xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
46 
47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
49 
50 static u32 lpi_id_bits;
51 
52 /*
53  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
54  * deal with (one configuration byte per interrupt). PENDBASE has to
55  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
56  */
57 #define LPI_NRBITS		lpi_id_bits
58 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
59 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
60 
61 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
62 
63 /*
64  * Collection structure - just an ID, and a redistributor address to
65  * ping. We use one per CPU as a bag of interrupts assigned to this
66  * CPU.
67  */
68 struct its_collection {
69 	u64			target_address;
70 	u16			col_id;
71 };
72 
73 /*
74  * The ITS_BASER structure - contains memory information, cached
75  * value of BASER register configuration and ITS page size.
76  */
77 struct its_baser {
78 	void		*base;
79 	u64		val;
80 	u32		order;
81 	u32		psz;
82 };
83 
84 struct its_device;
85 
86 /*
87  * The ITS structure - contains most of the infrastructure, with the
88  * top-level MSI domain, the command queue, the collections, and the
89  * list of devices writing to it.
90  *
91  * dev_alloc_lock has to be taken for device allocations, while the
92  * spinlock must be taken to parse data structures such as the device
93  * list.
94  */
95 struct its_node {
96 	raw_spinlock_t		lock;
97 	struct mutex		dev_alloc_lock;
98 	struct list_head	entry;
99 	void __iomem		*base;
100 	void __iomem		*sgir_base;
101 	phys_addr_t		phys_base;
102 	struct its_cmd_block	*cmd_base;
103 	struct its_cmd_block	*cmd_write;
104 	struct its_baser	tables[GITS_BASER_NR_REGS];
105 	struct its_collection	*collections;
106 	struct fwnode_handle	*fwnode_handle;
107 	u64			(*get_msi_base)(struct its_device *its_dev);
108 	u64			typer;
109 	u64			cbaser_save;
110 	u32			ctlr_save;
111 	u32			mpidr;
112 	struct list_head	its_device_list;
113 	u64			flags;
114 	unsigned long		list_nr;
115 	int			numa_node;
116 	unsigned int		msi_domain_flags;
117 	u32			pre_its_base; /* for Socionext Synquacer */
118 	int			vlpi_redist_offset;
119 };
120 
121 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
122 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
123 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
124 
125 #define ITS_ITT_ALIGN		SZ_256
126 
127 /* The maximum number of VPEID bits supported by VLPI commands */
128 #define ITS_MAX_VPEID_BITS						\
129 	({								\
130 		int nvpeid = 16;					\
131 		if (gic_rdists->has_rvpeid &&				\
132 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
133 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
134 				      GICD_TYPER2_VID);			\
135 									\
136 		nvpeid;							\
137 	})
138 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
139 
140 /* Convert page order to size in bytes */
141 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
142 
143 struct event_lpi_map {
144 	unsigned long		*lpi_map;
145 	u16			*col_map;
146 	irq_hw_number_t		lpi_base;
147 	int			nr_lpis;
148 	raw_spinlock_t		vlpi_lock;
149 	struct its_vm		*vm;
150 	struct its_vlpi_map	*vlpi_maps;
151 	int			nr_vlpis;
152 };
153 
154 /*
155  * The ITS view of a device - belongs to an ITS, owns an interrupt
156  * translation table, and a list of interrupts.  If it some of its
157  * LPIs are injected into a guest (GICv4), the event_map.vm field
158  * indicates which one.
159  */
160 struct its_device {
161 	struct list_head	entry;
162 	struct its_node		*its;
163 	struct event_lpi_map	event_map;
164 	void			*itt;
165 	u32			nr_ites;
166 	u32			device_id;
167 	bool			shared;
168 };
169 
170 static struct {
171 	raw_spinlock_t		lock;
172 	struct its_device	*dev;
173 	struct its_vpe		**vpes;
174 	int			next_victim;
175 } vpe_proxy;
176 
177 struct cpu_lpi_count {
178 	atomic_t	managed;
179 	atomic_t	unmanaged;
180 };
181 
182 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
183 
184 static LIST_HEAD(its_nodes);
185 static DEFINE_RAW_SPINLOCK(its_lock);
186 static struct rdists *gic_rdists;
187 static struct irq_domain *its_parent;
188 
189 static unsigned long its_list_map;
190 static u16 vmovp_seq_num;
191 static DEFINE_RAW_SPINLOCK(vmovp_lock);
192 
193 static DEFINE_IDA(its_vpeid_ida);
194 
195 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
196 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
197 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
198 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
199 
200 /*
201  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
202  * always have vSGIs mapped.
203  */
204 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
205 {
206 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
207 }
208 
209 static u16 get_its_list(struct its_vm *vm)
210 {
211 	struct its_node *its;
212 	unsigned long its_list = 0;
213 
214 	list_for_each_entry(its, &its_nodes, entry) {
215 		if (!is_v4(its))
216 			continue;
217 
218 		if (require_its_list_vmovp(vm, its))
219 			__set_bit(its->list_nr, &its_list);
220 	}
221 
222 	return (u16)its_list;
223 }
224 
225 static inline u32 its_get_event_id(struct irq_data *d)
226 {
227 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
228 	return d->hwirq - its_dev->event_map.lpi_base;
229 }
230 
231 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
232 					       u32 event)
233 {
234 	struct its_node *its = its_dev->its;
235 
236 	return its->collections + its_dev->event_map.col_map[event];
237 }
238 
239 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
240 					       u32 event)
241 {
242 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
243 		return NULL;
244 
245 	return &its_dev->event_map.vlpi_maps[event];
246 }
247 
248 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
249 {
250 	if (irqd_is_forwarded_to_vcpu(d)) {
251 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
252 		u32 event = its_get_event_id(d);
253 
254 		return dev_event_to_vlpi_map(its_dev, event);
255 	}
256 
257 	return NULL;
258 }
259 
260 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
261 {
262 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
263 	return vpe->col_idx;
264 }
265 
266 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
267 {
268 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
269 }
270 
271 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
272 {
273 	struct its_vlpi_map *map = get_vlpi_map(d);
274 	int cpu;
275 
276 	if (map) {
277 		cpu = vpe_to_cpuid_lock(map->vpe, flags);
278 	} else {
279 		/* Physical LPIs are already locked via the irq_desc lock */
280 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
281 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
282 		/* Keep GCC quiet... */
283 		*flags = 0;
284 	}
285 
286 	return cpu;
287 }
288 
289 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
290 {
291 	struct its_vlpi_map *map = get_vlpi_map(d);
292 
293 	if (map)
294 		vpe_to_cpuid_unlock(map->vpe, flags);
295 }
296 
297 static struct its_collection *valid_col(struct its_collection *col)
298 {
299 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
300 		return NULL;
301 
302 	return col;
303 }
304 
305 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
306 {
307 	if (valid_col(its->collections + vpe->col_idx))
308 		return vpe;
309 
310 	return NULL;
311 }
312 
313 /*
314  * ITS command descriptors - parameters to be encoded in a command
315  * block.
316  */
317 struct its_cmd_desc {
318 	union {
319 		struct {
320 			struct its_device *dev;
321 			u32 event_id;
322 		} its_inv_cmd;
323 
324 		struct {
325 			struct its_device *dev;
326 			u32 event_id;
327 		} its_clear_cmd;
328 
329 		struct {
330 			struct its_device *dev;
331 			u32 event_id;
332 		} its_int_cmd;
333 
334 		struct {
335 			struct its_device *dev;
336 			int valid;
337 		} its_mapd_cmd;
338 
339 		struct {
340 			struct its_collection *col;
341 			int valid;
342 		} its_mapc_cmd;
343 
344 		struct {
345 			struct its_device *dev;
346 			u32 phys_id;
347 			u32 event_id;
348 		} its_mapti_cmd;
349 
350 		struct {
351 			struct its_device *dev;
352 			struct its_collection *col;
353 			u32 event_id;
354 		} its_movi_cmd;
355 
356 		struct {
357 			struct its_device *dev;
358 			u32 event_id;
359 		} its_discard_cmd;
360 
361 		struct {
362 			struct its_collection *col;
363 		} its_invall_cmd;
364 
365 		struct {
366 			struct its_vpe *vpe;
367 		} its_vinvall_cmd;
368 
369 		struct {
370 			struct its_vpe *vpe;
371 			struct its_collection *col;
372 			bool valid;
373 		} its_vmapp_cmd;
374 
375 		struct {
376 			struct its_vpe *vpe;
377 			struct its_device *dev;
378 			u32 virt_id;
379 			u32 event_id;
380 			bool db_enabled;
381 		} its_vmapti_cmd;
382 
383 		struct {
384 			struct its_vpe *vpe;
385 			struct its_device *dev;
386 			u32 event_id;
387 			bool db_enabled;
388 		} its_vmovi_cmd;
389 
390 		struct {
391 			struct its_vpe *vpe;
392 			struct its_collection *col;
393 			u16 seq_num;
394 			u16 its_list;
395 		} its_vmovp_cmd;
396 
397 		struct {
398 			struct its_vpe *vpe;
399 		} its_invdb_cmd;
400 
401 		struct {
402 			struct its_vpe *vpe;
403 			u8 sgi;
404 			u8 priority;
405 			bool enable;
406 			bool group;
407 			bool clear;
408 		} its_vsgi_cmd;
409 	};
410 };
411 
412 /*
413  * The ITS command block, which is what the ITS actually parses.
414  */
415 struct its_cmd_block {
416 	union {
417 		u64	raw_cmd[4];
418 		__le64	raw_cmd_le[4];
419 	};
420 };
421 
422 #define ITS_CMD_QUEUE_SZ		SZ_64K
423 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
424 
425 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
426 						    struct its_cmd_block *,
427 						    struct its_cmd_desc *);
428 
429 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
430 					      struct its_cmd_block *,
431 					      struct its_cmd_desc *);
432 
433 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
434 {
435 	u64 mask = GENMASK_ULL(h, l);
436 	*raw_cmd &= ~mask;
437 	*raw_cmd |= (val << l) & mask;
438 }
439 
440 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
441 {
442 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
443 }
444 
445 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
446 {
447 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
448 }
449 
450 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
451 {
452 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
453 }
454 
455 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
456 {
457 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
458 }
459 
460 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
461 {
462 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
463 }
464 
465 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
466 {
467 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
468 }
469 
470 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
471 {
472 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
473 }
474 
475 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
476 {
477 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
478 }
479 
480 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
481 {
482 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
483 }
484 
485 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
486 {
487 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
488 }
489 
490 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
491 {
492 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
493 }
494 
495 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
496 {
497 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
498 }
499 
500 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
501 {
502 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
503 }
504 
505 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
506 {
507 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
508 }
509 
510 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
511 {
512 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
513 }
514 
515 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
516 {
517 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
518 }
519 
520 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
521 {
522 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
523 }
524 
525 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
526 {
527 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
528 }
529 
530 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
531 {
532 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
533 }
534 
535 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
536 {
537 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
538 }
539 
540 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
541 					u32 vpe_db_lpi)
542 {
543 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
544 }
545 
546 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
547 					u32 vpe_db_lpi)
548 {
549 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
550 }
551 
552 static void its_encode_db(struct its_cmd_block *cmd, bool db)
553 {
554 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
555 }
556 
557 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
558 {
559 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
560 }
561 
562 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
563 {
564 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
565 }
566 
567 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
568 {
569 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
570 }
571 
572 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
573 {
574 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
575 }
576 
577 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
578 {
579 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
580 }
581 
582 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
583 {
584 	/* Let's fixup BE commands */
585 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
586 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
587 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
588 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
589 }
590 
591 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
592 						 struct its_cmd_block *cmd,
593 						 struct its_cmd_desc *desc)
594 {
595 	unsigned long itt_addr;
596 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
597 
598 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
599 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
600 
601 	its_encode_cmd(cmd, GITS_CMD_MAPD);
602 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
603 	its_encode_size(cmd, size - 1);
604 	its_encode_itt(cmd, itt_addr);
605 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
606 
607 	its_fixup_cmd(cmd);
608 
609 	return NULL;
610 }
611 
612 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
613 						 struct its_cmd_block *cmd,
614 						 struct its_cmd_desc *desc)
615 {
616 	its_encode_cmd(cmd, GITS_CMD_MAPC);
617 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
618 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
619 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
620 
621 	its_fixup_cmd(cmd);
622 
623 	return desc->its_mapc_cmd.col;
624 }
625 
626 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
627 						  struct its_cmd_block *cmd,
628 						  struct its_cmd_desc *desc)
629 {
630 	struct its_collection *col;
631 
632 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
633 			       desc->its_mapti_cmd.event_id);
634 
635 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
636 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
637 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
638 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
639 	its_encode_collection(cmd, col->col_id);
640 
641 	its_fixup_cmd(cmd);
642 
643 	return valid_col(col);
644 }
645 
646 static struct its_collection *its_build_movi_cmd(struct its_node *its,
647 						 struct its_cmd_block *cmd,
648 						 struct its_cmd_desc *desc)
649 {
650 	struct its_collection *col;
651 
652 	col = dev_event_to_col(desc->its_movi_cmd.dev,
653 			       desc->its_movi_cmd.event_id);
654 
655 	its_encode_cmd(cmd, GITS_CMD_MOVI);
656 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
657 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
658 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
659 
660 	its_fixup_cmd(cmd);
661 
662 	return valid_col(col);
663 }
664 
665 static struct its_collection *its_build_discard_cmd(struct its_node *its,
666 						    struct its_cmd_block *cmd,
667 						    struct its_cmd_desc *desc)
668 {
669 	struct its_collection *col;
670 
671 	col = dev_event_to_col(desc->its_discard_cmd.dev,
672 			       desc->its_discard_cmd.event_id);
673 
674 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
675 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
676 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
677 
678 	its_fixup_cmd(cmd);
679 
680 	return valid_col(col);
681 }
682 
683 static struct its_collection *its_build_inv_cmd(struct its_node *its,
684 						struct its_cmd_block *cmd,
685 						struct its_cmd_desc *desc)
686 {
687 	struct its_collection *col;
688 
689 	col = dev_event_to_col(desc->its_inv_cmd.dev,
690 			       desc->its_inv_cmd.event_id);
691 
692 	its_encode_cmd(cmd, GITS_CMD_INV);
693 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
694 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
695 
696 	its_fixup_cmd(cmd);
697 
698 	return valid_col(col);
699 }
700 
701 static struct its_collection *its_build_int_cmd(struct its_node *its,
702 						struct its_cmd_block *cmd,
703 						struct its_cmd_desc *desc)
704 {
705 	struct its_collection *col;
706 
707 	col = dev_event_to_col(desc->its_int_cmd.dev,
708 			       desc->its_int_cmd.event_id);
709 
710 	its_encode_cmd(cmd, GITS_CMD_INT);
711 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
712 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
713 
714 	its_fixup_cmd(cmd);
715 
716 	return valid_col(col);
717 }
718 
719 static struct its_collection *its_build_clear_cmd(struct its_node *its,
720 						  struct its_cmd_block *cmd,
721 						  struct its_cmd_desc *desc)
722 {
723 	struct its_collection *col;
724 
725 	col = dev_event_to_col(desc->its_clear_cmd.dev,
726 			       desc->its_clear_cmd.event_id);
727 
728 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
729 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
730 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
731 
732 	its_fixup_cmd(cmd);
733 
734 	return valid_col(col);
735 }
736 
737 static struct its_collection *its_build_invall_cmd(struct its_node *its,
738 						   struct its_cmd_block *cmd,
739 						   struct its_cmd_desc *desc)
740 {
741 	its_encode_cmd(cmd, GITS_CMD_INVALL);
742 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
743 
744 	its_fixup_cmd(cmd);
745 
746 	return NULL;
747 }
748 
749 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
750 					     struct its_cmd_block *cmd,
751 					     struct its_cmd_desc *desc)
752 {
753 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
754 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
755 
756 	its_fixup_cmd(cmd);
757 
758 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
759 }
760 
761 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
762 					   struct its_cmd_block *cmd,
763 					   struct its_cmd_desc *desc)
764 {
765 	unsigned long vpt_addr, vconf_addr;
766 	u64 target;
767 	bool alloc;
768 
769 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
770 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
771 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
772 
773 	if (!desc->its_vmapp_cmd.valid) {
774 		if (is_v4_1(its)) {
775 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
776 			its_encode_alloc(cmd, alloc);
777 		}
778 
779 		goto out;
780 	}
781 
782 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
783 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
784 
785 	its_encode_target(cmd, target);
786 	its_encode_vpt_addr(cmd, vpt_addr);
787 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
788 
789 	if (!is_v4_1(its))
790 		goto out;
791 
792 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
793 
794 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
795 
796 	its_encode_alloc(cmd, alloc);
797 
798 	/* We can only signal PTZ when alloc==1. Why do we have two bits? */
799 	its_encode_ptz(cmd, alloc);
800 	its_encode_vconf_addr(cmd, vconf_addr);
801 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
802 
803 out:
804 	its_fixup_cmd(cmd);
805 
806 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
807 }
808 
809 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
810 					    struct its_cmd_block *cmd,
811 					    struct its_cmd_desc *desc)
812 {
813 	u32 db;
814 
815 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
816 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
817 	else
818 		db = 1023;
819 
820 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
821 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
822 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
823 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
824 	its_encode_db_phys_id(cmd, db);
825 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
826 
827 	its_fixup_cmd(cmd);
828 
829 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
830 }
831 
832 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
833 					   struct its_cmd_block *cmd,
834 					   struct its_cmd_desc *desc)
835 {
836 	u32 db;
837 
838 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
839 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
840 	else
841 		db = 1023;
842 
843 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
844 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
845 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
846 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
847 	its_encode_db_phys_id(cmd, db);
848 	its_encode_db_valid(cmd, true);
849 
850 	its_fixup_cmd(cmd);
851 
852 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
853 }
854 
855 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
856 					   struct its_cmd_block *cmd,
857 					   struct its_cmd_desc *desc)
858 {
859 	u64 target;
860 
861 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
862 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
863 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
864 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
865 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
866 	its_encode_target(cmd, target);
867 
868 	if (is_v4_1(its)) {
869 		its_encode_db(cmd, true);
870 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
871 	}
872 
873 	its_fixup_cmd(cmd);
874 
875 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
876 }
877 
878 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
879 					  struct its_cmd_block *cmd,
880 					  struct its_cmd_desc *desc)
881 {
882 	struct its_vlpi_map *map;
883 
884 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
885 				    desc->its_inv_cmd.event_id);
886 
887 	its_encode_cmd(cmd, GITS_CMD_INV);
888 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
889 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
890 
891 	its_fixup_cmd(cmd);
892 
893 	return valid_vpe(its, map->vpe);
894 }
895 
896 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
897 					  struct its_cmd_block *cmd,
898 					  struct its_cmd_desc *desc)
899 {
900 	struct its_vlpi_map *map;
901 
902 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
903 				    desc->its_int_cmd.event_id);
904 
905 	its_encode_cmd(cmd, GITS_CMD_INT);
906 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
907 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
908 
909 	its_fixup_cmd(cmd);
910 
911 	return valid_vpe(its, map->vpe);
912 }
913 
914 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
915 					    struct its_cmd_block *cmd,
916 					    struct its_cmd_desc *desc)
917 {
918 	struct its_vlpi_map *map;
919 
920 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
921 				    desc->its_clear_cmd.event_id);
922 
923 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
924 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
925 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
926 
927 	its_fixup_cmd(cmd);
928 
929 	return valid_vpe(its, map->vpe);
930 }
931 
932 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
933 					   struct its_cmd_block *cmd,
934 					   struct its_cmd_desc *desc)
935 {
936 	if (WARN_ON(!is_v4_1(its)))
937 		return NULL;
938 
939 	its_encode_cmd(cmd, GITS_CMD_INVDB);
940 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
941 
942 	its_fixup_cmd(cmd);
943 
944 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
945 }
946 
947 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
948 					  struct its_cmd_block *cmd,
949 					  struct its_cmd_desc *desc)
950 {
951 	if (WARN_ON(!is_v4_1(its)))
952 		return NULL;
953 
954 	its_encode_cmd(cmd, GITS_CMD_VSGI);
955 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
956 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
957 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
958 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
959 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
960 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
961 
962 	its_fixup_cmd(cmd);
963 
964 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
965 }
966 
967 static u64 its_cmd_ptr_to_offset(struct its_node *its,
968 				 struct its_cmd_block *ptr)
969 {
970 	return (ptr - its->cmd_base) * sizeof(*ptr);
971 }
972 
973 static int its_queue_full(struct its_node *its)
974 {
975 	int widx;
976 	int ridx;
977 
978 	widx = its->cmd_write - its->cmd_base;
979 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
980 
981 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
982 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
983 		return 1;
984 
985 	return 0;
986 }
987 
988 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
989 {
990 	struct its_cmd_block *cmd;
991 	u32 count = 1000000;	/* 1s! */
992 
993 	while (its_queue_full(its)) {
994 		count--;
995 		if (!count) {
996 			pr_err_ratelimited("ITS queue not draining\n");
997 			return NULL;
998 		}
999 		cpu_relax();
1000 		udelay(1);
1001 	}
1002 
1003 	cmd = its->cmd_write++;
1004 
1005 	/* Handle queue wrapping */
1006 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1007 		its->cmd_write = its->cmd_base;
1008 
1009 	/* Clear command  */
1010 	cmd->raw_cmd[0] = 0;
1011 	cmd->raw_cmd[1] = 0;
1012 	cmd->raw_cmd[2] = 0;
1013 	cmd->raw_cmd[3] = 0;
1014 
1015 	return cmd;
1016 }
1017 
1018 static struct its_cmd_block *its_post_commands(struct its_node *its)
1019 {
1020 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1021 
1022 	writel_relaxed(wr, its->base + GITS_CWRITER);
1023 
1024 	return its->cmd_write;
1025 }
1026 
1027 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1028 {
1029 	/*
1030 	 * Make sure the commands written to memory are observable by
1031 	 * the ITS.
