xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 
33 #include <linux/irqchip/arm-gic-v3.h>
34 
35 #include <asm/cacheflush.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 
39 #include "irqchip.h"
40 
41 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1 << 0)
42 
43 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
44 
45 /*
46  * Collection structure - just an ID, and a redistributor address to
47  * ping. We use one per CPU as a bag of interrupts assigned to this
48  * CPU.
49  */
50 struct its_collection {
51 	u64			target_address;
52 	u16			col_id;
53 };
54 
55 /*
56  * The ITS structure - contains most of the infrastructure, with the
57  * msi_controller, the command queue, the collections, and the list of
58  * devices writing to it.
59  */
60 struct its_node {
61 	raw_spinlock_t		lock;
62 	struct list_head	entry;
63 	struct msi_controller	msi_chip;
64 	struct irq_domain	*domain;
65 	void __iomem		*base;
66 	unsigned long		phys_base;
67 	struct its_cmd_block	*cmd_base;
68 	struct its_cmd_block	*cmd_write;
69 	void			*tables[GITS_BASER_NR_REGS];
70 	struct its_collection	*collections;
71 	struct list_head	its_device_list;
72 	u64			flags;
73 	u32			ite_size;
74 };
75 
76 #define ITS_ITT_ALIGN		SZ_256
77 
78 /*
79  * The ITS view of a device - belongs to an ITS, a collection, owns an
80  * interrupt translation table, and a list of interrupts.
81  */
82 struct its_device {
83 	struct list_head	entry;
84 	struct its_node		*its;
85 	struct its_collection	*collection;
86 	void			*itt;
87 	unsigned long		*lpi_map;
88 	irq_hw_number_t		lpi_base;
89 	int			nr_lpis;
90 	u32			nr_ites;
91 	u32			device_id;
92 };
93 
94 static LIST_HEAD(its_nodes);
95 static DEFINE_SPINLOCK(its_lock);
96 static struct device_node *gic_root_node;
97 static struct rdists *gic_rdists;
98 
99 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
100 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
101 
102 /*
103  * ITS command descriptors - parameters to be encoded in a command
104  * block.
105  */
106 struct its_cmd_desc {
107 	union {
108 		struct {
109 			struct its_device *dev;
110 			u32 event_id;
111 		} its_inv_cmd;
112 
113 		struct {
114 			struct its_device *dev;
115 			u32 event_id;
116 		} its_int_cmd;
117 
118 		struct {
119 			struct its_device *dev;
120 			int valid;
121 		} its_mapd_cmd;
122 
123 		struct {
124 			struct its_collection *col;
125 			int valid;
126 		} its_mapc_cmd;
127 
128 		struct {
129 			struct its_device *dev;
130 			u32 phys_id;
131 			u32 event_id;
132 		} its_mapvi_cmd;
133 
134 		struct {
135 			struct its_device *dev;
136 			struct its_collection *col;
137 			u32 id;
138 		} its_movi_cmd;
139 
140 		struct {
141 			struct its_device *dev;
142 			u32 event_id;
143 		} its_discard_cmd;
144 
145 		struct {
146 			struct its_collection *col;
147 		} its_invall_cmd;
148 	};
149 };
150 
151 /*
152  * The ITS command block, which is what the ITS actually parses.
153  */
154 struct its_cmd_block {
155 	u64	raw_cmd[4];
156 };
157 
158 #define ITS_CMD_QUEUE_SZ		SZ_64K
159 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
160 
161 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
162 						    struct its_cmd_desc *);
163 
164 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
165 {
166 	cmd->raw_cmd[0] &= ~0xffUL;
167 	cmd->raw_cmd[0] |= cmd_nr;
168 }
169 
170 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
171 {
172 	cmd->raw_cmd[0] &= ~(0xffffUL << 32);
173 	cmd->raw_cmd[0] |= ((u64)devid) << 32;
174 }
175 
176 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
177 {
178 	cmd->raw_cmd[1] &= ~0xffffffffUL;
179 	cmd->raw_cmd[1] |= id;
180 }
181 
182 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
183 {
184 	cmd->raw_cmd[1] &= 0xffffffffUL;
185 	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
186 }
187 
188 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
189 {
190 	cmd->raw_cmd[1] &= ~0x1fUL;
191 	cmd->raw_cmd[1] |= size & 0x1f;
192 }
193 
194 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
195 {
196 	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
197 	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
198 }
199 
200 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
201 {
202 	cmd->raw_cmd[2] &= ~(1UL << 63);
203 	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
204 }
205 
206 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
207 {
208 	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
209 	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
210 }
211 
212 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
213 {
214 	cmd->raw_cmd[2] &= ~0xffffUL;
215 	cmd->raw_cmd[2] |= col;
216 }
217 
