1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 #include "irq-msi-lib.h" 42 43 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 45 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 46 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 47 48 #define RD_LOCAL_LPI_ENABLED BIT(0) 49 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 50 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 51 52 static u32 lpi_id_bits; 53 54 /* 55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 56 * deal with (one configuration byte per interrupt). PENDBASE has to 57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 58 */ 59 #define LPI_NRBITS lpi_id_bits 60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 62 63 static u8 __ro_after_init lpi_prop_prio; 64 65 /* 66 * Collection structure - just an ID, and a redistributor address to 67 * ping. We use one per CPU as a bag of interrupts assigned to this 68 * CPU. 69 */ 70 struct its_collection { 71 u64 target_address; 72 u16 col_id; 73 }; 74 75 /* 76 * The ITS_BASER structure - contains memory information, cached 77 * value of BASER register configuration and ITS page size. 78 */ 79 struct its_baser { 80 void *base; 81 u64 val; 82 u32 order; 83 u32 psz; 84 }; 85 86 struct its_device; 87 88 /* 89 * The ITS structure - contains most of the infrastructure, with the 90 * top-level MSI domain, the command queue, the collections, and the 91 * list of devices writing to it. 92 * 93 * dev_alloc_lock has to be taken for device allocations, while the 94 * spinlock must be taken to parse data structures such as the device 95 * list. 96 */ 97 struct its_node { 98 raw_spinlock_t lock; 99 struct mutex dev_alloc_lock; 100 struct list_head entry; 101 void __iomem *base; 102 void __iomem *sgir_base; 103 phys_addr_t phys_base; 104 struct its_cmd_block *cmd_base; 105 struct its_cmd_block *cmd_write; 106 struct its_baser tables[GITS_BASER_NR_REGS]; 107 struct its_collection *collections; 108 struct fwnode_handle *fwnode_handle; 109 u64 (*get_msi_base)(struct its_device *its_dev); 110 u64 typer; 111 u64 cbaser_save; 112 u32 ctlr_save; 113 u32 mpidr; 114 struct list_head its_device_list; 115 u64 flags; 116 unsigned long list_nr; 117 int numa_node; 118 unsigned int msi_domain_flags; 119 u32 pre_its_base; /* for Socionext Synquacer */ 120 int vlpi_redist_offset; 121 }; 122 123 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 124 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 125 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 126 127 #define ITS_ITT_ALIGN SZ_256 128 129 /* The maximum number of VPEID bits supported by VLPI commands */ 130 #define ITS_MAX_VPEID_BITS \ 131 ({ \ 132 int nvpeid = 16; \ 133 if (gic_rdists->has_rvpeid && \ 134 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 135 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 136 GICD_TYPER2_VID); \ 137 \ 138 nvpeid; \ 139 }) 140 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 141 142 /* Convert page order to size in bytes */ 143 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 144 145 struct event_lpi_map { 146 unsigned long *lpi_map; 147 u16 *col_map; 148 irq_hw_number_t lpi_base; 149 int nr_lpis; 150 raw_spinlock_t vlpi_lock; 151 struct its_vm *vm; 152 struct its_vlpi_map *vlpi_maps; 153 int nr_vlpis; 154 }; 155 156 /* 157 * The ITS view of a device - belongs to an ITS, owns an interrupt 158 * translation table, and a list of interrupts. If it some of its 159 * LPIs are injected into a guest (GICv4), the event_map.vm field 160 * indicates which one. 161 */ 162 struct its_device { 163 struct list_head entry; 164 struct its_node *its; 165 struct event_lpi_map event_map; 166 void *itt; 167 u32 nr_ites; 168 u32 device_id; 169 bool shared; 170 }; 171 172 static struct { 173 raw_spinlock_t lock; 174 struct its_device *dev; 175 struct its_vpe **vpes; 176 int next_victim; 177 } vpe_proxy; 178 179 struct cpu_lpi_count { 180 atomic_t managed; 181 atomic_t unmanaged; 182 }; 183 184 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 185 186 static LIST_HEAD(its_nodes); 187 static DEFINE_RAW_SPINLOCK(its_lock); 188 static struct rdists *gic_rdists; 189 static struct irq_domain *its_parent; 190 191 static unsigned long its_list_map; 192 static u16 vmovp_seq_num; 193 static DEFINE_RAW_SPINLOCK(vmovp_lock); 194 195 static DEFINE_IDA(its_vpeid_ida); 196 197 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 198 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 199 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 200 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 201 202 /* 203 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 204 * always have vSGIs mapped. 205 */ 206 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 207 { 208 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 209 } 210 211 static bool rdists_support_shareable(void) 212 { 213 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 214 } 215 216 static u16 get_its_list(struct its_vm *vm) 217 { 218 struct its_node *its; 219 unsigned long its_list = 0; 220 221 list_for_each_entry(its, &its_nodes, entry) { 222 if (!is_v4(its)) 223 continue; 224 225 if (require_its_list_vmovp(vm, its)) 226 __set_bit(its->list_nr, &its_list); 227 } 228 229 return (u16)its_list; 230 } 231 232 static inline u32 its_get_event_id(struct irq_data *d) 233 { 234 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 235 return d->hwirq - its_dev->event_map.lpi_base; 236 } 237 238 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 239 u32 event) 240 { 241 struct its_node *its = its_dev->its; 242 243 return its->collections + its_dev->event_map.col_map[event]; 244 } 245 246 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 247 u32 event) 248 { 249 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 250 return NULL; 251 252 return &its_dev->event_map.vlpi_maps[event]; 253 } 254 255 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 256 { 257 if (irqd_is_forwarded_to_vcpu(d)) { 258 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 259 u32 event = its_get_event_id(d); 260 261 return dev_event_to_vlpi_map(its_dev, event); 262 } 263 264 return NULL; 265 } 266 267 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 268 { 269 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 270 return vpe->col_idx; 271 } 272 273 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 274 { 275 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 276 } 277 278 static struct irq_chip its_vpe_irq_chip; 279 280 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 281 { 282 struct its_vpe *vpe = NULL; 283 int cpu; 284 285 if (d->chip == &its_vpe_irq_chip) { 286 vpe = irq_data_get_irq_chip_data(d); 287 } else { 288 struct its_vlpi_map *map = get_vlpi_map(d); 289 if (map) 290 vpe = map->vpe; 291 } 292 293 if (vpe) { 294 cpu = vpe_to_cpuid_lock(vpe, flags); 295 } else { 296 /* Physical LPIs are already locked via the irq_desc lock */ 297 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 298 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 299 /* Keep GCC quiet... */ 300 *flags = 0; 301 } 302 303 return cpu; 304 } 305 306 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 307 { 308 struct its_vpe *vpe = NULL; 309 310 if (d->chip == &its_vpe_irq_chip) { 311 vpe = irq_data_get_irq_chip_data(d); 312 } else { 313 struct its_vlpi_map *map = get_vlpi_map(d); 314 if (map) 315 vpe = map->vpe; 316 } 317 318 if (vpe) 319 vpe_to_cpuid_unlock(vpe, flags); 320 } 321 322 static struct its_collection *valid_col(struct its_collection *col) 323 { 324 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 325 return NULL; 326 327 return col; 328 } 329 330 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 331 { 332 if (valid_col(its->collections + vpe->col_idx)) 333 return vpe; 334 335 return NULL; 336 } 337 338 /* 339 * ITS command descriptors - parameters to be encoded in a command 340 * block. 341 */ 342 struct its_cmd_desc { 343 union { 344 struct { 345 struct its_device *dev; 346 u32 event_id; 347 } its_inv_cmd; 348 349 struct { 350 struct its_device *dev; 351 u32 event_id; 352 } its_clear_cmd; 353 354 struct { 355 struct its_device *dev; 356 u32 event_id; 357 } its_int_cmd; 358 359 struct { 360 struct its_device *dev; 361 int valid; 362 } its_mapd_cmd; 363 364 struct { 365 struct its_collection *col; 366 int valid; 367 } its_mapc_cmd; 368 369 struct { 370 struct its_device *dev; 371 u32 phys_id; 372 u32 event_id; 373 } its_mapti_cmd; 374 375 struct { 376 struct its_device *dev; 377 struct its_collection *col; 378 u32 event_id; 379 } its_movi_cmd; 380 381 struct { 382 struct its_device *dev; 383 u32 event_id; 384 } its_discard_cmd; 385 386 struct { 387 struct its_collection *col; 388 } its_invall_cmd; 389 390 struct { 391 struct its_vpe *vpe; 392 } its_vinvall_cmd; 393 394 struct { 395 struct its_vpe *vpe; 396 struct its_collection *col; 397 bool valid; 398 } its_vmapp_cmd; 399 400 struct { 401 struct its_vpe *vpe; 402 struct its_device *dev; 403 u32 virt_id; 404 u32 event_id; 405 bool db_enabled; 406 } its_vmapti_cmd; 407 408 struct { 409 struct its_vpe *vpe; 410 struct its_device *dev; 411 u32 event_id; 412 bool db_enabled; 413 } its_vmovi_cmd; 414 415 struct { 416 struct its_vpe *vpe; 417 struct its_collection *col; 418 u16 seq_num; 419 u16 its_list; 420 } its_vmovp_cmd; 421 422 struct { 423 struct its_vpe *vpe; 424 } its_invdb_cmd; 425 426 struct { 427 struct its_vpe *vpe; 428 u8 sgi; 429 u8 priority; 430 bool enable; 431 bool group; 432 bool clear; 433 } its_vsgi_cmd; 434 }; 435 }; 436 437 /* 438 * The ITS command block, which is what the ITS actually parses. 439 */ 440 struct its_cmd_block { 441 union { 442 u64 raw_cmd[4]; 443 __le64 raw_cmd_le[4]; 444 }; 445 }; 446 447 #define ITS_CMD_QUEUE_SZ SZ_64K 448 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 449 450 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 451 struct its_cmd_block *, 452 struct its_cmd_desc *); 453 454 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 455 struct its_cmd_block *, 456 struct its_cmd_desc *); 457 458 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 459 { 460 u64 mask = GENMASK_ULL(h, l); 461 *raw_cmd &= ~mask; 462 *raw_cmd |= (val << l) & mask; 463 } 464 465 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 466 { 467 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 468 } 469 470 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 471 { 472 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 473 } 474 475 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 476 { 477 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 478 } 479 480 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 481 { 482 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 483 } 484 485 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 486 { 487 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 488 } 489 490 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 491 { 492 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 493 } 494 495 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 496 { 497 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 498 } 499 500 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 501 { 502 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 503 } 504 505 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 506 { 507 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 508 } 509 510 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 511 { 512 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 513 } 514 515 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 516 { 517 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 518 } 519 520 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 521 { 522 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 523 } 524 525 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 526 { 527 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 528 } 529 530 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 531 { 532 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 533 } 534 535 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 536 { 537 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 538 } 539 540 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 541 { 542 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 543 } 544 545 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 546 { 547 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 548 } 549 550 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 551 { 552 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 553 } 554 555 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 556 { 557 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 558 } 559 560 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 561 { 562 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 563 } 564 565 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 566 u32 vpe_db_lpi) 567 { 568 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 569 } 570 571 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 572 u32 vpe_db_lpi) 573 { 574 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 575 } 576 577 static void its_encode_db(struct its_cmd_block *cmd, bool db) 578 { 579 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 580 } 581 582 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 583 { 584 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 585 } 586 587 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 588 { 589 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 590 } 591 592 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 593 { 594 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 595 } 596 597 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 598 { 599 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 600 } 601 602 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 603 { 604 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 605 } 606 607 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 608 { 609 /* Let's fixup BE commands */ 610 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 611 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 612 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 613 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 614 } 615 616 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 617 struct its_cmd_block *cmd, 618 struct its_cmd_desc *desc) 619 { 620 unsigned long itt_addr; 621 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 622 623 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 624 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 625 626 its_encode_cmd(cmd, GITS_CMD_MAPD); 627 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 628 its_encode_size(cmd, size - 1); 629 its_encode_itt(cmd, itt_addr); 630 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 631 632 its_fixup_cmd(cmd); 633 634 return NULL; 635 } 636 637 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 638 struct its_cmd_block *cmd, 639 struct its_cmd_desc *desc) 640 { 641 its_encode_cmd(cmd, GITS_CMD_MAPC); 642 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 643 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 644 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 645 646 its_fixup_cmd(cmd); 647 648 return desc->its_mapc_cmd.col; 649 } 650 651 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 652 struct its_cmd_block *cmd, 653 struct its_cmd_desc *desc) 654 { 655 struct its_collection *col; 656 657 col = dev_event_to_col(desc->its_mapti_cmd.dev, 658 desc->its_mapti_cmd.event_id); 659 660 its_encode_cmd(cmd, GITS_CMD_MAPTI); 661 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 662 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 663 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 664 its_encode_collection(cmd, col->col_id); 665 666 its_fixup_cmd(cmd); 667 668 return valid_col(col); 669 } 670 671 static struct its_collection *its_build_movi_cmd(struct its_node *its, 672 struct its_cmd_block *cmd, 673 struct its_cmd_desc *desc) 674 { 675 struct its_collection *col; 676 677 col = dev_event_to_col(desc->its_movi_cmd.dev, 678 desc->its_movi_cmd.event_id); 679 680 its_encode_cmd(cmd, GITS_CMD_MOVI); 681 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 682 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 683 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 684 685 its_fixup_cmd(cmd); 686 687 return valid_col(col); 688 } 689 690 static struct its_collection *its_build_discard_cmd(struct its_node *its, 691 struct its_cmd_block *cmd, 692 struct its_cmd_desc *desc) 693 { 694 struct its_collection *col; 695 696 col = dev_event_to_col(desc->its_discard_cmd.dev, 697 desc->its_discard_cmd.event_id); 698 699 its_encode_cmd(cmd, GITS_CMD_DISCARD); 700 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 701 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 702 703 its_fixup_cmd(cmd); 704 705 return valid_col(col); 706 } 707 708 static struct its_collection *its_build_inv_cmd(struct its_node *its, 709 struct its_cmd_block *cmd, 710 struct its_cmd_desc *desc) 711 { 712 struct its_collection *col; 713 714 col = dev_event_to_col(desc->its_inv_cmd.dev, 715 desc->its_inv_cmd.event_id); 716 717 its_encode_cmd(cmd, GITS_CMD_INV); 718 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 719 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 720 721 its_fixup_cmd(cmd); 722 723 return valid_col(col); 724 } 725 726 static struct its_collection *its_build_int_cmd(struct its_node *its, 727 struct its_cmd_block *cmd, 728 struct its_cmd_desc *desc) 729 { 730 struct its_collection *col; 731 732 col = dev_event_to_col(desc->its_int_cmd.dev, 733 desc->its_int_cmd.event_id); 734 735 its_encode_cmd(cmd, GITS_CMD_INT); 736 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 737 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 738 739 its_fixup_cmd(cmd); 740 741 return valid_col(col); 742 } 743 744 static struct its_collection *its_build_clear_cmd(struct its_node *its, 745 struct its_cmd_block *cmd, 746 struct its_cmd_desc *desc) 747 { 748 struct its_collection *col; 749 750 col = dev_event_to_col(desc->its_clear_cmd.dev, 751 desc->its_clear_cmd.event_id); 752 753 its_encode_cmd(cmd, GITS_CMD_CLEAR); 754 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 755 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 756 757 its_fixup_cmd(cmd); 758 759 return valid_col(col); 760 } 761 762 static struct its_collection *its_build_invall_cmd(struct its_node *its, 763 struct its_cmd_block *cmd, 764 struct its_cmd_desc *desc) 765 { 766 its_encode_cmd(cmd, GITS_CMD_INVALL); 767 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 768 769 its_fixup_cmd(cmd); 770 771 return desc->its_invall_cmd.col; 772 } 773 774 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 775 struct its_cmd_block *cmd, 776 struct its_cmd_desc *desc) 777 { 778 its_encode_cmd(cmd, GITS_CMD_VINVALL); 779 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 780 781 its_fixup_cmd(cmd); 782 783 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 784 } 785 786 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 787 struct its_cmd_block *cmd, 788 struct its_cmd_desc *desc) 789 { 790 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); 791 unsigned long vpt_addr, vconf_addr; 792 u64 target; 793 bool alloc; 794 795 its_encode_cmd(cmd, GITS_CMD_VMAPP); 796 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 797 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 798 799 if (!desc->its_vmapp_cmd.valid) { 800 if (is_v4_1(its)) { 801 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 802 its_encode_alloc(cmd, alloc); 803 /* 804 * Unmapping a VPE is self-synchronizing on GICv4.1, 805 * no need to issue a VSYNC. 