1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 46 47 #define RD_LOCAL_LPI_ENABLED BIT(0) 48 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 49 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 50 51 static u32 lpi_id_bits; 52 53 /* 54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 55 * deal with (one configuration byte per interrupt). PENDBASE has to 56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 57 */ 58 #define LPI_NRBITS lpi_id_bits 59 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 60 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 61 62 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 63 64 /* 65 * Collection structure - just an ID, and a redistributor address to 66 * ping. We use one per CPU as a bag of interrupts assigned to this 67 * CPU. 68 */ 69 struct its_collection { 70 u64 target_address; 71 u16 col_id; 72 }; 73 74 /* 75 * The ITS_BASER structure - contains memory information, cached 76 * value of BASER register configuration and ITS page size. 77 */ 78 struct its_baser { 79 void *base; 80 u64 val; 81 u32 order; 82 u32 psz; 83 }; 84 85 struct its_device; 86 87 /* 88 * The ITS structure - contains most of the infrastructure, with the 89 * top-level MSI domain, the command queue, the collections, and the 90 * list of devices writing to it. 91 * 92 * dev_alloc_lock has to be taken for device allocations, while the 93 * spinlock must be taken to parse data structures such as the device 94 * list. 95 */ 96 struct its_node { 97 raw_spinlock_t lock; 98 struct mutex dev_alloc_lock; 99 struct list_head entry; 100 void __iomem *base; 101 void __iomem *sgir_base; 102 phys_addr_t phys_base; 103 struct its_cmd_block *cmd_base; 104 struct its_cmd_block *cmd_write; 105 struct its_baser tables[GITS_BASER_NR_REGS]; 106 struct its_collection *collections; 107 struct fwnode_handle *fwnode_handle; 108 u64 (*get_msi_base)(struct its_device *its_dev); 109 u64 typer; 110 u64 cbaser_save; 111 u32 ctlr_save; 112 u32 mpidr; 113 struct list_head its_device_list; 114 u64 flags; 115 unsigned long list_nr; 116 int numa_node; 117 unsigned int msi_domain_flags; 118 u32 pre_its_base; /* for Socionext Synquacer */ 119 int vlpi_redist_offset; 120 }; 121 122 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 123 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 124 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 125 126 #define ITS_ITT_ALIGN SZ_256 127 128 /* The maximum number of VPEID bits supported by VLPI commands */ 129 #define ITS_MAX_VPEID_BITS \ 130 ({ \ 131 int nvpeid = 16; \ 132 if (gic_rdists->has_rvpeid && \ 133 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 134 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 135 GICD_TYPER2_VID); \ 136 \ 137 nvpeid; \ 138 }) 139 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 140 141 /* Convert page order to size in bytes */ 142 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 143 144 struct event_lpi_map { 145 unsigned long *lpi_map; 146 u16 *col_map; 147 irq_hw_number_t lpi_base; 148 int nr_lpis; 149 raw_spinlock_t vlpi_lock; 150 struct its_vm *vm; 151 struct its_vlpi_map *vlpi_maps; 152 int nr_vlpis; 153 }; 154 155 /* 156 * The ITS view of a device - belongs to an ITS, owns an interrupt 157 * translation table, and a list of interrupts. If it some of its 158 * LPIs are injected into a guest (GICv4), the event_map.vm field 159 * indicates which one. 160 */ 161 struct its_device { 162 struct list_head entry; 163 struct its_node *its; 164 struct event_lpi_map event_map; 165 void *itt; 166 u32 nr_ites; 167 u32 device_id; 168 bool shared; 169 }; 170 171 static struct { 172 raw_spinlock_t lock; 173 struct its_device *dev; 174 struct its_vpe **vpes; 175 int next_victim; 176 } vpe_proxy; 177 178 struct cpu_lpi_count { 179 atomic_t managed; 180 atomic_t unmanaged; 181 }; 182 183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 184 185 static LIST_HEAD(its_nodes); 186 static DEFINE_RAW_SPINLOCK(its_lock); 187 static struct rdists *gic_rdists; 188 static struct irq_domain *its_parent; 189 190 static unsigned long its_list_map; 191 static u16 vmovp_seq_num; 192 static DEFINE_RAW_SPINLOCK(vmovp_lock); 193 194 static DEFINE_IDA(its_vpeid_ida); 195 196 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 197 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 198 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 199 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 200 201 /* 202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 203 * always have vSGIs mapped. 204 */ 205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 206 { 207 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 208 } 209 210 static bool rdists_support_shareable(void) 211 { 212 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 213 } 214 215 static u16 get_its_list(struct its_vm *vm) 216 { 217 struct its_node *its; 218 unsigned long its_list = 0; 219 220 list_for_each_entry(its, &its_nodes, entry) { 221 if (!is_v4(its)) 222 continue; 223 224 if (require_its_list_vmovp(vm, its)) 225 __set_bit(its->list_nr, &its_list); 226 } 227 228 return (u16)its_list; 229 } 230 231 static inline u32 its_get_event_id(struct irq_data *d) 232 { 233 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 234 return d->hwirq - its_dev->event_map.lpi_base; 235 } 236 237 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 238 u32 event) 239 { 240 struct its_node *its = its_dev->its; 241 242 return its->collections + its_dev->event_map.col_map[event]; 243 } 244 245 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 246 u32 event) 247 { 248 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 249 return NULL; 250 251 return &its_dev->event_map.vlpi_maps[event]; 252 } 253 254 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 255 { 256 if (irqd_is_forwarded_to_vcpu(d)) { 257 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 258 u32 event = its_get_event_id(d); 259 260 return dev_event_to_vlpi_map(its_dev, event); 261 } 262 263 return NULL; 264 } 265 266 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 267 { 268 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 269 return vpe->col_idx; 270 } 271 272 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 273 { 274 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 275 } 276 277 static struct irq_chip its_vpe_irq_chip; 278 279 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 280 { 281 struct its_vpe *vpe = NULL; 282 int cpu; 283 284 if (d->chip == &its_vpe_irq_chip) { 285 vpe = irq_data_get_irq_chip_data(d); 286 } else { 287 struct its_vlpi_map *map = get_vlpi_map(d); 288 if (map) 289 vpe = map->vpe; 290 } 291 292 if (vpe) { 293 cpu = vpe_to_cpuid_lock(vpe, flags); 294 } else { 295 /* Physical LPIs are already locked via the irq_desc lock */ 296 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 297 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 298 /* Keep GCC quiet... */ 299 *flags = 0; 300 } 301 302 return cpu; 303 } 304 305 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 306 { 307 struct its_vpe *vpe = NULL; 308 309 if (d->chip == &its_vpe_irq_chip) { 310 vpe = irq_data_get_irq_chip_data(d); 311 } else { 312 struct its_vlpi_map *map = get_vlpi_map(d); 313 if (map) 314 vpe = map->vpe; 315 } 316 317 if (vpe) 318 vpe_to_cpuid_unlock(vpe, flags); 319 } 320 321 static struct its_collection *valid_col(struct its_collection *col) 322 { 323 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 324 return NULL; 325 326 return col; 327 } 328 329 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 330 { 331 if (valid_col(its->collections + vpe->col_idx)) 332 return vpe; 333 334 return NULL; 335 } 336 337 /* 338 * ITS command descriptors - parameters to be encoded in a command 339 * block. 340 */ 341 struct its_cmd_desc { 342 union { 343 struct { 344 struct its_device *dev; 345 u32 event_id; 346 } its_inv_cmd; 347 348 struct { 349 struct its_device *dev; 350 u32 event_id; 351 } its_clear_cmd; 352 353 struct { 354 struct its_device *dev; 355 u32 event_id; 356 } its_int_cmd; 357 358 struct { 359 struct its_device *dev; 360 int valid; 361 } its_mapd_cmd; 362 363 struct { 364 struct its_collection *col; 365 int valid; 366 } its_mapc_cmd; 367 368 struct { 369 struct its_device *dev; 370 u32 phys_id; 371 u32 event_id; 372 } its_mapti_cmd; 373 374 struct { 375 struct its_device *dev; 376 struct its_collection *col; 377 u32 event_id; 378 } its_movi_cmd; 379 380 struct { 381 struct its_device *dev; 382 u32 event_id; 383 } its_discard_cmd; 384 385 struct { 386 struct its_collection *col; 387 } its_invall_cmd; 388 389 struct { 390 struct its_vpe *vpe; 391 } its_vinvall_cmd; 392 393 struct { 394 struct its_vpe *vpe; 395 struct its_collection *col; 396 bool valid; 397 } its_vmapp_cmd; 398 399 struct { 400 struct its_vpe *vpe; 401 struct its_device *dev; 402 u32 virt_id; 403 u32 event_id; 404 bool db_enabled; 405 } its_vmapti_cmd; 406 407 struct { 408 struct its_vpe *vpe; 409 struct its_device *dev; 410 u32 event_id; 411 bool db_enabled; 412 } its_vmovi_cmd; 413 414 struct { 415 struct its_vpe *vpe; 416 struct its_collection *col; 417 u16 seq_num; 418 u16 its_list; 419 } its_vmovp_cmd; 420 421 struct { 422 struct its_vpe *vpe; 423 } its_invdb_cmd; 424 425 struct { 426 struct its_vpe *vpe; 427 u8 sgi; 428 u8 priority; 429 bool enable; 430 bool group; 431 bool clear; 432 } its_vsgi_cmd; 433 }; 434 }; 435 436 /* 437 * The ITS command block, which is what the ITS actually parses. 