218 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
219 {
220 	/* Let's fixup BE commands */
221 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
222 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
223 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
224 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
225 }
226 
227 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
228 						 struct its_cmd_desc *desc)
229 {
230 	unsigned long itt_addr;
231 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
232 
233 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
234 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
235 
236 	its_encode_cmd(cmd, GITS_CMD_MAPD);
237 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
238 	its_encode_size(cmd, size - 1);
239 	its_encode_itt(cmd, itt_addr);
240 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
241 
242 	its_fixup_cmd(cmd);
243 
244 	return desc->its_mapd_cmd.dev->collection;
245 }
246 
247 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
248 						 struct its_cmd_desc *desc)
249 {
250 	its_encode_cmd(cmd, GITS_CMD_MAPC);
251 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
252 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
253 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
254 
255 	its_fixup_cmd(cmd);
256 
257 	return desc->its_mapc_cmd.col;
258 }
259 
260 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
261 						  struct its_cmd_desc *desc)
262 {
263 	its_encode_cmd(cmd, GITS_CMD_MAPVI);
264 	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
265 	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
266 	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
267 	its_encode_collection(cmd, desc->its_mapvi_cmd.dev->collection->col_id);
268 
269 	its_fixup_cmd(cmd);
270 
271 	return desc->its_mapvi_cmd.dev->collection;
272 }
273 
274 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
275 						 struct its_cmd_desc *desc)
276 {
277 	its_encode_cmd(cmd, GITS_CMD_MOVI);
278 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
279 	its_encode_event_id(cmd, desc->its_movi_cmd.id);
280 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
281 
282 	its_fixup_cmd(cmd);
283 
284 	return desc->its_movi_cmd.dev->collection;
285 }
286 
287 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
288 						    struct its_cmd_desc *desc)
289 {
290 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
291 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
292 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
293 
294 	its_fixup_cmd(cmd);
295 
296 	return desc->its_discard_cmd.dev->collection;
297 }
298 
299 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
300 						struct its_cmd_desc *desc)
301 {
302 	its_encode_cmd(cmd, GITS_CMD_INV);
303 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
304 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
305 
306 	its_fixup_cmd(cmd);
307 
308 	return desc->its_inv_cmd.dev->collection;
309 }
310 
311 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
312 						   struct its_cmd_desc *desc)
313 {
314 	its_encode_cmd(cmd, GITS_CMD_INVALL);
315 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
316 
317 	its_fixup_cmd(cmd);
318 
319 	return NULL;
320 }
321 
322 static u64 its_cmd_ptr_to_offset(struct its_node *its,
323 				 struct its_cmd_block *ptr)
324 {
325 	return (ptr - its->cmd_base) * sizeof(*ptr);
326 }
327 
328 static int its_queue_full(struct its_node *its)
329 {
330 	int widx;
331 	int ridx;
332 
333 	widx = its->cmd_write - its->cmd_base;
334 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
335 
336 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
337 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
338 		return 1;
339 
340 	return 0;
341 }
342 
343 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
344 {
345 	struct its_cmd_block *cmd;
346 	u32 count = 1000000;	/* 1s! */
347 
348 	while (its_queue_full(its)) {
349 		count--;
350 		if (!count) {
351 			pr_err_ratelimited("ITS queue not draining\n");
352 			return NULL;
353 		}
354 		cpu_relax();
355 		udelay(1);
356 	}
357 
358 	cmd = its->cmd_write++;
359 
360 	/* Handle queue wrapping */
361 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
362 		its->cmd_write = its->cmd_base;
363 
364 	return cmd;
365 }
366 
367 static struct its_cmd_block *its_post_commands(struct its_node *its)
368 {
369 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
370 
371 	writel_relaxed(wr, its->base + GITS_CWRITER);
372 
373 	return its->cmd_write;
374 }
375 
376 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
377 {
378 	/*
379 	 * Make sure the commands written to memory are observable by
380 	 * the ITS.
