xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision 94901b7a74d82bfd30420f1d9d00898278fdc8bf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/genalloc.h>
16 #include <linux/interrupt.h>
17 #include <linux/iommu.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqdomain.h>
20 #include <linux/list.h>
21 #include <linux/log2.h>
22 #include <linux/mem_encrypt.h>
23 #include <linux/memblock.h>
24 #include <linux/mm.h>
25 #include <linux/msi.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_pci.h>
30 #include <linux/of_platform.h>
31 #include <linux/percpu.h>
32 #include <linux/set_memory.h>
33 #include <linux/slab.h>
34 #include <linux/syscore_ops.h>
35 
36 #include <linux/irqchip.h>
37 #include <linux/irqchip/arm-gic-v3.h>
38 #include <linux/irqchip/arm-gic-v4.h>
39 
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42 
43 #include "irq-gic-common.h"
44 #include "irq-msi-lib.h"
45 
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
49 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
50 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801	(1ULL << 4)
51 
52 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
53 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
54 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
55 
56 static u32 lpi_id_bits;
57 
58 /*
59  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60  * deal with (one configuration byte per interrupt). PENDBASE has to
61  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
62  */
63 #define LPI_NRBITS		lpi_id_bits
64 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
66 
67 static u8 __ro_after_init lpi_prop_prio;
68 static struct its_node *find_4_1_its(void);
69 
70 /*
71  * Collection structure - just an ID, and a redistributor address to
72  * ping. We use one per CPU as a bag of interrupts assigned to this
73  * CPU.
74  */
75 struct its_collection {
76 	u64			target_address;
77 	u16			col_id;
78 };
79 
80 /*
81  * The ITS_BASER structure - contains memory information, cached
82  * value of BASER register configuration and ITS page size.
83  */
84 struct its_baser {
85 	void		*base;
86 	u64		val;
87 	u32		order;
88 	u32		psz;
89 };
90 
91 struct its_device;
92 
93 /*
94  * The ITS structure - contains most of the infrastructure, with the
95  * top-level MSI domain, the command queue, the collections, and the
96  * list of devices writing to it.
97  *
98  * dev_alloc_lock has to be taken for device allocations, while the
99  * spinlock must be taken to parse data structures such as the device
100  * list.
101  */
102 struct its_node {
103 	raw_spinlock_t		lock;
104 	struct mutex		dev_alloc_lock;
105 	struct list_head	entry;
106 	void __iomem		*base;
107 	void __iomem		*sgir_base;
108 	phys_addr_t		phys_base;
109 	struct its_cmd_block	*cmd_base;
110 	struct its_cmd_block	*cmd_write;
111 	struct its_baser	tables[GITS_BASER_NR_REGS];
112 	struct its_collection	*collections;
113 	struct fwnode_handle	*fwnode_handle;
114 	u64			(*get_msi_base)(struct its_device *its_dev);
115 	u64			typer;
116 	u64			cbaser_save;
117 	u32			ctlr_save;
118 	u32			mpidr;
119 	struct list_head	its_device_list;
120 	u64			flags;
121 	unsigned long		list_nr;
122 	int			numa_node;
123 	unsigned int		msi_domain_flags;
124 	u32			pre_its_base; /* for Socionext Synquacer */
125 	int			vlpi_redist_offset;
126 };
127 
128 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
129 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
130 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
131 
132 #define ITS_ITT_ALIGN		SZ_256
133 
134 /* The maximum number of VPEID bits supported by VLPI commands */
135 #define ITS_MAX_VPEID_BITS						\
136 	({								\
137 		int nvpeid = 16;					\
138 		if (gic_rdists->has_rvpeid &&				\
139 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
140 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
141 				      GICD_TYPER2_VID);			\
142 									\
143 		nvpeid;							\
144 	})
145 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
146 
147 /* Convert page order to size in bytes */
148 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
149 
150 struct event_lpi_map {
151 	unsigned long		*lpi_map;
152 	u16			*col_map;
153 	irq_hw_number_t		lpi_base;
154 	int			nr_lpis;
155 	raw_spinlock_t		vlpi_lock;
156 	struct its_vm		*vm;
157 	struct its_vlpi_map	*vlpi_maps;
158 	int			nr_vlpis;
159 };
160 
161 /*
162  * The ITS view of a device - belongs to an ITS, owns an interrupt
163  * translation table, and a list of interrupts.  If it some of its
164  * LPIs are injected into a guest (GICv4), the event_map.vm field
165  * indicates which one.
166  */
167 struct its_device {
168 	struct list_head	entry;
169 	struct its_node		*its;
170 	struct event_lpi_map	event_map;
171 	void			*itt;
172 	u32			itt_sz;
173 	u32			nr_ites;
174 	u32			device_id;
175 	bool			shared;
176 };
177 
178 static struct {
179 	raw_spinlock_t		lock;
180 	struct its_device	*dev;
181 	struct its_vpe		**vpes;
182 	int			next_victim;
183 } vpe_proxy;
184 
185 struct cpu_lpi_count {
186 	atomic_t	managed;
187 	atomic_t	unmanaged;
188 };
189 
190 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
191 
192 static LIST_HEAD(its_nodes);
193 static DEFINE_RAW_SPINLOCK(its_lock);
194 static struct rdists *gic_rdists;
195 static struct irq_domain *its_parent;
196 
197 static unsigned long its_list_map;
198 static u16 vmovp_seq_num;
199 static DEFINE_RAW_SPINLOCK(vmovp_lock);
200 
201 static DEFINE_IDA(its_vpeid_ida);
202 
203 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
204 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
205 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
206 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
207 
208 static struct page *its_alloc_pages_node(int node, gfp_t gfp,
209 					 unsigned int order)
210 {
211 	struct page *page;
212 	int ret = 0;
213 
214 	page = alloc_pages_node(node, gfp, order);
215 
216 	if (!page)
217 		return NULL;
218 
219 	ret = set_memory_decrypted((unsigned long)page_address(page),
220 				   1 << order);
221 	/*
222 	 * If set_memory_decrypted() fails then we don't know what state the
223 	 * page is in, so we can't free it. Instead we leak it.
224 	 * set_memory_decrypted() will already have WARNed.
225 	 */
226 	if (ret)
227 		return NULL;
228 
229 	return page;
230 }
231 
232 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order)
233 {
234 	return its_alloc_pages_node(NUMA_NO_NODE, gfp, order);
235 }
236 
237 static void its_free_pages(void *addr, unsigned int order)
238 {
239 	/*
240 	 * If the memory cannot be encrypted again then we must leak the pages.
241 	 * set_memory_encrypted() will already have WARNed.
242 	 */
243 	if (set_memory_encrypted((unsigned long)addr, 1 << order))
244 		return;
245 	free_pages((unsigned long)addr, order);
246 }
247 
248 static struct gen_pool *itt_pool;
249 
250 static void *itt_alloc_pool(int node, int size)
251 {
252 	unsigned long addr;
253 	struct page *page;
254 
255 	if (size >= PAGE_SIZE) {
256 		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size));
257 
258 		return page ? page_address(page) : NULL;
259 	}
260 
261 	do {
262 		addr = gen_pool_alloc(itt_pool, size);
263 		if (addr)
264 			break;
265 
266 		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
267 		if (!page)
268 			break;
269 
270 		gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node);
271 	} while (!addr);
272 
273 	return (void *)addr;
274 }
275 
276 static void itt_free_pool(void *addr, int size)
277 {
278 	if (!addr)
279 		return;
280 
281 	if (size >= PAGE_SIZE) {
282 		its_free_pages(addr, get_order(size));
283 		return;
284 	}
285 
286 	gen_pool_free(itt_pool, (unsigned long)addr, size);
287 }
288 
289 /*
290  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
291  * always have vSGIs mapped.
292  */
293 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
294 {
295 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
296 }
297 
298 static bool rdists_support_shareable(void)
299 {
300 	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
301 }
302 
303 static u16 get_its_list(struct its_vm *vm)
304 {
305 	struct its_node *its;
306 	unsigned long its_list = 0;
307 
308 	list_for_each_entry(its, &its_nodes, entry) {
309 		if (!is_v4(its))
310 			continue;
311 
312 		if (require_its_list_vmovp(vm, its))
313 			__set_bit(its->list_nr, &its_list);
314 	}
315 
316 	return (u16)its_list;
317 }
318 
319 static inline u32 its_get_event_id(struct irq_data *d)
320 {
321 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
322 	return d->hwirq - its_dev->event_map.lpi_base;
323 }
324 
325 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
326 					       u32 event)
327 {
328 	struct its_node *its = its_dev->its;
329 
330 	return its->collections + its_dev->event_map.col_map[event];
331 }
332 
333 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
334 					       u32 event)
335 {
336 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
337 		return NULL;
338 
339 	return &its_dev->event_map.vlpi_maps[event];
340 }
341 
342 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
343 {
344 	if (irqd_is_forwarded_to_vcpu(d)) {
345 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
346 		u32 event = its_get_event_id(d);
347 
348 		return dev_event_to_vlpi_map(its_dev, event);
349 	}
350 
351 	return NULL;
352 }
353 
354 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
355 {
356 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
357 	return vpe->col_idx;
358 }
359 
360 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
361 {
362 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
363 }
364 
365 static struct irq_chip its_vpe_irq_chip;
366 
367 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
368 {
369 	struct its_vpe *vpe = NULL;
370 	int cpu;
371 
372 	if (d->chip == &its_vpe_irq_chip) {
373 		vpe = irq_data_get_irq_chip_data(d);
374 	} else {
375 		struct its_vlpi_map *map = get_vlpi_map(d);
376 		if (map)
377 			vpe = map->vpe;
378 	}
379 
380 	if (vpe) {
381 		cpu = vpe_to_cpuid_lock(vpe, flags);
382 	} else {
383 		/* Physical LPIs are already locked via the irq_desc lock */
384 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
385 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
386 		/* Keep GCC quiet... */
387 		*flags = 0;
388 	}
389 
390 	return cpu;
391 }
392 
393 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
394 {
395 	struct its_vpe *vpe = NULL;
396 
397 	if (d->chip == &its_vpe_irq_chip) {
398 		vpe = irq_data_get_irq_chip_data(d);
399 	} else {
400 		struct its_vlpi_map *map = get_vlpi_map(d);
401 		if (map)
402 			vpe = map->vpe;
403 	}
404 
405 	if (vpe)
406 		vpe_to_cpuid_unlock(vpe, flags);
407 }
408 
409 static struct its_collection *valid_col(struct its_collection *col)
410 {
411 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
412 		return NULL;
413 
414 	return col;
415 }
416 
417 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
418 {
419 	if (valid_col(its->collections + vpe->col_idx))
420 		return vpe;
421 
422 	return NULL;
423 }
424 
425 /*
426  * ITS command descriptors - parameters to be encoded in a command
427  * block.
428  */
429 struct its_cmd_desc {
430 	union {
431 		struct {
432 			struct its_device *dev;
433 			u32 event_id;
434 		} its_inv_cmd;
435 
436 		struct {
437 			struct its_device *dev;
438 			u32 event_id;
439 		} its_clear_cmd;
440 
441 		struct {
442 			struct its_device *dev;
443 			u32 event_id;
444 		} its_int_cmd;
445 
446 		struct {
447 			struct its_device *dev;
448 			int valid;
449 		} its_mapd_cmd;
450 
451 		struct {
452 			struct its_collection *col;
453 			int valid;
454 		} its_mapc_cmd;
455 
456 		struct {
457 			struct its_device *dev;
458 			u32 phys_id;
459 			u32 event_id;
460 		} its_mapti_cmd;
461 
462 		struct {
463 			struct its_device *dev;
464 			struct its_collection *col;
465 			u32 event_id;
466 		} its_movi_cmd;
467 
468 		struct {
469 			struct its_device *dev;
470 			u32 event_id;
471 		} its_discard_cmd;
472 
473 		struct {
474 			struct its_collection *col;
475 		} its_invall_cmd;
476 
477 		struct {
478 			struct its_vpe *vpe;
479 		} its_vinvall_cmd;
480 
481 		struct {
482 			struct its_vpe *vpe;
483 			struct its_collection *col;
484 			bool valid;
485 		} its_vmapp_cmd;
486 
487 		struct {
488 			struct its_vpe *vpe;
489 			struct its_device *dev;
490 			u32 virt_id;
491 			u32 event_id;
492 			bool db_enabled;
493 		} its_vmapti_cmd;
494 
495 		struct {
496 			struct its_vpe *vpe;
497 			struct its_device *dev;
498 			u32 event_id;
499 			bool db_enabled;
500 		} its_vmovi_cmd;
501 
502 		struct {
503 			struct its_vpe *vpe;
504 			struct its_collection *col;
505 			u16 seq_num;
506 			u16 its_list;
507 		} its_vmovp_cmd;
508 
509 		struct {
510 			struct its_vpe *vpe;
511 		} its_invdb_cmd;
512 
513 		struct {
514 			struct its_vpe *vpe;
515 			u8 sgi;
516 			u8 priority;
517 			bool enable;
518 			bool group;
519 			bool clear;
520 		} its_vsgi_cmd;
521 	};
522 };
523 
524 /*
525  * The ITS command block, which is what the ITS actually parses.
526  */
527 struct its_cmd_block {
528 	union {
529 		u64	raw_cmd[4];
530 		__le64	raw_cmd_le[4];
531 	};
532 };
533 
534 #define ITS_CMD_QUEUE_SZ		SZ_64K
535 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
536 
537 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
538 						    struct its_cmd_block *,
539 						    struct its_cmd_desc *);
540 
541 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
542 					      struct its_cmd_block *,
543 					      struct its_cmd_desc *);
544 
545 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
546 {
547 	u64 mask = GENMASK_ULL(h, l);
548 	*raw_cmd &= ~mask;
549 	*raw_cmd |= (val << l) & mask;
550 }
551 
552 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
553 {
554 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
555 }
556 
557 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
558 {
559 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
560 }
561 
562 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
563 {
564 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
565 }
566 
567 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
568 {
569 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
570 }
571 
572 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
573 {
574 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
575 }
576 
577 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
578 {
579 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
580 }
581 
582 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
583 {
584 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
585 }
586 
587 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
588 {
589 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
590 }
591 
592 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
593 {
594 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
595 }
596 
597 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
598 {
599 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
600 }
601 
602 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
603 {
604 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
605 }
606 
607 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
608 {
609 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
610 }
611 
612 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
613 {
614 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
615 }
616 
617 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
618 {
619 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
620 }
621 
622 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
623 {
624 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
625 }
626 
627 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
628 {
629 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
630 }
631 
632 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
633 {
634 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
635 }
636 
637 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
638 {
639 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
640 }
641 
642 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
643 {
644 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
645 }
646 
647 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
648 {
649 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
650 }
651 
652 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
653 					u32 vpe_db_lpi)
654 {
655 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
656 }
657 
658 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
659 					u32 vpe_db_lpi)
660 {
661 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
662 }
663 
664 static void its_encode_db(struct its_cmd_block *cmd, bool db)
665 {
666 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
667 }
668 
669 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
670 {
671 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
672 }
673 
674 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
675 {
676 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
677 }
678 
679 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
680 {
681 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
682 }
683 
684 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
685 {
686 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
687 }
688 
689 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
690 {
691 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
692 }
693 
694 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
695 {
696 	/* Let's fixup BE commands */
697 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
698 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
699 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
700 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
701 }
702 
703 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
704 						 struct its_cmd_block *cmd,
705 						 struct its_cmd_desc *desc)
706 {
707 	unsigned long itt_addr;
708 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
709 
710 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
711 
712 	its_encode_cmd(cmd, GITS_CMD_MAPD);
713 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
714 	its_encode_size(cmd, size - 1);
715 	its_encode_itt(cmd, itt_addr);
716 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
717 
718 	its_fixup_cmd(cmd);
719 
720 	return NULL;
721 }
722 
723 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
724 						 struct its_cmd_block *cmd,
725 						 struct its_cmd_desc *desc)
726 {
727 	its_encode_cmd(cmd, GITS_CMD_MAPC);
728 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
729 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
730 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
731 
732 	its_fixup_cmd(cmd);
733 
734 	return desc->its_mapc_cmd.col;
735 }
736 
737 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
738 						  struct its_cmd_block *cmd,
739 						  struct its_cmd_desc *desc)
740 {
741 	struct its_collection *col;
742 
743 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
744 			       desc->its_mapti_cmd.event_id);
745 
746 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
747 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
748 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
749 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
750 	its_encode_collection(cmd, col->col_id);
751 
752 	its_fixup_cmd(cmd);
753 
754 	return valid_col(col);
755 }
756 
757 static struct its_collection *its_build_movi_cmd(struct its_node *its,
758 						 struct its_cmd_block *cmd,
759 						 struct its_cmd_desc *desc)
760 {
761 	struct its_collection *col;
762 
763 	col = dev_event_to_col(desc->its_movi_cmd.dev,
764 			       desc->its_movi_cmd.event_id);
765 
766 	its_encode_cmd(cmd, GITS_CMD_MOVI);
767 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
768 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
769 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
770 
771 	its_fixup_cmd(cmd);
772 
773 	return valid_col(col);
774 }
775 
776 static struct its_collection *its_build_discard_cmd(struct its_node *its,
777 						    struct its_cmd_block *cmd,
778 						    struct its_cmd_desc *desc)
779 {
780 	struct its_collection *col;
781 
782 	col = dev_event_to_col(desc->its_discard_cmd.dev,
783 			       desc->its_discard_cmd.event_id);
784 
785 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
786 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
787 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
788 
789 	its_fixup_cmd(cmd);
790 
791 	return valid_col(col);
792 }
793 
794 static struct its_collection *its_build_inv_cmd(struct its_node *its,
795 						struct its_cmd_block *cmd,
796 						struct its_cmd_desc *desc)
797 {
798 	struct its_collection *col;
799 
800 	col = dev_event_to_col(desc->its_inv_cmd.dev,
801 			       desc->its_inv_cmd.event_id);
802 
803 	its_encode_cmd(cmd, GITS_CMD_INV);
804 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
805 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
806 
807 	its_fixup_cmd(cmd);
808 
809 	return valid_col(col);
810 }
811 
812 static struct its_collection *its_build_int_cmd(struct its_node *its,
813 						struct its_cmd_block *cmd,
814 						struct its_cmd_desc *desc)
815 {
816 	struct its_collection *col;
817 
818 	col = dev_event_to_col(desc->its_int_cmd.dev,
819 			       desc->its_int_cmd.event_id);
820 
821 	its_encode_cmd(cmd, GITS_CMD_INT);
822 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
823 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
824 
825 	its_fixup_cmd(cmd);
826 
827 	return valid_col(col);
828 }
829 
830 static struct its_collection *its_build_clear_cmd(struct its_node *its,
831 						  struct its_cmd_block *cmd,
832 						  struct its_cmd_desc *desc)
833 {
834 	struct its_collection *col;
835 
836 	col = dev_event_to_col(desc->its_clear_cmd.dev,
837 			       desc->its_clear_cmd.event_id);
838 
839 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
840 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
841 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
842 
843 	its_fixup_cmd(cmd);
844 
845 	return valid_col(col);
846 }
847 
848 static struct its_collection *its_build_invall_cmd(struct its_node *its,
849 						   struct its_cmd_block *cmd,
850 						   struct its_cmd_desc *desc)
851 {
852 	its_encode_cmd(cmd, GITS_CMD_INVALL);
853 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
854 
855 	its_fixup_cmd(cmd);
856 
857 	return desc->its_invall_cmd.col;
858 }
859 
860 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
861 					     struct its_cmd_block *cmd,
862 					     struct its_cmd_desc *desc)
863 {
864 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
865 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
866 
867 	its_fixup_cmd(cmd);
868 
869 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
870 }
871 
872 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
873 					   struct its_cmd_block *cmd,
874 					   struct its_cmd_desc *desc)
875 {
876 	struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
877 	unsigned long vpt_addr, vconf_addr;
878 	u64 target;
879 	bool alloc;
880 
881 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
882 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
883 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
884 
885 	if (!desc->its_vmapp_cmd.valid) {
886 		alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
887 		if (is_v4_1(its)) {
888 			its_encode_alloc(cmd, alloc);
889 			/*
890 			 * Unmapping a VPE is self-synchronizing on GICv4.1,
891 			 * no need to issue a VSYNC.