438 */ 439 struct its_cmd_block { 440 union { 441 u64 raw_cmd[4]; 442 __le64 raw_cmd_le[4]; 443 }; 444 }; 445 446 #define ITS_CMD_QUEUE_SZ SZ_64K 447 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 448 449 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 450 struct its_cmd_block *, 451 struct its_cmd_desc *); 452 453 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 454 struct its_cmd_block *, 455 struct its_cmd_desc *); 456 457 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 458 { 459 u64 mask = GENMASK_ULL(h, l); 460 *raw_cmd &= ~mask; 461 *raw_cmd |= (val << l) & mask; 462 } 463 464 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 465 { 466 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 467 } 468 469 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 470 { 471 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 472 } 473 474 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 475 { 476 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 477 } 478 479 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 480 { 481 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 482 } 483 484 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 485 { 486 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 487 } 488 489 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 490 { 491 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 492 } 493 494 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 495 { 496 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 497 } 498 499 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 500 { 501 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 502 } 503 504 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 505 { 506 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 507 } 508 509 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 510 { 511 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 512 } 513 514 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 515 { 516 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 517 } 518 519 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 520 { 521 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 522 } 523 524 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 525 { 526 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 527 } 528 529 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 530 { 531 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 532 } 533 534 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 535 { 536 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 537 } 538 539 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 540 { 541 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 542 } 543 544 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 545 { 546 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 547 } 548 549 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 550 { 551 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 552 } 553 554 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 555 { 556 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 557 } 558 559 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 560 { 561 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 562 } 563 564 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 565 u32 vpe_db_lpi) 566 { 567 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 568 } 569 570 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 571 u32 vpe_db_lpi) 572 { 573 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 574 } 575 576 static void its_encode_db(struct its_cmd_block *cmd, bool db) 577 { 578 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 579 } 580 581 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 582 { 583 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 584 } 585 586 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 587 { 588 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 589 } 590 591 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 592 { 593 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 594 } 595 596 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 597 { 598 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 599 } 600 601 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 602 { 603 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 604 } 605 606 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 607 { 608 /* Let's fixup BE commands */ 609 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 610 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 611 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 612 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 613 } 614 615 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 616 struct its_cmd_block *cmd, 617 struct its_cmd_desc *desc) 618 { 619 unsigned long itt_addr; 620 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 621 622 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 623 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 624 625 its_encode_cmd(cmd, GITS_CMD_MAPD); 626 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 627 its_encode_size(cmd, size - 1); 628 its_encode_itt(cmd, itt_addr); 629 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 630 631 its_fixup_cmd(cmd); 632 633 return NULL; 634 } 635 636 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 637 struct its_cmd_block *cmd, 638 struct its_cmd_desc *desc) 639 { 640 its_encode_cmd(cmd, GITS_CMD_MAPC); 641 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 642 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 643 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 644 645 its_fixup_cmd(cmd); 646 647 return desc->its_mapc_cmd.col; 648 } 649 650 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 651 struct its_cmd_block *cmd, 652 struct its_cmd_desc *desc) 653 { 654 struct its_collection *col; 655 656 col = dev_event_to_col(desc->its_mapti_cmd.dev, 657 desc->its_mapti_cmd.event_id); 658 659 its_encode_cmd(cmd, GITS_CMD_MAPTI); 660 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 661 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 662 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 663 its_encode_collection(cmd, col->col_id); 664 665 its_fixup_cmd(cmd); 666 667 return valid_col(col); 668 } 669 670 static struct its_collection *its_build_movi_cmd(struct its_node *its, 671 struct its_cmd_block *cmd, 672 struct its_cmd_desc *desc) 673 { 674 struct its_collection *col; 675 676 col = dev_event_to_col(desc->its_movi_cmd.dev, 677 desc->its_movi_cmd.event_id); 678 679 its_encode_cmd(cmd, GITS_CMD_MOVI); 680 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 681 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 682 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 683 684 its_fixup_cmd(cmd); 685 686 return valid_col(col); 687 } 688 689 static struct its_collection *its_build_discard_cmd(struct its_node *its, 690 struct its_cmd_block *cmd, 691 struct its_cmd_desc *desc) 692 { 693 struct its_collection *col; 694 695 col = dev_event_to_col(desc->its_discard_cmd.dev, 696 desc->its_discard_cmd.event_id); 697 698 its_encode_cmd(cmd, GITS_CMD_DISCARD); 699 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 700 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 701 702 its_fixup_cmd(cmd); 703 704 return valid_col(col); 705 } 706 707 static struct its_collection *its_build_inv_cmd(struct its_node *its, 708 struct its_cmd_block *cmd, 709 struct its_cmd_desc *desc) 710 { 711 struct its_collection *col; 712 713 col = dev_event_to_col(desc->its_inv_cmd.dev, 714 desc->its_inv_cmd.event_id); 715 716 its_encode_cmd(cmd, GITS_CMD_INV); 717 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 718 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 719 720 its_fixup_cmd(cmd); 721 722 return valid_col(col); 723 } 724 725 static struct its_collection *its_build_int_cmd(struct its_node *its, 726 struct its_cmd_block *cmd, 727 struct its_cmd_desc *desc) 728 { 729 struct its_collection *col; 730 731 col = dev_event_to_col(desc->its_int_cmd.dev, 732 desc->its_int_cmd.event_id); 733 734 its_encode_cmd(cmd, GITS_CMD_INT); 735 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 736 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 737 738 its_fixup_cmd(cmd); 739 740 return valid_col(col); 741 } 742 743 static struct its_collection *its_build_clear_cmd(struct its_node *its, 744 struct its_cmd_block *cmd, 745 struct its_cmd_desc *desc) 746 { 747 struct its_collection *col; 748 749 col = dev_event_to_col(desc->its_clear_cmd.dev, 750 desc->its_clear_cmd.event_id); 751 752 its_encode_cmd(cmd, GITS_CMD_CLEAR); 753 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 754 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 755 756 its_fixup_cmd(cmd); 757 758 return valid_col(col); 759 } 760 761 static struct its_collection *its_build_invall_cmd(struct its_node *its, 762 struct its_cmd_block *cmd, 763 struct its_cmd_desc *desc) 764 { 765 its_encode_cmd(cmd, GITS_CMD_INVALL); 766 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 767 768 its_fixup_cmd(cmd); 769 770 return desc->its_invall_cmd.col; 771 } 772 773 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 774 struct its_cmd_block *cmd, 775 struct its_cmd_desc *desc) 776 { 777 its_encode_cmd(cmd, GITS_CMD_VINVALL); 778 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 779 780 its_fixup_cmd(cmd); 781 782 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 783 } 784 785 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 786 struct its_cmd_block *cmd, 787 struct its_cmd_desc *desc) 788 { 789 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); 790 unsigned long vpt_addr, vconf_addr; 791 u64 target; 792 bool alloc; 793 794 its_encode_cmd(cmd, GITS_CMD_VMAPP); 795 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 796 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 797 798 if (!desc->its_vmapp_cmd.valid) { 799 if (is_v4_1(its)) { 800 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 801 its_encode_alloc(cmd, alloc); 802 /* 803 * Unmapping a VPE is self-synchronizing on GICv4.1, 804 * no need to issue a VSYNC. 