1032 	 */
1033 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1034 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1035 	else
1036 		dsb(ishst);
1037 }
1038 
1039 static int its_wait_for_range_completion(struct its_node *its,
1040 					 u64	prev_idx,
1041 					 struct its_cmd_block *to)
1042 {
1043 	u64 rd_idx, to_idx, linear_idx;
1044 	u32 count = 1000000;	/* 1s! */
1045 
1046 	/* Linearize to_idx if the command set has wrapped around */
1047 	to_idx = its_cmd_ptr_to_offset(its, to);
1048 	if (to_idx < prev_idx)
1049 		to_idx += ITS_CMD_QUEUE_SZ;
1050 
1051 	linear_idx = prev_idx;
1052 
1053 	while (1) {
1054 		s64 delta;
1055 
1056 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1057 
1058 		/*
1059 		 * Compute the read pointer progress, taking the
1060 		 * potential wrap-around into account.
1061 		 */
1062 		delta = rd_idx - prev_idx;
1063 		if (rd_idx < prev_idx)
1064 			delta += ITS_CMD_QUEUE_SZ;
1065 
1066 		linear_idx += delta;
1067 		if (linear_idx >= to_idx)
1068 			break;
1069 
1070 		count--;
1071 		if (!count) {
1072 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1073 					   to_idx, linear_idx);
1074 			return -1;
1075 		}
1076 		prev_idx = rd_idx;
1077 		cpu_relax();
1078 		udelay(1);
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 /* Warning, macro hell follows */
1085 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1086 void name(struct its_node *its,						\
1087 	  buildtype builder,						\
1088 	  struct its_cmd_desc *desc)					\
1089 {									\
1090 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1091 	synctype *sync_obj;						\
1092 	unsigned long flags;						\
1093 	u64 rd_idx;							\
1094 									\
1095 	raw_spin_lock_irqsave(&its->lock, flags);			\
1096 									\
1097 	cmd = its_allocate_entry(its);					\
1098 	if (!cmd) {		/* We're soooooo screewed... */		\
1099 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1100 		return;							\
1101 	}								\
1102 	sync_obj = builder(its, cmd, desc);				\
1103 	its_flush_cmd(its, cmd);					\
1104 									\
1105 	if (sync_obj) {							\
1106 		sync_cmd = its_allocate_entry(its);			\
1107 		if (!sync_cmd)						\
1108 			goto post;					\
1109 									\
1110 		buildfn(its, sync_cmd, sync_obj);			\
1111 		its_flush_cmd(its, sync_cmd);				\
1112 	}								\
1113 									\
1114 post:									\
1115 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1116 	next_cmd = its_post_commands(its);				\
1117 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1118 									\
1119 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1120 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1121 }
1122 
1123 static void its_build_sync_cmd(struct its_node *its,
1124 			       struct its_cmd_block *sync_cmd,
1125 			       struct its_collection *sync_col)
1126 {
1127 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1128 	its_encode_target(sync_cmd, sync_col->target_address);
1129 
1130 	its_fixup_cmd(sync_cmd);
1131 }
1132 
1133 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1134 			     struct its_collection, its_build_sync_cmd)
1135 
1136 static void its_build_vsync_cmd(struct its_node *its,
1137 				struct its_cmd_block *sync_cmd,
1138 				struct its_vpe *sync_vpe)
1139 {
1140 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1141 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1142 
1143 	its_fixup_cmd(sync_cmd);
1144 }
1145 
1146 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1147 			     struct its_vpe, its_build_vsync_cmd)
1148 
1149 static void its_send_int(struct its_device *dev, u32 event_id)
1150 {
1151 	struct its_cmd_desc desc;
1152 
1153 	desc.its_int_cmd.dev = dev;
1154 	desc.its_int_cmd.event_id = event_id;
1155 
1156 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1157 }
1158 
1159 static void its_send_clear(struct its_device *dev, u32 event_id)
1160 {
1161 	struct its_cmd_desc desc;
1162 
1163 	desc.its_clear_cmd.dev = dev;
1164 	desc.its_clear_cmd.event_id = event_id;
1165 
1166 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1167 }
1168 
1169 static void its_send_inv(struct its_device *dev, u32 event_id)
1170 {
1171 	struct its_cmd_desc desc;
1172 
1173 	desc.its_inv_cmd.dev = dev;
1174 	desc.its_inv_cmd.event_id = event_id;
1175 
1176 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1177 }
1178 
1179 static void its_send_mapd(struct its_device *dev, int valid)
1180 {
1181 	struct its_cmd_desc desc;
1182 
1183 	desc.its_mapd_cmd.dev = dev;
1184 	desc.its_mapd_cmd.valid = !!valid;
1185 
1186 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1187 }
1188 
1189 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1190 			  int valid)
1191 {
1192 	struct its_cmd_desc desc;
1193 
1194 	desc.its_mapc_cmd.col = col;
1195 	desc.its_mapc_cmd.valid = !!valid;
1196 
1197 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1198 }
1199 
1200 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1201 {
1202 	struct its_cmd_desc desc;
1203 
1204 	desc.its_mapti_cmd.dev = dev;
1205 	desc.its_mapti_cmd.phys_id = irq_id;
1206 	desc.its_mapti_cmd.event_id = id;
1207 
1208 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1209 }
1210 
1211 static void its_send_movi(struct its_device *dev,
1212 			  struct its_collection *col, u32 id)
1213 {
1214 	struct its_cmd_desc desc;
1215 
1216 	desc.its_movi_cmd.dev = dev;
1217 	desc.its_movi_cmd.col = col;
1218 	desc.its_movi_cmd.event_id = id;
1219 
1220 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1221 }
1222 
1223 static void its_send_discard(struct its_device *dev, u32 id)
1224 {
1225 	struct its_cmd_desc desc;
1226 
1227 	desc.its_discard_cmd.dev = dev;
1228 	desc.its_discard_cmd.event_id = id;
1229 
1230 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1231 }
1232 
1233 static void its_send_invall(struct its_node *its, struct its_collection *col)
1234 {
1235 	struct its_cmd_desc desc;
1236 
1237 	desc.its_invall_cmd.col = col;
1238 
1239 	its_send_single_command(its, its_build_invall_cmd, &desc);
1240 }
1241 
1242 static void its_send_vmapti(struct its_device *dev, u32 id)
1243 {
1244 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1245 	struct its_cmd_desc desc;
1246 
1247 	desc.its_vmapti_cmd.vpe = map->vpe;
1248 	desc.its_vmapti_cmd.dev = dev;
1249 	desc.its_vmapti_cmd.virt_id = map->vintid;
1250 	desc.its_vmapti_cmd.event_id = id;
1251 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1252 
1253 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1254 }
1255 
1256 static void its_send_vmovi(struct its_device *dev, u32 id)
1257 {
1258 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1259 	struct its_cmd_desc desc;
1260 
1261 	desc.its_vmovi_cmd.vpe = map->vpe;
1262 	desc.its_vmovi_cmd.dev = dev;
1263 	desc.its_vmovi_cmd.event_id = id;
1264 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1265 
1266 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1267 }
1268 
1269 static void its_send_vmapp(struct its_node *its,
1270 			   struct its_vpe *vpe, bool valid)
1271 {
1272 	struct its_cmd_desc desc;
1273 
1274 	desc.its_vmapp_cmd.vpe = vpe;
1275 	desc.its_vmapp_cmd.valid = valid;
1276 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1277 
1278 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1279 }
1280 
1281 static void its_send_vmovp(struct its_vpe *vpe)
1282 {
1283 	struct its_cmd_desc desc = {};
1284 	struct its_node *its;
1285 	unsigned long flags;
1286 	int col_id = vpe->col_idx;
1287 
1288 	desc.its_vmovp_cmd.vpe = vpe;
1289 
1290 	if (!its_list_map) {
1291 		its = list_first_entry(&its_nodes, struct its_node, entry);
1292 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1293 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1294 		return;
1295 	}
1296 
1297 	/*
1298 	 * Yet another marvel of the architecture. If using the
1299 	 * its_list "feature", we need to make sure that all ITSs
1300 	 * receive all VMOVP commands in the same order. The only way
1301 	 * to guarantee this is to make vmovp a serialization point.
1302 	 *
1303 	 * Wall <-- Head.
1304 	 */
1305 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1306 
1307 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1308 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1309 
1310 	/* Emit VMOVPs */
1311 	list_for_each_entry(its, &its_nodes, entry) {
1312 		if (!is_v4(its))
1313 			continue;
1314 
1315 		if (!require_its_list_vmovp(vpe->its_vm, its))
1316 			continue;
1317 
1318 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1319 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1320 	}
1321 
1322 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1323 }
1324 
1325 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1326 {
1327 	struct its_cmd_desc desc;
1328 
1329 	desc.its_vinvall_cmd.vpe = vpe;
1330 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1331 }
1332 
1333 static void its_send_vinv(struct its_device *dev, u32 event_id)
1334 {
1335 	struct its_cmd_desc desc;
1336 
1337 	/*
1338 	 * There is no real VINV command. This is just a normal INV,
1339 	 * with a VSYNC instead of a SYNC.
1340 	 */
1341 	desc.its_inv_cmd.dev = dev;
1342 	desc.its_inv_cmd.event_id = event_id;
1343 
1344 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1345 }
1346 
1347 static void its_send_vint(struct its_device *dev, u32 event_id)
1348 {
1349 	struct its_cmd_desc desc;
1350 
1351 	/*
1352 	 * There is no real VINT command. This is just a normal INT,
1353 	 * with a VSYNC instead of a SYNC.
1354 	 */
1355 	desc.its_int_cmd.dev = dev;
1356 	desc.its_int_cmd.event_id = event_id;
1357 
1358 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1359 }
1360 
1361 static void its_send_vclear(struct its_device *dev, u32 event_id)
1362 {
1363 	struct its_cmd_desc desc;
1364 
1365 	/*
1366 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1367 	 * with a VSYNC instead of a SYNC.
1368 	 */
1369 	desc.its_clear_cmd.dev = dev;
1370 	desc.its_clear_cmd.event_id = event_id;
1371 
1372 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1373 }
1374 
1375 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1376 {
1377 	struct its_cmd_desc desc;
1378 
1379 	desc.its_invdb_cmd.vpe = vpe;
1380 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1381 }
1382 
1383 /*
1384  * irqchip functions - assumes MSI, mostly.
1385  */
1386 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1387 {
1388 	struct its_vlpi_map *map = get_vlpi_map(d);
1389 	irq_hw_number_t hwirq;
1390 	void *va;
1391 	u8 *cfg;
1392 
1393 	if (map) {
1394 		va = page_address(map->vm->vprop_page);
1395 		hwirq = map->vintid;
1396 
1397 		/* Remember the updated property */
1398 		map->properties &= ~clr;
1399 		map->properties |= set | LPI_PROP_GROUP1;
1400 	} else {
1401 		va = gic_rdists->prop_table_va;
1402 		hwirq = d->hwirq;
1403 	}
1404 
1405 	cfg = va + hwirq - 8192;
1406 	*cfg &= ~clr;
1407 	*cfg |= set | LPI_PROP_GROUP1;
1408 
1409 	/*
1410 	 * Make the above write visible to the redistributors.
1411 	 * And yes, we're flushing exactly: One. Single. Byte.
1412 	 * Humpf...
1413 	 */
1414 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1415 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1416 	else
1417 		dsb(ishst);
1418 }
1419 
1420 static void wait_for_syncr(void __iomem *rdbase)
1421 {
1422 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1423 		cpu_relax();
1424 }
1425 
1426 static void direct_lpi_inv(struct irq_data *d)
1427 {
1428 	struct its_vlpi_map *map = get_vlpi_map(d);
1429 	void __iomem *rdbase;
1430 	unsigned long flags;
1431 	u64 val;
1432 	int cpu;
1433 
1434 	if (map) {
1435 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1436 
1437 		WARN_ON(!is_v4_1(its_dev->its));
1438 
1439 		val  = GICR_INVLPIR_V;
1440 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1441 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1442 	} else {
1443 		val = d->hwirq;
1444 	}
1445 
1446 	/* Target the redistributor this LPI is currently routed to */
1447 	cpu = irq_to_cpuid_lock(d, &flags);
1448 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1449 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1450 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1451 
1452 	wait_for_syncr(rdbase);
1453 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1454 	irq_to_cpuid_unlock(d, flags);
1455 }
1456 
1457 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1458 {
1459 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1460 
1461 	lpi_write_config(d, clr, set);
1462 	if (gic_rdists->has_direct_lpi &&
1463 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1464 		direct_lpi_inv(d);
1465 	else if (!irqd_is_forwarded_to_vcpu(d))
1466 		its_send_inv(its_dev, its_get_event_id(d));
1467 	else
1468 		its_send_vinv(its_dev, its_get_event_id(d));
1469 }
1470 
1471 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1472 {
1473 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1474 	u32 event = its_get_event_id(d);
1475 	struct its_vlpi_map *map;
1476 
1477 	/*
1478 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1479 	 * here.
1480 	 */
1481 	if (is_v4_1(its_dev->its))
1482 		return;
1483 
1484 	map = dev_event_to_vlpi_map(its_dev, event);
1485 
1486 	if (map->db_enabled == enable)
1487 		return;
1488 
1489 	map->db_enabled = enable;
1490 
1491 	/*
1492 	 * More fun with the architecture:
1493 	 *
1494 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1495 	 * value or to 1023, depending on the enable bit. But that
1496 	 * would be issueing a mapping for an /existing/ DevID+EventID
1497 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1498 	 * to the /same/ vPE, using this opportunity to adjust the
1499 	 * doorbell. Mouahahahaha. We loves it, Precious.