806 */ 807 vpe = NULL; 808 } 809 810 goto out; 811 } 812 813 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 814 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 815 816 its_encode_target(cmd, target); 817 its_encode_vpt_addr(cmd, vpt_addr); 818 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 819 820 if (!is_v4_1(its)) 821 goto out; 822 823 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 824 825 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 826 827 its_encode_alloc(cmd, alloc); 828 829 /* 830 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 831 * to be unmapped first, and in this case, we may remap the vPE 832 * back while the VPT is not empty. So we can't assume that the 833 * VPT is empty on map. This is why we never advertise PTZ. 834 */ 835 its_encode_ptz(cmd, false); 836 its_encode_vconf_addr(cmd, vconf_addr); 837 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 838 839 out: 840 its_fixup_cmd(cmd); 841 842 return vpe; 843 } 844 845 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 846 struct its_cmd_block *cmd, 847 struct its_cmd_desc *desc) 848 { 849 u32 db; 850 851 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 852 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 853 else 854 db = 1023; 855 856 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 857 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 858 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 859 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 860 its_encode_db_phys_id(cmd, db); 861 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 862 863 its_fixup_cmd(cmd); 864 865 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 866 } 867 868 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 869 struct its_cmd_block *cmd, 870 struct its_cmd_desc *desc) 871 { 872 u32 db; 873 874 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 875 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 876 else 877 db = 1023; 878 879 its_encode_cmd(cmd, GITS_CMD_VMOVI); 880 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 881 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 882 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 883 its_encode_db_phys_id(cmd, db); 884 its_encode_db_valid(cmd, true); 885 886 its_fixup_cmd(cmd); 887 888 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 889 } 890 891 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 892 struct its_cmd_block *cmd, 893 struct its_cmd_desc *desc) 894 { 895 u64 target; 896 897 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 898 its_encode_cmd(cmd, GITS_CMD_VMOVP); 899 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 900 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 901 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 902 its_encode_target(cmd, target); 903 904 if (is_v4_1(its)) { 905 its_encode_db(cmd, true); 906 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 907 } 908 909 its_fixup_cmd(cmd); 910 911 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 912 } 913 914 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 915 struct its_cmd_block *cmd, 916 struct its_cmd_desc *desc) 917 { 918 struct its_vlpi_map *map; 919 920 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 921 desc->its_inv_cmd.event_id); 922 923 its_encode_cmd(cmd, GITS_CMD_INV); 924 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 925 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 926 927 its_fixup_cmd(cmd); 928 929 return valid_vpe(its, map->vpe); 930 } 931 932 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 933 struct its_cmd_block *cmd, 934 struct its_cmd_desc *desc) 935 { 936 struct its_vlpi_map *map; 937 938 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 939 desc->its_int_cmd.event_id); 940 941 its_encode_cmd(cmd, GITS_CMD_INT); 942 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 943 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 944 945 its_fixup_cmd(cmd); 946 947 return valid_vpe(its, map->vpe); 948 } 949 950 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 951 struct its_cmd_block *cmd, 952 struct its_cmd_desc *desc) 953 { 954 struct its_vlpi_map *map; 955 956 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 957 desc->its_clear_cmd.event_id); 958 959 its_encode_cmd(cmd, GITS_CMD_CLEAR); 960 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 961 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 962 963 its_fixup_cmd(cmd); 964 965 return valid_vpe(its, map->vpe); 966 } 967 968 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 969 struct its_cmd_block *cmd, 970 struct its_cmd_desc *desc) 971 { 972 if (WARN_ON(!is_v4_1(its))) 973 return NULL; 974 975 its_encode_cmd(cmd, GITS_CMD_INVDB); 976 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 977 978 its_fixup_cmd(cmd); 979 980 return valid_vpe(its, desc->its_invdb_cmd.vpe); 981 } 982 983 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 984 struct its_cmd_block *cmd, 985 struct its_cmd_desc *desc) 986 { 987 if (WARN_ON(!is_v4_1(its))) 988 return NULL; 989 990 its_encode_cmd(cmd, GITS_CMD_VSGI); 991 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 992 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 993 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 994 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 995 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 996 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 997 998 its_fixup_cmd(cmd); 999 1000 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 1001 } 1002 1003 static u64 its_cmd_ptr_to_offset(struct its_node *its, 1004 struct its_cmd_block *ptr) 1005 { 1006 return (ptr - its->cmd_base) * sizeof(*ptr); 1007 } 1008 1009 static int its_queue_full(struct its_node *its) 1010 { 1011 int widx; 1012 int ridx; 1013 1014 widx = its->cmd_write - its->cmd_base; 1015 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1016 1017 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1018 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1019 return 1; 1020 1021 return 0; 1022 } 1023 1024 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1025 { 1026 struct its_cmd_block *cmd; 1027 u32 count = 1000000; /* 1s! */ 1028 1029 while (its_queue_full(its)) { 1030 count--; 1031 if (!count) { 1032 pr_err_ratelimited("ITS queue not draining\n"); 1033 return NULL; 1034 } 1035 cpu_relax(); 1036 udelay(1); 1037 } 1038 1039 cmd = its->cmd_write++; 1040 1041 /* Handle queue wrapping */ 1042 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1043 its->cmd_write = its->cmd_base; 1044 1045 /* Clear command */ 1046 cmd->raw_cmd[0] = 0; 1047 cmd->raw_cmd[1] = 0; 1048 cmd->raw_cmd[2] = 0; 1049 cmd->raw_cmd[3] = 0; 1050 1051 return cmd; 1052 } 1053 1054 static struct its_cmd_block *its_post_commands(struct its_node *its) 1055 { 1056 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1057 1058 writel_relaxed(wr, its->base + GITS_CWRITER); 1059 1060 return its->cmd_write; 1061 } 1062 1063 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1064 { 1065 /* 1066 * Make sure the commands written to memory are observable by 1067 * the ITS. 1068 */ 1069 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1070 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1071 else 1072 dsb(ishst); 1073 } 1074 1075 static int its_wait_for_range_completion(struct its_node *its, 1076 u64 prev_idx, 1077 struct its_cmd_block *to) 1078 { 1079 u64 rd_idx, to_idx, linear_idx; 1080 u32 count = 1000000; /* 1s! */ 1081 1082 /* Linearize to_idx if the command set has wrapped around */ 1083 to_idx = its_cmd_ptr_to_offset(its, to); 1084 if (to_idx < prev_idx) 1085 to_idx += ITS_CMD_QUEUE_SZ; 1086 1087 linear_idx = prev_idx; 1088 1089 while (1) { 1090 s64 delta; 1091 1092 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1093 1094 /* 1095 * Compute the read pointer progress, taking the 1096 * potential wrap-around into account. 1097 */ 1098 delta = rd_idx - prev_idx; 1099 if (rd_idx < prev_idx) 1100 delta += ITS_CMD_QUEUE_SZ; 1101 1102 linear_idx += delta; 1103 if (linear_idx >= to_idx) 1104 break; 1105 1106 count--; 1107 if (!count) { 1108 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1109 to_idx, linear_idx); 1110 return -1; 1111 } 1112 prev_idx = rd_idx; 1113 cpu_relax(); 1114 udelay(1); 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* Warning, macro hell follows */ 1121 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1122 void name(struct its_node *its, \ 1123 buildtype builder, \ 1124 struct its_cmd_desc *desc) \ 1125 { \ 1126 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1127 synctype *sync_obj; \ 1128 unsigned long flags; \ 1129 u64 rd_idx; \ 1130 \ 1131 raw_spin_lock_irqsave(&its->lock, flags); \ 1132 \ 1133 cmd = its_allocate_entry(its); \ 1134 if (!cmd) { /* We're soooooo screewed... */ \ 1135 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1136 return; \ 1137 } \ 1138 sync_obj = builder(its, cmd, desc); \ 1139 its_flush_cmd(its, cmd); \ 1140 \ 1141 if (sync_obj) { \ 1142 sync_cmd = its_allocate_entry(its); \ 1143 if (!sync_cmd) \ 1144 goto post; \ 1145 \ 1146 buildfn(its, sync_cmd, sync_obj); \ 1147 its_flush_cmd(its, sync_cmd); \ 1148 } \ 1149 \ 1150 post: \ 1151 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1152 next_cmd = its_post_commands(its); \ 1153 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1154 \ 1155 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1156 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1157 } 1158 1159 static void its_build_sync_cmd(struct its_node *its, 1160 struct its_cmd_block *sync_cmd, 1161 struct its_collection *sync_col) 1162 { 1163 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1164 its_encode_target(sync_cmd, sync_col->target_address); 1165 1166 its_fixup_cmd(sync_cmd); 1167 } 1168 1169 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1170 struct its_collection, its_build_sync_cmd) 1171 1172 static void its_build_vsync_cmd(struct its_node *its, 1173 struct its_cmd_block *sync_cmd, 1174 struct its_vpe *sync_vpe) 1175 { 1176 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1177 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1178 1179 its_fixup_cmd(sync_cmd); 1180 } 1181 1182 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1183 struct its_vpe, its_build_vsync_cmd) 1184 1185 static void its_send_int(struct its_device *dev, u32 event_id) 1186 { 1187 struct its_cmd_desc desc; 1188 1189 desc.its_int_cmd.dev = dev; 1190 desc.its_int_cmd.event_id = event_id; 1191 1192 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1193 } 1194 1195 static void its_send_clear(struct its_device *dev, u32 event_id) 1196 { 1197 struct its_cmd_desc desc; 1198 1199 desc.its_clear_cmd.dev = dev; 1200 desc.its_clear_cmd.event_id = event_id; 1201 1202 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1203 } 1204 1205 static void its_send_inv(struct its_device *dev, u32 event_id) 1206 { 1207 struct its_cmd_desc desc; 1208 1209 desc.its_inv_cmd.dev = dev; 1210 desc.its_inv_cmd.event_id = event_id; 1211 1212 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1213 } 1214 1215 static void its_send_mapd(struct its_device *dev, int valid) 1216 { 1217 struct its_cmd_desc desc; 1218 1219 desc.its_mapd_cmd.dev = dev; 1220 desc.its_mapd_cmd.valid = !!valid; 1221 1222 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1223 } 1224 1225 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1226 int valid) 1227 { 1228 struct its_cmd_desc desc; 1229 1230 desc.its_mapc_cmd.col = col; 1231 desc.its_mapc_cmd.valid = !!valid; 1232 1233 its_send_single_command(its, its_build_mapc_cmd, &desc); 1234 } 1235 1236 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1237 { 1238 struct its_cmd_desc desc; 1239 1240 desc.its_mapti_cmd.dev = dev; 1241 desc.its_mapti_cmd.phys_id = irq_id; 1242 desc.its_mapti_cmd.event_id = id; 1243 1244 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1245 } 1246 1247 static void its_send_movi(struct its_device *dev, 1248 struct its_collection *col, u32 id) 1249 { 1250 struct its_cmd_desc desc; 1251 1252 desc.its_movi_cmd.dev = dev; 1253 desc.its_movi_cmd.col = col; 1254 desc.its_movi_cmd.event_id = id; 1255 1256 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1257 } 1258 1259 static void its_send_discard(struct its_device *dev, u32 id) 1260 { 1261 struct its_cmd_desc desc; 1262 1263 desc.its_discard_cmd.dev = dev; 1264 desc.its_discard_cmd.event_id = id; 1265 1266 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1267 } 1268 1269 static void its_send_invall(struct its_node *its, struct its_collection *col) 1270 { 1271 struct its_cmd_desc desc; 1272 1273 desc.its_invall_cmd.col = col; 1274 1275 its_send_single_command(its, its_build_invall_cmd, &desc); 1276 } 1277 1278 static void its_send_vmapti(struct its_device *dev, u32 id) 1279 { 1280 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1281 struct its_cmd_desc desc; 1282 1283 desc.its_vmapti_cmd.vpe = map->vpe; 1284 desc.its_vmapti_cmd.dev = dev; 1285 desc.its_vmapti_cmd.virt_id = map->vintid; 1286 desc.its_vmapti_cmd.event_id = id; 1287 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1288 1289 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1290 } 1291 1292 static void its_send_vmovi(struct its_device *dev, u32 id) 1293 { 1294 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1295 struct its_cmd_desc desc; 1296 1297 desc.its_vmovi_cmd.vpe = map->vpe; 1298 desc.its_vmovi_cmd.dev = dev; 1299 desc.its_vmovi_cmd.event_id = id; 1300 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1301 1302 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1303 } 1304 1305 static void its_send_vmapp(struct its_node *its, 1306 struct its_vpe *vpe, bool valid) 1307 { 1308 struct its_cmd_desc desc; 1309 1310 desc.its_vmapp_cmd.vpe = vpe; 1311 desc.its_vmapp_cmd.valid = valid; 1312 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1313 1314 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1315 } 1316 1317 static void its_send_vmovp(struct its_vpe *vpe) 1318 { 1319 struct its_cmd_desc desc = {}; 1320 struct its_node *its; 1321 int col_id = vpe->col_idx; 1322 1323 desc.its_vmovp_cmd.vpe = vpe; 1324 1325 if (!its_list_map) { 1326 its = list_first_entry(&its_nodes, struct its_node, entry); 1327 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1328 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1329 return; 1330 } 1331 1332 /* 1333 * Yet another marvel of the architecture. If using the 1334 * its_list "feature", we need to make sure that all ITSs 1335 * receive all VMOVP commands in the same order. The only way 1336 * to guarantee this is to make vmovp a serialization point. 1337 * 1338 * Wall <-- Head. 1339 */ 1340 guard(raw_spinlock)(&vmovp_lock); 1341 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1342 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1343 1344 /* Emit VMOVPs */ 1345 list_for_each_entry(its, &its_nodes, entry) { 1346 if (!is_v4(its)) 1347 continue; 1348 1349 if (!require_its_list_vmovp(vpe->its_vm, its)) 1350 continue; 1351 1352 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1353 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1354 } 1355 } 1356 1357 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1358 { 1359 struct its_cmd_desc desc; 1360 1361 desc.its_vinvall_cmd.vpe = vpe; 1362 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1363 } 1364 1365 static void its_send_vinv(struct its_device *dev, u32 event_id) 1366 { 1367 struct its_cmd_desc desc; 1368 1369 /* 1370 * There is no real VINV command. This is just a normal INV, 1371 * with a VSYNC instead of a SYNC. 1372 */ 1373 desc.its_inv_cmd.dev = dev; 1374 desc.its_inv_cmd.event_id = event_id; 1375 1376 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1377 } 1378 1379 static void its_send_vint(struct its_device *dev, u32 event_id) 1380 { 1381 struct its_cmd_desc desc; 1382 1383 /* 1384 * There is no real VINT command. This is just a normal INT, 1385 * with a VSYNC instead of a SYNC. 1386 */ 1387 desc.its_int_cmd.dev = dev; 1388 desc.its_int_cmd.event_id = event_id; 1389 1390 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1391 } 1392 1393 static void its_send_vclear(struct its_device *dev, u32 event_id) 1394 { 1395 struct its_cmd_desc desc; 1396 1397 /* 1398 * There is no real VCLEAR command. This is just a normal CLEAR, 1399 * with a VSYNC instead of a SYNC. 1400 */ 1401 desc.its_clear_cmd.dev = dev; 1402 desc.its_clear_cmd.event_id = event_id; 1403 1404 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1405 } 1406 1407 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1408 { 1409 struct its_cmd_desc desc; 1410 1411 desc.its_invdb_cmd.vpe = vpe; 1412 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1413 } 1414 1415 /* 1416 * irqchip functions - assumes MSI, mostly. 1417 */ 1418 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1419 { 1420 struct its_vlpi_map *map = get_vlpi_map(d); 1421 irq_hw_number_t hwirq; 1422 void *va; 1423 u8 *cfg; 1424 1425 if (map) { 1426 va = page_address(map->vm->vprop_page); 1427 hwirq = map->vintid; 1428 1429 /* Remember the updated property */ 1430 map->properties &= ~clr; 1431 map->properties |= set | LPI_PROP_GROUP1; 1432 } else { 1433 va = gic_rdists->prop_table_va; 1434 hwirq = d->hwirq; 1435 } 1436 1437 cfg = va + hwirq - 8192; 1438 *cfg &= ~clr; 1439 *cfg |= set | LPI_PROP_GROUP1; 1440 1441 /* 1442 * Make the above write visible to the redistributors. 1443 * And yes, we're flushing exactly: One. Single. Byte. 1444 * Humpf... 1445 */ 1446 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1447 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1448 else 1449 dsb(ishst); 1450 } 1451 1452 static void wait_for_syncr(void __iomem *rdbase) 1453 { 1454 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1455 cpu_relax(); 1456 } 1457 1458 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1459 { 1460 void __iomem *rdbase; 1461 unsigned long flags; 1462 int cpu; 1463 1464 /* Target the redistributor this LPI is currently routed to */ 1465 cpu = irq_to_cpuid_lock(d, &flags); 1466 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1467 1468 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1469 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1470 wait_for_syncr(rdbase); 1471 1472 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1473 irq_to_cpuid_unlock(d, flags); 1474 } 1475 1476 static void direct_lpi_inv(struct irq_data *d) 1477 { 1478 struct its_vlpi_map *map = get_vlpi_map(d); 1479 u64 val; 1480 1481 if (map) { 1482 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1483 1484 WARN_ON(!is_v4_1(its_dev->its)); 1485 1486 val = GICR_INVLPIR_V; 1487 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1488 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1489 } else { 1490 val = d->hwirq; 1491 } 1492 1493 __direct_lpi_inv(d, val); 1494 } 1495 1496 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1497 { 1498 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1499 1500 lpi_write_config(d, clr, set); 1501 if (gic_rdists->has_direct_lpi && 1502 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1503 direct_lpi_inv(d); 1504 else if (!irqd_is_forwarded_to_vcpu(d)) 1505 its_send_inv(its_dev, its_get_event_id(d)); 1506 else 1507 its_send_vinv(its_dev, its_get_event_id(d)); 1508 } 1509 1510 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1511 { 1512 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1513 u32 event = its_get_event_id(d); 1514 struct its_vlpi_map *map; 1515 1516 /* 1517 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1518 * here. 1519 */ 1520 if (is_v4_1(its_dev->its)) 1521 return; 1522 1523 map = dev_event_to_vlpi_map(its_dev, event); 1524 1525 if (map->db_enabled == enable) 1526 return; 1527 1528 map->db_enabled = enable; 1529 1530 /* 1531 * More fun with the architecture: 1532 * 1533 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1534 * value or to 1023, depending on the enable bit. But that 1535 * would be issuing a mapping for an /existing/ DevID+EventID 1536 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1537 * to the /same/ vPE, using this opportunity to adjust the 1538 * doorbell. Mouahahahaha. We loves it, Precious. 