805 */ 806 vpe = NULL; 807 } 808 809 goto out; 810 } 811 812 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 813 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 814 815 its_encode_target(cmd, target); 816 its_encode_vpt_addr(cmd, vpt_addr); 817 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 818 819 if (!is_v4_1(its)) 820 goto out; 821 822 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 823 824 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 825 826 its_encode_alloc(cmd, alloc); 827 828 /* 829 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 830 * to be unmapped first, and in this case, we may remap the vPE 831 * back while the VPT is not empty. So we can't assume that the 832 * VPT is empty on map. This is why we never advertise PTZ. 833 */ 834 its_encode_ptz(cmd, false); 835 its_encode_vconf_addr(cmd, vconf_addr); 836 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 837 838 out: 839 its_fixup_cmd(cmd); 840 841 return vpe; 842 } 843 844 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 845 struct its_cmd_block *cmd, 846 struct its_cmd_desc *desc) 847 { 848 u32 db; 849 850 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 851 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 852 else 853 db = 1023; 854 855 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 856 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 857 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 858 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 859 its_encode_db_phys_id(cmd, db); 860 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 861 862 its_fixup_cmd(cmd); 863 864 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 865 } 866 867 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 868 struct its_cmd_block *cmd, 869 struct its_cmd_desc *desc) 870 { 871 u32 db; 872 873 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 874 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 875 else 876 db = 1023; 877 878 its_encode_cmd(cmd, GITS_CMD_VMOVI); 879 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 880 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 881 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 882 its_encode_db_phys_id(cmd, db); 883 its_encode_db_valid(cmd, true); 884 885 its_fixup_cmd(cmd); 886 887 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 888 } 889 890 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 891 struct its_cmd_block *cmd, 892 struct its_cmd_desc *desc) 893 { 894 u64 target; 895 896 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 897 its_encode_cmd(cmd, GITS_CMD_VMOVP); 898 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 899 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 900 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 901 its_encode_target(cmd, target); 902 903 if (is_v4_1(its)) { 904 its_encode_db(cmd, true); 905 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 906 } 907 908 its_fixup_cmd(cmd); 909 910 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 911 } 912 913 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 914 struct its_cmd_block *cmd, 915 struct its_cmd_desc *desc) 916 { 917 struct its_vlpi_map *map; 918 919 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 920 desc->its_inv_cmd.event_id); 921 922 its_encode_cmd(cmd, GITS_CMD_INV); 923 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 924 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 925 926 its_fixup_cmd(cmd); 927 928 return valid_vpe(its, map->vpe); 929 } 930 931 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 932 struct its_cmd_block *cmd, 933 struct its_cmd_desc *desc) 934 { 935 struct its_vlpi_map *map; 936 937 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 938 desc->its_int_cmd.event_id); 939 940 its_encode_cmd(cmd, GITS_CMD_INT); 941 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 942 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 943 944 its_fixup_cmd(cmd); 945 946 return valid_vpe(its, map->vpe); 947 } 948 949 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 950 struct its_cmd_block *cmd, 951 struct its_cmd_desc *desc) 952 { 953 struct its_vlpi_map *map; 954 955 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 956 desc->its_clear_cmd.event_id); 957 958 its_encode_cmd(cmd, GITS_CMD_CLEAR); 959 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 960 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 961 962 its_fixup_cmd(cmd); 963 964 return valid_vpe(its, map->vpe); 965 } 966 967 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 968 struct its_cmd_block *cmd, 969 struct its_cmd_desc *desc) 970 { 971 if (WARN_ON(!is_v4_1(its))) 972 return NULL; 973 974 its_encode_cmd(cmd, GITS_CMD_INVDB); 975 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 976 977 its_fixup_cmd(cmd); 978 979 return valid_vpe(its, desc->its_invdb_cmd.vpe); 980 } 981 982 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 983 struct its_cmd_block *cmd, 984 struct its_cmd_desc *desc) 985 { 986 if (WARN_ON(!is_v4_1(its))) 987 return NULL; 988 989 its_encode_cmd(cmd, GITS_CMD_VSGI); 990 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 991 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 992 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 993 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 994 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 995 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 996 997 its_fixup_cmd(cmd); 998 999 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 1000 } 1001 1002 static u64 its_cmd_ptr_to_offset(struct its_node *its, 1003 struct its_cmd_block *ptr) 1004 { 1005 return (ptr - its->cmd_base) * sizeof(*ptr); 1006 } 1007 1008 static int its_queue_full(struct its_node *its) 1009 { 1010 int widx; 1011 int ridx; 1012 1013 widx = its->cmd_write - its->cmd_base; 1014 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1015 1016 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1017 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1018 return 1; 1019 1020 return 0; 1021 } 1022 1023 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1024 { 1025 struct its_cmd_block *cmd; 1026 u32 count = 1000000; /* 1s! */ 1027 1028 while (its_queue_full(its)) { 1029 count--; 1030 if (!count) { 1031 pr_err_ratelimited("ITS queue not draining\n"); 1032 return NULL; 1033 } 1034 cpu_relax(); 1035 udelay(1); 1036 } 1037 1038 cmd = its->cmd_write++; 1039 1040 /* Handle queue wrapping */ 1041 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1042 its->cmd_write = its->cmd_base; 1043 1044 /* Clear command */ 1045 cmd->raw_cmd[0] = 0; 1046 cmd->raw_cmd[1] = 0; 1047 cmd->raw_cmd[2] = 0; 1048 cmd->raw_cmd[3] = 0; 1049 1050 return cmd; 1051 } 1052 1053 static struct its_cmd_block *its_post_commands(struct its_node *its) 1054 { 1055 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1056 1057 writel_relaxed(wr, its->base + GITS_CWRITER); 1058 1059 return its->cmd_write; 1060 } 1061 1062 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1063 { 1064 /* 1065 * Make sure the commands written to memory are observable by 1066 * the ITS. 1067 */ 1068 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1069 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1070 else 1071 dsb(ishst); 1072 } 1073 1074 static int its_wait_for_range_completion(struct its_node *its, 1075 u64 prev_idx, 1076 struct its_cmd_block *to) 1077 { 1078 u64 rd_idx, to_idx, linear_idx; 1079 u32 count = 1000000; /* 1s! */ 1080 1081 /* Linearize to_idx if the command set has wrapped around */ 1082 to_idx = its_cmd_ptr_to_offset(its, to); 1083 if (to_idx < prev_idx) 1084 to_idx += ITS_CMD_QUEUE_SZ; 1085 1086 linear_idx = prev_idx; 1087 1088 while (1) { 1089 s64 delta; 1090 1091 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1092 1093 /* 1094 * Compute the read pointer progress, taking the 1095 * potential wrap-around into account. 