1500 	 */
1501 	its_send_vmovi(its_dev, event);
1502 }
1503 
1504 static void its_mask_irq(struct irq_data *d)
1505 {
1506 	if (irqd_is_forwarded_to_vcpu(d))
1507 		its_vlpi_set_doorbell(d, false);
1508 
1509 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1510 }
1511 
1512 static void its_unmask_irq(struct irq_data *d)
1513 {
1514 	if (irqd_is_forwarded_to_vcpu(d))
1515 		its_vlpi_set_doorbell(d, true);
1516 
1517 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1518 }
1519 
1520 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1521 {
1522 	if (irqd_affinity_is_managed(d))
1523 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1524 
1525 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1526 }
1527 
1528 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1529 {
1530 	if (irqd_affinity_is_managed(d))
1531 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532 	else
1533 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534 }
1535 
1536 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1537 {
1538 	if (irqd_affinity_is_managed(d))
1539 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540 	else
1541 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542 }
1543 
1544 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1545 					      const struct cpumask *cpu_mask)
1546 {
1547 	unsigned int cpu = nr_cpu_ids, tmp;
1548 	int count = S32_MAX;
1549 
1550 	for_each_cpu(tmp, cpu_mask) {
1551 		int this_count = its_read_lpi_count(d, tmp);
1552 		if (this_count < count) {
1553 			cpu = tmp;
1554 		        count = this_count;
1555 		}
1556 	}
1557 
1558 	return cpu;
1559 }
1560 
1561 /*
1562  * As suggested by Thomas Gleixner in:
1563  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1564  */
1565 static int its_select_cpu(struct irq_data *d,
1566 			  const struct cpumask *aff_mask)
1567 {
1568 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1569 	cpumask_var_t tmpmask;
1570 	int cpu, node;
1571 
1572 	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1573 		return -ENOMEM;
1574 
1575 	node = its_dev->its->numa_node;
1576 
1577 	if (!irqd_affinity_is_managed(d)) {
1578 		/* First try the NUMA node */
1579 		if (node != NUMA_NO_NODE) {
1580 			/*
1581 			 * Try the intersection of the affinity mask and the
1582 			 * node mask (and the online mask, just to be safe).
1583 			 */
1584 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1585 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1586 
1587 			/*
1588 			 * Ideally, we would check if the mask is empty, and
1589 			 * try again on the full node here.
1590 			 *
1591 			 * But it turns out that the way ACPI describes the
1592 			 * affinity for ITSs only deals about memory, and
1593 			 * not target CPUs, so it cannot describe a single
1594 			 * ITS placed next to two NUMA nodes.
1595 			 *
1596 			 * Instead, just fallback on the online mask. This
1597 			 * diverges from Thomas' suggestion above.
1598 			 */
1599 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1600 			if (cpu < nr_cpu_ids)
1601 				goto out;
1602 
1603 			/* If we can't cross sockets, give up */
1604 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1605 				goto out;
1606 
1607 			/* If the above failed, expand the search */
1608 		}
1609 
1610 		/* Try the intersection of the affinity and online masks */
1611 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1612 
1613 		/* If that doesn't fly, the online mask is the last resort */
1614 		if (cpumask_empty(tmpmask))
1615 			cpumask_copy(tmpmask, cpu_online_mask);
1616 
1617 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1618 	} else {
1619 		cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1620 
1621 		/* If we cannot cross sockets, limit the search to that node */
1622 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1623 		    node != NUMA_NO_NODE)
1624 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1625 
1626 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1627 	}
1628 out:
1629 	free_cpumask_var(tmpmask);
1630 
1631 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1632 	return cpu;
1633 }
1634 
1635 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1636 			    bool force)
1637 {
1638 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1639 	struct its_collection *target_col;
1640 	u32 id = its_get_event_id(d);
1641 	int cpu, prev_cpu;
1642 
1643 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1644 	if (irqd_is_forwarded_to_vcpu(d))
1645 		return -EINVAL;
1646 
1647 	prev_cpu = its_dev->event_map.col_map[id];
1648 	its_dec_lpi_count(d, prev_cpu);
1649 
1650 	if (!force)
1651 		cpu = its_select_cpu(d, mask_val);
1652 	else
1653 		cpu = cpumask_pick_least_loaded(d, mask_val);
1654 
1655 	if (cpu < 0 || cpu >= nr_cpu_ids)
1656 		goto err;
1657 
1658 	/* don't set the affinity when the target cpu is same as current one */
1659 	if (cpu != prev_cpu) {
1660 		target_col = &its_dev->its->collections[cpu];
1661 		its_send_movi(its_dev, target_col, id);
1662 		its_dev->event_map.col_map[id] = cpu;
1663 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1664 	}
1665 
1666 	its_inc_lpi_count(d, cpu);
1667 
1668 	return IRQ_SET_MASK_OK_DONE;
1669 
1670 err:
1671 	its_inc_lpi_count(d, prev_cpu);
1672 	return -EINVAL;
1673 }
1674 
1675 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1676 {
1677 	struct its_node *its = its_dev->its;
1678 
1679 	return its->phys_base + GITS_TRANSLATER;
1680 }
1681 
1682 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1683 {
1684 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1685 	struct its_node *its;
1686 	u64 addr;
1687 
1688 	its = its_dev->its;
1689 	addr = its->get_msi_base(its_dev);
1690 
1691 	msg->address_lo		= lower_32_bits(addr);
1692 	msg->address_hi		= upper_32_bits(addr);
1693 	msg->data		= its_get_event_id(d);
1694 
1695 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1696 }
1697 
1698 static int its_irq_set_irqchip_state(struct irq_data *d,
1699 				     enum irqchip_irq_state which,
1700 				     bool state)
1701 {
1702 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1703 	u32 event = its_get_event_id(d);
1704 
1705 	if (which != IRQCHIP_STATE_PENDING)
1706 		return -EINVAL;
1707 
1708 	if (irqd_is_forwarded_to_vcpu(d)) {
1709 		if (state)
1710 			its_send_vint(its_dev, event);
1711 		else
1712 			its_send_vclear(its_dev, event);
1713 	} else {
1714 		if (state)
1715 			its_send_int(its_dev, event);
1716 		else
1717 			its_send_clear(its_dev, event);
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 /*
1724  * Two favourable cases:
1725  *
1726  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1727  *     for vSGI delivery
1728  *
1729  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1730  *     and we're better off mapping all VPEs always
1731  *
1732  * If neither (a) nor (b) is true, then we map vPEs on demand.
1733  *
1734  */
1735 static bool gic_requires_eager_mapping(void)
1736 {
1737 	if (!its_list_map || gic_rdists->has_rvpeid)
1738 		return true;
1739 
1740 	return false;
1741 }
1742 
1743 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1744 {
1745 	unsigned long flags;
1746 
1747 	if (gic_requires_eager_mapping())
1748 		return;
1749 
1750 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1751 
1752 	/*
1753 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1754 	 * them mapped now.
1755 	 */
1756 	vm->vlpi_count[its->list_nr]++;
1757 
1758 	if (vm->vlpi_count[its->list_nr] == 1) {
1759 		int i;
1760 
1761 		for (i = 0; i < vm->nr_vpes; i++) {
1762 			struct its_vpe *vpe = vm->vpes[i];
1763 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1764 
1765 			/* Map the VPE to the first possible CPU */
1766 			vpe->col_idx = cpumask_first(cpu_online_mask);
1767 			its_send_vmapp(its, vpe, true);
1768 			its_send_vinvall(its, vpe);
1769 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1770 		}
1771 	}
1772 
1773 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1774 }
1775 
1776 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1777 {
1778 	unsigned long flags;
1779 
1780 	/* Not using the ITS list? Everything is always mapped. */
1781 	if (gic_requires_eager_mapping())
1782 		return;
1783 
1784 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1785 
1786 	if (!--vm->vlpi_count[its->list_nr]) {
1787 		int i;
1788 
1789 		for (i = 0; i < vm->nr_vpes; i++)
1790 			its_send_vmapp(its, vm->vpes[i], false);
1791 	}
1792 
1793 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1794 }
1795 
1796 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1797 {
1798 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1799 	u32 event = its_get_event_id(d);
1800 	int ret = 0;
1801 
1802 	if (!info->map)
1803 		return -EINVAL;
1804 
1805 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1806 
1807 	if (!its_dev->event_map.vm) {
1808 		struct its_vlpi_map *maps;
1809 
1810 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1811 			       GFP_ATOMIC);
1812 		if (!maps) {
1813 			ret = -ENOMEM;
1814 			goto out;
1815 		}
1816 
1817 		its_dev->event_map.vm = info->map->vm;
1818 		its_dev->event_map.vlpi_maps = maps;
1819 	} else if (its_dev->event_map.vm != info->map->vm) {
1820 		ret = -EINVAL;
1821 		goto out;
1822 	}
1823 
1824 	/* Get our private copy of the mapping information */
1825 	its_dev->event_map.vlpi_maps[event] = *info->map;
1826 
1827 	if (irqd_is_forwarded_to_vcpu(d)) {
1828 		/* Already mapped, move it around */
1829 		its_send_vmovi(its_dev, event);
1830 	} else {
1831 		/* Ensure all the VPEs are mapped on this ITS */
1832 		its_map_vm(its_dev->its, info->map->vm);
1833 
1834 		/*
1835 		 * Flag the interrupt as forwarded so that we can
1836 		 * start poking the virtual property table.
1837 		 */
1838 		irqd_set_forwarded_to_vcpu(d);
1839 
1840 		/* Write out the property to the prop table */
1841 		lpi_write_config(d, 0xff, info->map->properties);
1842 
1843 		/* Drop the physical mapping */
1844 		its_send_discard(its_dev, event);
1845 
1846 		/* and install the virtual one */
1847 		its_send_vmapti(its_dev, event);
1848 
1849 		/* Increment the number of VLPIs */
1850 		its_dev->event_map.nr_vlpis++;
1851 	}
1852 
1853 out:
1854 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1855 	return ret;
1856 }
1857 
1858 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1859 {
1860 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1861 	struct its_vlpi_map *map;
1862 	int ret = 0;
1863 
1864 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1865 
1866 	map = get_vlpi_map(d);
1867 
1868 	if (!its_dev->event_map.vm || !map) {
1869 		ret = -EINVAL;
1870 		goto out;
1871 	}
1872 
1873 	/* Copy our mapping information to the incoming request */
1874 	*info->map = *map;
1875 
1876 out:
1877 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1878 	return ret;
1879 }
1880 
1881 static int its_vlpi_unmap(struct irq_data *d)
1882 {
1883 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1884 	u32 event = its_get_event_id(d);
1885 	int ret = 0;
1886 
1887 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1888 
1889 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1890 		ret = -EINVAL;
1891 		goto out;
1892 	}
1893 
1894 	/* Drop the virtual mapping */
1895 	its_send_discard(its_dev, event);
1896 
1897 	/* and restore the physical one */
1898 	irqd_clr_forwarded_to_vcpu(d);
1899 	its_send_mapti(its_dev, d->hwirq, event);
1900 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1901 				    LPI_PROP_ENABLED |
1902 				    LPI_PROP_GROUP1));
1903 
1904 	/* Potentially unmap the VM from this ITS */
1905 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1906 
1907 	/*
1908 	 * Drop the refcount and make the device available again if
1909 	 * this was the last VLPI.
1910 	 */
1911 	if (!--its_dev->event_map.nr_vlpis) {
1912 		its_dev->event_map.vm = NULL;
1913 		kfree(its_dev->event_map.vlpi_maps);
1914 	}
1915 
1916 out:
1917 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1918 	return ret;
1919 }
1920 
1921 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1922 {
1923 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1924 
1925 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1926 		return -EINVAL;
1927 
1928 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1929 		lpi_update_config(d, 0xff, info->config);
1930 	else
1931 		lpi_write_config(d, 0xff, info->config);
1932 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1933 
1934 	return 0;
1935 }
1936 
1937 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1938 {
1939 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1940 	struct its_cmd_info *info = vcpu_info;
1941 
1942 	/* Need a v4 ITS */
1943 	if (!is_v4(its_dev->its))
1944 		return -EINVAL;
1945 
1946 	/* Unmap request? */
1947 	if (!info)
1948 		return its_vlpi_unmap(d);
1949 
1950 	switch (info->cmd_type) {
1951 	case MAP_VLPI:
1952 		return its_vlpi_map(d, info);
1953 
1954 	case GET_VLPI:
1955 		return its_vlpi_get(d, info);
1956 
1957 	case PROP_UPDATE_VLPI:
1958 	case PROP_UPDATE_AND_INV_VLPI:
1959 		return its_vlpi_prop_update(d, info);
1960 
1961 	default:
1962 		return -EINVAL;
1963 	}
1964 }
1965 
1966 static struct irq_chip its_irq_chip = {
1967 	.name			= "ITS",
1968 	.irq_mask		= its_mask_irq,
1969 	.irq_unmask		= its_unmask_irq,
1970 	.irq_eoi		= irq_chip_eoi_parent,
1971 	.irq_set_affinity	= its_set_affinity,
1972 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1973 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1974 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1975 };
1976 
1977 
1978 /*
1979  * How we allocate LPIs:
1980  *
1981  * lpi_range_list contains ranges of LPIs that are to available to
1982  * allocate from. To allocate LPIs, just pick the first range that
1983  * fits the required allocation, and reduce it by the required
1984  * amount. Once empty, remove the range from the list.
1985  *
1986  * To free a range of LPIs, add a free range to the list, sort it and
1987  * merge the result if the new range happens to be adjacent to an
1988  * already free block.
1989  *
1990  * The consequence of the above is that allocation is cost is low, but
1991  * freeing is expensive. We assumes that freeing rarely occurs.
1992  */
1993 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1994 
1995 static DEFINE_MUTEX(lpi_range_lock);
1996 static LIST_HEAD(lpi_range_list);
1997 
1998 struct lpi_range {
1999 	struct list_head	entry;
2000 	u32			base_id;
2001 	u32			span;
2002 };
2003 
2004 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2005 {
2006 	struct lpi_range *range;
2007 
2008 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2009 	if (range) {
2010 		range->base_id = base;
2011 		range->span = span;
2012 	}
2013 
2014 	return range;
2015 }
2016 
2017 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2018 {
2019 	struct lpi_range *range, *tmp;
2020 	int err = -ENOSPC;
2021 
2022 	mutex_lock(&lpi_range_lock);
2023 
2024 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2025 		if (range->span >= nr_lpis) {
2026 			*base = range->base_id;
2027 			range->base_id += nr_lpis;
2028 			range->span -= nr_lpis;
2029 
2030 			if (range->span == 0) {
2031 				list_del(&range->entry);
2032 				kfree(range);
2033 			}
2034 
2035 			err = 0;
2036 			break;
2037 		}
2038 	}
2039 
2040 	mutex_unlock(&lpi_range_lock);
2041 
2042 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2043 	return err;
2044 }
2045 
2046 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2047 {
2048 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2049 		return;
2050 	if (a->base_id + a->span != b->base_id)
2051 		return;
2052 	b->base_id = a->base_id;
2053 	b->span += a->span;
2054 	list_del(&a->entry);
2055 	kfree(a);
2056 }
2057 
2058 static int free_lpi_range(u32 base, u32 nr_lpis)
2059 {
2060 	struct lpi_range *new, *old;
2061 
2062 	new = mk_lpi_range(base, nr_lpis);
2063 	if (!new)
2064 		return -ENOMEM;
2065 
2066 	mutex_lock(&lpi_range_lock);
2067 
2068 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2069 		if (old->base_id < base)
2070 			break;
2071 	}
2072 	/*
2073 	 * old is the last element with ->base_id smaller than base,
2074 	 * so new goes right after it. If there are no elements with
2075 	 * ->base_id smaller than base, &old->entry ends up pointing
2076 	 * at the head of the list, and inserting new it the start of
2077 	 * the list is the right thing to do in that case as well.
2078 	 */
2079 	list_add(&new->entry, &old->entry);
2080 	/*
2081 	 * Now check if we can merge with the preceding and/or
2082 	 * following ranges.
2083 	 */
2084 	merge_lpi_ranges(old, new);
2085 	merge_lpi_ranges(new, list_next_entry(new, entry));
2086 
2087 	mutex_unlock(&lpi_range_lock);
2088 	return 0;
2089 }
2090 
2091 static int __init its_lpi_init(u32 id_bits)
2092 {
2093 	u32 lpis = (1UL << id_bits) - 8192;
2094 	u32 numlpis;
2095 	int err;
2096 
2097 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2098 
2099 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2100 		lpis = numlpis;
2101 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2102 			lpis);
2103 	}
2104 
2105 	/*
2106 	 * Initializing the allocator is just the same as freeing the
2107 	 * full range of LPIs.
2108 	 */
2109 	err = free_lpi_range(8192, lpis);
2110 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2111 	return err;
2112 }
2113 
2114 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2115 {
2116 	unsigned long *bitmap = NULL;
2117 	int err = 0;
2118 
2119 	do {
2120 		err = alloc_lpi_range(nr_irqs, base);
2121 		if (!err)
2122 			break;
2123 
2124 		nr_irqs /= 2;
2125 	} while (nr_irqs > 0);
2126 
2127 	if (!nr_irqs)
2128 		err = -ENOSPC;
2129 
2130 	if (err)
2131 		goto out;
2132 
2133 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2134 	if (!bitmap)
2135 		goto out;
2136 
2137 	*nr_ids = nr_irqs;
2138 
2139 out:
2140 	if (!bitmap)
2141 		*base = *nr_ids = 0;
2142 
2143 	return bitmap;
2144 }
2145 
2146 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2147 {
2148 	WARN_ON(free_lpi_range(base, nr_ids));
2149 	kfree(bitmap);
2150 }
2151 
2152 static void gic_reset_prop_table(void *va)
2153 {
2154 	/* Priority 0xa0, Group-1, disabled */
2155 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2156 
2157 	/* Make sure the GIC will observe the written configuration */
2158 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2159 }
2160 
2161 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2162 {
2163 	struct page *prop_page;
2164 
2165 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2166 	if (!prop_page)
2167 		return NULL;
2168 
2169 	gic_reset_prop_table(page_address(prop_page));
2170 
2171 	return prop_page;
2172 }
2173 
2174 static void its_free_prop_table(struct page *prop_page)
2175 {
2176 	free_pages((unsigned long)page_address(prop_page),
2177 		   get_order(LPI_PROPBASE_SZ));
2178 }
2179 
2180 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2181 {
2182 	phys_addr_t start, end, addr_end;
2183 	u64 i;
2184 
2185 	/*
2186 	 * We don't bother checking for a kdump kernel as by
2187 	 * construction, the LPI tables are out of this kernel's
2188 	 * memory map.
