1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 #include "irq-msi-lib.h" 42 43 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 45 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 46 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 47 48 #define RD_LOCAL_LPI_ENABLED BIT(0) 49 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 50 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 51 52 static u32 lpi_id_bits; 53 54 /* 55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 56 * deal with (one configuration byte per interrupt). PENDBASE has to 57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 58 */ 59 #define LPI_NRBITS lpi_id_bits 60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 62 63 static u8 __ro_after_init lpi_prop_prio; 64 65 /* 66 * Collection structure - just an ID, and a redistributor address to 67 * ping. We use one per CPU as a bag of interrupts assigned to this 68 * CPU. 69 */ 70 struct its_collection { 71 u64 target_address; 72 u16 col_id; 73 }; 74 75 /* 76 * The ITS_BASER structure - contains memory information, cached 77 * value of BASER register configuration and ITS page size. 78 */ 79 struct its_baser { 80 void *base; 81 u64 val; 82 u32 order; 83 u32 psz; 84 }; 85 86 struct its_device; 87 88 /* 89 * The ITS structure - contains most of the infrastructure, with the 90 * top-level MSI domain, the command queue, the collections, and the 91 * list of devices writing to it. 92 * 93 * dev_alloc_lock has to be taken for device allocations, while the 94 * spinlock must be taken to parse data structures such as the device 95 * list. 96 */ 97 struct its_node { 98 raw_spinlock_t lock; 99 struct mutex dev_alloc_lock; 100 struct list_head entry; 101 void __iomem *base; 102 void __iomem *sgir_base; 103 phys_addr_t phys_base; 104 struct its_cmd_block *cmd_base; 105 struct its_cmd_block *cmd_write; 106 struct its_baser tables[GITS_BASER_NR_REGS]; 107 struct its_collection *collections; 108 struct fwnode_handle *fwnode_handle; 109 u64 (*get_msi_base)(struct its_device *its_dev); 110 u64 typer; 111 u64 cbaser_save; 112 u32 ctlr_save; 113 u32 mpidr; 114 struct list_head its_device_list; 115 u64 flags; 116 unsigned long list_nr; 117 int numa_node; 118 unsigned int msi_domain_flags; 119 u32 pre_its_base; /* for Socionext Synquacer */ 120 int vlpi_redist_offset; 121 }; 122 123 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 124 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 125 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 126 127 #define ITS_ITT_ALIGN SZ_256 128 129 /* The maximum number of VPEID bits supported by VLPI commands */ 130 #define ITS_MAX_VPEID_BITS \ 131 ({ \ 132 int nvpeid = 16; \ 133 if (gic_rdists->has_rvpeid && \ 134 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 135 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 136 GICD_TYPER2_VID); \ 137 \ 138 nvpeid; \ 139 }) 140 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 141 142 /* Convert page order to size in bytes */ 143 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 144 145 struct event_lpi_map { 146 unsigned long *lpi_map; 147 u16 *col_map; 148 irq_hw_number_t lpi_base; 149 int nr_lpis; 150 raw_spinlock_t vlpi_lock; 151 struct its_vm *vm; 152 struct its_vlpi_map *vlpi_maps; 153 int nr_vlpis; 154 }; 155 156 /* 157 * The ITS view of a device - belongs to an ITS, owns an interrupt 158 * translation table, and a list of interrupts. If it some of its 159 * LPIs are injected into a guest (GICv4), the event_map.vm field 160 * indicates which one. 161 */ 162 struct its_device { 163 struct list_head entry; 164 struct its_node *its; 165 struct event_lpi_map event_map; 166 void *itt; 167 u32 nr_ites; 168 u32 device_id; 169 bool shared; 170 }; 171 172 static struct { 173 raw_spinlock_t lock; 174 struct its_device *dev; 175 struct its_vpe **vpes; 176 int next_victim; 177 } vpe_proxy; 178 179 struct cpu_lpi_count { 180 atomic_t managed; 181 atomic_t unmanaged; 182 }; 183 184 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 185 186 static LIST_HEAD(its_nodes); 187 static DEFINE_RAW_SPINLOCK(its_lock); 188 static struct rdists *gic_rdists; 189 static struct irq_domain *its_parent; 190 191 static unsigned long its_list_map; 192 static u16 vmovp_seq_num; 193 static DEFINE_RAW_SPINLOCK(vmovp_lock); 194 195 static DEFINE_IDA(its_vpeid_ida); 196 197 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 198 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 199 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 200 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 201 202 /* 203 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 204 * always have vSGIs mapped. 205 */ 206 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 207 { 208 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 209 } 210 211 static bool rdists_support_shareable(void) 212 { 213 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 214 } 215 216 static u16 get_its_list(struct its_vm *vm) 217 { 218 struct its_node *its; 219 unsigned long its_list = 0; 220 221 list_for_each_entry(its, &its_nodes, entry) { 222 if (!is_v4(its)) 223 continue; 224 225 if (require_its_list_vmovp(vm, its)) 226 __set_bit(its->list_nr, &its_list); 227 } 228 229 return (u16)its_list; 230 } 231 232 static inline u32 its_get_event_id(struct irq_data *d) 233 { 234 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 235 return d->hwirq - its_dev->event_map.lpi_base; 236 } 237 238 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 239 u32 event) 240 { 241 struct its_node *its = its_dev->its; 242 243 return its->collections + its_dev->event_map.col_map[event]; 244 } 245 246 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 247 u32 event) 248 { 249 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 250 return NULL; 251 252 return &its_dev->event_map.vlpi_maps[event]; 253 } 254 255 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 256 { 257 if (irqd_is_forwarded_to_vcpu(d)) { 258 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 259 u32 event = its_get_event_id(d); 260 261 return dev_event_to_vlpi_map(its_dev, event); 262 } 263 264 return NULL; 265 } 266 267 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 268 { 269 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 270 return vpe->col_idx; 271 } 272 273 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 274 { 275 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 276 } 277 278 static struct irq_chip its_vpe_irq_chip; 279 280 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 281 { 282 struct its_vpe *vpe = NULL; 283 int cpu; 284 285 if (d->chip == &its_vpe_irq_chip) { 286 vpe = irq_data_get_irq_chip_data(d); 287 } else { 288 struct its_vlpi_map *map = get_vlpi_map(d); 289 if (map) 290 vpe = map->vpe; 291 } 292 293 if (vpe) { 294 cpu = vpe_to_cpuid_lock(vpe, flags); 295 } else { 296 /* Physical LPIs are already locked via the irq_desc lock */ 297 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 298 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 299 /* Keep GCC quiet... */ 300 *flags = 0; 301 } 302 303 return cpu; 304 } 305 306 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 307 { 308 struct its_vpe *vpe = NULL; 309 310 if (d->chip == &its_vpe_irq_chip) { 311 vpe = irq_data_get_irq_chip_data(d); 312 } else { 313 struct its_vlpi_map *map = get_vlpi_map(d); 314 if (map) 315 vpe = map->vpe; 316 } 317 318 if (vpe) 319 vpe_to_cpuid_unlock(vpe, flags); 320 } 321 322 static struct its_collection *valid_col(struct its_collection *col) 323 { 324 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 325 return NULL; 326 327 return col; 328 } 329 330 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 331 { 332 if (valid_col(its->collections + vpe->col_idx)) 333 return vpe; 334 335 return NULL; 336 } 337 338 /* 339 * ITS command descriptors - parameters to be encoded in a command 340 * block. 341 */ 342 struct its_cmd_desc { 343 union { 344 struct { 345 struct its_device *dev; 346 u32 event_id; 347 } its_inv_cmd; 348 349 struct { 350 struct its_device *dev; 351 u32 event_id; 352 } its_clear_cmd; 353 354 struct { 355 struct its_device *dev; 356 u32 event_id; 357 } its_int_cmd; 358 359 struct { 360 struct its_device *dev; 361 int valid; 362 } its_mapd_cmd; 363 364 struct { 365 struct its_collection *col; 366 int valid; 367 } its_mapc_cmd; 368 369 struct { 370 struct its_device *dev; 371 u32 phys_id; 372 u32 event_id; 373 } its_mapti_cmd; 374 375 struct { 376 struct its_device *dev; 377 struct its_collection *col; 378 u32 event_id; 379 } its_movi_cmd; 380 381 struct { 382 struct its_device *dev; 383 u32 event_id; 384 } its_discard_cmd; 385 386 struct { 387 struct its_collection *col; 388 } its_invall_cmd; 389 390 struct { 391 struct its_vpe *vpe; 392 } its_vinvall_cmd; 393 394 struct { 395 struct its_vpe *vpe; 396 struct its_collection *col; 397 bool valid; 398 } its_vmapp_cmd; 399 400 struct { 401 struct its_vpe *vpe; 402 struct its_device *dev; 403 u32 virt_id; 404 u32 event_id; 405 bool db_enabled; 406 } its_vmapti_cmd; 407 408 struct { 409 struct its_vpe *vpe; 410 struct its_device *dev; 411 u32 event_id; 412 bool db_enabled; 413 } its_vmovi_cmd; 414 415 struct { 416 struct its_vpe *vpe; 417 struct its_collection *col; 418 u16 seq_num; 419 u16 its_list; 420 } its_vmovp_cmd; 421 422 struct { 423 struct its_vpe *vpe; 424 } its_invdb_cmd; 425 426 struct { 427 struct its_vpe *vpe; 428 u8 sgi; 429 u8 priority; 430 bool enable; 431 bool group; 432 bool clear; 433 } its_vsgi_cmd; 434 }; 435 }; 436 437 /* 438 * The ITS command block, which is what the ITS actually parses. 439 */ 440 struct its_cmd_block { 441 union { 442 u64 raw_cmd[4]; 443 __le64 raw_cmd_le[4]; 444 }; 445 }; 446 447 #define ITS_CMD_QUEUE_SZ SZ_64K 448 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 449 450 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 451 struct its_cmd_block *, 452 struct its_cmd_desc *); 453 454 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 455 struct its_cmd_block *, 456 struct its_cmd_desc *); 457 458 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 459 { 460 u64 mask = GENMASK_ULL(h, l); 461 *raw_cmd &= ~mask; 462 *raw_cmd |= (val << l) & mask; 463 } 464 465 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 466 { 467 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 468 } 469 470 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 471 { 472 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 473 } 474 475 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 476 { 477 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 478 } 479 480 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 481 { 482 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 483 } 484 485 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 486 { 487 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 488 } 489 490 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 491 { 492 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 493 } 494 495 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 496 { 497 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 498 } 499 500 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 501 { 502 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 503 } 504 505 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 506 { 507 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 508 } 509 510 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 511 { 512 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 513 } 514 515 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 516 { 517 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 518 } 519 520 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 521 { 522 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 523 } 524 525 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 526 { 527 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 528 } 529 530 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 531 { 532 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 533 } 534 535 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 536 { 537 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 538 } 539 540 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 541 { 542 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 543 } 544 545 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 546 { 547 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 548 } 549 550 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 551 { 552 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 553 } 554 555 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 556 { 557 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 558 } 559 560 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 561 { 562 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 563 } 564 565 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 566 u32 vpe_db_lpi) 567 { 568 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 569 } 570 571 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 572 u32 vpe_db_lpi) 573 { 574 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 575 } 576 577 static void its_encode_db(struct its_cmd_block *cmd, bool db) 578 { 579 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 580 } 581 582 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 583 { 584 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 585 } 586 587 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 588 { 589 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 590 } 591 592 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 593 { 594 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 595 } 596 597 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 598 { 599 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 600 } 601 602 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 603 { 604 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 605 } 606 607 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 608 { 609 /* Let's fixup BE commands */ 610 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 611 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 612 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 613 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 614 } 615 616 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 617 struct its_cmd_block *cmd, 618 struct its_cmd_desc *desc) 619 { 620 unsigned long itt_addr; 621 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 622 623 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 624 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 625 626 its_encode_cmd(cmd, GITS_CMD_MAPD); 627 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 628 its_encode_size(cmd, size - 1); 629 its_encode_itt(cmd, itt_addr); 630 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 631 632 its_fixup_cmd(cmd); 633 634 return NULL; 635 } 636 637 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 638 struct its_cmd_block *cmd, 639 struct its_cmd_desc *desc) 640 { 641 its_encode_cmd(cmd, GITS_CMD_MAPC); 642 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 643 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 644 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 645 646 its_fixup_cmd(cmd); 647 648 return desc->its_mapc_cmd.col; 649 } 650 651 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 652 struct its_cmd_block *cmd, 653 struct its_cmd_desc *desc) 654 { 655 struct its_collection *col; 656 657 col = dev_event_to_col(desc->its_mapti_cmd.dev, 658 desc->its_mapti_cmd.event_id); 659 660 its_encode_cmd(cmd, GITS_CMD_MAPTI); 661 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 662 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 663 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 664 its_encode_collection(cmd, col->col_id); 665 666 its_fixup_cmd(cmd); 667 668 return valid_col(col); 669 } 670 671 static struct its_collection *its_build_movi_cmd(struct its_node *its, 672 struct its_cmd_block *cmd, 673 struct its_cmd_desc *desc) 674 { 675 struct its_collection *col; 676 677 col = dev_event_to_col(desc->its_movi_cmd.dev, 678 desc->its_movi_cmd.event_id); 679 680 its_encode_cmd(cmd, GITS_CMD_MOVI); 681 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 682 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 683 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 684 685 its_fixup_cmd(cmd); 686 687 return valid_col(col); 688 } 689 690 static struct its_collection *its_build_discard_cmd(struct its_node *its, 691 struct its_cmd_block *cmd, 692 struct its_cmd_desc *desc) 693 { 694 struct its_collection *col; 695 696 col = dev_event_to_col(desc->its_discard_cmd.dev, 697 desc->its_discard_cmd.event_id); 698 699 its_encode_cmd(cmd, GITS_CMD_DISCARD); 700 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 701 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 702 703 its_fixup_cmd(cmd); 704 705 return valid_col(col); 706 } 707 708 static struct its_collection *its_build_inv_cmd(struct its_node *its, 709 struct its_cmd_block *cmd, 710 struct its_cmd_desc *desc) 711 { 712 struct its_collection *col; 713 714 col = dev_event_to_col(desc->its_inv_cmd.dev, 715 desc->its_inv_cmd.event_id); 716 717 its_encode_cmd(cmd, GITS_CMD_INV); 718 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 719 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 720 721 its_fixup_cmd(cmd); 722 723 return valid_col(col); 724 } 725 726 static struct its_collection *its_build_int_cmd(struct its_node *its, 727 struct its_cmd_block *cmd, 728 struct its_cmd_desc *desc) 729 { 730 struct its_collection *col; 731 732 col = dev_event_to_col(desc->its_int_cmd.dev, 733 desc->its_int_cmd.event_id); 734 735 its_encode_cmd(cmd, GITS_CMD_INT); 736 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 737 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 738 739 its_fixup_cmd(cmd); 740 741 return valid_col(col); 742 } 743 744 static struct its_collection *its_build_clear_cmd(struct its_node *its, 745 struct its_cmd_block *cmd, 746 struct its_cmd_desc *desc) 747 { 748 struct its_collection *col; 749 750 col = dev_event_to_col(desc->its_clear_cmd.dev, 751 desc->its_clear_cmd.event_id); 752 753 its_encode_cmd(cmd, GITS_CMD_CLEAR); 754 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 755 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 756 757 its_fixup_cmd(cmd); 758 759 return valid_col(col); 760 } 761 762 static struct its_collection *its_build_invall_cmd(struct its_node *its, 763 struct its_cmd_block *cmd, 764 struct its_cmd_desc *desc) 765 { 766 its_encode_cmd(cmd, GITS_CMD_INVALL); 767 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 768 769 its_fixup_cmd(cmd); 770 771 return desc->its_invall_cmd.col; 772 } 773 774 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 775 struct its_cmd_block *cmd, 776 struct its_cmd_desc *desc) 777 { 778 its_encode_cmd(cmd, GITS_CMD_VINVALL); 779 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 780 781 its_fixup_cmd(cmd); 782 783 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 784 } 785 786 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 787 struct its_cmd_block *cmd, 788 struct its_cmd_desc *desc) 789 { 790 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); 791 unsigned long vpt_addr, vconf_addr; 792 u64 target; 793 bool alloc; 794 795 its_encode_cmd(cmd, GITS_CMD_VMAPP); 796 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 797 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 798 799 if (!desc->its_vmapp_cmd.valid) { 800 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 801 if (is_v4_1(its)) { 802 its_encode_alloc(cmd, alloc); 803 /* 804 * Unmapping a VPE is self-synchronizing on GICv4.1, 805 * no need to issue a VSYNC. 