892 			 */
893 			vpe = NULL;
894 		}
895 
896 		goto out;
897 	}
898 
899 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
900 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
901 
902 	its_encode_target(cmd, target);
903 	its_encode_vpt_addr(cmd, vpt_addr);
904 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
905 
906 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
907 
908 	if (!is_v4_1(its))
909 		goto out;
910 
911 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
912 
913 	its_encode_alloc(cmd, alloc);
914 
915 	/*
916 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
917 	 * to be unmapped first, and in this case, we may remap the vPE
918 	 * back while the VPT is not empty. So we can't assume that the
919 	 * VPT is empty on map. This is why we never advertise PTZ.
920 	 */
921 	its_encode_ptz(cmd, false);
922 	its_encode_vconf_addr(cmd, vconf_addr);
923 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
924 
925 out:
926 	its_fixup_cmd(cmd);
927 
928 	return vpe;
929 }
930 
931 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
932 					    struct its_cmd_block *cmd,
933 					    struct its_cmd_desc *desc)
934 {
935 	u32 db;
936 
937 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
938 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
939 	else
940 		db = 1023;
941 
942 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
943 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
944 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
945 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
946 	its_encode_db_phys_id(cmd, db);
947 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
948 
949 	its_fixup_cmd(cmd);
950 
951 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
952 }
953 
954 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
955 					   struct its_cmd_block *cmd,
956 					   struct its_cmd_desc *desc)
957 {
958 	u32 db;
959 
960 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
961 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
962 	else
963 		db = 1023;
964 
965 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
966 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
967 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
968 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
969 	its_encode_db_phys_id(cmd, db);
970 	its_encode_db_valid(cmd, true);
971 
972 	its_fixup_cmd(cmd);
973 
974 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
975 }
976 
977 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
978 					   struct its_cmd_block *cmd,
979 					   struct its_cmd_desc *desc)
980 {
981 	u64 target;
982 
983 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
984 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
985 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
986 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
987 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
988 	its_encode_target(cmd, target);
989 
990 	if (is_v4_1(its)) {
991 		its_encode_db(cmd, true);
992 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
993 	}
994 
995 	its_fixup_cmd(cmd);
996 
997 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
998 }
999 
1000 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
1001 					  struct its_cmd_block *cmd,
1002 					  struct its_cmd_desc *desc)
1003 {
1004 	struct its_vlpi_map *map;
1005 
1006 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
1007 				    desc->its_inv_cmd.event_id);
1008 
1009 	its_encode_cmd(cmd, GITS_CMD_INV);
1010 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
1011 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
1012 
1013 	its_fixup_cmd(cmd);
1014 
1015 	return valid_vpe(its, map->vpe);
1016 }
1017 
1018 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
1019 					  struct its_cmd_block *cmd,
1020 					  struct its_cmd_desc *desc)
1021 {
1022 	struct its_vlpi_map *map;
1023 
1024 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
1025 				    desc->its_int_cmd.event_id);
1026 
1027 	its_encode_cmd(cmd, GITS_CMD_INT);
1028 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
1029 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
1030 
1031 	its_fixup_cmd(cmd);
1032 
1033 	return valid_vpe(its, map->vpe);
1034 }
1035 
1036 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
1037 					    struct its_cmd_block *cmd,
1038 					    struct its_cmd_desc *desc)
1039 {
1040 	struct its_vlpi_map *map;
1041 
1042 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
1043 				    desc->its_clear_cmd.event_id);
1044 
1045 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
1046 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
1047 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
1048 
1049 	its_fixup_cmd(cmd);
1050 
1051 	return valid_vpe(its, map->vpe);
1052 }
1053 
1054 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
1055 					   struct its_cmd_block *cmd,
1056 					   struct its_cmd_desc *desc)
1057 {
1058 	if (WARN_ON(!is_v4_1(its)))
1059 		return NULL;
1060 
1061 	its_encode_cmd(cmd, GITS_CMD_INVDB);
1062 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
1063 
1064 	its_fixup_cmd(cmd);
1065 
1066 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
1067 }
1068 
1069 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
1070 					  struct its_cmd_block *cmd,
1071 					  struct its_cmd_desc *desc)
1072 {
1073 	if (WARN_ON(!is_v4_1(its)))
1074 		return NULL;
1075 
1076 	its_encode_cmd(cmd, GITS_CMD_VSGI);
1077 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
1078 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
1079 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
1080 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
1081 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
1082 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1083 
1084 	its_fixup_cmd(cmd);
1085 
1086 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1087 }
1088 
1089 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1090 				 struct its_cmd_block *ptr)
1091 {
1092 	return (ptr - its->cmd_base) * sizeof(*ptr);
1093 }
1094 
1095 static int its_queue_full(struct its_node *its)
1096 {
1097 	int widx;
1098 	int ridx;
1099 
1100 	widx = its->cmd_write - its->cmd_base;
1101 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1102 
1103 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1104 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1105 		return 1;
1106 
1107 	return 0;
1108 }
1109 
1110 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1111 {
1112 	struct its_cmd_block *cmd;
1113 	u32 count = 1000000;	/* 1s! */
1114 
1115 	while (its_queue_full(its)) {
1116 		count--;
1117 		if (!count) {
1118 			pr_err_ratelimited("ITS queue not draining\n");
1119 			return NULL;
1120 		}
1121 		cpu_relax();
1122 		udelay(1);
1123 	}
1124 
1125 	cmd = its->cmd_write++;
1126 
1127 	/* Handle queue wrapping */
1128 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1129 		its->cmd_write = its->cmd_base;
1130 
1131 	/* Clear command  */
1132 	cmd->raw_cmd[0] = 0;
1133 	cmd->raw_cmd[1] = 0;
1134 	cmd->raw_cmd[2] = 0;
1135 	cmd->raw_cmd[3] = 0;
1136 
1137 	return cmd;
1138 }
1139 
1140 static struct its_cmd_block *its_post_commands(struct its_node *its)
1141 {
1142 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1143 
1144 	writel_relaxed(wr, its->base + GITS_CWRITER);
1145 
1146 	return its->cmd_write;
1147 }
1148 
1149 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1150 {
1151 	/*
1152 	 * Make sure the commands written to memory are observable by
1153 	 * the ITS.
1154 	 */
1155 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1156 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1157 	else
1158 		dsb(ishst);
1159 }
1160 
1161 static int its_wait_for_range_completion(struct its_node *its,
1162 					 u64	prev_idx,
1163 					 struct its_cmd_block *to)
1164 {
1165 	u64 rd_idx, to_idx, linear_idx;
1166 	u32 count = 1000000;	/* 1s! */
1167 
1168 	/* Linearize to_idx if the command set has wrapped around */
1169 	to_idx = its_cmd_ptr_to_offset(its, to);
1170 	if (to_idx < prev_idx)
1171 		to_idx += ITS_CMD_QUEUE_SZ;
1172 
1173 	linear_idx = prev_idx;
1174 
1175 	while (1) {
1176 		s64 delta;
1177 
1178 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1179 
1180 		/*
1181 		 * Compute the read pointer progress, taking the
1182 		 * potential wrap-around into account.
1183 		 */
1184 		delta = rd_idx - prev_idx;
1185 		if (rd_idx < prev_idx)
1186 			delta += ITS_CMD_QUEUE_SZ;
1187 
1188 		linear_idx += delta;
1189 		if (linear_idx >= to_idx)
1190 			break;
1191 
1192 		count--;
1193 		if (!count) {
1194 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1195 					   to_idx, linear_idx);
1196 			return -1;
1197 		}
1198 		prev_idx = rd_idx;
1199 		cpu_relax();
1200 		udelay(1);
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 /* Warning, macro hell follows */
1207 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1208 void name(struct its_node *its,						\
1209 	  buildtype builder,						\
1210 	  struct its_cmd_desc *desc)					\
1211 {									\
1212 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1213 	synctype *sync_obj;						\
1214 	unsigned long flags;						\
1215 	u64 rd_idx;							\
1216 									\
1217 	raw_spin_lock_irqsave(&its->lock, flags);			\
1218 									\
1219 	cmd = its_allocate_entry(its);					\
1220 	if (!cmd) {		/* We're soooooo screewed... */		\
1221 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1222 		return;							\
1223 	}								\
1224 	sync_obj = builder(its, cmd, desc);				\
1225 	its_flush_cmd(its, cmd);					\
1226 									\
1227 	if (sync_obj) {							\
1228 		sync_cmd = its_allocate_entry(its);			\
1229 		if (!sync_cmd)						\
1230 			goto post;					\
1231 									\
1232 		buildfn(its, sync_cmd, sync_obj);			\
1233 		its_flush_cmd(its, sync_cmd);				\
1234 	}								\
1235 									\
1236 post:									\
1237 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1238 	next_cmd = its_post_commands(its);				\
1239 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1240 									\
1241 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1242 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1243 }
1244 
1245 static void its_build_sync_cmd(struct its_node *its,
1246 			       struct its_cmd_block *sync_cmd,
1247 			       struct its_collection *sync_col)
1248 {
1249 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1250 	its_encode_target(sync_cmd, sync_col->target_address);
1251 
1252 	its_fixup_cmd(sync_cmd);
1253 }
1254 
1255 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1256 			     struct its_collection, its_build_sync_cmd)
1257 
1258 static void its_build_vsync_cmd(struct its_node *its,
1259 				struct its_cmd_block *sync_cmd,
1260 				struct its_vpe *sync_vpe)
1261 {
1262 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1263 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1264 
1265 	its_fixup_cmd(sync_cmd);
1266 }
1267 
1268 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1269 			     struct its_vpe, its_build_vsync_cmd)
1270 
1271 static void its_send_int(struct its_device *dev, u32 event_id)
1272 {
1273 	struct its_cmd_desc desc;
1274 
1275 	desc.its_int_cmd.dev = dev;
1276 	desc.its_int_cmd.event_id = event_id;
1277 
1278 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1279 }
1280 
1281 static void its_send_clear(struct its_device *dev, u32 event_id)
1282 {
1283 	struct its_cmd_desc desc;
1284 
1285 	desc.its_clear_cmd.dev = dev;
1286 	desc.its_clear_cmd.event_id = event_id;
1287 
1288 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1289 }
1290 
1291 static void its_send_inv(struct its_device *dev, u32 event_id)
1292 {
1293 	struct its_cmd_desc desc;
1294 
1295 	desc.its_inv_cmd.dev = dev;
1296 	desc.its_inv_cmd.event_id = event_id;
1297 
1298 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1299 }
1300 
1301 static void its_send_mapd(struct its_device *dev, int valid)
1302 {
1303 	struct its_cmd_desc desc;
1304 
1305 	desc.its_mapd_cmd.dev = dev;
1306 	desc.its_mapd_cmd.valid = !!valid;
1307 
1308 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1309 }
1310 
1311 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1312 			  int valid)
1313 {
1314 	struct its_cmd_desc desc;
1315 
1316 	desc.its_mapc_cmd.col = col;
1317 	desc.its_mapc_cmd.valid = !!valid;
1318 
1319 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1320 }
1321 
1322 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1323 {
1324 	struct its_cmd_desc desc;
1325 
1326 	desc.its_mapti_cmd.dev = dev;
1327 	desc.its_mapti_cmd.phys_id = irq_id;
1328 	desc.its_mapti_cmd.event_id = id;
1329 
1330 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1331 }
1332 
1333 static void its_send_movi(struct its_device *dev,
1334 			  struct its_collection *col, u32 id)
1335 {
1336 	struct its_cmd_desc desc;
1337 
1338 	desc.its_movi_cmd.dev = dev;
1339 	desc.its_movi_cmd.col = col;
1340 	desc.its_movi_cmd.event_id = id;
1341 
1342 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1343 }
1344 
1345 static void its_send_discard(struct its_device *dev, u32 id)
1346 {
1347 	struct its_cmd_desc desc;
1348 
1349 	desc.its_discard_cmd.dev = dev;
1350 	desc.its_discard_cmd.event_id = id;
1351 
1352 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1353 }
1354 
1355 static void its_send_invall(struct its_node *its, struct its_collection *col)
1356 {
1357 	struct its_cmd_desc desc;
1358 
1359 	desc.its_invall_cmd.col = col;
1360 
1361 	its_send_single_command(its, its_build_invall_cmd, &desc);
1362 }
1363 
1364 static void its_send_vmapti(struct its_device *dev, u32 id)
1365 {
1366 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1367 	struct its_cmd_desc desc;
1368 
1369 	desc.its_vmapti_cmd.vpe = map->vpe;
1370 	desc.its_vmapti_cmd.dev = dev;
1371 	desc.its_vmapti_cmd.virt_id = map->vintid;
1372 	desc.its_vmapti_cmd.event_id = id;
1373 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1374 
1375 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1376 }
1377 
1378 static void its_send_vmovi(struct its_device *dev, u32 id)
1379 {
1380 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1381 	struct its_cmd_desc desc;
1382 
1383 	desc.its_vmovi_cmd.vpe = map->vpe;
1384 	desc.its_vmovi_cmd.dev = dev;
1385 	desc.its_vmovi_cmd.event_id = id;
1386 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1387 
1388 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1389 }
1390 
1391 static void its_send_vmapp(struct its_node *its,
1392 			   struct its_vpe *vpe, bool valid)
1393 {
1394 	struct its_cmd_desc desc;
1395 
1396 	desc.its_vmapp_cmd.vpe = vpe;
1397 	desc.its_vmapp_cmd.valid = valid;
1398 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1399 
1400 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1401 }
1402 
1403 static void its_send_vmovp(struct its_vpe *vpe)
1404 {
1405 	struct its_cmd_desc desc = {};
1406 	struct its_node *its;
1407 	int col_id = vpe->col_idx;
1408 
1409 	desc.its_vmovp_cmd.vpe = vpe;
1410 
1411 	if (!its_list_map) {
1412 		its = list_first_entry(&its_nodes, struct its_node, entry);
1413 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1414 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1415 		return;
1416 	}
1417 
1418 	/*
1419 	 * Yet another marvel of the architecture. If using the
1420 	 * its_list "feature", we need to make sure that all ITSs
1421 	 * receive all VMOVP commands in the same order. The only way
1422 	 * to guarantee this is to make vmovp a serialization point.
1423 	 *
1424 	 * Wall <-- Head.
1425 	 */
1426 	guard(raw_spinlock)(&vmovp_lock);
1427 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1428 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1429 
1430 	/* Emit VMOVPs */
1431 	list_for_each_entry(its, &its_nodes, entry) {
1432 		if (!is_v4(its))
1433 			continue;
1434 
1435 		if (!require_its_list_vmovp(vpe->its_vm, its))
1436 			continue;
1437 
1438 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1439 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1440 	}
1441 }
1442 
1443 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1444 {
1445 	struct its_cmd_desc desc;
1446 
1447 	desc.its_vinvall_cmd.vpe = vpe;
1448 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1449 }
1450 
1451 static void its_send_vinv(struct its_device *dev, u32 event_id)
1452 {
1453 	struct its_cmd_desc desc;
1454 
1455 	/*
1456 	 * There is no real VINV command. This is just a normal INV,
1457 	 * with a VSYNC instead of a SYNC.
1458 	 */
1459 	desc.its_inv_cmd.dev = dev;
1460 	desc.its_inv_cmd.event_id = event_id;
1461 
1462 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1463 }
1464 
1465 static void its_send_vint(struct its_device *dev, u32 event_id)
1466 {
1467 	struct its_cmd_desc desc;
1468 
1469 	/*
1470 	 * There is no real VINT command. This is just a normal INT,
1471 	 * with a VSYNC instead of a SYNC.
1472 	 */
1473 	desc.its_int_cmd.dev = dev;
1474 	desc.its_int_cmd.event_id = event_id;
1475 
1476 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1477 }
1478 
1479 static void its_send_vclear(struct its_device *dev, u32 event_id)
1480 {
1481 	struct its_cmd_desc desc;
1482 
1483 	/*
1484 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1485 	 * with a VSYNC instead of a SYNC.
1486 	 */
1487 	desc.its_clear_cmd.dev = dev;
1488 	desc.its_clear_cmd.event_id = event_id;
1489 
1490 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1491 }
1492 
1493 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1494 {
1495 	struct its_cmd_desc desc;
1496 
1497 	desc.its_invdb_cmd.vpe = vpe;
1498 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1499 }
1500 
1501 /*
1502  * irqchip functions - assumes MSI, mostly.
1503  */
1504 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1505 {
1506 	struct its_vlpi_map *map = get_vlpi_map(d);
1507 	irq_hw_number_t hwirq;
1508 	void *va;
1509 	u8 *cfg;
1510 
1511 	if (map) {
1512 		va = page_address(map->vm->vprop_page);
1513 		hwirq = map->vintid;
1514 
1515 		/* Remember the updated property */
1516 		map->properties &= ~clr;
1517 		map->properties |= set | LPI_PROP_GROUP1;
1518 	} else {
1519 		va = gic_rdists->prop_table_va;
1520 		hwirq = d->hwirq;
1521 	}
1522 
1523 	cfg = va + hwirq - 8192;
1524 	*cfg &= ~clr;
1525 	*cfg |= set | LPI_PROP_GROUP1;
1526 
1527 	/*
1528 	 * Make the above write visible to the redistributors.
1529 	 * And yes, we're flushing exactly: One. Single. Byte.
1530 	 * Humpf...
1531 	 */
1532 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1533 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1534 	else
1535 		dsb(ishst);
1536 }
1537 
1538 static void wait_for_syncr(void __iomem *rdbase)
1539 {
1540 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1541 		cpu_relax();
1542 }
1543 
1544 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1545 {
1546 	void __iomem *rdbase;
1547 	unsigned long flags;
1548 	int cpu;
1549 
1550 	/* Target the redistributor this LPI is currently routed to */
1551 	cpu = irq_to_cpuid_lock(d, &flags);
1552 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1553 
1554 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1555 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1556 	wait_for_syncr(rdbase);
1557 
1558 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1559 	irq_to_cpuid_unlock(d, flags);
1560 }
1561 
1562 static void direct_lpi_inv(struct irq_data *d)
1563 {
1564 	struct its_vlpi_map *map = get_vlpi_map(d);
1565 	u64 val;
1566 
1567 	if (map) {
1568 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1569 
1570 		WARN_ON(!is_v4_1(its_dev->its));
1571 
1572 		val  = GICR_INVLPIR_V;
1573 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1574 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1575 	} else {
1576 		val = d->hwirq;
1577 	}
1578 
1579 	__direct_lpi_inv(d, val);
1580 }
1581 
1582 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1583 {
1584 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1585 
1586 	lpi_write_config(d, clr, set);
1587 	if (gic_rdists->has_direct_lpi &&
1588 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1589 		direct_lpi_inv(d);
1590 	else if (!irqd_is_forwarded_to_vcpu(d))
1591 		its_send_inv(its_dev, its_get_event_id(d));
1592 	else
1593 		its_send_vinv(its_dev, its_get_event_id(d));
1594 }
1595 
1596 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1597 {
1598 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1599 	u32 event = its_get_event_id(d);
1600 	struct its_vlpi_map *map;
1601 
1602 	/*
1603 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1604 	 * here.
1605 	 */
1606 	if (is_v4_1(its_dev->its))
1607 		return;
1608 
1609 	map = dev_event_to_vlpi_map(its_dev, event);
1610 
1611 	if (map->db_enabled == enable)
1612 		return;
1613 
1614 	map->db_enabled = enable;
1615 
1616 	/*
1617 	 * More fun with the architecture:
1618 	 *
1619 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1620 	 * value or to 1023, depending on the enable bit. But that
1621 	 * would be issuing a mapping for an /existing/ DevID+EventID
1622 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1623 	 * to the /same/ vPE, using this opportunity to adjust the
1624 	 * doorbell. Mouahahahaha. We loves it, Precious.