2189 	 */
2190 	if (is_kdump_kernel())
2191 		return true;
2192 
2193 	addr_end = addr + size - 1;
2194 
2195 	for_each_reserved_mem_region(i, &start, &end) {
2196 		if (addr >= start && addr_end <= end)
2197 			return true;
2198 	}
2199 
2200 	/* Not found, not a good sign... */
2201 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2202 		&addr, &addr_end);
2203 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2204 	return false;
2205 }
2206 
2207 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2208 {
2209 	if (efi_enabled(EFI_CONFIG_TABLES))
2210 		return efi_mem_reserve_persistent(addr, size);
2211 
2212 	return 0;
2213 }
2214 
2215 static int __init its_setup_lpi_prop_table(void)
2216 {
2217 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2218 		u64 val;
2219 
2220 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2221 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2222 
2223 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2224 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2225 						     LPI_PROPBASE_SZ,
2226 						     MEMREMAP_WB);
2227 		gic_reset_prop_table(gic_rdists->prop_table_va);
2228 	} else {
2229 		struct page *page;
2230 
2231 		lpi_id_bits = min_t(u32,
2232 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2233 				    ITS_MAX_LPI_NRBITS);
2234 		page = its_allocate_prop_table(GFP_NOWAIT);
2235 		if (!page) {
2236 			pr_err("Failed to allocate PROPBASE\n");
2237 			return -ENOMEM;
2238 		}
2239 
2240 		gic_rdists->prop_table_pa = page_to_phys(page);
2241 		gic_rdists->prop_table_va = page_address(page);
2242 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2243 					  LPI_PROPBASE_SZ));
2244 	}
2245 
2246 	pr_info("GICv3: using LPI property table @%pa\n",
2247 		&gic_rdists->prop_table_pa);
2248 
2249 	return its_lpi_init(lpi_id_bits);
2250 }
2251 
2252 static const char *its_base_type_string[] = {
2253 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2254 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2255 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2256 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2257 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2258 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2259 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2260 };
2261 
2262 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2263 {
2264 	u32 idx = baser - its->tables;
2265 
2266 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2267 }
2268 
2269 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2270 			    u64 val)
2271 {
2272 	u32 idx = baser - its->tables;
2273 
2274 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2275 	baser->val = its_read_baser(its, baser);
2276 }
2277 
2278 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2279 			   u64 cache, u64 shr, u32 order, bool indirect)
2280 {
2281 	u64 val = its_read_baser(its, baser);
2282 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2283 	u64 type = GITS_BASER_TYPE(val);
2284 	u64 baser_phys, tmp;
2285 	u32 alloc_pages, psz;
2286 	struct page *page;
2287 	void *base;
2288 
2289 	psz = baser->psz;
2290 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2291 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2292 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2293 			&its->phys_base, its_base_type_string[type],
2294 			alloc_pages, GITS_BASER_PAGES_MAX);
2295 		alloc_pages = GITS_BASER_PAGES_MAX;
2296 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2297 	}
2298 
2299 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2300 	if (!page)
2301 		return -ENOMEM;
2302 
2303 	base = (void *)page_address(page);
2304 	baser_phys = virt_to_phys(base);
2305 
2306 	/* Check if the physical address of the memory is above 48bits */
2307 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2308 
2309 		/* 52bit PA is supported only when PageSize=64K */
2310 		if (psz != SZ_64K) {
2311 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2312 			free_pages((unsigned long)base, order);
2313 			return -ENXIO;
2314 		}
2315 
2316 		/* Convert 52bit PA to 48bit field */
2317 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2318 	}
2319 
2320 retry_baser:
2321 	val = (baser_phys					 |
2322 		(type << GITS_BASER_TYPE_SHIFT)			 |
2323 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2324 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2325 		cache						 |
2326 		shr						 |
2327 		GITS_BASER_VALID);
2328 
2329 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2330 
2331 	switch (psz) {
2332 	case SZ_4K:
2333 		val |= GITS_BASER_PAGE_SIZE_4K;
2334 		break;
2335 	case SZ_16K:
2336 		val |= GITS_BASER_PAGE_SIZE_16K;
2337 		break;
2338 	case SZ_64K:
2339 		val |= GITS_BASER_PAGE_SIZE_64K;
2340 		break;
2341 	}
2342 
2343 	its_write_baser(its, baser, val);
2344 	tmp = baser->val;
2345 
2346 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2347 		/*
2348 		 * Shareability didn't stick. Just use
2349 		 * whatever the read reported, which is likely
2350 		 * to be the only thing this redistributor
2351 		 * supports. If that's zero, make it
2352 		 * non-cacheable as well.
2353 		 */
2354 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2355 		if (!shr) {
2356 			cache = GITS_BASER_nC;
2357 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2358 		}
2359 		goto retry_baser;
2360 	}
2361 
2362 	if (val != tmp) {
2363 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2364 		       &its->phys_base, its_base_type_string[type],
2365 		       val, tmp);
2366 		free_pages((unsigned long)base, order);
2367 		return -ENXIO;
2368 	}
2369 
2370 	baser->order = order;
2371 	baser->base = base;
2372 	baser->psz = psz;
2373 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2374 
2375 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2376 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2377 		its_base_type_string[type],
2378 		(unsigned long)virt_to_phys(base),
2379 		indirect ? "indirect" : "flat", (int)esz,
2380 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2381 
2382 	return 0;
2383 }
2384 
2385 static bool its_parse_indirect_baser(struct its_node *its,
2386 				     struct its_baser *baser,
2387 				     u32 *order, u32 ids)
2388 {
2389 	u64 tmp = its_read_baser(its, baser);
2390 	u64 type = GITS_BASER_TYPE(tmp);
2391 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2392 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2393 	u32 new_order = *order;
2394 	u32 psz = baser->psz;
2395 	bool indirect = false;
2396 
2397 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2398 	if ((esz << ids) > (psz * 2)) {
2399 		/*
2400 		 * Find out whether hw supports a single or two-level table by
2401 		 * table by reading bit at offset '62' after writing '1' to it.
2402 		 */
2403 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2404 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2405 
2406 		if (indirect) {
2407 			/*
2408 			 * The size of the lvl2 table is equal to ITS page size
2409 			 * which is 'psz'. For computing lvl1 table size,
2410 			 * subtract ID bits that sparse lvl2 table from 'ids'
2411 			 * which is reported by ITS hardware times lvl1 table
2412 			 * entry size.
2413 			 */
2414 			ids -= ilog2(psz / (int)esz);
2415 			esz = GITS_LVL1_ENTRY_SIZE;
2416 		}
2417 	}
2418 
2419 	/*
2420 	 * Allocate as many entries as required to fit the
2421 	 * range of device IDs that the ITS can grok... The ID
2422 	 * space being incredibly sparse, this results in a
2423 	 * massive waste of memory if two-level device table
2424 	 * feature is not supported by hardware.
2425 	 */
2426 	new_order = max_t(u32, get_order(esz << ids), new_order);
2427 	if (new_order >= MAX_ORDER) {
2428 		new_order = MAX_ORDER - 1;
2429 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2430 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2431 			&its->phys_base, its_base_type_string[type],
2432 			device_ids(its), ids);
2433 	}
2434 
2435 	*order = new_order;
2436 
2437 	return indirect;
2438 }
2439 
2440 static u32 compute_common_aff(u64 val)
2441 {
2442 	u32 aff, clpiaff;
2443 
2444 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2445 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2446 
2447 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2448 }
2449 
2450 static u32 compute_its_aff(struct its_node *its)
2451 {
2452 	u64 val;
2453 	u32 svpet;
2454 
2455 	/*
2456 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2457 	 * the resulting affinity. We then use that to see if this match
2458 	 * our own affinity.
2459 	 */
2460 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2461 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2462 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2463 	return compute_common_aff(val);
2464 }
2465 
2466 static struct its_node *find_sibling_its(struct its_node *cur_its)
2467 {
2468 	struct its_node *its;
2469 	u32 aff;
2470 
2471 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2472 		return NULL;
2473 
2474 	aff = compute_its_aff(cur_its);
2475 
2476 	list_for_each_entry(its, &its_nodes, entry) {
2477 		u64 baser;
2478 
2479 		if (!is_v4_1(its) || its == cur_its)
2480 			continue;
2481 
2482 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2483 			continue;
2484 
2485 		if (aff != compute_its_aff(its))
2486 			continue;
2487 
2488 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2489 		baser = its->tables[2].val;
2490 		if (!(baser & GITS_BASER_VALID))
2491 			continue;
2492 
2493 		return its;
2494 	}
2495 
2496 	return NULL;
2497 }
2498 
2499 static void its_free_tables(struct its_node *its)
2500 {
2501 	int i;
2502 
2503 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2504 		if (its->tables[i].base) {
2505 			free_pages((unsigned long)its->tables[i].base,
2506 				   its->tables[i].order);
2507 			its->tables[i].base = NULL;
2508 		}
2509 	}
2510 }
2511 
2512 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2513 {
2514 	u64 psz = SZ_64K;
2515 
2516 	while (psz) {
2517 		u64 val, gpsz;
2518 
2519 		val = its_read_baser(its, baser);
2520 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2521 
2522 		switch (psz) {
2523 		case SZ_64K:
2524 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2525 			break;
2526 		case SZ_16K:
2527 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2528 			break;
2529 		case SZ_4K:
2530 		default:
2531 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2532 			break;
2533 		}
2534 
2535 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2536 
2537 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2538 		its_write_baser(its, baser, val);
2539 
2540 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2541 			break;
2542 
2543 		switch (psz) {
2544 		case SZ_64K:
2545 			psz = SZ_16K;
2546 			break;
2547 		case SZ_16K:
2548 			psz = SZ_4K;
2549 			break;
2550 		case SZ_4K:
2551 		default:
2552 			return -1;
2553 		}
2554 	}
2555 
2556 	baser->psz = psz;
2557 	return 0;
2558 }
2559 
2560 static int its_alloc_tables(struct its_node *its)
2561 {
2562 	u64 shr = GITS_BASER_InnerShareable;
2563 	u64 cache = GITS_BASER_RaWaWb;
2564 	int err, i;
2565 
2566 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2567 		/* erratum 24313: ignore memory access type */
2568 		cache = GITS_BASER_nCnB;
2569 
2570 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2571 		struct its_baser *baser = its->tables + i;
2572 		u64 val = its_read_baser(its, baser);
2573 		u64 type = GITS_BASER_TYPE(val);
2574 		bool indirect = false;
2575 		u32 order;
2576 
2577 		if (type == GITS_BASER_TYPE_NONE)
2578 			continue;
2579 
2580 		if (its_probe_baser_psz(its, baser)) {
2581 			its_free_tables(its);
2582 			return -ENXIO;
2583 		}
2584 
2585 		order = get_order(baser->psz);
2586 
2587 		switch (type) {
2588 		case GITS_BASER_TYPE_DEVICE:
2589 			indirect = its_parse_indirect_baser(its, baser, &order,
2590 							    device_ids(its));
2591 			break;
2592 
2593 		case GITS_BASER_TYPE_VCPU:
2594 			if (is_v4_1(its)) {
2595 				struct its_node *sibling;
2596 
2597 				WARN_ON(i != 2);
2598 				if ((sibling = find_sibling_its(its))) {
2599 					*baser = sibling->tables[2];
2600 					its_write_baser(its, baser, baser->val);
2601 					continue;
2602 				}
2603 			}
2604 
2605 			indirect = its_parse_indirect_baser(its, baser, &order,
2606 							    ITS_MAX_VPEID_BITS);
2607 			break;
2608 		}
2609 
2610 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2611 		if (err < 0) {
2612 			its_free_tables(its);
2613 			return err;
2614 		}
2615 
2616 		/* Update settings which will be used for next BASERn */
2617 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2618 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2619 	}
2620 
2621 	return 0;
2622 }
2623 
2624 static u64 inherit_vpe_l1_table_from_its(void)
2625 {
2626 	struct its_node *its;
2627 	u64 val;
2628 	u32 aff;
2629 
2630 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2631 	aff = compute_common_aff(val);
2632 
2633 	list_for_each_entry(its, &its_nodes, entry) {
2634 		u64 baser, addr;
2635 
2636 		if (!is_v4_1(its))
2637 			continue;
2638 
2639 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2640 			continue;
2641 
2642 		if (aff != compute_its_aff(its))
2643 			continue;
2644 
2645 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2646 		baser = its->tables[2].val;
2647 		if (!(baser & GITS_BASER_VALID))
2648 			continue;
2649 
2650 		/* We have a winner! */
2651 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2652 
2653 		val  = GICR_VPROPBASER_4_1_VALID;
2654 		if (baser & GITS_BASER_INDIRECT)
2655 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2656 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2657 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2658 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2659 		case GIC_PAGE_SIZE_64K:
2660 			addr = GITS_BASER_ADDR_48_to_52(baser);
2661 			break;
2662 		default:
2663 			addr = baser & GENMASK_ULL(47, 12);
2664 			break;
2665 		}
2666 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2667 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2668 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2669 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2670 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2671 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2672 
2673 		return val;
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2680 {
2681 	u32 aff;
2682 	u64 val;
2683 	int cpu;
2684 
2685 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2686 	aff = compute_common_aff(val);
2687 
2688 	for_each_possible_cpu(cpu) {
2689 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2690 
2691 		if (!base || cpu == smp_processor_id())
2692 			continue;
2693 
2694 		val = gic_read_typer(base + GICR_TYPER);
2695 		if (aff != compute_common_aff(val))
2696 			continue;
2697 
2698 		/*
2699 		 * At this point, we have a victim. This particular CPU
2700 		 * has already booted, and has an affinity that matches
2701 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2702 		 * Make sure we don't write the Z bit in that case.
2703 		 */
2704 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2705 		val &= ~GICR_VPROPBASER_4_1_Z;
2706 
2707 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2708 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2709 
2710 		return val;
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 static bool allocate_vpe_l2_table(int cpu, u32 id)
2717 {
2718 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2719 	unsigned int psz, esz, idx, npg, gpsz;
2720 	u64 val;
2721 	struct page *page;
2722 	__le64 *table;
2723 
2724 	if (!gic_rdists->has_rvpeid)
2725 		return true;
2726 
2727 	/* Skip non-present CPUs */
2728 	if (!base)
2729 		return true;
2730 
2731 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2732 
2733 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2734 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2735 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2736 
2737 	switch (gpsz) {
2738 	default:
2739 		WARN_ON(1);
2740 		/* fall through */
2741 	case GIC_PAGE_SIZE_4K:
2742 		psz = SZ_4K;
2743 		break;
2744 	case GIC_PAGE_SIZE_16K:
2745 		psz = SZ_16K;
2746 		break;
2747 	case GIC_PAGE_SIZE_64K:
2748 		psz = SZ_64K;
2749 		break;
2750 	}
2751 
2752 	/* Don't allow vpe_id that exceeds single, flat table limit */
2753 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2754 		return (id < (npg * psz / (esz * SZ_8)));
2755 
2756 	/* Compute 1st level table index & check if that exceeds table limit */
2757 	idx = id >> ilog2(psz / (esz * SZ_8));
2758 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2759 		return false;
2760 
2761 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2762 
2763 	/* Allocate memory for 2nd level table */
2764 	if (!table[idx]) {
2765 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2766 		if (!page)
2767 			return false;
2768 
2769 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2770 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2771 			gic_flush_dcache_to_poc(page_address(page), psz);
2772 
2773 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2774 
2775 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2776 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2777 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2778 
2779 		/* Ensure updated table contents are visible to RD hardware */
2780 		dsb(sy);
2781 	}
2782 
2783 	return true;
2784 }
2785 
2786 static int allocate_vpe_l1_table(void)
2787 {
2788 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2789 	u64 val, gpsz, npg, pa;
2790 	unsigned int psz = SZ_64K;
2791 	unsigned int np, epp, esz;
2792 	struct page *page;
2793 
2794 	if (!gic_rdists->has_rvpeid)
2795 		return 0;
2796 
2797 	/*
2798 	 * if VPENDBASER.Valid is set, disable any previously programmed
2799 	 * VPE by setting PendingLast while clearing Valid. This has the
2800 	 * effect of making sure no doorbell will be generated and we can
2801 	 * then safely clear VPROPBASER.Valid.
2802 	 */
2803 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2804 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2805 				      vlpi_base + GICR_VPENDBASER);
2806 
2807 	/*
2808 	 * If we can inherit the configuration from another RD, let's do
2809 	 * so. Otherwise, we have to go through the allocation process. We
2810 	 * assume that all RDs have the exact same requirements, as
2811 	 * nothing will work otherwise.
2812 	 */
2813 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2814 	if (val & GICR_VPROPBASER_4_1_VALID)
2815 		goto out;
2816 
2817 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2818 	if (!gic_data_rdist()->vpe_table_mask)
2819 		return -ENOMEM;
2820 
2821 	val = inherit_vpe_l1_table_from_its();
2822 	if (val & GICR_VPROPBASER_4_1_VALID)
2823 		goto out;
2824 
2825 	/* First probe the page size */
2826 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2827 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2828 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2829 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2830 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2831 
2832 	switch (gpsz) {
2833 	default:
2834 		gpsz = GIC_PAGE_SIZE_4K;
2835 		/* fall through */
2836 	case GIC_PAGE_SIZE_4K:
2837 		psz = SZ_4K;
2838 		break;
2839 	case GIC_PAGE_SIZE_16K:
2840 		psz = SZ_16K;
2841 		break;
2842 	case GIC_PAGE_SIZE_64K:
2843 		psz = SZ_64K;
2844 		break;
2845 	}
2846 
2847 	/*
2848 	 * Start populating the register from scratch, including RO fields
2849 	 * (which we want to print in debug cases...)
2850 	 */
2851 	val = 0;
2852 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2853 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2854 
2855 	/* How many entries per GIC page? */
2856 	esz++;
2857 	epp = psz / (esz * SZ_8);
2858 
2859 	/*
2860 	 * If we need more than just a single L1 page, flag the table
2861 	 * as indirect and compute the number of required L1 pages.
