (which won't 4127 * exactly do the right thing, let's simply use the 4128 * parent_data pointer. Yes, I'm naughty. 4129 */ 4130 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4131 its_vpe_send_inv(d); 4132 } 4133 4134 static void its_vpe_unmask_irq(struct irq_data *d) 4135 { 4136 /* Same hack as above... */ 4137 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4138 its_vpe_send_inv(d); 4139 } 4140 4141 static int its_vpe_set_irqchip_state(struct irq_data *d, 4142 enum irqchip_irq_state which, 4143 bool state) 4144 { 4145 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4146 4147 if (which != IRQCHIP_STATE_PENDING) 4148 return -EINVAL; 4149 4150 if (gic_rdists->has_direct_lpi) { 4151 void __iomem *rdbase; 4152 4153 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4154 if (state) { 4155 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4156 } else { 4157 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4158 wait_for_syncr(rdbase); 4159 } 4160 } else { 4161 if (state) 4162 its_vpe_send_cmd(vpe, its_send_int); 4163 else 4164 its_vpe_send_cmd(vpe, its_send_clear); 4165 } 4166 4167 return 0; 4168 } 4169 4170 static int its_vpe_retrigger(struct irq_data *d) 4171 { 4172 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4173 } 4174 4175 static struct irq_chip its_vpe_irq_chip = { 4176 .name = "GICv4-vpe", 4177 .irq_mask = its_vpe_mask_irq, 4178 .irq_unmask = its_vpe_unmask_irq, 4179 .irq_eoi = irq_chip_eoi_parent, 4180 .irq_set_affinity = its_vpe_set_affinity, 4181 .irq_retrigger = its_vpe_retrigger, 4182 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4183 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4184 }; 4185 4186 static struct its_node *find_4_1_its(void) 4187 { 4188 static struct its_node *its = NULL; 4189 4190 if (!its) { 4191 list_for_each_entry(its, &its_nodes, entry) { 4192 if (is_v4_1(its)) 4193 return its; 4194 } 4195 4196 /* Oops? */ 4197 its = NULL; 4198 } 4199 4200 return its; 4201 } 4202 4203 static void its_vpe_4_1_send_inv(struct irq_data *d) 4204 { 4205 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4206 struct its_node *its; 4207 4208 /* 4209 * GICv4.1 wants doorbells to be invalidated using the 4210 * INVDB command in order to be broadcast to all RDs. Send 4211 * it to the first valid ITS, and let the HW do its magic. 4212 */ 4213 its = find_4_1_its(); 4214 if (its) 4215 its_send_invdb(its, vpe); 4216 } 4217 4218 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4219 { 4220 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4221 its_vpe_4_1_send_inv(d); 4222 } 4223 4224 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4225 { 4226 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4227 its_vpe_4_1_send_inv(d); 4228 } 4229 4230 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4231 struct its_cmd_info *info) 4232 { 4233 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4234 u64 val = 0; 4235 4236 /* Schedule the VPE */ 4237 val |= GICR_VPENDBASER_Valid; 4238 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4239 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4240 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4241 4242 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4243 } 4244 4245 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4246 struct its_cmd_info *info) 4247 { 4248 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4249 u64 val; 4250 4251 if (info->req_db) { 4252 unsigned long flags; 4253 4254 /* 4255 * vPE is going to block: make the vPE non-resident with 4256 * PendingLast clear and DB set. The GIC guarantees that if 4257 * we read-back PendingLast clear, then a doorbell will be 4258 * delivered when an interrupt comes. 4259 * 4260 * Note the locking to deal with the concurrent update of 4261 * pending_last from the doorbell interrupt handler that can 4262 * run concurrently. 4263 */ 4264 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4265 val = its_clear_vpend_valid(vlpi_base, 4266 GICR_VPENDBASER_PendingLast, 4267 GICR_VPENDBASER_4_1_DB); 4268 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4269 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4270 } else { 4271 /* 4272 * We're not blocking, so just make the vPE non-resident 4273 * with PendingLast set, indicating that we'll be back. 4274 */ 4275 val = its_clear_vpend_valid(vlpi_base, 4276 0, 4277 GICR_VPENDBASER_PendingLast); 4278 vpe->pending_last = true; 4279 } 4280 } 4281 4282 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4283 { 4284 unsigned long flags; 4285 int cpu; 4286 4287 /* Target the redistributor this vPE is currently known on */ 4288 cpu = vpe_to_cpuid_lock(vpe, &flags); 4289 its_vpe_4_1_invall_locked(cpu, vpe); 4290 vpe_to_cpuid_unlock(vpe, flags); 4291 } 4292 4293 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4294 { 4295 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4296 struct its_cmd_info *info = vcpu_info; 4297 4298 switch (info->cmd_type) { 4299 case SCHEDULE_VPE: 4300 its_vpe_4_1_schedule(vpe, info); 4301 return 0; 4302 4303 case DESCHEDULE_VPE: 4304 its_vpe_4_1_deschedule(vpe, info); 4305 return 0; 4306 4307 case COMMIT_VPE: 4308 its_wait_vpt_parse_complete(); 4309 return 0; 4310 4311 case INVALL_VPE: 4312 its_vpe_4_1_invall(vpe); 4313 return 0; 4314 4315 default: 4316 return -EINVAL; 4317 } 4318 } 4319 4320 static struct irq_chip its_vpe_4_1_irq_chip = { 4321 .name = "GICv4.1-vpe", 4322 .irq_mask = its_vpe_4_1_mask_irq, 4323 .irq_unmask = its_vpe_4_1_unmask_irq, 4324 .irq_eoi = irq_chip_eoi_parent, 4325 .irq_set_affinity = its_vpe_set_affinity, 4326 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4327 }; 4328 4329 static void its_configure_sgi(struct irq_data *d, bool clear) 4330 { 4331 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4332 struct its_cmd_desc desc; 4333 4334 desc.its_vsgi_cmd.vpe = vpe; 4335 desc.its_vsgi_cmd.sgi = d->hwirq; 4336 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4337 