1096 */ 1097 delta = rd_idx - prev_idx; 1098 if (rd_idx < prev_idx) 1099 delta += ITS_CMD_QUEUE_SZ; 1100 1101 linear_idx += delta; 1102 if (linear_idx >= to_idx) 1103 break; 1104 1105 count--; 1106 if (!count) { 1107 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1108 to_idx, linear_idx); 1109 return -1; 1110 } 1111 prev_idx = rd_idx; 1112 cpu_relax(); 1113 udelay(1); 1114 } 1115 1116 return 0; 1117 } 1118 1119 /* Warning, macro hell follows */ 1120 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1121 void name(struct its_node *its, \ 1122 buildtype builder, \ 1123 struct its_cmd_desc *desc) \ 1124 { \ 1125 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1126 synctype *sync_obj; \ 1127 unsigned long flags; \ 1128 u64 rd_idx; \ 1129 \ 1130 raw_spin_lock_irqsave(&its->lock, flags); \ 1131 \ 1132 cmd = its_allocate_entry(its); \ 1133 if (!cmd) { /* We're soooooo screewed... */ \ 1134 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1135 return; \ 1136 } \ 1137 sync_obj = builder(its, cmd, desc); \ 1138 its_flush_cmd(its, cmd); \ 1139 \ 1140 if (sync_obj) { \ 1141 sync_cmd = its_allocate_entry(its); \ 1142 if (!sync_cmd) \ 1143 goto post; \ 1144 \ 1145 buildfn(its, sync_cmd, sync_obj); \ 1146 its_flush_cmd(its, sync_cmd); \ 1147 } \ 1148 \ 1149 post: \ 1150 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1151 next_cmd = its_post_commands(its); \ 1152 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1153 \ 1154 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1155 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1156 } 1157 1158 static void its_build_sync_cmd(struct its_node *its, 1159 struct its_cmd_block *sync_cmd, 1160 struct its_collection *sync_col) 1161 { 1162 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1163 its_encode_target(sync_cmd, sync_col->target_address); 1164 1165 its_fixup_cmd(sync_cmd); 1166 } 1167 1168 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1169 struct its_collection, its_build_sync_cmd) 1170 1171 static void its_build_vsync_cmd(struct its_node *its, 1172 struct its_cmd_block *sync_cmd, 1173 struct its_vpe *sync_vpe) 1174 { 1175 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1176 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1177 1178 its_fixup_cmd(sync_cmd); 1179 } 1180 1181 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1182 struct its_vpe, its_build_vsync_cmd) 1183 1184 static void its_send_int(struct its_device *dev, u32 event_id) 1185 { 1186 struct its_cmd_desc desc; 1187 1188 desc.its_int_cmd.dev = dev; 1189 desc.its_int_cmd.event_id = event_id; 1190 1191 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1192 } 1193 1194 static void its_send_clear(struct its_device *dev, u32 event_id) 1195 { 1196 struct its_cmd_desc desc; 1197 1198 desc.its_clear_cmd.dev = dev; 1199 desc.its_clear_cmd.event_id = event_id; 1200 1201 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1202 } 1203 1204 static void its_send_inv(struct its_device *dev, u32 event_id) 1205 { 1206 struct its_cmd_desc desc; 1207 1208 desc.its_inv_cmd.dev = dev; 1209 desc.its_inv_cmd.event_id = event_id; 1210 1211 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1212 } 1213 1214 static void its_send_mapd(struct its_device *dev, int valid) 1215 { 1216 struct its_cmd_desc desc; 1217 1218 desc.its_mapd_cmd.dev = dev; 1219 desc.its_mapd_cmd.valid = !!valid; 1220 1221 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1222 } 1223 1224 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1225 int valid) 1226 { 1227 struct its_cmd_desc desc; 1228 1229 desc.its_mapc_cmd.col = col; 1230 desc.its_mapc_cmd.valid = !!valid; 1231 1232 its_send_single_command(its, its_build_mapc_cmd, &desc); 1233 } 1234 1235 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1236 { 1237 struct its_cmd_desc desc; 1238 1239 desc.its_mapti_cmd.dev = dev; 1240 desc.its_mapti_cmd.phys_id = irq_id; 1241 desc.its_mapti_cmd.event_id = id; 1242 1243 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1244 } 1245 1246 static void its_send_movi(struct its_device *dev, 1247 struct its_collection *col, u32 id) 1248 { 1249 struct its_cmd_desc desc; 1250 1251 desc.its_movi_cmd.dev = dev; 1252 desc.its_movi_cmd.col = col; 1253 desc.its_movi_cmd.event_id = id; 1254 1255 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1256 } 1257 1258 static void its_send_discard(struct its_device *dev, u32 id) 1259 { 1260 struct its_cmd_desc desc; 1261 1262 desc.its_discard_cmd.dev = dev; 1263 desc.its_discard_cmd.event_id = id; 1264 1265 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1266 } 1267 1268 static void its_send_invall(struct its_node *its, struct its_collection *col) 1269 { 1270 struct its_cmd_desc desc; 1271 1272 desc.its_invall_cmd.col = col; 1273 1274 its_send_single_command(its, its_build_invall_cmd, &desc); 1275 } 1276 1277 static void its_send_vmapti(struct its_device *dev, u32 id) 1278 { 1279 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1280 struct its_cmd_desc desc; 1281 1282 desc.its_vmapti_cmd.vpe = map->vpe; 1283 desc.its_vmapti_cmd.dev = dev; 1284 desc.its_vmapti_cmd.virt_id = map->vintid; 1285 desc.its_vmapti_cmd.event_id = id; 1286 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1287 1288 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1289 } 1290 1291 static void its_send_vmovi(struct its_device *dev, u32 id) 1292 { 1293 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1294 struct its_cmd_desc desc; 1295 1296 desc.its_vmovi_cmd.vpe = map->vpe; 1297 desc.its_vmovi_cmd.dev = dev; 1298 desc.its_vmovi_cmd.event_id = id; 1299 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1300 1301 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1302 } 1303 1304 static void its_send_vmapp(struct its_node *its, 1305 struct its_vpe *vpe, bool valid) 1306 { 1307 struct its_cmd_desc desc; 1308 1309 desc.its_vmapp_cmd.vpe = vpe; 1310 desc.its_vmapp_cmd.valid = valid; 1311 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1312 1313 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1314 } 1315 1316 static void its_send_vmovp(struct its_vpe *vpe) 1317 { 1318 struct its_cmd_desc desc = {}; 1319 struct its_node *its; 1320 unsigned long flags; 1321 int col_id = vpe->col_idx; 1322 1323 desc.its_vmovp_cmd.vpe = vpe; 1324 1325 if (!its_list_map) { 1326 its = list_first_entry(&its_nodes, struct its_node, entry); 1327 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1328 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1329 return; 1330 } 1331 1332 /* 1333 * Yet another marvel of the architecture. If using the 1334 * its_list "feature", we need to make sure that all ITSs 1335 * receive all VMOVP commands in the same order. The only way 1336 * to guarantee this is to make vmovp a serialization point. 1337 * 1338 * Wall <-- Head. 1339 */ 1340 raw_spin_lock_irqsave(&vmovp_lock, flags); 1341 1342 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1343 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1344 1345 /* Emit VMOVPs */ 1346 list_for_each_entry(its, &its_nodes, entry) { 1347 if (!is_v4(its)) 1348 continue; 1349 1350 if (!require_its_list_vmovp(vpe->its_vm, its)) 1351 continue; 1352 1353 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1354 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1355 } 1356 1357 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1358 } 1359 1360 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1361 { 1362 struct its_cmd_desc desc; 1363 1364 desc.its_vinvall_cmd.vpe = vpe; 1365 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1366 } 1367 1368 static void its_send_vinv(struct its_device *dev, u32 event_id) 1369 { 1370 struct its_cmd_desc desc; 1371 1372 /* 1373 * There is no real VINV command. This is just a normal INV, 1374 * with a VSYNC instead of a SYNC. 1375 */ 1376 desc.its_inv_cmd.dev = dev; 1377 desc.its_inv_cmd.event_id = event_id; 1378 1379 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1380 } 1381 1382 static void its_send_vint(struct its_device *dev, u32 event_id) 1383 { 1384 struct its_cmd_desc desc; 1385 1386 /* 1387 * There is no real VINT command. This is just a normal INT, 1388 * with a VSYNC instead of a SYNC. 1389 */ 1390 desc.its_int_cmd.dev = dev; 1391 desc.its_int_cmd.event_id = event_id; 1392 1393 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1394 } 1395 1396 static void its_send_vclear(struct its_device *dev, u32 event_id) 1397 { 1398 struct its_cmd_desc desc; 1399 1400 /* 1401 * There is no real VCLEAR command. This is just a normal CLEAR, 1402 * with a VSYNC instead of a SYNC. 1403 */ 1404 desc.its_clear_cmd.dev = dev; 1405 desc.its_clear_cmd.event_id = event_id; 1406 1407 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1408 } 1409 1410 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1411 { 1412 struct its_cmd_desc desc; 1413 1414 desc.its_invdb_cmd.vpe = vpe; 1415 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1416 } 1417 1418 /* 1419 * irqchip functions - assumes MSI, mostly. 1420 */ 1421 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1422 { 1423 struct its_vlpi_map *map = get_vlpi_map(d); 1424 irq_hw_number_t hwirq; 1425 void *va; 1426 u8 *cfg; 1427 1428 if (map) { 1429 va = page_address(map->vm->vprop_page); 1430 hwirq = map->vintid; 1431 1432 /* Remember the updated property */ 1433 map->properties &= ~clr; 1434 map->properties |= set | LPI_PROP_GROUP1; 1435 } else { 1436 va = gic_rdists->prop_table_va; 1437 hwirq = d->hwirq; 1438 } 1439 1440 cfg = va + hwirq - 8192; 1441 *cfg &= ~clr; 1442 *cfg |= set | LPI_PROP_GROUP1; 1443 1444 /* 1445 * Make the above write visible to the redistributors. 