1625 	 */
1626 	its_send_vmovi(its_dev, event);
1627 }
1628 
1629 static void its_mask_irq(struct irq_data *d)
1630 {
1631 	if (irqd_is_forwarded_to_vcpu(d))
1632 		its_vlpi_set_doorbell(d, false);
1633 
1634 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1635 }
1636 
1637 static void its_unmask_irq(struct irq_data *d)
1638 {
1639 	if (irqd_is_forwarded_to_vcpu(d))
1640 		its_vlpi_set_doorbell(d, true);
1641 
1642 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1643 }
1644 
1645 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1646 {
1647 	if (irqd_affinity_is_managed(d))
1648 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1649 
1650 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1651 }
1652 
1653 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1654 {
1655 	if (irqd_affinity_is_managed(d))
1656 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1657 	else
1658 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1659 }
1660 
1661 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1662 {
1663 	if (irqd_affinity_is_managed(d))
1664 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1665 	else
1666 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1667 }
1668 
1669 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1670 					      const struct cpumask *cpu_mask)
1671 {
1672 	unsigned int cpu = nr_cpu_ids, tmp;
1673 	int count = S32_MAX;
1674 
1675 	for_each_cpu(tmp, cpu_mask) {
1676 		int this_count = its_read_lpi_count(d, tmp);
1677 		if (this_count < count) {
1678 			cpu = tmp;
1679 		        count = this_count;
1680 		}
1681 	}
1682 
1683 	return cpu;
1684 }
1685 
1686 /*
1687  * As suggested by Thomas Gleixner in:
1688  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1689  */
1690 static int its_select_cpu(struct irq_data *d,
1691 			  const struct cpumask *aff_mask)
1692 {
1693 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1694 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1695 	static struct cpumask __tmpmask;
1696 	struct cpumask *tmpmask;
1697 	unsigned long flags;
1698 	int cpu, node;
1699 	node = its_dev->its->numa_node;
1700 	tmpmask = &__tmpmask;
1701 
1702 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1703 
1704 	if (!irqd_affinity_is_managed(d)) {
1705 		/* First try the NUMA node */
1706 		if (node != NUMA_NO_NODE) {
1707 			/*
1708 			 * Try the intersection of the affinity mask and the
1709 			 * node mask (and the online mask, just to be safe).
1710 			 */
1711 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1712 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1713 
1714 			/*
1715 			 * Ideally, we would check if the mask is empty, and
1716 			 * try again on the full node here.
1717 			 *
1718 			 * But it turns out that the way ACPI describes the
1719 			 * affinity for ITSs only deals about memory, and
1720 			 * not target CPUs, so it cannot describe a single
1721 			 * ITS placed next to two NUMA nodes.
1722 			 *
1723 			 * Instead, just fallback on the online mask. This
1724 			 * diverges from Thomas' suggestion above.
1725 			 */
1726 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1727 			if (cpu < nr_cpu_ids)
1728 				goto out;
1729 
1730 			/* If we can't cross sockets, give up */
1731 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1732 				goto out;
1733 
1734 			/* If the above failed, expand the search */
1735 		}
1736 
1737 		/* Try the intersection of the affinity and online masks */
1738 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1739 
1740 		/* If that doesn't fly, the online mask is the last resort */
1741 		if (cpumask_empty(tmpmask))
1742 			cpumask_copy(tmpmask, cpu_online_mask);
1743 
1744 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1745 	} else {
1746 		cpumask_copy(tmpmask, aff_mask);
1747 
1748 		/* If we cannot cross sockets, limit the search to that node */
1749 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1750 		    node != NUMA_NO_NODE)
1751 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1752 
1753 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1754 	}
1755 out:
1756 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1757 
1758 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1759 	return cpu;
1760 }
1761 
1762 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1763 			    bool force)
1764 {
1765 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1766 	struct its_collection *target_col;
1767 	u32 id = its_get_event_id(d);
1768 	int cpu, prev_cpu;
1769 
1770 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1771 	if (irqd_is_forwarded_to_vcpu(d))
1772 		return -EINVAL;
1773 
1774 	prev_cpu = its_dev->event_map.col_map[id];
1775 	its_dec_lpi_count(d, prev_cpu);
1776 
1777 	if (!force)
1778 		cpu = its_select_cpu(d, mask_val);
1779 	else
1780 		cpu = cpumask_pick_least_loaded(d, mask_val);
1781 
1782 	if (cpu < 0 || cpu >= nr_cpu_ids)
1783 		goto err;
1784 
1785 	/* don't set the affinity when the target cpu is same as current one */
1786 	if (cpu != prev_cpu) {
1787 		target_col = &its_dev->its->collections[cpu];
1788 		its_send_movi(its_dev, target_col, id);
1789 		its_dev->event_map.col_map[id] = cpu;
1790 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1791 	}
1792 
1793 	its_inc_lpi_count(d, cpu);
1794 
1795 	return IRQ_SET_MASK_OK_DONE;
1796 
1797 err:
1798 	its_inc_lpi_count(d, prev_cpu);
1799 	return -EINVAL;
1800 }
1801 
1802 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1803 {
1804 	struct its_node *its = its_dev->its;
1805 
1806 	return its->phys_base + GITS_TRANSLATER;
1807 }
1808 
1809 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1810 {
1811 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1812 	struct its_node *its;
1813 	u64 addr;
1814 
1815 	its = its_dev->its;
1816 	addr = its->get_msi_base(its_dev);
1817 
1818 	msg->address_lo		= lower_32_bits(addr);
1819 	msg->address_hi		= upper_32_bits(addr);
1820 	msg->data		= its_get_event_id(d);
1821 
1822 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1823 }
1824 
1825 static int its_irq_set_irqchip_state(struct irq_data *d,
1826 				     enum irqchip_irq_state which,
1827 				     bool state)
1828 {
1829 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1830 	u32 event = its_get_event_id(d);
1831 
1832 	if (which != IRQCHIP_STATE_PENDING)
1833 		return -EINVAL;
1834 
1835 	if (irqd_is_forwarded_to_vcpu(d)) {
1836 		if (state)
1837 			its_send_vint(its_dev, event);
1838 		else
1839 			its_send_vclear(its_dev, event);
1840 	} else {
1841 		if (state)
1842 			its_send_int(its_dev, event);
1843 		else
1844 			its_send_clear(its_dev, event);
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 static int its_irq_retrigger(struct irq_data *d)
1851 {
1852 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1853 }
1854 
1855 /*
1856  * Two favourable cases:
1857  *
1858  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1859  *     for vSGI delivery
1860  *
1861  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1862  *     and we're better off mapping all VPEs always
1863  *
1864  * If neither (a) nor (b) is true, then we map vPEs on demand.
1865  *
1866  */
1867 static bool gic_requires_eager_mapping(void)
1868 {
1869 	if (!its_list_map || gic_rdists->has_rvpeid)
1870 		return true;
1871 
1872 	return false;
1873 }
1874 
1875 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1876 {
1877 	if (gic_requires_eager_mapping())
1878 		return;
1879 
1880 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1881 
1882 	/*
1883 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1884 	 * them mapped now.
1885 	 */
1886 	vm->vlpi_count[its->list_nr]++;
1887 
1888 	if (vm->vlpi_count[its->list_nr] == 1) {
1889 		int i;
1890 
1891 		for (i = 0; i < vm->nr_vpes; i++) {
1892 			struct its_vpe *vpe = vm->vpes[i];
1893 
1894 			scoped_guard(raw_spinlock, &vpe->vpe_lock)
1895 				its_send_vmapp(its, vpe, true);
1896 
1897 			its_send_vinvall(its, vpe);
1898 		}
1899 	}
1900 }
1901 
1902 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1903 {
1904 	/* Not using the ITS list? Everything is always mapped. */
1905 	if (gic_requires_eager_mapping())
1906 		return;
1907 
1908 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1909 
1910 	if (!--vm->vlpi_count[its->list_nr]) {
1911 		int i;
1912 
1913 		for (i = 0; i < vm->nr_vpes; i++) {
1914 			guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1915 			its_send_vmapp(its, vm->vpes[i], false);
1916 		}
1917 	}
1918 }
1919 
1920 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1921 {
1922 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1923 	u32 event = its_get_event_id(d);
1924 
1925 	if (!info->map)
1926 		return -EINVAL;
1927 
1928 	if (!its_dev->event_map.vm) {
1929 		struct its_vlpi_map *maps;
1930 
1931 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1932 			       GFP_ATOMIC);
1933 		if (!maps)
1934 			return -ENOMEM;
1935 
1936 		its_dev->event_map.vm = info->map->vm;
1937 		its_dev->event_map.vlpi_maps = maps;
1938 	} else if (its_dev->event_map.vm != info->map->vm) {
1939 		return -EINVAL;
1940 	}
1941 
1942 	/* Get our private copy of the mapping information */
1943 	its_dev->event_map.vlpi_maps[event] = *info->map;
1944 
1945 	if (irqd_is_forwarded_to_vcpu(d)) {
1946 		/* Already mapped, move it around */
1947 		its_send_vmovi(its_dev, event);
1948 	} else {
1949 		/* Ensure all the VPEs are mapped on this ITS */
1950 		its_map_vm(its_dev->its, info->map->vm);
1951 
1952 		/*
1953 		 * Flag the interrupt as forwarded so that we can
1954 		 * start poking the virtual property table.
1955 		 */
1956 		irqd_set_forwarded_to_vcpu(d);
1957 
1958 		/* Write out the property to the prop table */
1959 		lpi_write_config(d, 0xff, info->map->properties);
1960 
1961 		/* Drop the physical mapping */
1962 		its_send_discard(its_dev, event);
1963 
1964 		/* and install the virtual one */
1965 		its_send_vmapti(its_dev, event);
1966 
1967 		/* Increment the number of VLPIs */
1968 		its_dev->event_map.nr_vlpis++;
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1975 {
1976 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1977 	struct its_vlpi_map *map;
1978 
1979 	map = get_vlpi_map(d);
1980 
1981 	if (!its_dev->event_map.vm || !map)
1982 		return -EINVAL;
1983 
1984 	/* Copy our mapping information to the incoming request */
1985 	*info->map = *map;
1986 
1987 	return 0;
1988 }
1989 
1990 static int its_vlpi_unmap(struct irq_data *d)
1991 {
1992 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1993 	u32 event = its_get_event_id(d);
1994 
1995 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1996 		return -EINVAL;
1997 
1998 	/* Drop the virtual mapping */
1999 	its_send_discard(its_dev, event);
2000 
2001 	/* and restore the physical one */
2002 	irqd_clr_forwarded_to_vcpu(d);
2003 	its_send_mapti(its_dev, d->hwirq, event);
2004 	lpi_update_config(d, 0xff, (lpi_prop_prio |
2005 				    LPI_PROP_ENABLED |
2006 				    LPI_PROP_GROUP1));
2007 
2008 	/* Potentially unmap the VM from this ITS */
2009 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
2010 
2011 	/*
2012 	 * Drop the refcount and make the device available again if
2013 	 * this was the last VLPI.
2014 	 */
2015 	if (!--its_dev->event_map.nr_vlpis) {
2016 		its_dev->event_map.vm = NULL;
2017 		kfree(its_dev->event_map.vlpi_maps);
2018 	}
2019 
2020 	return 0;
2021 }
2022 
2023 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
2024 {
2025 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2026 
2027 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
2028 		return -EINVAL;
2029 
2030 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
2031 		lpi_update_config(d, 0xff, info->config);
2032 	else
2033 		lpi_write_config(d, 0xff, info->config);
2034 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
2035 
2036 	return 0;
2037 }
2038 
2039 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2040 {
2041 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2042 	struct its_cmd_info *info = vcpu_info;
2043 
2044 	/* Need a v4 ITS */
2045 	if (!is_v4(its_dev->its))
2046 		return -EINVAL;
2047 
2048 	guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock);
2049 
2050 	/* Unmap request? */
2051 	if (!info)
2052 		return its_vlpi_unmap(d);
2053 
2054 	switch (info->cmd_type) {
2055 	case MAP_VLPI:
2056 		return its_vlpi_map(d, info);
2057 
2058 	case GET_VLPI:
2059 		return its_vlpi_get(d, info);
2060 
2061 	case PROP_UPDATE_VLPI:
2062 	case PROP_UPDATE_AND_INV_VLPI:
2063 		return its_vlpi_prop_update(d, info);
2064 
2065 	default:
2066 		return -EINVAL;
2067 	}
2068 }
2069 
2070 static struct irq_chip its_irq_chip = {
2071 	.name			= "ITS",
2072 	.irq_mask		= its_mask_irq,
2073 	.irq_unmask		= its_unmask_irq,
2074 	.irq_eoi		= irq_chip_eoi_parent,
2075 	.irq_set_affinity	= its_set_affinity,
2076 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2077 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2078 	.irq_retrigger		= its_irq_retrigger,
2079 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2080 };
2081 
2082 
2083 /*
2084  * How we allocate LPIs:
2085  *
2086  * lpi_range_list contains ranges of LPIs that are to available to
2087  * allocate from. To allocate LPIs, just pick the first range that
2088  * fits the required allocation, and reduce it by the required
2089  * amount. Once empty, remove the range from the list.
2090  *
2091  * To free a range of LPIs, add a free range to the list, sort it and
2092  * merge the result if the new range happens to be adjacent to an
2093  * already free block.
2094  *
2095  * The consequence of the above is that allocation is cost is low, but
2096  * freeing is expensive. We assumes that freeing rarely occurs.
2097  */
2098 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2099 
2100 static DEFINE_MUTEX(lpi_range_lock);
2101 static LIST_HEAD(lpi_range_list);
2102 
2103 struct lpi_range {
2104 	struct list_head	entry;
2105 	u32			base_id;
2106 	u32			span;
2107 };
2108 
2109 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2110 {
2111 	struct lpi_range *range;
2112 
2113 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2114 	if (range) {
2115 		range->base_id = base;
2116 		range->span = span;
2117 	}
2118 
2119 	return range;
2120 }
2121 
2122 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2123 {
2124 	struct lpi_range *range, *tmp;
2125 	int err = -ENOSPC;
2126 
2127 	mutex_lock(&lpi_range_lock);
2128 
2129 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2130 		if (range->span >= nr_lpis) {
2131 			*base = range->base_id;
2132 			range->base_id += nr_lpis;
2133 			range->span -= nr_lpis;
2134 
2135 			if (range->span == 0) {
2136 				list_del(&range->entry);
2137 				kfree(range);
2138 			}
2139 
2140 			err = 0;
2141 			break;
2142 		}
2143 	}
2144 
2145 	mutex_unlock(&lpi_range_lock);
2146 
2147 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2148 	return err;
2149 }
2150 
2151 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2152 {
2153 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2154 		return;
2155 	if (a->base_id + a->span != b->base_id)
2156 		return;
2157 	b->base_id = a->base_id;
2158 	b->span += a->span;
2159 	list_del(&a->entry);
2160 	kfree(a);
2161 }
2162 
2163 static int free_lpi_range(u32 base, u32 nr_lpis)
2164 {
2165 	struct lpi_range *new, *old;
2166 
2167 	new = mk_lpi_range(base, nr_lpis);
2168 	if (!new)
2169 		return -ENOMEM;
2170 
2171 	mutex_lock(&lpi_range_lock);
2172 
2173 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2174 		if (old->base_id < base)
2175 			break;
2176 	}
2177 	/*
2178 	 * old is the last element with ->base_id smaller than base,
2179 	 * so new goes right after it. If there are no elements with
2180 	 * ->base_id smaller than base, &old->entry ends up pointing
2181 	 * at the head of the list, and inserting new it the start of
2182 	 * the list is the right thing to do in that case as well.
2183 	 */
2184 	list_add(&new->entry, &old->entry);
2185 	/*
2186 	 * Now check if we can merge with the preceding and/or
2187 	 * following ranges.
2188 	 */
2189 	merge_lpi_ranges(old, new);
2190 	merge_lpi_ranges(new, list_next_entry(new, entry));
2191 
2192 	mutex_unlock(&lpi_range_lock);
2193 	return 0;
2194 }
2195 
2196 static int __init its_lpi_init(u32 id_bits)
2197 {
2198 	u32 lpis = (1UL << id_bits) - 8192;
2199 	u32 numlpis;
2200 	int err;
2201 
2202 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2203 
2204 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2205 		lpis = numlpis;
2206 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2207 			lpis);
2208 	}
2209 
2210 	/*
2211 	 * Initializing the allocator is just the same as freeing the
2212 	 * full range of LPIs.
2213 	 */
2214 	err = free_lpi_range(8192, lpis);
2215 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2216 	return err;
2217 }
2218 
2219 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2220 {
2221 	unsigned long *bitmap = NULL;
2222 	int err = 0;
2223 
2224 	do {
2225 		err = alloc_lpi_range(nr_irqs, base);
2226 		if (!err)
2227 			break;
2228 
2229 		nr_irqs /= 2;
2230 	} while (nr_irqs > 0);
2231 
2232 	if (!nr_irqs)
2233 		err = -ENOSPC;
2234 
2235 	if (err)
2236 		goto out;
2237 
2238 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2239 	if (!bitmap)
2240 		goto out;
2241 
2242 	*nr_ids = nr_irqs;
2243 
2244 out:
2245 	if (!bitmap)
2246 		*base = *nr_ids = 0;
2247 
2248 	return bitmap;
2249 }
2250 
2251 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2252 {
2253 	WARN_ON(free_lpi_range(base, nr_ids));
2254 	bitmap_free(bitmap);
2255 }
2256 
2257 static void gic_reset_prop_table(void *va)
2258 {
2259 	/* Regular IRQ priority, Group-1, disabled */
2260 	memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2261 
2262 	/* Make sure the GIC will observe the written configuration */
2263 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2264 }
2265 
2266 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2267 {
2268 	struct page *prop_page;
2269 
2270 	prop_page = its_alloc_pages(gfp_flags,
2271 				    get_order(LPI_PROPBASE_SZ));
2272 	if (!prop_page)
2273 		return NULL;
2274 
2275 	gic_reset_prop_table(page_address(prop_page));
2276 
2277 	return prop_page;
2278 }
2279 
2280 static void its_free_prop_table(struct page *prop_page)
2281 {
2282 	its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ));
2283 }
2284 
2285 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2286 {
2287 	phys_addr_t start, end, addr_end;
2288 	u64 i;
2289 
2290 	/*
2291 	 * We don't bother checking for a kdump kernel as by
2292 	 * construction, the LPI tables are out of this kernel's
2293 	 * memory map.