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4338 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4339 desc.its_vsgi_cmd.clear = clear; 4340 4341 /* 4342 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4343 * destination VPE is mapped there. Since we map them eagerly at 4344 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4345 */ 4346 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4347 } 4348 4349 static void its_sgi_mask_irq(struct irq_data *d) 4350 { 4351 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4352 4353 vpe->sgi_config[d->hwirq].enabled = false; 4354 its_configure_sgi(d, false); 4355 } 4356 4357 static void its_sgi_unmask_irq(struct irq_data *d) 4358 { 4359 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4360 4361 vpe->sgi_config[d->hwirq].enabled = true; 4362 its_configure_sgi(d, false); 4363 } 4364 4365 static int its_sgi_set_affinity(struct irq_data *d, 4366 const struct cpumask *mask_val, 4367 bool force) 4368 { 4369 /* 4370 * There is no notion of affinity for virtual SGIs, at least 4371 * not on the host (since they can only be targeting a vPE). 4372 * Tell the kernel we've done whatever it asked for. 4373 */ 4374 irq_data_update_effective_affinity(d, mask_val); 4375 return IRQ_SET_MASK_OK; 4376 } 4377 4378 static int its_sgi_set_irqchip_state(struct irq_data *d, 4379 enum irqchip_irq_state which, 4380 bool state) 4381 { 4382 if (which != IRQCHIP_STATE_PENDING) 4383 return -EINVAL; 4384 4385 if (state) { 4386 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4387 struct its_node *its = find_4_1_its(); 4388 u64 val; 4389 4390 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4391 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4392 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4393 } else { 4394 its_configure_sgi(d, true); 4395 } 4396 4397 return 0; 4398 } 4399 4400 static int its_sgi_get_irqchip_state(struct irq_data *d, 4401 enum irqchip_irq_state which, bool *val) 4402 { 4403 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4404 void __iomem *base; 4405 unsigned long flags; 4406 u32 count = 1000000; /* 1s! */ 4407 u32 status; 4408 int cpu; 4409 4410 if (which != IRQCHIP_STATE_PENDING) 4411 return -EINVAL; 4412 4413 /* 4414 * Locking galore! We can race against two different events: 4415 * 4416 * - Concurrent vPE affinity change: we must make sure it cannot 4417 * happen, or we'll talk to the wrong redistributor. This is 4418 * identical to what happens with vLPIs. 4419 * 4420 * - Concurrent VSGIPENDR access: As it involves accessing two 4421 * MMIO registers, this must be made atomic one way or another. 4422 */ 4423 cpu = vpe_to_cpuid_lock(vpe, &flags); 4424 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4425 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4426 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4427 do { 4428 status = readl_relaxed(base + GICR_VSGIPENDR); 4429 if (!(status & GICR_VSGIPENDR_BUSY)) 4430 goto out; 4431 4432 count--; 4433 if (!count) { 4434 pr_err_ratelimited("Unable to get SGI status\n"); 4435 goto out; 4436 } 4437 cpu_relax(); 4438 udelay(1); 4439 } while (count); 4440 4441 out: 4442 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4443 vpe_to_cpuid_unlock(vpe, flags); 4444 4445 if (!count) 4446 return -ENXIO; 4447 4448 *val = !!(status & (1 << d->hwirq)); 4449 4450 return 0; 4451 } 4452 4453 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4454 { 4455 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4456 struct its_cmd_info *info = vcpu_info; 4457 4458 switch (info->cmd_type) { 4459 case PROP_UPDATE_VSGI: 4460 vpe->sgi_config[d->hwirq].priority = info->priority; 4461 vpe->sgi_config[d->hwirq].group = info->group; 4462 its_configure_sgi(d, false); 4463 return 0; 4464 4465 default: 4466 return -EINVAL; 4467 } 4468 } 4469 4470 static struct irq_chip its_sgi_irq_chip = { 4471 .name = "GICv4.1-sgi", 4472 .irq_mask = its_sgi_mask_irq, 4473 .irq_unmask = its_sgi_unmask_irq, 4474 .irq_set_affinity = its_sgi_set_affinity, 4475 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4476 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4477 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4478 }; 4479 4480 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4481 unsigned int virq, unsigned int nr_irqs, 4482 void *args) 4483 { 4484 struct its_vpe *vpe = args; 4485 int i; 4486 4487 /* Yes, we do want 16 SGIs */ 4488 WARN_ON(nr_irqs != 16); 4489 4490 for (i = 0; i < 16; i++) { 4491 vpe->sgi_config[i].priority = 0; 4492 vpe->sgi_config[i].enabled = false; 4493 vpe->sgi_config[i].group = false; 4494 4495 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4496 &its_sgi_irq_chip, vpe); 4497 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4498 } 4499 4500 return 0; 4501 } 4502 4503 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4504 unsigned int virq, 4505 unsigned int nr_irqs) 4506 { 4507 /* Nothing to do */ 4508 } 4509 4510 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4511 struct irq_data *d, bool reserve) 4512 { 4513 /* Write out the initial SGI configuration */ 4514 its_configure_sgi(d, false); 4515 return 0; 4516 } 4517 4518 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4519 struct irq_data *d) 4520 { 4521 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4522 4523 /* 4524 * The VSGI command is awkward: 4525 * 4526 * - To change the configuration, CLEAR must be set to false, 4527 * leaving the pending bit unchanged. 4528 * - To clear the pending bit, CLEAR must be set to true, leaving 4529 * the configuration unchanged. 4530 * 4531 * You just can't do both at once, hence the two commands below. 