381 	 */
382 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
383 		__flush_dcache_area(cmd, sizeof(*cmd));
384 	else
385 		dsb(ishst);
386 }
387 
388 static void its_wait_for_range_completion(struct its_node *its,
389 					  struct its_cmd_block *from,
390 					  struct its_cmd_block *to)
391 {
392 	u64 rd_idx, from_idx, to_idx;
393 	u32 count = 1000000;	/* 1s! */
394 
395 	from_idx = its_cmd_ptr_to_offset(its, from);
396 	to_idx = its_cmd_ptr_to_offset(its, to);
397 
398 	while (1) {
399 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
400 		if (rd_idx >= to_idx || rd_idx < from_idx)
401 			break;
402 
403 		count--;
404 		if (!count) {
405 			pr_err_ratelimited("ITS queue timeout\n");
406 			return;
407 		}
408 		cpu_relax();
409 		udelay(1);
410 	}
411 }
412 
413 static void its_send_single_command(struct its_node *its,
414 				    its_cmd_builder_t builder,
415 				    struct its_cmd_desc *desc)
416 {
417 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
418 	struct its_collection *sync_col;
419 
420 	raw_spin_lock(&its->lock);
421 
422 	cmd = its_allocate_entry(its);
423 	if (!cmd) {		/* We're soooooo screewed... */
424 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
425 		raw_spin_unlock(&its->lock);
426 		return;
427 	}
428 	sync_col = builder(cmd, desc);
429 	its_flush_cmd(its, cmd);
430 
431 	if (sync_col) {
432 		sync_cmd = its_allocate_entry(its);
433 		if (!sync_cmd) {
434 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
435 			goto post;
436 		}
437 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
438 		its_encode_target(sync_cmd, sync_col->target_address);
439 		its_fixup_cmd(sync_cmd);
440 		its_flush_cmd(its, sync_cmd);
441 	}
442 
443 post:
444 	next_cmd = its_post_commands(its);
445 	raw_spin_unlock(&its->lock);
446 
447 	its_wait_for_range_completion(its, cmd, next_cmd);
448 }
449 
450 static void its_send_inv(struct its_device *dev, u32 event_id)
451 {
452 	struct its_cmd_desc desc;
453 
454 	desc.its_inv_cmd.dev = dev;
455 	desc.its_inv_cmd.event_id = event_id;
456 
457 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
458 }
459 
460 static void its_send_mapd(struct its_device *dev, int valid)
461 {
462 	struct its_cmd_desc desc;
463 
464 	desc.its_mapd_cmd.dev = dev;
465 	desc.its_mapd_cmd.valid = !!valid;
466 
467 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
468 }
469 
470 static void its_send_mapc(struct its_node *its, struct its_collection *col,
471 			  int valid)
472 {
473 	struct its_cmd_desc desc;
474 
475 	desc.its_mapc_cmd.col = col;
476 	desc.its_mapc_cmd.valid = !!valid;
477 
478 	its_send_single_command(its, its_build_mapc_cmd, &desc);
479 }
480 
481 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
482 {
483 	struct its_cmd_desc desc;
484 
485 	desc.its_mapvi_cmd.dev = dev;
486 	desc.its_mapvi_cmd.phys_id = irq_id;
487 	desc.its_mapvi_cmd.event_id = id;
488 
489 	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
490 }
491 
492 static void its_send_movi(struct its_device *dev,
493 			  struct its_collection *col, u32 id)
494 {
495 	struct its_cmd_desc desc;
496 
497 	desc.its_movi_cmd.dev = dev;
498 	desc.its_movi_cmd.col = col;
499 	desc.its_movi_cmd.id = id;
500 
501 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
502 }
503 
504 static void its_send_discard(struct its_device *dev, u32 id)
505 {
506 	struct its_cmd_desc desc;
507 
508 	desc.its_discard_cmd.dev = dev;
509 	desc.its_discard_cmd.event_id = id;
510 
511 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
512 }
513 
514 static void its_send_invall(struct its_node *its, struct its_collection *col)
515 {
516 	struct its_cmd_desc desc;
517 
518 	desc.its_invall_cmd.col = col;
519 
520 	its_send_single_command(its, its_build_invall_cmd, &desc);
521 }
522 
523 /*
524  * irqchip functions - assumes MSI, mostly.
525  */
526 
527 static inline u32 its_get_event_id(struct irq_data *d)
528 {
529 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
530 	return d->hwirq - its_dev->lpi_base;
531 }
532 
533 static void lpi_set_config(struct irq_data *d, bool enable)
534 {
535 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
536 	irq_hw_number_t hwirq = d->hwirq;
537 	u32 id = its_get_event_id(d);
538 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
539 
540 	if (enable)
541 		*cfg |= LPI_PROP_ENABLED;
542 	else
543 		*cfg &= ~LPI_PROP_ENABLED;
544 
545 	/*
546 	 * Make the above write visible to the redistributors.
547 	 * And yes, we're flushing exactly: One. Single. Byte.
548 	 * Humpf...
549 	 */
550 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
551 		__flush_dcache_area(cfg, sizeof(*cfg));
552 	else
553 		dsb(ishst);
554 	its_send_inv(its_dev, id);
555 }
556 
557 static void its_mask_irq(struct irq_data *d)
558 {
559 	lpi_set_config(d, false);
560 }
561 
562 static void its_unmask_irq(struct irq_data *d)
563 {
564 	lpi_set_config(d, true);
565 }
566 
567 static void its_eoi_irq(struct irq_data *d)
568 {
569 	gic_write_eoir(d->hwirq);
570 }
571 
572 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
573 			    bool force)
574 {
575 	unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
576 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
577 	struct its_collection *target_col;
578 	u32 id = its_get_event_id(d);
579 
580 	if (cpu >= nr_cpu_ids)
581 		return -EINVAL;
582 
583 	target_col = &its_dev->its->collections[cpu];
584 	its_send_movi(its_dev, target_col, id);
585 	its_dev->collection = target_col;
586 
587 	return IRQ_SET_MASK_OK_DONE;
588 }
589 
590 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
591 {
592 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
593 	struct its_node *its;
594 	u64 addr;
595 
596 	its = its_dev->its;
597 	addr = its->phys_base + GITS_TRANSLATER;
598 
599 	msg->address_lo		= addr & ((1UL << 32) - 1);
600 	msg->address_hi		= addr >> 32;
601 	msg->data		= its_get_event_id(d);
602 }
603 
604 static struct irq_chip its_irq_chip = {
605 	.name			= "ITS",
606 	.irq_mask		= its_mask_irq,
607 	.irq_unmask		= its_unmask_irq,
608 	.irq_eoi		= its_eoi_irq,
609 	.irq_set_affinity	= its_set_affinity,
610 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
611 };
612 
613 static void its_mask_msi_irq(struct irq_data *d)
614 {
615 	pci_msi_mask_irq(d);
616 	irq_chip_mask_parent(d);
617 }
618 
619 static void its_unmask_msi_irq(struct irq_data *d)
620 {
621 	pci_msi_unmask_irq(d);
622 	irq_chip_unmask_parent(d);
623 }
624 
625 static struct irq_chip its_msi_irq_chip = {
626 	.name			= "ITS-MSI",
627 	.irq_unmask		= its_unmask_msi_irq,
628 	.irq_mask		= its_mask_msi_irq,
629 	.irq_eoi		= irq_chip_eoi_parent,
630 	.irq_write_msi_msg	= pci_msi_domain_write_msg,
631 };
632 
633 /*
634  * How we allocate LPIs:
635  *
636  * The GIC has id_bits bits for interrupt identifiers. From there, we
637  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
638  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
639  * bits to the right.