2294 	 */
2295 	if (is_kdump_kernel())
2296 		return true;
2297 
2298 	addr_end = addr + size - 1;
2299 
2300 	for_each_reserved_mem_range(i, &start, &end) {
2301 		if (addr >= start && addr_end <= end)
2302 			return true;
2303 	}
2304 
2305 	/* Not found, not a good sign... */
2306 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2307 		&addr, &addr_end);
2308 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2309 	return false;
2310 }
2311 
2312 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2313 {
2314 	if (efi_enabled(EFI_CONFIG_TABLES))
2315 		return efi_mem_reserve_persistent(addr, size);
2316 
2317 	return 0;
2318 }
2319 
2320 static int __init its_setup_lpi_prop_table(void)
2321 {
2322 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2323 		u64 val;
2324 
2325 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2326 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2327 
2328 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2329 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2330 						     LPI_PROPBASE_SZ,
2331 						     MEMREMAP_WB);
2332 		gic_reset_prop_table(gic_rdists->prop_table_va);
2333 	} else {
2334 		struct page *page;
2335 
2336 		lpi_id_bits = min_t(u32,
2337 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2338 				    ITS_MAX_LPI_NRBITS);
2339 		page = its_allocate_prop_table(GFP_NOWAIT);
2340 		if (!page) {
2341 			pr_err("Failed to allocate PROPBASE\n");
2342 			return -ENOMEM;
2343 		}
2344 
2345 		gic_rdists->prop_table_pa = page_to_phys(page);
2346 		gic_rdists->prop_table_va = page_address(page);
2347 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2348 					  LPI_PROPBASE_SZ));
2349 	}
2350 
2351 	pr_info("GICv3: using LPI property table @%pa\n",
2352 		&gic_rdists->prop_table_pa);
2353 
2354 	return its_lpi_init(lpi_id_bits);
2355 }
2356 
2357 static const char *its_base_type_string[] = {
2358 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2359 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2360 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2361 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2362 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2363 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2364 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2365 };
2366 
2367 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2368 {
2369 	u32 idx = baser - its->tables;
2370 
2371 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2372 }
2373 
2374 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2375 			    u64 val)
2376 {
2377 	u32 idx = baser - its->tables;
2378 
2379 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2380 	baser->val = its_read_baser(its, baser);
2381 }
2382 
2383 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2384 			   u64 cache, u64 shr, u32 order, bool indirect)
2385 {
2386 	u64 val = its_read_baser(its, baser);
2387 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2388 	u64 type = GITS_BASER_TYPE(val);
2389 	u64 baser_phys, tmp;
2390 	u32 alloc_pages, psz;
2391 	struct page *page;
2392 	void *base;
2393 
2394 	psz = baser->psz;
2395 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2396 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2397 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2398 			&its->phys_base, its_base_type_string[type],
2399 			alloc_pages, GITS_BASER_PAGES_MAX);
2400 		alloc_pages = GITS_BASER_PAGES_MAX;
2401 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2402 	}
2403 
2404 	page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2405 	if (!page)
2406 		return -ENOMEM;
2407 
2408 	base = (void *)page_address(page);
2409 	baser_phys = virt_to_phys(base);
2410 
2411 	/* Check if the physical address of the memory is above 48bits */
2412 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2413 
2414 		/* 52bit PA is supported only when PageSize=64K */
2415 		if (psz != SZ_64K) {
2416 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2417 			its_free_pages(base, order);
2418 			return -ENXIO;
2419 		}
2420 
2421 		/* Convert 52bit PA to 48bit field */
2422 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2423 	}
2424 
2425 retry_baser:
2426 	val = (baser_phys					 |
2427 		(type << GITS_BASER_TYPE_SHIFT)			 |
2428 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2429 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2430 		cache						 |
2431 		shr						 |
2432 		GITS_BASER_VALID);
2433 
2434 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2435 
2436 	switch (psz) {
2437 	case SZ_4K:
2438 		val |= GITS_BASER_PAGE_SIZE_4K;
2439 		break;
2440 	case SZ_16K:
2441 		val |= GITS_BASER_PAGE_SIZE_16K;
2442 		break;
2443 	case SZ_64K:
2444 		val |= GITS_BASER_PAGE_SIZE_64K;
2445 		break;
2446 	}
2447 
2448 	if (!shr)
2449 		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2450 
2451 	its_write_baser(its, baser, val);
2452 	tmp = baser->val;
2453 
2454 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2455 		/*
2456 		 * Shareability didn't stick. Just use
2457 		 * whatever the read reported, which is likely
2458 		 * to be the only thing this redistributor
2459 		 * supports. If that's zero, make it
2460 		 * non-cacheable as well.
2461 		 */
2462 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2463 		if (!shr)
2464 			cache = GITS_BASER_nC;
2465 
2466 		goto retry_baser;
2467 	}
2468 
2469 	if (val != tmp) {
2470 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2471 		       &its->phys_base, its_base_type_string[type],
2472 		       val, tmp);
2473 		its_free_pages(base, order);
2474 		return -ENXIO;
2475 	}
2476 
2477 	baser->order = order;
2478 	baser->base = base;
2479 	baser->psz = psz;
2480 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2481 
2482 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2483 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2484 		its_base_type_string[type],
2485 		(unsigned long)virt_to_phys(base),
2486 		indirect ? "indirect" : "flat", (int)esz,
2487 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2488 
2489 	return 0;
2490 }
2491 
2492 static bool its_parse_indirect_baser(struct its_node *its,
2493 				     struct its_baser *baser,
2494 				     u32 *order, u32 ids)
2495 {
2496 	u64 tmp = its_read_baser(its, baser);
2497 	u64 type = GITS_BASER_TYPE(tmp);
2498 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2499 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2500 	u32 new_order = *order;
2501 	u32 psz = baser->psz;
2502 	bool indirect = false;
2503 
2504 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2505 	if ((esz << ids) > (psz * 2)) {
2506 		/*
2507 		 * Find out whether hw supports a single or two-level table by
2508 		 * table by reading bit at offset '62' after writing '1' to it.
2509 		 */
2510 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2511 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2512 
2513 		if (indirect) {
2514 			/*
2515 			 * The size of the lvl2 table is equal to ITS page size
2516 			 * which is 'psz'. For computing lvl1 table size,
2517 			 * subtract ID bits that sparse lvl2 table from 'ids'
2518 			 * which is reported by ITS hardware times lvl1 table
2519 			 * entry size.
2520 			 */
2521 			ids -= ilog2(psz / (int)esz);
2522 			esz = GITS_LVL1_ENTRY_SIZE;
2523 		}
2524 	}
2525 
2526 	/*
2527 	 * Allocate as many entries as required to fit the
2528 	 * range of device IDs that the ITS can grok... The ID
2529 	 * space being incredibly sparse, this results in a
2530 	 * massive waste of memory if two-level device table
2531 	 * feature is not supported by hardware.
2532 	 */
2533 	new_order = max_t(u32, get_order(esz << ids), new_order);
2534 	if (new_order > MAX_PAGE_ORDER) {
2535 		new_order = MAX_PAGE_ORDER;
2536 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2537 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2538 			&its->phys_base, its_base_type_string[type],
2539 			device_ids(its), ids);
2540 	}
2541 
2542 	*order = new_order;
2543 
2544 	return indirect;
2545 }
2546 
2547 static u32 compute_common_aff(u64 val)
2548 {
2549 	u32 aff, clpiaff;
2550 
2551 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2552 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2553 
2554 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2555 }
2556 
2557 static u32 compute_its_aff(struct its_node *its)
2558 {
2559 	u64 val;
2560 	u32 svpet;
2561 
2562 	/*
2563 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2564 	 * the resulting affinity. We then use that to see if this match
2565 	 * our own affinity.
2566 	 */
2567 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2568 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2569 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2570 	return compute_common_aff(val);
2571 }
2572 
2573 static struct its_node *find_sibling_its(struct its_node *cur_its)
2574 {
2575 	struct its_node *its;
2576 	u32 aff;
2577 
2578 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2579 		return NULL;
2580 
2581 	aff = compute_its_aff(cur_its);
2582 
2583 	list_for_each_entry(its, &its_nodes, entry) {
2584 		u64 baser;
2585 
2586 		if (!is_v4_1(its) || its == cur_its)
2587 			continue;
2588 
2589 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2590 			continue;
2591 
2592 		if (aff != compute_its_aff(its))
2593 			continue;
2594 
2595 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2596 		baser = its->tables[2].val;
2597 		if (!(baser & GITS_BASER_VALID))
2598 			continue;
2599 
2600 		return its;
2601 	}
2602 
2603 	return NULL;
2604 }
2605 
2606 static void its_free_tables(struct its_node *its)
2607 {
2608 	int i;
2609 
2610 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2611 		if (its->tables[i].base) {
2612 			its_free_pages(its->tables[i].base, its->tables[i].order);
2613 			its->tables[i].base = NULL;
2614 		}
2615 	}
2616 }
2617 
2618 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2619 {
2620 	u64 psz = SZ_64K;
2621 
2622 	while (psz) {
2623 		u64 val, gpsz;
2624 
2625 		val = its_read_baser(its, baser);
2626 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2627 
2628 		switch (psz) {
2629 		case SZ_64K:
2630 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2631 			break;
2632 		case SZ_16K:
2633 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2634 			break;
2635 		case SZ_4K:
2636 		default:
2637 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2638 			break;
2639 		}
2640 
2641 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2642 
2643 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2644 		its_write_baser(its, baser, val);
2645 
2646 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2647 			break;
2648 
2649 		switch (psz) {
2650 		case SZ_64K:
2651 			psz = SZ_16K;
2652 			break;
2653 		case SZ_16K:
2654 			psz = SZ_4K;
2655 			break;
2656 		case SZ_4K:
2657 		default:
2658 			return -1;
2659 		}
2660 	}
2661 
2662 	baser->psz = psz;
2663 	return 0;
2664 }
2665 
2666 static int its_alloc_tables(struct its_node *its)
2667 {
2668 	u64 shr = GITS_BASER_InnerShareable;
2669 	u64 cache = GITS_BASER_RaWaWb;
2670 	int err, i;
2671 
2672 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2673 		/* erratum 24313: ignore memory access type */
2674 		cache = GITS_BASER_nCnB;
2675 
2676 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2677 		cache = GITS_BASER_nC;
2678 		shr = 0;
2679 	}
2680 
2681 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2682 		struct its_baser *baser = its->tables + i;
2683 		u64 val = its_read_baser(its, baser);
2684 		u64 type = GITS_BASER_TYPE(val);
2685 		bool indirect = false;
2686 		u32 order;
2687 
2688 		if (type == GITS_BASER_TYPE_NONE)
2689 			continue;
2690 
2691 		if (its_probe_baser_psz(its, baser)) {
2692 			its_free_tables(its);
2693 			return -ENXIO;
2694 		}
2695 
2696 		order = get_order(baser->psz);
2697 
2698 		switch (type) {
2699 		case GITS_BASER_TYPE_DEVICE:
2700 			indirect = its_parse_indirect_baser(its, baser, &order,
2701 							    device_ids(its));
2702 			break;
2703 
2704 		case GITS_BASER_TYPE_VCPU:
2705 			if (is_v4_1(its)) {
2706 				struct its_node *sibling;
2707 
2708 				WARN_ON(i != 2);
2709 				if ((sibling = find_sibling_its(its))) {
2710 					*baser = sibling->tables[2];
2711 					its_write_baser(its, baser, baser->val);
2712 					continue;
2713 				}
2714 			}
2715 
2716 			indirect = its_parse_indirect_baser(its, baser, &order,
2717 							    ITS_MAX_VPEID_BITS);
2718 			break;
2719 		}
2720 
2721 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2722 		if (err < 0) {
2723 			its_free_tables(its);
2724 			return err;
2725 		}
2726 
2727 		/* Update settings which will be used for next BASERn */
2728 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2729 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2730 	}
2731 
2732 	return 0;
2733 }
2734 
2735 static u64 inherit_vpe_l1_table_from_its(void)
2736 {
2737 	struct its_node *its;
2738 	u64 val;
2739 	u32 aff;
2740 
2741 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2742 	aff = compute_common_aff(val);
2743 
2744 	list_for_each_entry(its, &its_nodes, entry) {
2745 		u64 baser, addr;
2746 
2747 		if (!is_v4_1(its))
2748 			continue;
2749 
2750 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2751 			continue;
2752 
2753 		if (aff != compute_its_aff(its))
2754 			continue;
2755 
2756 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2757 		baser = its->tables[2].val;
2758 		if (!(baser & GITS_BASER_VALID))
2759 			continue;
2760 
2761 		/* We have a winner! */
2762 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2763 
2764 		val  = GICR_VPROPBASER_4_1_VALID;
2765 		if (baser & GITS_BASER_INDIRECT)
2766 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2767 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2768 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2769 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2770 		case GIC_PAGE_SIZE_64K:
2771 			addr = GITS_BASER_ADDR_48_to_52(baser);
2772 			break;
2773 		default:
2774 			addr = baser & GENMASK_ULL(47, 12);
2775 			break;
2776 		}
2777 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2778 		if (rdists_support_shareable()) {
2779 			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2780 					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2781 			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2782 					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2783 		}
2784 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2785 
2786 		return val;
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2793 {
2794 	u32 aff;
2795 	u64 val;
2796 	int cpu;
2797 
2798 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2799 	aff = compute_common_aff(val);
2800 
2801 	for_each_possible_cpu(cpu) {
2802 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2803 
2804 		if (!base || cpu == smp_processor_id())
2805 			continue;
2806 
2807 		val = gic_read_typer(base + GICR_TYPER);
2808 		if (aff != compute_common_aff(val))
2809 			continue;
2810 
2811 		/*
2812 		 * At this point, we have a victim. This particular CPU
2813 		 * has already booted, and has an affinity that matches
2814 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2815 		 * Make sure we don't write the Z bit in that case.
2816 		 */
2817 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2818 		val &= ~GICR_VPROPBASER_4_1_Z;
2819 
2820 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2821 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2822 
2823 		return val;
2824 	}
2825 
2826 	return 0;
2827 }
2828 
2829 static bool allocate_vpe_l2_table(int cpu, u32 id)
2830 {
2831 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2832 	unsigned int psz, esz, idx, npg, gpsz;
2833 	u64 val;
2834 	struct page *page;
2835 	__le64 *table;
2836 
2837 	if (!gic_rdists->has_rvpeid)
2838 		return true;
2839 
2840 	/* Skip non-present CPUs */
2841 	if (!base)
2842 		return true;
2843 
2844 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2845 
2846 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2847 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2848 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2849 
2850 	switch (gpsz) {
2851 	default:
2852 		WARN_ON(1);
2853 		fallthrough;
2854 	case GIC_PAGE_SIZE_4K:
2855 		psz = SZ_4K;
2856 		break;
2857 	case GIC_PAGE_SIZE_16K:
2858 		psz = SZ_16K;
2859 		break;
2860 	case GIC_PAGE_SIZE_64K:
2861 		psz = SZ_64K;
2862 		break;
2863 	}
2864 
2865 	/* Don't allow vpe_id that exceeds single, flat table limit */
2866 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2867 		return (id < (npg * psz / (esz * SZ_8)));
2868 
2869 	/* Compute 1st level table index & check if that exceeds table limit */
2870 	idx = id >> ilog2(psz / (esz * SZ_8));
2871 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2872 		return false;
2873 
2874 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2875 
2876 	/* Allocate memory for 2nd level table */
2877 	if (!table[idx]) {
2878 		page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2879 		if (!page)
2880 			return false;
2881 
2882 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2883 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2884 			gic_flush_dcache_to_poc(page_address(page), psz);
2885 
2886 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2887 
2888 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2889 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2890 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2891 
2892 		/* Ensure updated table contents are visible to RD hardware */
2893 		dsb(sy);
2894 	}
2895 
2896 	return true;
2897 }
2898 
2899 static int allocate_vpe_l1_table(void)
2900 {
2901 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2902 	u64 val, gpsz, npg, pa;
2903 	unsigned int psz = SZ_64K;
2904 	unsigned int np, epp, esz;
2905 	struct page *page;
2906 
2907 	if (!gic_rdists->has_rvpeid)
2908 		return 0;
2909 
2910 	/*
2911 	 * if VPENDBASER.Valid is set, disable any previously programmed
2912 	 * VPE by setting PendingLast while clearing Valid. This has the
2913 	 * effect of making sure no doorbell will be generated and we can
2914 	 * then safely clear VPROPBASER.Valid.
2915 	 */
2916 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2917 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2918 				      vlpi_base + GICR_VPENDBASER);
2919 
2920 	/*
2921 	 * If we can inherit the configuration from another RD, let's do
2922 	 * so. Otherwise, we have to go through the allocation process. We
2923 	 * assume that all RDs have the exact same requirements, as
2924 	 * nothing will work otherwise.
2925 	 */
2926 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2927 	if (val & GICR_VPROPBASER_4_1_VALID)
2928 		goto out;
2929 
2930 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2931 	if (!gic_data_rdist()->vpe_table_mask)
2932 		return -ENOMEM;
2933 
2934 	val = inherit_vpe_l1_table_from_its();
2935 	if (val & GICR_VPROPBASER_4_1_VALID)
2936 		goto out;
2937 
2938 	/* First probe the page size */
2939 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2940 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2941 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2942 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2943 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2944 
2945 	switch (gpsz) {
2946 	default:
2947 		gpsz = GIC_PAGE_SIZE_4K;
2948 		fallthrough;
2949 	case GIC_PAGE_SIZE_4K:
2950 		psz = SZ_4K;
2951 		break;
2952 	case GIC_PAGE_SIZE_16K:
2953 		psz = SZ_16K;
2954 		break;
2955 	case GIC_PAGE_SIZE_64K:
2956 		psz = SZ_64K;
2957 		break;
2958 	}
2959 
2960 	/*
2961 	 * Start populating the register from scratch, including RO fields
2962 	 * (which we want to print in debug cases...)
2963 	 */
2964 	val = 0;
2965 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2966 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2967 
2968 	/* How many entries per GIC page? */
2969 	esz++;
2970 	epp = psz / (esz * SZ_8);
2971 
2972 	/*
2973 	 * If we need more than just a single L1 page, flag the table
2974 	 * as indirect and compute the number of required L1 pages.
2975 	 */
2976 	if (epp < ITS_MAX_VPEID) {
2977 		int nl2;
2978 
2979 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2980 
2981 		/* Number of L2 pages required to cover the VPEID space */
2982 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2983 
2984 		/* Number of L1 pages to point to the L2 pages */
2985 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2986 	} else {
2987 		npg = 1;
2988 	}
2989 
2990 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2991 
2992 	/* Right, that's the number of CPU pages we need for L1 */
2993 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2994 
2995 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2996 		 np, npg, psz, epp, esz);
2997 	page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2998 	if (!page)
2999 		return -ENOMEM;
3000 
3001 	gic_data_rdist()->vpe_l1_base = page_address(page);
3002 	pa = virt_to_phys(page_address(page));
3003 	WARN_ON(!IS_ALIGNED(pa, psz));
3004 
3005 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
3006 	if (rdists_support_shareable()) {
3007 		val |= GICR_VPROPBASER_RaWb;
3008 		val |= GICR_VPROPBASER_InnerShareable;
3009 	}
3010 	val |= GICR_VPROPBASER_4_1_Z;
3011 	val |= GICR_VPROPBASER_4_1_VALID;
3012 
3013 out:
3014 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3015 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
3016 
3017 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
3018 		 smp_processor_id(), val,
3019 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
3020 
3021 	return 0;
3022 }
3023 
3024 static int its_alloc_collections(struct its_node *its)
3025 {
3026 	int i;
3027 
3028 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
3029 				   GFP_KERNEL);
3030 	if (!its->collections)
3031 		return -ENOMEM;
3032 
3033 	for (i = 0; i < nr_cpu_ids; i++)
3034 		its->collections[i].target_address = ~0ULL;
3035 
3036 	return 0;
3037 }
3038 
3039 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
3040 {
3041 	struct page *pend_page;
3042 
3043 	pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ));
3044 	if (!pend_page)
3045 		return NULL;
3046 
3047 	/* Make sure the GIC will observe the zero-ed page */
3048 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
3049 
3050 	return pend_page;
3051 }
3052 
3053 static void its_free_pending_table(struct page *pt)
3054 {
3055 	its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ));
3056 }
3057 
3058 /*
3059  * Booting with kdump and LPIs enabled is generally fine. Any other
3060  * case is wrong in the absence of firmware/EFI support.
3061  */
3062 static bool enabled_lpis_allowed(void)
3063 {
3064 	phys_addr_t addr;
3065 	u64 val;
3066 
3067 	/* Check whether the property table is in a reserved region */
3068 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3069 	addr = val & GENMASK_ULL(51, 12);
3070 
3071 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3072 }
3073 
3074 static int __init allocate_lpi_tables(void)
3075 {
3076 	u64 val;
3077 	int err, cpu;
3078 
3079 	/*
3080 	 * If LPIs are enabled while we run this from the boot CPU,
3081 	 * flag the RD tables as pre-allocated if the stars do align.