4532 */ 4533 vpe->sgi_config[d->hwirq].enabled = false; 4534 its_configure_sgi(d, false); 4535 its_configure_sgi(d, true); 4536 } 4537 4538 static const struct irq_domain_ops its_sgi_domain_ops = { 4539 .alloc = its_sgi_irq_domain_alloc, 4540 .free = its_sgi_irq_domain_free, 4541 .activate = its_sgi_irq_domain_activate, 4542 .deactivate = its_sgi_irq_domain_deactivate, 4543 }; 4544 4545 static int its_vpe_id_alloc(void) 4546 { 4547 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL); 4548 } 4549 4550 static void its_vpe_id_free(u16 id) 4551 { 4552 ida_free(&its_vpeid_ida, id); 4553 } 4554 4555 static int its_vpe_init(struct its_vpe *vpe) 4556 { 4557 struct page *vpt_page; 4558 int vpe_id; 4559 4560 /* Allocate vpe_id */ 4561 vpe_id = its_vpe_id_alloc(); 4562 if (vpe_id < 0) 4563 return vpe_id; 4564 4565 /* Allocate VPT */ 4566 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4567 if (!vpt_page) { 4568 its_vpe_id_free(vpe_id); 4569 return -ENOMEM; 4570 } 4571 4572 if (!its_alloc_vpe_table(vpe_id)) { 4573 its_vpe_id_free(vpe_id); 4574 its_free_pending_table(vpt_page); 4575 return -ENOMEM; 4576 } 4577 4578 raw_spin_lock_init(&vpe->vpe_lock); 4579 vpe->vpe_id = vpe_id; 4580 vpe->vpt_page = vpt_page; 4581 atomic_set(&vpe->vmapp_count, 0); 4582 if (!gic_rdists->has_rvpeid) 4583 vpe->vpe_proxy_event = -1; 4584 4585 return 0; 4586 } 4587 4588 static void its_vpe_teardown(struct its_vpe *vpe) 4589 { 4590 its_vpe_db_proxy_unmap(vpe); 4591 its_vpe_id_free(vpe->vpe_id); 4592 its_free_pending_table(vpe->vpt_page); 4593 } 4594 4595 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4596 unsigned int virq, 4597 unsigned int nr_irqs) 4598 { 4599 struct its_vm *vm = domain->host_data; 4600 int i; 4601 4602 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4603 4604 for (i = 0; i < nr_irqs; i++) { 4605 struct irq_data *data = irq_domain_get_irq_data(domain, 4606 virq + i); 4607 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4608 4609 BUG_ON(vm != vpe->its_vm); 4610 4611 clear_bit(data->hwirq, vm->db_bitmap); 4612 its_vpe_teardown(vpe); 4613 irq_domain_reset_irq_data(data); 4614 } 4615 4616 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4617 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4618 its_free_prop_table(vm->vprop_page); 4619 } 4620 } 4621 4622 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4623 unsigned int nr_irqs, void *args) 4624 { 4625 struct irq_chip *irqchip = &its_vpe_irq_chip; 4626 struct its_vm *vm = args; 4627 unsigned long *bitmap; 4628 struct page *vprop_page; 4629 int base, nr_ids, i, err = 0; 4630 4631 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4632 if (!bitmap) 4633 return -ENOMEM; 4634 4635 if (nr_ids < nr_irqs) { 4636 its_lpi_free(bitmap, base, nr_ids); 4637 return -ENOMEM; 4638 } 4639 4640 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4641 if (!vprop_page) { 4642 its_lpi_free(bitmap, base, nr_ids); 4643 return -ENOMEM; 4644 } 4645 4646 vm->db_bitmap = bitmap; 4647 vm->db_lpi_base = base; 4648 vm->nr_db_lpis = nr_ids; 4649 vm->vprop_page = vprop_page; 4650 raw_spin_lock_init(&vm->vmapp_lock); 4651 4652 if (gic_rdists->has_rvpeid) 4653 irqchip = &its_vpe_4_1_irq_chip; 4654 4655 for (i = 0; i < nr_irqs; i++) { 4656 vm->vpes[i]->vpe_db_lpi = base + i; 4657 err = its_vpe_init(vm->vpes[i]); 4658 if (err) 4659 break; 4660 err = its_irq_gic_domain_alloc(domain, virq + i, 4661 vm->vpes[i]->vpe_db_lpi); 4662 if (err) 4663 break; 4664 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4665 irqchip, vm->vpes[i]); 4666 set_bit(i, bitmap); 4667 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4668 } 4669 4670 if (err) 4671 its_vpe_irq_domain_free(domain, virq, i); 4672 4673 return err; 4674 } 4675 4676 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4677 struct irq_data *d, bool reserve) 4678 { 4679 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4680 struct its_node *its; 4681 4682 /* Map the VPE to the first possible CPU */ 4683 vpe->col_idx = cpumask_first(cpu_online_mask); 4684 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4685 4686 /* 4687 * If we use the list map, we issue VMAPP on demand... Unless 4688 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4689 * so that VSGIs can work. 4690 */ 4691 if (!gic_requires_eager_mapping()) 4692 return 0; 4693 4694 list_for_each_entry(its, &its_nodes, entry) { 4695 if (!is_v4(its)) 4696 continue; 4697 4698 its_send_vmapp(its, vpe, true); 4699 its_send_vinvall(its, vpe); 4700 } 4701 4702 return 0; 4703 } 4704 4705 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4706 struct irq_data *d) 4707 { 4708 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4709 struct its_node *its; 4710 4711 /* 4712 * If we use the list map on GICv4.0, we unmap the VPE once no 4713 * VLPIs are associated with the VM. 4714 */ 4715 if (!gic_requires_eager_mapping()) 4716 return; 4717 4718 list_for_each_entry(its, &its_nodes, entry) { 4719 if (!is_v4(its)) 4720 continue; 4721 4722 its_send_vmapp(its, vpe, false); 4723 } 4724 4725 /* 4726 * There may be a direct read to the VPT after unmapping the 4727 * vPE, to guarantee the validity of this, we make the VPT 4728 * memory coherent with the CPU caches here. 4729 */ 4730 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4731 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4732 LPI_PENDBASE_SZ); 4733 } 4734 4735 static const struct irq_domain_ops its_vpe_domain_ops = { 4736 .alloc = its_vpe_irq_domain_alloc, 4737 .free = its_vpe_irq_domain_free, 4738 .activate = its_vpe_irq_domain_activate, 4739 .deactivate = its_vpe_irq_domain_deactivate, 4740 }; 4741 4742 static int its_force_quiescent(void __iomem *base) 4743 { 4744 u32 count = 1000000; /* 1s */ 4745 u32 val; 4746 4747 val = readl_relaxed(base + GITS_CTLR); 4748 /* 4749 * GIC architecture specification requires the ITS to be both 4750 * disabled and quiescent for writes to GITS_BASER<n> or 4751 * GITS_CBASER to not have UNPREDICTABLE results. 