640  *
641  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
642  */
643 #define IRQS_PER_CHUNK_SHIFT	5
644 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
645 
646 static unsigned long *lpi_bitmap;
647 static u32 lpi_chunks;
648 static DEFINE_SPINLOCK(lpi_lock);
649 
650 static int its_lpi_to_chunk(int lpi)
651 {
652 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
653 }
654 
655 static int its_chunk_to_lpi(int chunk)
656 {
657 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
658 }
659 
660 static int its_lpi_init(u32 id_bits)
661 {
662 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
663 
664 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
665 			     GFP_KERNEL);
666 	if (!lpi_bitmap) {
667 		lpi_chunks = 0;
668 		return -ENOMEM;
669 	}
670 
671 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
672 	return 0;
673 }
674 
675 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
676 {
677 	unsigned long *bitmap = NULL;
678 	int chunk_id;
679 	int nr_chunks;
680 	int i;
681 
682 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
683 
684 	spin_lock(&lpi_lock);
685 
686 	do {
687 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
688 						      0, nr_chunks, 0);
689 		if (chunk_id < lpi_chunks)
690 			break;
691 
692 		nr_chunks--;
693 	} while (nr_chunks > 0);
694 
695 	if (!nr_chunks)
696 		goto out;
697 
698 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
699 			 GFP_ATOMIC);
700 	if (!bitmap)
701 		goto out;
702 
703 	for (i = 0; i < nr_chunks; i++)
704 		set_bit(chunk_id + i, lpi_bitmap);
705 
706 	*base = its_chunk_to_lpi(chunk_id);
707 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
708 
709 out:
710 	spin_unlock(&lpi_lock);
711 
712 	return bitmap;
713 }
714 
715 static void its_lpi_free(unsigned long *bitmap, int base, int nr_ids)
716 {
717 	int lpi;
718 
719 	spin_lock(&lpi_lock);
720 
721 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
722 		int chunk = its_lpi_to_chunk(lpi);
723 		BUG_ON(chunk > lpi_chunks);
724 		if (test_bit(chunk, lpi_bitmap)) {
725 			clear_bit(chunk, lpi_bitmap);
726 		} else {
727 			pr_err("Bad LPI chunk %d\n", chunk);
728 		}
729 	}
730 
731 	spin_unlock(&lpi_lock);
732 
733 	kfree(bitmap);
734 }
735 
736 /*
737  * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
738  * deal with (one configuration byte per interrupt). PENDBASE has to
739  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
740  */
741 #define LPI_PROPBASE_SZ		SZ_64K
742 #define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
743 
744 /*
745  * This is how many bits of ID we need, including the useless ones.