806 */ 807 vpe = NULL; 808 } 809 810 goto out; 811 } 812 813 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 814 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 815 816 its_encode_target(cmd, target); 817 its_encode_vpt_addr(cmd, vpt_addr); 818 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 819 820 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 821 822 if (!is_v4_1(its)) 823 goto out; 824 825 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 826 827 its_encode_alloc(cmd, alloc); 828 829 /* 830 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 831 * to be unmapped first, and in this case, we may remap the vPE 832 * back while the VPT is not empty. So we can't assume that the 833 * VPT is empty on map. This is why we never advertise PTZ. 834 */ 835 its_encode_ptz(cmd, false); 836 its_encode_vconf_addr(cmd, vconf_addr); 837 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 838 839 out: 840 its_fixup_cmd(cmd); 841 842 return vpe; 843 } 844 845 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 846 struct its_cmd_block *cmd, 847 struct its_cmd_desc *desc) 848 { 849 u32 db; 850 851 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 852 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 853 else 854 db = 1023; 855 856 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 857 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 858 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 859 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 860 its_encode_db_phys_id(cmd, db); 861 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 862 863 its_fixup_cmd(cmd); 864 865 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 866 } 867 868 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 869 struct its_cmd_block *cmd, 870 struct its_cmd_desc *desc) 871 { 872 u32 db; 873 874 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 875 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 876 else 877 db = 1023; 878 879 its_encode_cmd(cmd, GITS_CMD_VMOVI); 880 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 881 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 882 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 883 its_encode_db_phys_id(cmd, db); 884 its_encode_db_valid(cmd, true); 885 886 its_fixup_cmd(cmd); 887 888 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 889 } 890 891 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 892 struct its_cmd_block *cmd, 893 struct its_cmd_desc *desc) 894 { 895 u64 target; 896 897 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 898 its_encode_cmd(cmd, GITS_CMD_VMOVP); 899 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 900 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 901 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 902 its_encode_target(cmd, target); 903 904 if (is_v4_1(its)) { 905 its_encode_db(cmd, true); 906 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 907 } 908 909 its_fixup_cmd(cmd); 910 911 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 912 } 913 914 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 915 struct its_cmd_block *cmd, 916 struct its_cmd_desc *desc) 917 { 918 struct its_vlpi_map *map; 919 920 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 921 desc->its_inv_cmd.event_id); 922 923 its_encode_cmd(cmd, GITS_CMD_INV); 924 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 925 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 926 927 its_fixup_cmd(cmd); 928 929 return valid_vpe(its, map->vpe); 930 } 931 932 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 933 struct its_cmd_block *cmd, 934 struct its_cmd_desc *desc) 935 { 936 struct its_vlpi_map *map; 937 938 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 939 desc->its_int_cmd.event_id); 940 941 its_encode_cmd(cmd, GITS_CMD_INT); 942 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 943 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 944 945 its_fixup_cmd(cmd); 946 947 return valid_vpe(its, map->vpe); 948 } 949 950 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 951 struct its_cmd_block *cmd, 952 struct its_cmd_desc *desc) 953 { 954 struct its_vlpi_map *map; 955 956 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 957 desc->its_clear_cmd.event_id); 958 959 its_encode_cmd(cmd, GITS_CMD_CLEAR); 960 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 961 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 962 963 its_fixup_cmd(cmd); 964 965 return valid_vpe(its, map->vpe); 966 } 967 968 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 969 struct its_cmd_block *cmd, 970 struct its_cmd_desc *desc) 971 { 972 if (WARN_ON(!is_v4_1(its))) 973 return NULL; 974 975 its_encode_cmd(cmd, GITS_CMD_INVDB); 976 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 977 978 its_fixup_cmd(cmd); 979 980 return valid_vpe(its, desc->its_invdb_cmd.vpe); 981 } 982 983 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 984 struct its_cmd_block *cmd, 985 struct its_cmd_desc *desc) 986 { 987 if (WARN_ON(!is_v4_1(its))) 988 return NULL; 989 990 its_encode_cmd(cmd, GITS_CMD_VSGI); 991 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 992 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 993 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 994 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 995 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 996 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 997 998 its_fixup_cmd(cmd); 999 1000 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 1001 } 1002 1003 static u64 its_cmd_ptr_to_offset(struct its_node *its, 1004 struct its_cmd_block *ptr) 1005 { 1006 return (ptr - its->cmd_base) * sizeof(*ptr); 1007 } 1008 1009 static int its_queue_full(struct its_node *its) 1010 { 1011 int widx; 1012 int ridx; 1013 1014 widx = its->cmd_write - its->cmd_base; 1015 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1016 1017 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1018 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1019 return 1; 1020 1021 return 0; 1022 } 1023 1024 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1025 { 1026 struct its_cmd_block *cmd; 1027 u32 count = 1000000; /* 1s! */ 1028 1029 while (its_queue_full(its)) { 1030 count--; 1031 if (!count) { 1032 pr_err_ratelimited("ITS queue not draining\n"); 1033 return NULL; 1034 } 1035 cpu_relax(); 1036 udelay(1); 1037 } 1038 1039 cmd = its->cmd_write++; 1040 1041 /* Handle queue wrapping */ 1042 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1043 its->cmd_write = its->cmd_base; 1044 1045 /* Clear command */ 1046 cmd->raw_cmd[0] = 0; 1047 cmd->raw_cmd[1] = 0; 1048 cmd->raw_cmd[2] = 0; 1049 cmd->raw_cmd[3] = 0; 1050 1051 return cmd; 1052 } 1053 1054 static struct its_cmd_block *its_post_commands(struct its_node *its) 1055 { 1056 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1057 1058 writel_relaxed(wr, its->base + GITS_CWRITER); 1059 1060 return its->cmd_write; 1061 } 1062 1063 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1064 { 1065 /* 1066 * Make sure the commands written to memory are observable by 1067 * the ITS. 1068 */ 1069 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1070 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1071 else 1072 dsb(ishst); 1073 } 1074 1075 static int its_wait_for_range_completion(struct its_node *its, 1076 u64 prev_idx, 1077 struct its_cmd_block *to) 1078 { 1079 u64 rd_idx, to_idx, linear_idx; 1080 u32 count = 1000000; /* 1s! */ 1081 1082 /* Linearize to_idx if the command set has wrapped around */ 1083 to_idx = its_cmd_ptr_to_offset(its, to); 1084 if (to_idx < prev_idx) 1085 to_idx += ITS_CMD_QUEUE_SZ; 1086 1087 linear_idx = prev_idx; 1088 1089 while (1) { 1090 s64 delta; 1091 1092 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1093 1094 /* 1095 * Compute the read pointer progress, taking the 1096 * potential wrap-around into account. 1097 */ 1098 delta = rd_idx - prev_idx; 1099 if (rd_idx < prev_idx) 1100 delta += ITS_CMD_QUEUE_SZ; 1101 1102 linear_idx += delta; 1103 if (linear_idx >= to_idx) 1104 break; 1105 1106 count--; 1107 if (!count) { 1108 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1109 to_idx, linear_idx); 1110 return -1; 1111 } 1112 prev_idx = rd_idx; 1113 cpu_relax(); 1114 udelay(1); 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* Warning, macro hell follows */ 1121 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1122 void name(struct its_node *its, \ 1123 buildtype builder, \ 1124 struct its_cmd_desc *desc) \ 1125 { \ 1126 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1127 synctype *sync_obj; \ 1128 unsigned long flags; \ 1129 u64 rd_idx; \ 1130 \ 1131 raw_spin_lock_irqsave(&its->lock, flags); \ 1132 \ 1133 cmd = its_allocate_entry(its); \ 1134 if (!cmd) { /* We're soooooo screewed... */ \ 1135 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1136 return; \ 1137 } \ 1138 sync_obj = builder(its, cmd, desc); \ 1139 its_flush_cmd(its, cmd); \ 1140 \ 1141 if (sync_obj) { \ 1142 sync_cmd = its_allocate_entry(its); \ 1143 if (!sync_cmd) \ 1144 goto post; \ 1145 \ 1146 buildfn(its, sync_cmd, sync_obj); \ 1147 its_flush_cmd(its, sync_cmd); \ 1148 } \ 1149 \ 1150 post: \ 1151 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1152 next_cmd = its_post_commands(its); \ 1153 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1154 \ 1155 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1156 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1157 } 1158 1159 static void its_build_sync_cmd(struct its_node *its, 1160 struct its_cmd_block *sync_cmd, 1161 struct its_collection *sync_col) 1162 { 1163 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1164 its_encode_target(sync_cmd, sync_col->target_address); 1165 1166 its_fixup_cmd(sync_cmd); 1167 } 1168 1169 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1170 struct its_collection, its_build_sync_cmd) 1171 1172 static void its_build_vsync_cmd(struct its_node *its, 1173 struct its_cmd_block *sync_cmd, 1174 struct its_vpe *sync_vpe) 1175 { 1176 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1177 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1178 1179 its_fixup_cmd(sync_cmd); 1180 } 1181 1182 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1183 struct its_vpe, its_build_vsync_cmd) 1184 1185 static void its_send_int(struct its_device *dev, u32 event_id) 1186 { 1187 struct its_cmd_desc desc; 1188 1189 desc.its_int_cmd.dev = dev; 1190 desc.its_int_cmd.event_id = event_id; 1191 1192 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1193 } 1194 1195 static void its_send_clear(struct its_device *dev, u32 event_id) 1196 { 1197 struct its_cmd_desc desc; 1198 1199 desc.its_clear_cmd.dev = dev; 1200 desc.its_clear_cmd.event_id = event_id; 1201 1202 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1203 } 1204 1205 static void its_send_inv(struct its_device *dev, u32 event_id) 1206 { 1207 struct its_cmd_desc desc; 1208 1209 desc.its_inv_cmd.dev = dev; 1210 desc.its_inv_cmd.event_id = event_id; 1211 1212 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1213 } 1214 1215 static void its_send_mapd(struct its_device *dev, int valid) 1216 { 1217 struct its_cmd_desc desc; 1218 1219 desc.its_mapd_cmd.dev = dev; 1220 desc.its_mapd_cmd.valid = !!valid; 1221 1222 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1223 } 1224 1225 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1226 int valid) 1227 { 1228 struct its_cmd_desc desc; 1229 1230 desc.its_mapc_cmd.col = col; 1231 desc.its_mapc_cmd.valid = !!valid; 1232 1233 its_send_single_command(its, its_build_mapc_cmd, &desc); 1234 } 1235 1236 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1237 { 1238 struct its_cmd_desc desc; 1239 1240 desc.its_mapti_cmd.dev = dev; 1241 desc.its_mapti_cmd.phys_id = irq_id; 1242 desc.its_mapti_cmd.event_id = id; 1243 1244 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1245 } 1246 1247 static void its_send_movi(struct its_device *dev, 1248 struct its_collection *col, u32 id) 1249 { 1250 struct its_cmd_desc desc; 1251 1252 desc.its_movi_cmd.dev = dev; 1253 desc.its_movi_cmd.col = col; 1254 desc.its_movi_cmd.event_id = id; 1255 1256 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1257 } 1258 1259 static void its_send_discard(struct its_device *dev, u32 id) 1260 { 1261 struct its_cmd_desc desc; 1262 1263 desc.its_discard_cmd.dev = dev; 1264 desc.its_discard_cmd.event_id = id; 1265 1266 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1267 } 1268 1269 static void its_send_invall(struct its_node *its, struct its_collection *col) 1270 { 1271 struct its_cmd_desc desc; 1272 1273 desc.its_invall_cmd.col = col; 1274 1275 its_send_single_command(its, its_build_invall_cmd, &desc); 1276 } 1277 1278 static void its_send_vmapti(struct its_device *dev, u32 id) 1279 { 1280 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1281 struct its_cmd_desc desc; 1282 1283 desc.its_vmapti_cmd.vpe = map->vpe; 1284 desc.its_vmapti_cmd.dev = dev; 1285 desc.its_vmapti_cmd.virt_id = map->vintid; 1286 desc.its_vmapti_cmd.event_id = id; 1287 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1288 1289 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1290 } 1291 1292 static void its_send_vmovi(struct its_device *dev, u32 id) 1293 { 1294 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1295 struct its_cmd_desc desc; 1296 1297 desc.its_vmovi_cmd.vpe = map->vpe; 1298 desc.its_vmovi_cmd.dev = dev; 1299 desc.its_vmovi_cmd.event_id = id; 1300 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1301 1302 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1303 } 1304 1305 static void its_send_vmapp(struct its_node *its, 1306 struct its_vpe *vpe, bool valid) 1307 { 1308 struct its_cmd_desc desc; 1309 1310 desc.its_vmapp_cmd.vpe = vpe; 1311 desc.its_vmapp_cmd.valid = valid; 1312 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1313 1314 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1315 } 1316 1317 static void its_send_vmovp(struct its_vpe *vpe) 1318 { 1319 struct its_cmd_desc desc = {}; 1320 struct its_node *its; 1321 int col_id = vpe->col_idx; 1322 1323 desc.its_vmovp_cmd.vpe = vpe; 1324 1325 if (!its_list_map) { 1326 its = list_first_entry(&its_nodes, struct its_node, entry); 1327 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1328 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1329 return; 1330 } 1331 1332 /* 1333 * Yet another marvel of the architecture. If using the 1334 * its_list "feature", we need to make sure that all ITSs 1335 * receive all VMOVP commands in the same order. The only way 1336 * to guarantee this is to make vmovp a serialization point. 1337 * 1338 * Wall <-- Head. 1339 */ 1340 guard(raw_spinlock)(&vmovp_lock); 1341 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1342 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1343 1344 /* Emit VMOVPs */ 1345 list_for_each_entry(its, &its_nodes, entry) { 1346 if (!is_v4(its)) 1347 continue; 1348 1349 if (!require_its_list_vmovp(vpe->its_vm, its)) 1350 continue; 1351 1352 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1353 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1354 } 1355 } 1356 1357 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1358 { 1359 struct its_cmd_desc desc; 1360 1361 desc.its_vinvall_cmd.vpe = vpe; 1362 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1363 } 1364 1365 static void its_send_vinv(struct its_device *dev, u32 event_id) 1366 { 1367 struct its_cmd_desc desc; 1368 1369 /* 1370 * There is no real VINV command. This is just a normal INV, 1371 * with a VSYNC instead of a SYNC. 1372 */ 1373 desc.its_inv_cmd.dev = dev; 1374 desc.its_inv_cmd.event_id = event_id; 1375 1376 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1377 } 1378 1379 static void its_send_vint(struct its_device *dev, u32 event_id) 1380 { 1381 struct its_cmd_desc desc; 1382 1383 /* 1384 * There is no real VINT command. This is just a normal INT, 1385 * with a VSYNC instead of a SYNC. 1386 */ 1387 desc.its_int_cmd.dev = dev; 1388 desc.its_int_cmd.event_id = event_id; 1389 1390 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1391 } 1392 1393 static void its_send_vclear(struct its_device *dev, u32 event_id) 1394 { 1395 struct its_cmd_desc desc; 1396 1397 /* 1398 * There is no real VCLEAR command. This is just a normal CLEAR, 1399 * with a VSYNC instead of a SYNC. 1400 */ 1401 desc.its_clear_cmd.dev = dev; 1402 desc.its_clear_cmd.event_id = event_id; 1403 1404 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1405 } 1406 1407 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1408 { 1409 struct its_cmd_desc desc; 1410 1411 desc.its_invdb_cmd.vpe = vpe; 1412 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1413 } 1414 1415 /* 1416 * irqchip functions - assumes MSI, mostly. 1417 */ 1418 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1419 { 1420 struct its_vlpi_map *map = get_vlpi_map(d); 1421 irq_hw_number_t hwirq; 1422 void *va; 1423 u8 *cfg; 1424 1425 if (map) { 1426 va = page_address(map->vm->vprop_page); 1427 hwirq = map->vintid; 1428 1429 /* Remember the updated property */ 1430 map->properties &= ~clr; 1431 map->properties |= set | LPI_PROP_GROUP1; 1432 } else { 1433 va = gic_rdists->prop_table_va; 1434 hwirq = d->hwirq; 1435 } 1436 1437 cfg = va + hwirq - 8192; 1438 *cfg &= ~clr; 1439 *cfg |= set | LPI_PROP_GROUP1; 1440 1441 /* 1442 * Make the above write visible to the redistributors. 1443 * And yes, we're flushing exactly: One. Single. Byte. 1444 * Humpf... 1445 */ 1446 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1447 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1448 else 1449 dsb(ishst); 1450 } 1451 1452 static void wait_for_syncr(void __iomem *rdbase) 1453 { 1454 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1455 cpu_relax(); 1456 } 1457 1458 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1459 { 1460 void __iomem *rdbase; 1461 unsigned long flags; 1462 int cpu; 1463 1464 /* Target the redistributor this LPI is currently routed to */ 1465 cpu = irq_to_cpuid_lock(d, &flags); 1466 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1467 1468 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1469 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1470 wait_for_syncr(rdbase); 1471 1472 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1473 irq_to_cpuid_unlock(d, flags); 1474 } 1475 1476 static void direct_lpi_inv(struct irq_data *d) 1477 { 1478 struct its_vlpi_map *map = get_vlpi_map(d); 1479 u64 val; 1480 1481 if (map) { 1482 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1483 1484 WARN_ON(!is_v4_1(its_dev->its)); 1485 1486 val = GICR_INVLPIR_V; 1487 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1488 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1489 } else { 1490 val = d->hwirq; 1491 } 1492 1493 __direct_lpi_inv(d, val); 1494 } 1495 1496 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1497 { 1498 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1499 1500 lpi_write_config(d, clr, set); 1501 if (gic_rdists->has_direct_lpi && 1502 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1503 direct_lpi_inv(d); 1504 else if (!irqd_is_forwarded_to_vcpu(d)) 1505 its_send_inv(its_dev, its_get_event_id(d)); 1506 else 1507 its_send_vinv(its_dev, its_get_event_id(d)); 1508 } 1509 1510 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1511 { 1512 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1513 u32 event = its_get_event_id(d); 1514 struct its_vlpi_map *map; 1515 1516 /* 1517 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1518 * here. 1519 */ 1520 if (is_v4_1(its_dev->its)) 1521 return; 1522 1523 map = dev_event_to_vlpi_map(its_dev, event); 1524 1525 if (map->db_enabled == enable) 1526 return; 1527 1528 map->db_enabled = enable; 1529 1530 /* 1531 * More fun with the architecture: 1532 * 1533 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1534 * value or to 1023, depending on the enable bit. But that 1535 * would be issuing a mapping for an /existing/ DevID+EventID 1536 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1537 * to the /same/ vPE, using this opportunity to adjust the 1538 * doorbell. Mouahahahaha. We loves it, Precious. 