1539 */ 1540 its_send_vmovi(its_dev, event); 1541 } 1542 1543 static void its_mask_irq(struct irq_data *d) 1544 { 1545 if (irqd_is_forwarded_to_vcpu(d)) 1546 its_vlpi_set_doorbell(d, false); 1547 1548 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1549 } 1550 1551 static void its_unmask_irq(struct irq_data *d) 1552 { 1553 if (irqd_is_forwarded_to_vcpu(d)) 1554 its_vlpi_set_doorbell(d, true); 1555 1556 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1557 } 1558 1559 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1560 { 1561 if (irqd_affinity_is_managed(d)) 1562 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1563 1564 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1565 } 1566 1567 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1568 { 1569 if (irqd_affinity_is_managed(d)) 1570 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1571 else 1572 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1573 } 1574 1575 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1576 { 1577 if (irqd_affinity_is_managed(d)) 1578 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1579 else 1580 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1581 } 1582 1583 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1584 const struct cpumask *cpu_mask) 1585 { 1586 unsigned int cpu = nr_cpu_ids, tmp; 1587 int count = S32_MAX; 1588 1589 for_each_cpu(tmp, cpu_mask) { 1590 int this_count = its_read_lpi_count(d, tmp); 1591 if (this_count < count) { 1592 cpu = tmp; 1593 count = this_count; 1594 } 1595 } 1596 1597 return cpu; 1598 } 1599 1600 /* 1601 * As suggested by Thomas Gleixner in: 1602 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1603 */ 1604 static int its_select_cpu(struct irq_data *d, 1605 const struct cpumask *aff_mask) 1606 { 1607 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1608 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1609 static struct cpumask __tmpmask; 1610 struct cpumask *tmpmask; 1611 unsigned long flags; 1612 int cpu, node; 1613 node = its_dev->its->numa_node; 1614 tmpmask = &__tmpmask; 1615 1616 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1617 1618 if (!irqd_affinity_is_managed(d)) { 1619 /* First try the NUMA node */ 1620 if (node != NUMA_NO_NODE) { 1621 /* 1622 * Try the intersection of the affinity mask and the 1623 * node mask (and the online mask, just to be safe). 1624 */ 1625 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1626 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1627 1628 /* 1629 * Ideally, we would check if the mask is empty, and 1630 * try again on the full node here. 1631 * 1632 * But it turns out that the way ACPI describes the 1633 * affinity for ITSs only deals about memory, and 1634 * not target CPUs, so it cannot describe a single 1635 * ITS placed next to two NUMA nodes. 1636 * 1637 * Instead, just fallback on the online mask. This 1638 * diverges from Thomas' suggestion above. 1639 */ 1640 cpu = cpumask_pick_least_loaded(d, tmpmask); 1641 if (cpu < nr_cpu_ids) 1642 goto out; 1643 1644 /* If we can't cross sockets, give up */ 1645 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1646 goto out; 1647 1648 /* If the above failed, expand the search */ 1649 } 1650 1651 /* Try the intersection of the affinity and online masks */ 1652 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1653 1654 /* If that doesn't fly, the online mask is the last resort */ 1655 if (cpumask_empty(tmpmask)) 1656 cpumask_copy(tmpmask, cpu_online_mask); 1657 1658 cpu = cpumask_pick_least_loaded(d, tmpmask); 1659 } else { 1660 cpumask_copy(tmpmask, aff_mask); 1661 1662 /* If we cannot cross sockets, limit the search to that node */ 1663 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1664 node != NUMA_NO_NODE) 1665 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1666 1667 cpu = cpumask_pick_least_loaded(d, tmpmask); 1668 } 1669 out: 1670 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1671 1672 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1673 return cpu; 1674 } 1675 1676 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1677 bool force) 1678 { 1679 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1680 struct its_collection *target_col; 1681 u32 id = its_get_event_id(d); 1682 int cpu, prev_cpu; 1683 1684 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1685 if (irqd_is_forwarded_to_vcpu(d)) 1686 return -EINVAL; 1687 1688 prev_cpu = its_dev->event_map.col_map[id]; 1689 its_dec_lpi_count(d, prev_cpu); 1690 1691 if (!force) 1692 cpu = its_select_cpu(d, mask_val); 1693 else 1694 cpu = cpumask_pick_least_loaded(d, mask_val); 1695 1696 if (cpu < 0 || cpu >= nr_cpu_ids) 1697 goto err; 1698 1699 /* don't set the affinity when the target cpu is same as current one */ 1700 if (cpu != prev_cpu) { 1701 target_col = &its_dev->its->collections[cpu]; 1702 its_send_movi(its_dev, target_col, id); 1703 its_dev->event_map.col_map[id] = cpu; 1704 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1705 } 1706 1707 its_inc_lpi_count(d, cpu); 1708 1709 return IRQ_SET_MASK_OK_DONE; 1710 1711 err: 1712 its_inc_lpi_count(d, prev_cpu); 1713 return -EINVAL; 1714 } 1715 1716 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1717 { 1718 struct its_node *its = its_dev->its; 1719 1720 return its->phys_base + GITS_TRANSLATER; 1721 } 1722 1723 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1724 { 1725 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1726 struct its_node *its; 1727 u64 addr; 1728 1729 its = its_dev->its; 1730 addr = its->get_msi_base(its_dev); 1731 1732 msg->address_lo = lower_32_bits(addr); 1733 msg->address_hi = upper_32_bits(addr); 1734 msg->data = its_get_event_id(d); 1735 1736 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1737 } 1738 1739 static int its_irq_set_irqchip_state(struct irq_data *d, 1740 enum irqchip_irq_state which, 1741 bool state) 1742 { 1743 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1744 u32 event = its_get_event_id(d); 1745 1746 if (which != IRQCHIP_STATE_PENDING) 1747 return -EINVAL; 1748 1749 if (irqd_is_forwarded_to_vcpu(d)) { 1750 if (state) 1751 its_send_vint(its_dev, event); 1752 else 1753 its_send_vclear(its_dev, event); 1754 } else { 1755 if (state) 1756 its_send_int(its_dev, event); 1757 else 1758 its_send_clear(its_dev, event); 1759 } 1760 1761 return 0; 1762 } 1763 1764 static int its_irq_retrigger(struct irq_data *d) 1765 { 1766 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1767 } 1768 1769 /* 1770 * Two favourable cases: 1771 * 1772 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1773 * for vSGI delivery 1774 * 1775 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1776 * and we're better off mapping all VPEs always 1777 * 1778 * If neither (a) nor (b) is true, then we map vPEs on demand. 1779 * 1780 */ 1781 static bool gic_requires_eager_mapping(void) 1782 { 1783 if (!its_list_map || gic_rdists->has_rvpeid) 1784 return true; 1785 1786 return false; 1787 } 1788 1789 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1790 { 1791 if (gic_requires_eager_mapping()) 1792 return; 1793 1794 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1795 1796 /* 1797 * If the VM wasn't mapped yet, iterate over the vpes and get 1798 * them mapped now. 1799 */ 1800 vm->vlpi_count[its->list_nr]++; 1801 1802 if (vm->vlpi_count[its->list_nr] == 1) { 1803 int i; 1804 1805 for (i = 0; i < vm->nr_vpes; i++) { 1806 struct its_vpe *vpe = vm->vpes[i]; 1807 1808 scoped_guard(raw_spinlock, &vpe->vpe_lock) 1809 its_send_vmapp(its, vpe, true); 1810 1811 its_send_vinvall(its, vpe); 1812 } 1813 } 1814 } 1815 1816 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1817 { 1818 /* Not using the ITS list? Everything is always mapped. */ 1819 if (gic_requires_eager_mapping()) 1820 return; 1821 1822 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1823 1824 if (!--vm->vlpi_count[its->list_nr]) { 1825 int i; 1826 1827 for (i = 0; i < vm->nr_vpes; i++) { 1828 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock); 1829 its_send_vmapp(its, vm->vpes[i], false); 1830 } 1831 } 1832 } 1833 1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1835 { 1836 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1837 u32 event = its_get_event_id(d); 1838 1839 if (!info->map) 1840 return -EINVAL; 1841 1842 if (!its_dev->event_map.vm) { 1843 struct its_vlpi_map *maps; 1844 1845 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1846 GFP_ATOMIC); 1847 if (!maps) 1848 return -ENOMEM; 1849 1850 its_dev->event_map.vm = info->map->vm; 1851 its_dev->event_map.vlpi_maps = maps; 1852 } else if (its_dev->event_map.vm != info->map->vm) { 1853 return -EINVAL; 1854 } 1855 1856 /* Get our private copy of the mapping information */ 1857 its_dev->event_map.vlpi_maps[event] = *info->map; 1858 1859 if (irqd_is_forwarded_to_vcpu(d)) { 1860 /* Already mapped, move it around */ 1861 its_send_vmovi(its_dev, event); 1862 } else { 1863 /* Ensure all the VPEs are mapped on this ITS */ 1864 its_map_vm(its_dev->its, info->map->vm); 1865 1866 /* 1867 * Flag the interrupt as forwarded so that we can 1868 * start poking the virtual property table. 1869 */ 1870 irqd_set_forwarded_to_vcpu(d); 1871 1872 /* Write out the property to the prop table */ 1873 lpi_write_config(d, 0xff, info->map->properties); 1874 1875 /* Drop the physical mapping */ 1876 its_send_discard(its_dev, event); 1877 1878 /* and install the virtual one */ 1879 its_send_vmapti(its_dev, event); 1880 1881 /* Increment the number of VLPIs */ 1882 its_dev->event_map.nr_vlpis++; 1883 } 1884 1885 return 0; 1886 } 1887 1888 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1889 { 1890 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1891 struct its_vlpi_map *map; 1892 1893 map = get_vlpi_map(d); 1894 1895 if (!its_dev->event_map.vm || !map) 1896 return -EINVAL; 1897 1898 /* Copy our mapping information to the incoming request */ 1899 *info->map = *map; 1900 1901 return 0; 1902 } 1903 1904 static int its_vlpi_unmap(struct irq_data *d) 1905 { 1906 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1907 u32 event = its_get_event_id(d); 1908 1909 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1910 return -EINVAL; 1911 1912 /* Drop the virtual mapping */ 1913 its_send_discard(its_dev, event); 1914 1915 /* and restore the physical one */ 1916 irqd_clr_forwarded_to_vcpu(d); 1917 its_send_mapti(its_dev, d->hwirq, event); 1918 lpi_update_config(d, 0xff, (lpi_prop_prio | 1919 LPI_PROP_ENABLED | 1920 LPI_PROP_GROUP1)); 1921 1922 /* Potentially unmap the VM from this ITS */ 1923 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1924 1925 /* 1926 * Drop the refcount and make the device available again if 1927 * this was the last VLPI. 1928 */ 1929 if (!--its_dev->event_map.nr_vlpis) { 1930 its_dev->event_map.vm = NULL; 1931 kfree(its_dev->event_map.vlpi_maps); 1932 } 1933 1934 return 0; 1935 } 1936 1937 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1938 { 1939 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1940 1941 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1942 return -EINVAL; 1943 1944 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1945 lpi_update_config(d, 0xff, info->config); 1946 else 1947 lpi_write_config(d, 0xff, info->config); 1948 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1949 1950 return 0; 1951 } 1952 1953 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1954 { 1955 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1956 struct its_cmd_info *info = vcpu_info; 1957 1958 /* Need a v4 ITS */ 1959 if (!is_v4(its_dev->its)) 1960 return -EINVAL; 1961 1962 guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock); 1963 1964 /* Unmap request? */ 1965 if (!info) 1966 return its_vlpi_unmap(d); 1967 1968 switch (info->cmd_type) { 1969 case MAP_VLPI: 1970 return its_vlpi_map(d, info); 1971 1972 case GET_VLPI: 1973 return its_vlpi_get(d, info); 1974 1975 case PROP_UPDATE_VLPI: 1976 case PROP_UPDATE_AND_INV_VLPI: 1977 return its_vlpi_prop_update(d, info); 1978 1979 default: 1980 return -EINVAL; 1981 } 1982 } 1983 1984 static struct irq_chip its_irq_chip = { 1985 .name = "ITS", 1986 .irq_mask = its_mask_irq, 1987 .irq_unmask = its_unmask_irq, 1988 .irq_eoi = irq_chip_eoi_parent, 1989 .irq_set_affinity = its_set_affinity, 1990 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1991 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1992 .irq_retrigger = its_irq_retrigger, 1993 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1994 }; 1995 1996 1997 /* 1998 * How we allocate LPIs: 1999 * 2000 * lpi_range_list contains ranges of LPIs that are to available to 2001 * allocate from. To allocate LPIs, just pick the first range that 2002 * fits the required allocation, and reduce it by the required 2003 * amount. Once empty, remove the range from the list. 2004 * 2005 * To free a range of LPIs, add a free range to the list, sort it and 2006 * merge the result if the new range happens to be adjacent to an 2007 * already free block. 2008 * 2009 * The consequence of the above is that allocation is cost is low, but 2010 * freeing is expensive. We assumes that freeing rarely occurs. 2011 */ 2012 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2013 2014 static DEFINE_MUTEX(lpi_range_lock); 2015 static LIST_HEAD(lpi_range_list); 2016 2017 struct lpi_range { 2018 struct list_head entry; 2019 u32 base_id; 2020 u32 span; 2021 }; 2022 2023 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2024 { 2025 struct lpi_range *range; 2026 2027 range = kmalloc(sizeof(*range), GFP_KERNEL); 2028 if (range) { 2029 range->base_id = base; 2030 range->span = span; 2031 } 2032 2033 return range; 2034 } 2035 2036 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2037 { 2038 struct lpi_range *range, *tmp; 2039 int err = -ENOSPC; 2040 2041 mutex_lock(&lpi_range_lock); 2042 2043 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2044 if (range->span >= nr_lpis) { 2045 *base = range->base_id; 2046 range->base_id += nr_lpis; 2047 range->span -= nr_lpis; 2048 2049 if (range->span == 0) { 2050 list_del(&range->entry); 2051 kfree(range); 2052 } 2053 2054 err = 0; 2055 break; 2056 } 2057 } 2058 2059 mutex_unlock(&lpi_range_lock); 2060 2061 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2062 return err; 2063 } 2064 2065 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2066 { 2067 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2068 return; 2069 if (a->base_id + a->span != b->base_id) 2070 return; 2071 b->base_id = a->base_id; 2072 b->span += a->span; 2073 list_del(&a->entry); 2074 kfree(a); 2075 } 2076 2077 static int free_lpi_range(u32 base, u32 nr_lpis) 2078 { 2079 struct lpi_range *new, *old; 2080 2081 new = mk_lpi_range(base, nr_lpis); 2082 if (!new) 2083 return -ENOMEM; 2084 2085 mutex_lock(&lpi_range_lock); 2086 2087 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2088 if (old->base_id < base) 2089 break; 2090 } 2091 /* 2092 * old is the last element with ->base_id smaller than base, 2093 * so new goes right after it. If there are no elements with 2094 * ->base_id smaller than base, &old->entry ends up pointing 2095 * at the head of the list, and inserting new it the start of 2096 * the list is the right thing to do in that case as well. 2097 */ 2098 list_add(&new->entry, &old->entry); 2099 /* 2100 * Now check if we can merge with the preceding and/or 2101 * following ranges. 2102 */ 2103 merge_lpi_ranges(old, new); 2104 merge_lpi_ranges(new, list_next_entry(new, entry)); 2105 2106 mutex_unlock(&lpi_range_lock); 2107 return 0; 2108 } 2109 2110 static int __init its_lpi_init(u32 id_bits) 2111 { 2112 u32 lpis = (1UL << id_bits) - 8192; 2113 u32 numlpis; 2114 int err; 2115 2116 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2117 2118 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2119 lpis = numlpis; 2120 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2121 lpis); 2122 } 2123 2124 /* 2125 * Initializing the allocator is just the same as freeing the 2126 * full range of LPIs. 2127 */ 2128 err = free_lpi_range(8192, lpis); 2129 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2130 return err; 2131 } 2132 2133 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2134 { 2135 unsigned long *bitmap = NULL; 2136 int err = 0; 2137 2138 do { 2139 err = alloc_lpi_range(nr_irqs, base); 2140 if (!err) 2141 break; 2142 2143 nr_irqs /= 2; 2144 } while (nr_irqs > 0); 2145 2146 if (!nr_irqs) 2147 err = -ENOSPC; 2148 2149 if (err) 2150 goto out; 2151 2152 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2153 if (!bitmap) 2154 goto out; 2155 2156 *nr_ids = nr_irqs; 2157 2158 out: 2159 if (!bitmap) 2160 *base = *nr_ids = 0; 2161 2162 return bitmap; 2163 } 2164 2165 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2166 { 2167 WARN_ON(free_lpi_range(base, nr_ids)); 2168 bitmap_free(bitmap); 2169 } 2170 2171 static void gic_reset_prop_table(void *va) 2172 { 2173 /* Regular IRQ priority, Group-1, disabled */ 2174 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2175 2176 /* Make sure the GIC will observe the written configuration */ 2177 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2178 } 2179 2180 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2181 { 2182 struct page *prop_page; 2183 2184 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2185 if (!prop_page) 2186 return NULL; 2187 2188 gic_reset_prop_table(page_address(prop_page)); 2189 2190 return prop_page; 2191 } 2192 2193 static void its_free_prop_table(struct page *prop_page) 2194 { 2195 free_pages((unsigned long)page_address(prop_page), 2196 get_order(LPI_PROPBASE_SZ)); 2197 } 2198 2199 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2200 { 2201 phys_addr_t start, end, addr_end; 2202 u64 i; 2203 2204 /* 2205 * We don't bother checking for a kdump kernel as by 2206 * construction, the LPI tables are out of this kernel's 2207 * memory map. 2208 */ 2209 if (is_kdump_kernel()) 2210 return true; 2211 2212 addr_end = addr + size - 1; 2213 2214 for_each_reserved_mem_range(i, &start, &end) { 2215 if (addr >= start && addr_end <= end) 2216 return true; 2217 } 2218 2219 /* Not found, not a good sign... */ 2220 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2221 &addr, &addr_end); 2222 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2223 return false; 2224 } 2225 2226 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2227 { 2228 if (efi_enabled(EFI_CONFIG_TABLES)) 2229 return efi_mem_reserve_persistent(addr, size); 2230 2231 return 0; 2232 } 2233 2234 static int __init its_setup_lpi_prop_table(void) 2235 { 2236 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2237 u64 val; 2238 2239 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2240 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2241 2242 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2243 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2244 LPI_PROPBASE_SZ, 2245 MEMREMAP_WB); 2246 gic_reset_prop_table(gic_rdists->prop_table_va); 2247 } else { 2248 struct page *page; 2249 2250 