2862 	 */
2863 	if (epp < ITS_MAX_VPEID) {
2864 		int nl2;
2865 
2866 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2867 
2868 		/* Number of L2 pages required to cover the VPEID space */
2869 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2870 
2871 		/* Number of L1 pages to point to the L2 pages */
2872 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2873 	} else {
2874 		npg = 1;
2875 	}
2876 
2877 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2878 
2879 	/* Right, that's the number of CPU pages we need for L1 */
2880 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2881 
2882 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2883 		 np, npg, psz, epp, esz);
2884 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2885 	if (!page)
2886 		return -ENOMEM;
2887 
2888 	gic_data_rdist()->vpe_l1_base = page_address(page);
2889 	pa = virt_to_phys(page_address(page));
2890 	WARN_ON(!IS_ALIGNED(pa, psz));
2891 
2892 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2893 	val |= GICR_VPROPBASER_RaWb;
2894 	val |= GICR_VPROPBASER_InnerShareable;
2895 	val |= GICR_VPROPBASER_4_1_Z;
2896 	val |= GICR_VPROPBASER_4_1_VALID;
2897 
2898 out:
2899 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2900 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2901 
2902 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2903 		 smp_processor_id(), val,
2904 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2905 
2906 	return 0;
2907 }
2908 
2909 static int its_alloc_collections(struct its_node *its)
2910 {
2911 	int i;
2912 
2913 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2914 				   GFP_KERNEL);
2915 	if (!its->collections)
2916 		return -ENOMEM;
2917 
2918 	for (i = 0; i < nr_cpu_ids; i++)
2919 		its->collections[i].target_address = ~0ULL;
2920 
2921 	return 0;
2922 }
2923 
2924 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2925 {
2926 	struct page *pend_page;
2927 
2928 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2929 				get_order(LPI_PENDBASE_SZ));
2930 	if (!pend_page)
2931 		return NULL;
2932 
2933 	/* Make sure the GIC will observe the zero-ed page */
2934 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2935 
2936 	return pend_page;
2937 }
2938 
2939 static void its_free_pending_table(struct page *pt)
2940 {
2941 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2942 }
2943 
2944 /*
2945  * Booting with kdump and LPIs enabled is generally fine. Any other
2946  * case is wrong in the absence of firmware/EFI support.
2947  */
2948 static bool enabled_lpis_allowed(void)
2949 {
2950 	phys_addr_t addr;
2951 	u64 val;
2952 
2953 	/* Check whether the property table is in a reserved region */
2954 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2955 	addr = val & GENMASK_ULL(51, 12);
2956 
2957 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2958 }
2959 
2960 static int __init allocate_lpi_tables(void)
2961 {
2962 	u64 val;
2963 	int err, cpu;
2964 
2965 	/*
2966 	 * If LPIs are enabled while we run this from the boot CPU,
2967 	 * flag the RD tables as pre-allocated if the stars do align.
2968 	 */
2969 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2970 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2971 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2972 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2973 		pr_info("GICv3: Using preallocated redistributor tables\n");
2974 	}
2975 
2976 	err = its_setup_lpi_prop_table();
2977 	if (err)
2978 		return err;
2979 
2980 	/*
2981 	 * We allocate all the pending tables anyway, as we may have a
2982 	 * mix of RDs that have had LPIs enabled, and some that
2983 	 * don't. We'll free the unused ones as each CPU comes online.
2984 	 */
2985 	for_each_possible_cpu(cpu) {
2986 		struct page *pend_page;
2987 
2988 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2989 		if (!pend_page) {
2990 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2991 			return -ENOMEM;
2992 		}
2993 
2994 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2995 	}
2996 
2997 	return 0;
2998 }
2999 
3000 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3001 {
3002 	u32 count = 1000000;	/* 1s! */
3003 	bool clean;
3004 	u64 val;
3005 
3006 	val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3007 	val &= ~GICR_VPENDBASER_Valid;
3008 	val &= ~clr;
3009 	val |= set;
3010 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3011 
3012 	do {
3013 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3014 		clean = !(val & GICR_VPENDBASER_Dirty);
3015 		if (!clean) {
3016 			count--;
3017 			cpu_relax();
3018 			udelay(1);
3019 		}
3020 	} while (!clean && count);
3021 
3022 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3023 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3024 		val |= GICR_VPENDBASER_PendingLast;
3025 	}
3026 
3027 	return val;
3028 }
3029 
3030 static void its_cpu_init_lpis(void)
3031 {
3032 	void __iomem *rbase = gic_data_rdist_rd_base();
3033 	struct page *pend_page;
3034 	phys_addr_t paddr;
3035 	u64 val, tmp;
3036 
3037 	if (gic_data_rdist()->lpi_enabled)
3038 		return;
3039 
3040 	val = readl_relaxed(rbase + GICR_CTLR);
3041 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3042 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3043 		/*
3044 		 * Check that we get the same property table on all
3045 		 * RDs. If we don't, this is hopeless.
3046 		 */
3047 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3048 		paddr &= GENMASK_ULL(51, 12);
3049 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3050 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3051 
3052 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3053 		paddr &= GENMASK_ULL(51, 16);
3054 
3055 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3056 		its_free_pending_table(gic_data_rdist()->pend_page);
3057 		gic_data_rdist()->pend_page = NULL;
3058 
3059 		goto out;
3060 	}
3061 
3062 	pend_page = gic_data_rdist()->pend_page;
3063 	paddr = page_to_phys(pend_page);
3064 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3065 
3066 	/* set PROPBASE */
3067 	val = (gic_rdists->prop_table_pa |
3068 	       GICR_PROPBASER_InnerShareable |
3069 	       GICR_PROPBASER_RaWaWb |
3070 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3071 
3072 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3073 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3074 
3075 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3076 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3077 			/*
3078 			 * The HW reports non-shareable, we must
3079 			 * remove the cacheability attributes as
3080 			 * well.
3081 			 */
3082 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3083 				 GICR_PROPBASER_CACHEABILITY_MASK);
3084 			val |= GICR_PROPBASER_nC;
3085 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3086 		}
3087 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3088 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3089 	}
3090 
3091 	/* set PENDBASE */
3092 	val = (page_to_phys(pend_page) |
3093 	       GICR_PENDBASER_InnerShareable |
3094 	       GICR_PENDBASER_RaWaWb);
3095 
3096 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3097 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3098 
3099 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3100 		/*
3101 		 * The HW reports non-shareable, we must remove the
3102 		 * cacheability attributes as well.
3103 		 */
3104 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3105 			 GICR_PENDBASER_CACHEABILITY_MASK);
3106 		val |= GICR_PENDBASER_nC;
3107 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3108 	}
3109 
3110 	/* Enable LPIs */
3111 	val = readl_relaxed(rbase + GICR_CTLR);
3112 	val |= GICR_CTLR_ENABLE_LPIS;
3113 	writel_relaxed(val, rbase + GICR_CTLR);
3114 
3115 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3116 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3117 
3118 		/*
3119 		 * It's possible for CPU to receive VLPIs before it is
3120 		 * sheduled as a vPE, especially for the first CPU, and the
3121 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3122 		 * as out of range and dropped by GIC.
3123 		 * So we initialize IDbits to known value to avoid VLPI drop.
3124 		 */
3125 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3126 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3127 			smp_processor_id(), val);
3128 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3129 
3130 		/*
3131 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3132 		 * ancient programming gets left in and has possibility of
3133 		 * corrupting memory.
3134 		 */
3135 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3136 	}
3137 
3138 	if (allocate_vpe_l1_table()) {
3139 		/*
3140 		 * If the allocation has failed, we're in massive trouble.
3141 		 * Disable direct injection, and pray that no VM was
3142 		 * already running...
3143 		 */
3144 		gic_rdists->has_rvpeid = false;
3145 		gic_rdists->has_vlpis = false;
3146 	}
3147 
3148 	/* Make sure the GIC has seen the above */
3149 	dsb(sy);
3150 out:
3151 	gic_data_rdist()->lpi_enabled = true;
3152 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3153 		smp_processor_id(),
3154 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
3155 		&paddr);
3156 }
3157 
3158 static void its_cpu_init_collection(struct its_node *its)
3159 {
3160 	int cpu = smp_processor_id();
3161 	u64 target;
3162 
3163 	/* avoid cross node collections and its mapping */
3164 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3165 		struct device_node *cpu_node;
3166 
3167 		cpu_node = of_get_cpu_node(cpu, NULL);
3168 		if (its->numa_node != NUMA_NO_NODE &&
3169 			its->numa_node != of_node_to_nid(cpu_node))
3170 			return;
3171 	}
3172 
3173 	/*
3174 	 * We now have to bind each collection to its target
3175 	 * redistributor.
3176 	 */
3177 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3178 		/*
3179 		 * This ITS wants the physical address of the
3180 		 * redistributor.
3181 		 */
3182 		target = gic_data_rdist()->phys_base;
3183 	} else {
3184 		/* This ITS wants a linear CPU number. */
3185 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3186 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3187 	}
3188 
3189 	/* Perform collection mapping */
3190 	its->collections[cpu].target_address = target;
3191 	its->collections[cpu].col_id = cpu;
3192 
3193 	its_send_mapc(its, &its->collections[cpu], 1);
3194 	its_send_invall(its, &its->collections[cpu]);
3195 }
3196 
3197 static void its_cpu_init_collections(void)
3198 {
3199 	struct its_node *its;
3200 
3201 	raw_spin_lock(&its_lock);
3202 
3203 	list_for_each_entry(its, &its_nodes, entry)
3204 		its_cpu_init_collection(its);
3205 
3206 	raw_spin_unlock(&its_lock);
3207 }
3208 
3209 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3210 {
3211 	struct its_device *its_dev = NULL, *tmp;
3212 	unsigned long flags;
3213 
3214 	raw_spin_lock_irqsave(&its->lock, flags);
3215 
3216 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3217 		if (tmp->device_id == dev_id) {
3218 			its_dev = tmp;
3219 			break;
3220 		}
3221 	}
3222 
3223 	raw_spin_unlock_irqrestore(&its->lock, flags);
3224 
3225 	return its_dev;
3226 }
3227 
3228 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3229 {
3230 	int i;
3231 
3232 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3233 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3234 			return &its->tables[i];
3235 	}
3236 
3237 	return NULL;
3238 }
3239 
3240 static bool its_alloc_table_entry(struct its_node *its,
3241 				  struct its_baser *baser, u32 id)
3242 {
3243 	struct page *page;
3244 	u32 esz, idx;
3245 	__le64 *table;
3246 
3247 	/* Don't allow device id that exceeds single, flat table limit */
3248 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3249 	if (!(baser->val & GITS_BASER_INDIRECT))
3250 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3251 
3252 	/* Compute 1st level table index & check if that exceeds table limit */
3253 	idx = id >> ilog2(baser->psz / esz);
3254 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3255 		return false;
3256 
3257 	table = baser->base;
3258 
3259 	/* Allocate memory for 2nd level table */
3260 	if (!table[idx]) {
3261 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3262 					get_order(baser->psz));
3263 		if (!page)
3264 			return false;
3265 
3266 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3267 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3268 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3269 
3270 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3271 
3272 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3273 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3274 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3275 
3276 		/* Ensure updated table contents are visible to ITS hardware */
3277 		dsb(sy);
3278 	}
3279 
3280 	return true;
3281 }
3282 
3283 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3284 {
3285 	struct its_baser *baser;
3286 
3287 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3288 
3289 	/* Don't allow device id that exceeds ITS hardware limit */
3290 	if (!baser)
3291 		return (ilog2(dev_id) < device_ids(its));
3292 
3293 	return its_alloc_table_entry(its, baser, dev_id);
3294 }
3295 
3296 static bool its_alloc_vpe_table(u32 vpe_id)
3297 {
3298 	struct its_node *its;
3299 	int cpu;
3300 
3301 	/*
3302 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3303 	 * could try and only do it on ITSs corresponding to devices
3304 	 * that have interrupts targeted at this VPE, but the
3305 	 * complexity becomes crazy (and you have tons of memory
3306 	 * anyway, right?).
3307 	 */
3308 	list_for_each_entry(its, &its_nodes, entry) {
3309 		struct its_baser *baser;
3310 
3311 		if (!is_v4(its))
3312 			continue;
3313 
3314 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3315 		if (!baser)
3316 			return false;
3317 
3318 		if (!its_alloc_table_entry(its, baser, vpe_id))
3319 			return false;
3320 	}
3321 
3322 	/* Non v4.1? No need to iterate RDs and go back early. */
3323 	if (!gic_rdists->has_rvpeid)
3324 		return true;
3325 
3326 	/*
3327 	 * Make sure the L2 tables are allocated for all copies of
3328 	 * the L1 table on *all* v4.1 RDs.
3329 	 */
3330 	for_each_possible_cpu(cpu) {
3331 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3332 			return false;
3333 	}
3334 
3335 	return true;
3336 }
3337 
3338 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3339 					    int nvecs, bool alloc_lpis)
3340 {
3341 	struct its_device *dev;
3342 	unsigned long *lpi_map = NULL;
3343 	unsigned long flags;
3344 	u16 *col_map = NULL;
3345 	void *itt;
3346 	int lpi_base;
3347 	int nr_lpis;
3348 	int nr_ites;
3349 	int sz;
3350 
3351 	if (!its_alloc_device_table(its, dev_id))
3352 		return NULL;
3353 
3354 	if (WARN_ON(!is_power_of_2(nvecs)))
3355 		nvecs = roundup_pow_of_two(nvecs);
3356 
3357 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3358 	/*
3359 	 * Even if the device wants a single LPI, the ITT must be
3360 	 * sized as a power of two (and you need at least one bit...).
3361 	 */
3362 	nr_ites = max(2, nvecs);
3363 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3364 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3365 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3366 	if (alloc_lpis) {
3367 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3368 		if (lpi_map)
3369 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3370 					  GFP_KERNEL);
3371 	} else {
3372 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3373 		nr_lpis = 0;
3374 		lpi_base = 0;
3375 	}
3376 
3377 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3378 		kfree(dev);
3379 		kfree(itt);
3380 		kfree(lpi_map);
3381 		kfree(col_map);
3382 		return NULL;
3383 	}
3384 
3385 	gic_flush_dcache_to_poc(itt, sz);
3386 
3387 	dev->its = its;
3388 	dev->itt = itt;
3389 	dev->nr_ites = nr_ites;
3390 	dev->event_map.lpi_map = lpi_map;
3391 	dev->event_map.col_map = col_map;
3392 	dev->event_map.lpi_base = lpi_base;
3393 	dev->event_map.nr_lpis = nr_lpis;
3394 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3395 	dev->device_id = dev_id;
3396 	INIT_LIST_HEAD(&dev->entry);
3397 
3398 	raw_spin_lock_irqsave(&its->lock, flags);
3399 	list_add(&dev->entry, &its->its_device_list);
3400 	raw_spin_unlock_irqrestore(&its->lock, flags);
3401 
3402 	/* Map device to its ITT */
3403 	its_send_mapd(dev, 1);
3404 
3405 	return dev;
3406 }
3407 
3408 static void its_free_device(struct its_device *its_dev)
3409 {
3410 	unsigned long flags;
3411 
3412 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3413 	list_del(&its_dev->entry);
3414 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3415 	kfree(its_dev->event_map.col_map);
3416 	kfree(its_dev->itt);
3417 	kfree(its_dev);
3418 }
3419 
3420 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3421 {
3422 	int idx;
3423 
3424 	/* Find a free LPI region in lpi_map and allocate them. */
3425 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3426 				      dev->event_map.nr_lpis,
3427 				      get_count_order(nvecs));
3428 	if (idx < 0)
3429 		return -ENOSPC;
3430 
3431 	*hwirq = dev->event_map.lpi_base + idx;
3432 
3433 	return 0;
3434 }
3435 
3436 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3437 			   int nvec, msi_alloc_info_t *info)
3438 {
3439 	struct its_node *its;
3440 	struct its_device *its_dev;
3441 	struct msi_domain_info *msi_info;
3442 	u32 dev_id;
3443 	int err = 0;
3444 
3445 	/*
3446 	 * We ignore "dev" entirely, and rely on the dev_id that has
3447 	 * been passed via the scratchpad. This limits this domain's
3448 	 * usefulness to upper layers that definitely know that they
3449 	 * are built on top of the ITS.
3450 	 */
3451 	dev_id = info->scratchpad[0].ul;
3452 
3453 	msi_info = msi_get_domain_info(domain);
3454 	its = msi_info->data;
3455 
3456 	if (!gic_rdists->has_direct_lpi &&
3457 	    vpe_proxy.dev &&
3458 	    vpe_proxy.dev->its == its &&
3459 	    dev_id == vpe_proxy.dev->device_id) {
3460 		/* Bad luck. Get yourself a better implementation */
3461 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3462 			  dev_id);
3463 		return -EINVAL;
3464 	}
3465 
3466 	mutex_lock(&its->dev_alloc_lock);
3467 	its_dev = its_find_device(its, dev_id);
3468 	if (its_dev) {
3469 		/*
3470 		 * We already have seen this ID, probably through
3471 		 * another alias (PCI bridge of some sort). No need to
3472 		 * create the device.