1539 */ 1540 its_send_vmovi(its_dev, event); 1541 } 1542 1543 static void its_mask_irq(struct irq_data *d) 1544 { 1545 if (irqd_is_forwarded_to_vcpu(d)) 1546 its_vlpi_set_doorbell(d, false); 1547 1548 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1549 } 1550 1551 static void its_unmask_irq(struct irq_data *d) 1552 { 1553 if (irqd_is_forwarded_to_vcpu(d)) 1554 its_vlpi_set_doorbell(d, true); 1555 1556 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1557 } 1558 1559 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1560 { 1561 if (irqd_affinity_is_managed(d)) 1562 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1563 1564 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1565 } 1566 1567 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1568 { 1569 if (irqd_affinity_is_managed(d)) 1570 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1571 else 1572 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1573 } 1574 1575 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1576 { 1577 if (irqd_affinity_is_managed(d)) 1578 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1579 else 1580 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1581 } 1582 1583 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1584 const struct cpumask *cpu_mask) 1585 { 1586 unsigned int cpu = nr_cpu_ids, tmp; 1587 int count = S32_MAX; 1588 1589 for_each_cpu(tmp, cpu_mask) { 1590 int this_count = its_read_lpi_count(d, tmp); 1591 if (this_count < count) { 1592 cpu = tmp; 1593 count = this_count; 1594 } 1595 } 1596 1597 return cpu; 1598 } 1599 1600 /* 1601 * As suggested by Thomas Gleixner in: 1602 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1603 */ 1604 static int its_select_cpu(struct irq_data *d, 1605 const struct cpumask *aff_mask) 1606 { 1607 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1608 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1609 static struct cpumask __tmpmask; 1610 struct cpumask *tmpmask; 1611 unsigned long flags; 1612 int cpu, node; 1613 node = its_dev->its->numa_node; 1614 tmpmask = &__tmpmask; 1615 1616 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1617 1618 if (!irqd_affinity_is_managed(d)) { 1619 /* First try the NUMA node */ 1620 if (node != NUMA_NO_NODE) { 1621 /* 1622 * Try the intersection of the affinity mask and the 1623 * node mask (and the online mask, just to be safe). 1624 */ 1625 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1626 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1627 1628 /* 1629 * Ideally, we would check if the mask is empty, and 1630 * try again on the full node here. 1631 * 1632 * But it turns out that the way ACPI describes the 1633 * affinity for ITSs only deals about memory, and 1634 * not target CPUs, so it cannot describe a single 1635 * ITS placed next to two NUMA nodes. 1636 * 1637 * Instead, just fallback on the online mask. This 1638 * diverges from Thomas' suggestion above. 1639 */ 1640 cpu = cpumask_pick_least_loaded(d, tmpmask); 1641 if (cpu < nr_cpu_ids) 1642 goto out; 1643 1644 /* If we can't cross sockets, give up */ 1645 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1646 goto out; 1647 1648 /* If the above failed, expand the search */ 1649 } 1650 1651 /* Try the intersection of the affinity and online masks */ 1652 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1653 1654 /* If that doesn't fly, the online mask is the last resort */ 1655 if (cpumask_empty(tmpmask)) 1656 cpumask_copy(tmpmask, cpu_online_mask); 1657 1658 cpu = cpumask_pick_least_loaded(d, tmpmask); 1659 } else { 1660 cpumask_copy(tmpmask, aff_mask); 1661 1662 /* If we cannot cross sockets, limit the search to that node */ 1663 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1664 node != NUMA_NO_NODE) 1665 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1666 1667 cpu = cpumask_pick_least_loaded(d, tmpmask); 1668 } 1669 out: 1670 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1671 1672 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1673 return cpu; 1674 } 1675 1676 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1677 bool force) 1678 { 1679 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1680 struct its_collection *target_col; 1681 u32 id = its_get_event_id(d); 1682 int cpu, prev_cpu; 1683 1684 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1685 if (irqd_is_forwarded_to_vcpu(d)) 1686 return -EINVAL; 1687 1688 prev_cpu = its_dev->event_map.col_map[id]; 1689 its_dec_lpi_count(d, prev_cpu); 1690 1691 if (!force) 1692 cpu = its_select_cpu(d, mask_val); 1693 else 1694 cpu = cpumask_pick_least_loaded(d, mask_val); 1695 1696 if (cpu < 0 || cpu >= nr_cpu_ids) 1697 goto err; 1698 1699 /* don't set the affinity when the target cpu is same as current one */ 1700 if (cpu != prev_cpu) { 1701 target_col = &its_dev->its->collections[cpu]; 1702 its_send_movi(its_dev, target_col, id); 1703 its_dev->event_map.col_map[id] = cpu; 1704 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1705 } 1706 1707 its_inc_lpi_count(d, cpu); 1708 1709 return IRQ_SET_MASK_OK_DONE; 1710 1711 err: 1712 its_inc_lpi_count(d, prev_cpu); 1713 return -EINVAL; 1714 } 1715 1716 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1717 { 1718 struct its_node *its = its_dev->its; 1719 1720 return its->phys_base + GITS_TRANSLATER; 1721 } 1722 1723 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1724 { 1725 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1726 struct its_node *its; 1727 u64 addr; 1728 1729 its = its_dev->its; 1730 addr = its->get_msi_base(its_dev); 1731 1732 msg->address_lo = lower_32_bits(addr); 1733 msg->address_hi = upper_32_bits(addr); 1734 msg->data = its_get_event_id(d); 1735 1736 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1737 } 1738 1739 static int its_irq_set_irqchip_state(struct irq_data *d, 1740 enum irqchip_irq_state which, 1741 bool state) 1742 { 1743 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1744 u32 event = its_get_event_id(d); 1745 1746 if (which != IRQCHIP_STATE_PENDING) 1747 return -EINVAL; 1748 1749 if (irqd_is_forwarded_to_vcpu(d)) { 1750 if (state) 1751 its_send_vint(its_dev, event); 1752 else 1753 its_send_vclear(its_dev, event); 1754 } else { 1755 if (state) 1756 its_send_int(its_dev, event); 1757 else 1758 its_send_clear(its_dev, event); 1759 } 1760 1761 return 0; 1762 } 1763 1764 static int its_irq_retrigger(struct irq_data *d) 1765 { 1766 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1767 } 1768 1769 /* 1770 * Two favourable cases: 1771 * 1772 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1773 * for vSGI delivery 1774 * 1775 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1776 * and we're better off mapping all VPEs always 1777 * 1778 * If neither (a) nor (b) is true, then we map vPEs on demand. 1779 * 1780 */ 1781 static bool gic_requires_eager_mapping(void) 1782 { 1783 if (!its_list_map || gic_rdists->has_rvpeid) 1784 return true; 1785 1786 return false; 1787 } 1788 1789 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1790 { 1791 if (gic_requires_eager_mapping()) 1792 return; 1793 1794 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1795 1796 /* 1797 * If the VM wasn't mapped yet, iterate over the vpes and get 1798 * them mapped now. 1799 */ 1800 vm->vlpi_count[its->list_nr]++; 1801 1802 if (vm->vlpi_count[its->list_nr] == 1) { 1803 int i; 1804 1805 for (i = 0; i < vm->nr_vpes; i++) { 1806 struct its_vpe *vpe = vm->vpes[i]; 1807 1808 scoped_guard(raw_spinlock, &vpe->vpe_lock) 1809 its_send_vmapp(its, vpe, true); 1810 1811 its_send_vinvall(its, vpe); 1812 } 1813 } 1814 } 1815 1816 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1817 { 1818 /* Not using the ITS list? Everything is always mapped. */ 1819 if (gic_requires_eager_mapping()) 1820 return; 1821 1822 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1823 1824 if (!--vm->vlpi_count[its->list_nr]) { 1825 int i; 1826 1827 for (i = 0; i < vm->nr_vpes; i++) { 1828 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock); 1829 its_send_vmapp(its, vm->vpes[i], false); 1830 } 1831 } 1832 } 1833 1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1835 { 1836 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1837 u32 event = its_get_event_id(d); 1838 1839 if (!info->map) 1840 return -EINVAL; 1841 1842 if (!its_dev->event_map.vm) { 1843 struct its_vlpi_map *maps; 1844 1845 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1846 GFP_ATOMIC); 1847 if (!maps) 1848 return -ENOMEM; 1849 1850 its_dev->event_map.vm = info->map->vm; 1851 its_dev->event_map.vlpi_maps = maps; 1852 } else if (its_dev->event_map.vm != info->map->vm) { 1853 return -EINVAL; 1854 } 1855 1856 /* Get our private copy of the mapping information */ 1857 its_dev->event_map.vlpi_maps[event] = *info->map; 1858 1859 if (irqd_is_forwarded_to_vcpu(d)) { 1860 /* Already mapped, move it around */ 1861 its_send_vmovi(its_dev, event); 1862 } else { 1863 /* Ensure all the VPEs are mapped on this ITS */ 1864 its_map_vm(its_dev->its, info->map->vm); 1865 1866 /* 1867 * Flag the interrupt as forwarded so that we can 1868 * start poking the virtual property table. 1869 */ 1870 irqd_set_forwarded_to_vcpu(d); 1871 1872 /* Write out the property to the prop table */ 1873 lpi_write_config(d, 0xff, info->map->properties); 1874 1875 /* Drop the physical mapping */ 1876 its_send_discard(its_dev, event); 1877 1878 /* and install the virtual one */ 1879 its_send_vmapti(its_dev, event); 1880 1881 /* Increment the number of VLPIs */ 1882 its_dev->event_map.nr_vlpis++; 1883 } 1884 1885 return 0; 1886 } 1887 1888 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1889 { 1890 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1891 struct its_vlpi_map *map; 1892 1893 map = get_vlpi_map(d); 1894 1895 if (!its_dev->event_map.vm || !map) 1896 return -EINVAL; 1897 1898 /* Copy our mapping information to the incoming request */ 1899 *info->map = *map; 1900 1901 return 0; 1902 } 1903 1904 static int its_vlpi_unmap(struct irq_data *d) 1905 { 1906 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1907 u32 event = its_get_event_id(d); 1908 1909 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1910 return -EINVAL; 1911 1912 /* Drop the virtual mapping */ 1913 its_send_discard(its_dev, event); 1914 1915 /* and restore the physical one */ 1916 irqd_clr_forwarded_to_vcpu(d); 1917 its_send_mapti(its_dev, d->hwirq, event); 1918 lpi_update_config(d, 0xff, (lpi_prop_prio | 1919 LPI_PROP_ENABLED | 1920 LPI_PROP_GROUP1)); 1921 1922 /* Potentially unmap the VM from this ITS */ 1923 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1924 1925 /* 1926 * Drop the refcount and make the device available again if 1927 * this was the last VLPI. 1928 */ 1929 if (!--its_dev->event_map.nr_vlpis) { 1930 its_dev->event_map.vm = NULL; 1931 kfree(its_dev->event_map.vlpi_maps); 1932 } 1933 1934 return 0; 1935 } 1936 1937 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1938 { 1939 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1940 1941 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1942 return -EINVAL; 1943 1944 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1945 lpi_update_config(d, 0xff, info->config); 1946 else 1947 lpi_write_config(d, 0xff, info->config); 1948 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1949 1950 return 0; 1951 } 1952 1953 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1954 { 1955 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1956 struct its_cmd_info *info = vcpu_info; 1957 1958 /* Need a v4 ITS */ 1959 if (!is_v4(its_dev->its)) 1960 return -EINVAL; 1961 1962 guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock); 1963 1964 /* Unmap request? */ 1965 if (!info) 1966 return its_vlpi_unmap(d); 1967 1968 switch (info->cmd_type) { 1969 case MAP_VLPI: 1970 return its_vlpi_map(d, info); 1971 1972 case GET_VLPI: 1973 return its_vlpi_get(d, info); 1974 1975 case PROP_UPDATE_VLPI: 1976 case PROP_UPDATE_AND_INV_VLPI: 1977 return its_vlpi_prop_update(d, info); 1978 1979 default: 1980 return -EINVAL; 1981 } 1982 } 1983 1984 static struct irq_chip its_irq_chip = { 1985 .name = "ITS", 1986 .irq_mask = its_mask_irq, 1987 .irq_unmask = its_unmask_irq, 1988 .irq_eoi = irq_chip_eoi_parent, 1989 .irq_set_affinity = its_set_affinity, 1990 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1991 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1992 .irq_retrigger = its_irq_retrigger, 1993 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1994 }; 1995 1996 1997 /* 1998 * How we allocate LPIs: 1999 * 2000 * lpi_range_list contains ranges of LPIs that are to available to 2001 * allocate from. To allocate LPIs, just pick the first range that 2002 * fits the required allocation, and reduce it by the required 2003 * amount. Once empty, remove the range from the list. 2004 * 2005 * To free a range of LPIs, add a free range to the list, sort it and 2006 * merge the result if the new range happens to be adjacent to an 2007 * already free block. 2008 * 2009 * The consequence of the above is that allocation is cost is low, but 2010 * freeing is expensive. We assumes that freeing rarely occurs. 2011 */ 2012 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2013 2014 static DEFINE_MUTEX(lpi_range_lock); 2015 static LIST_HEAD(lpi_range_list); 2016 2017 struct lpi_range { 2018 struct list_head entry; 2019 u32 base_id; 2020 u32 span; 2021 }; 2022 2023 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2024 { 2025 struct lpi_range *range; 2026 2027 range = kmalloc(sizeof(*range), GFP_KERNEL); 2028 if (range) { 2029 range->base_id = base; 2030 range->span = span; 2031 } 2032 2033 return range; 2034 } 2035 2036 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2037 { 2038 struct lpi_range *range, *tmp; 2039 int err = -ENOSPC; 2040 2041 mutex_lock(&lpi_range_lock); 2042 2043 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2044 if (range->span >= nr_lpis) { 2045 *base = range->base_id; 2046 range->base_id += nr_lpis; 2047 range->span -= nr_lpis; 2048 2049 if (range->span == 0) { 2050 list_del(&range->entry); 2051 kfree(range); 2052 } 2053 2054 err = 0; 2055 break; 2056 } 2057 } 2058 2059 mutex_unlock(&lpi_range_lock); 2060 2061 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2062 return err; 2063 } 2064 2065 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2066 { 2067 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2068 return; 2069 if (a->base_id + a->span != b->base_id) 2070 return; 2071 b->base_id = a->base_id; 2072 b->span += a->span; 2073 list_del(&a->entry); 2074 kfree(a); 2075 } 2076 2077 static int free_lpi_range(u32 base, u32 nr_lpis) 2078 { 2079 struct lpi_range *new, *old; 2080 2081 new = mk_lpi_range(base, nr_lpis); 2082 if (!new) 2083 return -ENOMEM; 2084 2085 mutex_lock(&lpi_range_lock); 2086 2087 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2088 if (old->base_id < base) 2089 break; 2090 } 2091 /* 2092 * old is the last element with ->base_id smaller than base, 2093 * so new goes right after it. If there are no elements with 2094 * ->base_id smaller than base, &old->entry ends up pointing 2095 * at the head of the list, and inserting new it the start of 2096 * the list is the right thing to do in that case as well. 2097 */ 2098 list_add(&new->entry, &old->entry); 2099 /* 2100 * Now check if we can merge with the preceding and/or 2101 * following ranges. 2102 */ 2103 merge_lpi_ranges(old, new); 2104 merge_lpi_ranges(new, list_next_entry(new, entry)); 2105 2106 mutex_unlock(&lpi_range_lock); 2107 return 0; 2108 } 2109 2110 static int __init its_lpi_init(u32 id_bits) 2111 { 2112 u32 lpis = (1UL << id_bits) - 8192; 2113 u32 numlpis; 2114 int err; 2115 2116 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2117 2118 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2119 lpis = numlpis; 2120 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2121 lpis); 2122 } 2123 2124 /* 2125 * Initializing the allocator is just the same as freeing the 2126 * full range of LPIs. 2127 */ 2128 err = free_lpi_range(8192, lpis); 2129 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2130 return err; 2131 } 2132 2133 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2134 { 2135 unsigned long *bitmap = NULL; 2136 int err = 0; 2137 2138 do { 2139 err = alloc_lpi_range(nr_irqs, base); 2140 if (!err) 2141 break; 2142 2143 nr_irqs /= 2; 2144 } while (nr_irqs > 0); 2145 2146 if (!nr_irqs) 2147 err = -ENOSPC; 2148 2149 if (err) 2150 goto out; 2151 2152 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2153 if (!bitmap) 2154 goto out; 2155 2156 *nr_ids = nr_irqs; 2157 2158 out: 2159 if (!bitmap) 2160 *base = *nr_ids = 0; 2161 2162 return bitmap; 2163 } 2164 2165 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2166 { 2167 WARN_ON(free_lpi_range(base, nr_ids)); 2168 bitmap_free(bitmap); 2169 } 2170 2171 static void gic_reset_prop_table(void *va) 2172 { 2173 /* Regular IRQ priority, Group-1, disabled */ 2174 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2175 2176 /* Make sure the GIC will observe the written configuration */ 2177 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2178 } 2179 2180 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2181 { 2182 struct page *prop_page; 2183 2184 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2185 if (!prop_page) 2186 return NULL; 2187 2188 gic_reset_prop_table(page_address(prop_page)); 2189 2190 return prop_page; 2191 } 2192 2193 static void its_free_prop_table(struct page *prop_page) 2194 { 2195 free_pages((unsigned long)page_address(prop_page), 2196 get_order(LPI_PROPBASE_SZ)); 2197 } 2198 2199 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2200 { 2201 phys_addr_t start, end, addr_end; 2202 u64 i; 2203 2204 /* 2205 * We don't bother checking for a kdump kernel as by 2206 * construction, the LPI tables are out of this kernel's 2207 * memory map. 2208 */ 2209 if (is_kdump_kernel()) 2210 return true; 2211 2212 addr_end = addr + size - 1; 2213 2214 for_each_reserved_mem_range(i, &start, &end) { 2215 if (addr >= start && addr_end <= end) 2216 return true; 2217 } 2218 2219 /* Not found, not a good sign... */ 2220 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2221 &addr, &addr_end); 2222 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2223 return false; 2224 } 2225 2226 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2227 { 2228 if (efi_enabled(EFI_CONFIG_TABLES)) 2229 return efi_mem_reserve_persistent(addr, size); 2230 2231 return 0; 2232 } 2233 2234 static int __init its_setup_lpi_prop_table(void) 2235 { 2236 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2237 u64 val; 2238 2239 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2240 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2241 2242 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2243 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2244 LPI_PROPBASE_SZ, 2245 MEMREMAP_WB); 2246 gic_reset_prop_table(gic_rdists->prop_table_va); 2247 } else { 2248 struct page *page; 2249 2250 lpi_id_bits = min_t(u32, 2251 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2252 ITS_MAX_LPI_NRBITS); 2253 page = its_allocate_prop_table(GFP_NOWAIT); 2254 if (!page) { 