lpi_id_bits = min_t(u32, 2251 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2252 ITS_MAX_LPI_NRBITS); 2253 page = its_allocate_prop_table(GFP_NOWAIT); 2254 if (!page) { 2255 pr_err("Failed to allocate PROPBASE\n"); 2256 return -ENOMEM; 2257 } 2258 2259 gic_rdists->prop_table_pa = page_to_phys(page); 2260 gic_rdists->prop_table_va = page_address(page); 2261 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2262 LPI_PROPBASE_SZ)); 2263 } 2264 2265 pr_info("GICv3: using LPI property table @%pa\n", 2266 &gic_rdists->prop_table_pa); 2267 2268 return its_lpi_init(lpi_id_bits); 2269 } 2270 2271 static const char *its_base_type_string[] = { 2272 [GITS_BASER_TYPE_DEVICE] = "Devices", 2273 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2274 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2275 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2276 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2277 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2278 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2279 }; 2280 2281 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2282 { 2283 u32 idx = baser - its->tables; 2284 2285 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2286 } 2287 2288 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2289 u64 val) 2290 { 2291 u32 idx = baser - its->tables; 2292 2293 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2294 baser->val = its_read_baser(its, baser); 2295 } 2296 2297 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2298 u64 cache, u64 shr, u32 order, bool indirect) 2299 { 2300 u64 val = its_read_baser(its, baser); 2301 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2302 u64 type = GITS_BASER_TYPE(val); 2303 u64 baser_phys, tmp; 2304 u32 alloc_pages, psz; 2305 struct page *page; 2306 void *base; 2307 2308 psz = baser->psz; 2309 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2310 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2311 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2312 &its->phys_base, its_base_type_string[type], 2313 alloc_pages, GITS_BASER_PAGES_MAX); 2314 alloc_pages = GITS_BASER_PAGES_MAX; 2315 order = get_order(GITS_BASER_PAGES_MAX * psz); 2316 } 2317 2318 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2319 if (!page) 2320 return -ENOMEM; 2321 2322 base = (void *)page_address(page); 2323 baser_phys = virt_to_phys(base); 2324 2325 /* Check if the physical address of the memory is above 48bits */ 2326 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2327 2328 /* 52bit PA is supported only when PageSize=64K */ 2329 if (psz != SZ_64K) { 2330 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2331 free_pages((unsigned long)base, order); 2332 return -ENXIO; 2333 } 2334 2335 /* Convert 52bit PA to 48bit field */ 2336 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2337 } 2338 2339 retry_baser: 2340 val = (baser_phys | 2341 (type << GITS_BASER_TYPE_SHIFT) | 2342 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2343 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2344 cache | 2345 shr | 2346 GITS_BASER_VALID); 2347 2348 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2349 2350 switch (psz) { 2351 case SZ_4K: 2352 val |= GITS_BASER_PAGE_SIZE_4K; 2353 break; 2354 case SZ_16K: 2355 val |= GITS_BASER_PAGE_SIZE_16K; 2356 break; 2357 case SZ_64K: 2358 val |= GITS_BASER_PAGE_SIZE_64K; 2359 break; 2360 } 2361 2362 if (!shr) 2363 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2364 2365 its_write_baser(its, baser, val); 2366 tmp = baser->val; 2367 2368 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2369 /* 2370 * Shareability didn't stick. Just use 2371 * whatever the read reported, which is likely 2372 * to be the only thing this redistributor 2373 * supports. If that's zero, make it 2374 * non-cacheable as well. 2375 */ 2376 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2377 if (!shr) 2378 cache = GITS_BASER_nC; 2379 2380 goto retry_baser; 2381 } 2382 2383 if (val != tmp) { 2384 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2385 &its->phys_base, its_base_type_string[type], 2386 val, tmp); 2387 free_pages((unsigned long)base, order); 2388 return -ENXIO; 2389 } 2390 2391 baser->order = order; 2392 baser->base = base; 2393 baser->psz = psz; 2394 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2395 2396 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2397 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2398 its_base_type_string[type], 2399 (unsigned long)virt_to_phys(base), 2400 indirect ? "indirect" : "flat", (int)esz, 2401 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2402 2403 return 0; 2404 } 2405 2406 static bool its_parse_indirect_baser(struct its_node *its, 2407 struct its_baser *baser, 2408 u32 *order, u32 ids) 2409 { 2410 u64 tmp = its_read_baser(its, baser); 2411 u64 type = GITS_BASER_TYPE(tmp); 2412 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2413 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2414 u32 new_order = *order; 2415 u32 psz = baser->psz; 2416 bool indirect = false; 2417 2418 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2419 if ((esz << ids) > (psz * 2)) { 2420 /* 2421 * Find out whether hw supports a single or two-level table by 2422 * table by reading bit at offset '62' after writing '1' to it. 2423 */ 2424 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2425 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2426 2427 if (indirect) { 2428 /* 2429 * The size of the lvl2 table is equal to ITS page size 2430 * which is 'psz'. For computing lvl1 table size, 2431 * subtract ID bits that sparse lvl2 table from 'ids' 2432 * which is reported by ITS hardware times lvl1 table 2433 * entry size. 2434 */ 2435 ids -= ilog2(psz / (int)esz); 2436 esz = GITS_LVL1_ENTRY_SIZE; 2437 } 2438 } 2439 2440 /* 2441 * Allocate as many entries as required to fit the 2442 * range of device IDs that the ITS can grok... The ID 2443 * space being incredibly sparse, this results in a 2444 * massive waste of memory if two-level device table 2445 * feature is not supported by hardware. 2446 */ 2447 new_order = max_t(u32, get_order(esz << ids), new_order); 2448 if (new_order > MAX_PAGE_ORDER) { 2449 new_order = MAX_PAGE_ORDER; 2450 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2451 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2452 &its->phys_base, its_base_type_string[type], 2453 device_ids(its), ids); 2454 } 2455 2456 *order = new_order; 2457 2458 return indirect; 2459 } 2460 2461 static u32 compute_common_aff(u64 val) 2462 { 2463 u32 aff, clpiaff; 2464 2465 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2466 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2467 2468 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2469 } 2470 2471 static u32 compute_its_aff(struct its_node *its) 2472 { 2473 u64 val; 2474 u32 svpet; 2475 2476 /* 2477 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2478 * the resulting affinity. We then use that to see if this match 2479 * our own affinity. 2480 */ 2481 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2482 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2483 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2484 return compute_common_aff(val); 2485 } 2486 2487 static struct its_node *find_sibling_its(struct its_node *cur_its) 2488 { 2489 struct its_node *its; 2490 u32 aff; 2491 2492 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2493 return NULL; 2494 2495 aff = compute_its_aff(cur_its); 2496 2497 list_for_each_entry(its, &its_nodes, entry) { 2498 u64 baser; 2499 2500 if (!is_v4_1(its) || its == cur_its) 2501 continue; 2502 2503 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2504 continue; 2505 2506 if (aff != compute_its_aff(its)) 2507 continue; 2508 2509 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2510 baser = its->tables[2].val; 2511 if (!(baser & GITS_BASER_VALID)) 2512 continue; 2513 2514 return its; 2515 } 2516 2517 return NULL; 2518 } 2519 2520 static void its_free_tables(struct its_node *its) 2521 { 2522 int i; 2523 2524 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2525 if (its->tables[i].base) { 2526 free_pages((unsigned long)its->tables[i].base, 2527 its->tables[i].order); 2528 its->tables[i].base = NULL; 2529 } 2530 } 2531 } 2532 2533 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2534 { 2535 u64 psz = SZ_64K; 2536 2537 while (psz) { 2538 u64 val, gpsz; 2539 2540 val = its_read_baser(its, baser); 2541 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2542 2543 switch (psz) { 2544 case SZ_64K: 2545 gpsz = GITS_BASER_PAGE_SIZE_64K; 2546 break; 2547 case SZ_16K: 2548 gpsz = GITS_BASER_PAGE_SIZE_16K; 2549 break; 2550 case SZ_4K: 2551 default: 2552 gpsz = GITS_BASER_PAGE_SIZE_4K; 2553 break; 2554 } 2555 2556 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2557 2558 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2559 its_write_baser(its, baser, val); 2560 2561 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2562 break; 2563 2564 switch (psz) { 2565 case SZ_64K: 2566 psz = SZ_16K; 2567 break; 2568 case SZ_16K: 2569 psz = SZ_4K; 2570 break; 2571 case SZ_4K: 2572 default: 2573 return -1; 2574 } 2575 } 2576 2577 baser->psz = psz; 2578 return 0; 2579 } 2580 2581 static int its_alloc_tables(struct its_node *its) 2582 { 2583 u64 shr = GITS_BASER_InnerShareable; 2584 u64 cache = GITS_BASER_RaWaWb; 2585 int err, i; 2586 2587 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2588 /* erratum 24313: ignore memory access type */ 2589 cache = GITS_BASER_nCnB; 2590 2591 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2592 cache = GITS_BASER_nC; 2593 shr = 0; 2594 } 2595 2596 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2597 struct its_baser *baser = its->tables + i; 2598 u64 val = its_read_baser(its, baser); 2599 u64 type = GITS_BASER_TYPE(val); 2600 bool indirect = false; 2601 u32 order; 2602 2603 if (type == GITS_BASER_TYPE_NONE) 2604 continue; 2605 2606 if (its_probe_baser_psz(its, baser)) { 2607 its_free_tables(its); 2608 return -ENXIO; 2609 } 2610 2611 order = get_order(baser->psz); 2612 2613 switch (type) { 2614 case GITS_BASER_TYPE_DEVICE: 2615 indirect = its_parse_indirect_baser(its, baser, &order, 2616 device_ids(its)); 2617 break; 2618 2619 case GITS_BASER_TYPE_VCPU: 2620 if (is_v4_1(its)) { 2621 struct its_node *sibling; 2622 2623 WARN_ON(i != 2); 2624 if ((sibling = find_sibling_its(its))) { 2625 *baser = sibling->tables[2]; 2626 its_write_baser(its, baser, baser->val); 2627 continue; 2628 } 2629 } 2630 2631 indirect = its_parse_indirect_baser(its, baser, &order, 2632 ITS_MAX_VPEID_BITS); 2633 break; 2634 } 2635 2636 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2637 if (err < 0) { 2638 its_free_tables(its); 2639 return err; 2640 } 2641 2642 /* Update settings which will be used for next BASERn */ 2643 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2644 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2645 } 2646 2647 return 0; 2648 } 2649 2650 static u64 inherit_vpe_l1_table_from_its(void) 2651 { 2652 struct its_node *its; 2653 u64 val; 2654 u32 aff; 2655 2656 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2657 aff = compute_common_aff(val); 2658 2659 list_for_each_entry(its, &its_nodes, entry) { 2660 u64 baser, addr; 2661 2662 if (!is_v4_1(its)) 2663 continue; 2664 2665 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2666 continue; 2667 2668 if (aff != compute_its_aff(its)) 2669 continue; 2670 2671 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2672 baser = its->tables[2].val; 2673 if (!(baser & GITS_BASER_VALID)) 2674 continue; 2675 2676 /* We have a winner! */ 2677 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2678 2679 val = GICR_VPROPBASER_4_1_VALID; 2680 if (baser & GITS_BASER_INDIRECT) 2681 val |= GICR_VPROPBASER_4_1_INDIRECT; 2682 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2683 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2684 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2685 case GIC_PAGE_SIZE_64K: 2686 addr = GITS_BASER_ADDR_48_to_52(baser); 2687 break; 2688 default: 2689 addr = baser & GENMASK_ULL(47, 12); 2690 break; 2691 } 2692 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2693 if (rdists_support_shareable()) { 2694 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2695 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2696 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2697 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2698 } 2699 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2700 2701 return val; 2702 } 2703 2704 return 0; 2705 } 2706 2707 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2708 { 2709 u32 aff; 2710 u64 val; 2711 int cpu; 2712 2713 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2714 aff = compute_common_aff(val); 2715 2716 for_each_possible_cpu(cpu) { 2717 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2718 2719 if (!base || cpu == smp_processor_id()) 2720 continue; 2721 2722 val = gic_read_typer(base + GICR_TYPER); 2723 if (aff != compute_common_aff(val)) 2724 continue; 2725 2726 /* 2727 * At this point, we have a victim. This particular CPU 2728 * has already booted, and has an affinity that matches 2729 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2730 * Make sure we don't write the Z bit in that case. 2731 */ 2732 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2733 val &= ~GICR_VPROPBASER_4_1_Z; 2734 2735 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2736 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2737 2738 return val; 2739 } 2740 2741 return 0; 2742 } 2743 2744 static bool allocate_vpe_l2_table(int cpu, u32 id) 2745 { 2746 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2747 unsigned int psz, esz, idx, npg, gpsz; 2748 u64 val; 2749 struct page *page; 2750 __le64 *table; 2751 2752 if (!gic_rdists->has_rvpeid) 2753 return true; 2754 2755 /* Skip non-present CPUs */ 2756 if (!base) 2757 return true; 2758 2759 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2760 2761 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2762 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2763 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2764 2765 switch (gpsz) { 2766 default: 2767 WARN_ON(1); 2768 fallthrough; 2769 case GIC_PAGE_SIZE_4K: 2770 psz = SZ_4K; 2771 break; 2772 case GIC_PAGE_SIZE_16K: 2773 psz = SZ_16K; 2774 break; 2775 case GIC_PAGE_SIZE_64K: 2776 psz = SZ_64K; 2777 break; 2778 } 2779 2780 /* Don't allow vpe_id that exceeds single, flat table limit */ 2781 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2782 return (id < (npg * psz / (esz * SZ_8))); 2783 2784 /* Compute 1st level table index & check if that exceeds table limit */ 2785 idx = id >> ilog2(psz / (esz * SZ_8)); 2786 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2787 return false; 2788 2789 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2790 2791 /* Allocate memory for 2nd level table */ 2792 if (!table[idx]) { 2793 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2794 if (!page) 2795 return false; 2796 2797 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2798 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2799 gic_flush_dcache_to_poc(page_address(page), psz); 2800 2801 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2802 2803 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2804 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2805 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2806 2807 /* Ensure updated table contents are visible to RD hardware */ 2808 dsb(sy); 2809 } 2810 2811 return true; 2812 } 2813 2814 static int allocate_vpe_l1_table(void) 2815 { 2816 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2817 u64 val, gpsz, npg, pa; 2818 unsigned int psz = SZ_64K; 2819 unsigned int np, epp, esz; 2820 struct page *page; 2821 2822 if (!gic_rdists->has_rvpeid) 2823 return 0; 2824 2825 /* 2826 * if VPENDBASER.Valid is set, disable any previously programmed 2827 * VPE by setting PendingLast while clearing Valid. This has the 2828 * effect of making sure no doorbell will be generated and we can 2829 * then safely clear VPROPBASER.Valid. 2830 */ 2831 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2832 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2833 vlpi_base + GICR_VPENDBASER); 2834 2835 /* 2836 * If we can inherit the configuration from another RD, let's do 2837 * so. Otherwise, we have to go through the allocation process. We 2838 * assume that all RDs have the exact same requirements, as 2839 * nothing will work otherwise. 2840 */ 2841 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2842 if (val & GICR_VPROPBASER_4_1_VALID) 2843 goto out; 2844 2845 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2846 if (!gic_data_rdist()->vpe_table_mask) 2847 return -ENOMEM; 2848 2849 val = inherit_vpe_l1_table_from_its(); 2850 if (val & GICR_VPROPBASER_4_1_VALID) 2851 goto out; 2852 2853 /* First probe the page size */ 2854 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2855 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2856 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2857 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2858 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2859 2860 switch (gpsz) { 2861 default: 2862 gpsz = GIC_PAGE_SIZE_4K; 2863 fallthrough; 2864 case GIC_PAGE_SIZE_4K: 2865 psz = SZ_4K; 2866 break; 2867 case GIC_PAGE_SIZE_16K: 2868 psz = SZ_16K; 2869 break; 2870 case GIC_PAGE_SIZE_64K: 2871 psz = SZ_64K; 2872 break; 2873 } 2874 2875 /* 2876 * Start populating the register from scratch, including RO fields 2877 * (which we want to print in debug cases...) 2878 */ 2879 val = 0; 2880 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2881 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2882 2883 /* How many entries per GIC page? */ 2884 esz++; 2885 epp = psz / (esz * SZ_8); 2886 2887 /* 2888 * If we need more than just a single L1 page, flag the table 2889 * as indirect and compute the number of required L1 pages. 2890 */ 2891 if (epp < ITS_MAX_VPEID) { 2892 int nl2; 2893 2894 val |= GICR_VPROPBASER_4_1_INDIRECT; 2895 2896 /* Number of L2 pages required to cover the VPEID space */ 2897 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2898 2899 /* Number of L1 pages to point to the L2 pages */ 2900 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2901 } else { 2902 npg = 1; 2903 } 2904 2905 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2906 2907 /* Right, that's the number of CPU pages we need for L1 */ 2908 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2909 2910 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2911 np, npg, psz, epp, esz); 2912 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2913 if (!page) 2914 return -ENOMEM; 2915 2916 gic_data_rdist()->vpe_l1_base = page_address(page); 2917 pa = virt_to_phys(page_address(page)); 2918 WARN_ON(!IS_ALIGNED(pa, psz)); 2919 2920 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2921 if (rdists_support_shareable()) { 2922 val |= GICR_VPROPBASER_RaWb; 2923 val |= GICR_VPROPBASER_InnerShareable; 2924 } 2925 val |= GICR_VPROPBASER_4_1_Z; 2926 val |= GICR_VPROPBASER_4_1_VALID; 2927 2928 out: 2929 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2930 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2931 2932 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2933 smp_processor_id(), val, 2934 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2935 2936 return 0; 2937 } 2938 2939 static int its_alloc_collections(struct its_node *its) 2940 { 2941 int i; 2942 2943 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2944 GFP_KERNEL); 2945 if (!its->collections) 2946 return -ENOMEM; 2947 2948 for (i = 0; i < nr_cpu_ids; i++) 2949 its->collections[i].target_address = ~0ULL; 2950 2951 return 0; 2952 } 2953 2954 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2955 { 2956 struct page *pend_page; 2957 2958 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2959 get_order(LPI_PENDBASE_SZ)); 2960 if (!pend_page) 2961 return NULL; 2962 2963 /* Make sure the GIC will observe the zero-ed page */ 2964 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2965 2966 return pend_page; 2967 } 2968 2969 static void its_free_pending_table(struct page *pt) 2970 { 2971 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2972 } 2973 2974 /* 2975 * Booting with kdump and LPIs enabled is generally fine. Any other 2976 * case is wrong in the absence of firmware/EFI support. 