3473 		 */
3474 		its_dev->shared = true;
3475 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3476 		goto out;
3477 	}
3478 
3479 	its_dev = its_create_device(its, dev_id, nvec, true);
3480 	if (!its_dev) {
3481 		err = -ENOMEM;
3482 		goto out;
3483 	}
3484 
3485 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3486 out:
3487 	mutex_unlock(&its->dev_alloc_lock);
3488 	info->scratchpad[0].ptr = its_dev;
3489 	return err;
3490 }
3491 
3492 static struct msi_domain_ops its_msi_domain_ops = {
3493 	.msi_prepare	= its_msi_prepare,
3494 };
3495 
3496 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3497 				    unsigned int virq,
3498 				    irq_hw_number_t hwirq)
3499 {
3500 	struct irq_fwspec fwspec;
3501 
3502 	if (irq_domain_get_of_node(domain->parent)) {
3503 		fwspec.fwnode = domain->parent->fwnode;
3504 		fwspec.param_count = 3;
3505 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3506 		fwspec.param[1] = hwirq;
3507 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3508 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3509 		fwspec.fwnode = domain->parent->fwnode;
3510 		fwspec.param_count = 2;
3511 		fwspec.param[0] = hwirq;
3512 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3513 	} else {
3514 		return -EINVAL;
3515 	}
3516 
3517 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3518 }
3519 
3520 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3521 				unsigned int nr_irqs, void *args)
3522 {
3523 	msi_alloc_info_t *info = args;
3524 	struct its_device *its_dev = info->scratchpad[0].ptr;
3525 	struct its_node *its = its_dev->its;
3526 	struct irq_data *irqd;
3527 	irq_hw_number_t hwirq;
3528 	int err;
3529 	int i;
3530 
3531 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3532 	if (err)
3533 		return err;
3534 
3535 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3536 	if (err)
3537 		return err;
3538 
3539 	for (i = 0; i < nr_irqs; i++) {
3540 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3541 		if (err)
3542 			return err;
3543 
3544 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3545 					      hwirq + i, &its_irq_chip, its_dev);
3546 		irqd = irq_get_irq_data(virq + i);
3547 		irqd_set_single_target(irqd);
3548 		irqd_set_affinity_on_activate(irqd);
3549 		pr_debug("ID:%d pID:%d vID:%d\n",
3550 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3551 			 (int)(hwirq + i), virq + i);
3552 	}
3553 
3554 	return 0;
3555 }
3556 
3557 static int its_irq_domain_activate(struct irq_domain *domain,
3558 				   struct irq_data *d, bool reserve)
3559 {
3560 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3561 	u32 event = its_get_event_id(d);
3562 	int cpu;
3563 
3564 	cpu = its_select_cpu(d, cpu_online_mask);
3565 	if (cpu < 0 || cpu >= nr_cpu_ids)
3566 		return -EINVAL;
3567 
3568 	its_inc_lpi_count(d, cpu);
3569 	its_dev->event_map.col_map[event] = cpu;
3570 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3571 
3572 	/* Map the GIC IRQ and event to the device */
3573 	its_send_mapti(its_dev, d->hwirq, event);
3574 	return 0;
3575 }
3576 
3577 static void its_irq_domain_deactivate(struct irq_domain *domain,
3578 				      struct irq_data *d)
3579 {
3580 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3581 	u32 event = its_get_event_id(d);
3582 
3583 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3584 	/* Stop the delivery of interrupts */
3585 	its_send_discard(its_dev, event);
3586 }
3587 
3588 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3589 				unsigned int nr_irqs)
3590 {
3591 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3592 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3593 	struct its_node *its = its_dev->its;
3594 	int i;
3595 
3596 	bitmap_release_region(its_dev->event_map.lpi_map,
3597 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3598 			      get_count_order(nr_irqs));
3599 
3600 	for (i = 0; i < nr_irqs; i++) {
3601 		struct irq_data *data = irq_domain_get_irq_data(domain,
3602 								virq + i);
3603 		/* Nuke the entry in the domain */
3604 		irq_domain_reset_irq_data(data);
3605 	}
3606 
3607 	mutex_lock(&its->dev_alloc_lock);
3608 
3609 	/*
3610 	 * If all interrupts have been freed, start mopping the
3611 	 * floor. This is conditionned on the device not being shared.
3612 	 */
3613 	if (!its_dev->shared &&
3614 	    bitmap_empty(its_dev->event_map.lpi_map,
3615 			 its_dev->event_map.nr_lpis)) {
3616 		its_lpi_free(its_dev->event_map.lpi_map,
3617 			     its_dev->event_map.lpi_base,
3618 			     its_dev->event_map.nr_lpis);
3619 
3620 		/* Unmap device/itt */
3621 		its_send_mapd(its_dev, 0);
3622 		its_free_device(its_dev);
3623 	}
3624 
3625 	mutex_unlock(&its->dev_alloc_lock);
3626 
3627 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3628 }
3629 
3630 static const struct irq_domain_ops its_domain_ops = {
3631 	.alloc			= its_irq_domain_alloc,
3632 	.free			= its_irq_domain_free,
3633 	.activate		= its_irq_domain_activate,
3634 	.deactivate		= its_irq_domain_deactivate,
3635 };
3636 
3637 /*
3638  * This is insane.
3639  *
3640  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3641  * likely), the only way to perform an invalidate is to use a fake
3642  * device to issue an INV command, implying that the LPI has first
3643  * been mapped to some event on that device. Since this is not exactly
3644  * cheap, we try to keep that mapping around as long as possible, and
3645  * only issue an UNMAP if we're short on available slots.
3646  *
3647  * Broken by design(tm).
3648  *
3649  * GICv4.1, on the other hand, mandates that we're able to invalidate
3650  * by writing to a MMIO register. It doesn't implement the whole of
3651  * DirectLPI, but that's good enough. And most of the time, we don't
3652  * even have to invalidate anything, as the redistributor can be told
3653  * whether to generate a doorbell or not (we thus leave it enabled,
3654  * always).
3655  */
3656 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3657 {
3658 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3659 	if (gic_rdists->has_rvpeid)
3660 		return;
3661 
3662 	/* Already unmapped? */
3663 	if (vpe->vpe_proxy_event == -1)
3664 		return;
3665 
3666 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3667 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3668 
3669 	/*
3670 	 * We don't track empty slots at all, so let's move the
3671 	 * next_victim pointer if we can quickly reuse that slot
3672 	 * instead of nuking an existing entry. Not clear that this is
3673 	 * always a win though, and this might just generate a ripple
3674 	 * effect... Let's just hope VPEs don't migrate too often.
3675 	 */
3676 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3677 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3678 
3679 	vpe->vpe_proxy_event = -1;
3680 }
3681 
3682 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3683 {
3684 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3685 	if (gic_rdists->has_rvpeid)
3686 		return;
3687 
3688 	if (!gic_rdists->has_direct_lpi) {
3689 		unsigned long flags;
3690 
3691 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3692 		its_vpe_db_proxy_unmap_locked(vpe);
3693 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3694 	}
3695 }
3696 
3697 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3698 {
3699 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3700 	if (gic_rdists->has_rvpeid)
3701 		return;
3702 
3703 	/* Already mapped? */
3704 	if (vpe->vpe_proxy_event != -1)
3705 		return;
3706 
3707 	/* This slot was already allocated. Kick the other VPE out. */
3708 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3709 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3710 
3711 	/* Map the new VPE instead */
3712 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3713 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3714 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3715 
3716 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3717 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3718 }
3719 
3720 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3721 {
3722 	unsigned long flags;
3723 	struct its_collection *target_col;
3724 
3725 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3726 	if (gic_rdists->has_rvpeid)
3727 		return;
3728 
3729 	if (gic_rdists->has_direct_lpi) {
3730 		void __iomem *rdbase;
3731 
3732 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3733 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3734 		wait_for_syncr(rdbase);
3735 
3736 		return;
3737 	}
3738 
3739 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3740 
3741 	its_vpe_db_proxy_map_locked(vpe);
3742 
3743 	target_col = &vpe_proxy.dev->its->collections[to];
3744 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3745 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3746 
3747 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3748 }
3749 
3750 static int its_vpe_set_affinity(struct irq_data *d,
3751 				const struct cpumask *mask_val,
3752 				bool force)
3753 {
3754 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3755 	int from, cpu = cpumask_first(mask_val);
3756 	unsigned long flags;
3757 
3758 	/*
3759 	 * Changing affinity is mega expensive, so let's be as lazy as
3760 	 * we can and only do it if we really have to. Also, if mapped
3761 	 * into the proxy device, we need to move the doorbell
3762 	 * interrupt to its new location.
3763 	 *
3764 	 * Another thing is that changing the affinity of a vPE affects
3765 	 * *other interrupts* such as all the vLPIs that are routed to
3766 	 * this vPE. This means that the irq_desc lock is not enough to
3767 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3768 	 * during the update, hence the lock below which must also be
3769 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3770 	 */
3771 	from = vpe_to_cpuid_lock(vpe, &flags);
3772 	if (from == cpu)
3773 		goto out;
3774 
3775 	vpe->col_idx = cpu;
3776 
3777 	/*
3778 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3779 	 * is sharing its VPE table with the current one.
3780 	 */
3781 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3782 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3783 		goto out;
3784 
3785 	its_send_vmovp(vpe);
3786 	its_vpe_db_proxy_move(vpe, from, cpu);
3787 
3788 out:
3789 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3790 	vpe_to_cpuid_unlock(vpe, flags);
3791 
3792 	return IRQ_SET_MASK_OK_DONE;
3793 }
3794 
3795 static void its_wait_vpt_parse_complete(void)
3796 {
3797 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3798 	u64 val;
3799 
3800 	if (!gic_rdists->has_vpend_valid_dirty)
3801 		return;
3802 
3803 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3804 						       val,
3805 						       !(val & GICR_VPENDBASER_Dirty),
3806 						       10, 500));
3807 }
3808 
3809 static void its_vpe_schedule(struct its_vpe *vpe)
3810 {
3811 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3812 	u64 val;
3813 
3814 	/* Schedule the VPE */
3815 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3816 		GENMASK_ULL(51, 12);
3817 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3818 	val |= GICR_VPROPBASER_RaWb;
3819 	val |= GICR_VPROPBASER_InnerShareable;
3820 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3821 
3822 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3823 		GENMASK_ULL(51, 16);
3824 	val |= GICR_VPENDBASER_RaWaWb;
3825 	val |= GICR_VPENDBASER_InnerShareable;
3826 	/*
3827 	 * There is no good way of finding out if the pending table is
3828 	 * empty as we can race against the doorbell interrupt very
3829 	 * easily. So in the end, vpe->pending_last is only an
3830 	 * indication that the vcpu has something pending, not one
3831 	 * that the pending table is empty. A good implementation
3832 	 * would be able to read its coarse map pretty quickly anyway,
3833 	 * making this a tolerable issue.
3834 	 */
3835 	val |= GICR_VPENDBASER_PendingLast;
3836 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3837 	val |= GICR_VPENDBASER_Valid;
3838 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3839 
3840 	its_wait_vpt_parse_complete();
3841 }
3842 
3843 static void its_vpe_deschedule(struct its_vpe *vpe)
3844 {
3845 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3846 	u64 val;
3847 
3848 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3849 
3850 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3851 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3852 }
3853 
3854 static void its_vpe_invall(struct its_vpe *vpe)
3855 {
3856 	struct its_node *its;
3857 
3858 	list_for_each_entry(its, &its_nodes, entry) {
3859 		if (!is_v4(its))
3860 			continue;
3861 
3862 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3863 			continue;
3864 
3865 		/*
3866 		 * Sending a VINVALL to a single ITS is enough, as all
3867 		 * we need is to reach the redistributors.
3868 		 */
3869 		its_send_vinvall(its, vpe);
3870 		return;
3871 	}
3872 }
3873 
3874 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3875 {
3876 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3877 	struct its_cmd_info *info = vcpu_info;
3878 
3879 	switch (info->cmd_type) {
3880 	case SCHEDULE_VPE:
3881 		its_vpe_schedule(vpe);
3882 		return 0;
3883 
3884 	case DESCHEDULE_VPE:
3885 		its_vpe_deschedule(vpe);
3886 		return 0;
3887 
3888 	case INVALL_VPE:
3889 		its_vpe_invall(vpe);
3890 		return 0;
3891 
3892 	default:
3893 		return -EINVAL;
3894 	}
3895 }
3896 
3897 static void its_vpe_send_cmd(struct its_vpe *vpe,
3898 			     void (*cmd)(struct its_device *, u32))
3899 {
3900 	unsigned long flags;
3901 
3902 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3903 
3904 	its_vpe_db_proxy_map_locked(vpe);
3905 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3906 
3907 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3908 }
3909 
3910 static void its_vpe_send_inv(struct irq_data *d)
3911 {
3912 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3913 
3914 	if (gic_rdists->has_direct_lpi) {
3915 		void __iomem *rdbase;
3916 
3917 		/* Target the redistributor this VPE is currently known on */
3918 		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3919 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3920 		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3921 		wait_for_syncr(rdbase);
3922 		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3923 	} else {
3924 		its_vpe_send_cmd(vpe, its_send_inv);
3925 	}
3926 }
3927 
3928 static void its_vpe_mask_irq(struct irq_data *d)
3929 {
3930 	/*
3931 	 * We need to unmask the LPI, which is described by the parent
3932 	 * irq_data. Instead of calling into the parent (which won't
3933 	 * exactly do the right thing, let's simply use the
3934 	 * parent_data pointer. Yes, I'm naughty.
3935 	 */
3936 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3937 	its_vpe_send_inv(d);
3938 }
3939 
3940 static void its_vpe_unmask_irq(struct irq_data *d)
3941 {
3942 	/* Same hack as above... */
3943 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3944 	its_vpe_send_inv(d);
3945 }
3946 
3947 static int its_vpe_set_irqchip_state(struct irq_data *d,
3948 				     enum irqchip_irq_state which,
3949 				     bool state)
3950 {
3951 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3952 
3953 	if (which != IRQCHIP_STATE_PENDING)
3954 		return -EINVAL;
3955 
3956 	if (gic_rdists->has_direct_lpi) {
3957 		void __iomem *rdbase;
3958 
3959 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3960 		if (state) {
3961 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3962 		} else {
3963 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3964 			wait_for_syncr(rdbase);
3965 		}
3966 	} else {
3967 		if (state)
3968 			its_vpe_send_cmd(vpe, its_send_int);
3969 		else
3970 			its_vpe_send_cmd(vpe, its_send_clear);
3971 	}
3972 
3973 	return 0;
3974 }
3975 
3976 static int its_vpe_retrigger(struct irq_data *d)
3977 {
3978 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3979 }
3980 
3981 static struct irq_chip its_vpe_irq_chip = {
3982 	.name			= "GICv4-vpe",
3983 	.irq_mask		= its_vpe_mask_irq,
3984 	.irq_unmask		= its_vpe_unmask_irq,
3985 	.irq_eoi		= irq_chip_eoi_parent,
3986 	.irq_set_affinity	= its_vpe_set_affinity,
3987 	.irq_retrigger		= its_vpe_retrigger,
3988 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
3989 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
3990 };
3991 
3992 static struct its_node *find_4_1_its(void)
3993 {
3994 	static struct its_node *its = NULL;
3995 
3996 	if (!its) {
3997 		list_for_each_entry(its, &its_nodes, entry) {
3998 			if (is_v4_1(its))
3999 				return its;
4000 		}
4001 
4002 		/* Oops? */
4003 		its = NULL;
4004 	}
4005 
4006 	return its;
4007 }
4008 
4009 static void its_vpe_4_1_send_inv(struct irq_data *d)
4010 {
4011 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4012 	struct its_node *its;
4013 
4014 	/*
4015 	 * GICv4.1 wants doorbells to be invalidated using the
4016 	 * INVDB command in order to be broadcast to all RDs. Send
4017 	 * it to the first valid ITS, and let the HW do its magic.
4018 	 */
4019 	its = find_4_1_its();
4020 	if (its)
4021 		its_send_invdb(its, vpe);
4022 }
4023 
4024 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4025 {
4026 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4027 	its_vpe_4_1_send_inv(d);
4028 }
4029 
4030 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4031 {
4032 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4033 	its_vpe_4_1_send_inv(d);
4034 }
4035 
4036 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4037 				 struct its_cmd_info *info)
4038 {
4039 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4040 	u64 val = 0;
4041 
4042 	/* Schedule the VPE */
4043 	val |= GICR_VPENDBASER_Valid;
4044 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4045 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4046 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4047 
4048 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4049 
4050 	its_wait_vpt_parse_complete();
4051 }
4052 
4053 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4054 				   struct its_cmd_info *info)
4055 {
4056 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4057 	u64 val;
4058 
4059 	if (info->req_db) {
4060 		unsigned long flags;
4061 
4062 		/*
4063 		 * vPE is going to block: make the vPE non-resident with
4064 		 * PendingLast clear and DB set. The GIC guarantees that if
4065 		 * we read-back PendingLast clear, then a doorbell will be
4066 		 * delivered when an interrupt comes.
4067 		 *
4068 		 * Note the locking to deal with the concurrent update of
4069 		 * pending_last from the doorbell interrupt handler that can
4070 		 * run concurrently.
4071 		 */
4072 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4073 		val = its_clear_vpend_valid(vlpi_base,
4074 					    GICR_VPENDBASER_PendingLast,
4075 					    GICR_VPENDBASER_4_1_DB);
4076 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4077 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4078 	} else {
4079 		/*
4080 		 * We're not blocking, so just make the vPE non-resident
4081 		 * with PendingLast set, indicating that we'll be back.
4082 		 */
4083 		val = its_clear_vpend_valid(vlpi_base,
4084 					    0,
4085 					    GICR_VPENDBASER_PendingLast);
4086 		vpe->pending_last = true;
4087 	}
4088 }
4089 
4090 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4091 {
4092 	void __iomem *rdbase;
4093 	unsigned long flags;
4094 	u64 val;
4095 	int cpu;
4096 
4097 	val  = GICR_INVALLR_V;
4098 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4099 
4100 	/* Target the redistributor this vPE is currently known on */
4101 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4102 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4103 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4104 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4105 
4106 	wait_for_syncr(rdbase);
4107 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4108 	vpe_to_cpuid_unlock(vpe, flags);
4109 }
4110 
4111 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4112 {
4113 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4114 	struct its_cmd_info *info = vcpu_info;
4115 
4116 	switch (info->cmd_type) {
4117 	case SCHEDULE_VPE:
4118 		its_vpe_4_1_schedule(vpe, info);
4119 		return 0;
4120 
4121 	case DESCHEDULE_VPE:
4122 		its_vpe_4_1_deschedule(vpe, info);
4123 		return 0;
4124 
4125 	case INVALL_VPE:
4126 		its_vpe_4_1_invall(vpe);
4127 		return 0;
4128 
4129 	default:
4130 		return -EINVAL;
4131 	}
4132 }
4133 
4134 static struct irq_chip its_vpe_4_1_irq_chip = {
4135 	.name			= "GICv4.1-vpe",
4136 	.irq_mask		= its_vpe_4_1_mask_irq,
4137 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4138 	.irq_eoi		= irq_chip_eoi_parent,
4139 	.irq_set_affinity	= its_vpe_set_affinity,
4140 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4141 };
4142 
4143 static void its_configure_sgi(struct irq_data *d, bool clear)
4144 {
4145 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4146 	struct its_cmd_desc desc;
4147 
4148 	desc.its_vsgi_cmd.vpe = vpe;
4149 	desc.its_vsgi_cmd.sgi = d->hwirq;
4150 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4151 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4152 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4153 	desc.its_vsgi_cmd.clear = clear;
4154 
4155 	/*
4156 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4157 	 * destination VPE is mapped there. Since we map them eagerly at
4158 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4159 	 */
4160 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4161 }
4162 
4163 static void its_sgi_mask_irq(struct irq_data *d)
4164 {
4165 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4166 
4167 	vpe->sgi_config[d->hwirq].enabled = false;
4168 	its_configure_sgi(d, false);
4169 }
4170 
4171 static void its_sgi_unmask_irq(struct irq_data *d)
4172 {
4173 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4174 
4175 	vpe->sgi_config[d->hwirq].enabled = true;
4176 	its_configure_sgi(d, false);
4177 }
4178 
4179 static int its_sgi_set_affinity(struct irq_data *d,
4180 				const struct cpumask *mask_val,
4181 				bool force)
4182 {
4183 	/*
4184 	 * There is no notion of affinity for virtual SGIs, at least
4185 	 * not on the host (since they can only be targetting a vPE).