2255 pr_err("Failed to allocate PROPBASE\n"); 2256 return -ENOMEM; 2257 } 2258 2259 gic_rdists->prop_table_pa = page_to_phys(page); 2260 gic_rdists->prop_table_va = page_address(page); 2261 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2262 LPI_PROPBASE_SZ)); 2263 } 2264 2265 pr_info("GICv3: using LPI property table @%pa\n", 2266 &gic_rdists->prop_table_pa); 2267 2268 return its_lpi_init(lpi_id_bits); 2269 } 2270 2271 static const char *its_base_type_string[] = { 2272 [GITS_BASER_TYPE_DEVICE] = "Devices", 2273 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2274 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2275 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2276 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2277 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2278 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2279 }; 2280 2281 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2282 { 2283 u32 idx = baser - its->tables; 2284 2285 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2286 } 2287 2288 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2289 u64 val) 2290 { 2291 u32 idx = baser - its->tables; 2292 2293 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2294 baser->val = its_read_baser(its, baser); 2295 } 2296 2297 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2298 u64 cache, u64 shr, u32 order, bool indirect) 2299 { 2300 u64 val = its_read_baser(its, baser); 2301 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2302 u64 type = GITS_BASER_TYPE(val); 2303 u64 baser_phys, tmp; 2304 u32 alloc_pages, psz; 2305 struct page *page; 2306 void *base; 2307 2308 psz = baser->psz; 2309 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2310 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2311 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2312 &its->phys_base, its_base_type_string[type], 2313 alloc_pages, GITS_BASER_PAGES_MAX); 2314 alloc_pages = GITS_BASER_PAGES_MAX; 2315 order = get_order(GITS_BASER_PAGES_MAX * psz); 2316 } 2317 2318 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2319 if (!page) 2320 return -ENOMEM; 2321 2322 base = (void *)page_address(page); 2323 baser_phys = virt_to_phys(base); 2324 2325 /* Check if the physical address of the memory is above 48bits */ 2326 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2327 2328 /* 52bit PA is supported only when PageSize=64K */ 2329 if (psz != SZ_64K) { 2330 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2331 free_pages((unsigned long)base, order); 2332 return -ENXIO; 2333 } 2334 2335 /* Convert 52bit PA to 48bit field */ 2336 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2337 } 2338 2339 retry_baser: 2340 val = (baser_phys | 2341 (type << GITS_BASER_TYPE_SHIFT) | 2342 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2343 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2344 cache | 2345 shr | 2346 GITS_BASER_VALID); 2347 2348 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2349 2350 switch (psz) { 2351 case SZ_4K: 2352 val |= GITS_BASER_PAGE_SIZE_4K; 2353 break; 2354 case SZ_16K: 2355 val |= GITS_BASER_PAGE_SIZE_16K; 2356 break; 2357 case SZ_64K: 2358 val |= GITS_BASER_PAGE_SIZE_64K; 2359 break; 2360 } 2361 2362 if (!shr) 2363 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2364 2365 its_write_baser(its, baser, val); 2366 tmp = baser->val; 2367 2368 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2369 /* 2370 * Shareability didn't stick. Just use 2371 * whatever the read reported, which is likely 2372 * to be the only thing this redistributor 2373 * supports. If that's zero, make it 2374 * non-cacheable as well. 2375 */ 2376 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2377 if (!shr) 2378 cache = GITS_BASER_nC; 2379 2380 goto retry_baser; 2381 } 2382 2383 if (val != tmp) { 2384 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2385 &its->phys_base, its_base_type_string[type], 2386 val, tmp); 2387 free_pages((unsigned long)base, order); 2388 return -ENXIO; 2389 } 2390 2391 baser->order = order; 2392 baser->base = base; 2393 baser->psz = psz; 2394 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2395 2396 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2397 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2398 its_base_type_string[type], 2399 (unsigned long)virt_to_phys(base), 2400 indirect ? "indirect" : "flat", (int)esz, 2401 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2402 2403 return 0; 2404 } 2405 2406 static bool its_parse_indirect_baser(struct its_node *its, 2407 struct its_baser *baser, 2408 u32 *order, u32 ids) 2409 { 2410 u64 tmp = its_read_baser(its, baser); 2411 u64 type = GITS_BASER_TYPE(tmp); 2412 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2413 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2414 u32 new_order = *order; 2415 u32 psz = baser->psz; 2416 bool indirect = false; 2417 2418 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2419 if ((esz << ids) > (psz * 2)) { 2420 /* 2421 * Find out whether hw supports a single or two-level table by 2422 * table by reading bit at offset '62' after writing '1' to it. 2423 */ 2424 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2425 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2426 2427 if (indirect) { 2428 /* 2429 * The size of the lvl2 table is equal to ITS page size 2430 * which is 'psz'. For computing lvl1 table size, 2431 * subtract ID bits that sparse lvl2 table from 'ids' 2432 * which is reported by ITS hardware times lvl1 table 2433 * entry size. 2434 */ 2435 ids -= ilog2(psz / (int)esz); 2436 esz = GITS_LVL1_ENTRY_SIZE; 2437 } 2438 } 2439 2440 /* 2441 * Allocate as many entries as required to fit the 2442 * range of device IDs that the ITS can grok... The ID 2443 * space being incredibly sparse, this results in a 2444 * massive waste of memory if two-level device table 2445 * feature is not supported by hardware. 2446 */ 2447 new_order = max_t(u32, get_order(esz << ids), new_order); 2448 if (new_order > MAX_PAGE_ORDER) { 2449 new_order = MAX_PAGE_ORDER; 2450 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2451 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2452 &its->phys_base, its_base_type_string[type], 2453 device_ids(its), ids); 2454 } 2455 2456 *order = new_order; 2457 2458 return indirect; 2459 } 2460 2461 static u32 compute_common_aff(u64 val) 2462 { 2463 u32 aff, clpiaff; 2464 2465 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2466 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2467 2468 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2469 } 2470 2471 static u32 compute_its_aff(struct its_node *its) 2472 { 2473 u64 val; 2474 u32 svpet; 2475 2476 /* 2477 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2478 * the resulting affinity. We then use that to see if this match 2479 * our own affinity. 2480 */ 2481 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2482 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2483 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2484 return compute_common_aff(val); 2485 } 2486 2487 static struct its_node *find_sibling_its(struct its_node *cur_its) 2488 { 2489 struct its_node *its; 2490 u32 aff; 2491 2492 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2493 return NULL; 2494 2495 aff = compute_its_aff(cur_its); 2496 2497 list_for_each_entry(its, &its_nodes, entry) { 2498 u64 baser; 2499 2500 if (!is_v4_1(its) || its == cur_its) 2501 continue; 2502 2503 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2504 continue; 2505 2506 if (aff != compute_its_aff(its)) 2507 continue; 2508 2509 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2510 baser = its->tables[2].val; 2511 if (!(baser & GITS_BASER_VALID)) 2512 continue; 2513 2514 return its; 2515 } 2516 2517 return NULL; 2518 } 2519 2520 static void its_free_tables(struct its_node *its) 2521 { 2522 int i; 2523 2524 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2525 if (its->tables[i].base) { 2526 free_pages((unsigned long)its->tables[i].base, 2527 its->tables[i].order); 2528 its->tables[i].base = NULL; 2529 } 2530 } 2531 } 2532 2533 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2534 { 2535 u64 psz = SZ_64K; 2536 2537 while (psz) { 2538 u64 val, gpsz; 2539 2540 val = its_read_baser(its, baser); 2541 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2542 2543 switch (psz) { 2544 case SZ_64K: 2545 gpsz = GITS_BASER_PAGE_SIZE_64K; 2546 break; 2547 case SZ_16K: 2548 gpsz = GITS_BASER_PAGE_SIZE_16K; 2549 break; 2550 case SZ_4K: 2551 default: 2552 gpsz = GITS_BASER_PAGE_SIZE_4K; 2553 break; 2554 } 2555 2556 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2557 2558 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2559 its_write_baser(its, baser, val); 2560 2561 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2562 break; 2563 2564 switch (psz) { 2565 case SZ_64K: 2566 psz = SZ_16K; 2567 break; 2568 case SZ_16K: 2569 psz = SZ_4K; 2570 break; 2571 case SZ_4K: 2572 default: 2573 return -1; 2574 } 2575 } 2576 2577 baser->psz = psz; 2578 return 0; 2579 } 2580 2581 static int its_alloc_tables(struct its_node *its) 2582 { 2583 u64 shr = GITS_BASER_InnerShareable; 2584 u64 cache = GITS_BASER_RaWaWb; 2585 int err, i; 2586 2587 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2588 /* erratum 24313: ignore memory access type */ 2589 cache = GITS_BASER_nCnB; 2590 2591 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2592 cache = GITS_BASER_nC; 2593 shr = 0; 2594 } 2595 2596 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2597 struct its_baser *baser = its->tables + i; 2598 u64 val = its_read_baser(its, baser); 2599 u64 type = GITS_BASER_TYPE(val); 2600 bool indirect = false; 2601 u32 order; 2602 2603 if (type == GITS_BASER_TYPE_NONE) 2604 continue; 2605 2606 if (its_probe_baser_psz(its, baser)) { 2607 its_free_tables(its); 2608 return -ENXIO; 2609 } 2610 2611 order = get_order(baser->psz); 2612 2613 switch (type) { 2614 case GITS_BASER_TYPE_DEVICE: 2615 indirect = its_parse_indirect_baser(its, baser, &order, 2616 device_ids(its)); 2617 break; 2618 2619 case GITS_BASER_TYPE_VCPU: 2620 if (is_v4_1(its)) { 2621 struct its_node *sibling; 2622 2623 WARN_ON(i != 2); 2624 if ((sibling = find_sibling_its(its))) { 2625 *baser = sibling->tables[2]; 2626 its_write_baser(its, baser, baser->val); 2627 continue; 2628 } 2629 } 2630 2631 indirect = its_parse_indirect_baser(its, baser, &order, 2632 ITS_MAX_VPEID_BITS); 2633 break; 2634 } 2635 2636 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2637 if (err < 0) { 2638 its_free_tables(its); 2639 return err; 2640 } 2641 2642 /* Update settings which will be used for next BASERn */ 2643 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2644 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2645 } 2646 2647 return 0; 2648 } 2649 2650 static u64 inherit_vpe_l1_table_from_its(void) 2651 { 2652 struct its_node *its; 2653 u64 val; 2654 u32 aff; 2655 2656 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2657 aff = compute_common_aff(val); 2658 2659 list_for_each_entry(its, &its_nodes, entry) { 2660 u64 baser, addr; 2661 2662 if (!is_v4_1(its)) 2663 continue; 2664 2665 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2666 continue; 2667 2668 if (aff != compute_its_aff(its)) 2669 continue; 2670 2671 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2672 baser = its->tables[2].val; 2673 if (!(baser & GITS_BASER_VALID)) 2674 continue; 2675 2676 /* We have a winner! */ 2677 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2678 2679 val = GICR_VPROPBASER_4_1_VALID; 2680 if (baser & GITS_BASER_INDIRECT) 2681 val |= GICR_VPROPBASER_4_1_INDIRECT; 2682 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2683 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2684 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2685 case GIC_PAGE_SIZE_64K: 2686 addr = GITS_BASER_ADDR_48_to_52(baser); 2687 break; 2688 default: 2689 addr = baser & GENMASK_ULL(47, 12); 2690 break; 2691 } 2692 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2693 if (rdists_support_shareable()) { 2694 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2695 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2696 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2697 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2698 } 2699 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2700 2701 return val; 2702 } 2703 2704 return 0; 2705 } 2706 2707 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2708 { 2709 u32 aff; 2710 u64 val; 2711 int cpu; 2712 2713 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2714 aff = compute_common_aff(val); 2715 2716 for_each_possible_cpu(cpu) { 2717 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2718 2719 if (!base || cpu == smp_processor_id()) 2720 continue; 2721 2722 val = gic_read_typer(base + GICR_TYPER); 2723 if (aff != compute_common_aff(val)) 2724 continue; 2725 2726 /* 2727 * At this point, we have a victim. This particular CPU 2728 * has already booted, and has an affinity that matches 2729 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2730 * Make sure we don't write the Z bit in that case. 2731 */ 2732 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2733 val &= ~GICR_VPROPBASER_4_1_Z; 2734 2735 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2736 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2737 2738 return val; 2739 } 2740 2741 return 0; 2742 } 2743 2744 static bool allocate_vpe_l2_table(int cpu, u32 id) 2745 { 2746 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2747 unsigned int psz, esz, idx, npg, gpsz; 2748 u64 val; 2749 struct page *page; 2750 __le64 *table; 2751 2752 if (!gic_rdists->has_rvpeid) 2753 return true; 2754 2755 /* Skip non-present CPUs */ 2756 if (!base) 2757 return true; 2758 2759 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2760 2761 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2762 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2763 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2764 2765 switch (gpsz) { 2766 default: 2767 WARN_ON(1); 2768 fallthrough; 2769 case GIC_PAGE_SIZE_4K: 2770 psz = SZ_4K; 2771 break; 2772 case GIC_PAGE_SIZE_16K: 2773 psz = SZ_16K; 2774 break; 2775 case GIC_PAGE_SIZE_64K: 2776 psz = SZ_64K; 2777 break; 2778 } 2779 2780 /* Don't allow vpe_id that exceeds single, flat table limit */ 2781 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2782 return (id < (npg * psz / (esz * SZ_8))); 2783 2784 /* Compute 1st level table index & check if that exceeds table limit */ 2785 idx = id >> ilog2(psz / (esz * SZ_8)); 2786 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2787 return false; 2788 2789 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2790 2791 /* Allocate memory for 2nd level table */ 2792 if (!table[idx]) { 2793 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2794 if (!page) 2795 return false; 2796 2797 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2798 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2799 gic_flush_dcache_to_poc(page_address(page), psz); 2800 2801 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2802 2803 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2804 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2805 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2806 2807 /* Ensure updated table contents are visible to RD hardware */ 2808 dsb(sy); 2809 } 2810 2811 return true; 2812 } 2813 2814 static int allocate_vpe_l1_table(void) 2815 { 2816 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2817 u64 val, gpsz, npg, pa; 2818 unsigned int psz = SZ_64K; 2819 unsigned int np, epp, esz; 2820 struct page *page; 2821 2822 if (!gic_rdists->has_rvpeid) 2823 return 0; 2824 2825 /* 2826 * if VPENDBASER.Valid is set, disable any previously programmed 2827 * VPE by setting PendingLast while clearing Valid. This has the 2828 * effect of making sure no doorbell will be generated and we can 2829 * then safely clear VPROPBASER.Valid. 2830 */ 2831 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2832 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2833 vlpi_base + GICR_VPENDBASER); 2834 2835 /* 2836 * If we can inherit the configuration from another RD, let's do 2837 * so. Otherwise, we have to go through the allocation process. We 2838 * assume that all RDs have the exact same requirements, as 2839 * nothing will work otherwise. 2840 */ 2841 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2842 if (val & GICR_VPROPBASER_4_1_VALID) 2843 goto out; 2844 2845 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2846 if (!gic_data_rdist()->vpe_table_mask) 2847 return -ENOMEM; 2848 2849 val = inherit_vpe_l1_table_from_its(); 2850 if (val & GICR_VPROPBASER_4_1_VALID) 2851 goto out; 2852 2853 /* First probe the page size */ 2854 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2855 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2856 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2857 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2858 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2859 2860 switch (gpsz) { 2861 default: 2862 gpsz = GIC_PAGE_SIZE_4K; 2863 fallthrough; 2864 case GIC_PAGE_SIZE_4K: 2865 psz = SZ_4K; 2866 break; 2867 case GIC_PAGE_SIZE_16K: 2868 psz = SZ_16K; 2869 break; 2870 case GIC_PAGE_SIZE_64K: 2871 psz = SZ_64K; 2872 break; 2873 } 2874 2875 /* 2876 * Start populating the register from scratch, including RO fields 2877 * (which we want to print in debug cases...) 2878 */ 2879 val = 0; 2880 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2881 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2882 2883 /* How many entries per GIC page? */ 2884 esz++; 2885 epp = psz / (esz * SZ_8); 2886 2887 /* 2888 * If we need more than just a single L1 page, flag the table 2889 * as indirect and compute the number of required L1 pages. 2890 */ 2891 if (epp < ITS_MAX_VPEID) { 2892 int nl2; 2893 2894 val |= GICR_VPROPBASER_4_1_INDIRECT; 2895 2896 /* Number of L2 pages required to cover the VPEID space */ 2897 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2898 2899 /* Number of L1 pages to point to the L2 pages */ 2900 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2901 } else { 2902 npg = 1; 2903 } 2904 2905 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2906 2907 /* Right, that's the number of CPU pages we need for L1 */ 2908 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2909 2910 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2911 np, npg, psz, epp, esz); 2912 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2913 if (!page) 2914 return -ENOMEM; 2915 2916 gic_data_rdist()->vpe_l1_base = page_address(page); 2917 pa = virt_to_phys(page_address(page)); 2918 WARN_ON(!IS_ALIGNED(pa, psz)); 2919 2920 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2921 if (rdists_support_shareable()) { 2922 val |= GICR_VPROPBASER_RaWb; 2923 val |= GICR_VPROPBASER_InnerShareable; 2924 } 2925 val |= GICR_VPROPBASER_4_1_Z; 2926 val |= GICR_VPROPBASER_4_1_VALID; 2927 2928 out: 2929 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2930 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2931 2932 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2933 smp_processor_id(), val, 2934 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2935 2936 return 0; 2937 } 2938 2939 static int its_alloc_collections(struct its_node *its) 2940 { 2941 int i; 2942 2943 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2944 GFP_KERNEL); 2945 if (!its->collections) 2946 return -ENOMEM; 2947 2948 for (i = 0; i < nr_cpu_ids; i++) 2949 its->collections[i].target_address = ~0ULL; 2950 2951 return 0; 2952 } 2953 2954 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2955 { 2956 struct page *pend_page; 2957 2958 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2959 get_order(LPI_PENDBASE_SZ)); 2960 if (!pend_page) 2961 return NULL; 2962 2963 /* Make sure the GIC will observe the zero-ed page */ 2964 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2965 2966 return pend_page; 2967 } 2968 2969 static void its_free_pending_table(struct page *pt) 2970 { 2971 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2972 } 2973 2974 /* 2975 * Booting with kdump and LPIs enabled is generally fine. Any other 2976 * case is wrong in the absence of firmware/EFI support. 