2977 */ 2978 static bool enabled_lpis_allowed(void) 2979 { 2980 phys_addr_t addr; 2981 u64 val; 2982 2983 /* Check whether the property table is in a reserved region */ 2984 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2985 addr = val & GENMASK_ULL(51, 12); 2986 2987 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2988 } 2989 2990 static int __init allocate_lpi_tables(void) 2991 { 2992 u64 val; 2993 int err, cpu; 2994 2995 /* 2996 * If LPIs are enabled while we run this from the boot CPU, 2997 * flag the RD tables as pre-allocated if the stars do align. 2998 */ 2999 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3000 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3001 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3002 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3003 pr_info("GICv3: Using preallocated redistributor tables\n"); 3004 } 3005 3006 err = its_setup_lpi_prop_table(); 3007 if (err) 3008 return err; 3009 3010 /* 3011 * We allocate all the pending tables anyway, as we may have a 3012 * mix of RDs that have had LPIs enabled, and some that 3013 * don't. We'll free the unused ones as each CPU comes online. 3014 */ 3015 for_each_possible_cpu(cpu) { 3016 struct page *pend_page; 3017 3018 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3019 if (!pend_page) { 3020 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3021 return -ENOMEM; 3022 } 3023 3024 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3025 } 3026 3027 return 0; 3028 } 3029 3030 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3031 { 3032 u32 count = 1000000; /* 1s! */ 3033 bool clean; 3034 u64 val; 3035 3036 do { 3037 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3038 clean = !(val & GICR_VPENDBASER_Dirty); 3039 if (!clean) { 3040 count--; 3041 cpu_relax(); 3042 udelay(1); 3043 } 3044 } while (!clean && count); 3045 3046 if (unlikely(!clean)) 3047 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3048 3049 return val; 3050 } 3051 3052 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3053 { 3054 u64 val; 3055 3056 /* Make sure we wait until the RD is done with the initial scan */ 3057 val = read_vpend_dirty_clear(vlpi_base); 3058 val &= ~GICR_VPENDBASER_Valid; 3059 val &= ~clr; 3060 val |= set; 3061 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3062 3063 val = read_vpend_dirty_clear(vlpi_base); 3064 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3065 val |= GICR_VPENDBASER_PendingLast; 3066 3067 return val; 3068 } 3069 3070 static void its_cpu_init_lpis(void) 3071 { 3072 void __iomem *rbase = gic_data_rdist_rd_base(); 3073 struct page *pend_page; 3074 phys_addr_t paddr; 3075 u64 val, tmp; 3076 3077 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3078 return; 3079 3080 val = readl_relaxed(rbase + GICR_CTLR); 3081 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3082 (val & GICR_CTLR_ENABLE_LPIS)) { 3083 /* 3084 * Check that we get the same property table on all 3085 * RDs. If we don't, this is hopeless. 3086 */ 3087 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3088 paddr &= GENMASK_ULL(51, 12); 3089 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3090 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3091 3092 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3093 paddr &= GENMASK_ULL(51, 16); 3094 3095 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3096 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3097 3098 goto out; 3099 } 3100 3101 pend_page = gic_data_rdist()->pend_page; 3102 paddr = page_to_phys(pend_page); 3103 3104 /* set PROPBASE */ 3105 val = (gic_rdists->prop_table_pa | 3106 GICR_PROPBASER_InnerShareable | 3107 GICR_PROPBASER_RaWaWb | 3108 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3109 3110 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3111 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3112 3113 if (!rdists_support_shareable()) 3114 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3115 3116 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3117 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3118 /* 3119 * The HW reports non-shareable, we must 3120 * remove the cacheability attributes as 3121 * well. 3122 */ 3123 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3124 GICR_PROPBASER_CACHEABILITY_MASK); 3125 val |= GICR_PROPBASER_nC; 3126 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3127 } 3128 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3129 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3130 } 3131 3132 /* set PENDBASE */ 3133 val = (page_to_phys(pend_page) | 3134 GICR_PENDBASER_InnerShareable | 3135 GICR_PENDBASER_RaWaWb); 3136 3137 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3138 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3139 3140 if (!rdists_support_shareable()) 3141 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3142 3143 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3144 /* 3145 * The HW reports non-shareable, we must remove the 3146 * cacheability attributes as well. 3147 */ 3148 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3149 GICR_PENDBASER_CACHEABILITY_MASK); 3150 val |= GICR_PENDBASER_nC; 3151 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3152 } 3153 3154 /* Enable LPIs */ 3155 val = readl_relaxed(rbase + GICR_CTLR); 3156 val |= GICR_CTLR_ENABLE_LPIS; 3157 writel_relaxed(val, rbase + GICR_CTLR); 3158 3159 out: 3160 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3161 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3162 3163 /* 3164 * It's possible for CPU to receive VLPIs before it is 3165 * scheduled as a vPE, especially for the first CPU, and the 3166 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3167 * as out of range and dropped by GIC. 3168 * So we initialize IDbits to known value to avoid VLPI drop. 3169 */ 3170 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3171 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3172 smp_processor_id(), val); 3173 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3174 3175 /* 3176 * Also clear Valid bit of GICR_VPENDBASER, in case some 3177 * ancient programming gets left in and has possibility of 3178 * corrupting memory. 3179 */ 3180 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3181 } 3182 3183 if (allocate_vpe_l1_table()) { 3184 /* 3185 * If the allocation has failed, we're in massive trouble. 3186 * Disable direct injection, and pray that no VM was 3187 * already running... 3188 */ 3189 gic_rdists->has_rvpeid = false; 3190 gic_rdists->has_vlpis = false; 3191 } 3192 3193 /* Make sure the GIC has seen the above */ 3194 dsb(sy); 3195 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3196 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3197 smp_processor_id(), 3198 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3199 "reserved" : "allocated", 3200 &paddr); 3201 } 3202 3203 static void its_cpu_init_collection(struct its_node *its) 3204 { 3205 int cpu = smp_processor_id(); 3206 u64 target; 3207 3208 /* avoid cross node collections and its mapping */ 3209 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3210 struct device_node *cpu_node; 3211 3212 cpu_node = of_get_cpu_node(cpu, NULL); 3213 if (its->numa_node != NUMA_NO_NODE && 3214 its->numa_node != of_node_to_nid(cpu_node)) 3215 return; 3216 } 3217 3218 /* 3219 * We now have to bind each collection to its target 3220 * redistributor. 3221 */ 3222 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3223 /* 3224 * This ITS wants the physical address of the 3225 * redistributor. 3226 */ 3227 target = gic_data_rdist()->phys_base; 3228 } else { 3229 /* This ITS wants a linear CPU number. */ 3230 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3231 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3232 } 3233 3234 /* Perform collection mapping */ 3235 its->collections[cpu].target_address = target; 3236 its->collections[cpu].col_id = cpu; 3237 3238 its_send_mapc(its, &its->collections[cpu], 1); 3239 its_send_invall(its, &its->collections[cpu]); 3240 } 3241 3242 static void its_cpu_init_collections(void) 3243 { 3244 struct its_node *its; 3245 3246 raw_spin_lock(&its_lock); 3247 3248 list_for_each_entry(its, &its_nodes, entry) 3249 its_cpu_init_collection(its); 3250 3251 raw_spin_unlock(&its_lock); 3252 } 3253 3254 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3255 { 3256 struct its_device *its_dev = NULL, *tmp; 3257 unsigned long flags; 3258 3259 raw_spin_lock_irqsave(&its->lock, flags); 3260 3261 list_for_each_entry(tmp, &its->its_device_list, entry) { 3262 if (tmp->device_id == dev_id) { 3263 its_dev = tmp; 3264 break; 3265 } 3266 } 3267 3268 raw_spin_unlock_irqrestore(&its->lock, flags); 3269 3270 return its_dev; 3271 } 3272 3273 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3274 { 3275 int i; 3276 3277 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3278 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3279 return &its->tables[i]; 3280 } 3281 3282 return NULL; 3283 } 3284 3285 static bool its_alloc_table_entry(struct its_node *its, 3286 struct its_baser *baser, u32 id) 3287 { 3288 struct page *page; 3289 u32 esz, idx; 3290 __le64 *table; 3291 3292 /* Don't allow device id that exceeds single, flat table limit */ 3293 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3294 if (!(baser->val & GITS_BASER_INDIRECT)) 3295 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3296 3297 /* Compute 1st level table index & check if that exceeds table limit */ 3298 idx = id >> ilog2(baser->psz / esz); 3299 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3300 return false; 3301 3302 table = baser->base; 3303 3304 /* Allocate memory for 2nd level table */ 3305 if (!table[idx]) { 3306 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3307 get_order(baser->psz)); 3308 if (!page) 3309 return false; 3310 3311 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3312 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3313 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3314 3315 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3316 3317 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3318 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3319 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3320 3321 /* Ensure updated table contents are visible to ITS hardware */ 3322 dsb(sy); 3323 } 3324 3325 return true; 3326 } 3327 3328 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3329 { 3330 struct its_baser *baser; 3331 3332 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3333 3334 /* Don't allow device id that exceeds ITS hardware limit */ 3335 if (!baser) 3336 return (ilog2(dev_id) < device_ids(its)); 3337 3338 return its_alloc_table_entry(its, baser, dev_id); 3339 } 3340 3341 static bool its_alloc_vpe_table(u32 vpe_id) 3342 { 3343 struct its_node *its; 3344 int cpu; 3345 3346 /* 3347 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3348 * could try and only do it on ITSs corresponding to devices 3349 * that have interrupts targeted at this VPE, but the 3350 * complexity becomes crazy (and you have tons of memory 3351 * anyway, right?). 3352 */ 3353 list_for_each_entry(its, &its_nodes, entry) { 3354 struct its_baser *baser; 3355 3356 if (!is_v4(its)) 3357 continue; 3358 3359 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3360 if (!baser) 3361 return false; 3362 3363 if (!its_alloc_table_entry(its, baser, vpe_id)) 3364 return false; 3365 } 3366 3367 /* Non v4.1? No need to iterate RDs and go back early. */ 3368 if (!gic_rdists->has_rvpeid) 3369 return true; 3370 3371 /* 3372 * Make sure the L2 tables are allocated for all copies of 3373 * the L1 table on *all* v4.1 RDs. 3374 */ 3375 for_each_possible_cpu(cpu) { 3376 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3377 return false; 3378 } 3379 3380 return true; 3381 } 3382 3383 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3384 int nvecs, bool alloc_lpis) 3385 { 3386 struct its_device *dev; 3387 unsigned long *lpi_map = NULL; 3388 unsigned long flags; 3389 u16 *col_map = NULL; 3390 void *itt; 3391 int lpi_base; 3392 int nr_lpis; 3393 int nr_ites; 3394 int sz; 3395 3396 if (!its_alloc_device_table(its, dev_id)) 3397 return NULL; 3398 3399 if (WARN_ON(!is_power_of_2(nvecs))) 3400 nvecs = roundup_pow_of_two(nvecs); 3401 3402 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3403 /* 3404 * Even if the device wants a single LPI, the ITT must be 3405 * sized as a power of two (and you need at least one bit...). 3406 */ 3407 nr_ites = max(2, nvecs); 3408 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3409 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3410 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3411 if (alloc_lpis) { 3412 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3413 if (lpi_map) 3414 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3415 GFP_KERNEL); 3416 } else { 3417 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3418 nr_lpis = 0; 3419 lpi_base = 0; 3420 } 3421 3422 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3423 kfree(dev); 3424 kfree(itt); 3425 bitmap_free(lpi_map); 3426 kfree(col_map); 3427 return NULL; 3428 } 3429 3430 gic_flush_dcache_to_poc(itt, sz); 3431 3432 dev->its = its; 3433 dev->itt = itt; 3434 dev->nr_ites = nr_ites; 3435 dev->event_map.lpi_map = lpi_map; 3436 dev->event_map.col_map = col_map; 3437 dev->event_map.lpi_base = lpi_base; 3438 dev->event_map.nr_lpis = nr_lpis; 3439 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3440 dev->device_id = dev_id; 3441 INIT_LIST_HEAD(&dev->entry); 3442 3443 raw_spin_lock_irqsave(&its->lock, flags); 3444 list_add(&dev->entry, &its->its_device_list); 3445 raw_spin_unlock_irqrestore(&its->lock, flags); 3446 3447 /* Map device to its ITT */ 3448 its_send_mapd(dev, 1); 3449 3450 return dev; 3451 } 3452 3453 static void its_free_device(struct its_device *its_dev) 3454 { 3455 unsigned long flags; 3456 3457 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3458 list_del(&its_dev->entry); 3459 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3460 kfree(its_dev->event_map.col_map); 3461 kfree(its_dev->itt); 3462 kfree(its_dev); 3463 } 3464 3465 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3466 { 3467 int idx; 3468 3469 /* Find a free LPI region in lpi_map and allocate them. */ 3470 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3471 dev->event_map.nr_lpis, 3472 get_count_order(nvecs)); 3473 if (idx < 0) 3474 return -ENOSPC; 3475 3476 *hwirq = dev->event_map.lpi_base + idx; 3477 3478 return 0; 3479 } 3480 3481 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3482 int nvec, msi_alloc_info_t *info) 3483 { 3484 struct its_node *its; 3485 struct its_device *its_dev; 3486 struct msi_domain_info *msi_info; 3487 u32 dev_id; 3488 int err = 0; 3489 3490 /* 3491 * We ignore "dev" entirely, and rely on the dev_id that has 3492 * been passed via the scratchpad. This limits this domain's 3493 * usefulness to upper layers that definitely know that they 3494 * are built on top of the ITS. 3495 */ 3496 dev_id = info->scratchpad[0].ul; 3497 3498 msi_info = msi_get_domain_info(domain); 3499 its = msi_info->data; 3500 3501 if (!gic_rdists->has_direct_lpi && 3502 vpe_proxy.dev && 3503 vpe_proxy.dev->its == its && 3504 dev_id == vpe_proxy.dev->device_id) { 3505 /* Bad luck. Get yourself a better implementation */ 3506 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3507 dev_id); 3508 return -EINVAL; 3509 } 3510 3511 mutex_lock(&its->dev_alloc_lock); 3512 its_dev = its_find_device(its, dev_id); 3513 if (its_dev) { 3514 /* 3515 * We already have seen this ID, probably through 3516 * another alias (PCI bridge of some sort). No need to 3517 * create the device. 3518 */ 3519 its_dev->shared = true; 3520 pr_debug("Reusing ITT for devID %x\n", dev_id); 3521 goto out; 3522 } 3523 3524 its_dev = its_create_device(its, dev_id, nvec, true); 3525 if (!its_dev) { 3526 err = -ENOMEM; 3527 goto out; 3528 } 3529 3530 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3531 its_dev->shared = true; 3532 3533 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3534 out: 3535 mutex_unlock(&its->dev_alloc_lock); 3536 info->scratchpad[0].ptr = its_dev; 3537 return err; 3538 } 3539 3540 static struct msi_domain_ops its_msi_domain_ops = { 3541 .msi_prepare = its_msi_prepare, 3542 }; 3543 3544 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3545 unsigned int virq, 3546 irq_hw_number_t hwirq) 3547 { 3548 struct irq_fwspec fwspec; 3549 3550 if (irq_domain_get_of_node(domain->parent)) { 3551 fwspec.fwnode = domain->parent->fwnode; 3552 fwspec.param_count = 3; 3553 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3554 fwspec.param[1] = hwirq; 3555 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3556 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3557 fwspec.fwnode = domain->parent->fwnode; 3558 fwspec.param_count = 2; 3559 fwspec.param[0] = hwirq; 3560 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3561 } else { 3562 return -EINVAL; 3563 } 3564 3565 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3566 } 3567 3568 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3569 unsigned int nr_irqs, void *args) 3570 { 3571 msi_alloc_info_t *info = args; 3572 struct its_device *its_dev = info->scratchpad[0].ptr; 3573 struct its_node *its = its_dev->its; 3574 struct irq_data *irqd; 3575 irq_hw_number_t hwirq; 3576 int err; 3577 int i; 3578 3579 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3580 if (err) 3581 return err; 3582 3583 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3584 if (err) 3585 return err; 3586 3587 for (i = 0; i < nr_irqs; i++) { 3588 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3589 if (err) 3590 return err; 3591 3592 irq_domain_set_hwirq_and_chip(domain, virq + i, 3593 hwirq + i, &its_irq_chip, its_dev); 3594 irqd = irq_get_irq_data(virq + i); 3595 irqd_set_single_target(irqd); 3596 irqd_set_affinity_on_activate(irqd); 3597 irqd_set_resend_when_in_progress(irqd); 3598 pr_debug("ID:%d pID:%d vID:%d\n", 3599 (int)(hwirq + i - its_dev->event_map.lpi_base), 3600 (int)(hwirq + i), virq + i); 3601 } 3602 3603 return 0; 3604 } 3605 3606 static int its_irq_domain_activate(struct irq_domain *domain, 3607 struct irq_data *d, bool reserve) 3608 { 3609 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3610 u32 event = its_get_event_id(d); 3611 int cpu; 3612 3613 cpu = its_select_cpu(d, cpu_online_mask); 3614 if (cpu < 0 || cpu >= nr_cpu_ids) 3615 return -EINVAL; 3616 3617 its_inc_lpi_count(d, cpu); 3618 its_dev->event_map.col_map[event] = cpu; 3619 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3620 3621 /* Map the GIC IRQ and event to the device */ 3622 its_send_mapti(its_dev, d->hwirq, event); 3623 return 0; 3624 } 3625 3626 static void its_irq_domain_deactivate(struct irq_domain *domain, 3627 struct irq_data *d) 3628 { 3629 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3630 u32 event = its_get_event_id(d); 3631 3632 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3633 /* Stop the delivery of interrupts */ 3634 its_send_discard(its_dev, event); 3635 } 3636 3637 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3638 unsigned int nr_irqs) 3639 { 3640 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3641 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3642 struct its_node *its = its_dev->its; 3643 int i; 3644 3645 bitmap_release_region(its_dev->event_map.lpi_map, 3646 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3647 get_count_order(nr_irqs)); 3648 3649 for (i = 0; i < nr_irqs; i++) { 3650 struct irq_data *data = irq_domain_get_irq_data(domain, 3651 virq + i); 3652 /* Nuke the entry in the domain */ 3653 irq_domain_reset_irq_data(data); 3654 } 3655 3656 mutex_lock(&its->dev_alloc_lock); 3657 3658 /* 3659 * If all interrupts have been freed, start mopping the 3660 * floor. This is conditioned on the device not being shared. 