1446 * And yes, we're flushing exactly: One. Single. Byte. 1447 * Humpf... 1448 */ 1449 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1450 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1451 else 1452 dsb(ishst); 1453 } 1454 1455 static void wait_for_syncr(void __iomem *rdbase) 1456 { 1457 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1458 cpu_relax(); 1459 } 1460 1461 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1462 { 1463 void __iomem *rdbase; 1464 unsigned long flags; 1465 int cpu; 1466 1467 /* Target the redistributor this LPI is currently routed to */ 1468 cpu = irq_to_cpuid_lock(d, &flags); 1469 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1470 1471 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1472 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1473 wait_for_syncr(rdbase); 1474 1475 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1476 irq_to_cpuid_unlock(d, flags); 1477 } 1478 1479 static void direct_lpi_inv(struct irq_data *d) 1480 { 1481 struct its_vlpi_map *map = get_vlpi_map(d); 1482 u64 val; 1483 1484 if (map) { 1485 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1486 1487 WARN_ON(!is_v4_1(its_dev->its)); 1488 1489 val = GICR_INVLPIR_V; 1490 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1491 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1492 } else { 1493 val = d->hwirq; 1494 } 1495 1496 __direct_lpi_inv(d, val); 1497 } 1498 1499 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1500 { 1501 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1502 1503 lpi_write_config(d, clr, set); 1504 if (gic_rdists->has_direct_lpi && 1505 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1506 direct_lpi_inv(d); 1507 else if (!irqd_is_forwarded_to_vcpu(d)) 1508 its_send_inv(its_dev, its_get_event_id(d)); 1509 else 1510 its_send_vinv(its_dev, its_get_event_id(d)); 1511 } 1512 1513 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1514 { 1515 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1516 u32 event = its_get_event_id(d); 1517 struct its_vlpi_map *map; 1518 1519 /* 1520 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1521 * here. 1522 */ 1523 if (is_v4_1(its_dev->its)) 1524 return; 1525 1526 map = dev_event_to_vlpi_map(its_dev, event); 1527 1528 if (map->db_enabled == enable) 1529 return; 1530 1531 map->db_enabled = enable; 1532 1533 /* 1534 * More fun with the architecture: 1535 * 1536 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1537 * value or to 1023, depending on the enable bit. But that 1538 * would be issuing a mapping for an /existing/ DevID+EventID 1539 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1540 * to the /same/ vPE, using this opportunity to adjust the 1541 * doorbell. Mouahahahaha. We loves it, Precious. 1542 */ 1543 its_send_vmovi(its_dev, event); 1544 } 1545 1546 static void its_mask_irq(struct irq_data *d) 1547 { 1548 if (irqd_is_forwarded_to_vcpu(d)) 1549 its_vlpi_set_doorbell(d, false); 1550 1551 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1552 } 1553 1554 static void its_unmask_irq(struct irq_data *d) 1555 { 1556 if (irqd_is_forwarded_to_vcpu(d)) 1557 its_vlpi_set_doorbell(d, true); 1558 1559 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1560 } 1561 1562 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1563 { 1564 if (irqd_affinity_is_managed(d)) 1565 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1566 1567 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1568 } 1569 1570 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1571 { 1572 if (irqd_affinity_is_managed(d)) 1573 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1574 else 1575 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1576 } 1577 1578 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1579 { 1580 if (irqd_affinity_is_managed(d)) 1581 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1582 else 1583 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1584 } 1585 1586 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1587 const struct cpumask *cpu_mask) 1588 { 1589 unsigned int cpu = nr_cpu_ids, tmp; 1590 int count = S32_MAX; 1591 1592 for_each_cpu(tmp, cpu_mask) { 1593 int this_count = its_read_lpi_count(d, tmp); 1594 if (this_count < count) { 1595 cpu = tmp; 1596 count = this_count; 1597 } 1598 } 1599 1600 return cpu; 1601 } 1602 1603 /* 1604 * As suggested by Thomas Gleixner in: 1605 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1606 */ 1607 static int its_select_cpu(struct irq_data *d, 1608 const struct cpumask *aff_mask) 1609 { 1610 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1611 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1612 static struct cpumask __tmpmask; 1613 struct cpumask *tmpmask; 1614 unsigned long flags; 1615 int cpu, node; 1616 node = its_dev->its->numa_node; 1617 tmpmask = &__tmpmask; 1618 1619 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1620 1621 if (!irqd_affinity_is_managed(d)) { 1622 /* First try the NUMA node */ 1623 if (node != NUMA_NO_NODE) { 1624 /* 1625 * Try the intersection of the affinity mask and the 1626 * node mask (and the online mask, just to be safe). 1627 */ 1628 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1629 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1630 1631 /* 1632 * Ideally, we would check if the mask is empty, and 1633 * try again on the full node here. 1634 * 1635 * But it turns out that the way ACPI describes the 1636 * affinity for ITSs only deals about memory, and 1637 * not target CPUs, so it cannot describe a single 1638 * ITS placed next to two NUMA nodes. 1639 * 1640 * Instead, just fallback on the online mask. This 1641 * diverges from Thomas' suggestion above. 1642 */ 1643 cpu = cpumask_pick_least_loaded(d, tmpmask); 1644 if (cpu < nr_cpu_ids) 1645 goto out; 1646 1647 /* If we can't cross sockets, give up */ 1648 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1649 goto out; 1650 1651 /* If the above failed, expand the search */ 1652 } 1653 1654 /* Try the intersection of the affinity and online masks */ 1655 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1656 1657 /* If that doesn't fly, the online mask is the last resort */ 1658 if (cpumask_empty(tmpmask)) 1659 cpumask_copy(tmpmask, cpu_online_mask); 1660 1661 cpu = cpumask_pick_least_loaded(d, tmpmask); 1662 } else { 1663 cpumask_copy(tmpmask, aff_mask); 1664 1665 /* If we cannot cross sockets, limit the search to that node */ 1666 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1667 node != NUMA_NO_NODE) 1668 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1669 1670 cpu = cpumask_pick_least_loaded(d, tmpmask); 1671 } 1672 out: 1673 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1674 1675 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1676 return cpu; 1677 } 1678 1679 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1680 bool force) 1681 { 1682 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1683 struct its_collection *target_col; 1684 u32 id = its_get_event_id(d); 1685 int cpu, prev_cpu; 1686 1687 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1688 if (irqd_is_forwarded_to_vcpu(d)) 1689 return -EINVAL; 1690 1691 prev_cpu = its_dev->event_map.col_map[id]; 1692 its_dec_lpi_count(d, prev_cpu); 1693 1694 if (!force) 1695 cpu = its_select_cpu(d, mask_val); 1696 else 1697 cpu = cpumask_pick_least_loaded(d, mask_val); 1698 1699 if (cpu < 0 || cpu >= nr_cpu_ids) 1700 goto err; 1701 1702 /* don't set the affinity when the target cpu is same as current one */ 1703 if (cpu != prev_cpu) { 1704 target_col = &its_dev->its->collections[cpu]; 1705 its_send_movi(its_dev, target_col, id); 1706 its_dev->event_map.col_map[id] = cpu; 1707 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1708 } 1709 1710 its_inc_lpi_count(d, cpu); 1711 1712 return IRQ_SET_MASK_OK_DONE; 1713 1714 err: 1715 its_inc_lpi_count(d, prev_cpu); 1716 return -EINVAL; 1717 } 1718 1719 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1720 { 1721 struct its_node *its = its_dev->its; 1722 1723 return its->phys_base + GITS_TRANSLATER; 1724 } 1725 1726 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1727 { 1728 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1729 struct its_node *its; 1730 u64 addr; 1731 1732 its = its_dev->its; 1733 addr = its->get_msi_base(its_dev); 1734 1735 msg->address_lo = lower_32_bits(addr); 1736 msg->address_hi = upper_32_bits(addr); 1737 msg->data = its_get_event_id(d); 1738 1739 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1740 } 1741 1742 static int its_irq_set_irqchip_state(struct irq_data *d, 1743 enum irqchip_irq_state which, 1744 bool state) 1745 { 1746 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1747 u32 event = its_get_event_id(d); 1748 1749 if (which != IRQCHIP_STATE_PENDING) 1750 return -EINVAL; 1751 1752 if (irqd_is_forwarded_to_vcpu(d)) { 1753 if (state) 1754 its_send_vint(its_dev, event); 1755 else 1756 its_send_vclear(its_dev, event); 1757 } else { 1758 if (state) 1759 its_send_int(its_dev, event); 1760 else 1761 its_send_clear(its_dev, event); 1762 } 1763 1764 return 0; 1765 } 1766 1767 static int its_irq_retrigger(struct irq_data *d) 1768 { 1769 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1770 } 1771 1772 /* 1773 * Two favourable cases: 1774 * 1775 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1776 * for vSGI delivery 1777 * 1778 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1779 * and we're better off mapping all VPEs always 1780 * 1781 * If neither (a) nor (b) is true, then we map vPEs on demand. 