4186 	 * Tell the kernel we've done whatever it asked for.
4187 	 */
4188 	irq_data_update_effective_affinity(d, mask_val);
4189 	return IRQ_SET_MASK_OK;
4190 }
4191 
4192 static int its_sgi_set_irqchip_state(struct irq_data *d,
4193 				     enum irqchip_irq_state which,
4194 				     bool state)
4195 {
4196 	if (which != IRQCHIP_STATE_PENDING)
4197 		return -EINVAL;
4198 
4199 	if (state) {
4200 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4201 		struct its_node *its = find_4_1_its();
4202 		u64 val;
4203 
4204 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4205 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4206 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4207 	} else {
4208 		its_configure_sgi(d, true);
4209 	}
4210 
4211 	return 0;
4212 }
4213 
4214 static int its_sgi_get_irqchip_state(struct irq_data *d,
4215 				     enum irqchip_irq_state which, bool *val)
4216 {
4217 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4218 	void __iomem *base;
4219 	unsigned long flags;
4220 	u32 count = 1000000;	/* 1s! */
4221 	u32 status;
4222 	int cpu;
4223 
4224 	if (which != IRQCHIP_STATE_PENDING)
4225 		return -EINVAL;
4226 
4227 	/*
4228 	 * Locking galore! We can race against two different events:
4229 	 *
4230 	 * - Concurent vPE affinity change: we must make sure it cannot
4231 	 *   happen, or we'll talk to the wrong redistributor. This is
4232 	 *   identical to what happens with vLPIs.
4233 	 *
4234 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4235 	 *   MMIO registers, this must be made atomic one way or another.
4236 	 */
4237 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4238 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4239 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4240 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4241 	do {
4242 		status = readl_relaxed(base + GICR_VSGIPENDR);
4243 		if (!(status & GICR_VSGIPENDR_BUSY))
4244 			goto out;
4245 
4246 		count--;
4247 		if (!count) {
4248 			pr_err_ratelimited("Unable to get SGI status\n");
4249 			goto out;
4250 		}
4251 		cpu_relax();
4252 		udelay(1);
4253 	} while (count);
4254 
4255 out:
4256 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4257 	vpe_to_cpuid_unlock(vpe, flags);
4258 
4259 	if (!count)
4260 		return -ENXIO;
4261 
4262 	*val = !!(status & (1 << d->hwirq));
4263 
4264 	return 0;
4265 }
4266 
4267 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4268 {
4269 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4270 	struct its_cmd_info *info = vcpu_info;
4271 
4272 	switch (info->cmd_type) {
4273 	case PROP_UPDATE_VSGI:
4274 		vpe->sgi_config[d->hwirq].priority = info->priority;
4275 		vpe->sgi_config[d->hwirq].group = info->group;
4276 		its_configure_sgi(d, false);
4277 		return 0;
4278 
4279 	default:
4280 		return -EINVAL;
4281 	}
4282 }
4283 
4284 static struct irq_chip its_sgi_irq_chip = {
4285 	.name			= "GICv4.1-sgi",
4286 	.irq_mask		= its_sgi_mask_irq,
4287 	.irq_unmask		= its_sgi_unmask_irq,
4288 	.irq_set_affinity	= its_sgi_set_affinity,
4289 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4290 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4291 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4292 };
4293 
4294 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4295 				    unsigned int virq, unsigned int nr_irqs,
4296 				    void *args)
4297 {
4298 	struct its_vpe *vpe = args;
4299 	int i;
4300 
4301 	/* Yes, we do want 16 SGIs */
4302 	WARN_ON(nr_irqs != 16);
4303 
4304 	for (i = 0; i < 16; i++) {
4305 		vpe->sgi_config[i].priority = 0;
4306 		vpe->sgi_config[i].enabled = false;
4307 		vpe->sgi_config[i].group = false;
4308 
4309 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4310 					      &its_sgi_irq_chip, vpe);
4311 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4312 	}
4313 
4314 	return 0;
4315 }
4316 
4317 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4318 				    unsigned int virq,
4319 				    unsigned int nr_irqs)
4320 {
4321 	/* Nothing to do */
4322 }
4323 
4324 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4325 				       struct irq_data *d, bool reserve)
4326 {
4327 	/* Write out the initial SGI configuration */
4328 	its_configure_sgi(d, false);
4329 	return 0;
4330 }
4331 
4332 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4333 					  struct irq_data *d)
4334 {
4335 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4336 
4337 	/*
4338 	 * The VSGI command is awkward:
4339 	 *
4340 	 * - To change the configuration, CLEAR must be set to false,
4341 	 *   leaving the pending bit unchanged.
4342 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4343 	 *   the configuration unchanged.
4344 	 *
4345 	 * You just can't do both at once, hence the two commands below.
4346 	 */
4347 	vpe->sgi_config[d->hwirq].enabled = false;
4348 	its_configure_sgi(d, false);
4349 	its_configure_sgi(d, true);
4350 }
4351 
4352 static const struct irq_domain_ops its_sgi_domain_ops = {
4353 	.alloc		= its_sgi_irq_domain_alloc,
4354 	.free		= its_sgi_irq_domain_free,
4355 	.activate	= its_sgi_irq_domain_activate,
4356 	.deactivate	= its_sgi_irq_domain_deactivate,
4357 };
4358 
4359 static int its_vpe_id_alloc(void)
4360 {
4361 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4362 }
4363 
4364 static void its_vpe_id_free(u16 id)
4365 {
4366 	ida_simple_remove(&its_vpeid_ida, id);
4367 }
4368 
4369 static int its_vpe_init(struct its_vpe *vpe)
4370 {
4371 	struct page *vpt_page;
4372 	int vpe_id;
4373 
4374 	/* Allocate vpe_id */
4375 	vpe_id = its_vpe_id_alloc();
4376 	if (vpe_id < 0)
4377 		return vpe_id;
4378 
4379 	/* Allocate VPT */
4380 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4381 	if (!vpt_page) {
4382 		its_vpe_id_free(vpe_id);
4383 		return -ENOMEM;
4384 	}
4385 
4386 	if (!its_alloc_vpe_table(vpe_id)) {
4387 		its_vpe_id_free(vpe_id);
4388 		its_free_pending_table(vpt_page);
4389 		return -ENOMEM;
4390 	}
4391 
4392 	raw_spin_lock_init(&vpe->vpe_lock);
4393 	vpe->vpe_id = vpe_id;
4394 	vpe->vpt_page = vpt_page;
4395 	if (gic_rdists->has_rvpeid)
4396 		atomic_set(&vpe->vmapp_count, 0);
4397 	else
4398 		vpe->vpe_proxy_event = -1;
4399 
4400 	return 0;
4401 }
4402 
4403 static void its_vpe_teardown(struct its_vpe *vpe)
4404 {
4405 	its_vpe_db_proxy_unmap(vpe);
4406 	its_vpe_id_free(vpe->vpe_id);
4407 	its_free_pending_table(vpe->vpt_page);
4408 }
4409 
4410 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4411 				    unsigned int virq,
4412 				    unsigned int nr_irqs)
4413 {
4414 	struct its_vm *vm = domain->host_data;
4415 	int i;
4416 
4417 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4418 
4419 	for (i = 0; i < nr_irqs; i++) {
4420 		struct irq_data *data = irq_domain_get_irq_data(domain,
4421 								virq + i);
4422 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4423 
4424 		BUG_ON(vm != vpe->its_vm);
4425 
4426 		clear_bit(data->hwirq, vm->db_bitmap);
4427 		its_vpe_teardown(vpe);
4428 		irq_domain_reset_irq_data(data);
4429 	}
4430 
4431 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4432 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4433 		its_free_prop_table(vm->vprop_page);
4434 	}
4435 }
4436 
4437 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4438 				    unsigned int nr_irqs, void *args)
4439 {
4440 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4441 	struct its_vm *vm = args;
4442 	unsigned long *bitmap;
4443 	struct page *vprop_page;
4444 	int base, nr_ids, i, err = 0;
4445 
4446 	BUG_ON(!vm);
4447 
4448 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4449 	if (!bitmap)
4450 		return -ENOMEM;
4451 
4452 	if (nr_ids < nr_irqs) {
4453 		its_lpi_free(bitmap, base, nr_ids);
4454 		return -ENOMEM;
4455 	}
4456 
4457 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4458 	if (!vprop_page) {
4459 		its_lpi_free(bitmap, base, nr_ids);
4460 		return -ENOMEM;
4461 	}
4462 
4463 	vm->db_bitmap = bitmap;
4464 	vm->db_lpi_base = base;
4465 	vm->nr_db_lpis = nr_ids;
4466 	vm->vprop_page = vprop_page;
4467 
4468 	if (gic_rdists->has_rvpeid)
4469 		irqchip = &its_vpe_4_1_irq_chip;
4470 
4471 	for (i = 0; i < nr_irqs; i++) {
4472 		vm->vpes[i]->vpe_db_lpi = base + i;
4473 		err = its_vpe_init(vm->vpes[i]);
4474 		if (err)
4475 			break;
4476 		err = its_irq_gic_domain_alloc(domain, virq + i,
4477 					       vm->vpes[i]->vpe_db_lpi);
4478 		if (err)
4479 			break;
4480 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4481 					      irqchip, vm->vpes[i]);
4482 		set_bit(i, bitmap);
4483 	}
4484 
4485 	if (err) {
4486 		if (i > 0)
4487 			its_vpe_irq_domain_free(domain, virq, i - 1);
4488 
4489 		its_lpi_free(bitmap, base, nr_ids);
4490 		its_free_prop_table(vprop_page);
4491 	}
4492 
4493 	return err;
4494 }
4495 
4496 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4497 				       struct irq_data *d, bool reserve)
4498 {
4499 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4500 	struct its_node *its;
4501 
4502 	/*
4503 	 * If we use the list map, we issue VMAPP on demand... Unless
4504 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4505 	 * so that VSGIs can work.
4506 	 */
4507 	if (!gic_requires_eager_mapping())
4508 		return 0;
4509 
4510 	/* Map the VPE to the first possible CPU */
4511 	vpe->col_idx = cpumask_first(cpu_online_mask);
4512 
4513 	list_for_each_entry(its, &its_nodes, entry) {
4514 		if (!is_v4(its))
4515 			continue;
4516 
4517 		its_send_vmapp(its, vpe, true);
4518 		its_send_vinvall(its, vpe);
4519 	}
4520 
4521 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4522 
4523 	return 0;
4524 }
4525 
4526 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4527 					  struct irq_data *d)
4528 {
4529 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4530 	struct its_node *its;
4531 
4532 	/*
4533 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4534 	 * VLPIs are associated with the VM.
4535 	 */
4536 	if (!gic_requires_eager_mapping())
4537 		return;
4538 
4539 	list_for_each_entry(its, &its_nodes, entry) {
4540 		if (!is_v4(its))
4541 			continue;
4542 
4543 		its_send_vmapp(its, vpe, false);
4544 	}
4545 }
4546 
4547 static const struct irq_domain_ops its_vpe_domain_ops = {
4548 	.alloc			= its_vpe_irq_domain_alloc,
4549 	.free			= its_vpe_irq_domain_free,
4550 	.activate		= its_vpe_irq_domain_activate,
4551 	.deactivate		= its_vpe_irq_domain_deactivate,
4552 };
4553 
4554 static int its_force_quiescent(void __iomem *base)
4555 {
4556 	u32 count = 1000000;	/* 1s */
4557 	u32 val;
4558 
4559 	val = readl_relaxed(base + GITS_CTLR);
4560 	/*
4561 	 * GIC architecture specification requires the ITS to be both
4562 	 * disabled and quiescent for writes to GITS_BASER<n> or
4563 	 * GITS_CBASER to not have UNPREDICTABLE results.
4564 	 */
4565 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4566 		return 0;
4567 
4568 	/* Disable the generation of all interrupts to this ITS */
4569 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4570 	writel_relaxed(val, base + GITS_CTLR);
4571 
4572 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4573 	while (1) {
4574 		val = readl_relaxed(base + GITS_CTLR);
4575 		if (val & GITS_CTLR_QUIESCENT)
4576 			return 0;
4577 
4578 		count--;
4579 		if (!count)
4580 			return -EBUSY;
4581 
4582 		cpu_relax();
4583 		udelay(1);
4584 	}
4585 }
4586 
4587 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4588 {
4589 	struct its_node *its = data;
4590 
4591 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4592 	its->typer &= ~GITS_TYPER_DEVBITS;
4593 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4594 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4595 
4596 	return true;
4597 }
4598 
4599 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4600 {
4601 	struct its_node *its = data;
4602 
4603 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4604 
4605 	return true;
4606 }
4607 
4608 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4609 {
4610 	struct its_node *its = data;
4611 
4612 	/* On QDF2400, the size of the ITE is 16Bytes */
4613 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4614 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4615 
4616 	return true;
4617 }
4618 
4619 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4620 {
4621 	struct its_node *its = its_dev->its;
4622 
4623 	/*
4624 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4625 	 * which maps 32-bit writes targeted at a separate window of
4626 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4627 	 * with device ID taken from bits [device_id_bits + 1:2] of
4628 	 * the window offset.
4629 	 */
4630 	return its->pre_its_base + (its_dev->device_id << 2);
4631 }
4632 
4633 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4634 {
4635 	struct its_node *its = data;
4636 	u32 pre_its_window[2];
4637 	u32 ids;
4638 
4639 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4640 					   "socionext,synquacer-pre-its",
4641 					   pre_its_window,
4642 					   ARRAY_SIZE(pre_its_window))) {
4643 
4644 		its->pre_its_base = pre_its_window[0];
4645 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4646 
4647 		ids = ilog2(pre_its_window[1]) - 2;
4648 		if (device_ids(its) > ids) {
4649 			its->typer &= ~GITS_TYPER_DEVBITS;
4650 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4651 		}
4652 
4653 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4654 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4655 		return true;
4656 	}
4657 	return false;
4658 }
4659 
4660 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4661 {
4662 	struct its_node *its = data;
4663 
4664 	/*
4665 	 * Hip07 insists on using the wrong address for the VLPI
4666 	 * page. Trick it into doing the right thing...
4667 	 */
4668 	its->vlpi_redist_offset = SZ_128K;
4669 	return true;
4670 }
4671 
4672 static const struct gic_quirk its_quirks[] = {
4673 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4674 	{
4675 		.desc	= "ITS: Cavium errata 22375, 24313",
4676 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4677 		.mask	= 0xffff0fff,
4678 		.init	= its_enable_quirk_cavium_22375,
4679 	},
4680 #endif
4681 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4682 	{
4683 		.desc	= "ITS: Cavium erratum 23144",
4684 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4685 		.mask	= 0xffff0fff,
4686 		.init	= its_enable_quirk_cavium_23144,
4687 	},
4688 #endif
4689 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4690 	{
4691 		.desc	= "ITS: QDF2400 erratum 0065",
4692 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4693 		.mask	= 0xffffffff,
4694 		.init	= its_enable_quirk_qdf2400_e0065,
4695 	},
4696 #endif
4697 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4698 	{
4699 		/*
4700 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4701 		 * implementation, but with a 'pre-ITS' added that requires
4702 		 * special handling in software.
4703 		 */
4704 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4705 		.iidr	= 0x0001143b,
4706 		.mask	= 0xffffffff,
4707 		.init	= its_enable_quirk_socionext_synquacer,
4708 	},
4709 #endif
4710 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4711 	{
4712 		.desc	= "ITS: Hip07 erratum 161600802",
4713 		.iidr	= 0x00000004,
4714 		.mask	= 0xffffffff,
4715 		.init	= its_enable_quirk_hip07_161600802,
4716 	},
4717 #endif
4718 	{
4719 	}
4720 };
4721 
4722 static void its_enable_quirks(struct its_node *its)
4723 {
4724 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4725 
4726 	gic_enable_quirks(iidr, its_quirks, its);
4727 }
4728 
4729 static int its_save_disable(void)
4730 {
4731 	struct its_node *its;
4732 	int err = 0;
4733 
4734 	raw_spin_lock(&its_lock);
4735 	list_for_each_entry(its, &its_nodes, entry) {
4736 		void __iomem *base;
4737 
4738 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4739 			continue;
4740 
4741 		base = its->base;
4742 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4743 		err = its_force_quiescent(base);
4744 		if (err) {
4745 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4746 			       &its->phys_base, err);
4747 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4748 			goto err;
4749 		}
4750 
4751 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4752 	}
4753 
4754 err:
4755 	if (err) {
4756 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4757 			void __iomem *base;
4758 
4759 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4760 				continue;
4761 
4762 			base = its->base;
4763 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4764 		}
4765 	}
4766 	raw_spin_unlock(&its_lock);
4767 
4768 	return err;
4769 }
4770 
4771 static void its_restore_enable(void)
4772 {
4773 	struct its_node *its;
4774 	int ret;
4775 
4776 	raw_spin_lock(&its_lock);
4777 	list_for_each_entry(its, &its_nodes, entry) {
4778 		void __iomem *base;
4779 		int i;
4780 
4781 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4782 			continue;
4783 
4784 		base = its->base;
4785 
4786 		/*
4787 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4788 		 * don't restore it since writing to CBASER or BASER<n>
4789 		 * registers is undefined according to the GIC v3 ITS
4790 		 * Specification.