3082 	 */
3083 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3084 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3085 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3086 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3087 		pr_info("GICv3: Using preallocated redistributor tables\n");
3088 	}
3089 
3090 	err = its_setup_lpi_prop_table();
3091 	if (err)
3092 		return err;
3093 
3094 	/*
3095 	 * We allocate all the pending tables anyway, as we may have a
3096 	 * mix of RDs that have had LPIs enabled, and some that
3097 	 * don't. We'll free the unused ones as each CPU comes online.
3098 	 */
3099 	for_each_possible_cpu(cpu) {
3100 		struct page *pend_page;
3101 
3102 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3103 		if (!pend_page) {
3104 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3105 			return -ENOMEM;
3106 		}
3107 
3108 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3109 	}
3110 
3111 	return 0;
3112 }
3113 
3114 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3115 {
3116 	u32 count = 1000000;	/* 1s! */
3117 	bool clean;
3118 	u64 val;
3119 
3120 	do {
3121 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3122 		clean = !(val & GICR_VPENDBASER_Dirty);
3123 		if (!clean) {
3124 			count--;
3125 			cpu_relax();
3126 			udelay(1);
3127 		}
3128 	} while (!clean && count);
3129 
3130 	if (unlikely(!clean))
3131 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3132 
3133 	return val;
3134 }
3135 
3136 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3137 {
3138 	u64 val;
3139 
3140 	/* Make sure we wait until the RD is done with the initial scan */
3141 	val = read_vpend_dirty_clear(vlpi_base);
3142 	val &= ~GICR_VPENDBASER_Valid;
3143 	val &= ~clr;
3144 	val |= set;
3145 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3146 
3147 	val = read_vpend_dirty_clear(vlpi_base);
3148 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3149 		val |= GICR_VPENDBASER_PendingLast;
3150 
3151 	return val;
3152 }
3153 
3154 static void its_cpu_init_lpis(void)
3155 {
3156 	void __iomem *rbase = gic_data_rdist_rd_base();
3157 	struct page *pend_page;
3158 	phys_addr_t paddr;
3159 	u64 val, tmp;
3160 
3161 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3162 		return;
3163 
3164 	val = readl_relaxed(rbase + GICR_CTLR);
3165 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3166 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3167 		/*
3168 		 * Check that we get the same property table on all
3169 		 * RDs. If we don't, this is hopeless.
3170 		 */
3171 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3172 		paddr &= GENMASK_ULL(51, 12);
3173 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3174 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3175 
3176 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3177 		paddr &= GENMASK_ULL(51, 16);
3178 
3179 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3180 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3181 
3182 		goto out;
3183 	}
3184 
3185 	pend_page = gic_data_rdist()->pend_page;
3186 	paddr = page_to_phys(pend_page);
3187 
3188 	/* set PROPBASE */
3189 	val = (gic_rdists->prop_table_pa |
3190 	       GICR_PROPBASER_InnerShareable |
3191 	       GICR_PROPBASER_RaWaWb |
3192 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3193 
3194 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3195 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3196 
3197 	if (!rdists_support_shareable())
3198 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3199 
3200 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3201 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3202 			/*
3203 			 * The HW reports non-shareable, we must
3204 			 * remove the cacheability attributes as
3205 			 * well.
3206 			 */
3207 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3208 				 GICR_PROPBASER_CACHEABILITY_MASK);
3209 			val |= GICR_PROPBASER_nC;
3210 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3211 		}
3212 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3213 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3214 	}
3215 
3216 	/* set PENDBASE */
3217 	val = (page_to_phys(pend_page) |
3218 	       GICR_PENDBASER_InnerShareable |
3219 	       GICR_PENDBASER_RaWaWb);
3220 
3221 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3222 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3223 
3224 	if (!rdists_support_shareable())
3225 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3226 
3227 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3228 		/*
3229 		 * The HW reports non-shareable, we must remove the
3230 		 * cacheability attributes as well.
3231 		 */
3232 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3233 			 GICR_PENDBASER_CACHEABILITY_MASK);
3234 		val |= GICR_PENDBASER_nC;
3235 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3236 	}
3237 
3238 	/* Enable LPIs */
3239 	val = readl_relaxed(rbase + GICR_CTLR);
3240 	val |= GICR_CTLR_ENABLE_LPIS;
3241 	writel_relaxed(val, rbase + GICR_CTLR);
3242 
3243 out:
3244 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3245 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3246 
3247 		/*
3248 		 * It's possible for CPU to receive VLPIs before it is
3249 		 * scheduled as a vPE, especially for the first CPU, and the
3250 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3251 		 * as out of range and dropped by GIC.
3252 		 * So we initialize IDbits to known value to avoid VLPI drop.
3253 		 */
3254 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3255 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3256 			smp_processor_id(), val);
3257 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3258 
3259 		/*
3260 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3261 		 * ancient programming gets left in and has possibility of
3262 		 * corrupting memory.
3263 		 */
3264 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3265 	}
3266 
3267 	if (allocate_vpe_l1_table()) {
3268 		/*
3269 		 * If the allocation has failed, we're in massive trouble.
3270 		 * Disable direct injection, and pray that no VM was
3271 		 * already running...
3272 		 */
3273 		gic_rdists->has_rvpeid = false;
3274 		gic_rdists->has_vlpis = false;
3275 	}
3276 
3277 	/* Make sure the GIC has seen the above */
3278 	dsb(sy);
3279 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3280 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3281 		smp_processor_id(),
3282 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3283 		"reserved" : "allocated",
3284 		&paddr);
3285 }
3286 
3287 static void its_cpu_init_collection(struct its_node *its)
3288 {
3289 	int cpu = smp_processor_id();
3290 	u64 target;
3291 
3292 	/* avoid cross node collections and its mapping */
3293 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3294 		struct device_node *cpu_node;
3295 
3296 		cpu_node = of_get_cpu_node(cpu, NULL);
3297 		if (its->numa_node != NUMA_NO_NODE &&
3298 			its->numa_node != of_node_to_nid(cpu_node))
3299 			return;
3300 	}
3301 
3302 	/*
3303 	 * We now have to bind each collection to its target
3304 	 * redistributor.
3305 	 */
3306 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3307 		/*
3308 		 * This ITS wants the physical address of the
3309 		 * redistributor.
3310 		 */
3311 		target = gic_data_rdist()->phys_base;
3312 	} else {
3313 		/* This ITS wants a linear CPU number. */
3314 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3315 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3316 	}
3317 
3318 	/* Perform collection mapping */
3319 	its->collections[cpu].target_address = target;
3320 	its->collections[cpu].col_id = cpu;
3321 
3322 	its_send_mapc(its, &its->collections[cpu], 1);
3323 	its_send_invall(its, &its->collections[cpu]);
3324 }
3325 
3326 static void its_cpu_init_collections(void)
3327 {
3328 	struct its_node *its;
3329 
3330 	raw_spin_lock(&its_lock);
3331 
3332 	list_for_each_entry(its, &its_nodes, entry)
3333 		its_cpu_init_collection(its);
3334 
3335 	raw_spin_unlock(&its_lock);
3336 }
3337 
3338 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3339 {
3340 	struct its_device *its_dev = NULL, *tmp;
3341 	unsigned long flags;
3342 
3343 	raw_spin_lock_irqsave(&its->lock, flags);
3344 
3345 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3346 		if (tmp->device_id == dev_id) {
3347 			its_dev = tmp;
3348 			break;
3349 		}
3350 	}
3351 
3352 	raw_spin_unlock_irqrestore(&its->lock, flags);
3353 
3354 	return its_dev;
3355 }
3356 
3357 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3358 {
3359 	int i;
3360 
3361 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3362 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3363 			return &its->tables[i];
3364 	}
3365 
3366 	return NULL;
3367 }
3368 
3369 static bool its_alloc_table_entry(struct its_node *its,
3370 				  struct its_baser *baser, u32 id)
3371 {
3372 	struct page *page;
3373 	u32 esz, idx;
3374 	__le64 *table;
3375 
3376 	/* Don't allow device id that exceeds single, flat table limit */
3377 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3378 	if (!(baser->val & GITS_BASER_INDIRECT))
3379 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3380 
3381 	/* Compute 1st level table index & check if that exceeds table limit */
3382 	idx = id >> ilog2(baser->psz / esz);
3383 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3384 		return false;
3385 
3386 	table = baser->base;
3387 
3388 	/* Allocate memory for 2nd level table */
3389 	if (!table[idx]) {
3390 		page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3391 					    get_order(baser->psz));
3392 		if (!page)
3393 			return false;
3394 
3395 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3396 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3397 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3398 
3399 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3400 
3401 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3402 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3403 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3404 
3405 		/* Ensure updated table contents are visible to ITS hardware */
3406 		dsb(sy);
3407 	}
3408 
3409 	return true;
3410 }
3411 
3412 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3413 {
3414 	struct its_baser *baser;
3415 
3416 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3417 
3418 	/* Don't allow device id that exceeds ITS hardware limit */
3419 	if (!baser)
3420 		return (ilog2(dev_id) < device_ids(its));
3421 
3422 	return its_alloc_table_entry(its, baser, dev_id);
3423 }
3424 
3425 static bool its_alloc_vpe_table(u32 vpe_id)
3426 {
3427 	struct its_node *its;
3428 	int cpu;
3429 
3430 	/*
3431 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3432 	 * could try and only do it on ITSs corresponding to devices
3433 	 * that have interrupts targeted at this VPE, but the
3434 	 * complexity becomes crazy (and you have tons of memory
3435 	 * anyway, right?).
3436 	 */
3437 	list_for_each_entry(its, &its_nodes, entry) {
3438 		struct its_baser *baser;
3439 
3440 		if (!is_v4(its))
3441 			continue;
3442 
3443 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3444 		if (!baser)
3445 			return false;
3446 
3447 		if (!its_alloc_table_entry(its, baser, vpe_id))
3448 			return false;
3449 	}
3450 
3451 	/* Non v4.1? No need to iterate RDs and go back early. */
3452 	if (!gic_rdists->has_rvpeid)
3453 		return true;
3454 
3455 	/*
3456 	 * Make sure the L2 tables are allocated for all copies of
3457 	 * the L1 table on *all* v4.1 RDs.
3458 	 */
3459 	for_each_possible_cpu(cpu) {
3460 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3461 			return false;
3462 	}
3463 
3464 	return true;
3465 }
3466 
3467 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3468 					    int nvecs, bool alloc_lpis)
3469 {
3470 	struct its_device *dev;
3471 	unsigned long *lpi_map = NULL;
3472 	unsigned long flags;
3473 	u16 *col_map = NULL;
3474 	void *itt;
3475 	int lpi_base;
3476 	int nr_lpis;
3477 	int nr_ites;
3478 	int sz;
3479 
3480 	if (!its_alloc_device_table(its, dev_id))
3481 		return NULL;
3482 
3483 	if (WARN_ON(!is_power_of_2(nvecs)))
3484 		nvecs = roundup_pow_of_two(nvecs);
3485 
3486 	/*
3487 	 * Even if the device wants a single LPI, the ITT must be
3488 	 * sized as a power of two (and you need at least one bit...).
3489 	 */
3490 	nr_ites = max(2, nvecs);
3491 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3492 	sz = max(sz, ITS_ITT_ALIGN);
3493 
3494 	itt = itt_alloc_pool(its->numa_node, sz);
3495 
3496 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3497 
3498 	if (alloc_lpis) {
3499 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3500 		if (lpi_map)
3501 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3502 					  GFP_KERNEL);
3503 	} else {
3504 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3505 		nr_lpis = 0;
3506 		lpi_base = 0;
3507 	}
3508 
3509 	if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3510 		kfree(dev);
3511 		itt_free_pool(itt, sz);
3512 		bitmap_free(lpi_map);
3513 		kfree(col_map);
3514 		return NULL;
3515 	}
3516 
3517 	gic_flush_dcache_to_poc(itt, sz);
3518 
3519 	dev->its = its;
3520 	dev->itt = itt;
3521 	dev->itt_sz = sz;
3522 	dev->nr_ites = nr_ites;
3523 	dev->event_map.lpi_map = lpi_map;
3524 	dev->event_map.col_map = col_map;
3525 	dev->event_map.lpi_base = lpi_base;
3526 	dev->event_map.nr_lpis = nr_lpis;
3527 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3528 	dev->device_id = dev_id;
3529 	INIT_LIST_HEAD(&dev->entry);
3530 
3531 	raw_spin_lock_irqsave(&its->lock, flags);
3532 	list_add(&dev->entry, &its->its_device_list);
3533 	raw_spin_unlock_irqrestore(&its->lock, flags);
3534 
3535 	/* Map device to its ITT */
3536 	its_send_mapd(dev, 1);
3537 
3538 	return dev;
3539 }
3540 
3541 static void its_free_device(struct its_device *its_dev)
3542 {
3543 	unsigned long flags;
3544 
3545 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3546 	list_del(&its_dev->entry);
3547 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3548 	kfree(its_dev->event_map.col_map);
3549 	itt_free_pool(its_dev->itt, its_dev->itt_sz);
3550 	kfree(its_dev);
3551 }
3552 
3553 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3554 {
3555 	int idx;
3556 
3557 	/* Find a free LPI region in lpi_map and allocate them. */
3558 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3559 				      dev->event_map.nr_lpis,
3560 				      get_count_order(nvecs));
3561 	if (idx < 0)
3562 		return -ENOSPC;
3563 
3564 	*hwirq = dev->event_map.lpi_base + idx;
3565 
3566 	return 0;
3567 }
3568 
3569 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3570 			   int nvec, msi_alloc_info_t *info)
3571 {
3572 	struct its_node *its;
3573 	struct its_device *its_dev;
3574 	struct msi_domain_info *msi_info;
3575 	u32 dev_id;
3576 	int err = 0;
3577 
3578 	/*
3579 	 * We ignore "dev" entirely, and rely on the dev_id that has
3580 	 * been passed via the scratchpad. This limits this domain's
3581 	 * usefulness to upper layers that definitely know that they
3582 	 * are built on top of the ITS.
3583 	 */
3584 	dev_id = info->scratchpad[0].ul;
3585 
3586 	msi_info = msi_get_domain_info(domain);
3587 	its = msi_info->data;
3588 
3589 	if (!gic_rdists->has_direct_lpi &&
3590 	    vpe_proxy.dev &&
3591 	    vpe_proxy.dev->its == its &&
3592 	    dev_id == vpe_proxy.dev->device_id) {
3593 		/* Bad luck. Get yourself a better implementation */
3594 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3595 			  dev_id);
3596 		return -EINVAL;
3597 	}
3598 
3599 	mutex_lock(&its->dev_alloc_lock);
3600 	its_dev = its_find_device(its, dev_id);
3601 	if (its_dev) {
3602 		/*
3603 		 * We already have seen this ID, probably through
3604 		 * another alias (PCI bridge of some sort). No need to
3605 		 * create the device.
3606 		 */
3607 		its_dev->shared = true;
3608 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3609 		goto out;
3610 	}
3611 
3612 	its_dev = its_create_device(its, dev_id, nvec, true);
3613 	if (!its_dev) {
3614 		err = -ENOMEM;
3615 		goto out;
3616 	}
3617 
3618 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3619 		its_dev->shared = true;
3620 
3621 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3622 out:
3623 	mutex_unlock(&its->dev_alloc_lock);
3624 	info->scratchpad[0].ptr = its_dev;
3625 	return err;
3626 }
3627 
3628 static struct msi_domain_ops its_msi_domain_ops = {
3629 	.msi_prepare	= its_msi_prepare,
3630 };
3631 
3632 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3633 				    unsigned int virq,
3634 				    irq_hw_number_t hwirq)
3635 {
3636 	struct irq_fwspec fwspec;
3637 
3638 	if (irq_domain_get_of_node(domain->parent)) {
3639 		fwspec.fwnode = domain->parent->fwnode;
3640 		fwspec.param_count = 3;
3641 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3642 		fwspec.param[1] = hwirq;
3643 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3644 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3645 		fwspec.fwnode = domain->parent->fwnode;
3646 		fwspec.param_count = 2;
3647 		fwspec.param[0] = hwirq;
3648 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3649 	} else {
3650 		return -EINVAL;
3651 	}
3652 
3653 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3654 }
3655 
3656 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3657 				unsigned int nr_irqs, void *args)
3658 {
3659 	msi_alloc_info_t *info = args;
3660 	struct its_device *its_dev = info->scratchpad[0].ptr;
3661 	struct its_node *its = its_dev->its;
3662 	struct irq_data *irqd;
3663 	irq_hw_number_t hwirq;
3664 	int err;
3665 	int i;
3666 
3667 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3668 	if (err)
3669 		return err;
3670 
3671 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3672 	if (err)
3673 		return err;
3674 
3675 	for (i = 0; i < nr_irqs; i++) {
3676 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3677 		if (err)
3678 			return err;
3679 
3680 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3681 					      hwirq + i, &its_irq_chip, its_dev);
3682 		irqd = irq_get_irq_data(virq + i);
3683 		irqd_set_single_target(irqd);
3684 		irqd_set_affinity_on_activate(irqd);
3685 		irqd_set_resend_when_in_progress(irqd);
3686 		pr_debug("ID:%d pID:%d vID:%d\n",
3687 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3688 			 (int)(hwirq + i), virq + i);
3689 	}
3690 
3691 	return 0;
3692 }
3693 
3694 static int its_irq_domain_activate(struct irq_domain *domain,
3695 				   struct irq_data *d, bool reserve)
3696 {
3697 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3698 	u32 event = its_get_event_id(d);
3699 	int cpu;
3700 
3701 	cpu = its_select_cpu(d, cpu_online_mask);
3702 	if (cpu < 0 || cpu >= nr_cpu_ids)
3703 		return -EINVAL;
3704 
3705 	its_inc_lpi_count(d, cpu);
3706 	its_dev->event_map.col_map[event] = cpu;
3707 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3708 
3709 	/* Map the GIC IRQ and event to the device */
3710 	its_send_mapti(its_dev, d->hwirq, event);
3711 	return 0;
3712 }
3713 
3714 static void its_irq_domain_deactivate(struct irq_domain *domain,
3715 				      struct irq_data *d)
3716 {
3717 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3718 	u32 event = its_get_event_id(d);
3719 
3720 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3721 	/* Stop the delivery of interrupts */
3722 	its_send_discard(its_dev, event);
3723 }
3724 
3725 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3726 				unsigned int nr_irqs)
3727 {
3728 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3729 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3730 	struct its_node *its = its_dev->its;
3731 	int i;
3732 
3733 	bitmap_release_region(its_dev->event_map.lpi_map,
3734 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3735 			      get_count_order(nr_irqs));
3736 
3737 	for (i = 0; i < nr_irqs; i++) {
3738 		struct irq_data *data = irq_domain_get_irq_data(domain,
3739 								virq + i);
3740 		/* Nuke the entry in the domain */
3741 		irq_domain_reset_irq_data(data);
3742 	}
3743 
3744 	mutex_lock(&its->dev_alloc_lock);
3745 
3746 	/*
3747 	 * If all interrupts have been freed, start mopping the
3748 	 * floor. This is conditioned on the device not being shared.
3749 	 */
3750 	if (!its_dev->shared &&
3751 	    bitmap_empty(its_dev->event_map.lpi_map,
3752 			 its_dev->event_map.nr_lpis)) {
3753 		its_lpi_free(its_dev->event_map.lpi_map,
3754 			     its_dev->event_map.lpi_base,
3755 			     its_dev->event_map.nr_lpis);
3756 
3757 		/* Unmap device/itt */
3758 		its_send_mapd(its_dev, 0);
3759 		its_free_device(its_dev);
3760 	}
3761 
3762 	mutex_unlock(&its->dev_alloc_lock);
3763 
3764 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3765 }
3766 
3767 static const struct irq_domain_ops its_domain_ops = {
3768 	.select			= msi_lib_irq_domain_select,
3769 	.alloc			= its_irq_domain_alloc,
3770 	.free			= its_irq_domain_free,
3771 	.activate		= its_irq_domain_activate,
3772 	.deactivate		= its_irq_domain_deactivate,
3773 };
3774 
3775 /*
3776  * This is insane.