746  */
747 #define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
748 
749 #define LPI_PROP_DEFAULT_PRIO	0xa0
750 
751 static int __init its_alloc_lpi_tables(void)
752 {
753 	phys_addr_t paddr;
754 
755 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
756 					   get_order(LPI_PROPBASE_SZ));
757 	if (!gic_rdists->prop_page) {
758 		pr_err("Failed to allocate PROPBASE\n");
759 		return -ENOMEM;
760 	}
761 
762 	paddr = page_to_phys(gic_rdists->prop_page);
763 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
764 
765 	/* Priority 0xa0, Group-1, disabled */
766 	memset(page_address(gic_rdists->prop_page),
767 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
768 	       LPI_PROPBASE_SZ);
769 
770 	/* Make sure the GIC will observe the written configuration */
771 	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
772 
773 	return 0;
774 }
775 
776 static const char *its_base_type_string[] = {
777 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
778 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
779 	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
780 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
781 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
782 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
783 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
784 };
785 
786 static void its_free_tables(struct its_node *its)
787 {
788 	int i;
789 
790 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
791 		if (its->tables[i]) {
792 			free_page((unsigned long)its->tables[i]);
793 			its->tables[i] = NULL;
794 		}
795 	}
796 }
797 
798 static int its_alloc_tables(struct its_node *its)
799 {
800 	int err;
801 	int i;
802 	int psz = PAGE_SIZE;
803 	u64 shr = GITS_BASER_InnerShareable;
804 
805 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
806 		u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
807 		u64 type = GITS_BASER_TYPE(val);
808 		u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
809 		u64 tmp;
810 		void *base;
811 
812 		if (type == GITS_BASER_TYPE_NONE)
813 			continue;
814 
815 		/* We're lazy and only allocate a single page for now */
816 		base = (void *)get_zeroed_page(GFP_KERNEL);
817 		if (!base) {
818 			err = -ENOMEM;
819 			goto out_free;
820 		}
821 
822 		its->tables[i] = base;
823 
824 retry_baser:
825 		val = (virt_to_phys(base) 				 |
826 		       (type << GITS_BASER_TYPE_SHIFT)			 |
827 		       ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
828 		       GITS_BASER_WaWb					 |
829 		       shr						 |
830 		       GITS_BASER_VALID);
831 
832 		switch (psz) {
833 		case SZ_4K:
834 			val |= GITS_BASER_PAGE_SIZE_4K;
835 			break;
836 		case SZ_16K:
837 			val |= GITS_BASER_PAGE_SIZE_16K;
838 			break;
839 		case SZ_64K:
840 			val |= GITS_BASER_PAGE_SIZE_64K;
841 			break;
842 		}
843 
844 		val |= (PAGE_SIZE / psz) - 1;
845 
846 		writeq_relaxed(val, its->base + GITS_BASER + i * 8);
847 		tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
848 
849 		if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
850 			/*
851 			 * Shareability didn't stick. Just use
852 			 * whatever the read reported, which is likely
853 			 * to be the only thing this redistributor
854 			 * supports.
855 			 */
856 			shr = tmp & GITS_BASER_SHAREABILITY_MASK;
857 			goto retry_baser;
858 		}
859 
860 		if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
861 			/*
862 			 * Page size didn't stick. Let's try a smaller
863 			 * size and retry. If we reach 4K, then
864 			 * something is horribly wrong...
865 			 */
866 			switch (psz) {
867 			case SZ_16K:
868 				psz = SZ_4K;
869 				goto retry_baser;
870 			case SZ_64K:
871 				psz = SZ_16K;
872 				goto retry_baser;
873 			}
874 		}
875 
876 		if (val != tmp) {
877 			pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
878 			       its->msi_chip.of_node->full_name, i,
879 			       (unsigned long) val, (unsigned long) tmp);
880 			err = -ENXIO;
881 			goto out_free;
882 		}
883 
884 		pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
885 			(int)(PAGE_SIZE / entry_size),
886 			its_base_type_string[type],
887 			(unsigned long)virt_to_phys(base),
888 			psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
889 	}
890 
891 	return 0;
892 
893 out_free:
894 	its_free_tables(its);
895 
896 	return err;
897 }
898 
899 static int its_alloc_collections(struct its_node *its)
900 {
901 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
902 				   GFP_KERNEL);
903 	if (!its->collections)
904 		return -ENOMEM;
905 
906 	return 0;
907 }
908 
909 static void its_cpu_init_lpis(void)
910 {
911 	void __iomem *rbase = gic_data_rdist_rd_base();
912 	struct page *pend_page;
913 	u64 val, tmp;
914 
915 	/* If we didn't allocate the pending table yet, do it now */
916 	pend_page = gic_data_rdist()->pend_page;
917 	if (!pend_page) {
918 		phys_addr_t paddr;
919 		/*
920 		 * The pending pages have to be at least 64kB aligned,
921 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
922 		 */
923 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
924 					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
925 		if (!pend_page) {
926 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
927 			       smp_processor_id());
928 			return;
929 		}
930 
931 		/* Make sure the GIC will observe the zero-ed page */
932 		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
933 
934 		paddr = page_to_phys(pend_page);
935 		pr_info("CPU%d: using LPI pending table @%pa\n",
936 			smp_processor_id(), &paddr);
937 		gic_data_rdist()->pend_page = pend_page;
938 	}
939 
940 	/* Disable LPIs */
941 	val = readl_relaxed(rbase + GICR_CTLR);
942 	val &= ~GICR_CTLR_ENABLE_LPIS;
943 	writel_relaxed(val, rbase + GICR_CTLR);
944 
945 	/*
946 	 * Make sure any change to the table is observable by the GIC.