4791 		 */
4792 		ret = its_force_quiescent(base);
4793 		if (ret) {
4794 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4795 			       &its->phys_base, ret);
4796 			continue;
4797 		}
4798 
4799 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4800 
4801 		/*
4802 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4803 		 * cmd_write line up with it.
4804 		 */
4805 		its->cmd_write = its->cmd_base;
4806 		gits_write_cwriter(0, base + GITS_CWRITER);
4807 
4808 		/* Restore GITS_BASER from the value cache. */
4809 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4810 			struct its_baser *baser = &its->tables[i];
4811 
4812 			if (!(baser->val & GITS_BASER_VALID))
4813 				continue;
4814 
4815 			its_write_baser(its, baser, baser->val);
4816 		}
4817 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4818 
4819 		/*
4820 		 * Reinit the collection if it's stored in the ITS. This is
4821 		 * indicated by the col_id being less than the HCC field.
4822 		 * CID < HCC as specified in the GIC v3 Documentation.
4823 		 */
4824 		if (its->collections[smp_processor_id()].col_id <
4825 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4826 			its_cpu_init_collection(its);
4827 	}
4828 	raw_spin_unlock(&its_lock);
4829 }
4830 
4831 static struct syscore_ops its_syscore_ops = {
4832 	.suspend = its_save_disable,
4833 	.resume = its_restore_enable,
4834 };
4835 
4836 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4837 {
4838 	struct irq_domain *inner_domain;
4839 	struct msi_domain_info *info;
4840 
4841 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4842 	if (!info)
4843 		return -ENOMEM;
4844 
4845 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4846 	if (!inner_domain) {
4847 		kfree(info);
4848 		return -ENOMEM;
4849 	}
4850 
4851 	inner_domain->parent = its_parent;
4852 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4853 	inner_domain->flags |= its->msi_domain_flags;
4854 	info->ops = &its_msi_domain_ops;
4855 	info->data = its;
4856 	inner_domain->host_data = info;
4857 
4858 	return 0;
4859 }
4860 
4861 static int its_init_vpe_domain(void)
4862 {
4863 	struct its_node *its;
4864 	u32 devid;
4865 	int entries;
4866 
4867 	if (gic_rdists->has_direct_lpi) {
4868 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4869 		return 0;
4870 	}
4871 
4872 	/* Any ITS will do, even if not v4 */
4873 	its = list_first_entry(&its_nodes, struct its_node, entry);
4874 
4875 	entries = roundup_pow_of_two(nr_cpu_ids);
4876 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4877 				 GFP_KERNEL);
4878 	if (!vpe_proxy.vpes) {
4879 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4880 		return -ENOMEM;
4881 	}
4882 
4883 	/* Use the last possible DevID */
4884 	devid = GENMASK(device_ids(its) - 1, 0);
4885 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4886 	if (!vpe_proxy.dev) {
4887 		kfree(vpe_proxy.vpes);
4888 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4889 		return -ENOMEM;
4890 	}
4891 
4892 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4893 
4894 	raw_spin_lock_init(&vpe_proxy.lock);
4895 	vpe_proxy.next_victim = 0;
4896 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4897 		devid, vpe_proxy.dev->nr_ites);
4898 
4899 	return 0;
4900 }
4901 
4902 static int __init its_compute_its_list_map(struct resource *res,
4903 					   void __iomem *its_base)
4904 {
4905 	int its_number;
4906 	u32 ctlr;
4907 
4908 	/*
4909 	 * This is assumed to be done early enough that we're
4910 	 * guaranteed to be single-threaded, hence no
4911 	 * locking. Should this change, we should address
4912 	 * this.
4913 	 */
4914 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4915 	if (its_number >= GICv4_ITS_LIST_MAX) {
4916 		pr_err("ITS@%pa: No ITSList entry available!\n",
4917 		       &res->start);
4918 		return -EINVAL;
4919 	}
4920 
4921 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4922 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4923 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4924 	writel_relaxed(ctlr, its_base + GITS_CTLR);
4925 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4926 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4927 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4928 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4929 	}
4930 
4931 	if (test_and_set_bit(its_number, &its_list_map)) {
4932 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4933 		       &res->start, its_number);
4934 		return -EINVAL;
4935 	}
4936 
4937 	return its_number;
4938 }
4939 
4940 static int __init its_probe_one(struct resource *res,
4941 				struct fwnode_handle *handle, int numa_node)
4942 {
4943 	struct its_node *its;
4944 	void __iomem *its_base;
4945 	u32 val, ctlr;
4946 	u64 baser, tmp, typer;
4947 	struct page *page;
4948 	int err;
4949 
4950 	its_base = ioremap(res->start, SZ_64K);
4951 	if (!its_base) {
4952 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4953 		return -ENOMEM;
4954 	}
4955 
4956 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4957 	if (val != 0x30 && val != 0x40) {
4958 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4959 		err = -ENODEV;
4960 		goto out_unmap;
4961 	}
4962 
4963 	err = its_force_quiescent(its_base);
4964 	if (err) {
4965 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4966 		goto out_unmap;
4967 	}
4968 
4969 	pr_info("ITS %pR\n", res);
4970 
4971 	its = kzalloc(sizeof(*its), GFP_KERNEL);
4972 	if (!its) {
4973 		err = -ENOMEM;
4974 		goto out_unmap;
4975 	}
4976 
4977 	raw_spin_lock_init(&its->lock);
4978 	mutex_init(&its->dev_alloc_lock);
4979 	INIT_LIST_HEAD(&its->entry);
4980 	INIT_LIST_HEAD(&its->its_device_list);
4981 	typer = gic_read_typer(its_base + GITS_TYPER);
4982 	its->typer = typer;
4983 	its->base = its_base;
4984 	its->phys_base = res->start;
4985 	if (is_v4(its)) {
4986 		if (!(typer & GITS_TYPER_VMOVP)) {
4987 			err = its_compute_its_list_map(res, its_base);
4988 			if (err < 0)
4989 				goto out_free_its;
4990 
4991 			its->list_nr = err;
4992 
4993 			pr_info("ITS@%pa: Using ITS number %d\n",
4994 				&res->start, err);
4995 		} else {
4996 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
4997 		}
4998 
4999 		if (is_v4_1(its)) {
5000 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5001 
5002 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5003 			if (!its->sgir_base) {
5004 				err = -ENOMEM;
5005 				goto out_free_its;
5006 			}
5007 
5008 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5009 
5010 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5011 				&res->start, its->mpidr, svpet);
5012 		}
5013 	}
5014 
5015 	its->numa_node = numa_node;
5016 
5017 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5018 				get_order(ITS_CMD_QUEUE_SZ));
5019 	if (!page) {
5020 		err = -ENOMEM;
5021 		goto out_unmap_sgir;
5022 	}
5023 	its->cmd_base = (void *)page_address(page);
5024 	its->cmd_write = its->cmd_base;
5025 	its->fwnode_handle = handle;
5026 	its->get_msi_base = its_irq_get_msi_base;
5027 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5028 
5029 	its_enable_quirks(its);
5030 
5031 	err = its_alloc_tables(its);
5032 	if (err)
5033 		goto out_free_cmd;
5034 
5035 	err = its_alloc_collections(its);
5036 	if (err)
5037 		goto out_free_tables;
5038 
5039 	baser = (virt_to_phys(its->cmd_base)	|
5040 		 GITS_CBASER_RaWaWb		|
5041 		 GITS_CBASER_InnerShareable	|
5042 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5043 		 GITS_CBASER_VALID);
5044 
5045 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5046 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5047 
5048 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5049 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5050 			/*
5051 			 * The HW reports non-shareable, we must
5052 			 * remove the cacheability attributes as
5053 			 * well.
5054 			 */
5055 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5056 				   GITS_CBASER_CACHEABILITY_MASK);
5057 			baser |= GITS_CBASER_nC;
5058 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5059 		}
5060 		pr_info("ITS: using cache flushing for cmd queue\n");
5061 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5062 	}
5063 
5064 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5065 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5066 	ctlr |= GITS_CTLR_ENABLE;
5067 	if (is_v4(its))
5068 		ctlr |= GITS_CTLR_ImDe;
5069 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5070 
5071 	if (GITS_TYPER_HCC(typer))
5072 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
5073 
5074 	err = its_init_domain(handle, its);
5075 	if (err)
5076 		goto out_free_tables;
5077 
5078 	raw_spin_lock(&its_lock);
5079 	list_add(&its->entry, &its_nodes);
5080 	raw_spin_unlock(&its_lock);
5081 
5082 	return 0;
5083 
5084 out_free_tables:
5085 	its_free_tables(its);
5086 out_free_cmd:
5087 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5088 out_unmap_sgir:
5089 	if (its->sgir_base)
5090 		iounmap(its->sgir_base);
5091 out_free_its:
5092 	kfree(its);
5093 out_unmap:
5094 	iounmap(its_base);
5095 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5096 	return err;
5097 }
5098 
5099 static bool gic_rdists_supports_plpis(void)
5100 {
5101 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5102 }
5103 
5104 static int redist_disable_lpis(void)
5105 {
5106 	void __iomem *rbase = gic_data_rdist_rd_base();
5107 	u64 timeout = USEC_PER_SEC;
5108 	u64 val;
5109 
5110 	if (!gic_rdists_supports_plpis()) {
5111 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5112 		return -ENXIO;
5113 	}
5114 
5115 	val = readl_relaxed(rbase + GICR_CTLR);
5116 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5117 		return 0;
5118 
5119 	/*
5120 	 * If coming via a CPU hotplug event, we don't need to disable
5121 	 * LPIs before trying to re-enable them. They are already
5122 	 * configured and all is well in the world.
5123 	 *
5124 	 * If running with preallocated tables, there is nothing to do.
5125 	 */
5126 	if (gic_data_rdist()->lpi_enabled ||
5127 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5128 		return 0;
5129 
5130 	/*
5131 	 * From that point on, we only try to do some damage control.
5132 	 */
5133 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5134 		smp_processor_id());
5135 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5136 
5137 	/* Disable LPIs */
5138 	val &= ~GICR_CTLR_ENABLE_LPIS;
5139 	writel_relaxed(val, rbase + GICR_CTLR);
5140 
5141 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5142 	dsb(sy);
5143 
5144 	/*
5145 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5146 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5147 	 * Error out if we time out waiting for RWP to clear.
5148 	 */
5149 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5150 		if (!timeout) {
5151 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5152 			       smp_processor_id());
5153 			return -ETIMEDOUT;
5154 		}
5155 		udelay(1);
5156 		timeout--;
5157 	}
5158 
5159 	/*
5160 	 * After it has been written to 1, it is IMPLEMENTATION
5161 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5162 	 * cleared to 0. Error out if clearing the bit failed.
5163 	 */
5164 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5165 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5166 		return -EBUSY;
5167 	}
5168 
5169 	return 0;
5170 }
5171 
5172 int its_cpu_init(void)
5173 {
5174 	if (!list_empty(&its_nodes)) {
5175 		int ret;
5176 
5177 		ret = redist_disable_lpis();
5178 		if (ret)
5179 			return ret;
5180 
5181 		its_cpu_init_lpis();
5182 		its_cpu_init_collections();
5183 	}
5184 
5185 	return 0;
5186 }
5187 
5188 static const struct of_device_id its_device_id[] = {
5189 	{	.compatible	= "arm,gic-v3-its",	},
5190 	{},
5191 };
5192 
5193 static int __init its_of_probe(struct device_node *node)
5194 {
5195 	struct device_node *np;
5196 	struct resource res;
5197 
5198 	for (np = of_find_matching_node(node, its_device_id); np;
5199 	     np = of_find_matching_node(np, its_device_id)) {
5200 		if (!of_device_is_available(np))
5201 			continue;
5202 		if (!of_property_read_bool(np, "msi-controller")) {
5203 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5204 				np);
5205 			continue;
5206 		}
5207 
5208 		if (of_address_to_resource(np, 0, &res)) {
5209 			pr_warn("%pOF: no regs?\n", np);
5210 			continue;
5211 		}
5212 
5213 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5214 	}
5215 	return 0;
5216 }
5217 
5218 #ifdef CONFIG_ACPI
5219 
5220 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5221 
5222 #ifdef CONFIG_ACPI_NUMA
5223 struct its_srat_map {
5224 	/* numa node id */
5225 	u32	numa_node;
5226 	/* GIC ITS ID */
5227 	u32	its_id;
5228 };
5229 
5230 static struct its_srat_map *its_srat_maps __initdata;
5231 static int its_in_srat __initdata;
5232 
5233 static int __init acpi_get_its_numa_node(u32 its_id)
5234 {
5235 	int i;
5236 
5237 	for (i = 0; i < its_in_srat; i++) {
5238 		if (its_id == its_srat_maps[i].its_id)
5239 			return its_srat_maps[i].numa_node;
5240 	}
5241 	return NUMA_NO_NODE;
5242 }
5243 
5244 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5245 					  const unsigned long end)
5246 {
5247 	return 0;
5248 }
5249 
5250 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5251 			 const unsigned long end)
5252 {
5253 	int node;
5254 	struct acpi_srat_gic_its_affinity *its_affinity;
5255 
5256 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5257 	if (!its_affinity)
5258 		return -EINVAL;
5259 
5260 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5261 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5262 			its_affinity->header.length);
5263 		return -EINVAL;
5264 	}
5265 
5266 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
5267 
5268 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5269 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5270 		return 0;
5271 	}
5272 
5273 	its_srat_maps[its_in_srat].numa_node = node;
5274 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5275 	its_in_srat++;
5276 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5277 		its_affinity->proximity_domain, its_affinity->its_id, node);
5278 
5279 	return 0;
5280 }
5281 
5282 static void __init acpi_table_parse_srat_its(void)
5283 {
5284 	int count;
5285 
5286 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5287 			sizeof(struct acpi_table_srat),
5288 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5289 			gic_acpi_match_srat_its, 0);
5290 	if (count <= 0)
5291 		return;
5292 
5293 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5294 				      GFP_KERNEL);
5295 	if (!its_srat_maps) {
5296 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5297 		return;
5298 	}
5299 
5300 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5301 			sizeof(struct acpi_table_srat),
5302 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5303 			gic_acpi_parse_srat_its, 0);
5304 }
5305 
5306 /* free the its_srat_maps after ITS probing */
5307 static void __init acpi_its_srat_maps_free(void)
5308 {
5309 	kfree(its_srat_maps);
5310 }
5311 #else
5312 static void __init acpi_table_parse_srat_its(void)	{ }
5313 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5314 static void __init acpi_its_srat_maps_free(void) { }
5315 #endif
5316 
5317 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5318 					  const unsigned long end)
5319 {
5320 	struct acpi_madt_generic_translator *its_entry;
5321 	struct fwnode_handle *dom_handle;
5322 	struct resource res;
5323 	int err;
5324 
5325 	its_entry = (struct acpi_madt_generic_translator *)header;
5326 	memset(&res, 0, sizeof(res));
5327 	res.start = its_entry->base_address;
5328 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5329 	res.flags = IORESOURCE_MEM;
5330 
5331 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5332 	if (!dom_handle) {
5333 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5334 		       &res.start);
5335 		return -ENOMEM;
5336 	}
5337 
5338 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5339 					 dom_handle);
5340 	if (err) {
5341 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5342 		       &res.start, its_entry->translation_id);
5343 		goto dom_err;
5344 	}
5345 
5346 	err = its_probe_one(&res, dom_handle,
5347 			acpi_get_its_numa_node(its_entry->translation_id));
5348 	if (!err)
5349 		return 0;
5350 
5351 	iort_deregister_domain_token(its_entry->translation_id);
5352 dom_err:
5353 	irq_domain_free_fwnode(dom_handle);
5354 	return err;
5355 }
5356 
5357 static void __init its_acpi_probe(void)
5358 {
5359 	acpi_table_parse_srat_its();
5360 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5361 			      gic_acpi_parse_madt_its, 0);
5362 	acpi_its_srat_maps_free();
5363 }
5364 #else
5365 static void __init its_acpi_probe(void) { }
5366 #endif
5367 
5368 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5369 		    struct irq_domain *parent_domain)
5370 {
5371 	struct device_node *of_node;
5372 	struct its_node *its;
5373 	bool has_v4 = false;
5374 	bool has_v4_1 = false;
5375 	int err;
5376 
5377 	gic_rdists = rdists;
5378 
5379 	its_parent = parent_domain;
5380 	of_node = to_of_node(handle);
5381 	if (of_node)
5382 		its_of_probe(of_node);
5383 	else
5384 		its_acpi_probe();
5385 
5386 	if (list_empty(&its_nodes)) {
5387 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5388 		return -ENXIO;
5389 	}
5390 
5391 	err = allocate_lpi_tables();
5392 	if (err)
5393 		return err;
5394 
5395 	list_for_each_entry(its, &its_nodes, entry) {
5396 		has_v4 |= is_v4(its);
5397 		has_v4_1 |= is_v4_1(its);
5398 	}
5399 
5400 	/* Don't bother with inconsistent systems */
5401 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5402 		rdists->has_rvpeid = false;
5403 
5404 	if (has_v4 & rdists->has_vlpis) {
5405 		const struct irq_domain_ops *sgi_ops;
5406 
5407 		if (has_v4_1)
5408 			sgi_ops = &its_sgi_domain_ops;
5409 		else
5410 			sgi_ops = NULL;
5411 
5412 		if (its_init_vpe_domain() ||
5413 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5414 			rdists->has_vlpis = false;
5415 			pr_err("ITS: Disabling GICv4 support\n");
5416 		}
5417 	}
5418 
5419 	register_syscore_ops(&its_syscore_ops);
5420 
5421 	return 0;
5422 }
5423