3661 */ 3662 if (!its_dev->shared && 3663 bitmap_empty(its_dev->event_map.lpi_map, 3664 its_dev->event_map.nr_lpis)) { 3665 its_lpi_free(its_dev->event_map.lpi_map, 3666 its_dev->event_map.lpi_base, 3667 its_dev->event_map.nr_lpis); 3668 3669 /* Unmap device/itt */ 3670 its_send_mapd(its_dev, 0); 3671 its_free_device(its_dev); 3672 } 3673 3674 mutex_unlock(&its->dev_alloc_lock); 3675 3676 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3677 } 3678 3679 static const struct irq_domain_ops its_domain_ops = { 3680 .select = msi_lib_irq_domain_select, 3681 .alloc = its_irq_domain_alloc, 3682 .free = its_irq_domain_free, 3683 .activate = its_irq_domain_activate, 3684 .deactivate = its_irq_domain_deactivate, 3685 }; 3686 3687 /* 3688 * This is insane. 3689 * 3690 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3691 * likely), the only way to perform an invalidate is to use a fake 3692 * device to issue an INV command, implying that the LPI has first 3693 * been mapped to some event on that device. Since this is not exactly 3694 * cheap, we try to keep that mapping around as long as possible, and 3695 * only issue an UNMAP if we're short on available slots. 3696 * 3697 * Broken by design(tm). 3698 * 3699 * GICv4.1, on the other hand, mandates that we're able to invalidate 3700 * by writing to a MMIO register. It doesn't implement the whole of 3701 * DirectLPI, but that's good enough. And most of the time, we don't 3702 * even have to invalidate anything, as the redistributor can be told 3703 * whether to generate a doorbell or not (we thus leave it enabled, 3704 * always). 3705 */ 3706 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3707 { 3708 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3709 if (gic_rdists->has_rvpeid) 3710 return; 3711 3712 /* Already unmapped? */ 3713 if (vpe->vpe_proxy_event == -1) 3714 return; 3715 3716 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3717 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3718 3719 /* 3720 * We don't track empty slots at all, so let's move the 3721 * next_victim pointer if we can quickly reuse that slot 3722 * instead of nuking an existing entry. Not clear that this is 3723 * always a win though, and this might just generate a ripple 3724 * effect... Let's just hope VPEs don't migrate too often. 3725 */ 3726 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3727 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3728 3729 vpe->vpe_proxy_event = -1; 3730 } 3731 3732 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3733 { 3734 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3735 if (gic_rdists->has_rvpeid) 3736 return; 3737 3738 if (!gic_rdists->has_direct_lpi) { 3739 unsigned long flags; 3740 3741 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3742 its_vpe_db_proxy_unmap_locked(vpe); 3743 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3744 } 3745 } 3746 3747 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3748 { 3749 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3750 if (gic_rdists->has_rvpeid) 3751 return; 3752 3753 /* Already mapped? */ 3754 if (vpe->vpe_proxy_event != -1) 3755 return; 3756 3757 /* This slot was already allocated. Kick the other VPE out. */ 3758 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3759 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3760 3761 /* Map the new VPE instead */ 3762 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3763 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3764 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3765 3766 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3767 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3768 } 3769 3770 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3771 { 3772 unsigned long flags; 3773 struct its_collection *target_col; 3774 3775 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3776 if (gic_rdists->has_rvpeid) 3777 return; 3778 3779 if (gic_rdists->has_direct_lpi) { 3780 void __iomem *rdbase; 3781 3782 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3783 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3784 wait_for_syncr(rdbase); 3785 3786 return; 3787 } 3788 3789 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3790 3791 its_vpe_db_proxy_map_locked(vpe); 3792 3793 target_col = &vpe_proxy.dev->its->collections[to]; 3794 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3795 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3796 3797 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3798 } 3799 3800 static int its_vpe_set_affinity(struct irq_data *d, 3801 const struct cpumask *mask_val, 3802 bool force) 3803 { 3804 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3805 unsigned int from, cpu = nr_cpu_ids; 3806 struct cpumask *table_mask; 3807 unsigned long flags; 3808 3809 /* 3810 * Changing affinity is mega expensive, so let's be as lazy as 3811 * we can and only do it if we really have to. Also, if mapped 3812 * into the proxy device, we need to move the doorbell 3813 * interrupt to its new location. 3814 * 3815 * Another thing is that changing the affinity of a vPE affects 3816 * *other interrupts* such as all the vLPIs that are routed to 3817 * this vPE. This means that the irq_desc lock is not enough to 3818 * protect us, and that we must ensure nobody samples vpe->col_idx 3819 * during the update, hence the lock below which must also be 3820 * taken on any vLPI handling path that evaluates vpe->col_idx. 3821 * 3822 * Finally, we must protect ourselves against concurrent updates of 3823 * the mapping state on this VM should the ITS list be in use (see 3824 * the shortcut in its_send_vmovp() otherewise). 3825 */ 3826 if (its_list_map) 3827 raw_spin_lock(&vpe->its_vm->vmapp_lock); 3828 3829 from = vpe_to_cpuid_lock(vpe, &flags); 3830 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3831 3832 /* 3833 * If we are offered another CPU in the same GICv4.1 ITS 3834 * affinity, pick this one. Otherwise, any CPU will do. 3835 */ 3836 if (table_mask) 3837 cpu = cpumask_any_and(mask_val, table_mask); 3838 if (cpu < nr_cpu_ids) { 3839 if (cpumask_test_cpu(from, mask_val) && 3840 cpumask_test_cpu(from, table_mask)) 3841 cpu = from; 3842 } else { 3843 cpu = cpumask_first(mask_val); 3844 } 3845 3846 if (from == cpu) 3847 goto out; 3848 3849 vpe->col_idx = cpu; 3850 3851 its_send_vmovp(vpe); 3852 its_vpe_db_proxy_move(vpe, from, cpu); 3853 3854 out: 3855 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3856 vpe_to_cpuid_unlock(vpe, flags); 3857 3858 if (its_list_map) 3859 raw_spin_unlock(&vpe->its_vm->vmapp_lock); 3860 3861 return IRQ_SET_MASK_OK_DONE; 3862 } 3863 3864 static void its_wait_vpt_parse_complete(void) 3865 { 3866 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3867 u64 val; 3868 3869 if (!gic_rdists->has_vpend_valid_dirty) 3870 return; 3871 3872 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3873 val, 3874 !(val & GICR_VPENDBASER_Dirty), 3875 1, 500)); 3876 } 3877 3878 static void its_vpe_schedule(struct its_vpe *vpe) 3879 { 3880 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3881 u64 val; 3882 3883 /* Schedule the VPE */ 3884 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3885 GENMASK_ULL(51, 12); 3886 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3887 if (rdists_support_shareable()) { 3888 val |= GICR_VPROPBASER_RaWb; 3889 val |= GICR_VPROPBASER_InnerShareable; 3890 } 3891 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3892 3893 val = virt_to_phys(page_address(vpe->vpt_page)) & 3894 GENMASK_ULL(51, 16); 3895 if (rdists_support_shareable()) { 3896 val |= GICR_VPENDBASER_RaWaWb; 3897 val |= GICR_VPENDBASER_InnerShareable; 3898 } 3899 /* 3900 * There is no good way of finding out if the pending table is 3901 * empty as we can race against the doorbell interrupt very 3902 * easily. So in the end, vpe->pending_last is only an 3903 * indication that the vcpu has something pending, not one 3904 * that the pending table is empty. A good implementation 3905 * would be able to read its coarse map pretty quickly anyway, 3906 * making this a tolerable issue. 3907 */ 3908 val |= GICR_VPENDBASER_PendingLast; 3909 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3910 val |= GICR_VPENDBASER_Valid; 3911 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3912 } 3913 3914 static void its_vpe_deschedule(struct its_vpe *vpe) 3915 { 3916 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3917 u64 val; 3918 3919 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3920 3921 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3922 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3923 } 3924 3925 static void its_vpe_invall(struct its_vpe *vpe) 3926 { 3927 struct its_node *its; 3928 3929 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock); 3930 3931 list_for_each_entry(its, &its_nodes, entry) { 3932 if (!is_v4(its)) 3933 continue; 3934 3935 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3936 continue; 3937 3938 /* 3939 * Sending a VINVALL to a single ITS is enough, as all 3940 * we need is to reach the redistributors. 3941 */ 3942 its_send_vinvall(its, vpe); 3943 return; 3944 } 3945 } 3946 3947 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3948 { 3949 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3950 struct its_cmd_info *info = vcpu_info; 3951 3952 switch (info->cmd_type) { 3953 case SCHEDULE_VPE: 3954 its_vpe_schedule(vpe); 3955 return 0; 3956 3957 case DESCHEDULE_VPE: 3958 its_vpe_deschedule(vpe); 3959 return 0; 3960 3961 case COMMIT_VPE: 3962 its_wait_vpt_parse_complete(); 3963 return 0; 3964 3965 case INVALL_VPE: 3966 its_vpe_invall(vpe); 3967 return 0; 3968 3969 default: 3970 return -EINVAL; 3971 } 3972 } 3973 3974 static void its_vpe_send_cmd(struct its_vpe *vpe, 3975 void (*cmd)(struct its_device *, u32)) 3976 { 3977 unsigned long flags; 3978 3979 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3980 3981 its_vpe_db_proxy_map_locked(vpe); 3982 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3983 3984 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3985 } 3986 3987 static void its_vpe_send_inv(struct irq_data *d) 3988 { 3989 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3990 3991 if (gic_rdists->has_direct_lpi) 3992 __direct_lpi_inv(d, d->parent_data->hwirq); 3993 else 3994 its_vpe_send_cmd(vpe, its_send_inv); 3995 } 3996 3997 static void its_vpe_mask_irq(struct irq_data *d) 3998 { 3999 /* 4000 * We need to unmask the LPI, which is described by the parent 4001 * irq_data. Instead of calling into the parent (which won't 4002 * exactly do the right thing, let's simply use the 4003 * parent_data pointer. Yes, I'm naughty. 4004 */ 4005 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4006 its_vpe_send_inv(d); 4007 } 4008 4009 static void its_vpe_unmask_irq(struct irq_data *d) 4010 { 4011 /* Same hack as above... */ 4012 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4013 its_vpe_send_inv(d); 4014 } 4015 4016 static int its_vpe_set_irqchip_state(struct irq_data *d, 4017 enum irqchip_irq_state which, 4018 bool state) 4019 { 4020 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4021 4022 if (which != IRQCHIP_STATE_PENDING) 4023 return -EINVAL; 4024 4025 if (gic_rdists->has_direct_lpi) { 4026 void __iomem *rdbase; 4027 4028 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4029 if (state) { 4030 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4031 } else { 4032 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4033 wait_for_syncr(rdbase); 4034 } 4035 } else { 4036 if (state) 4037 its_vpe_send_cmd(vpe, its_send_int); 4038 else 4039 its_vpe_send_cmd(vpe, its_send_clear); 4040 } 4041 4042 return 0; 4043 } 4044 4045 static int its_vpe_retrigger(struct irq_data *d) 4046 { 4047 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4048 } 4049 4050 static struct irq_chip its_vpe_irq_chip = { 4051 .name = "GICv4-vpe", 4052 .irq_mask = its_vpe_mask_irq, 4053 .irq_unmask = its_vpe_unmask_irq, 4054 .irq_eoi = irq_chip_eoi_parent, 4055 .irq_set_affinity = its_vpe_set_affinity, 4056 .irq_retrigger = its_vpe_retrigger, 4057 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4058 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4059 }; 4060 4061 static struct its_node *find_4_1_its(void) 4062 { 4063 static struct its_node *its = NULL; 4064 4065 if (!its) { 4066 list_for_each_entry(its, &its_nodes, entry) { 4067 if (is_v4_1(its)) 4068 return its; 4069 } 4070 4071 /* Oops? */ 4072 its = NULL; 4073 } 4074 4075 return its; 4076 } 4077 4078 static void its_vpe_4_1_send_inv(struct irq_data *d) 4079 { 4080 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4081 struct its_node *its; 4082 4083 /* 4084 * GICv4.1 wants doorbells to be invalidated using the 4085 * INVDB command in order to be broadcast to all RDs. Send 4086 * it to the first valid ITS, and let the HW do its magic. 4087 */ 4088 its = find_4_1_its(); 4089 if (its) 4090 its_send_invdb(its, vpe); 4091 } 4092 4093 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4094 { 4095 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4096 its_vpe_4_1_send_inv(d); 4097 } 4098 4099 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4100 { 4101 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4102 its_vpe_4_1_send_inv(d); 4103 } 4104 4105 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4106 struct its_cmd_info *info) 4107 { 4108 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4109 u64 val = 0; 4110 4111 /* Schedule the VPE */ 4112 val |= GICR_VPENDBASER_Valid; 4113 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4114 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4115 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4116 4117 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4118 } 4119 4120 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4121 struct its_cmd_info *info) 4122 { 4123 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4124 u64 val; 4125 4126 if (info->req_db) { 4127 unsigned long flags; 4128 4129 /* 4130 * vPE is going to block: make the vPE non-resident with 4131 * PendingLast clear and DB set. The GIC guarantees that if 4132 * we read-back PendingLast clear, then a doorbell will be 4133 * delivered when an interrupt comes. 4134 * 4135 * Note the locking to deal with the concurrent update of 4136 * pending_last from the doorbell interrupt handler that can 4137 * run concurrently. 4138 */ 4139 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4140 val = its_clear_vpend_valid(vlpi_base, 4141 GICR_VPENDBASER_PendingLast, 4142 GICR_VPENDBASER_4_1_DB); 4143 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4144 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4145 } else { 4146 /* 4147 * We're not blocking, so just make the vPE non-resident 4148 * with PendingLast set, indicating that we'll be back. 4149 */ 4150 val = its_clear_vpend_valid(vlpi_base, 4151 0, 4152 GICR_VPENDBASER_PendingLast); 4153 vpe->pending_last = true; 4154 } 4155 } 4156 4157 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4158 { 4159 void __iomem *rdbase; 4160 unsigned long flags; 4161 u64 val; 4162 int cpu; 4163 4164 val = GICR_INVALLR_V; 4165 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4166 4167 /* Target the redistributor this vPE is currently known on */ 4168 cpu = vpe_to_cpuid_lock(vpe, &flags); 4169 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4170 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4171 gic_write_lpir(val, rdbase + GICR_INVALLR); 4172 4173 wait_for_syncr(rdbase); 4174 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4175 vpe_to_cpuid_unlock(vpe, flags); 4176 } 4177 4178 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4179 { 4180 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4181 struct its_cmd_info *info = vcpu_info; 4182 4183 switch (info->cmd_type) { 4184 case SCHEDULE_VPE: 4185 its_vpe_4_1_schedule(vpe, info); 4186 return 0; 4187 4188 case DESCHEDULE_VPE: 4189 its_vpe_4_1_deschedule(vpe, info); 4190 return 0; 4191 4192 case COMMIT_VPE: 4193 its_wait_vpt_parse_complete(); 4194 return 0; 4195 4196 case INVALL_VPE: 4197 its_vpe_4_1_invall(vpe); 4198 return 0; 4199 4200 default: 4201 return -EINVAL; 4202 } 4203 } 4204 4205 static struct irq_chip its_vpe_4_1_irq_chip = { 4206 .name = "GICv4.1-vpe", 4207 .irq_mask = its_vpe_4_1_mask_irq, 4208 .irq_unmask = its_vpe_4_1_unmask_irq, 4209 .irq_eoi = irq_chip_eoi_parent, 4210 .irq_set_affinity = its_vpe_set_affinity, 4211 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4212 }; 4213 4214 static void its_configure_sgi(struct irq_data *d, bool clear) 4215 { 4216 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4217 struct its_cmd_desc desc; 4218 4219 desc.its_vsgi_cmd.vpe = vpe; 4220 desc.its_vsgi_cmd.sgi = d->hwirq; 4221 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4222 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4223 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4224 desc.its_vsgi_cmd.clear = clear; 4225 4226 /* 4227 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4228 * destination VPE is mapped there. Since we map them eagerly at 4229 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4230 */ 4231 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4232 } 4233 4234 static void its_sgi_mask_irq(struct irq_data *d) 4235 { 4236 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4237 4238 vpe->sgi_config[d->hwirq].enabled = false; 4239 its_configure_sgi(d, false); 4240 } 4241 4242 static void its_sgi_unmask_irq(struct irq_data *d) 4243 { 4244 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4245 4246 vpe->sgi_config[d->hwirq].enabled = true; 4247 its_configure_sgi(d, false); 4248 } 4249 4250 static int its_sgi_set_affinity(struct irq_data *d, 4251 const struct cpumask *mask_val, 4252 bool force) 4253 { 4254 /* 4255 * There is no notion of affinity for virtual SGIs, at least 4256 * not on the host (since they can only be targeting a vPE). 