947 	 */
948 	dsb(sy);
949 
950 	/* set PROPBASE */
951 	val = (page_to_phys(gic_rdists->prop_page) |
952 	       GICR_PROPBASER_InnerShareable |
953 	       GICR_PROPBASER_WaWb |
954 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
955 
956 	writeq_relaxed(val, rbase + GICR_PROPBASER);
957 	tmp = readq_relaxed(rbase + GICR_PROPBASER);
958 
959 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
960 		pr_info_once("GIC: using cache flushing for LPI property table\n");
961 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
962 	}
963 
964 	/* set PENDBASE */
965 	val = (page_to_phys(pend_page) |
966 	       GICR_PROPBASER_InnerShareable |
967 	       GICR_PROPBASER_WaWb);
968 
969 	writeq_relaxed(val, rbase + GICR_PENDBASER);
970 
971 	/* Enable LPIs */
972 	val = readl_relaxed(rbase + GICR_CTLR);
973 	val |= GICR_CTLR_ENABLE_LPIS;
974 	writel_relaxed(val, rbase + GICR_CTLR);
975 
976 	/* Make sure the GIC has seen the above */
977 	dsb(sy);
978 }
979 
980 static void its_cpu_init_collection(void)
981 {
982 	struct its_node *its;
983 	int cpu;
984 
985 	spin_lock(&its_lock);
986 	cpu = smp_processor_id();
987 
988 	list_for_each_entry(its, &its_nodes, entry) {
989 		u64 target;
990 
991 		/*
992 		 * We now have to bind each collection to its target
993 		 * redistributor.
994 		 */
995 		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
996 			/*
997 			 * This ITS wants the physical address of the
998 			 * redistributor.
999 			 */
1000 			target = gic_data_rdist()->phys_base;
1001 		} else {
1002 			/*
1003 			 * This ITS wants a linear CPU number.
1004 			 */
1005 			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1006 			target = GICR_TYPER_CPU_NUMBER(target);
1007 		}
1008 
1009 		/* Perform collection mapping */
1010 		its->collections[cpu].target_address = target;
1011 		its->collections[cpu].col_id = cpu;
1012 
1013 		its_send_mapc(its, &its->collections[cpu], 1);
1014 		its_send_invall(its, &its->collections[cpu]);
1015 	}
1016 
1017 	spin_unlock(&its_lock);
1018 }
1019 
1020 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1021 {
1022 	struct its_device *its_dev = NULL, *tmp;
1023 
1024 	raw_spin_lock(&its->lock);
1025 
1026 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1027 		if (tmp->device_id == dev_id) {
1028 			its_dev = tmp;
1029 			break;
1030 		}
1031 	}
1032 
1033 	raw_spin_unlock(&its->lock);
1034 
1035 	return its_dev;
1036 }
1037 
1038 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1039 					    int nvecs)
1040 {
1041 	struct its_device *dev;
1042 	unsigned long *lpi_map;
1043 	void *itt;
1044 	int lpi_base;
1045 	int nr_lpis;
1046 	int nr_ites;
1047 	int cpu;
1048 	int sz;
1049 
1050 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1051 	/*
1052 	 * At least one bit of EventID is being used, hence a minimum
1053 	 * of two entries. No, the architecture doesn't let you
1054 	 * express an ITT with a single entry.
1055 	 */
1056 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1057 	sz = nr_ites * its->ite_size;
1058 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1059 	itt = kmalloc(sz, GFP_KERNEL);
1060 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1061 
1062 	if (!dev || !itt || !lpi_map) {
1063 		kfree(dev);
1064 		kfree(itt);
1065 		kfree(lpi_map);
1066 		return NULL;
1067 	}
1068 
1069 	dev->its = its;
1070 	dev->itt = itt;
1071 	dev->nr_ites = nr_ites;
1072 	dev->lpi_map = lpi_map;
1073 	dev->lpi_base = lpi_base;
1074 	dev->nr_lpis = nr_lpis;
1075 	dev->device_id = dev_id;
1076 	INIT_LIST_HEAD(&dev->entry);
1077 
1078 	raw_spin_lock(&its->lock);
1079 	list_add(&dev->entry, &its->its_device_list);
1080 	raw_spin_unlock(&its->lock);
1081 
1082 	/* Bind the device to the first possible CPU */
1083 	cpu = cpumask_first(cpu_online_mask);
1084 	dev->collection = &its->collections[cpu];
1085 
1086 	/* Map device to its ITT */
1087 	its_send_mapd(dev, 1);
1088 
1089 	return dev;
1090 }
1091 
1092 static void its_free_device(struct its_device *its_dev)
1093 {
1094 	raw_spin_lock(&its_dev->its->lock);
1095 	list_del(&its_dev->entry);
1096 	raw_spin_unlock(&its_dev->its->lock);
1097 	kfree(its_dev->itt);
1098 	kfree(its_dev);
1099 }
1100 
1101 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1102 {
1103 	int idx;
1104 
1105 	idx = find_first_zero_bit(dev->lpi_map, dev->nr_lpis);
1106 	if (idx == dev->nr_lpis)
1107 		return -ENOSPC;
1108 
1109 	*hwirq = dev->lpi_base + idx;
1110 	set_bit(idx, dev->lpi_map);