3777  *
3778  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3779  * likely), the only way to perform an invalidate is to use a fake
3780  * device to issue an INV command, implying that the LPI has first
3781  * been mapped to some event on that device. Since this is not exactly
3782  * cheap, we try to keep that mapping around as long as possible, and
3783  * only issue an UNMAP if we're short on available slots.
3784  *
3785  * Broken by design(tm).
3786  *
3787  * GICv4.1, on the other hand, mandates that we're able to invalidate
3788  * by writing to a MMIO register. It doesn't implement the whole of
3789  * DirectLPI, but that's good enough. And most of the time, we don't
3790  * even have to invalidate anything, as the redistributor can be told
3791  * whether to generate a doorbell or not (we thus leave it enabled,
3792  * always).
3793  */
3794 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3795 {
3796 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3797 	if (gic_rdists->has_rvpeid)
3798 		return;
3799 
3800 	/* Already unmapped? */
3801 	if (vpe->vpe_proxy_event == -1)
3802 		return;
3803 
3804 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3805 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3806 
3807 	/*
3808 	 * We don't track empty slots at all, so let's move the
3809 	 * next_victim pointer if we can quickly reuse that slot
3810 	 * instead of nuking an existing entry. Not clear that this is
3811 	 * always a win though, and this might just generate a ripple
3812 	 * effect... Let's just hope VPEs don't migrate too often.
3813 	 */
3814 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3815 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3816 
3817 	vpe->vpe_proxy_event = -1;
3818 }
3819 
3820 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3821 {
3822 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3823 	if (gic_rdists->has_rvpeid)
3824 		return;
3825 
3826 	if (!gic_rdists->has_direct_lpi) {
3827 		unsigned long flags;
3828 
3829 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3830 		its_vpe_db_proxy_unmap_locked(vpe);
3831 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3832 	}
3833 }
3834 
3835 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3836 {
3837 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3838 	if (gic_rdists->has_rvpeid)
3839 		return;
3840 
3841 	/* Already mapped? */
3842 	if (vpe->vpe_proxy_event != -1)
3843 		return;
3844 
3845 	/* This slot was already allocated. Kick the other VPE out. */
3846 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3847 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3848 
3849 	/* Map the new VPE instead */
3850 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3851 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3852 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3853 
3854 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3855 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3856 }
3857 
3858 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3859 {
3860 	unsigned long flags;
3861 	struct its_collection *target_col;
3862 
3863 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3864 	if (gic_rdists->has_rvpeid)
3865 		return;
3866 
3867 	if (gic_rdists->has_direct_lpi) {
3868 		void __iomem *rdbase;
3869 
3870 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3871 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3872 		wait_for_syncr(rdbase);
3873 
3874 		return;
3875 	}
3876 
3877 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3878 
3879 	its_vpe_db_proxy_map_locked(vpe);
3880 
3881 	target_col = &vpe_proxy.dev->its->collections[to];
3882 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3883 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3884 
3885 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3886 }
3887 
3888 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe)
3889 {
3890 	void __iomem *rdbase;
3891 	u64 val;
3892 
3893 	val  = GICR_INVALLR_V;
3894 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3895 
3896 	guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock);
3897 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
3898 	gic_write_lpir(val, rdbase + GICR_INVALLR);
3899 	wait_for_syncr(rdbase);
3900 }
3901 
3902 static int its_vpe_set_affinity(struct irq_data *d,
3903 				const struct cpumask *mask_val,
3904 				bool force)
3905 {
3906 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3907 	unsigned int from, cpu = nr_cpu_ids;
3908 	struct cpumask *table_mask;
3909 	struct its_node *its;
3910 	unsigned long flags;
3911 
3912 	/*
3913 	 * Check if we're racing against a VPE being destroyed, for
3914 	 * which we don't want to allow a VMOVP.
3915 	 */
3916 	if (!atomic_read(&vpe->vmapp_count)) {
3917 		if (gic_requires_eager_mapping())
3918 			return -EINVAL;
3919 
3920 		/*
3921 		 * If we lazily map the VPEs, this isn't an error and
3922 		 * we can exit cleanly.
3923 		 */
3924 		cpu = cpumask_first(mask_val);
3925 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
3926 		return IRQ_SET_MASK_OK_DONE;
3927 	}
3928 
3929 	/*
3930 	 * Changing affinity is mega expensive, so let's be as lazy as
3931 	 * we can and only do it if we really have to. Also, if mapped
3932 	 * into the proxy device, we need to move the doorbell
3933 	 * interrupt to its new location.
3934 	 *
3935 	 * Another thing is that changing the affinity of a vPE affects
3936 	 * *other interrupts* such as all the vLPIs that are routed to
3937 	 * this vPE. This means that the irq_desc lock is not enough to
3938 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3939 	 * during the update, hence the lock below which must also be
3940 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3941 	 *
3942 	 * Finally, we must protect ourselves against concurrent updates of
3943 	 * the mapping state on this VM should the ITS list be in use (see
3944 	 * the shortcut in its_send_vmovp() otherewise).
3945 	 */
3946 	if (its_list_map)
3947 		raw_spin_lock(&vpe->its_vm->vmapp_lock);
3948 
3949 	from = vpe_to_cpuid_lock(vpe, &flags);
3950 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3951 
3952 	/*
3953 	 * If we are offered another CPU in the same GICv4.1 ITS
3954 	 * affinity, pick this one. Otherwise, any CPU will do.
3955 	 */
3956 	if (table_mask)
3957 		cpu = cpumask_any_and(mask_val, table_mask);
3958 	if (cpu < nr_cpu_ids) {
3959 		if (cpumask_test_cpu(from, mask_val) &&
3960 		    cpumask_test_cpu(from, table_mask))
3961 			cpu = from;
3962 	} else {
3963 		cpu = cpumask_first(mask_val);
3964 	}
3965 
3966 	if (from == cpu)
3967 		goto out;
3968 
3969 	vpe->col_idx = cpu;
3970 
3971 	its_send_vmovp(vpe);
3972 
3973 	its = find_4_1_its();
3974 	if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801)
3975 		its_vpe_4_1_invall_locked(cpu, vpe);
3976 
3977 	its_vpe_db_proxy_move(vpe, from, cpu);
3978 
3979 out:
3980 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3981 	vpe_to_cpuid_unlock(vpe, flags);
3982 
3983 	if (its_list_map)
3984 		raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3985 
3986 	return IRQ_SET_MASK_OK_DONE;
3987 }
3988 
3989 static void its_wait_vpt_parse_complete(void)
3990 {
3991 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3992 	u64 val;
3993 
3994 	if (!gic_rdists->has_vpend_valid_dirty)
3995 		return;
3996 
3997 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3998 						       val,
3999 						       !(val & GICR_VPENDBASER_Dirty),
4000 						       1, 500));
4001 }
4002 
4003 static void its_vpe_schedule(struct its_vpe *vpe)
4004 {
4005 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4006 	u64 val;
4007 
4008 	/* Schedule the VPE */
4009 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
4010 		GENMASK_ULL(51, 12);
4011 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
4012 	if (rdists_support_shareable()) {
4013 		val |= GICR_VPROPBASER_RaWb;
4014 		val |= GICR_VPROPBASER_InnerShareable;
4015 	}
4016 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
4017 
4018 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
4019 		GENMASK_ULL(51, 16);
4020 	if (rdists_support_shareable()) {
4021 		val |= GICR_VPENDBASER_RaWaWb;
4022 		val |= GICR_VPENDBASER_InnerShareable;
4023 	}
4024 	/*
4025 	 * There is no good way of finding out if the pending table is
4026 	 * empty as we can race against the doorbell interrupt very
4027 	 * easily. So in the end, vpe->pending_last is only an
4028 	 * indication that the vcpu has something pending, not one
4029 	 * that the pending table is empty. A good implementation
4030 	 * would be able to read its coarse map pretty quickly anyway,
4031 	 * making this a tolerable issue.
4032 	 */
4033 	val |= GICR_VPENDBASER_PendingLast;
4034 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
4035 	val |= GICR_VPENDBASER_Valid;
4036 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4037 }
4038 
4039 static void its_vpe_deschedule(struct its_vpe *vpe)
4040 {
4041 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4042 	u64 val;
4043 
4044 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
4045 
4046 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
4047 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4048 }
4049 
4050 static void its_vpe_invall(struct its_vpe *vpe)
4051 {
4052 	struct its_node *its;
4053 
4054 	guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
4055 
4056 	list_for_each_entry(its, &its_nodes, entry) {
4057 		if (!is_v4(its))
4058 			continue;
4059 
4060 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
4061 			continue;
4062 
4063 		/*
4064 		 * Sending a VINVALL to a single ITS is enough, as all
4065 		 * we need is to reach the redistributors.
4066 		 */
4067 		its_send_vinvall(its, vpe);
4068 		return;
4069 	}
4070 }
4071 
4072 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4073 {
4074 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4075 	struct its_cmd_info *info = vcpu_info;
4076 
4077 	switch (info->cmd_type) {
4078 	case SCHEDULE_VPE:
4079 		its_vpe_schedule(vpe);
4080 		return 0;
4081 
4082 	case DESCHEDULE_VPE:
4083 		its_vpe_deschedule(vpe);
4084 		return 0;
4085 
4086 	case COMMIT_VPE:
4087 		its_wait_vpt_parse_complete();
4088 		return 0;
4089 
4090 	case INVALL_VPE:
4091 		its_vpe_invall(vpe);
4092 		return 0;
4093 
4094 	default:
4095 		return -EINVAL;
4096 	}
4097 }
4098 
4099 static void its_vpe_send_cmd(struct its_vpe *vpe,
4100 			     void (*cmd)(struct its_device *, u32))
4101 {
4102 	unsigned long flags;
4103 
4104 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
4105 
4106 	its_vpe_db_proxy_map_locked(vpe);
4107 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
4108 
4109 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
4110 }
4111 
4112 static void its_vpe_send_inv(struct irq_data *d)
4113 {
4114 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4115 
4116 	if (gic_rdists->has_direct_lpi)
4117 		__direct_lpi_inv(d, d->parent_data->hwirq);
4118 	else
4119 		its_vpe_send_cmd(vpe, its_send_inv);
4120 }
4121 
4122 static void its_vpe_mask_irq(struct irq_data *d)
4123 {
4124 	/*
4125 	 * We need to unmask the LPI, which is described by the parent
4126 	 * irq_data. Instead of calling into the parent (which won't
4127 	 * exactly do the right thing, let's simply use the
4128 	 * parent_data pointer. Yes, I'm naughty.
4129 	 */
4130 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4131 	its_vpe_send_inv(d);
4132 }
4133 
4134 static void its_vpe_unmask_irq(struct irq_data *d)
4135 {
4136 	/* Same hack as above... */
4137 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4138 	its_vpe_send_inv(d);
4139 }
4140 
4141 static int its_vpe_set_irqchip_state(struct irq_data *d,
4142 				     enum irqchip_irq_state which,
4143 				     bool state)
4144 {
4145 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4146 
4147 	if (which != IRQCHIP_STATE_PENDING)
4148 		return -EINVAL;
4149 
4150 	if (gic_rdists->has_direct_lpi) {
4151 		void __iomem *rdbase;
4152 
4153 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4154 		if (state) {
4155 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4156 		} else {
4157 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4158 			wait_for_syncr(rdbase);
4159 		}
4160 	} else {
4161 		if (state)
4162 			its_vpe_send_cmd(vpe, its_send_int);
4163 		else
4164 			its_vpe_send_cmd(vpe, its_send_clear);
4165 	}
4166 
4167 	return 0;
4168 }
4169 
4170 static int its_vpe_retrigger(struct irq_data *d)
4171 {
4172 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4173 }
4174 
4175 static struct irq_chip its_vpe_irq_chip = {
4176 	.name			= "GICv4-vpe",
4177 	.irq_mask		= its_vpe_mask_irq,
4178 	.irq_unmask		= its_vpe_unmask_irq,
4179 	.irq_eoi		= irq_chip_eoi_parent,
4180 	.irq_set_affinity	= its_vpe_set_affinity,
4181 	.irq_retrigger		= its_vpe_retrigger,
4182 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4183 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4184 };
4185 
4186 static struct its_node *find_4_1_its(void)
4187 {
4188 	static struct its_node *its = NULL;
4189 
4190 	if (!its) {
4191 		list_for_each_entry(its, &its_nodes, entry) {
4192 			if (is_v4_1(its))
4193 				return its;
4194 		}
4195 
4196 		/* Oops? */
4197 		its = NULL;
4198 	}
4199 
4200 	return its;
4201 }
4202 
4203 static void its_vpe_4_1_send_inv(struct irq_data *d)
4204 {
4205 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4206 	struct its_node *its;
4207 
4208 	/*
4209 	 * GICv4.1 wants doorbells to be invalidated using the
4210 	 * INVDB command in order to be broadcast to all RDs. Send
4211 	 * it to the first valid ITS, and let the HW do its magic.
4212 	 */
4213 	its = find_4_1_its();
4214 	if (its)
4215 		its_send_invdb(its, vpe);
4216 }
4217 
4218 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4219 {
4220 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4221 	its_vpe_4_1_send_inv(d);
4222 }
4223 
4224 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4225 {
4226 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4227 	its_vpe_4_1_send_inv(d);
4228 }
4229 
4230 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4231 				 struct its_cmd_info *info)
4232 {
4233 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4234 	u64 val = 0;
4235 
4236 	/* Schedule the VPE */
4237 	val |= GICR_VPENDBASER_Valid;
4238 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4239 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4240 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4241 
4242 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4243 }
4244 
4245 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4246 				   struct its_cmd_info *info)
4247 {
4248 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4249 	u64 val;
4250 
4251 	if (info->req_db) {
4252 		unsigned long flags;
4253 
4254 		/*
4255 		 * vPE is going to block: make the vPE non-resident with
4256 		 * PendingLast clear and DB set. The GIC guarantees that if
4257 		 * we read-back PendingLast clear, then a doorbell will be
4258 		 * delivered when an interrupt comes.
4259 		 *
4260 		 * Note the locking to deal with the concurrent update of
4261 		 * pending_last from the doorbell interrupt handler that can
4262 		 * run concurrently.
4263 		 */
4264 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4265 		val = its_clear_vpend_valid(vlpi_base,
4266 					    GICR_VPENDBASER_PendingLast,
4267 					    GICR_VPENDBASER_4_1_DB);
4268 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4269 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4270 	} else {
4271 		/*
4272 		 * We're not blocking, so just make the vPE non-resident
4273 		 * with PendingLast set, indicating that we'll be back.
4274 		 */
4275 		val = its_clear_vpend_valid(vlpi_base,
4276 					    0,
4277 					    GICR_VPENDBASER_PendingLast);
4278 		vpe->pending_last = true;
4279 	}
4280 }
4281 
4282 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4283 {
4284 	unsigned long flags;
4285 	int cpu;
4286 
4287 	/* Target the redistributor this vPE is currently known on */
4288 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4289 	its_vpe_4_1_invall_locked(cpu, vpe);
4290 	vpe_to_cpuid_unlock(vpe, flags);
4291 }
4292 
4293 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4294 {
4295 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4296 	struct its_cmd_info *info = vcpu_info;
4297 
4298 	switch (info->cmd_type) {
4299 	case SCHEDULE_VPE:
4300 		its_vpe_4_1_schedule(vpe, info);
4301 		return 0;
4302 
4303 	case DESCHEDULE_VPE:
4304 		its_vpe_4_1_deschedule(vpe, info);
4305 		return 0;
4306 
4307 	case COMMIT_VPE:
4308 		its_wait_vpt_parse_complete();
4309 		return 0;
4310 
4311 	case INVALL_VPE:
4312 		its_vpe_4_1_invall(vpe);
4313 		return 0;
4314 
4315 	default:
4316 		return -EINVAL;
4317 	}
4318 }
4319 
4320 static struct irq_chip its_vpe_4_1_irq_chip = {
4321 	.name			= "GICv4.1-vpe",
4322 	.irq_mask		= its_vpe_4_1_mask_irq,
4323 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4324 	.irq_eoi		= irq_chip_eoi_parent,
4325 	.irq_set_affinity	= its_vpe_set_affinity,
4326 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4327 };
4328 
4329 static void its_configure_sgi(struct irq_data *d, bool clear)
4330 {
4331 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4332 	struct its_cmd_desc desc;
4333 
4334 	desc.its_vsgi_cmd.vpe = vpe;
4335 	desc.its_vsgi_cmd.sgi = d->hwirq;
4336 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4337 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4338 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4339 	desc.its_vsgi_cmd.clear = clear;
4340 
4341 	/*
4342 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4343 	 * destination VPE is mapped there. Since we map them eagerly at
4344 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4345 	 */
4346 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4347 }
4348 
4349 static void its_sgi_mask_irq(struct irq_data *d)
4350 {
4351 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4352 
4353 	vpe->sgi_config[d->hwirq].enabled = false;
4354 	its_configure_sgi(d, false);
4355 }
4356 
4357 static void its_sgi_unmask_irq(struct irq_data *d)
4358 {
4359 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4360 
4361 	vpe->sgi_config[d->hwirq].enabled = true;
4362 	its_configure_sgi(d, false);
4363 }
4364 
4365 static int its_sgi_set_affinity(struct irq_data *d,
4366 				const struct cpumask *mask_val,
4367 				bool force)
4368 {
4369 	/*
4370 	 * There is no notion of affinity for virtual SGIs, at least
4371 	 * not on the host (since they can only be targeting a vPE).
4372 	 * Tell the kernel we've done whatever it asked for.
4373 	 */
4374 	irq_data_update_effective_affinity(d, mask_val);
4375 	return IRQ_SET_MASK_OK;
4376 }
4377 
4378 static int its_sgi_set_irqchip_state(struct irq_data *d,
4379 				     enum irqchip_irq_state which,
4380 				     bool state)
4381 {
4382 	if (which != IRQCHIP_STATE_PENDING)
4383 		return -EINVAL;
4384 
4385 	if (state) {
4386 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4387 		struct its_node *its = find_4_1_its();
4388 		u64 val;
4389 
4390 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4391 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4392 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4393 	} else {
4394 		its_configure_sgi(d, true);
4395 	}
4396 
4397 	return 0;
4398 }
4399 
4400 static int its_sgi_get_irqchip_state(struct irq_data *d,
4401 				     enum irqchip_irq_state which, bool *val)
4402 {
4403 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4404 	void __iomem *base;
4405 	unsigned long flags;
4406 	u32 count = 1000000;	/* 1s! */
4407 	u32 status;
4408 	int cpu;
4409 
4410 	if (which != IRQCHIP_STATE_PENDING)
4411 		return -EINVAL;
4412 
4413 	/*
4414 	 * Locking galore! We can race against two different events:
4415 	 *
4416 	 * - Concurrent vPE affinity change: we must make sure it cannot
4417 	 *   happen, or we'll talk to the wrong redistributor. This is
4418 	 *   identical to what happens with vLPIs.
4419 	 *
4420 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4421 	 *   MMIO registers, this must be made atomic one way or another.