2977 */ 2978 static bool enabled_lpis_allowed(void) 2979 { 2980 phys_addr_t addr; 2981 u64 val; 2982 2983 /* Check whether the property table is in a reserved region */ 2984 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2985 addr = val & GENMASK_ULL(51, 12); 2986 2987 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2988 } 2989 2990 static int __init allocate_lpi_tables(void) 2991 { 2992 u64 val; 2993 int err, cpu; 2994 2995 /* 2996 * If LPIs are enabled while we run this from the boot CPU, 2997 * flag the RD tables as pre-allocated if the stars do align. 2998 */ 2999 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3000 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3001 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3002 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3003 pr_info("GICv3: Using preallocated redistributor tables\n"); 3004 } 3005 3006 err = its_setup_lpi_prop_table(); 3007 if (err) 3008 return err; 3009 3010 /* 3011 * We allocate all the pending tables anyway, as we may have a 3012 * mix of RDs that have had LPIs enabled, and some that 3013 * don't. We'll free the unused ones as each CPU comes online. 3014 */ 3015 for_each_possible_cpu(cpu) { 3016 struct page *pend_page; 3017 3018 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3019 if (!pend_page) { 3020 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3021 return -ENOMEM; 3022 } 3023 3024 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3025 } 3026 3027 return 0; 3028 } 3029 3030 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3031 { 3032 u32 count = 1000000; /* 1s! */ 3033 bool clean; 3034 u64 val; 3035 3036 do { 3037 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3038 clean = !(val & GICR_VPENDBASER_Dirty); 3039 if (!clean) { 3040 count--; 3041 cpu_relax(); 3042 udelay(1); 3043 } 3044 } while (!clean && count); 3045 3046 if (unlikely(!clean)) 3047 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3048 3049 return val; 3050 } 3051 3052 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3053 { 3054 u64 val; 3055 3056 /* Make sure we wait until the RD is done with the initial scan */ 3057 val = read_vpend_dirty_clear(vlpi_base); 3058 val &= ~GICR_VPENDBASER_Valid; 3059 val &= ~clr; 3060 val |= set; 3061 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3062 3063 val = read_vpend_dirty_clear(vlpi_base); 3064 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3065 val |= GICR_VPENDBASER_PendingLast; 3066 3067 return val; 3068 } 3069 3070 static void its_cpu_init_lpis(void) 3071 { 3072 void __iomem *rbase = gic_data_rdist_rd_base(); 3073 struct page *pend_page; 3074 phys_addr_t paddr; 3075 u64 val, tmp; 3076 3077 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3078 return; 3079 3080 val = readl_relaxed(rbase + GICR_CTLR); 3081 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3082 (val & GICR_CTLR_ENABLE_LPIS)) { 3083 /* 3084 * Check that we get the same property table on all 3085 * RDs. If we don't, this is hopeless. 3086 */ 3087 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3088 paddr &= GENMASK_ULL(51, 12); 3089 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3090 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3091 3092 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3093 paddr &= GENMASK_ULL(51, 16); 3094 3095 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3096 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3097 3098 goto out; 3099 } 3100 3101 pend_page = gic_data_rdist()->pend_page; 3102 paddr = page_to_phys(pend_page); 3103 3104 /* set PROPBASE */ 3105 val = (gic_rdists->prop_table_pa | 3106 GICR_PROPBASER_InnerShareable | 3107 GICR_PROPBASER_RaWaWb | 3108 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3109 3110 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3111 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3112 3113 if (!rdists_support_shareable()) 3114 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3115 3116 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3117 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3118 /* 3119 * The HW reports non-shareable, we must 3120 * remove the cacheability attributes as 3121 * well. 3122 */ 3123 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3124 GICR_PROPBASER_CACHEABILITY_MASK); 3125 val |= GICR_PROPBASER_nC; 3126 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3127 } 3128 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3129 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3130 } 3131 3132 /* set PENDBASE */ 3133 val = (page_to_phys(pend_page) | 3134 GICR_PENDBASER_InnerShareable | 3135 GICR_PENDBASER_RaWaWb); 3136 3137 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3138 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3139 3140 if (!rdists_support_shareable()) 3141 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3142 3143 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3144 /* 3145 * The HW reports non-shareable, we must remove the 3146 * cacheability attributes as well. 3147 */ 3148 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3149 GICR_PENDBASER_CACHEABILITY_MASK); 3150 val |= GICR_PENDBASER_nC; 3151 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3152 } 3153 3154 /* Enable LPIs */ 3155 val = readl_relaxed(rbase + GICR_CTLR); 3156 val |= GICR_CTLR_ENABLE_LPIS; 3157 writel_relaxed(val, rbase + GICR_CTLR); 3158 3159 out: 3160 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3161 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3162 3163 /* 3164 * It's possible for CPU to receive VLPIs before it is 3165 * scheduled as a vPE, especially for the first CPU, and the 3166 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3167 * as out of range and dropped by GIC. 3168 * So we initialize IDbits to known value to avoid VLPI drop. 3169 */ 3170 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3171 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3172 smp_processor_id(), val); 3173 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3174 3175 /* 3176 * Also clear Valid bit of GICR_VPENDBASER, in case some 3177 * ancient programming gets left in and has possibility of 3178 * corrupting memory. 3179 */ 3180 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3181 } 3182 3183 if (allocate_vpe_l1_table()) { 3184 /* 3185 * If the allocation has failed, we're in massive trouble. 3186 * Disable direct injection, and pray that no VM was 3187 * already running... 3188 */ 3189 gic_rdists->has_rvpeid = false; 3190 gic_rdists->has_vlpis = false; 3191 } 3192 3193 /* Make sure the GIC has seen the above */ 3194 dsb(sy); 3195 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3196 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3197 smp_processor_id(), 3198 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3199 "reserved" : "allocated", 3200 &paddr); 3201 } 3202 3203 static void its_cpu_init_collection(struct its_node *its) 3204 { 3205 int cpu = smp_processor_id(); 3206 u64 target; 3207 3208 /* avoid cross node collections and its mapping */ 3209 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3210 struct device_node *cpu_node; 3211 3212 cpu_node = of_get_cpu_node(cpu, NULL); 3213 if (its->numa_node != NUMA_NO_NODE && 3214 its->numa_node != of_node_to_nid(cpu_node)) 3215 return; 3216 } 3217 3218 /* 3219 * We now have to bind each collection to its target 3220 * redistributor. 3221 */ 3222 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3223 /* 3224 * This ITS wants the physical address of the 3225 * redistributor. 3226 */ 3227 target = gic_data_rdist()->phys_base; 3228 } else { 3229 /* This ITS wants a linear CPU number. */ 3230 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3231 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3232 } 3233 3234 /* Perform collection mapping */ 3235 its->collections[cpu].target_address = target; 3236 its->collections[cpu].col_id = cpu; 3237 3238 its_send_mapc(its, &its->collections[cpu], 1); 3239 its_send_invall(its, &its->collections[cpu]); 3240 } 3241 3242 static void its_cpu_init_collections(void) 3243 { 3244 struct its_node *its; 3245 3246 raw_spin_lock(&its_lock); 3247 3248 list_for_each_entry(its, &its_nodes, entry) 3249 its_cpu_init_collection(its); 3250 3251 raw_spin_unlock(&its_lock); 3252 } 3253 3254 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3255 { 3256 struct its_device *its_dev = NULL, *tmp; 3257 unsigned long flags; 3258 3259 raw_spin_lock_irqsave(&its->lock, flags); 3260 3261 list_for_each_entry(tmp, &its->its_device_list, entry) { 3262 if (tmp->device_id == dev_id) { 3263 its_dev = tmp; 3264 break; 3265 } 3266 } 3267 3268 raw_spin_unlock_irqrestore(&its->lock, flags); 3269 3270 return its_dev; 3271 } 3272 3273 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3274 { 3275 int i; 3276 3277 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3278 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3279 return &its->tables[i]; 3280 } 3281 3282 return NULL; 3283 } 3284 3285 static bool its_alloc_table_entry(struct its_node *its, 3286 struct its_baser *baser, u32 id) 3287 { 3288 struct page *page; 3289 u32 esz, idx; 3290 __le64 *table; 3291 3292 /* Don't allow device id that exceeds single, flat table limit */ 3293 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3294 if (!(baser->val & GITS_BASER_INDIRECT)) 3295 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3296 3297 /* Compute 1st level table index & check if that exceeds table limit */ 3298 idx = id >> ilog2(baser->psz / esz); 3299 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3300 return false; 3301 3302 table = baser->base; 3303 3304 /* Allocate memory for 2nd level table */ 3305 if (!table[idx]) { 3306 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3307 get_order(baser->psz)); 3308 if (!page) 3309 return false; 3310 3311 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3312 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3313 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3314 3315 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3316 3317 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3318 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3319 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3320 3321 /* Ensure updated table contents are visible to ITS hardware */ 3322 dsb(sy); 3323 } 3324 3325 return true; 3326 } 3327 3328 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3329 { 3330 struct its_baser *baser; 3331 3332 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3333 3334 /* Don't allow device id that exceeds ITS hardware limit */ 3335 if (!baser) 3336 return (ilog2(dev_id) < device_ids(its)); 3337 3338 return its_alloc_table_entry(its, baser, dev_id); 3339 } 3340 3341 static bool its_alloc_vpe_table(u32 vpe_id) 3342 { 3343 struct its_node *its; 3344 int cpu; 3345 3346 /* 3347 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3348 * could try and only do it on ITSs corresponding to devices 3349 * that have interrupts targeted at this VPE, but the 3350 * complexity becomes crazy (and you have tons of memory 3351 * anyway, right?). 3352 */ 3353 list_for_each_entry(its, &its_nodes, entry) { 3354 struct its_baser *baser; 3355 3356 if (!is_v4(its)) 3357 continue; 3358 3359 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3360 if (!baser) 3361 return false; 3362 3363 if (!its_alloc_table_entry(its, baser, vpe_id)) 3364 return false; 3365 } 3366 3367 /* Non v4.1? No need to iterate RDs and go back early. */ 3368 if (!gic_rdists->has_rvpeid) 3369 return true; 3370 3371 /* 3372 * Make sure the L2 tables are allocated for all copies of 3373 * the L1 table on *all* v4.1 RDs. 3374 */ 3375 for_each_possible_cpu(cpu) { 3376 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3377 return false; 3378 } 3379 3380 return true; 3381 } 3382 3383 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3384 int nvecs, bool alloc_lpis) 3385 { 3386 struct its_device *dev; 3387 unsigned long *lpi_map = NULL; 3388 unsigned long flags; 3389 u16 *col_map = NULL; 3390 void *itt; 3391 int lpi_base; 3392 int nr_lpis; 3393 int nr_ites; 3394 int sz; 3395 3396 if (!its_alloc_device_table(its, dev_id)) 3397 return NULL; 3398 3399 if (WARN_ON(!is_power_of_2(nvecs))) 3400 nvecs = roundup_pow_of_two(nvecs); 3401 3402 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3403 /* 3404 * Even if the device wants a single LPI, the ITT must be 3405 * sized as a power of two (and you need at least one bit...). 3406 */ 3407 nr_ites = max(2, nvecs); 3408 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3409 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3410 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3411 if (alloc_lpis) { 3412 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3413 if (lpi_map) 3414 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3415 GFP_KERNEL); 3416 } else { 3417 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3418 nr_lpis = 0; 3419 lpi_base = 0; 3420 } 3421 3422 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3423 kfree(dev); 3424 kfree(itt); 3425 bitmap_free(lpi_map); 3426 kfree(col_map); 3427 return NULL; 3428 } 3429 3430 gic_flush_dcache_to_poc(itt, sz); 3431 3432 dev->its = its; 3433 dev->itt = itt; 3434 dev->nr_ites = nr_ites; 3435 dev->event_map.lpi_map = lpi_map; 3436 dev->event_map.col_map = col_map; 3437 dev->event_map.lpi_base = lpi_base; 3438 dev->event_map.nr_lpis = nr_lpis; 3439 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3440 dev->device_id = dev_id; 3441 INIT_LIST_HEAD(&dev->entry); 3442 3443 raw_spin_lock_irqsave(&its->lock, flags); 3444 list_add(&dev->entry, &its->its_device_list); 3445 raw_spin_unlock_irqrestore(&its->lock, flags); 3446 3447 /* Map device to its ITT */ 3448 its_send_mapd(dev, 1); 3449 3450 return dev; 3451 } 3452 3453 static void its_free_device(struct its_device *its_dev) 3454 { 3455 unsigned long flags; 3456 3457 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3458 list_del(&its_dev->entry); 3459 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3460 kfree(its_dev->event_map.col_map); 3461 kfree(its_dev->itt); 3462 kfree(its_dev); 3463 } 3464 3465 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3466 { 3467 int idx; 3468 3469 /* Find a free LPI region in lpi_map and allocate them. */ 3470 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3471 dev->event_map.nr_lpis, 3472 get_count_order(nvecs)); 3473 if (idx < 0) 3474 return -ENOSPC; 3475 3476 *hwirq = dev->event_map.lpi_base + idx; 3477 3478 return 0; 3479 } 3480 3481 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3482 int nvec, msi_alloc_info_t *info) 3483 { 3484 struct its_node *its; 3485 struct its_device *its_dev; 3486 struct msi_domain_info *msi_info; 3487 u32 dev_id; 3488 int err = 0; 3489 3490 /* 3491 * We ignore "dev" entirely, and rely on the dev_id that has 3492 * been passed via the scratchpad. This limits this domain's 3493 * usefulness to upper layers that definitely know that they 3494 * are built on top of the ITS. 3495 */ 3496 dev_id = info->scratchpad[0].ul; 3497 3498 msi_info = msi_get_domain_info(domain); 3499 its = msi_info->data; 3500 3501 if (!gic_rdists->has_direct_lpi && 3502 vpe_proxy.dev && 3503 vpe_proxy.dev->its == its && 3504 dev_id == vpe_proxy.dev->device_id) { 3505 /* Bad luck. Get yourself a better implementation */ 3506 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3507 dev_id); 3508 return -EINVAL; 3509 } 3510 3511 mutex_lock(&its->dev_alloc_lock); 3512 its_dev = its_find_device(its, dev_id); 3513 if (its_dev) { 3514 /* 3515 * We already have seen this ID, probably through 3516 * another alias (PCI bridge of some sort). No need to 3517 * create the device. 3518 */ 3519 its_dev->shared = true; 3520 pr_debug("Reusing ITT for devID %x\n", dev_id); 3521 goto out; 3522 } 3523 3524 its_dev = its_create_device(its, dev_id, nvec, true); 3525 if (!its_dev) { 3526 err = -ENOMEM; 3527 goto out; 3528 } 3529 3530 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3531 its_dev->shared = true; 3532 3533 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3534 out: 3535 mutex_unlock(&its->dev_alloc_lock); 3536 info->scratchpad[0].ptr = its_dev; 3537 return err; 3538 } 3539 3540 static struct msi_domain_ops its_msi_domain_ops = { 3541 .msi_prepare = its_msi_prepare, 3542 }; 3543 3544 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3545 unsigned int virq, 3546 irq_hw_number_t hwirq) 3547 { 3548 struct irq_fwspec fwspec; 3549 3550 if (irq_domain_get_of_node(domain->parent)) { 3551 fwspec.fwnode = domain->parent->fwnode; 3552 fwspec.param_count = 3; 3553 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3554 fwspec.param[1] = hwirq; 3555 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3556 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3557 fwspec.fwnode = domain->parent->fwnode; 3558 fwspec.param_count = 2; 3559 fwspec.param[0] = hwirq; 3560 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3561 } else { 3562 return -EINVAL; 3563 } 3564 3565 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3566 } 3567 3568 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3569 unsigned int nr_irqs, void *args) 3570 { 3571 msi_alloc_info_t *info = args; 3572 struct its_device *its_dev = info->scratchpad[0].ptr; 3573 struct its_node *its = its_dev->its; 3574 struct irq_data *irqd; 3575 irq_hw_number_t hwirq; 3576 int err; 3577 int i; 3578 3579 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3580 if (err) 3581 return err; 3582 3583 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3584 if (err) 3585 return err; 3586 3587 for (i = 0; i < nr_irqs; i++) { 3588 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3589 if (err) 3590 return err; 3591 3592 irq_domain_set_hwirq_and_chip(domain, virq + i, 3593 hwirq + i, &its_irq_chip, its_dev); 3594 irqd = irq_get_irq_data(virq + i); 3595 irqd_set_single_target(irqd); 3596 irqd_set_affinity_on_activate(irqd); 3597 irqd_set_resend_when_in_progress(irqd); 3598 pr_debug("ID:%d pID:%d vID:%d\n", 3599 (int)(hwirq + i - its_dev->event_map.lpi_base), 3600 (int)(hwirq + i), virq + i); 3601 } 3602 3603 return 0; 3604 } 3605 3606 static int its_irq_domain_activate(struct irq_domain *domain, 3607 struct irq_data *d, bool reserve) 3608 { 3609 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3610 u32 event = its_get_event_id(d); 3611 int cpu; 3612 3613 cpu = its_select_cpu(d, cpu_online_mask); 3614 if (cpu < 0 || cpu >= nr_cpu_ids) 3615 return -EINVAL; 3616 3617 its_inc_lpi_count(d, cpu); 3618 its_dev->event_map.col_map[event] = cpu; 3619 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3620 3621 /* Map the GIC IRQ and event to the device */ 3622 its_send_mapti(its_dev, d->hwirq, event); 3623 return 0; 3624 } 3625 3626 static void its_irq_domain_deactivate(struct irq_domain *domain, 3627 struct irq_data *d) 3628 { 3629 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3630 u32 event = its_get_event_id(d); 3631 3632 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3633 /* Stop the delivery of interrupts */ 3634 its_send_discard(its_dev, event); 3635 } 3636 3637 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3638 unsigned int nr_irqs) 3639 { 3640 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3641 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3642 struct its_node *its = its_dev->its; 3643 int i; 3644 3645 bitmap_release_region(its_dev->event_map.lpi_map, 3646 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3647 get_count_order(nr_irqs)); 3648 3649 for (i = 0; i < nr_irqs; i++) { 3650 struct irq_data *data = irq_domain_get_irq_data(domain, 3651 virq + i); 3652 /* Nuke the entry in the domain */ 3653 irq_domain_reset_irq_data(data); 3654 } 3655 3656 mutex_lock(&its->dev_alloc_lock); 3657 3658 /* 3659 * If all interrupts have been freed, start mopping the 3660 * floor. This is conditioned on the device not being shared. 