1111 
1112 	return 0;
1113 }
1114 
1115 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1116 			   int nvec, msi_alloc_info_t *info)
1117 {
1118 	struct pci_dev *pdev;
1119 	struct its_node *its;
1120 	u32 dev_id;
1121 	struct its_device *its_dev;
1122 
1123 	if (!dev_is_pci(dev))
1124 		return -EINVAL;
1125 
1126 	pdev = to_pci_dev(dev);
1127 	dev_id = PCI_DEVID(pdev->bus->number, pdev->devfn);
1128 	its = domain->parent->host_data;
1129 
1130 	its_dev = its_find_device(its, dev_id);
1131 	if (WARN_ON(its_dev))
1132 		return -EINVAL;
1133 
1134 	its_dev = its_create_device(its, dev_id, nvec);
1135 	if (!its_dev)
1136 		return -ENOMEM;
1137 
1138 	dev_dbg(&pdev->dev, "ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1139 
1140 	info->scratchpad[0].ptr = its_dev;
1141 	info->scratchpad[1].ptr = dev;
1142 	return 0;
1143 }
1144 
1145 static struct msi_domain_ops its_pci_msi_ops = {
1146 	.msi_prepare	= its_msi_prepare,
1147 };
1148 
1149 static struct msi_domain_info its_pci_msi_domain_info = {
1150 	.flags	= (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
1151 		   MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX),
1152 	.ops	= &its_pci_msi_ops,
1153 	.chip	= &its_msi_irq_chip,
1154 };
1155 
1156 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1157 				    unsigned int virq,
1158 				    irq_hw_number_t hwirq)
1159 {
1160 	struct of_phandle_args args;
1161 
1162 	args.np = domain->parent->of_node;
1163 	args.args_count = 3;
1164 	args.args[0] = GIC_IRQ_TYPE_LPI;
1165 	args.args[1] = hwirq;
1166 	args.args[2] = IRQ_TYPE_EDGE_RISING;
1167 
1168 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &args);
1169 }
1170 
1171 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1172 				unsigned int nr_irqs, void *args)
1173 {
1174 	msi_alloc_info_t *info = args;
1175 	struct its_device *its_dev = info->scratchpad[0].ptr;
1176 	irq_hw_number_t hwirq;
1177 	int err;
1178 	int i;
1179 
1180 	for (i = 0; i < nr_irqs; i++) {
1181 		err = its_alloc_device_irq(its_dev, &hwirq);
1182 		if (err)
1183 			return err;
1184 
1185 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1186 		if (err)
1187 			return err;
1188 
1189 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1190 					      hwirq, &its_irq_chip, its_dev);
1191 		dev_dbg(info->scratchpad[1].ptr, "ID:%d pID:%d vID:%d\n",
1192 			(int)(hwirq - its_dev->lpi_base), (int)hwirq, virq + i);
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static void its_irq_domain_activate(struct irq_domain *domain,
1199 				    struct irq_data *d)
1200 {
1201 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1202 	u32 event = its_get_event_id(d);
1203 
1204 	/* Map the GIC IRQ and event to the device */
1205 	its_send_mapvi(its_dev, d->hwirq, event);
1206 }
1207 
1208 static void its_irq_domain_deactivate(struct irq_domain *domain,
1209 				      struct irq_data *d)
1210 {
1211 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1212 	u32 event = its_get_event_id(d);
1213 
1214 	/* Stop the delivery of interrupts */
1215 	its_send_discard(its_dev, event);
1216 }
1217 
1218 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1219 				unsigned int nr_irqs)
1220 {
1221 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1222 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1223 	int i;
1224 
1225 	for (i = 0; i < nr_irqs; i++) {
1226 		struct irq_data *data = irq_domain_get_irq_data(domain,
1227 								virq + i);
1228 		u32 event = its_get_event_id(data);
1229 
1230 		/* Mark interrupt index as unused */
1231 		clear_bit(event, its_dev->lpi_map);
1232 
1233 		/* Nuke the entry in the domain */
1234 		irq_domain_reset_irq_data(data);
1235 	}
1236 
1237 	/* If all interrupts have been freed, start mopping the floor */
1238 	if (bitmap_empty(its_dev->lpi_map, its_dev->nr_lpis)) {
1239 		its_lpi_free(its_dev->lpi_map,
1240 			     its_dev->lpi_base,
1241 			     its_dev->nr_lpis);
1242 
1243 		/* Unmap device/itt */
1244 		its_send_mapd(its_dev, 0);
1245 		its_free_device(its_dev);
1246 	}
1247 
1248 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1249 }
1250 
1251 static const struct irq_domain_ops its_domain_ops = {
1252 	.alloc			= its_irq_domain_alloc,
1253 	.free			= its_irq_domain_free,
1254 	.activate		= its_irq_domain_activate,
1255 	.deactivate		= its_irq_domain_deactivate,
1256 };
1257 
1258 static int its_probe(struct device_node *node, struct irq_domain *parent)
1259 {
1260 	struct resource res;