4752 */ 4753 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4754 return 0; 4755 4756 /* Disable the generation of all interrupts to this ITS */ 4757 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4758 writel_relaxed(val, base + GITS_CTLR); 4759 4760 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4761 while (1) { 4762 val = readl_relaxed(base + GITS_CTLR); 4763 if (val & GITS_CTLR_QUIESCENT) 4764 return 0; 4765 4766 count--; 4767 if (!count) 4768 return -EBUSY; 4769 4770 cpu_relax(); 4771 udelay(1); 4772 } 4773 } 4774 4775 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4776 { 4777 struct its_node *its = data; 4778 4779 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4780 its->typer &= ~GITS_TYPER_DEVBITS; 4781 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4782 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4783 4784 return true; 4785 } 4786 4787 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4788 { 4789 struct its_node *its = data; 4790 4791 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4792 4793 return true; 4794 } 4795 4796 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4797 { 4798 struct its_node *its = data; 4799 4800 /* On QDF2400, the size of the ITE is 16Bytes */ 4801 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4802 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4803 4804 return true; 4805 } 4806 4807 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4808 { 4809 struct its_node *its = its_dev->its; 4810 4811 /* 4812 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4813 * which maps 32-bit writes targeted at a separate window of 4814 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4815 * with device ID taken from bits [device_id_bits + 1:2] of 4816 * the window offset. 4817 */ 4818 return its->pre_its_base + (its_dev->device_id << 2); 4819 } 4820 4821 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4822 { 4823 struct its_node *its = data; 4824 u32 pre_its_window[2]; 4825 u32 ids; 4826 4827 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4828 "socionext,synquacer-pre-its", 4829 pre_its_window, 4830 ARRAY_SIZE(pre_its_window))) { 4831 4832 its->pre_its_base = pre_its_window[0]; 4833 its->get_msi_base = its_irq_get_msi_base_pre_its; 4834 4835 ids = ilog2(pre_its_window[1]) - 2; 4836 if (device_ids(its) > ids) { 4837 its->typer &= ~GITS_TYPER_DEVBITS; 4838 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4839 } 4840 4841 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4842 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4843 return true; 4844 } 4845 return false; 4846 } 4847 4848 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4849 { 4850 struct its_node *its = data; 4851 4852 /* 4853 * Hip07 insists on using the wrong address for the VLPI 4854 * page. Trick it into doing the right thing... 4855 */ 4856 its->vlpi_redist_offset = SZ_128K; 4857 return true; 4858 } 4859 4860 static bool __maybe_unused its_enable_rk3588001(void *data) 4861 { 4862 struct its_node *its = data; 4863 4864 if (!of_machine_is_compatible("rockchip,rk3588") && 4865 !of_machine_is_compatible("rockchip,rk3588s")) 4866 return false; 4867 4868 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4869 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4870 4871 return true; 4872 } 4873 4874 static bool its_set_non_coherent(void *data) 4875 { 4876 struct its_node *its = data; 4877 4878 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4879 return true; 4880 } 4881 4882 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data) 4883 { 4884 struct its_node *its = data; 4885 4886 its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801; 4887 return true; 4888 } 4889 4890 static const struct gic_quirk its_quirks[] = { 4891 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4892 { 4893 .desc = "ITS: Cavium errata 22375, 24313", 4894 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4895 .mask = 0xffff0fff, 4896 .init = its_enable_quirk_cavium_22375, 4897 }, 4898 #endif 4899 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4900 { 4901 .desc = "ITS: Cavium erratum 23144", 4902 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4903 .mask = 0xffff0fff, 4904 .init = its_enable_quirk_cavium_23144, 4905 }, 4906 #endif 4907 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4908 { 4909 .desc = "ITS: QDF2400 erratum 0065", 4910 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4911 .mask = 0xffffffff, 4912 .init = its_enable_quirk_qdf2400_e0065, 4913 }, 4914 #endif 4915 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4916 { 4917 /* 4918 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4919 * implementation, but with a 'pre-ITS' added that requires 4920 * special handling in software. 4921 */ 4922 .desc = "ITS: Socionext Synquacer pre-ITS", 4923 .iidr = 0x0001143b, 4924 .mask = 0xffffffff, 4925 .init = its_enable_quirk_socionext_synquacer, 4926 }, 4927 #endif 4928 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4929 { 4930 .desc = "ITS: Hip07 erratum 161600802", 4931 .iidr = 0x00000004, 4932 .mask = 0xffffffff, 4933 .init = its_enable_quirk_hip07_161600802, 4934 }, 4935 #endif 4936 #ifdef CONFIG_HISILICON_ERRATUM_162100801 4937 { 4938 .desc = "ITS: Hip09 erratum 162100801", 4939 .iidr = 0x00051736, 4940 .mask = 0xffffffff, 4941 .init = its_enable_quirk_hip09_162100801, 4942 }, 4943 #endif 4944 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4945 { 4946 .desc = "ITS: Rockchip erratum RK3588001", 4947 .iidr = 0x0201743b, 4948 .mask = 0xffffffff, 4949 .init = its_enable_rk3588001, 4950 }, 4951 #endif 4952 { 4953 .desc = "ITS: non-coherent attribute", 4954 .property = "dma-noncoherent", 4955 .init = its_set_non_coherent, 4956 }, 4957 { 4958 } 4959 }; 4960 4961 static void its_enable_quirks(struct its_node *its) 4962 { 4963 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4964 4965 gic_enable_quirks(iidr, its_quirks, its); 4966 4967 if (is_of_node(its->fwnode_handle)) 4968 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4969 its_quirks, its); 4970 } 4971 4972 static int its_save_disable(void) 4973 { 4974 struct its_node *its; 4975 int err = 0; 4976 4977 raw_spin_lock(&its_lock); 4978 