1782 * 1783 */ 1784 static bool gic_requires_eager_mapping(void) 1785 { 1786 if (!its_list_map || gic_rdists->has_rvpeid) 1787 return true; 1788 1789 return false; 1790 } 1791 1792 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1793 { 1794 unsigned long flags; 1795 1796 if (gic_requires_eager_mapping()) 1797 return; 1798 1799 raw_spin_lock_irqsave(&vmovp_lock, flags); 1800 1801 /* 1802 * If the VM wasn't mapped yet, iterate over the vpes and get 1803 * them mapped now. 1804 */ 1805 vm->vlpi_count[its->list_nr]++; 1806 1807 if (vm->vlpi_count[its->list_nr] == 1) { 1808 int i; 1809 1810 for (i = 0; i < vm->nr_vpes; i++) { 1811 struct its_vpe *vpe = vm->vpes[i]; 1812 struct irq_data *d = irq_get_irq_data(vpe->irq); 1813 1814 /* Map the VPE to the first possible CPU */ 1815 vpe->col_idx = cpumask_first(cpu_online_mask); 1816 its_send_vmapp(its, vpe, true); 1817 its_send_vinvall(its, vpe); 1818 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1819 } 1820 } 1821 1822 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1823 } 1824 1825 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1826 { 1827 unsigned long flags; 1828 1829 /* Not using the ITS list? Everything is always mapped. */ 1830 if (gic_requires_eager_mapping()) 1831 return; 1832 1833 raw_spin_lock_irqsave(&vmovp_lock, flags); 1834 1835 if (!--vm->vlpi_count[its->list_nr]) { 1836 int i; 1837 1838 for (i = 0; i < vm->nr_vpes; i++) 1839 its_send_vmapp(its, vm->vpes[i], false); 1840 } 1841 1842 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1843 } 1844 1845 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1846 { 1847 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1848 u32 event = its_get_event_id(d); 1849 int ret = 0; 1850 1851 if (!info->map) 1852 return -EINVAL; 1853 1854 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1855 1856 if (!its_dev->event_map.vm) { 1857 struct its_vlpi_map *maps; 1858 1859 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1860 GFP_ATOMIC); 1861 if (!maps) { 1862 ret = -ENOMEM; 1863 goto out; 1864 } 1865 1866 its_dev->event_map.vm = info->map->vm; 1867 its_dev->event_map.vlpi_maps = maps; 1868 } else if (its_dev->event_map.vm != info->map->vm) { 1869 ret = -EINVAL; 1870 goto out; 1871 } 1872 1873 /* Get our private copy of the mapping information */ 1874 its_dev->event_map.vlpi_maps[event] = *info->map; 1875 1876 if (irqd_is_forwarded_to_vcpu(d)) { 1877 /* Already mapped, move it around */ 1878 its_send_vmovi(its_dev, event); 1879 } else { 1880 /* Ensure all the VPEs are mapped on this ITS */ 1881 its_map_vm(its_dev->its, info->map->vm); 1882 1883 /* 1884 * Flag the interrupt as forwarded so that we can 1885 * start poking the virtual property table. 1886 */ 1887 irqd_set_forwarded_to_vcpu(d); 1888 1889 /* Write out the property to the prop table */ 1890 lpi_write_config(d, 0xff, info->map->properties); 1891 1892 /* Drop the physical mapping */ 1893 its_send_discard(its_dev, event); 1894 1895 /* and install the virtual one */ 1896 its_send_vmapti(its_dev, event); 1897 1898 /* Increment the number of VLPIs */ 1899 its_dev->event_map.nr_vlpis++; 1900 } 1901 1902 out: 1903 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1904 return ret; 1905 } 1906 1907 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1908 { 1909 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1910 struct its_vlpi_map *map; 1911 int ret = 0; 1912 1913 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1914 1915 map = get_vlpi_map(d); 1916 1917 if (!its_dev->event_map.vm || !map) { 1918 ret = -EINVAL; 1919 goto out; 1920 } 1921 1922 /* Copy our mapping information to the incoming request */ 1923 *info->map = *map; 1924 1925 out: 1926 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1927 return ret; 1928 } 1929 1930 static int its_vlpi_unmap(struct irq_data *d) 1931 { 1932 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1933 u32 event = its_get_event_id(d); 1934 int ret = 0; 1935 1936 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1937 1938 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1939 ret = -EINVAL; 1940 goto out; 1941 } 1942 1943 /* Drop the virtual mapping */ 1944 its_send_discard(its_dev, event); 1945 1946 /* and restore the physical one */ 1947 irqd_clr_forwarded_to_vcpu(d); 1948 its_send_mapti(its_dev, d->hwirq, event); 1949 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1950 LPI_PROP_ENABLED | 1951 LPI_PROP_GROUP1)); 1952 1953 /* Potentially unmap the VM from this ITS */ 1954 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1955 1956 /* 1957 * Drop the refcount and make the device available again if 1958 * this was the last VLPI. 1959 */ 1960 if (!--its_dev->event_map.nr_vlpis) { 1961 its_dev->event_map.vm = NULL; 1962 kfree(its_dev->event_map.vlpi_maps); 1963 } 1964 1965 out: 1966 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1967 return ret; 1968 } 1969 1970 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1971 { 1972 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1973 1974 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1975 return -EINVAL; 1976 1977 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1978 lpi_update_config(d, 0xff, info->config); 1979 else 1980 lpi_write_config(d, 0xff, info->config); 1981 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1982 1983 return 0; 1984 } 1985 1986 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1987 { 1988 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1989 struct its_cmd_info *info = vcpu_info; 1990 1991 /* Need a v4 ITS */ 1992 if (!is_v4(its_dev->its)) 1993 return -EINVAL; 1994 1995 /* Unmap request? */ 1996 if (!info) 1997 return its_vlpi_unmap(d); 1998 1999 switch (info->cmd_type) { 2000 case MAP_VLPI: 2001 return its_vlpi_map(d, info); 2002 2003 case GET_VLPI: 2004 return its_vlpi_get(d, info); 2005 2006 case PROP_UPDATE_VLPI: 2007 case PROP_UPDATE_AND_INV_VLPI: 2008 return its_vlpi_prop_update(d, info); 2009 2010 default: 2011 return -EINVAL; 2012 } 2013 } 2014 2015 static struct irq_chip its_irq_chip = { 2016 .name = "ITS", 2017 .irq_mask = its_mask_irq, 2018 .irq_unmask = its_unmask_irq, 2019 .irq_eoi = irq_chip_eoi_parent, 2020 .irq_set_affinity = its_set_affinity, 2021 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2022 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2023 .irq_retrigger = its_irq_retrigger, 2024 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2025 }; 2026 2027 2028 /* 2029 * How we allocate LPIs: 2030 * 2031 * lpi_range_list contains ranges of LPIs that are to available to 2032 * allocate from. To allocate LPIs, just pick the first range that 2033 * fits the required allocation, and reduce it by the required 2034 * amount. Once empty, remove the range from the list. 2035 * 2036 * To free a range of LPIs, add a free range to the list, sort it and 2037 * merge the result if the new range happens to be adjacent to an 2038 * already free block. 2039 * 2040 * The consequence of the above is that allocation is cost is low, but 2041 * freeing is expensive. We assumes that freeing rarely occurs. 2042 */ 2043 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2044 2045 static DEFINE_MUTEX(lpi_range_lock); 2046 static LIST_HEAD(lpi_range_list); 2047 2048 struct lpi_range { 2049 struct list_head entry; 2050 u32 base_id; 2051 u32 span; 2052 }; 2053 2054 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2055 { 2056 struct lpi_range *range; 2057 2058 range = kmalloc(sizeof(*range), GFP_KERNEL); 2059 if (range) { 2060 range->base_id = base; 2061 range->span = span; 2062 } 2063 2064 return range; 2065 } 2066 2067 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2068 { 2069 struct lpi_range *range, *tmp; 2070 int err = -ENOSPC; 2071 2072 mutex_lock(&lpi_range_lock); 2073 2074 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2075 if (range->span >= nr_lpis) { 2076 *base = range->base_id; 2077 range->base_id += nr_lpis; 2078 range->span -= nr_lpis; 2079 2080 if (range->span == 0) { 2081 list_del(&range->entry); 2082 kfree(range); 2083 } 2084 2085 err = 0; 2086 break; 2087 } 2088 } 2089 2090 mutex_unlock(&lpi_range_lock); 2091 2092 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2093 return err; 2094 } 2095 2096 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2097 { 2098 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2099 return; 2100 if (a->base_id + a->span != b->base_id) 2101 return; 2102 b->base_id = a->base_id; 2103 b->span += a->span; 2104 list_del(&a->entry); 2105 kfree(a); 2106 } 2107 2108 static int free_lpi_range(u32 base, u32 nr_lpis) 2109 { 2110 struct lpi_range *new, *old; 2111 2112 new = mk_lpi_range(base, nr_lpis); 2113 if (!new) 2114 return -ENOMEM; 2115 2116 mutex_lock(&lpi_range_lock); 2117 2118 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2119 if (old->base_id < base) 2120 break; 2121 } 2122 /* 2123 * old is the last element with ->base_id smaller than base, 2124 * so new goes right after it. If there are no elements with 2125 * ->base_id smaller than base, &old->entry ends up pointing 2126 * at the head of the list, and inserting new it the start of 2127 * the list is the right thing to do in that case as well. 2128 */ 2129 list_add(&new->entry, &old->entry); 2130 /* 2131 * Now check if we can merge with the preceding and/or 2132 * following ranges. 