3661 */ 3662 if (!its_dev->shared && 3663 bitmap_empty(its_dev->event_map.lpi_map, 3664 its_dev->event_map.nr_lpis)) { 3665 its_lpi_free(its_dev->event_map.lpi_map, 3666 its_dev->event_map.lpi_base, 3667 its_dev->event_map.nr_lpis); 3668 3669 /* Unmap device/itt */ 3670 its_send_mapd(its_dev, 0); 3671 its_free_device(its_dev); 3672 } 3673 3674 mutex_unlock(&its->dev_alloc_lock); 3675 3676 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3677 } 3678 3679 static const struct irq_domain_ops its_domain_ops = { 3680 .select = msi_lib_irq_domain_select, 3681 .alloc = its_irq_domain_alloc, 3682 .free = its_irq_domain_free, 3683 .activate = its_irq_domain_activate, 3684 .deactivate = its_irq_domain_deactivate, 3685 }; 3686 3687 /* 3688 * This is insane. 3689 * 3690 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3691 * likely), the only way to perform an invalidate is to use a fake 3692 * device to issue an INV command, implying that the LPI has first 3693 * been mapped to some event on that device. Since this is not exactly 3694 * cheap, we try to keep that mapping around as long as possible, and 3695 * only issue an UNMAP if we're short on available slots. 3696 * 3697 * Broken by design(tm). 3698 * 3699 * GICv4.1, on the other hand, mandates that we're able to invalidate 3700 * by writing to a MMIO register. It doesn't implement the whole of 3701 * DirectLPI, but that's good enough. And most of the time, we don't 3702 * even have to invalidate anything, as the redistributor can be told 3703 * whether to generate a doorbell or not (we thus leave it enabled, 3704 * always). 3705 */ 3706 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3707 { 3708 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3709 if (gic_rdists->has_rvpeid) 3710 return; 3711 3712 /* Already unmapped? */ 3713 if (vpe->vpe_proxy_event == -1) 3714 return; 3715 3716 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3717 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3718 3719 /* 3720 * We don't track empty slots at all, so let's move the 3721 * next_victim pointer if we can quickly reuse that slot 3722 * instead of nuking an existing entry. Not clear that this is 3723 * always a win though, and this might just generate a ripple 3724 * effect... Let's just hope VPEs don't migrate too often. 3725 */ 3726 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3727 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3728 3729 vpe->vpe_proxy_event = -1; 3730 } 3731 3732 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3733 { 3734 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3735 if (gic_rdists->has_rvpeid) 3736 return; 3737 3738 if (!gic_rdists->has_direct_lpi) { 3739 unsigned long flags; 3740 3741 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3742 its_vpe_db_proxy_unmap_locked(vpe); 3743 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3744 } 3745 } 3746 3747 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3748 { 3749 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3750 if (gic_rdists->has_rvpeid) 3751 return; 3752 3753 /* Already mapped? */ 3754 if (vpe->vpe_proxy_event != -1) 3755 return; 3756 3757 /* This slot was already allocated. Kick the other VPE out. */ 3758 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3759 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3760 3761 /* Map the new VPE instead */ 3762 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3763 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3764 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3765 3766 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3767 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3768 } 3769 3770 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3771 { 3772 unsigned long flags; 3773 struct its_collection *target_col; 3774 3775 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3776 if (gic_rdists->has_rvpeid) 3777 return; 3778 3779 if (gic_rdists->has_direct_lpi) { 3780 void __iomem *rdbase; 3781 3782 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3783 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3784 wait_for_syncr(rdbase); 3785 3786 return; 3787 } 3788 3789 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3790 3791 its_vpe_db_proxy_map_locked(vpe); 3792 3793 target_col = &vpe_proxy.dev->its->collections[to]; 3794 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3795 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3796 3797 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3798 } 3799 3800 static int its_vpe_set_affinity(struct irq_data *d, 3801 const struct cpumask *mask_val, 3802 bool force) 3803 { 3804 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3805 unsigned int from, cpu = nr_cpu_ids; 3806 struct cpumask *table_mask; 3807 unsigned long flags; 3808 3809 /* 3810 * Check if we're racing against a VPE being destroyed, for 3811 * which we don't want to allow a VMOVP. 3812 */ 3813 if (!atomic_read(&vpe->vmapp_count)) { 3814 if (gic_requires_eager_mapping()) 3815 return -EINVAL; 3816 3817 /* 3818 * If we lazily map the VPEs, this isn't an error and 3819 * we can exit cleanly. 3820 */ 3821 cpu = cpumask_first(mask_val); 3822 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3823 return IRQ_SET_MASK_OK_DONE; 3824 } 3825 3826 /* 3827 * Changing affinity is mega expensive, so let's be as lazy as 3828 * we can and only do it if we really have to. Also, if mapped 3829 * into the proxy device, we need to move the doorbell 3830 * interrupt to its new location. 3831 * 3832 * Another thing is that changing the affinity of a vPE affects 3833 * *other interrupts* such as all the vLPIs that are routed to 3834 * this vPE. This means that the irq_desc lock is not enough to 3835 * protect us, and that we must ensure nobody samples vpe->col_idx 3836 * during the update, hence the lock below which must also be 3837 * taken on any vLPI handling path that evaluates vpe->col_idx. 3838 * 3839 * Finally, we must protect ourselves against concurrent updates of 3840 * the mapping state on this VM should the ITS list be in use (see 3841 * the shortcut in its_send_vmovp() otherewise). 3842 */ 3843 if (its_list_map) 3844 raw_spin_lock(&vpe->its_vm->vmapp_lock); 3845 3846 from = vpe_to_cpuid_lock(vpe, &flags); 3847 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3848 3849 /* 3850 * If we are offered another CPU in the same GICv4.1 ITS 3851 * affinity, pick this one. Otherwise, any CPU will do. 3852 */ 3853 if (table_mask) 3854 cpu = cpumask_any_and(mask_val, table_mask); 3855 if (cpu < nr_cpu_ids) { 3856 if (cpumask_test_cpu(from, mask_val) && 3857 cpumask_test_cpu(from, table_mask)) 3858 cpu = from; 3859 } else { 3860 cpu = cpumask_first(mask_val); 3861 } 3862 3863 if (from == cpu) 3864 goto out; 3865 3866 vpe->col_idx = cpu; 3867 3868 its_send_vmovp(vpe); 3869 its_vpe_db_proxy_move(vpe, from, cpu); 3870 3871 out: 3872 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3873 vpe_to_cpuid_unlock(vpe, flags); 3874 3875 if (its_list_map) 3876 raw_spin_unlock(&vpe->its_vm->vmapp_lock); 3877 3878 return IRQ_SET_MASK_OK_DONE; 3879 } 3880 3881 static void its_wait_vpt_parse_complete(void) 3882 { 3883 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3884 u64 val; 3885 3886 if (!gic_rdists->has_vpend_valid_dirty) 3887 return; 3888 3889 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3890 val, 3891 !(val & GICR_VPENDBASER_Dirty), 3892 1, 500)); 3893 } 3894 3895 static void its_vpe_schedule(struct its_vpe *vpe) 3896 { 3897 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3898 u64 val; 3899 3900 /* Schedule the VPE */ 3901 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3902 GENMASK_ULL(51, 12); 3903 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3904 if (rdists_support_shareable()) { 3905 val |= GICR_VPROPBASER_RaWb; 3906 val |= GICR_VPROPBASER_InnerShareable; 3907 } 3908 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3909 3910 val = virt_to_phys(page_address(vpe->vpt_page)) & 3911 GENMASK_ULL(51, 16); 3912 if (rdists_support_shareable()) { 3913 val |= GICR_VPENDBASER_RaWaWb; 3914 val |= GICR_VPENDBASER_InnerShareable; 3915 } 3916 /* 3917 * There is no good way of finding out if the pending table is 3918 * empty as we can race against the doorbell interrupt very 3919 * easily. So in the end, vpe->pending_last is only an 3920 * indication that the vcpu has something pending, not one 3921 * that the pending table is empty. A good implementation 3922 * would be able to read its coarse map pretty quickly anyway, 3923 * making this a tolerable issue. 3924 */ 3925 val |= GICR_VPENDBASER_PendingLast; 3926 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3927 val |= GICR_VPENDBASER_Valid; 3928 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3929 } 3930 3931 static void its_vpe_deschedule(struct its_vpe *vpe) 3932 { 3933 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3934 u64 val; 3935 3936 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3937 3938 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3939 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3940 } 3941 3942 static void its_vpe_invall(struct its_vpe *vpe) 3943 { 3944 struct its_node *its; 3945 3946 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock); 3947 3948 list_for_each_entry(its, &its_nodes, entry) { 3949 if (!is_v4(its)) 3950 continue; 3951 3952 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3953 continue; 3954 3955 /* 3956 * Sending a VINVALL to a single ITS is enough, as all 3957 * we need is to reach the redistributors. 3958 */ 3959 its_send_vinvall(its, vpe); 3960 return; 3961 } 3962 } 3963 3964 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3965 { 3966 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3967 struct its_cmd_info *info = vcpu_info; 3968 3969 switch (info->cmd_type) { 3970 case SCHEDULE_VPE: 3971 its_vpe_schedule(vpe); 3972 return 0; 3973 3974 case DESCHEDULE_VPE: 3975 its_vpe_deschedule(vpe); 3976 return 0; 3977 3978 case COMMIT_VPE: 3979 its_wait_vpt_parse_complete(); 3980 return 0; 3981 3982 case INVALL_VPE: 3983 its_vpe_invall(vpe); 3984 return 0; 3985 3986 default: 3987 return -EINVAL; 3988 } 3989 } 3990 3991 static void its_vpe_send_cmd(struct its_vpe *vpe, 3992 void (*cmd)(struct its_device *, u32)) 3993 { 3994 unsigned long flags; 3995 3996 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3997 3998 its_vpe_db_proxy_map_locked(vpe); 3999 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 4000 4001 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 4002 } 4003 4004 static void its_vpe_send_inv(struct irq_data *d) 4005 { 4006 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4007 4008 if (gic_rdists->has_direct_lpi) 4009 __direct_lpi_inv(d, d->parent_data->hwirq); 4010 else 4011 its_vpe_send_cmd(vpe, its_send_inv); 4012 } 4013 4014 static void its_vpe_mask_irq(struct irq_data *d) 4015 { 4016 /* 4017 * We need to unmask the LPI, which is described by the parent 4018 * irq_data. Instead of calling into the parent (which won't 4019 * exactly do the right thing, let's simply use the 4020 * parent_data pointer. Yes, I'm naughty. 4021 */ 4022 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4023 its_vpe_send_inv(d); 4024 } 4025 4026 static void its_vpe_unmask_irq(struct irq_data *d) 4027 { 4028 /* Same hack as above... */ 4029 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4030 its_vpe_send_inv(d); 4031 } 4032 4033 static int its_vpe_set_irqchip_state(struct irq_data *d, 4034 enum irqchip_irq_state which, 4035 bool state) 4036 { 4037 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4038 4039 if (which != IRQCHIP_STATE_PENDING) 4040 return -EINVAL; 4041 4042 if (gic_rdists->has_direct_lpi) { 4043 void __iomem *rdbase; 4044 4045 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4046 if (state) { 4047 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4048 } else { 4049 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4050 wait_for_syncr(rdbase); 4051 } 4052 } else { 4053 if (state) 4054 its_vpe_send_cmd(vpe, its_send_int); 4055 else 4056 its_vpe_send_cmd(vpe, its_send_clear); 4057 } 4058 4059 return 0; 4060 } 4061 4062 static int its_vpe_retrigger(struct irq_data *d) 4063 { 4064 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4065 } 4066 4067 static struct irq_chip its_vpe_irq_chip = { 4068 .name = "GICv4-vpe", 4069 .irq_mask = its_vpe_mask_irq, 4070 .irq_unmask = its_vpe_unmask_irq, 4071 .irq_eoi = irq_chip_eoi_parent, 4072 .irq_set_affinity = its_vpe_set_affinity, 4073 .irq_retrigger = its_vpe_retrigger, 4074 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4075 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4076 }; 4077 4078 static struct its_node *find_4_1_its(void) 4079 { 4080 static struct its_node *its = NULL; 4081 4082 if (!its) { 4083 list_for_each_entry(its, &its_nodes, entry) { 4084 if (is_v4_1(its)) 4085 return its; 4086 } 4087 4088 /* Oops? */ 4089 its = NULL; 4090 } 4091 4092 return its; 4093 } 4094 4095 static void its_vpe_4_1_send_inv(struct irq_data *d) 4096 { 4097 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4098 struct its_node *its; 4099 4100 /* 4101 * GICv4.1 wants doorbells to be invalidated using the 4102 * INVDB command in order to be broadcast to all RDs. Send 4103 * it to the first valid ITS, and let the HW do its magic. 4104 */ 4105 its = find_4_1_its(); 4106 if (its) 4107 its_send_invdb(its, vpe); 4108 } 4109 4110 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4111 { 4112 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4113 its_vpe_4_1_send_inv(d); 4114 } 4115 4116 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4117 { 4118 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4119 its_vpe_4_1_send_inv(d); 4120 } 4121 4122 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4123 struct its_cmd_info *info) 4124 { 4125 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4126 u64 val = 0; 4127 4128 /* Schedule the VPE */ 4129 val |= GICR_VPENDBASER_Valid; 4130 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4131 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4132 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4133 4134 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4135 } 4136 4137 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4138 struct its_cmd_info *info) 4139 { 4140 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4141 u64 val; 4142 4143 if (info->req_db) { 4144 unsigned long flags; 4145 4146 /* 4147 * vPE is going to block: make the vPE non-resident with 4148 * PendingLast clear and DB set. The GIC guarantees that if 4149 * we read-back PendingLast clear, then a doorbell will be 4150 * delivered when an interrupt comes. 4151 * 4152 * Note the locking to deal with the concurrent update of 4153 * pending_last from the doorbell interrupt handler that can 4154 * run concurrently. 4155 */ 4156 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4157 val = its_clear_vpend_valid(vlpi_base, 4158 GICR_VPENDBASER_PendingLast, 4159 GICR_VPENDBASER_4_1_DB); 4160 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4161 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4162 } else { 4163 /* 4164 * We're not blocking, so just make the vPE non-resident 4165 * with PendingLast set, indicating that we'll be back. 4166 */ 4167 val = its_clear_vpend_valid(vlpi_base, 4168 0, 4169 GICR_VPENDBASER_PendingLast); 4170 vpe->pending_last = true; 4171 } 4172 } 4173 4174 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4175 { 4176 void __iomem *rdbase; 4177 unsigned long flags; 4178 u64 val; 4179 int cpu; 4180 4181 val = GICR_INVALLR_V; 4182 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4183 4184 /* Target the redistributor this vPE is currently known on */ 4185 cpu = vpe_to_cpuid_lock(vpe, &flags); 4186 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4187 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4188 gic_write_lpir(val, rdbase + GICR_INVALLR); 4189 4190 wait_for_syncr(rdbase); 4191 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4192 vpe_to_cpuid_unlock(vpe, flags); 4193 } 4194 4195 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4196 { 4197 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4198 struct its_cmd_info *info = vcpu_info; 4199 4200 switch (info->cmd_type) { 4201 case SCHEDULE_VPE: 4202 its_vpe_4_1_schedule(vpe, info); 4203 return 0; 4204 4205 case DESCHEDULE_VPE: 4206 its_vpe_4_1_deschedule(vpe, info); 4207 return 0; 4208 4209 case COMMIT_VPE: 4210 its_wait_vpt_parse_complete(); 4211 return 0; 4212 4213 case INVALL_VPE: 4214 its_vpe_4_1_invall(vpe); 4215 return 0; 4216 4217 default: 4218 return -EINVAL; 4219 } 4220 } 4221 4222 static struct irq_chip its_vpe_4_1_irq_chip = { 4223 .name = "GICv4.1-vpe", 4224 .irq_mask = its_vpe_4_1_mask_irq, 4225 .irq_unmask = its_vpe_4_1_unmask_irq, 4226 .irq_eoi = irq_chip_eoi_parent, 4227 .irq_set_affinity = its_vpe_set_affinity, 4228 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4229 }; 4230 4231 static void its_configure_sgi(struct irq_data *d, bool clear) 4232 { 4233 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4234 struct its_cmd_desc desc; 4235 4236 desc.its_vsgi_cmd.vpe = vpe; 4237 desc.its_vsgi_cmd.sgi = d->hwirq; 4238 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4239 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4240 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4241 desc.its_vsgi_cmd.clear = clear; 4242 4243 /* 4244 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4245 * destination VPE is mapped there. Since we map them eagerly at 4246 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4247 */ 4248 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4249 } 4250 4251 static void its_sgi_mask_irq(struct irq_data *d) 4252 { 4253 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4254 4255 vpe->sgi_config[d->hwirq].enabled = false; 4256 its_configure_sgi(d, false); 4257 } 4258 4259 static void its_sgi_unmask_irq(struct irq_data *d) 4260 { 4261 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4262 4263 vpe->sgi_config[d->hwirq].enabled = true; 4264 its_configure_sgi(d, false); 4265 } 4266 4267 static int its_sgi_set_affinity(struct irq_data *d, 4268 const struct cpumask *mask_val, 4269 bool force) 4270 { 4271 /* 4272 * There is no notion of affinity for virtual SGIs, at least 4273 * not on the host (since they can only be targeting a vPE). 