list_for_each_entry(its, &its_nodes, entry) { 4979 void __iomem *base; 4980 4981 base = its->base; 4982 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4983 err = its_force_quiescent(base); 4984 if (err) { 4985 pr_err("ITS@%pa: failed to quiesce: %d\n", 4986 &its->phys_base, err); 4987 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4988 goto err; 4989 } 4990 4991 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4992 } 4993 4994 err: 4995 if (err) { 4996 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4997 void __iomem *base; 4998 4999 base = its->base; 5000 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5001 } 5002 } 5003 raw_spin_unlock(&its_lock); 5004 5005 return err; 5006 } 5007 5008 static void its_restore_enable(void) 5009 { 5010 struct its_node *its; 5011 int ret; 5012 5013 raw_spin_lock(&its_lock); 5014 list_for_each_entry(its, &its_nodes, entry) { 5015 void __iomem *base; 5016 int i; 5017 5018 base = its->base; 5019 5020 /* 5021 * Make sure that the ITS is disabled. If it fails to quiesce, 5022 * don't restore it since writing to CBASER or BASER<n> 5023 * registers is undefined according to the GIC v3 ITS 5024 * Specification. 5025 * 5026 * Firmware resuming with the ITS enabled is terminally broken. 5027 */ 5028 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 5029 ret = its_force_quiescent(base); 5030 if (ret) { 5031 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 5032 &its->phys_base, ret); 5033 continue; 5034 } 5035 5036 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 5037 5038 /* 5039 * Writing CBASER resets CREADR to 0, so make CWRITER and 5040 * cmd_write line up with it. 5041 */ 5042 its->cmd_write = its->cmd_base; 5043 gits_write_cwriter(0, base + GITS_CWRITER); 5044 5045 /* Restore GITS_BASER from the value cache. */ 5046 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 5047 struct its_baser *baser = &its->tables[i]; 5048 5049 if (!(baser->val & GITS_BASER_VALID)) 5050 continue; 5051 5052 its_write_baser(its, baser, baser->val); 5053 } 5054 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5055 5056 /* 5057 * Reinit the collection if it's stored in the ITS. This is 5058 * indicated by the col_id being less than the HCC field. 5059 * CID < HCC as specified in the GIC v3 Documentation. 5060 */ 5061 if (its->collections[smp_processor_id()].col_id < 5062 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 5063 its_cpu_init_collection(its); 5064 } 5065 raw_spin_unlock(&its_lock); 5066 } 5067 5068 static struct syscore_ops its_syscore_ops = { 5069 .suspend = its_save_disable, 5070 .resume = its_restore_enable, 5071 }; 5072 5073 static void __init __iomem *its_map_one(struct resource *res, int *err) 5074 { 5075 void __iomem *its_base; 5076 u32 val; 5077 5078 its_base = ioremap(res->start, SZ_64K); 5079 if (!its_base) { 5080 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 5081 *err = -ENOMEM; 5082 return NULL; 5083 } 5084 5085 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 5086 if (val != 0x30 && val != 0x40) { 5087 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 5088 *err = -ENODEV; 5089 goto out_unmap; 5090 } 5091 5092 *err = its_force_quiescent(its_base); 5093 if (*err) { 5094 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 5095 goto out_unmap; 5096 } 5097 5098 return its_base; 5099 5100 out_unmap: 5101 iounmap(its_base); 5102 return NULL; 5103 } 5104 5105 static int its_init_domain(struct its_node *its) 5106 { 5107 struct irq_domain *inner_domain; 5108 struct msi_domain_info *info; 5109 5110 info = kzalloc(sizeof(*info), GFP_KERNEL); 5111 if (!info) 5112 return -ENOMEM; 5113 5114 info->ops = &its_msi_domain_ops; 5115 info->data = its; 5116 5117 inner_domain = irq_domain_create_hierarchy(its_parent, 5118 its->msi_domain_flags, 0, 5119 its->fwnode_handle, &its_domain_ops, 5120 info); 5121 if (!inner_domain) { 5122 kfree(info); 5123 return -ENOMEM; 5124 } 5125 5126 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 5127 5128 inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops; 5129 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT; 5130 5131 return 0; 5132 } 5133 5134 static int its_init_vpe_domain(void) 5135 { 5136 struct its_node *its; 5137 u32 devid; 5138 int entries; 5139 5140 if (gic_rdists->has_direct_lpi) { 5141 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5142 return 0; 5143 } 5144 5145 /* Any ITS will do, even if not v4 */ 5146 its = list_first_entry(&its_nodes, struct its_node, entry); 5147 5148 entries = roundup_pow_of_two(nr_cpu_ids); 5149 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5150 GFP_KERNEL); 5151 if (!vpe_proxy.vpes) 5152 return -ENOMEM; 5153 5154 /* Use the last possible DevID */ 5155 devid = GENMASK(device_ids(its) - 1, 0); 5156 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5157 if (!vpe_proxy.dev) { 5158 kfree(vpe_proxy.vpes); 5159 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5160 return -ENOMEM; 5161 } 5162 5163 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5164 5165 raw_spin_lock_init(&vpe_proxy.lock); 5166 vpe_proxy.next_victim = 0; 5167 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5168 devid, vpe_proxy.dev->nr_ites); 5169 5170 return 0; 5171 } 5172 5173 static int __init its_compute_its_list_map(struct its_node *its) 5174 { 5175 int its_number; 5176 u32 ctlr; 5177 5178 /* 5179 * This is assumed to be done early enough that we're 5180 * guaranteed to be single-threaded, hence no 5181 * locking. Should this change, we should address 5182 * this. 5183 */ 5184 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5185 if (its_number >= GICv4_ITS_LIST_MAX) { 5186 pr_err("ITS@%pa: No ITSList entry available!