4257 * Tell the kernel we've done whatever it asked for. 4258 */ 4259 irq_data_update_effective_affinity(d, mask_val); 4260 return IRQ_SET_MASK_OK; 4261 } 4262 4263 static int its_sgi_set_irqchip_state(struct irq_data *d, 4264 enum irqchip_irq_state which, 4265 bool state) 4266 { 4267 if (which != IRQCHIP_STATE_PENDING) 4268 return -EINVAL; 4269 4270 if (state) { 4271 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4272 struct its_node *its = find_4_1_its(); 4273 u64 val; 4274 4275 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4276 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4277 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4278 } else { 4279 its_configure_sgi(d, true); 4280 } 4281 4282 return 0; 4283 } 4284 4285 static int its_sgi_get_irqchip_state(struct irq_data *d, 4286 enum irqchip_irq_state which, bool *val) 4287 { 4288 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4289 void __iomem *base; 4290 unsigned long flags; 4291 u32 count = 1000000; /* 1s! */ 4292 u32 status; 4293 int cpu; 4294 4295 if (which != IRQCHIP_STATE_PENDING) 4296 return -EINVAL; 4297 4298 /* 4299 * Locking galore! We can race against two different events: 4300 * 4301 * - Concurrent vPE affinity change: we must make sure it cannot 4302 * happen, or we'll talk to the wrong redistributor. This is 4303 * identical to what happens with vLPIs. 4304 * 4305 * - Concurrent VSGIPENDR access: As it involves accessing two 4306 * MMIO registers, this must be made atomic one way or another. 4307 */ 4308 cpu = vpe_to_cpuid_lock(vpe, &flags); 4309 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4310 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4311 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4312 do { 4313 status = readl_relaxed(base + GICR_VSGIPENDR); 4314 if (!(status & GICR_VSGIPENDR_BUSY)) 4315 goto out; 4316 4317 count--; 4318 if (!count) { 4319 pr_err_ratelimited("Unable to get SGI status\n"); 4320 goto out; 4321 } 4322 cpu_relax(); 4323 udelay(1); 4324 } while (count); 4325 4326 out: 4327 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4328 vpe_to_cpuid_unlock(vpe, flags); 4329 4330 if (!count) 4331 return -ENXIO; 4332 4333 *val = !!(status & (1 << d->hwirq)); 4334 4335 return 0; 4336 } 4337 4338 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4339 { 4340 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4341 struct its_cmd_info *info = vcpu_info; 4342 4343 switch (info->cmd_type) { 4344 case PROP_UPDATE_VSGI: 4345 vpe->sgi_config[d->hwirq].priority = info->priority; 4346 vpe->sgi_config[d->hwirq].group = info->group; 4347 its_configure_sgi(d, false); 4348 return 0; 4349 4350 default: 4351 return -EINVAL; 4352 } 4353 } 4354 4355 static struct irq_chip its_sgi_irq_chip = { 4356 .name = "GICv4.1-sgi", 4357 .irq_mask = its_sgi_mask_irq, 4358 .irq_unmask = its_sgi_unmask_irq, 4359 .irq_set_affinity = its_sgi_set_affinity, 4360 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4361 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4362 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4363 }; 4364 4365 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4366 unsigned int virq, unsigned int nr_irqs, 4367 void *args) 4368 { 4369 struct its_vpe *vpe = args; 4370 int i; 4371 4372 /* Yes, we do want 16 SGIs */ 4373 WARN_ON(nr_irqs != 16); 4374 4375 for (i = 0; i < 16; i++) { 4376 vpe->sgi_config[i].priority = 0; 4377 vpe->sgi_config[i].enabled = false; 4378 vpe->sgi_config[i].group = false; 4379 4380 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4381 &its_sgi_irq_chip, vpe); 4382 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4383 } 4384 4385 return 0; 4386 } 4387 4388 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4389 unsigned int virq, 4390 unsigned int nr_irqs) 4391 { 4392 /* Nothing to do */ 4393 } 4394 4395 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4396 struct irq_data *d, bool reserve) 4397 { 4398 /* Write out the initial SGI configuration */ 4399 its_configure_sgi(d, false); 4400 return 0; 4401 } 4402 4403 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4404 struct irq_data *d) 4405 { 4406 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4407 4408 /* 4409 * The VSGI command is awkward: 4410 * 4411 * - To change the configuration, CLEAR must be set to false, 4412 * leaving the pending bit unchanged. 4413 * - To clear the pending bit, CLEAR must be set to true, leaving 4414 * the configuration unchanged. 4415 * 4416 * You just can't do both at once, hence the two commands below. 4417 */ 4418 vpe->sgi_config[d->hwirq].enabled = false; 4419 its_configure_sgi(d, false); 4420 its_configure_sgi(d, true); 4421 } 4422 4423 static const struct irq_domain_ops its_sgi_domain_ops = { 4424 .alloc = its_sgi_irq_domain_alloc, 4425 .free = its_sgi_irq_domain_free, 4426 .activate = its_sgi_irq_domain_activate, 4427 .deactivate = its_sgi_irq_domain_deactivate, 4428 }; 4429 4430 static int its_vpe_id_alloc(void) 4431 { 4432 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL); 4433 } 4434 4435 static void its_vpe_id_free(u16 id) 4436 { 4437 ida_free(&its_vpeid_ida, id); 4438 } 4439 4440 static int its_vpe_init(struct its_vpe *vpe) 4441 { 4442 struct page *vpt_page; 4443 int vpe_id; 4444 4445 /* Allocate vpe_id */ 4446 vpe_id = its_vpe_id_alloc(); 4447 if (vpe_id < 0) 4448 return vpe_id; 4449 4450 /* Allocate VPT */ 4451 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4452 if (!vpt_page) { 4453 its_vpe_id_free(vpe_id); 4454 return -ENOMEM; 4455 } 4456 4457 if (!its_alloc_vpe_table(vpe_id)) { 4458 its_vpe_id_free(vpe_id); 4459 its_free_pending_table(vpt_page); 4460 return -ENOMEM; 4461 } 4462 4463 raw_spin_lock_init(&vpe->vpe_lock); 4464 vpe->vpe_id = vpe_id; 4465 vpe->vpt_page = vpt_page; 4466 if (gic_rdists->has_rvpeid) 4467 atomic_set(&vpe->vmapp_count, 0); 4468 else 4469 vpe->vpe_proxy_event = -1; 4470 4471 return 0; 4472 } 4473 4474 static void its_vpe_teardown(struct its_vpe *vpe) 4475 { 4476 its_vpe_db_proxy_unmap(vpe); 4477 its_vpe_id_free(vpe->vpe_id); 4478 its_free_pending_table(vpe->vpt_page); 4479 } 4480 4481 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4482 unsigned int virq, 4483 unsigned int nr_irqs) 4484 { 4485 struct its_vm *vm = domain->host_data; 4486 int i; 4487 4488 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4489 4490 for (i = 0; i < nr_irqs; i++) { 4491 struct irq_data *data = irq_domain_get_irq_data(domain, 4492 virq + i); 4493 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4494 4495 BUG_ON(vm != vpe->its_vm); 4496 4497 clear_bit(data->hwirq, vm->db_bitmap); 4498 its_vpe_teardown(vpe); 4499 irq_domain_reset_irq_data(data); 4500 } 4501 4502 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4503 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4504 its_free_prop_table(vm->vprop_page); 4505 } 4506 } 4507 4508 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4509 unsigned int nr_irqs, void *args) 4510 { 4511 struct irq_chip *irqchip = &its_vpe_irq_chip; 4512 struct its_vm *vm = args; 4513 unsigned long *bitmap; 4514 struct page *vprop_page; 4515 int base, nr_ids, i, err = 0; 4516 4517 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4518 if (!bitmap) 4519 return -ENOMEM; 4520 4521 if (nr_ids < nr_irqs) { 4522 its_lpi_free(bitmap, base, nr_ids); 4523 return -ENOMEM; 4524 } 4525 4526 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4527 if (!vprop_page) { 4528 its_lpi_free(bitmap, base, nr_ids); 4529 return -ENOMEM; 4530 } 4531 4532 vm->db_bitmap = bitmap; 4533 vm->db_lpi_base = base; 4534 vm->nr_db_lpis = nr_ids; 4535 vm->vprop_page = vprop_page; 4536 raw_spin_lock_init(&vm->vmapp_lock); 4537 4538 if (gic_rdists->has_rvpeid) 4539 irqchip = &its_vpe_4_1_irq_chip; 4540 4541 for (i = 0; i < nr_irqs; i++) { 4542 vm->vpes[i]->vpe_db_lpi = base + i; 4543 err = its_vpe_init(vm->vpes[i]); 4544 if (err) 4545 break; 4546 err = its_irq_gic_domain_alloc(domain, virq + i, 4547 vm->vpes[i]->vpe_db_lpi); 4548 if (err) 4549 break; 4550 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4551 irqchip, vm->vpes[i]); 4552 set_bit(i, bitmap); 4553 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4554 } 4555 4556 if (err) 4557 its_vpe_irq_domain_free(domain, virq, i); 4558 4559 return err; 4560 } 4561 4562 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4563 struct irq_data *d, bool reserve) 4564 { 4565 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4566 struct its_node *its; 4567 4568 /* Map the VPE to the first possible CPU */ 4569 vpe->col_idx = cpumask_first(cpu_online_mask); 4570 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4571 4572 /* 4573 * If we use the list map, we issue VMAPP on demand... Unless 4574 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4575 * so that VSGIs can work. 4576 */ 4577 if (!gic_requires_eager_mapping()) 4578 return 0; 4579 4580 list_for_each_entry(its, &its_nodes, entry) { 4581 if (!is_v4(its)) 4582 continue; 4583 4584 its_send_vmapp(its, vpe, true); 4585 its_send_vinvall(its, vpe); 4586 } 4587 4588 return 0; 4589 } 4590 4591 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4592 struct irq_data *d) 4593 { 4594 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4595 struct its_node *its; 4596 4597 /* 4598 * If we use the list map on GICv4.0, we unmap the VPE once no 4599 * VLPIs are associated with the VM. 4600 */ 4601 if (!gic_requires_eager_mapping()) 4602 return; 4603 4604 list_for_each_entry(its, &its_nodes, entry) { 4605 if (!is_v4(its)) 4606 continue; 4607 4608 its_send_vmapp(its, vpe, false); 4609 } 4610 4611 /* 4612 * There may be a direct read to the VPT after unmapping the 4613 * vPE, to guarantee the validity of this, we make the VPT 4614 * memory coherent with the CPU caches here. 4615 */ 4616 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4617 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4618 LPI_PENDBASE_SZ); 4619 } 4620 4621 static const struct irq_domain_ops its_vpe_domain_ops = { 4622 .alloc = its_vpe_irq_domain_alloc, 4623 .free = its_vpe_irq_domain_free, 4624 .activate = its_vpe_irq_domain_activate, 4625 .deactivate = its_vpe_irq_domain_deactivate, 4626 }; 4627 4628 static int its_force_quiescent(void __iomem *base) 4629 { 4630 u32 count = 1000000; /* 1s */ 4631 u32 val; 4632 4633 val = readl_relaxed(base + GITS_CTLR); 4634 /* 4635 * GIC architecture specification requires the ITS to be both 4636 * disabled and quiescent for writes to GITS_BASER<n> or 4637 * GITS_CBASER to not have UNPREDICTABLE results. 4638 */ 4639 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4640 return 0; 4641 4642 /* Disable the generation of all interrupts to this ITS */ 4643 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4644 writel_relaxed(val, base + GITS_CTLR); 4645 4646 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4647 while (1) { 4648 val = readl_relaxed(base + GITS_CTLR); 4649 if (val & GITS_CTLR_QUIESCENT) 4650 return 0; 4651 4652 count--; 4653 if (!count) 4654 return -EBUSY; 4655 4656 cpu_relax(); 4657 udelay(1); 4658 } 4659 } 4660 4661 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4662 { 4663 struct its_node *its = data; 4664 4665 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4666 its->typer &= ~GITS_TYPER_DEVBITS; 4667 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4668 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4669 4670 return true; 4671 } 4672 4673 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4674 { 4675 struct its_node *its = data; 4676 4677 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4678 4679 return true; 4680 } 4681 4682 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4683 { 4684 struct its_node *its = data; 4685 4686 /* On QDF2400, the size of the ITE is 16Bytes */ 4687 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4688 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4689 4690 return true; 4691 } 4692 4693 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4694 { 4695 struct its_node *its = its_dev->its; 4696 4697 /* 4698 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4699 * which maps 32-bit writes targeted at a separate window of 4700 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4701 * with device ID taken from bits [device_id_bits + 1:2] of 4702 * the window offset. 4703 */ 4704 return its->pre_its_base + (its_dev->device_id << 2); 4705 } 4706 4707 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4708 { 4709 struct its_node *its = data; 4710 u32 pre_its_window[2]; 4711 u32 ids; 4712 4713 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4714 "socionext,synquacer-pre-its", 4715 pre_its_window, 4716 ARRAY_SIZE(pre_its_window))) { 4717 4718 its->pre_its_base = pre_its_window[0]; 4719 its->get_msi_base = its_irq_get_msi_base_pre_its; 4720 4721 ids = ilog2(pre_its_window[1]) - 2; 4722 if (device_ids(its) > ids) { 4723 its->typer &= ~GITS_TYPER_DEVBITS; 4724 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4725 } 4726 4727 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4728 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4729 return true; 4730 } 4731 return false; 4732 } 4733 4734 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4735 { 4736 struct its_node *its = data; 4737 4738 /* 4739 * Hip07 insists on using the wrong address for the VLPI 4740 * page. Trick it into doing the right thing... 4741 */ 4742 its->vlpi_redist_offset = SZ_128K; 4743 return true; 4744 } 4745 4746 static bool __maybe_unused its_enable_rk3588001(void *data) 4747 { 4748 struct its_node *its = data; 4749 4750 if (!of_machine_is_compatible("rockchip,rk3588") && 4751 !of_machine_is_compatible("rockchip,rk3588s")) 4752 return false; 4753 4754 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4755 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4756 4757 return true; 4758 } 4759 4760 static bool its_set_non_coherent(void *data) 4761 { 4762 struct its_node *its = data; 4763 4764 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4765 return true; 4766 } 4767 4768 static const struct gic_quirk its_quirks[] = { 4769 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4770 { 4771 .desc = "ITS: Cavium errata 22375, 24313", 4772 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4773 .mask = 0xffff0fff, 4774 .init = its_enable_quirk_cavium_22375, 4775 }, 4776 #endif 4777 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4778 { 4779 .desc = "ITS: Cavium erratum 23144", 4780 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4781 .mask = 0xffff0fff, 4782 .init = its_enable_quirk_cavium_23144, 4783 }, 4784 #endif 4785 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4786 { 4787 .desc = "ITS: QDF2400 erratum 0065", 4788 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4789 .mask = 0xffffffff, 4790 .init = its_enable_quirk_qdf2400_e0065, 4791 }, 4792 #endif 4793 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4794 { 4795 /* 4796 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4797 * implementation, but with a 'pre-ITS' added that requires 4798 * special handling in software. 4799 */ 4800 .desc = "ITS: Socionext Synquacer pre-ITS", 4801 .iidr = 0x0001143b, 4802 .mask = 0xffffffff, 4803 .init = its_enable_quirk_socionext_synquacer, 4804 }, 4805 #endif 4806 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4807 { 4808 .desc = "ITS: Hip07 erratum 161600802", 4809 .iidr = 0x00000004, 4810 .mask = 0xffffffff, 4811 .init = its_enable_quirk_hip07_161600802, 4812 }, 4813 #endif 4814 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4815 { 4816 .desc = "ITS: Rockchip erratum RK3588001", 4817 .iidr = 0x0201743b, 4818 .mask = 0xffffffff, 4819 .init = its_enable_rk3588001, 4820 }, 4821 #endif 4822 { 4823 .desc = "ITS: non-coherent attribute", 4824 .property = "dma-noncoherent", 4825 .init = its_set_non_coherent, 4826 }, 4827 { 4828 } 4829 }; 4830 4831 static void its_enable_quirks(struct its_node *its) 4832 { 4833 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4834 4835 gic_enable_quirks(iidr, its_quirks, its); 4836 4837 if (is_of_node(its->fwnode_handle)) 4838 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4839 its_quirks, its); 4840 } 4841 4842 static int its_save_disable(void) 4843 { 4844 struct its_node *its; 4845 int err = 0; 4846 4847 raw_spin_lock(&its_lock); 4848 list_for_each_entry(its, &its_nodes, entry) { 4849 void __iomem *base; 4850 4851 base = its->base; 4852 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4853 err = its_force_quiescent(base); 4854 if (err) { 4855 pr_err("ITS@%pa: failed to quiesce: %d\n", 4856 &its->phys_base, err); 4857 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4858 goto err; 4859 } 4860 4861 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4862 } 4863 4864 err: 4865 if (err) { 4866 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4867 void __iomem *base; 4868 4869 base = its->base; 4870 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4871 } 4872 } 4873 raw_spin_unlock(&its_lock); 4874 4875 return err; 4876 } 4877 4878 static void its_restore_enable(void) 4879 { 4880 struct its_node *its; 4881 int ret; 4882 4883 raw_spin_lock(&its_lock); 4884 list_for_each_entry(its, &its_nodes, entry) { 4885 void __iomem *base; 4886 int i; 4887 4888 base = its->base; 4889 4890 /* 4891 * Make sure that the ITS is disabled. If it fails to quiesce, 4892 * don't restore it since writing to CBASER or BASER<n> 4893 * registers is undefined according to the GIC v3 ITS 4894 * Specification. 4895 * 4896 * Firmware resuming with the ITS enabled is terminally broken. 4897 */ 4898 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4899 ret = its_force_quiescent(base); 4900 if (ret) { 4901 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4902 &its->phys_base, ret); 4903 continue; 4904 } 4905 4906 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4907 4908 /* 4909 * Writing CBASER resets CREADR to 0, so make CWRITER and 4910 * cmd_write line up with it. 4911 */ 4912 its->cmd_write = its->cmd_base; 4913 gits_write_cwriter(0, base + GITS_CWRITER); 4914 4915 /* Restore GITS_BASER from the value cache. */ 4916 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4917 struct its_baser *baser = &its->tables[i]; 4918 4919 if (!(baser->val & GITS_BASER_VALID)) 4920 continue; 4921 4922 its_write_baser(its, baser, baser->val); 4923 } 4924 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4925 4926 /* 4927 * Reinit the collection if it's stored in the ITS. This is 4928 * indicated by the col_id being less than the HCC field. 4929 * CID < HCC as specified in the GIC v3 Documentation. 