2133 */ 2134 merge_lpi_ranges(old, new); 2135 merge_lpi_ranges(new, list_next_entry(new, entry)); 2136 2137 mutex_unlock(&lpi_range_lock); 2138 return 0; 2139 } 2140 2141 static int __init its_lpi_init(u32 id_bits) 2142 { 2143 u32 lpis = (1UL << id_bits) - 8192; 2144 u32 numlpis; 2145 int err; 2146 2147 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2148 2149 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2150 lpis = numlpis; 2151 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2152 lpis); 2153 } 2154 2155 /* 2156 * Initializing the allocator is just the same as freeing the 2157 * full range of LPIs. 2158 */ 2159 err = free_lpi_range(8192, lpis); 2160 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2161 return err; 2162 } 2163 2164 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2165 { 2166 unsigned long *bitmap = NULL; 2167 int err = 0; 2168 2169 do { 2170 err = alloc_lpi_range(nr_irqs, base); 2171 if (!err) 2172 break; 2173 2174 nr_irqs /= 2; 2175 } while (nr_irqs > 0); 2176 2177 if (!nr_irqs) 2178 err = -ENOSPC; 2179 2180 if (err) 2181 goto out; 2182 2183 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2184 if (!bitmap) 2185 goto out; 2186 2187 *nr_ids = nr_irqs; 2188 2189 out: 2190 if (!bitmap) 2191 *base = *nr_ids = 0; 2192 2193 return bitmap; 2194 } 2195 2196 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2197 { 2198 WARN_ON(free_lpi_range(base, nr_ids)); 2199 bitmap_free(bitmap); 2200 } 2201 2202 static void gic_reset_prop_table(void *va) 2203 { 2204 /* Priority 0xa0, Group-1, disabled */ 2205 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2206 2207 /* Make sure the GIC will observe the written configuration */ 2208 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2209 } 2210 2211 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2212 { 2213 struct page *prop_page; 2214 2215 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2216 if (!prop_page) 2217 return NULL; 2218 2219 gic_reset_prop_table(page_address(prop_page)); 2220 2221 return prop_page; 2222 } 2223 2224 static void its_free_prop_table(struct page *prop_page) 2225 { 2226 free_pages((unsigned long)page_address(prop_page), 2227 get_order(LPI_PROPBASE_SZ)); 2228 } 2229 2230 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2231 { 2232 phys_addr_t start, end, addr_end; 2233 u64 i; 2234 2235 /* 2236 * We don't bother checking for a kdump kernel as by 2237 * construction, the LPI tables are out of this kernel's 2238 * memory map. 2239 */ 2240 if (is_kdump_kernel()) 2241 return true; 2242 2243 addr_end = addr + size - 1; 2244 2245 for_each_reserved_mem_range(i, &start, &end) { 2246 if (addr >= start && addr_end <= end) 2247 return true; 2248 } 2249 2250 /* Not found, not a good sign... */ 2251 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2252 &addr, &addr_end); 2253 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2254 return false; 2255 } 2256 2257 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2258 { 2259 if (efi_enabled(EFI_CONFIG_TABLES)) 2260 return efi_mem_reserve_persistent(addr, size); 2261 2262 return 0; 2263 } 2264 2265 static int __init its_setup_lpi_prop_table(void) 2266 { 2267 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2268 u64 val; 2269 2270 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2271 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2272 2273 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2274 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2275 LPI_PROPBASE_SZ, 2276 MEMREMAP_WB); 2277 gic_reset_prop_table(gic_rdists->prop_table_va); 2278 } else { 2279 struct page *page; 2280 2281 lpi_id_bits = min_t(u32, 2282 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2283 ITS_MAX_LPI_NRBITS); 2284 page = its_allocate_prop_table(GFP_NOWAIT); 2285 if (!page) { 2286 pr_err("Failed to allocate PROPBASE\n"); 2287 return -ENOMEM; 2288 } 2289 2290 gic_rdists->prop_table_pa = page_to_phys(page); 2291 gic_rdists->prop_table_va = page_address(page); 2292 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2293 LPI_PROPBASE_SZ)); 2294 } 2295 2296 pr_info("GICv3: using LPI property table @%pa\n", 2297 &gic_rdists->prop_table_pa); 2298 2299 return its_lpi_init(lpi_id_bits); 2300 } 2301 2302 static const char *its_base_type_string[] = { 2303 [GITS_BASER_TYPE_DEVICE] = "Devices", 2304 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2305 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2306 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2307 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2308 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2309 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2310 }; 2311 2312 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2313 { 2314 u32 idx = baser - its->tables; 2315 2316 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2317 } 2318 2319 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2320 u64 val) 2321 { 2322 u32 idx = baser - its->tables; 2323 2324 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2325 baser->val = its_read_baser(its, baser); 2326 } 2327 2328 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2329 u64 cache, u64 shr, u32 order, bool indirect) 2330 { 2331 u64 val = its_read_baser(its, baser); 2332 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2333 u64 type = GITS_BASER_TYPE(val); 2334 u64 baser_phys, tmp; 2335 u32 alloc_pages, psz; 2336 struct page *page; 2337 void *base; 2338 2339 psz = baser->psz; 2340 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2341 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2342 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2343 &its->phys_base, its_base_type_string[type], 2344 alloc_pages, GITS_BASER_PAGES_MAX); 2345 alloc_pages = GITS_BASER_PAGES_MAX; 2346 order = get_order(GITS_BASER_PAGES_MAX * psz); 2347 } 2348 2349 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2350 if (!page) 2351 return -ENOMEM; 2352 2353 base = (void *)page_address(page); 2354 baser_phys = virt_to_phys(base); 2355 2356 /* Check if the physical address of the memory is above 48bits */ 2357 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2358 2359 /* 52bit PA is supported only when PageSize=64K */ 2360 if (psz != SZ_64K) { 2361 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2362 free_pages((unsigned long)base, order); 2363 return -ENXIO; 2364 } 2365 2366 /* Convert 52bit PA to 48bit field */ 2367 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2368 } 2369 2370 retry_baser: 2371 val = (baser_phys | 2372 (type << GITS_BASER_TYPE_SHIFT) | 2373 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2374 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2375 cache | 2376 shr | 2377 GITS_BASER_VALID); 2378 2379 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2380 2381 switch (psz) { 2382 case SZ_4K: 2383 val |= GITS_BASER_PAGE_SIZE_4K; 2384 break; 2385 case SZ_16K: 2386 val |= GITS_BASER_PAGE_SIZE_16K; 2387 break; 2388 case SZ_64K: 2389 val |= GITS_BASER_PAGE_SIZE_64K; 2390 break; 2391 } 2392 2393 if (!shr) 2394 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2395 2396 its_write_baser(its, baser, val); 2397 tmp = baser->val; 2398 2399 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2400 /* 2401 * Shareability didn't stick. Just use 2402 * whatever the read reported, which is likely 2403 * to be the only thing this redistributor 2404 * supports. If that's zero, make it 2405 * non-cacheable as well. 2406 */ 2407 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2408 if (!shr) 2409 cache = GITS_BASER_nC; 2410 2411 goto retry_baser; 2412 } 2413 2414 if (val != tmp) { 2415 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2416 &its->phys_base, its_base_type_string[type], 2417 val, tmp); 2418 free_pages((unsigned long)base, order); 2419 return -ENXIO; 2420 } 2421 2422 baser->order = order; 2423 baser->base = base; 2424 baser->psz = psz; 2425 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2426 2427 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2428 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2429 its_base_type_string[type], 2430 (unsigned long)virt_to_phys(base), 2431 indirect ? "indirect" : "flat", (int)esz, 2432 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2433 2434 return 0; 2435 } 2436 2437 static bool its_parse_indirect_baser(struct its_node *its, 2438 struct its_baser *baser, 2439 u32 *order, u32 ids) 2440 { 2441 u64 tmp = its_read_baser(its, baser); 2442 u64 type = GITS_BASER_TYPE(tmp); 2443 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2444 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2445 u32 new_order = *order; 2446 u32 psz = baser->psz; 2447 bool indirect = false; 2448 2449 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2450 if ((esz << ids) > (psz * 2)) { 2451 /* 2452 * Find out whether hw supports a single or two-level table by 2453 * table by reading bit at offset '62' after writing '1' to it. 2454 */ 2455 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2456 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2457 2458 if (indirect) { 2459 /* 2460 * The size of the lvl2 table is equal to ITS page size 2461 * which is 'psz'. For computing lvl1 table size, 2462 * subtract ID bits that sparse lvl2 table from 'ids' 2463 * which is reported by ITS hardware times lvl1 table 2464 * entry size. 2465 */ 2466 ids -= ilog2(psz / (int)esz); 2467 esz = GITS_LVL1_ENTRY_SIZE; 2468 } 2469 } 2470 2471 /* 2472 * Allocate as many entries as required to fit the 2473 * range of device IDs that the ITS can grok... The ID 2474 * space being incredibly sparse, this results in a 2475 * massive waste of memory if two-level device table 2476 * feature is not supported by hardware. 