4422 	 */
4423 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4424 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4425 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4426 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4427 	do {
4428 		status = readl_relaxed(base + GICR_VSGIPENDR);
4429 		if (!(status & GICR_VSGIPENDR_BUSY))
4430 			goto out;
4431 
4432 		count--;
4433 		if (!count) {
4434 			pr_err_ratelimited("Unable to get SGI status\n");
4435 			goto out;
4436 		}
4437 		cpu_relax();
4438 		udelay(1);
4439 	} while (count);
4440 
4441 out:
4442 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4443 	vpe_to_cpuid_unlock(vpe, flags);
4444 
4445 	if (!count)
4446 		return -ENXIO;
4447 
4448 	*val = !!(status & (1 << d->hwirq));
4449 
4450 	return 0;
4451 }
4452 
4453 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4454 {
4455 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4456 	struct its_cmd_info *info = vcpu_info;
4457 
4458 	switch (info->cmd_type) {
4459 	case PROP_UPDATE_VSGI:
4460 		vpe->sgi_config[d->hwirq].priority = info->priority;
4461 		vpe->sgi_config[d->hwirq].group = info->group;
4462 		its_configure_sgi(d, false);
4463 		return 0;
4464 
4465 	default:
4466 		return -EINVAL;
4467 	}
4468 }
4469 
4470 static struct irq_chip its_sgi_irq_chip = {
4471 	.name			= "GICv4.1-sgi",
4472 	.irq_mask		= its_sgi_mask_irq,
4473 	.irq_unmask		= its_sgi_unmask_irq,
4474 	.irq_set_affinity	= its_sgi_set_affinity,
4475 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4476 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4477 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4478 };
4479 
4480 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4481 				    unsigned int virq, unsigned int nr_irqs,
4482 				    void *args)
4483 {
4484 	struct its_vpe *vpe = args;
4485 	int i;
4486 
4487 	/* Yes, we do want 16 SGIs */
4488 	WARN_ON(nr_irqs != 16);
4489 
4490 	for (i = 0; i < 16; i++) {
4491 		vpe->sgi_config[i].priority = 0;
4492 		vpe->sgi_config[i].enabled = false;
4493 		vpe->sgi_config[i].group = false;
4494 
4495 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4496 					      &its_sgi_irq_chip, vpe);
4497 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4498 	}
4499 
4500 	return 0;
4501 }
4502 
4503 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4504 				    unsigned int virq,
4505 				    unsigned int nr_irqs)
4506 {
4507 	/* Nothing to do */
4508 }
4509 
4510 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4511 				       struct irq_data *d, bool reserve)
4512 {
4513 	/* Write out the initial SGI configuration */
4514 	its_configure_sgi(d, false);
4515 	return 0;
4516 }
4517 
4518 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4519 					  struct irq_data *d)
4520 {
4521 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4522 
4523 	/*
4524 	 * The VSGI command is awkward:
4525 	 *
4526 	 * - To change the configuration, CLEAR must be set to false,
4527 	 *   leaving the pending bit unchanged.
4528 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4529 	 *   the configuration unchanged.
4530 	 *
4531 	 * You just can't do both at once, hence the two commands below.
4532 	 */
4533 	vpe->sgi_config[d->hwirq].enabled = false;
4534 	its_configure_sgi(d, false);
4535 	its_configure_sgi(d, true);
4536 }
4537 
4538 static const struct irq_domain_ops its_sgi_domain_ops = {
4539 	.alloc		= its_sgi_irq_domain_alloc,
4540 	.free		= its_sgi_irq_domain_free,
4541 	.activate	= its_sgi_irq_domain_activate,
4542 	.deactivate	= its_sgi_irq_domain_deactivate,
4543 };
4544 
4545 static int its_vpe_id_alloc(void)
4546 {
4547 	return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4548 }
4549 
4550 static void its_vpe_id_free(u16 id)
4551 {
4552 	ida_free(&its_vpeid_ida, id);
4553 }
4554 
4555 static int its_vpe_init(struct its_vpe *vpe)
4556 {
4557 	struct page *vpt_page;
4558 	int vpe_id;
4559 
4560 	/* Allocate vpe_id */
4561 	vpe_id = its_vpe_id_alloc();
4562 	if (vpe_id < 0)
4563 		return vpe_id;
4564 
4565 	/* Allocate VPT */
4566 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4567 	if (!vpt_page) {
4568 		its_vpe_id_free(vpe_id);
4569 		return -ENOMEM;
4570 	}
4571 
4572 	if (!its_alloc_vpe_table(vpe_id)) {
4573 		its_vpe_id_free(vpe_id);
4574 		its_free_pending_table(vpt_page);
4575 		return -ENOMEM;
4576 	}
4577 
4578 	raw_spin_lock_init(&vpe->vpe_lock);
4579 	vpe->vpe_id = vpe_id;
4580 	vpe->vpt_page = vpt_page;
4581 	atomic_set(&vpe->vmapp_count, 0);
4582 	if (!gic_rdists->has_rvpeid)
4583 		vpe->vpe_proxy_event = -1;
4584 
4585 	return 0;
4586 }
4587 
4588 static void its_vpe_teardown(struct its_vpe *vpe)
4589 {
4590 	its_vpe_db_proxy_unmap(vpe);
4591 	its_vpe_id_free(vpe->vpe_id);
4592 	its_free_pending_table(vpe->vpt_page);
4593 }
4594 
4595 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4596 				    unsigned int virq,
4597 				    unsigned int nr_irqs)
4598 {
4599 	struct its_vm *vm = domain->host_data;
4600 	int i;
4601 
4602 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4603 
4604 	for (i = 0; i < nr_irqs; i++) {
4605 		struct irq_data *data = irq_domain_get_irq_data(domain,
4606 								virq + i);
4607 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4608 
4609 		BUG_ON(vm != vpe->its_vm);
4610 
4611 		clear_bit(data->hwirq, vm->db_bitmap);
4612 		its_vpe_teardown(vpe);
4613 		irq_domain_reset_irq_data(data);
4614 	}
4615 
4616 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4617 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4618 		its_free_prop_table(vm->vprop_page);
4619 	}
4620 }
4621 
4622 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4623 				    unsigned int nr_irqs, void *args)
4624 {
4625 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4626 	struct its_vm *vm = args;
4627 	unsigned long *bitmap;
4628 	struct page *vprop_page;
4629 	int base, nr_ids, i, err = 0;
4630 
4631 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4632 	if (!bitmap)
4633 		return -ENOMEM;
4634 
4635 	if (nr_ids < nr_irqs) {
4636 		its_lpi_free(bitmap, base, nr_ids);
4637 		return -ENOMEM;
4638 	}
4639 
4640 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4641 	if (!vprop_page) {
4642 		its_lpi_free(bitmap, base, nr_ids);
4643 		return -ENOMEM;
4644 	}
4645 
4646 	vm->db_bitmap = bitmap;
4647 	vm->db_lpi_base = base;
4648 	vm->nr_db_lpis = nr_ids;
4649 	vm->vprop_page = vprop_page;
4650 	raw_spin_lock_init(&vm->vmapp_lock);
4651 
4652 	if (gic_rdists->has_rvpeid)
4653 		irqchip = &its_vpe_4_1_irq_chip;
4654 
4655 	for (i = 0; i < nr_irqs; i++) {
4656 		vm->vpes[i]->vpe_db_lpi = base + i;
4657 		err = its_vpe_init(vm->vpes[i]);
4658 		if (err)
4659 			break;
4660 		err = its_irq_gic_domain_alloc(domain, virq + i,
4661 					       vm->vpes[i]->vpe_db_lpi);
4662 		if (err)
4663 			break;
4664 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4665 					      irqchip, vm->vpes[i]);
4666 		set_bit(i, bitmap);
4667 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4668 	}
4669 
4670 	if (err)
4671 		its_vpe_irq_domain_free(domain, virq, i);
4672 
4673 	return err;
4674 }
4675 
4676 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4677 				       struct irq_data *d, bool reserve)
4678 {
4679 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4680 	struct its_node *its;
4681 
4682 	/* Map the VPE to the first possible CPU */
4683 	vpe->col_idx = cpumask_first(cpu_online_mask);
4684 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4685 
4686 	/*
4687 	 * If we use the list map, we issue VMAPP on demand... Unless
4688 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4689 	 * so that VSGIs can work.
4690 	 */
4691 	if (!gic_requires_eager_mapping())
4692 		return 0;
4693 
4694 	list_for_each_entry(its, &its_nodes, entry) {
4695 		if (!is_v4(its))
4696 			continue;
4697 
4698 		its_send_vmapp(its, vpe, true);
4699 		its_send_vinvall(its, vpe);
4700 	}
4701 
4702 	return 0;
4703 }
4704 
4705 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4706 					  struct irq_data *d)
4707 {
4708 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4709 	struct its_node *its;
4710 
4711 	/*
4712 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4713 	 * VLPIs are associated with the VM.
4714 	 */
4715 	if (!gic_requires_eager_mapping())
4716 		return;
4717 
4718 	list_for_each_entry(its, &its_nodes, entry) {
4719 		if (!is_v4(its))
4720 			continue;
4721 
4722 		its_send_vmapp(its, vpe, false);
4723 	}
4724 
4725 	/*
4726 	 * There may be a direct read to the VPT after unmapping the
4727 	 * vPE, to guarantee the validity of this, we make the VPT
4728 	 * memory coherent with the CPU caches here.
4729 	 */
4730 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4731 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4732 					LPI_PENDBASE_SZ);
4733 }
4734 
4735 static const struct irq_domain_ops its_vpe_domain_ops = {
4736 	.alloc			= its_vpe_irq_domain_alloc,
4737 	.free			= its_vpe_irq_domain_free,
4738 	.activate		= its_vpe_irq_domain_activate,
4739 	.deactivate		= its_vpe_irq_domain_deactivate,
4740 };
4741 
4742 static int its_force_quiescent(void __iomem *base)
4743 {
4744 	u32 count = 1000000;	/* 1s */
4745 	u32 val;
4746 
4747 	val = readl_relaxed(base + GITS_CTLR);
4748 	/*
4749 	 * GIC architecture specification requires the ITS to be both
4750 	 * disabled and quiescent for writes to GITS_BASER<n> or
4751 	 * GITS_CBASER to not have UNPREDICTABLE results.
4752 	 */
4753 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4754 		return 0;
4755 
4756 	/* Disable the generation of all interrupts to this ITS */
4757 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4758 	writel_relaxed(val, base + GITS_CTLR);
4759 
4760 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4761 	while (1) {
4762 		val = readl_relaxed(base + GITS_CTLR);
4763 		if (val & GITS_CTLR_QUIESCENT)
4764 			return 0;
4765 
4766 		count--;
4767 		if (!count)
4768 			return -EBUSY;
4769 
4770 		cpu_relax();
4771 		udelay(1);
4772 	}
4773 }
4774 
4775 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4776 {
4777 	struct its_node *its = data;
4778 
4779 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4780 	its->typer &= ~GITS_TYPER_DEVBITS;
4781 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4782 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4783 
4784 	return true;
4785 }
4786 
4787 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4788 {
4789 	struct its_node *its = data;
4790 
4791 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4792 
4793 	return true;
4794 }
4795 
4796 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4797 {
4798 	struct its_node *its = data;
4799 
4800 	/* On QDF2400, the size of the ITE is 16Bytes */
4801 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4802 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4803 
4804 	return true;
4805 }
4806 
4807 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4808 {
4809 	struct its_node *its = its_dev->its;
4810 
4811 	/*
4812 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4813 	 * which maps 32-bit writes targeted at a separate window of
4814 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4815 	 * with device ID taken from bits [device_id_bits + 1:2] of
4816 	 * the window offset.
4817 	 */
4818 	return its->pre_its_base + (its_dev->device_id << 2);
4819 }
4820 
4821 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4822 {
4823 	struct its_node *its = data;
4824 	u32 pre_its_window[2];
4825 	u32 ids;
4826 
4827 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4828 					   "socionext,synquacer-pre-its",
4829 					   pre_its_window,
4830 					   ARRAY_SIZE(pre_its_window))) {
4831 
4832 		its->pre_its_base = pre_its_window[0];
4833 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4834 
4835 		ids = ilog2(pre_its_window[1]) - 2;
4836 		if (device_ids(its) > ids) {
4837 			its->typer &= ~GITS_TYPER_DEVBITS;
4838 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4839 		}
4840 
4841 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4842 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4843 		return true;
4844 	}
4845 	return false;
4846 }
4847 
4848 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4849 {
4850 	struct its_node *its = data;
4851 
4852 	/*
4853 	 * Hip07 insists on using the wrong address for the VLPI
4854 	 * page. Trick it into doing the right thing...
4855 	 */
4856 	its->vlpi_redist_offset = SZ_128K;
4857 	return true;
4858 }
4859 
4860 static bool __maybe_unused its_enable_rk3588001(void *data)
4861 {
4862 	struct its_node *its = data;
4863 
4864 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4865 	    !of_machine_is_compatible("rockchip,rk3588s"))
4866 		return false;
4867 
4868 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4869 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4870 
4871 	return true;
4872 }
4873 
4874 static bool its_set_non_coherent(void *data)
4875 {
4876 	struct its_node *its = data;
4877 
4878 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4879 	return true;
4880 }
4881 
4882 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data)
4883 {
4884 	struct its_node *its = data;
4885 
4886 	its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801;
4887 	return true;
4888 }
4889 
4890 static const struct gic_quirk its_quirks[] = {
4891 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4892 	{
4893 		.desc	= "ITS: Cavium errata 22375, 24313",
4894 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4895 		.mask	= 0xffff0fff,
4896 		.init	= its_enable_quirk_cavium_22375,
4897 	},
4898 #endif
4899 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4900 	{
4901 		.desc	= "ITS: Cavium erratum 23144",
4902 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4903 		.mask	= 0xffff0fff,
4904 		.init	= its_enable_quirk_cavium_23144,
4905 	},
4906 #endif
4907 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4908 	{
4909 		.desc	= "ITS: QDF2400 erratum 0065",
4910 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4911 		.mask	= 0xffffffff,
4912 		.init	= its_enable_quirk_qdf2400_e0065,
4913 	},
4914 #endif
4915 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4916 	{
4917 		/*
4918 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4919 		 * implementation, but with a 'pre-ITS' added that requires
4920 		 * special handling in software.
4921 		 */
4922 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4923 		.iidr	= 0x0001143b,
4924 		.mask	= 0xffffffff,
4925 		.init	= its_enable_quirk_socionext_synquacer,
4926 	},
4927 #endif
4928 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4929 	{
4930 		.desc	= "ITS: Hip07 erratum 161600802",
4931 		.iidr	= 0x00000004,
4932 		.mask	= 0xffffffff,
4933 		.init	= its_enable_quirk_hip07_161600802,
4934 	},
4935 #endif
4936 #ifdef CONFIG_HISILICON_ERRATUM_162100801
4937 	{
4938 		.desc	= "ITS: Hip09 erratum 162100801",
4939 		.iidr	= 0x00051736,
4940 		.mask	= 0xffffffff,
4941 		.init	= its_enable_quirk_hip09_162100801,
4942 	},
4943 #endif
4944 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4945 	{
4946 		.desc   = "ITS: Rockchip erratum RK3588001",
4947 		.iidr   = 0x0201743b,
4948 		.mask   = 0xffffffff,
4949 		.init   = its_enable_rk3588001,
4950 	},
4951 #endif
4952 	{
4953 		.desc   = "ITS: non-coherent attribute",
4954 		.property = "dma-noncoherent",
4955 		.init   = its_set_non_coherent,
4956 	},
4957 	{
4958 	}
4959 };
4960 
4961 static void its_enable_quirks(struct its_node *its)
4962 {
4963 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4964 
4965 	gic_enable_quirks(iidr, its_quirks, its);
4966 
4967 	if (is_of_node(its->fwnode_handle))
4968 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4969 				     its_quirks, its);
4970 }
4971 
4972 static int its_save_disable(void)
4973 {
4974 	struct its_node *its;
4975 	int err = 0;
4976 
4977 	raw_spin_lock(&its_lock);
4978 	list_for_each_entry(its, &its_nodes, entry) {
4979 		void __iomem *base;
4980 
4981 		base = its->base;
4982 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4983 		err = its_force_quiescent(base);
4984 		if (err) {
4985 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4986 			       &its->phys_base, err);
4987 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4988 			goto err;
4989 		}
4990 
4991 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4992 	}
4993 
4994 err:
4995 	if (err) {
4996 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4997 			void __iomem *base;
4998 
4999 			base = its->base;
5000 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5001 		}
5002 	}
5003 	raw_spin_unlock(&its_lock);
5004 
5005 	return err;
5006 }
5007 
5008 static void its_restore_enable(void)
5009 {
5010 	struct its_node *its;
5011 	int ret;
5012 
5013 	raw_spin_lock(&its_lock);
5014 	list_for_each_entry(its, &its_nodes, entry) {
5015 		void __iomem *base;
5016 		int i;
5017 
5018 		base = its->base;
5019 
5020 		/*
5021 		 * Make sure that the ITS is disabled. If it fails to quiesce,
5022 		 * don't restore it since writing to CBASER or BASER<n>
5023 		 * registers is undefined according to the GIC v3 ITS
5024 		 * Specification.
5025 		 *
5026 		 * Firmware resuming with the ITS enabled is terminally broken.
5027 		 */
5028 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
5029 		ret = its_force_quiescent(base);
5030 		if (ret) {
5031 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
5032 			       &its->phys_base, ret);
5033 			continue;
5034 		}
5035 
5036 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
5037 
5038 		/*
5039 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
5040 		 * cmd_write line up with it.
5041 		 */
5042 		its->cmd_write = its->cmd_base;
5043 		gits_write_cwriter(0, base + GITS_CWRITER);
5044 
5045 		/* Restore GITS_BASER from the value cache. */
5046 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
5047 			struct its_baser *baser = &its->tables[i];
5048 
5049 			if (!(baser->val & GITS_BASER_VALID))
5050 				continue;
5051 
5052 			its_write_baser(its, baser, baser->val);
5053 		}
5054 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5055 
5056 		/*
5057 		 * Reinit the collection if it's stored in the ITS. This is
5058 		 * indicated by the col_id being less than the HCC field.
5059 		 * CID < HCC as specified in the GIC v3 Documentation.
5060 		 */
5061 		if (its->collections[smp_processor_id()].col_id <
5062 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
5063 			its_cpu_init_collection(its);
5064 	}
5065 	raw_spin_unlock(&its_lock);
5066 }
5067 
5068 static struct syscore_ops its_syscore_ops = {
5069 	.suspend = its_save_disable,
5070 	.resume = its_restore_enable,
5071 };
5072 
5073 static void __init __iomem *its_map_one(struct resource *res, int *err)
5074 {
5075 	void __iomem *its_base;
5076 	u32 val;
5077 
5078 	its_base = ioremap(res->start, SZ_64K);
5079 	if (!its_base) {
5080 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5081 		*err = -ENOMEM;
5082 		return NULL;
5083 	}
5084 
5085 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5086 	if (val != 0x30 && val != 0x40) {
5087 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5088 		*err = -ENODEV;
5089 		goto out_unmap;
5090 	}
5091 
5092 	*err = its_force_quiescent(its_base);
5093 	if (*err) {
5094 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5095 		goto out_unmap;
5096 	}
5097 
5098 	return its_base;
5099 
5100 out_unmap:
5101 	iounmap(its_base);
5102 	return NULL;
5103 }
5104 
5105 static int its_init_domain(struct its_node *its)
5106 {
5107 	struct irq_domain *inner_domain;
5108 	struct msi_domain_info *info;
5109 
5110 	info = kzalloc(sizeof(*info), GFP_KERNEL);
5111 	if (!info)
5112 		return -ENOMEM;
5113 
5114 	info->ops = &its_msi_domain_ops;
5115 	info->data = its;
5116 
5117 	inner_domain = irq_domain_create_hierarchy(its_parent,
5118 						   its->msi_domain_flags, 0,
5119 						   its->fwnode_handle, &its_domain_ops,
5120 						   info);
5121 	if (!inner_domain) {
5122 		kfree(info);
5123 		return -ENOMEM;
5124 	}
5125 
5126 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
5127 
5128 	inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
5129 	inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
5130 
5131 	return 0;
5132 }
5133 
5134 static int its_init_vpe_domain(void)
5135 {
5136 	struct its_node *its;
5137 	u32 devid;
5138 	int entries;
5139 
5140 	if (gic_rdists->has_direct_lpi) {
5141 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5142 		return 0;
5143 	}
5144 
5145 	/* Any ITS will do, even if not v4 */
5146 	its = list_first_entry(&its_nodes, struct its_node, entry);
5147 
5148 	entries = roundup_pow_of_two(nr_cpu_ids);
5149 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5150 				 GFP_KERNEL);
5151 	if (!vpe_proxy.vpes)
5152 		return -ENOMEM;
5153 
5154 	/* Use the last possible DevID */
5155 	devid = GENMASK(device_ids(its) - 1, 0);
5156 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5157 	if (!vpe_proxy.dev) {
5158 		kfree(vpe_proxy.vpes);
5159 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5160 		return -ENOMEM;
5161 	}
5162 
5163 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5164 
5165 	raw_spin_lock_init(&vpe_proxy.lock);
5166 	vpe_proxy.next_victim = 0;
5167 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5168 		devid, vpe_proxy.dev->nr_ites);
5169 
5170 	return 0;
5171 }
5172 
5173 static int __init its_compute_its_list_map(struct its_node *its)
5174 {
5175 	int its_number;
5176 	u32 ctlr;
5177 
5178 	/*
5179 	 * This is assumed to be done early enough that we're
5180 	 * guaranteed to be single-threaded, hence no
5181 	 * locking. Should this change, we should address
5182 	 * this.