4930 */ 4931 if (its->collections[smp_processor_id()].col_id < 4932 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4933 its_cpu_init_collection(its); 4934 } 4935 raw_spin_unlock(&its_lock); 4936 } 4937 4938 static struct syscore_ops its_syscore_ops = { 4939 .suspend = its_save_disable, 4940 .resume = its_restore_enable, 4941 }; 4942 4943 static void __init __iomem *its_map_one(struct resource *res, int *err) 4944 { 4945 void __iomem *its_base; 4946 u32 val; 4947 4948 its_base = ioremap(res->start, SZ_64K); 4949 if (!its_base) { 4950 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4951 *err = -ENOMEM; 4952 return NULL; 4953 } 4954 4955 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4956 if (val != 0x30 && val != 0x40) { 4957 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4958 *err = -ENODEV; 4959 goto out_unmap; 4960 } 4961 4962 *err = its_force_quiescent(its_base); 4963 if (*err) { 4964 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4965 goto out_unmap; 4966 } 4967 4968 return its_base; 4969 4970 out_unmap: 4971 iounmap(its_base); 4972 return NULL; 4973 } 4974 4975 static int its_init_domain(struct its_node *its) 4976 { 4977 struct irq_domain *inner_domain; 4978 struct msi_domain_info *info; 4979 4980 info = kzalloc(sizeof(*info), GFP_KERNEL); 4981 if (!info) 4982 return -ENOMEM; 4983 4984 info->ops = &its_msi_domain_ops; 4985 info->data = its; 4986 4987 inner_domain = irq_domain_create_hierarchy(its_parent, 4988 its->msi_domain_flags, 0, 4989 its->fwnode_handle, &its_domain_ops, 4990 info); 4991 if (!inner_domain) { 4992 kfree(info); 4993 return -ENOMEM; 4994 } 4995 4996 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4997 4998 inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops; 4999 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT; 5000 5001 return 0; 5002 } 5003 5004 static int its_init_vpe_domain(void) 5005 { 5006 struct its_node *its; 5007 u32 devid; 5008 int entries; 5009 5010 if (gic_rdists->has_direct_lpi) { 5011 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5012 return 0; 5013 } 5014 5015 /* Any ITS will do, even if not v4 */ 5016 its = list_first_entry(&its_nodes, struct its_node, entry); 5017 5018 entries = roundup_pow_of_two(nr_cpu_ids); 5019 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5020 GFP_KERNEL); 5021 if (!vpe_proxy.vpes) 5022 return -ENOMEM; 5023 5024 /* Use the last possible DevID */ 5025 devid = GENMASK(device_ids(its) - 1, 0); 5026 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5027 if (!vpe_proxy.dev) { 5028 kfree(vpe_proxy.vpes); 5029 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5030 return -ENOMEM; 5031 } 5032 5033 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5034 5035 raw_spin_lock_init(&vpe_proxy.lock); 5036 vpe_proxy.next_victim = 0; 5037 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5038 devid, vpe_proxy.dev->nr_ites); 5039 5040 return 0; 5041 } 5042 5043 static int __init its_compute_its_list_map(struct its_node *its) 5044 { 5045 int its_number; 5046 u32 ctlr; 5047 5048 /* 5049 * This is assumed to be done early enough that we're 5050 * guaranteed to be single-threaded, hence no 5051 * locking. Should this change, we should address 5052 * this. 5053 */ 5054 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5055 if (its_number >= GICv4_ITS_LIST_MAX) { 5056 pr_err("ITS@%pa: No ITSList entry available!\n", 5057 &its->phys_base); 5058 return -EINVAL; 5059 } 5060 5061 ctlr = readl_relaxed(its->base + GITS_CTLR); 5062 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5063 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5064 writel_relaxed(ctlr, its->base + GITS_CTLR); 5065 ctlr = readl_relaxed(its->base + GITS_CTLR); 5066 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5067 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5068 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5069 } 5070 5071 if (test_and_set_bit(its_number, &its_list_map)) { 5072 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5073 &its->phys_base, its_number); 5074 return -EINVAL; 5075 } 5076 5077 return its_number; 5078 } 5079 5080 static int __init its_probe_one(struct its_node *its) 5081 { 5082 u64 baser, tmp; 5083 struct page *page; 5084 u32 ctlr; 5085 int err; 5086 5087 its_enable_quirks(its); 5088 5089 if (is_v4(its)) { 5090 if (!(its->typer & GITS_TYPER_VMOVP)) { 5091 err = its_compute_its_list_map(its); 5092 if (err < 0) 5093 goto out; 5094 5095 its->list_nr = err; 5096 5097 pr_info("ITS@%pa: Using ITS number %d\n", 5098 &its->phys_base, err); 5099 } else { 5100 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5101 } 5102 5103 if (is_v4_1(its)) { 5104 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5105 5106 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5107 if (!its->sgir_base) { 5108 err = -ENOMEM; 5109 goto out; 5110 } 5111 5112 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5113 5114 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5115 &its->phys_base, its->mpidr, svpet); 5116 } 5117 } 5118 5119 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5120 get_order(ITS_CMD_QUEUE_SZ)); 5121 if (!page) { 5122 err = -ENOMEM; 5123 goto out_unmap_sgir; 5124 } 5125 its->cmd_base = (void *)page_address(page); 5126 its->cmd_write = its->cmd_base; 5127 5128 err = its_alloc_tables(its); 5129 if (err) 5130 goto out_free_cmd; 5131 5132 err = its_alloc_collections(its); 5133 if (err) 5134 goto out_free_tables; 5135 5136 baser = (virt_to_phys(its->cmd_base) | 5137 GITS_CBASER_RaWaWb | 5138 GITS_CBASER_InnerShareable | 5139 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5140 GITS_CBASER_VALID); 5141 5142 gits_write_cbaser(baser, its->base + GITS_CBASER); 5143 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5144 5145 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5146 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5147 5148 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5149 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5150 /* 5151 * The HW reports non-shareable, we must 5152 * remove the cacheability attributes as 5153 * well. 5154 */ 5155 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5156 GITS_CBASER_CACHEABILITY_MASK); 5157 baser |= GITS_CBASER_nC; 5158 gits_write_cbaser(baser, its->base + GITS_CBASER); 5159 } 5160 pr_info("ITS: using cache flushing for cmd queue\n"); 5161 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5162 } 5163 5164 gits_write_cwriter(0, its->base + GITS_CWRITER); 5165 ctlr = readl_relaxed(its->base + GITS_CTLR); 5166 ctlr |= GITS_CTLR_ENABLE; 5167 if (is_v4(its)) 5168 ctlr |= GITS_CTLR_ImDe; 5169 writel_relaxed(ctlr, its->base + GITS_CTLR); 5170 5171 err = its_init_domain(its); 5172 if (err) 5173 goto out_free_tables; 5174 5175 raw_spin_lock(&its_lock); 5176 list_add(&its->entry, &its_nodes); 5177 raw_spin_unlock(&its_lock); 5178 5179 return 0; 5180 5181 out_free_tables: 5182 its_free_tables(its); 5183 out_free_cmd: 5184 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5185 out_unmap_sgir: 5186 if (its->sgir_base) 5187 iounmap(its->sgir_base); 5188 out: 5189 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5190 return err; 5191 } 5192 5193 static bool gic_rdists_supports_plpis(void) 5194 { 5195 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5196 } 5197 5198 static int redist_disable_lpis(void) 5199 { 5200 void __iomem *rbase = gic_data_rdist_rd_base(); 5201 u64 timeout = USEC_PER_SEC; 5202 u64 val; 5203 5204 if (!gic_rdists_supports_plpis()) { 5205 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5206 return -ENXIO; 5207 } 5208 5209 val = readl_relaxed(rbase + GICR_CTLR); 5210 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5211 return 0; 5212 5213 /* 5214 * If coming via a CPU hotplug event, we don't need to disable 5215 * LPIs before trying to re-enable them. They are already 5216 * configured and all is well in the world. 5217 * 5218 * If running with preallocated tables, there is nothing to do. 5219 */ 5220 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5221 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5222 return 0; 5223 5224 /* 5225 * From that point on, we only try to do some damage control. 5226 */ 5227 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5228 smp_processor_id()); 5229 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5230 5231 /* Disable LPIs */ 5232 val &= ~GICR_CTLR_ENABLE_LPIS; 5233 writel_relaxed(val, rbase + GICR_CTLR); 5234 5235 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5236 dsb(sy); 5237 5238 /* 5239 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5240 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5241 * Error out if we time out waiting for RWP to clear. 5242 */ 5243 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5244 if (!timeout) { 5245 pr_err("CPU%d: Timeout while disabling LPIs\n", 5246 smp_processor_id()); 5247 return -ETIMEDOUT; 5248 } 5249 udelay(1); 5250 timeout--; 5251 } 5252 5253 /* 5254 * After it has been written to 1, it is IMPLEMENTATION 5255 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5256 * cleared to 0. Error out if clearing the bit failed. 5257 */ 5258 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5259 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5260 return -EBUSY; 5261 } 5262 5263 return 0; 5264 } 5265 5266 int its_cpu_init(void) 5267 { 5268 if (!list_empty(&its_nodes)) { 5269 int ret; 5270 5271 ret = redist_disable_lpis(); 5272 if (ret) 5273 return ret; 5274 5275 its_cpu_init_lpis(); 5276 its_cpu_init_collections(); 5277 } 5278 5279 return 0; 5280 } 5281 5282 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5283 { 5284 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5285 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5286 } 5287 5288 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5289 rdist_memreserve_cpuhp_cleanup_workfn); 5290 5291 static int its_cpu_memreserve_lpi(unsigned int cpu) 5292 { 5293 struct page *pend_page; 5294 int ret = 0; 5295 5296 /* This gets to run exactly once per CPU */ 5297 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5298 return 0; 5299 5300 pend_page = gic_data_rdist()->pend_page; 5301 if (WARN_ON(!pend_page)) { 5302 ret = -ENOMEM; 5303 goto out; 5304 } 5305 /* 5306 * If the pending table was pre-programmed, free the memory we 5307 * preemptively allocated. Otherwise, reserve that memory for 5308 * later kexecs. 5309 */ 5310 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5311 its_free_pending_table(pend_page); 5312 gic_data_rdist()->pend_page = NULL; 5313 } else { 5314 phys_addr_t paddr = page_to_phys(pend_page); 5315 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5316 } 5317 5318 out: 5319 /* Last CPU being brought up gets to issue the cleanup */ 5320 if (!IS_ENABLED(CONFIG_SMP) || 5321 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5322 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5323 5324 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5325 return ret; 5326 } 5327 5328 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5329 static int __init its_reset_one(struct resource *res) 5330 { 5331 void __iomem *its_base; 5332 int err, i; 5333 5334 its_base = its_map_one(res, &err); 5335 if (!its_base) 5336 return err; 5337 5338 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5339 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5340 5341 iounmap(its_base); 5342 return 0; 5343 } 5344 5345 static const struct of_device_id its_device_id[] = { 5346 { .compatible = "arm,gic-v3-its", }, 5347 {}, 5348 }; 5349 5350 static struct its_node __init *its_node_init(struct resource *res, 5351 struct fwnode_handle *handle, int numa_node) 5352 { 5353 void __iomem *its_base; 5354 struct its_node *its; 5355 int err; 5356 5357 its_base = its_map_one(res, &err); 5358 if (!its_base) 5359 return NULL; 5360 5361 pr_info("ITS %pR\n", res); 5362 5363 its = kzalloc(sizeof(*its), GFP_KERNEL); 5364 if (!its) 5365 goto out_unmap; 5366 5367 raw_spin_lock_init(&its->lock); 5368 mutex_init(&its->dev_alloc_lock); 5369 INIT_LIST_HEAD(&its->entry); 5370 INIT_LIST_HEAD(&its->its_device_list); 5371 5372 its->typer = gic_read_typer(its_base + GITS_TYPER); 5373 its->base = its_base; 5374 its->phys_base = res->start; 5375 its->get_msi_base = its_irq_get_msi_base; 5376 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5377 5378 its->numa_node = numa_node; 5379 its->fwnode_handle = handle; 5380 5381 return its; 5382 5383 out_unmap: 5384 iounmap(its_base); 5385 return NULL; 5386 } 5387 5388 static void its_node_destroy(struct its_node *its) 5389 { 5390 iounmap(its->base); 5391 kfree(its); 5392 } 5393 5394 static int __init its_of_probe(struct device_node *node) 5395 { 5396 struct device_node *np; 5397 struct resource res; 5398 int err; 5399 5400 /* 5401 * Make sure *all* the ITS are reset before we probe any, as 5402 * they may be sharing memory. If any of the ITS fails to 5403 * reset, don't even try to go any further, as this could 5404 * result in something even worse. 5405 */ 5406 for (np = of_find_matching_node(node, its_device_id); np; 5407 np = of_find_matching_node(np, its_device_id)) { 5408 if (!of_device_is_available(np) || 5409 !of_property_read_bool(np, "msi-controller") || 5410 of_address_to_resource(np, 0, &res)) 5411 continue; 5412 5413 err = its_reset_one(&res); 5414 if (err) 5415 return err; 5416 } 5417 5418 for (np = of_find_matching_node(node, its_device_id); np; 5419 np = of_find_matching_node(np, its_device_id)) { 5420 struct its_node *its; 5421 5422 if (!of_device_is_available(np)) 5423 continue; 5424 if (!of_property_read_bool(np, "msi-controller")) { 5425 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5426 np); 5427 continue; 5428 } 5429 5430 if (of_address_to_resource(np, 0, &res)) { 5431 pr_warn("%pOF: no regs?\n", np); 5432 continue; 5433 } 5434 5435 5436 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5437 if (!its) 5438 return -ENOMEM; 5439 5440 err = its_probe_one(its); 5441 if (err) { 5442 its_node_destroy(its); 5443 return err; 5444 } 5445 } 5446 return 0; 5447 } 5448 5449 #ifdef CONFIG_ACPI 5450 5451 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5452 5453 #ifdef CONFIG_ACPI_NUMA 5454 struct its_srat_map { 5455 /* numa node id */ 5456 u32 numa_node; 5457 /* GIC ITS ID */ 5458 u32 its_id; 5459 }; 5460 5461 static struct its_srat_map *its_srat_maps __initdata; 5462 static int its_in_srat __initdata; 5463 5464 static int __init acpi_get_its_numa_node(u32 its_id) 5465 { 5466 int i; 5467 5468 for (i = 0; i < its_in_srat; i++) { 5469 if (its_id == its_srat_maps[i].its_id) 5470 return its_srat_maps[i].numa_node; 5471 } 5472 return NUMA_NO_NODE; 5473 } 5474 5475 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5476 const unsigned long end) 5477 { 5478 return 0; 5479 } 5480 5481 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5482 const unsigned long end) 5483 { 5484 int node; 5485 struct acpi_srat_gic_its_affinity *its_affinity; 5486 5487 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5488 if (!its_affinity) 5489 return -EINVAL; 5490 5491 if (its_affinity->header.length < sizeof(*its_affinity)) { 5492 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5493 its_affinity->header.length); 5494 return -EINVAL; 5495 } 5496 5497 /* 5498 * Note that in theory a new proximity node could be created by this 5499 * entry as it is an SRAT resource allocation structure. 5500 * We do not currently support doing so. 5501 */ 5502 node = pxm_to_node(its_affinity->proximity_domain); 5503 5504 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5505 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5506 return 0; 5507 } 5508 5509 its_srat_maps[its_in_srat].numa_node = node; 5510 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5511 its_in_srat++; 5512 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5513 its_affinity->proximity_domain, its_affinity->its_id, node); 5514 5515 return 0; 5516 } 5517 5518 static void __init acpi_table_parse_srat_its(void) 5519 { 5520 int count; 5521 5522 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5523 sizeof(struct acpi_table_srat), 5524 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5525 gic_acpi_match_srat_its, 0); 5526 if (count <= 0) 5527 return; 5528 5529 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5530 GFP_KERNEL); 5531 if (!its_srat_maps) 5532 return; 5533 5534 acpi_table_parse_entries(ACPI_SIG_SRAT, 5535 sizeof(struct acpi_table_srat), 5536 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5537 gic_acpi_parse_srat_its, 0); 5538 } 5539 5540 /* free the its_srat_maps after ITS probing */ 5541 static void __init acpi_its_srat_maps_free(void) 5542 { 5543 kfree(its_srat_maps); 5544 } 5545 #else 5546 static void __init acpi_table_parse_srat_its(void) { } 5547 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5548 static void __init acpi_its_srat_maps_free(void) { } 5549 #endif 5550 5551 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5552 const unsigned long end) 5553 { 5554 struct acpi_madt_generic_translator *its_entry; 5555 struct fwnode_handle *dom_handle; 5556 struct its_node *its; 5557 struct resource res; 5558 int err; 5559 5560 its_entry = (struct acpi_madt_generic_translator *)header; 5561 memset(&res, 0, sizeof(res)); 5562 res.start = its_entry->base_address; 5563 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5564 res.flags = IORESOURCE_MEM; 5565 5566 dom_handle = irq_domain_alloc_fwnode(&res.start); 5567 if (!dom_handle) { 5568 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5569 &res.start); 5570 return -ENOMEM; 5571 } 5572 5573 err = iort_register_domain_token(its_entry->translation_id, res.start, 5574 dom_handle); 5575 if (err) { 5576 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5577 &res.start, its_entry->translation_id); 5578 goto dom_err; 5579 } 5580 5581 its = its_node_init(&res, dom_handle, 5582 acpi_get_its_numa_node(its_entry->translation_id)); 5583 if (!its) { 5584 err = -ENOMEM; 5585 goto node_err; 5586 } 5587 5588 if (acpi_get_madt_revision() >= 7 && 5589 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT)) 5590 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 5591 5592 err = its_probe_one(its); 5593 if (!err) 5594 return 0; 5595 5596 node_err: 5597 iort_deregister_domain_token(its_entry->translation_id); 5598 dom_err: 5599 irq_domain_free_fwnode(dom_handle); 5600 return err; 5601 } 5602 5603 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5604 const unsigned long end) 5605 { 5606 struct acpi_madt_generic_translator *its_entry; 5607 struct resource res; 5608 5609 its_entry = (struct acpi_madt_generic_translator *)header; 5610 res = (struct resource) { 5611 .start = its_entry->base_address, 5612 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5613 .flags = IORESOURCE_MEM, 5614 }; 5615 5616 return its_reset_one(&res); 5617 } 5618 5619 static void __init its_acpi_probe(void) 5620 { 5621 acpi_table_parse_srat_its(); 5622 /* 5623 * Make sure *all* the ITS are reset before we probe any, as 5624 * they may be sharing memory. If any of the ITS fails to 5625 * reset, don't even try to go any further, as this could 5626 * result in something even worse. 5627 */ 5628 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5629 its_acpi_reset, 0) > 0) 5630 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5631 gic_acpi_parse_madt_its, 0); 5632 acpi_its_srat_maps_free(); 5633 } 5634 #else 5635 static void __init its_acpi_probe(void) { } 5636 #endif 5637 5638 int __init its_lpi_memreserve_init(void) 5639 { 5640 int state; 5641 5642 if (!efi_enabled(EFI_CONFIG_TABLES)) 5643 return 0; 5644 5645 if (list_empty(&its_nodes)) 5646 return 0; 5647 5648 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5649 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5650 "irqchip/arm/gicv3/memreserve:online", 5651 its_cpu_memreserve_lpi, 5652 NULL); 5653 if (state < 0) 5654 return state; 5655 5656 gic_rdists->cpuhp_memreserve_state = state; 5657 5658 return 0; 5659 } 5660 5661 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5662 struct irq_domain *parent_domain, u8 irq_prio) 5663 { 5664 struct device_node *of_node; 5665 struct its_node *its; 5666 bool has_v4 = false; 5667 bool has_v4_1 = false; 5668 int err; 5669 5670 gic_rdists = rdists; 5671 5672 lpi_prop_prio = irq_prio; 5673 its_parent = parent_domain; 5674 of_node = to_of_node(handle); 5675 if (of_node) 5676 its_of_probe(of_node); 5677 else 5678 its_acpi_probe(); 5679 5680 if (list_empty(&its_nodes)) { 5681 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5682 return -ENXIO; 5683 } 5684 5685 err = allocate_lpi_tables(); 5686 if (err) 5687 return err; 5688 5689 list_for_each_entry(its, &its_nodes, entry) { 5690 has_v4 |= is_v4(its); 5691 has_v4_1 |= is_v4_1(its); 5692 } 5693 5694 /* Don't bother with inconsistent systems */ 5695 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5696 rdists->has_rvpeid = false; 5697 5698 if (has_v4 & rdists->has_vlpis) { 5699 const struct irq_domain_ops *sgi_ops; 5700 5701 if (has_v4_1) 5702 sgi_ops = &its_sgi_domain_ops; 5703 else 5704 sgi_ops = NULL; 5705 5706 if (its_init_vpe_domain() || 5707 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5708 rdists->has_vlpis = false; 5709 pr_err("ITS: Disabling GICv4 support\n"); 5710 } 5711 } 5712 5713 register_syscore_ops(&its_syscore_ops); 5714 5715 return 0; 5716 } 5717