1261 	struct its_node *its;
1262 	void __iomem *its_base;
1263 	u32 val;
1264 	u64 baser, tmp;
1265 	int err;
1266 
1267 	err = of_address_to_resource(node, 0, &res);
1268 	if (err) {
1269 		pr_warn("%s: no regs?\n", node->full_name);
1270 		return -ENXIO;
1271 	}
1272 
1273 	its_base = ioremap(res.start, resource_size(&res));
1274 	if (!its_base) {
1275 		pr_warn("%s: unable to map registers\n", node->full_name);
1276 		return -ENOMEM;
1277 	}
1278 
1279 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1280 	if (val != 0x30 && val != 0x40) {
1281 		pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1282 		err = -ENODEV;
1283 		goto out_unmap;
1284 	}
1285 
1286 	pr_info("ITS: %s\n", node->full_name);
1287 
1288 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1289 	if (!its) {
1290 		err = -ENOMEM;
1291 		goto out_unmap;
1292 	}
1293 
1294 	raw_spin_lock_init(&its->lock);
1295 	INIT_LIST_HEAD(&its->entry);
1296 	INIT_LIST_HEAD(&its->its_device_list);
1297 	its->base = its_base;
1298 	its->phys_base = res.start;
1299 	its->msi_chip.of_node = node;
1300 	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1301 
1302 	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1303 	if (!its->cmd_base) {
1304 		err = -ENOMEM;
1305 		goto out_free_its;
1306 	}
1307 	its->cmd_write = its->cmd_base;
1308 
1309 	err = its_alloc_tables(its);
1310 	if (err)
1311 		goto out_free_cmd;
1312 
1313 	err = its_alloc_collections(its);
1314 	if (err)
1315 		goto out_free_tables;
1316 
1317 	baser = (virt_to_phys(its->cmd_base)	|
1318 		 GITS_CBASER_WaWb		|
1319 		 GITS_CBASER_InnerShareable	|
1320 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1321 		 GITS_CBASER_VALID);
1322 
1323 	writeq_relaxed(baser, its->base + GITS_CBASER);
1324 	tmp = readq_relaxed(its->base + GITS_CBASER);
1325 	writeq_relaxed(0, its->base + GITS_CWRITER);
1326 	writel_relaxed(1, its->base + GITS_CTLR);
1327 
1328 	if ((tmp ^ baser) & GITS_BASER_SHAREABILITY_MASK) {
1329 		pr_info("ITS: using cache flushing for cmd queue\n");
1330 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1331 	}
1332 
1333 	if (of_property_read_bool(its->msi_chip.of_node, "msi-controller")) {
1334 		its->domain = irq_domain_add_tree(NULL, &its_domain_ops, its);
1335 		if (!its->domain) {
1336 			err = -ENOMEM;
1337 			goto out_free_tables;
1338 		}
1339 
1340 		its->domain->parent = parent;
1341 
1342 		its->msi_chip.domain = pci_msi_create_irq_domain(node,
1343 								 &its_pci_msi_domain_info,
1344 								 its->domain);
1345 		if (!its->msi_chip.domain) {
1346 			err = -ENOMEM;
1347 			goto out_free_domains;
1348 		}
1349 
1350 		err = of_pci_msi_chip_add(&its->msi_chip);
1351 		if (err)
1352 			goto out_free_domains;
1353 	}
1354 
1355 	spin_lock(&its_lock);
1356 	list_add(&its->entry, &its_nodes);
1357 	spin_unlock(&its_lock);
1358 
1359 	return 0;
1360 
1361 out_free_domains:
1362 	if (its->msi_chip.domain)
1363 		irq_domain_remove(its->msi_chip.domain);
1364 	if (its->domain)
1365 		irq_domain_remove(its->domain);
1366 out_free_tables:
1367 	its_free_tables(its);
1368 out_free_cmd:
1369 	kfree(its->cmd_base);
1370 out_free_its:
1371 	kfree(its);
1372 out_unmap:
1373 	iounmap(its_base);
1374 	pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1375 	return err;
1376 }
1377 
1378 static bool gic_rdists_supports_plpis(void)
1379 {
1380 	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1381 }
1382 
1383 int its_cpu_init(void)
1384 {
1385 	if (!gic_rdists_supports_plpis()) {
1386 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1387 		return -ENXIO;
1388 	}
1389 
1390 	if (!list_empty(&its_nodes)) {
1391 		its_cpu_init_lpis();
1392 		its_cpu_init_collection();
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static struct of_device_id its_device_id[] = {
1399 	{	.compatible	= "arm,gic-v3-its",	},
1400 	{},
1401 };
1402 
1403 int its_init(struct device_node *node, struct rdists *rdists,
1404 	     struct irq_domain *parent_domain)
1405 {
1406 	struct device_node *np;
1407 
1408 	for (np = of_find_matching_node(node, its_device_id); np;
1409 	     np = of_find_matching_node(np, its_device_id)) {
1410 		its_probe(np, parent_domain);
1411 	}
1412 
1413 	if (list_empty(&its_nodes)) {
1414 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1415 		return -ENXIO;
1416 	}
1417 
1418 	gic_rdists = rdists;
1419 	gic_root_node = node;
1420 
1421 	its_alloc_lpi_tables();
1422 	its_lpi_init(rdists->id_bits);
1423 
1424 	return 0;
1425 }
1426