4274 * Tell the kernel we've done whatever it asked for. 4275 */ 4276 irq_data_update_effective_affinity(d, mask_val); 4277 return IRQ_SET_MASK_OK; 4278 } 4279 4280 static int its_sgi_set_irqchip_state(struct irq_data *d, 4281 enum irqchip_irq_state which, 4282 bool state) 4283 { 4284 if (which != IRQCHIP_STATE_PENDING) 4285 return -EINVAL; 4286 4287 if (state) { 4288 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4289 struct its_node *its = find_4_1_its(); 4290 u64 val; 4291 4292 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4293 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4294 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4295 } else { 4296 its_configure_sgi(d, true); 4297 } 4298 4299 return 0; 4300 } 4301 4302 static int its_sgi_get_irqchip_state(struct irq_data *d, 4303 enum irqchip_irq_state which, bool *val) 4304 { 4305 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4306 void __iomem *base; 4307 unsigned long flags; 4308 u32 count = 1000000; /* 1s! */ 4309 u32 status; 4310 int cpu; 4311 4312 if (which != IRQCHIP_STATE_PENDING) 4313 return -EINVAL; 4314 4315 /* 4316 * Locking galore! We can race against two different events: 4317 * 4318 * - Concurrent vPE affinity change: we must make sure it cannot 4319 * happen, or we'll talk to the wrong redistributor. This is 4320 * identical to what happens with vLPIs. 4321 * 4322 * - Concurrent VSGIPENDR access: As it involves accessing two 4323 * MMIO registers, this must be made atomic one way or another. 4324 */ 4325 cpu = vpe_to_cpuid_lock(vpe, &flags); 4326 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4327 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4328 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4329 do { 4330 status = readl_relaxed(base + GICR_VSGIPENDR); 4331 if (!(status & GICR_VSGIPENDR_BUSY)) 4332 goto out; 4333 4334 count--; 4335 if (!count) { 4336 pr_err_ratelimited("Unable to get SGI status\n"); 4337 goto out; 4338 } 4339 cpu_relax(); 4340 udelay(1); 4341 } while (count); 4342 4343 out: 4344 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4345 vpe_to_cpuid_unlock(vpe, flags); 4346 4347 if (!count) 4348 return -ENXIO; 4349 4350 *val = !!(status & (1 << d->hwirq)); 4351 4352 return 0; 4353 } 4354 4355 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4356 { 4357 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4358 struct its_cmd_info *info = vcpu_info; 4359 4360 switch (info->cmd_type) { 4361 case PROP_UPDATE_VSGI: 4362 vpe->sgi_config[d->hwirq].priority = info->priority; 4363 vpe->sgi_config[d->hwirq].group = info->group; 4364 its_configure_sgi(d, false); 4365 return 0; 4366 4367 default: 4368 return -EINVAL; 4369 } 4370 } 4371 4372 static struct irq_chip its_sgi_irq_chip = { 4373 .name = "GICv4.1-sgi", 4374 .irq_mask = its_sgi_mask_irq, 4375 .irq_unmask = its_sgi_unmask_irq, 4376 .irq_set_affinity = its_sgi_set_affinity, 4377 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4378 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4379 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4380 }; 4381 4382 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4383 unsigned int virq, unsigned int nr_irqs, 4384 void *args) 4385 { 4386 struct its_vpe *vpe = args; 4387 int i; 4388 4389 /* Yes, we do want 16 SGIs */ 4390 WARN_ON(nr_irqs != 16); 4391 4392 for (i = 0; i < 16; i++) { 4393 vpe->sgi_config[i].priority = 0; 4394 vpe->sgi_config[i].enabled = false; 4395 vpe->sgi_config[i].group = false; 4396 4397 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4398 &its_sgi_irq_chip, vpe); 4399 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4400 } 4401 4402 return 0; 4403 } 4404 4405 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4406 unsigned int virq, 4407 unsigned int nr_irqs) 4408 { 4409 /* Nothing to do */ 4410 } 4411 4412 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4413 struct irq_data *d, bool reserve) 4414 { 4415 /* Write out the initial SGI configuration */ 4416 its_configure_sgi(d, false); 4417 return 0; 4418 } 4419 4420 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4421 struct irq_data *d) 4422 { 4423 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4424 4425 /* 4426 * The VSGI command is awkward: 4427 * 4428 * - To change the configuration, CLEAR must be set to false, 4429 * leaving the pending bit unchanged. 4430 * - To clear the pending bit, CLEAR must be set to true, leaving 4431 * the configuration unchanged. 4432 * 4433 * You just can't do both at once, hence the two commands below. 4434 */ 4435 vpe->sgi_config[d->hwirq].enabled = false; 4436 its_configure_sgi(d, false); 4437 its_configure_sgi(d, true); 4438 } 4439 4440 static const struct irq_domain_ops its_sgi_domain_ops = { 4441 .alloc = its_sgi_irq_domain_alloc, 4442 .free = its_sgi_irq_domain_free, 4443 .activate = its_sgi_irq_domain_activate, 4444 .deactivate = its_sgi_irq_domain_deactivate, 4445 }; 4446 4447 static int its_vpe_id_alloc(void) 4448 { 4449 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL); 4450 } 4451 4452 static void its_vpe_id_free(u16 id) 4453 { 4454 ida_free(&its_vpeid_ida, id); 4455 } 4456 4457 static int its_vpe_init(struct its_vpe *vpe) 4458 { 4459 struct page *vpt_page; 4460 int vpe_id; 4461 4462 /* Allocate vpe_id */ 4463 vpe_id = its_vpe_id_alloc(); 4464 if (vpe_id < 0) 4465 return vpe_id; 4466 4467 /* Allocate VPT */ 4468 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4469 if (!vpt_page) { 4470 its_vpe_id_free(vpe_id); 4471 return -ENOMEM; 4472 } 4473 4474 if (!its_alloc_vpe_table(vpe_id)) { 4475 its_vpe_id_free(vpe_id); 4476 its_free_pending_table(vpt_page); 4477 return -ENOMEM; 4478 } 4479 4480 raw_spin_lock_init(&vpe->vpe_lock); 4481 vpe->vpe_id = vpe_id; 4482 vpe->vpt_page = vpt_page; 4483 atomic_set(&vpe->vmapp_count, 0); 4484 if (!gic_rdists->has_rvpeid) 4485 vpe->vpe_proxy_event = -1; 4486 4487 return 0; 4488 } 4489 4490 static void its_vpe_teardown(struct its_vpe *vpe) 4491 { 4492 its_vpe_db_proxy_unmap(vpe); 4493 its_vpe_id_free(vpe->vpe_id); 4494 its_free_pending_table(vpe->vpt_page); 4495 } 4496 4497 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4498 unsigned int virq, 4499 unsigned int nr_irqs) 4500 { 4501 struct its_vm *vm = domain->host_data; 4502 int i; 4503 4504 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4505 4506 for (i = 0; i < nr_irqs; i++) { 4507 struct irq_data *data = irq_domain_get_irq_data(domain, 4508 virq + i); 4509 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4510 4511 BUG_ON(vm != vpe->its_vm); 4512 4513 clear_bit(data->hwirq, vm->db_bitmap); 4514 its_vpe_teardown(vpe); 4515 irq_domain_reset_irq_data(data); 4516 } 4517 4518 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4519 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4520 its_free_prop_table(vm->vprop_page); 4521 } 4522 } 4523 4524 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4525 unsigned int nr_irqs, void *args) 4526 { 4527 struct irq_chip *irqchip = &its_vpe_irq_chip; 4528 struct its_vm *vm = args; 4529 unsigned long *bitmap; 4530 struct page *vprop_page; 4531 int base, nr_ids, i, err = 0; 4532 4533 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4534 if (!bitmap) 4535 return -ENOMEM; 4536 4537 if (nr_ids < nr_irqs) { 4538 its_lpi_free(bitmap, base, nr_ids); 4539 return -ENOMEM; 4540 } 4541 4542 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4543 if (!vprop_page) { 4544 its_lpi_free(bitmap, base, nr_ids); 4545 return -ENOMEM; 4546 } 4547 4548 vm->db_bitmap = bitmap; 4549 vm->db_lpi_base = base; 4550 vm->nr_db_lpis = nr_ids; 4551 vm->vprop_page = vprop_page; 4552 raw_spin_lock_init(&vm->vmapp_lock); 4553 4554 if (gic_rdists->has_rvpeid) 4555 irqchip = &its_vpe_4_1_irq_chip; 4556 4557 for (i = 0; i < nr_irqs; i++) { 4558 vm->vpes[i]->vpe_db_lpi = base + i; 4559 err = its_vpe_init(vm->vpes[i]); 4560 if (err) 4561 break; 4562 err = its_irq_gic_domain_alloc(domain, virq + i, 4563 vm->vpes[i]->vpe_db_lpi); 4564 if (err) 4565 break; 4566 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4567 irqchip, vm->vpes[i]); 4568 set_bit(i, bitmap); 4569 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4570 } 4571 4572 if (err) 4573 its_vpe_irq_domain_free(domain, virq, i); 4574 4575 return err; 4576 } 4577 4578 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4579 struct irq_data *d, bool reserve) 4580 { 4581 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4582 struct its_node *its; 4583 4584 /* Map the VPE to the first possible CPU */ 4585 vpe->col_idx = cpumask_first(cpu_online_mask); 4586 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4587 4588 /* 4589 * If we use the list map, we issue VMAPP on demand... Unless 4590 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4591 * so that VSGIs can work. 4592 */ 4593 if (!gic_requires_eager_mapping()) 4594 return 0; 4595 4596 list_for_each_entry(its, &its_nodes, entry) { 4597 if (!is_v4(its)) 4598 continue; 4599 4600 its_send_vmapp(its, vpe, true); 4601 its_send_vinvall(its, vpe); 4602 } 4603 4604 return 0; 4605 } 4606 4607 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4608 struct irq_data *d) 4609 { 4610 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4611 struct its_node *its; 4612 4613 /* 4614 * If we use the list map on GICv4.0, we unmap the VPE once no 4615 * VLPIs are associated with the VM. 4616 */ 4617 if (!gic_requires_eager_mapping()) 4618 return; 4619 4620 list_for_each_entry(its, &its_nodes, entry) { 4621 if (!is_v4(its)) 4622 continue; 4623 4624 its_send_vmapp(its, vpe, false); 4625 } 4626 4627 /* 4628 * There may be a direct read to the VPT after unmapping the 4629 * vPE, to guarantee the validity of this, we make the VPT 4630 * memory coherent with the CPU caches here. 4631 */ 4632 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4633 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4634 LPI_PENDBASE_SZ); 4635 } 4636 4637 static const struct irq_domain_ops its_vpe_domain_ops = { 4638 .alloc = its_vpe_irq_domain_alloc, 4639 .free = its_vpe_irq_domain_free, 4640 .activate = its_vpe_irq_domain_activate, 4641 .deactivate = its_vpe_irq_domain_deactivate, 4642 }; 4643 4644 static int its_force_quiescent(void __iomem *base) 4645 { 4646 u32 count = 1000000; /* 1s */ 4647 u32 val; 4648 4649 val = readl_relaxed(base + GITS_CTLR); 4650 /* 4651 * GIC architecture specification requires the ITS to be both 4652 * disabled and quiescent for writes to GITS_BASER<n> or 4653 * GITS_CBASER to not have UNPREDICTABLE results. 4654 */ 4655 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4656 return 0; 4657 4658 /* Disable the generation of all interrupts to this ITS */ 4659 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4660 writel_relaxed(val, base + GITS_CTLR); 4661 4662 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4663 while (1) { 4664 val = readl_relaxed(base + GITS_CTLR); 4665 if (val & GITS_CTLR_QUIESCENT) 4666 return 0; 4667 4668 count--; 4669 if (!count) 4670 return -EBUSY; 4671 4672 cpu_relax(); 4673 udelay(1); 4674 } 4675 } 4676 4677 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4678 { 4679 struct its_node *its = data; 4680 4681 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4682 its->typer &= ~GITS_TYPER_DEVBITS; 4683 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4684 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4685 4686 return true; 4687 } 4688 4689 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4690 { 4691 struct its_node *its = data; 4692 4693 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4694 4695 return true; 4696 } 4697 4698 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4699 { 4700 struct its_node *its = data; 4701 4702 /* On QDF2400, the size of the ITE is 16Bytes */ 4703 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4704 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4705 4706 return true; 4707 } 4708 4709 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4710 { 4711 struct its_node *its = its_dev->its; 4712 4713 /* 4714 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4715 * which maps 32-bit writes targeted at a separate window of 4716 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4717 * with device ID taken from bits [device_id_bits + 1:2] of 4718 * the window offset. 4719 */ 4720 return its->pre_its_base + (its_dev->device_id << 2); 4721 } 4722 4723 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4724 { 4725 struct its_node *its = data; 4726 u32 pre_its_window[2]; 4727 u32 ids; 4728 4729 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4730 "socionext,synquacer-pre-its", 4731 pre_its_window, 4732 ARRAY_SIZE(pre_its_window))) { 4733 4734 its->pre_its_base = pre_its_window[0]; 4735 its->get_msi_base = its_irq_get_msi_base_pre_its; 4736 4737 ids = ilog2(pre_its_window[1]) - 2; 4738 if (device_ids(its) > ids) { 4739 its->typer &= ~GITS_TYPER_DEVBITS; 4740 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4741 } 4742 4743 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4744 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4745 return true; 4746 } 4747 return false; 4748 } 4749 4750 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4751 { 4752 struct its_node *its = data; 4753 4754 /* 4755 * Hip07 insists on using the wrong address for the VLPI 4756 * page. Trick it into doing the right thing... 4757 */ 4758 its->vlpi_redist_offset = SZ_128K; 4759 return true; 4760 } 4761 4762 static bool __maybe_unused its_enable_rk3588001(void *data) 4763 { 4764 struct its_node *its = data; 4765 4766 if (!of_machine_is_compatible("rockchip,rk3588") && 4767 !of_machine_is_compatible("rockchip,rk3588s")) 4768 return false; 4769 4770 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4771 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4772 4773 return true; 4774 } 4775 4776 static bool its_set_non_coherent(void *data) 4777 { 4778 struct its_node *its = data; 4779 4780 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4781 return true; 4782 } 4783 4784 static const struct gic_quirk its_quirks[] = { 4785 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4786 { 4787 .desc = "ITS: Cavium errata 22375, 24313", 4788 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4789 .mask = 0xffff0fff, 4790 .init = its_enable_quirk_cavium_22375, 4791 }, 4792 #endif 4793 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4794 { 4795 .desc = "ITS: Cavium erratum 23144", 4796 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4797 .mask = 0xffff0fff, 4798 .init = its_enable_quirk_cavium_23144, 4799 }, 4800 #endif 4801 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4802 { 4803 .desc = "ITS: QDF2400 erratum 0065", 4804 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4805 .mask = 0xffffffff, 4806 .init = its_enable_quirk_qdf2400_e0065, 4807 }, 4808 #endif 4809 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4810 { 4811 /* 4812 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4813 * implementation, but with a 'pre-ITS' added that requires 4814 * special handling in software. 4815 */ 4816 .desc = "ITS: Socionext Synquacer pre-ITS", 4817 .iidr = 0x0001143b, 4818 .mask = 0xffffffff, 4819 .init = its_enable_quirk_socionext_synquacer, 4820 }, 4821 #endif 4822 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4823 { 4824 .desc = "ITS: Hip07 erratum 161600802", 4825 .iidr = 0x00000004, 4826 .mask = 0xffffffff, 4827 .init = its_enable_quirk_hip07_161600802, 4828 }, 4829 #endif 4830 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4831 { 4832 .desc = "ITS: Rockchip erratum RK3588001", 4833 .iidr = 0x0201743b, 4834 .mask = 0xffffffff, 4835 .init = its_enable_rk3588001, 4836 }, 4837 #endif 4838 { 4839 .desc = "ITS: non-coherent attribute", 4840 .property = "dma-noncoherent", 4841 .init = its_set_non_coherent, 4842 }, 4843 { 4844 } 4845 }; 4846 4847 static void its_enable_quirks(struct its_node *its) 4848 { 4849 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4850 4851 gic_enable_quirks(iidr, its_quirks, its); 4852 4853 if (is_of_node(its->fwnode_handle)) 4854 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4855 its_quirks, its); 4856 } 4857 4858 static int its_save_disable(void) 4859 { 4860 struct its_node *its; 4861 int err = 0; 4862 4863 raw_spin_lock(&its_lock); 4864 list_for_each_entry(its, &its_nodes, entry) { 4865 void __iomem *base; 4866 4867 base = its->base; 4868 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4869 err = its_force_quiescent(base); 4870 if (err) { 4871 pr_err("ITS@%pa: failed to quiesce: %d\n", 4872 &its->phys_base, err); 4873 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4874 goto err; 4875 } 4876 4877 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4878 } 4879 4880 err: 4881 if (err) { 4882 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4883 void __iomem *base; 4884 4885 base = its->base; 4886 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4887 } 4888 } 4889 raw_spin_unlock(&its_lock); 4890 4891 return err; 4892 } 4893 4894 static void its_restore_enable(void) 4895 { 4896 struct its_node *its; 4897 int ret; 4898 4899 raw_spin_lock(&its_lock); 4900 list_for_each_entry(its, &its_nodes, entry) { 4901 void __iomem *base; 4902 int i; 4903 4904 base = its->base; 4905 4906 /* 4907 * Make sure that the ITS is disabled. If it fails to quiesce, 4908 * don't restore it since writing to CBASER or BASER<n> 4909 * registers is undefined according to the GIC v3 ITS 4910 * Specification. 4911 * 4912 * Firmware resuming with the ITS enabled is terminally broken. 4913 */ 4914 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4915 ret = its_force_quiescent(base); 4916 if (ret) { 4917 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4918 &its->phys_base, ret); 4919 continue; 4920 } 4921 4922 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4923 4924 /* 4925 * Writing CBASER resets CREADR to 0, so make CWRITER and 4926 * cmd_write line up with it. 4927 */ 4928 its->cmd_write = its->cmd_base; 4929 gits_write_cwriter(0, base + GITS_CWRITER); 4930 4931 /* Restore GITS_BASER from the value cache. */ 4932 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4933 struct its_baser *baser = &its->tables[i]; 4934 4935 if (!(baser->val & GITS_BASER_VALID)) 4936 continue; 4937 4938 its_write_baser(its, baser, baser->val); 4939 } 4940 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4941 4942 /* 4943 * Reinit the collection if it's stored in the ITS. This is 4944 * indicated by the col_id being less than the HCC field. 4945 * CID < HCC as specified in the GIC v3 Documentation. 