5183 	 */
5184 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5185 	if (its_number >= GICv4_ITS_LIST_MAX) {
5186 		pr_err("ITS@%pa: No ITSList entry available!\n",
5187 		       &its->phys_base);
5188 		return -EINVAL;
5189 	}
5190 
5191 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5192 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5193 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5194 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5195 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5196 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5197 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5198 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5199 	}
5200 
5201 	if (test_and_set_bit(its_number, &its_list_map)) {
5202 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5203 		       &its->phys_base, its_number);
5204 		return -EINVAL;
5205 	}
5206 
5207 	return its_number;
5208 }
5209 
5210 static int __init its_probe_one(struct its_node *its)
5211 {
5212 	u64 baser, tmp;
5213 	struct page *page;
5214 	u32 ctlr;
5215 	int err;
5216 
5217 	its_enable_quirks(its);
5218 
5219 	if (is_v4(its)) {
5220 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5221 			err = its_compute_its_list_map(its);
5222 			if (err < 0)
5223 				goto out;
5224 
5225 			its->list_nr = err;
5226 
5227 			pr_info("ITS@%pa: Using ITS number %d\n",
5228 				&its->phys_base, err);
5229 		} else {
5230 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5231 		}
5232 
5233 		if (is_v4_1(its)) {
5234 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5235 
5236 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5237 			if (!its->sgir_base) {
5238 				err = -ENOMEM;
5239 				goto out;
5240 			}
5241 
5242 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5243 
5244 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5245 				&its->phys_base, its->mpidr, svpet);
5246 		}
5247 	}
5248 
5249 	page = its_alloc_pages_node(its->numa_node,
5250 				    GFP_KERNEL | __GFP_ZERO,
5251 				    get_order(ITS_CMD_QUEUE_SZ));
5252 	if (!page) {
5253 		err = -ENOMEM;
5254 		goto out_unmap_sgir;
5255 	}
5256 	its->cmd_base = (void *)page_address(page);
5257 	its->cmd_write = its->cmd_base;
5258 
5259 	err = its_alloc_tables(its);
5260 	if (err)
5261 		goto out_free_cmd;
5262 
5263 	err = its_alloc_collections(its);
5264 	if (err)
5265 		goto out_free_tables;
5266 
5267 	baser = (virt_to_phys(its->cmd_base)	|
5268 		 GITS_CBASER_RaWaWb		|
5269 		 GITS_CBASER_InnerShareable	|
5270 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5271 		 GITS_CBASER_VALID);
5272 
5273 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5274 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5275 
5276 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5277 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5278 
5279 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5280 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5281 			/*
5282 			 * The HW reports non-shareable, we must
5283 			 * remove the cacheability attributes as
5284 			 * well.
5285 			 */
5286 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5287 				   GITS_CBASER_CACHEABILITY_MASK);
5288 			baser |= GITS_CBASER_nC;
5289 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5290 		}
5291 		pr_info("ITS: using cache flushing for cmd queue\n");
5292 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5293 	}
5294 
5295 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5296 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5297 	ctlr |= GITS_CTLR_ENABLE;
5298 	if (is_v4(its))
5299 		ctlr |= GITS_CTLR_ImDe;
5300 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5301 
5302 	err = its_init_domain(its);
5303 	if (err)
5304 		goto out_free_tables;
5305 
5306 	raw_spin_lock(&its_lock);
5307 	list_add(&its->entry, &its_nodes);
5308 	raw_spin_unlock(&its_lock);
5309 
5310 	return 0;
5311 
5312 out_free_tables:
5313 	its_free_tables(its);
5314 out_free_cmd:
5315 	its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5316 out_unmap_sgir:
5317 	if (its->sgir_base)
5318 		iounmap(its->sgir_base);
5319 out:
5320 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5321 	return err;
5322 }
5323 
5324 static bool gic_rdists_supports_plpis(void)
5325 {
5326 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5327 }
5328 
5329 static int redist_disable_lpis(void)
5330 {
5331 	void __iomem *rbase = gic_data_rdist_rd_base();
5332 	u64 timeout = USEC_PER_SEC;
5333 	u64 val;
5334 
5335 	if (!gic_rdists_supports_plpis()) {
5336 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5337 		return -ENXIO;
5338 	}
5339 
5340 	val = readl_relaxed(rbase + GICR_CTLR);
5341 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5342 		return 0;
5343 
5344 	/*
5345 	 * If coming via a CPU hotplug event, we don't need to disable
5346 	 * LPIs before trying to re-enable them. They are already
5347 	 * configured and all is well in the world.
5348 	 *
5349 	 * If running with preallocated tables, there is nothing to do.
5350 	 */
5351 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5352 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5353 		return 0;
5354 
5355 	/*
5356 	 * From that point on, we only try to do some damage control.
5357 	 */
5358 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5359 		smp_processor_id());
5360 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5361 
5362 	/* Disable LPIs */
5363 	val &= ~GICR_CTLR_ENABLE_LPIS;
5364 	writel_relaxed(val, rbase + GICR_CTLR);
5365 
5366 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5367 	dsb(sy);
5368 
5369 	/*
5370 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5371 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5372 	 * Error out if we time out waiting for RWP to clear.
5373 	 */
5374 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5375 		if (!timeout) {
5376 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5377 			       smp_processor_id());
5378 			return -ETIMEDOUT;
5379 		}
5380 		udelay(1);
5381 		timeout--;
5382 	}
5383 
5384 	/*
5385 	 * After it has been written to 1, it is IMPLEMENTATION
5386 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5387 	 * cleared to 0. Error out if clearing the bit failed.
5388 	 */
5389 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5390 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5391 		return -EBUSY;
5392 	}
5393 
5394 	return 0;
5395 }
5396 
5397 int its_cpu_init(void)
5398 {
5399 	if (!list_empty(&its_nodes)) {
5400 		int ret;
5401 
5402 		ret = redist_disable_lpis();
5403 		if (ret)
5404 			return ret;
5405 
5406 		its_cpu_init_lpis();
5407 		its_cpu_init_collections();
5408 	}
5409 
5410 	return 0;
5411 }
5412 
5413 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5414 {
5415 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5416 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5417 }
5418 
5419 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5420 		    rdist_memreserve_cpuhp_cleanup_workfn);
5421 
5422 static int its_cpu_memreserve_lpi(unsigned int cpu)
5423 {
5424 	struct page *pend_page;
5425 	int ret = 0;
5426 
5427 	/* This gets to run exactly once per CPU */
5428 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5429 		return 0;
5430 
5431 	pend_page = gic_data_rdist()->pend_page;
5432 	if (WARN_ON(!pend_page)) {
5433 		ret = -ENOMEM;
5434 		goto out;
5435 	}
5436 	/*
5437 	 * If the pending table was pre-programmed, free the memory we
5438 	 * preemptively allocated. Otherwise, reserve that memory for
5439 	 * later kexecs.
5440 	 */
5441 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5442 		its_free_pending_table(pend_page);
5443 		gic_data_rdist()->pend_page = NULL;
5444 	} else {
5445 		phys_addr_t paddr = page_to_phys(pend_page);
5446 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5447 	}
5448 
5449 out:
5450 	/* Last CPU being brought up gets to issue the cleanup */
5451 	if (!IS_ENABLED(CONFIG_SMP) ||
5452 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5453 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5454 
5455 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5456 	return ret;
5457 }
5458 
5459 /* Mark all the BASER registers as invalid before they get reprogrammed */
5460 static int __init its_reset_one(struct resource *res)
5461 {
5462 	void __iomem *its_base;
5463 	int err, i;
5464 
5465 	its_base = its_map_one(res, &err);
5466 	if (!its_base)
5467 		return err;
5468 
5469 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5470 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5471 
5472 	iounmap(its_base);
5473 	return 0;
5474 }
5475 
5476 static const struct of_device_id its_device_id[] = {
5477 	{	.compatible	= "arm,gic-v3-its",	},
5478 	{},
5479 };
5480 
5481 static struct its_node __init *its_node_init(struct resource *res,
5482 					     struct fwnode_handle *handle, int numa_node)
5483 {
5484 	void __iomem *its_base;
5485 	struct its_node *its;
5486 	int err;
5487 
5488 	its_base = its_map_one(res, &err);
5489 	if (!its_base)
5490 		return NULL;
5491 
5492 	pr_info("ITS %pR\n", res);
5493 
5494 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5495 	if (!its)
5496 		goto out_unmap;
5497 
5498 	raw_spin_lock_init(&its->lock);
5499 	mutex_init(&its->dev_alloc_lock);
5500 	INIT_LIST_HEAD(&its->entry);
5501 	INIT_LIST_HEAD(&its->its_device_list);
5502 
5503 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5504 	its->base = its_base;
5505 	its->phys_base = res->start;
5506 	its->get_msi_base = its_irq_get_msi_base;
5507 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5508 
5509 	its->numa_node = numa_node;
5510 	its->fwnode_handle = handle;
5511 
5512 	return its;
5513 
5514 out_unmap:
5515 	iounmap(its_base);
5516 	return NULL;
5517 }
5518 
5519 static void its_node_destroy(struct its_node *its)
5520 {
5521 	iounmap(its->base);
5522 	kfree(its);
5523 }
5524 
5525 static int __init its_of_probe(struct device_node *node)
5526 {
5527 	struct device_node *np;
5528 	struct resource res;
5529 	int err;
5530 
5531 	/*
5532 	 * Make sure *all* the ITS are reset before we probe any, as
5533 	 * they may be sharing memory. If any of the ITS fails to
5534 	 * reset, don't even try to go any further, as this could
5535 	 * result in something even worse.
5536 	 */
5537 	for (np = of_find_matching_node(node, its_device_id); np;
5538 	     np = of_find_matching_node(np, its_device_id)) {
5539 		if (!of_device_is_available(np) ||
5540 		    !of_property_read_bool(np, "msi-controller") ||
5541 		    of_address_to_resource(np, 0, &res))
5542 			continue;
5543 
5544 		err = its_reset_one(&res);
5545 		if (err)
5546 			return err;
5547 	}
5548 
5549 	for (np = of_find_matching_node(node, its_device_id); np;
5550 	     np = of_find_matching_node(np, its_device_id)) {
5551 		struct its_node *its;
5552 
5553 		if (!of_device_is_available(np))
5554 			continue;
5555 		if (!of_property_read_bool(np, "msi-controller")) {
5556 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5557 				np);
5558 			continue;
5559 		}
5560 
5561 		if (of_address_to_resource(np, 0, &res)) {
5562 			pr_warn("%pOF: no regs?\n", np);
5563 			continue;
5564 		}
5565 
5566 
5567 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5568 		if (!its)
5569 			return -ENOMEM;
5570 
5571 		err = its_probe_one(its);
5572 		if (err)  {
5573 			its_node_destroy(its);
5574 			return err;
5575 		}
5576 	}
5577 	return 0;
5578 }
5579 
5580 #ifdef CONFIG_ACPI
5581 
5582 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5583 
5584 #ifdef CONFIG_ACPI_NUMA
5585 struct its_srat_map {
5586 	/* numa node id */
5587 	u32	numa_node;
5588 	/* GIC ITS ID */
5589 	u32	its_id;
5590 };
5591 
5592 static struct its_srat_map *its_srat_maps __initdata;
5593 static int its_in_srat __initdata;
5594 
5595 static int __init acpi_get_its_numa_node(u32 its_id)
5596 {
5597 	int i;
5598 
5599 	for (i = 0; i < its_in_srat; i++) {
5600 		if (its_id == its_srat_maps[i].its_id)
5601 			return its_srat_maps[i].numa_node;
5602 	}
5603 	return NUMA_NO_NODE;
5604 }
5605 
5606 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5607 					  const unsigned long end)
5608 {
5609 	return 0;
5610 }
5611 
5612 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5613 			 const unsigned long end)
5614 {
5615 	int node;
5616 	struct acpi_srat_gic_its_affinity *its_affinity;
5617 
5618 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5619 	if (!its_affinity)
5620 		return -EINVAL;
5621 
5622 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5623 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5624 			its_affinity->header.length);
5625 		return -EINVAL;
5626 	}
5627 
5628 	/*
5629 	 * Note that in theory a new proximity node could be created by this
5630 	 * entry as it is an SRAT resource allocation structure.
5631 	 * We do not currently support doing so.
5632 	 */
5633 	node = pxm_to_node(its_affinity->proximity_domain);
5634 
5635 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5636 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5637 		return 0;
5638 	}
5639 
5640 	its_srat_maps[its_in_srat].numa_node = node;
5641 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5642 	its_in_srat++;
5643 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5644 		its_affinity->proximity_domain, its_affinity->its_id, node);
5645 
5646 	return 0;
5647 }
5648 
5649 static void __init acpi_table_parse_srat_its(void)
5650 {
5651 	int count;
5652 
5653 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5654 			sizeof(struct acpi_table_srat),
5655 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5656 			gic_acpi_match_srat_its, 0);
5657 	if (count <= 0)
5658 		return;
5659 
5660 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5661 				      GFP_KERNEL);
5662 	if (!its_srat_maps)
5663 		return;
5664 
5665 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5666 			sizeof(struct acpi_table_srat),
5667 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5668 			gic_acpi_parse_srat_its, 0);
5669 }
5670 
5671 /* free the its_srat_maps after ITS probing */
5672 static void __init acpi_its_srat_maps_free(void)
5673 {
5674 	kfree(its_srat_maps);
5675 }
5676 #else
5677 static void __init acpi_table_parse_srat_its(void)	{ }
5678 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5679 static void __init acpi_its_srat_maps_free(void) { }
5680 #endif
5681 
5682 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5683 					  const unsigned long end)
5684 {
5685 	struct acpi_madt_generic_translator *its_entry;
5686 	struct fwnode_handle *dom_handle;
5687 	struct its_node *its;
5688 	struct resource res;
5689 	int err;
5690 
5691 	its_entry = (struct acpi_madt_generic_translator *)header;
5692 	memset(&res, 0, sizeof(res));
5693 	res.start = its_entry->base_address;
5694 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5695 	res.flags = IORESOURCE_MEM;
5696 
5697 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5698 	if (!dom_handle) {
5699 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5700 		       &res.start);
5701 		return -ENOMEM;
5702 	}
5703 
5704 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5705 					 dom_handle);
5706 	if (err) {
5707 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5708 		       &res.start, its_entry->translation_id);
5709 		goto dom_err;
5710 	}
5711 
5712 	its = its_node_init(&res, dom_handle,
5713 			    acpi_get_its_numa_node(its_entry->translation_id));
5714 	if (!its) {
5715 		err = -ENOMEM;
5716 		goto node_err;
5717 	}
5718 
5719 	if (acpi_get_madt_revision() >= 7 &&
5720 	    (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5721 		its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5722 
5723 	err = its_probe_one(its);
5724 	if (!err)
5725 		return 0;
5726 
5727 node_err:
5728 	iort_deregister_domain_token(its_entry->translation_id);
5729 dom_err:
5730 	irq_domain_free_fwnode(dom_handle);
5731 	return err;
5732 }
5733 
5734 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5735 				 const unsigned long end)
5736 {
5737 	struct acpi_madt_generic_translator *its_entry;
5738 	struct resource res;
5739 
5740 	its_entry = (struct acpi_madt_generic_translator *)header;
5741 	res = (struct resource) {
5742 		.start	= its_entry->base_address,
5743 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5744 		.flags	= IORESOURCE_MEM,
5745 	};
5746 
5747 	return its_reset_one(&res);
5748 }
5749 
5750 static void __init its_acpi_probe(void)
5751 {
5752 	acpi_table_parse_srat_its();
5753 	/*
5754 	 * Make sure *all* the ITS are reset before we probe any, as
5755 	 * they may be sharing memory. If any of the ITS fails to
5756 	 * reset, don't even try to go any further, as this could
5757 	 * result in something even worse.
5758 	 */
5759 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5760 				  its_acpi_reset, 0) > 0)
5761 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5762 				      gic_acpi_parse_madt_its, 0);
5763 	acpi_its_srat_maps_free();
5764 }
5765 #else
5766 static void __init its_acpi_probe(void) { }
5767 #endif
5768 
5769 int __init its_lpi_memreserve_init(void)
5770 {
5771 	int state;
5772 
5773 	if (!efi_enabled(EFI_CONFIG_TABLES))
5774 		return 0;
5775 
5776 	if (list_empty(&its_nodes))
5777 		return 0;
5778 
5779 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5780 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5781 				  "irqchip/arm/gicv3/memreserve:online",
5782 				  its_cpu_memreserve_lpi,
5783 				  NULL);
5784 	if (state < 0)
5785 		return state;
5786 
5787 	gic_rdists->cpuhp_memreserve_state = state;
5788 
5789 	return 0;
5790 }
5791 
5792 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5793 		    struct irq_domain *parent_domain, u8 irq_prio)
5794 {
5795 	struct device_node *of_node;
5796 	struct its_node *its;
5797 	bool has_v4 = false;
5798 	bool has_v4_1 = false;
5799 	int err;
5800 
5801 	itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1);
5802 	if (!itt_pool)
5803 		return -ENOMEM;
5804 
5805 	gic_rdists = rdists;
5806 
5807 	lpi_prop_prio = irq_prio;
5808 	its_parent = parent_domain;
5809 	of_node = to_of_node(handle);
5810 	if (of_node)
5811 		its_of_probe(of_node);
5812 	else
5813 		its_acpi_probe();
5814 
5815 	if (list_empty(&its_nodes)) {
5816 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5817 		return -ENXIO;
5818 	}
5819 
5820 	err = allocate_lpi_tables();
5821 	if (err)
5822 		return err;
5823 
5824 	list_for_each_entry(its, &its_nodes, entry) {
5825 		has_v4 |= is_v4(its);
5826 		has_v4_1 |= is_v4_1(its);
5827 	}
5828 
5829 	/* Don't bother with inconsistent systems */
5830 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5831 		rdists->has_rvpeid = false;
5832 
5833 	if (has_v4 & rdists->has_vlpis) {
5834 		const struct irq_domain_ops *sgi_ops;
5835 
5836 		if (has_v4_1)
5837 			sgi_ops = &its_sgi_domain_ops;
5838 		else
5839 			sgi_ops = NULL;
5840 
5841 		if (its_init_vpe_domain() ||
5842 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5843 			rdists->has_vlpis = false;
5844 			pr_err("ITS: Disabling GICv4 support\n");
5845 		}
5846 	}
5847 
5848 	register_syscore_ops(&its_syscore_ops);
5849 
5850 	return 0;
5851 }
5852