\n", 5187 &its->phys_base); 5188 return -EINVAL; 5189 } 5190 5191 ctlr = readl_relaxed(its->base + GITS_CTLR); 5192 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5193 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5194 writel_relaxed(ctlr, its->base + GITS_CTLR); 5195 ctlr = readl_relaxed(its->base + GITS_CTLR); 5196 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5197 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5198 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5199 } 5200 5201 if (test_and_set_bit(its_number, &its_list_map)) { 5202 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5203 &its->phys_base, its_number); 5204 return -EINVAL; 5205 } 5206 5207 return its_number; 5208 } 5209 5210 static int __init its_probe_one(struct its_node *its) 5211 { 5212 u64 baser, tmp; 5213 struct page *page; 5214 u32 ctlr; 5215 int err; 5216 5217 its_enable_quirks(its); 5218 5219 if (is_v4(its)) { 5220 if (!(its->typer & GITS_TYPER_VMOVP)) { 5221 err = its_compute_its_list_map(its); 5222 if (err < 0) 5223 goto out; 5224 5225 its->list_nr = err; 5226 5227 pr_info("ITS@%pa: Using ITS number %d\n", 5228 &its->phys_base, err); 5229 } else { 5230 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5231 } 5232 5233 if (is_v4_1(its)) { 5234 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5235 5236 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5237 if (!its->sgir_base) { 5238 err = -ENOMEM; 5239 goto out; 5240 } 5241 5242 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5243 5244 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5245 &its->phys_base, its->mpidr, svpet); 5246 } 5247 } 5248 5249 page = its_alloc_pages_node(its->numa_node, 5250 GFP_KERNEL | __GFP_ZERO, 5251 get_order(ITS_CMD_QUEUE_SZ)); 5252 if (!page) { 5253 err = -ENOMEM; 5254 goto out_unmap_sgir; 5255 } 5256 its->cmd_base = (void *)page_address(page); 5257 its->cmd_write = its->cmd_base; 5258 5259 err = its_alloc_tables(its); 5260 if (err) 5261 goto out_free_cmd; 5262 5263 err = its_alloc_collections(its); 5264 if (err) 5265 goto out_free_tables; 5266 5267 baser = (virt_to_phys(its->cmd_base) | 5268 GITS_CBASER_RaWaWb | 5269 GITS_CBASER_InnerShareable | 5270 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5271 GITS_CBASER_VALID); 5272 5273 gits_write_cbaser(baser, its->base + GITS_CBASER); 5274 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5275 5276 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5277 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5278 5279 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5280 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5281 /* 5282 * The HW reports non-shareable, we must 5283 * remove the cacheability attributes as 5284 * well. 5285 */ 5286 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5287 GITS_CBASER_CACHEABILITY_MASK); 5288 baser |= GITS_CBASER_nC; 5289 gits_write_cbaser(baser, its->base + GITS_CBASER); 5290 } 5291 pr_info("ITS: using cache flushing for cmd queue\n"); 5292 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5293 } 5294 5295 gits_write_cwriter(0, its->base + GITS_CWRITER); 5296 ctlr = readl_relaxed(its->base + GITS_CTLR); 5297 ctlr |= GITS_CTLR_ENABLE; 5298 if (is_v4(its)) 5299 ctlr |= GITS_CTLR_ImDe; 5300 writel_relaxed(ctlr, its->base + GITS_CTLR); 5301 5302 err = its_init_domain(its); 5303 if (err) 5304 goto out_free_tables; 5305 5306 raw_spin_lock(&its_lock); 5307 list_add(&its->entry, &its_nodes); 5308 raw_spin_unlock(&its_lock); 5309 5310 return 0; 5311 5312 out_free_tables: 5313 its_free_tables(its); 5314 out_free_cmd: 5315 its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5316 out_unmap_sgir: 5317 if (its->sgir_base) 5318 iounmap(its->sgir_base); 5319 out: 5320 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5321 return err; 5322 } 5323 5324 static bool gic_rdists_supports_plpis(void) 5325 { 5326 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5327 } 5328 5329 static int redist_disable_lpis(void) 5330 { 5331 void __iomem *rbase = gic_data_rdist_rd_base(); 5332 u64 timeout = USEC_PER_SEC; 5333 u64 val; 5334 5335 if (!gic_rdists_supports_plpis()) { 5336 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5337 return -ENXIO; 5338 } 5339 5340 val = readl_relaxed(rbase + GICR_CTLR); 5341 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5342 return 0; 5343 5344 /* 5345 * If coming via a CPU hotplug event, we don't need to disable 5346 * LPIs before trying to re-enable them. They are already 5347 * configured and all is well in the world. 5348 * 5349 * If running with preallocated tables, there is nothing to do. 5350 */ 5351 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5352 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5353 return 0; 5354 5355 /* 5356 * From that point on, we only try to do some damage control. 5357 */ 5358 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5359 smp_processor_id()); 5360 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5361 5362 /* Disable LPIs */ 5363 val &= ~GICR_CTLR_ENABLE_LPIS; 5364 writel_relaxed(val, rbase + GICR_CTLR); 5365 5366 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5367 dsb(sy); 5368 5369 /* 5370 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5371 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5372 * Error out if we time out waiting for RWP to clear. 5373 */ 5374 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5375 if (!timeout) { 5376 pr_err("CPU%d: Timeout while disabling LPIs\n", 5377 smp_processor_id()); 5378 return -ETIMEDOUT; 5379 } 5380 udelay(1); 5381 timeout--; 5382 } 5383 5384 /* 5385 * After it has been written to 1, it is IMPLEMENTATION 5386 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5387 * cleared to 0. Error out if clearing the bit failed. 