4946 */ 4947 if (its->collections[smp_processor_id()].col_id < 4948 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4949 its_cpu_init_collection(its); 4950 } 4951 raw_spin_unlock(&its_lock); 4952 } 4953 4954 static struct syscore_ops its_syscore_ops = { 4955 .suspend = its_save_disable, 4956 .resume = its_restore_enable, 4957 }; 4958 4959 static void __init __iomem *its_map_one(struct resource *res, int *err) 4960 { 4961 void __iomem *its_base; 4962 u32 val; 4963 4964 its_base = ioremap(res->start, SZ_64K); 4965 if (!its_base) { 4966 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4967 *err = -ENOMEM; 4968 return NULL; 4969 } 4970 4971 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4972 if (val != 0x30 && val != 0x40) { 4973 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4974 *err = -ENODEV; 4975 goto out_unmap; 4976 } 4977 4978 *err = its_force_quiescent(its_base); 4979 if (*err) { 4980 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4981 goto out_unmap; 4982 } 4983 4984 return its_base; 4985 4986 out_unmap: 4987 iounmap(its_base); 4988 return NULL; 4989 } 4990 4991 static int its_init_domain(struct its_node *its) 4992 { 4993 struct irq_domain *inner_domain; 4994 struct msi_domain_info *info; 4995 4996 info = kzalloc(sizeof(*info), GFP_KERNEL); 4997 if (!info) 4998 return -ENOMEM; 4999 5000 info->ops = &its_msi_domain_ops; 5001 info->data = its; 5002 5003 inner_domain = irq_domain_create_hierarchy(its_parent, 5004 its->msi_domain_flags, 0, 5005 its->fwnode_handle, &its_domain_ops, 5006 info); 5007 if (!inner_domain) { 5008 kfree(info); 5009 return -ENOMEM; 5010 } 5011 5012 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 5013 5014 inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops; 5015 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT; 5016 5017 return 0; 5018 } 5019 5020 static int its_init_vpe_domain(void) 5021 { 5022 struct its_node *its; 5023 u32 devid; 5024 int entries; 5025 5026 if (gic_rdists->has_direct_lpi) { 5027 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5028 return 0; 5029 } 5030 5031 /* Any ITS will do, even if not v4 */ 5032 its = list_first_entry(&its_nodes, struct its_node, entry); 5033 5034 entries = roundup_pow_of_two(nr_cpu_ids); 5035 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5036 GFP_KERNEL); 5037 if (!vpe_proxy.vpes) 5038 return -ENOMEM; 5039 5040 /* Use the last possible DevID */ 5041 devid = GENMASK(device_ids(its) - 1, 0); 5042 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5043 if (!vpe_proxy.dev) { 5044 kfree(vpe_proxy.vpes); 5045 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5046 return -ENOMEM; 5047 } 5048 5049 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5050 5051 raw_spin_lock_init(&vpe_proxy.lock); 5052 vpe_proxy.next_victim = 0; 5053 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5054 devid, vpe_proxy.dev->nr_ites); 5055 5056 return 0; 5057 } 5058 5059 static int __init its_compute_its_list_map(struct its_node *its) 5060 { 5061 int its_number; 5062 u32 ctlr; 5063 5064 /* 5065 * This is assumed to be done early enough that we're 5066 * guaranteed to be single-threaded, hence no 5067 * locking. Should this change, we should address 5068 * this. 5069 */ 5070 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5071 if (its_number >= GICv4_ITS_LIST_MAX) { 5072 pr_err("ITS@%pa: No ITSList entry available!\n", 5073 &its->phys_base); 5074 return -EINVAL; 5075 } 5076 5077 ctlr = readl_relaxed(its->base + GITS_CTLR); 5078 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5079 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5080 writel_relaxed(ctlr, its->base + GITS_CTLR); 5081 ctlr = readl_relaxed(its->base + GITS_CTLR); 5082 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5083 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5084 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5085 } 5086 5087 if (test_and_set_bit(its_number, &its_list_map)) { 5088 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5089 &its->phys_base, its_number); 5090 return -EINVAL; 5091 } 5092 5093 return its_number; 5094 } 5095 5096 static int __init its_probe_one(struct its_node *its) 5097 { 5098 u64 baser, tmp; 5099 struct page *page; 5100 u32 ctlr; 5101 int err; 5102 5103 its_enable_quirks(its); 5104 5105 if (is_v4(its)) { 5106 if (!(its->typer & GITS_TYPER_VMOVP)) { 5107 err = its_compute_its_list_map(its); 5108 if (err < 0) 5109 goto out; 5110 5111 its->list_nr = err; 5112 5113 pr_info("ITS@%pa: Using ITS number %d\n", 5114 &its->phys_base, err); 5115 } else { 5116 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5117 } 5118 5119 if (is_v4_1(its)) { 5120 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5121 5122 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5123 if (!its->sgir_base) { 5124 err = -ENOMEM; 5125 goto out; 5126 } 5127 5128 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5129 5130 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5131 &its->phys_base, its->mpidr, svpet); 5132 } 5133 } 5134 5135 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5136 get_order(ITS_CMD_QUEUE_SZ)); 5137 if (!page) { 5138 err = -ENOMEM; 5139 goto out_unmap_sgir; 5140 } 5141 its->cmd_base = (void *)page_address(page); 5142 its->cmd_write = its->cmd_base; 5143 5144 err = its_alloc_tables(its); 5145 if (err) 5146 goto out_free_cmd; 5147 5148 err = its_alloc_collections(its); 5149 if (err) 5150 goto out_free_tables; 5151 5152 baser = (virt_to_phys(its->cmd_base) | 5153 GITS_CBASER_RaWaWb | 5154 GITS_CBASER_InnerShareable | 5155 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5156 GITS_CBASER_VALID); 5157 5158 gits_write_cbaser(baser, its->base + GITS_CBASER); 5159 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5160 5161 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5162 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5163 5164 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5165 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5166 /* 5167 * The HW reports non-shareable, we must 5168 * remove the cacheability attributes as 5169 * well. 5170 */ 5171 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5172 GITS_CBASER_CACHEABILITY_MASK); 5173 baser |= GITS_CBASER_nC; 5174 gits_write_cbaser(baser, its->base + GITS_CBASER); 5175 } 5176 pr_info("ITS: using cache flushing for cmd queue\n"); 5177 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5178 } 5179 5180 gits_write_cwriter(0, its->base + GITS_CWRITER); 5181 ctlr = readl_relaxed(its->base + GITS_CTLR); 5182 ctlr |= GITS_CTLR_ENABLE; 5183 if (is_v4(its)) 5184 ctlr |= GITS_CTLR_ImDe; 5185 writel_relaxed(ctlr, its->base + GITS_CTLR); 5186 5187 err = its_init_domain(its); 5188 if (err) 5189 goto out_free_tables; 5190 5191 raw_spin_lock(&its_lock); 5192 list_add(&its->entry, &its_nodes); 5193 raw_spin_unlock(&its_lock); 5194 5195 return 0; 5196 5197 out_free_tables: 5198 its_free_tables(its); 5199 out_free_cmd: 5200 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5201 out_unmap_sgir: 5202 if (its->sgir_base) 5203 iounmap(its->sgir_base); 5204 out: 5205 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5206 return err; 5207 } 5208 5209 static bool gic_rdists_supports_plpis(void) 5210 { 5211 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5212 } 5213 5214 static int redist_disable_lpis(void) 5215 { 5216 void __iomem *rbase = gic_data_rdist_rd_base(); 5217 u64 timeout = USEC_PER_SEC; 5218 u64 val; 5219 5220 if (!gic_rdists_supports_plpis()) { 5221 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5222 return -ENXIO; 5223 } 5224 5225 val = readl_relaxed(rbase + GICR_CTLR); 5226 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5227 return 0; 5228 5229 /* 5230 * If coming via a CPU hotplug event, we don't need to disable 5231 * LPIs before trying to re-enable them. They are already 5232 * configured and all is well in the world. 5233 * 5234 * If running with preallocated tables, there is nothing to do. 5235 */ 5236 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5237 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5238 return 0; 5239 5240 /* 5241 * From that point on, we only try to do some damage control. 5242 */ 5243 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5244 smp_processor_id()); 5245 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5246 5247 /* Disable LPIs */ 5248 val &= ~GICR_CTLR_ENABLE_LPIS; 5249 writel_relaxed(val, rbase + GICR_CTLR); 5250 5251 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5252 dsb(sy); 5253 5254 /* 5255 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5256 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5257 * Error out if we time out waiting for RWP to clear. 5258 */ 5259 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5260 if (!timeout) { 5261 pr_err("CPU%d: Timeout while disabling LPIs\n", 5262 smp_processor_id()); 5263 return -ETIMEDOUT; 5264 } 5265 udelay(1); 5266 timeout--; 5267 } 5268 5269 /* 5270 * After it has been written to 1, it is IMPLEMENTATION 5271 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5272 * cleared to 0. Error out if clearing the bit failed. 5273 */ 5274 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5275 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5276 return -EBUSY; 5277 } 5278 5279 return 0; 5280 } 5281 5282 int its_cpu_init(void) 5283 { 5284 if (!list_empty(&its_nodes)) { 5285 int ret; 5286 5287 ret = redist_disable_lpis(); 5288 if (ret) 5289 return ret; 5290 5291 its_cpu_init_lpis(); 5292 its_cpu_init_collections(); 5293 } 5294 5295 return 0; 5296 } 5297 5298 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5299 { 5300 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5301 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5302 } 5303 5304 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5305 rdist_memreserve_cpuhp_cleanup_workfn); 5306 5307 static int its_cpu_memreserve_lpi(unsigned int cpu) 5308 { 5309 struct page *pend_page; 5310 int ret = 0; 5311 5312 /* This gets to run exactly once per CPU */ 5313 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5314 return 0; 5315 5316 pend_page = gic_data_rdist()->pend_page; 5317 if (WARN_ON(!pend_page)) { 5318 ret = -ENOMEM; 5319 goto out; 5320 } 5321 /* 5322 * If the pending table was pre-programmed, free the memory we 5323 * preemptively allocated. Otherwise, reserve that memory for 5324 * later kexecs. 5325 */ 5326 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5327 its_free_pending_table(pend_page); 5328 gic_data_rdist()->pend_page = NULL; 5329 } else { 5330 phys_addr_t paddr = page_to_phys(pend_page); 5331 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5332 } 5333 5334 out: 5335 /* Last CPU being brought up gets to issue the cleanup */ 5336 if (!IS_ENABLED(CONFIG_SMP) || 5337 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5338 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5339 5340 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5341 return ret; 5342 } 5343 5344 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5345 static int __init its_reset_one(struct resource *res) 5346 { 5347 void __iomem *its_base; 5348 int err, i; 5349 5350 its_base = its_map_one(res, &err); 5351 if (!its_base) 5352 return err; 5353 5354 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5355 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5356 5357 iounmap(its_base); 5358 return 0; 5359 } 5360 5361 static const struct of_device_id its_device_id[] = { 5362 { .compatible = "arm,gic-v3-its", }, 5363 {}, 5364 }; 5365 5366 static struct its_node __init *its_node_init(struct resource *res, 5367 struct fwnode_handle *handle, int numa_node) 5368 { 5369 void __iomem *its_base; 5370 struct its_node *its; 5371 int err; 5372 5373 its_base = its_map_one(res, &err); 5374 if (!its_base) 5375 return NULL; 5376 5377 pr_info("ITS %pR\n", res); 5378 5379 its = kzalloc(sizeof(*its), GFP_KERNEL); 5380 if (!its) 5381 goto out_unmap; 5382 5383 raw_spin_lock_init(&its->lock); 5384 mutex_init(&its->dev_alloc_lock); 5385 INIT_LIST_HEAD(&its->entry); 5386 INIT_LIST_HEAD(&its->its_device_list); 5387 5388 its->typer = gic_read_typer(its_base + GITS_TYPER); 5389 its->base = its_base; 5390 its->phys_base = res->start; 5391 its->get_msi_base = its_irq_get_msi_base; 5392 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5393 5394 its->numa_node = numa_node; 5395 its->fwnode_handle = handle; 5396 5397 return its; 5398 5399 out_unmap: 5400 iounmap(its_base); 5401 return NULL; 5402 } 5403 5404 static void its_node_destroy(struct its_node *its) 5405 { 5406 iounmap(its->base); 5407 kfree(its); 5408 } 5409 5410 static int __init its_of_probe(struct device_node *node) 5411 { 5412 struct device_node *np; 5413 struct resource res; 5414 int err; 5415 5416 /* 5417 * Make sure *all* the ITS are reset before we probe any, as 5418 * they may be sharing memory. If any of the ITS fails to 5419 * reset, don't even try to go any further, as this could 5420 * result in something even worse. 5421 */ 5422 for (np = of_find_matching_node(node, its_device_id); np; 5423 np = of_find_matching_node(np, its_device_id)) { 5424 if (!of_device_is_available(np) || 5425 !of_property_read_bool(np, "msi-controller") || 5426 of_address_to_resource(np, 0, &res)) 5427 continue; 5428 5429 err = its_reset_one(&res); 5430 if (err) 5431 return err; 5432 } 5433 5434 for (np = of_find_matching_node(node, its_device_id); np; 5435 np = of_find_matching_node(np, its_device_id)) { 5436 struct its_node *its; 5437 5438 if (!of_device_is_available(np)) 5439 continue; 5440 if (!of_property_read_bool(np, "msi-controller")) { 5441 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5442 np); 5443 continue; 5444 } 5445 5446 if (of_address_to_resource(np, 0, &res)) { 5447 pr_warn("%pOF: no regs?\n", np); 5448 continue; 5449 } 5450 5451 5452 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5453 if (!its) 5454 return -ENOMEM; 5455 5456 err = its_probe_one(its); 5457 if (err) { 5458 its_node_destroy(its); 5459 return err; 5460 } 5461 } 5462 return 0; 5463 } 5464 5465 #ifdef CONFIG_ACPI 5466 5467 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5468 5469 #ifdef CONFIG_ACPI_NUMA 5470 struct its_srat_map { 5471 /* numa node id */ 5472 u32 numa_node; 5473 /* GIC ITS ID */ 5474 u32 its_id; 5475 }; 5476 5477 static struct its_srat_map *its_srat_maps __initdata; 5478 static int its_in_srat __initdata; 5479 5480 static int __init acpi_get_its_numa_node(u32 its_id) 5481 { 5482 int i; 5483 5484 for (i = 0; i < its_in_srat; i++) { 5485 if (its_id == its_srat_maps[i].its_id) 5486 return its_srat_maps[i].numa_node; 5487 } 5488 return NUMA_NO_NODE; 5489 } 5490 5491 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5492 const unsigned long end) 5493 { 5494 return 0; 5495 } 5496 5497 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5498 const unsigned long end) 5499 { 5500 int node; 5501 struct acpi_srat_gic_its_affinity *its_affinity; 5502 5503 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5504 if (!its_affinity) 5505 return -EINVAL; 5506 5507 if (its_affinity->header.length < sizeof(*its_affinity)) { 5508 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5509 its_affinity->header.length); 5510 return -EINVAL; 5511 } 5512 5513 /* 5514 * Note that in theory a new proximity node could be created by this 5515 * entry as it is an SRAT resource allocation structure. 5516 * We do not currently support doing so. 5517 */ 5518 node = pxm_to_node(its_affinity->proximity_domain); 5519 5520 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5521 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5522 return 0; 5523 } 5524 5525 its_srat_maps[its_in_srat].numa_node = node; 5526 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5527 its_in_srat++; 5528 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5529 its_affinity->proximity_domain, its_affinity->its_id, node); 5530 5531 return 0; 5532 } 5533 5534 static void __init acpi_table_parse_srat_its(void) 5535 { 5536 int count; 5537 5538 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5539 sizeof(struct acpi_table_srat), 5540 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5541 gic_acpi_match_srat_its, 0); 5542 if (count <= 0) 5543 return; 5544 5545 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5546 GFP_KERNEL); 5547 if (!its_srat_maps) 5548 return; 5549 5550 acpi_table_parse_entries(ACPI_SIG_SRAT, 5551 sizeof(struct acpi_table_srat), 5552 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5553 gic_acpi_parse_srat_its, 0); 5554 } 5555 5556 /* free the its_srat_maps after ITS probing */ 5557 static void __init acpi_its_srat_maps_free(void) 5558 { 5559 kfree(its_srat_maps); 5560 } 5561 #else 5562 static void __init acpi_table_parse_srat_its(void) { } 5563 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5564 static void __init acpi_its_srat_maps_free(void) { } 5565 #endif 5566 5567 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5568 const unsigned long end) 5569 { 5570 struct acpi_madt_generic_translator *its_entry; 5571 struct fwnode_handle *dom_handle; 5572 struct its_node *its; 5573 struct resource res; 5574 int err; 5575 5576 its_entry = (struct acpi_madt_generic_translator *)header; 5577 memset(&res, 0, sizeof(res)); 5578 res.start = its_entry->base_address; 5579 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5580 res.flags = IORESOURCE_MEM; 5581 5582 dom_handle = irq_domain_alloc_fwnode(&res.start); 5583 if (!dom_handle) { 5584 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5585 &res.start); 5586 return -ENOMEM; 5587 } 5588 5589 err = iort_register_domain_token(its_entry->translation_id, res.start, 5590 dom_handle); 5591 if (err) { 5592 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5593 &res.start, its_entry->translation_id); 5594 goto dom_err; 5595 } 5596 5597 its = its_node_init(&res, dom_handle, 5598 acpi_get_its_numa_node(its_entry->translation_id)); 5599 if (!its) { 5600 err = -ENOMEM; 5601 goto node_err; 5602 } 5603 5604 if (acpi_get_madt_revision() >= 7 && 5605 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT)) 5606 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 5607 5608 err = its_probe_one(its); 5609 if (!err) 5610 return 0; 5611 5612 node_err: 5613 iort_deregister_domain_token(its_entry->translation_id); 5614 dom_err: 5615 irq_domain_free_fwnode(dom_handle); 5616 return err; 5617 } 5618 5619 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5620 const unsigned long end) 5621 { 5622 struct acpi_madt_generic_translator *its_entry; 5623 struct resource res; 5624 5625 its_entry = (struct acpi_madt_generic_translator *)header; 5626 res = (struct resource) { 5627 .start = its_entry->base_address, 5628 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5629 .flags = IORESOURCE_MEM, 5630 }; 5631 5632 return its_reset_one(&res); 5633 } 5634 5635 static void __init its_acpi_probe(void) 5636 { 5637 acpi_table_parse_srat_its(); 5638 /* 5639 * Make sure *all* the ITS are reset before we probe any, as 5640 * they may be sharing memory. If any of the ITS fails to 5641 * reset, don't even try to go any further, as this could 5642 * result in something even worse. 5643 */ 5644 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5645 its_acpi_reset, 0) > 0) 5646 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5647 gic_acpi_parse_madt_its, 0); 5648 acpi_its_srat_maps_free(); 5649 } 5650 #else 5651 static void __init its_acpi_probe(void) { } 5652 #endif 5653 5654 int __init its_lpi_memreserve_init(void) 5655 { 5656 int state; 5657 5658 if (!efi_enabled(EFI_CONFIG_TABLES)) 5659 return 0; 5660 5661 if (list_empty(&its_nodes)) 5662 return 0; 5663 5664 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5665 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5666 "irqchip/arm/gicv3/memreserve:online", 5667 its_cpu_memreserve_lpi, 5668 NULL); 5669 if (state < 0) 5670 return state; 5671 5672 gic_rdists->cpuhp_memreserve_state = state; 5673 5674 return 0; 5675 } 5676 5677 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5678 struct irq_domain *parent_domain, u8 irq_prio) 5679 { 5680 struct device_node *of_node; 5681 struct its_node *its; 5682 bool has_v4 = false; 5683 bool has_v4_1 = false; 5684 int err; 5685 5686 gic_rdists = rdists; 5687 5688 lpi_prop_prio = irq_prio; 5689 its_parent = parent_domain; 5690 of_node = to_of_node(handle); 5691 if (of_node) 5692 its_of_probe(of_node); 5693 else 5694 its_acpi_probe(); 5695 5696 if (list_empty(&its_nodes)) { 5697 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5698 return -ENXIO; 5699 } 5700 5701 err = allocate_lpi_tables(); 5702 if (err) 5703 return err; 5704 5705 list_for_each_entry(its, &its_nodes, entry) { 5706 has_v4 |= is_v4(its); 5707 has_v4_1 |= is_v4_1(its); 5708 } 5709 5710 /* Don't bother with inconsistent systems */ 5711 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5712 rdists->has_rvpeid = false; 5713 5714 if (has_v4 & rdists->has_vlpis) { 5715 const struct irq_domain_ops *sgi_ops; 5716 5717 if (has_v4_1) 5718 sgi_ops = &its_sgi_domain_ops; 5719 else 5720 sgi_ops = NULL; 5721 5722 if (its_init_vpe_domain() || 5723 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5724 rdists->has_vlpis = false; 5725 pr_err("ITS: Disabling GICv4 support\n"); 5726 } 5727 } 5728 5729 register_syscore_ops(&its_syscore_ops); 5730 5731 return 0; 5732 } 5733