5388 */ 5389 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5390 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5391 return -EBUSY; 5392 } 5393 5394 return 0; 5395 } 5396 5397 int its_cpu_init(void) 5398 { 5399 if (!list_empty(&its_nodes)) { 5400 int ret; 5401 5402 ret = redist_disable_lpis(); 5403 if (ret) 5404 return ret; 5405 5406 its_cpu_init_lpis(); 5407 its_cpu_init_collections(); 5408 } 5409 5410 return 0; 5411 } 5412 5413 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5414 { 5415 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5416 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5417 } 5418 5419 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5420 rdist_memreserve_cpuhp_cleanup_workfn); 5421 5422 static int its_cpu_memreserve_lpi(unsigned int cpu) 5423 { 5424 struct page *pend_page; 5425 int ret = 0; 5426 5427 /* This gets to run exactly once per CPU */ 5428 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5429 return 0; 5430 5431 pend_page = gic_data_rdist()->pend_page; 5432 if (WARN_ON(!pend_page)) { 5433 ret = -ENOMEM; 5434 goto out; 5435 } 5436 /* 5437 * If the pending table was pre-programmed, free the memory we 5438 * preemptively allocated. Otherwise, reserve that memory for 5439 * later kexecs. 5440 */ 5441 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5442 its_free_pending_table(pend_page); 5443 gic_data_rdist()->pend_page = NULL; 5444 } else { 5445 phys_addr_t paddr = page_to_phys(pend_page); 5446 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5447 } 5448 5449 out: 5450 /* Last CPU being brought up gets to issue the cleanup */ 5451 if (!IS_ENABLED(CONFIG_SMP) || 5452 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5453 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5454 5455 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5456 return ret; 5457 } 5458 5459 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5460 static int __init its_reset_one(struct resource *res) 5461 { 5462 void __iomem *its_base; 5463 int err, i; 5464 5465 its_base = its_map_one(res, &err); 5466 if (!its_base) 5467 return err; 5468 5469 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5470 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5471 5472 iounmap(its_base); 5473 return 0; 5474 } 5475 5476 static const struct of_device_id its_device_id[] = { 5477 { .compatible = "arm,gic-v3-its", }, 5478 {}, 5479 }; 5480 5481 static struct its_node __init *its_node_init(struct resource *res, 5482 struct fwnode_handle *handle, int numa_node) 5483 { 5484 void __iomem *its_base; 5485 struct its_node *its; 5486 int err; 5487 5488 its_base = its_map_one(res, &err); 5489 if (!its_base) 5490 return NULL; 5491 5492 pr_info("ITS %pR\n", res); 5493 5494 its = kzalloc(sizeof(*its), GFP_KERNEL); 5495 if (!its) 5496 goto out_unmap; 5497 5498 raw_spin_lock_init(&its->lock); 5499 mutex_init(&its->dev_alloc_lock); 5500 INIT_LIST_HEAD(&its->entry); 5501 INIT_LIST_HEAD(&its->its_device_list); 5502 5503 its->typer = gic_read_typer(its_base + GITS_TYPER); 5504 its->base = its_base; 5505 its->phys_base = res->start; 5506 its->get_msi_base = its_irq_get_msi_base; 5507 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5508 5509 its->numa_node = numa_node; 5510 its->fwnode_handle = handle; 5511 5512 return its; 5513 5514 out_unmap: 5515 iounmap(its_base); 5516 return NULL; 5517 } 5518 5519 static void its_node_destroy(struct its_node *its) 5520 { 5521 iounmap(its->base); 5522 kfree(its); 5523 } 5524 5525 static int __init its_of_probe(struct device_node *node) 5526 { 5527 struct device_node *np; 5528 struct resource res; 5529 int err; 5530 5531 /* 5532 * Make sure *all* the ITS are reset before we probe any, as 5533 * they may be sharing memory. If any of the ITS fails to 5534 * reset, don't even try to go any further, as this could 5535 * result in something even worse. 5536 */ 5537 for (np = of_find_matching_node(node, its_device_id); np; 5538 np = of_find_matching_node(np, its_device_id)) { 5539 if (!of_device_is_available(np) || 5540 !of_property_read_bool(np, "msi-controller") || 5541 of_address_to_resource(np, 0, &res)) 5542 continue; 5543 5544 err = its_reset_one(&res); 5545 if (err) 5546 return err; 5547 } 5548 5549 for (np = of_find_matching_node(node, its_device_id); np; 5550 np = of_find_matching_node(np, its_device_id)) { 5551 struct its_node *its; 5552 5553 if (!of_device_is_available(np)) 5554 continue; 5555 if (!of_property_read_bool(np, "msi-controller")) { 5556 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5557 np); 5558 continue; 5559 } 5560 5561 if (of_address_to_resource(np, 0, &res)) { 5562 pr_warn("%pOF: no regs?\n", np); 5563 continue; 5564 } 5565 5566 5567 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5568 if (!its) 5569 return -ENOMEM; 5570 5571 err = its_probe_one(its); 5572 if (err) { 5573 its_node_destroy(its); 5574 return err; 5575 } 5576 } 5577 return 0; 5578 } 5579 5580 #ifdef CONFIG_ACPI 5581 5582 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5583 5584 #ifdef CONFIG_ACPI_NUMA 5585 struct its_srat_map { 5586 /* numa node id */ 5587 u32 numa_node; 5588 /* GIC ITS ID */ 5589 u32 its_id; 5590 }; 5591 5592 static struct its_srat_map *its_srat_maps __initdata; 5593 static int its_in_srat __initdata; 5594 5595 static int __init acpi_get_its_numa_node(u32 its_id) 5596 { 5597 int i; 5598 5599 for (i = 0; i < its_in_srat; i++) { 5600 if (its_id == its_srat_maps[i].its_id) 5601 return its_srat_maps[i].numa_node; 5602 } 5603 return NUMA_NO_NODE; 5604 } 5605 5606 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5607 const unsigned long end) 5608 { 5609 return 0; 5610 } 5611 5612 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5613 const unsigned long end) 5614 { 5615 int node; 5616 struct acpi_srat_gic_its_affinity *its_affinity; 5617 5618 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5619 if (!its_affinity) 5620 return -EINVAL; 5621 5622 if (its_affinity->header.length < sizeof(*its_affinity)) { 5623 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5624 its_affinity->header.length); 5625 return -EINVAL; 5626 } 5627 5628 /* 5629 * Note that in theory a new proximity node could be created by this 5630 * entry as it is an SRAT resource allocation structure. 5631 * We do not currently support doing so. 5632 */ 5633 node = pxm_to_node(its_affinity->proximity_domain); 5634 5635 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5636 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5637 return 0; 5638 } 5639 5640 its_srat_maps[its_in_srat].numa_node = node; 5641 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5642 its_in_srat++; 5643 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5644 its_affinity->proximity_domain, its_affinity->its_id, node); 5645 5646 return 0; 5647 } 5648 5649 static void __init acpi_table_parse_srat_its(void) 5650 { 5651 int count; 5652 5653 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5654 sizeof(struct acpi_table_srat), 5655 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5656 gic_acpi_match_srat_its, 0); 5657 if (count <= 0) 5658 return; 5659 5660 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5661 GFP_KERNEL); 5662 if (!its_srat_maps) 5663 return; 5664 5665 acpi_table_parse_entries(ACPI_SIG_SRAT, 5666 sizeof(struct acpi_table_srat), 5667 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5668 gic_acpi_parse_srat_its, 0); 5669 } 5670 5671 /* free the its_srat_maps after ITS probing */ 5672 static void __init acpi_its_srat_maps_free(void) 5673 { 5674 kfree(its_srat_maps); 5675 } 5676 #else 5677 static void __init acpi_table_parse_srat_its(void) { } 5678 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5679 static void __init acpi_its_srat_maps_free(void) { } 5680 #endif 5681 5682 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5683 const unsigned long end) 5684 { 5685 struct acpi_madt_generic_translator *its_entry; 5686 struct fwnode_handle *dom_handle; 5687 struct its_node *its; 5688 struct resource res; 5689 int err; 5690 5691 its_entry = (struct acpi_madt_generic_translator *)header; 5692 memset(&res, 0, sizeof(res)); 5693 res.start = its_entry->base_address; 5694 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5695 res.flags = IORESOURCE_MEM; 5696 5697 dom_handle = irq_domain_alloc_fwnode(&res.start); 5698 if (!dom_handle) { 5699 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5700 &res.start); 5701 return -ENOMEM; 5702 } 5703 5704 err = iort_register_domain_token(its_entry->translation_id, res.start, 5705 dom_handle); 5706 if (err) { 5707 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5708 &res.start, its_entry->translation_id); 5709 goto dom_err; 5710 } 5711 5712 its = its_node_init(&res, dom_handle, 5713 acpi_get_its_numa_node(its_entry->translation_id)); 5714 if (!its) { 5715 err = -ENOMEM; 5716 goto node_err; 5717 } 5718 5719 if (acpi_get_madt_revision() >= 7 && 5720 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT)) 5721 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 5722 5723 err = its_probe_one(its); 5724 if (!err) 5725 return 0; 5726 5727 node_err: 5728 iort_deregister_domain_token(its_entry->translation_id); 5729 dom_err: 5730 irq_domain_free_fwnode(dom_handle); 5731 return err; 5732 } 5733 5734 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5735 const unsigned long end) 5736 { 5737 struct acpi_madt_generic_translator *its_entry; 5738 struct resource res; 5739 5740 its_entry = (struct acpi_madt_generic_translator *)header; 5741 res = (struct resource) { 5742 .start = its_entry->base_address, 5743 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5744 .flags = IORESOURCE_MEM, 5745 }; 5746 5747 return its_reset_one(&res); 5748 } 5749 5750 static void __init its_acpi_probe(void) 5751 { 5752 acpi_table_parse_srat_its(); 5753 /* 5754 * Make sure *all* the ITS are reset before we probe any, as 5755 * they may be sharing memory. If any of the ITS fails to 5756 * reset, don't even try to go any further, as this could 5757 * result in something even worse. 5758 */ 5759 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5760 its_acpi_reset, 0) > 0) 5761 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5762 gic_acpi_parse_madt_its, 0); 5763 acpi_its_srat_maps_free(); 5764 } 5765 #else 5766 static void __init its_acpi_probe(void) { } 5767 #endif 5768 5769 int __init its_lpi_memreserve_init(void) 5770 { 5771 int state; 5772 5773 if (!efi_enabled(EFI_CONFIG_TABLES)) 5774 return 0; 5775 5776 if (list_empty(&its_nodes)) 5777 return 0; 5778 5779 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5780 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5781 "irqchip/arm/gicv3/memreserve:online", 5782 its_cpu_memreserve_lpi, 5783 NULL); 5784 if (state < 0) 5785 return state; 5786 5787 gic_rdists->cpuhp_memreserve_state = state; 5788 5789 return 0; 5790 } 5791 5792 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5793 struct irq_domain *parent_domain, u8 irq_prio) 5794 { 5795 struct device_node *of_node; 5796 struct its_node *its; 5797 bool has_v4 = false; 5798 bool has_v4_1 = false; 5799 int err; 5800 5801 itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1); 5802 if (!itt_pool) 5803 return -ENOMEM; 5804 5805 gic_rdists = rdists; 5806 5807 lpi_prop_prio = irq_prio; 5808 its_parent = parent_domain; 5809 of_node = to_of_node(handle); 5810 if (of_node) 5811 its_of_probe(of_node); 5812 else 5813 its_acpi_probe(); 5814 5815 if (list_empty(&its_nodes)) { 5816 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5817 return -ENXIO; 5818 } 5819 5820 err = allocate_lpi_tables(); 5821 if (err) 5822 return err; 5823 5824 list_for_each_entry(its, &its_nodes, entry) { 5825 has_v4 |= is_v4(its); 5826 has_v4_1 |= is_v4_1(its); 5827 } 5828 5829 /* Don't bother with inconsistent systems */ 5830 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5831 rdists->has_rvpeid = false; 5832 5833 if (has_v4 & rdists->has_vlpis) { 5834 const struct irq_domain_ops *sgi_ops; 5835 5836 if (has_v4_1) 5837 sgi_ops = &its_sgi_domain_ops; 5838 else 5839 sgi_ops = NULL; 5840 5841 if (its_init_vpe_domain() || 5842 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5843 rdists->has_vlpis = false; 5844 pr_err("ITS: Disabling GICv4 support\n"); 5845 } 5846 } 5847 5848 register_syscore_ops(&its_syscore_ops); 5849 5850 return 0; 5851 } 5852