2477 */ 2478 new_order = max_t(u32, get_order(esz << ids), new_order); 2479 if (new_order > MAX_PAGE_ORDER) { 2480 new_order = MAX_PAGE_ORDER; 2481 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2482 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2483 &its->phys_base, its_base_type_string[type], 2484 device_ids(its), ids); 2485 } 2486 2487 *order = new_order; 2488 2489 return indirect; 2490 } 2491 2492 static u32 compute_common_aff(u64 val) 2493 { 2494 u32 aff, clpiaff; 2495 2496 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2497 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2498 2499 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2500 } 2501 2502 static u32 compute_its_aff(struct its_node *its) 2503 { 2504 u64 val; 2505 u32 svpet; 2506 2507 /* 2508 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2509 * the resulting affinity. We then use that to see if this match 2510 * our own affinity. 2511 */ 2512 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2513 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2514 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2515 return compute_common_aff(val); 2516 } 2517 2518 static struct its_node *find_sibling_its(struct its_node *cur_its) 2519 { 2520 struct its_node *its; 2521 u32 aff; 2522 2523 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2524 return NULL; 2525 2526 aff = compute_its_aff(cur_its); 2527 2528 list_for_each_entry(its, &its_nodes, entry) { 2529 u64 baser; 2530 2531 if (!is_v4_1(its) || its == cur_its) 2532 continue; 2533 2534 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2535 continue; 2536 2537 if (aff != compute_its_aff(its)) 2538 continue; 2539 2540 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2541 baser = its->tables[2].val; 2542 if (!(baser & GITS_BASER_VALID)) 2543 continue; 2544 2545 return its; 2546 } 2547 2548 return NULL; 2549 } 2550 2551 static void its_free_tables(struct its_node *its) 2552 { 2553 int i; 2554 2555 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2556 if (its->tables[i].base) { 2557 free_pages((unsigned long)its->tables[i].base, 2558 its->tables[i].order); 2559 its->tables[i].base = NULL; 2560 } 2561 } 2562 } 2563 2564 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2565 { 2566 u64 psz = SZ_64K; 2567 2568 while (psz) { 2569 u64 val, gpsz; 2570 2571 val = its_read_baser(its, baser); 2572 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2573 2574 switch (psz) { 2575 case SZ_64K: 2576 gpsz = GITS_BASER_PAGE_SIZE_64K; 2577 break; 2578 case SZ_16K: 2579 gpsz = GITS_BASER_PAGE_SIZE_16K; 2580 break; 2581 case SZ_4K: 2582 default: 2583 gpsz = GITS_BASER_PAGE_SIZE_4K; 2584 break; 2585 } 2586 2587 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2588 2589 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2590 its_write_baser(its, baser, val); 2591 2592 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2593 break; 2594 2595 switch (psz) { 2596 case SZ_64K: 2597 psz = SZ_16K; 2598 break; 2599 case SZ_16K: 2600 psz = SZ_4K; 2601 break; 2602 case SZ_4K: 2603 default: 2604 return -1; 2605 } 2606 } 2607 2608 baser->psz = psz; 2609 return 0; 2610 } 2611 2612 static int its_alloc_tables(struct its_node *its) 2613 { 2614 u64 shr = GITS_BASER_InnerShareable; 2615 u64 cache = GITS_BASER_RaWaWb; 2616 int err, i; 2617 2618 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2619 /* erratum 24313: ignore memory access type */ 2620 cache = GITS_BASER_nCnB; 2621 2622 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2623 cache = GITS_BASER_nC; 2624 shr = 0; 2625 } 2626 2627 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2628 struct its_baser *baser = its->tables + i; 2629 u64 val = its_read_baser(its, baser); 2630 u64 type = GITS_BASER_TYPE(val); 2631 bool indirect = false; 2632 u32 order; 2633 2634 if (type == GITS_BASER_TYPE_NONE) 2635 continue; 2636 2637 if (its_probe_baser_psz(its, baser)) { 2638 its_free_tables(its); 2639 return -ENXIO; 2640 } 2641 2642 order = get_order(baser->psz); 2643 2644 switch (type) { 2645 case GITS_BASER_TYPE_DEVICE: 2646 indirect = its_parse_indirect_baser(its, baser, &order, 2647 device_ids(its)); 2648 break; 2649 2650 case GITS_BASER_TYPE_VCPU: 2651 if (is_v4_1(its)) { 2652 struct its_node *sibling; 2653 2654 WARN_ON(i != 2); 2655 if ((sibling = find_sibling_its(its))) { 2656 *baser = sibling->tables[2]; 2657 its_write_baser(its, baser, baser->val); 2658 continue; 2659 } 2660 } 2661 2662 indirect = its_parse_indirect_baser(its, baser, &order, 2663 ITS_MAX_VPEID_BITS); 2664 break; 2665 } 2666 2667 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2668 if (err < 0) { 2669 its_free_tables(its); 2670 return err; 2671 } 2672 2673 /* Update settings which will be used for next BASERn */ 2674 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2675 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2676 } 2677 2678 return 0; 2679 } 2680 2681 static u64 inherit_vpe_l1_table_from_its(void) 2682 { 2683 struct its_node *its; 2684 u64 val; 2685 u32 aff; 2686 2687 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2688 aff = compute_common_aff(val); 2689 2690 list_for_each_entry(its, &its_nodes, entry) { 2691 u64 baser, addr; 2692 2693 if (!is_v4_1(its)) 2694 continue; 2695 2696 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2697 continue; 2698 2699 if (aff != compute_its_aff(its)) 2700 continue; 2701 2702 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2703 baser = its->tables[2].val; 2704 if (!(baser & GITS_BASER_VALID)) 2705 continue; 2706 2707 /* We have a winner! */ 2708 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2709 2710 val = GICR_VPROPBASER_4_1_VALID; 2711 if (baser & GITS_BASER_INDIRECT) 2712 val |= GICR_VPROPBASER_4_1_INDIRECT; 2713 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2714 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2715 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2716 case GIC_PAGE_SIZE_64K: 2717 addr = GITS_BASER_ADDR_48_to_52(baser); 2718 break; 2719 default: 2720 addr = baser & GENMASK_ULL(47, 12); 2721 break; 2722 } 2723 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2724 if (rdists_support_shareable()) { 2725 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2726 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2727 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2728 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2729 } 2730 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2731 2732 return val; 2733 } 2734 2735 return 0; 2736 } 2737 2738 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2739 { 2740 u32 aff; 2741 u64 val; 2742 int cpu; 2743 2744 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2745 aff = compute_common_aff(val); 2746 2747 for_each_possible_cpu(cpu) { 2748 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2749 2750 if (!base || cpu == smp_processor_id()) 2751 continue; 2752 2753 val = gic_read_typer(base + GICR_TYPER); 2754 if (aff != compute_common_aff(val)) 2755 continue; 2756 2757 /* 2758 * At this point, we have a victim. This particular CPU 2759 * has already booted, and has an affinity that matches 2760 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2761 * Make sure we don't write the Z bit in that case. 2762 */ 2763 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2764 val &= ~GICR_VPROPBASER_4_1_Z; 2765 2766 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2767 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2768 2769 return val; 2770 } 2771 2772 return 0; 2773 } 2774 2775 static bool allocate_vpe_l2_table(int cpu, u32 id) 2776 { 2777 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2778 unsigned int psz, esz, idx, npg, gpsz; 2779 u64 val; 2780 struct page *page; 2781 __le64 *table; 2782 2783 if (!gic_rdists->has_rvpeid) 2784 return true; 2785 2786 /* Skip non-present CPUs */ 2787 if (!base) 2788 return true; 2789 2790 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2791 2792 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2793 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2794 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2795 2796 switch (gpsz) { 2797 default: 2798 WARN_ON(1); 2799 fallthrough; 2800 case GIC_PAGE_SIZE_4K: 2801 psz = SZ_4K; 2802 break; 2803 case GIC_PAGE_SIZE_16K: 2804 psz = SZ_16K; 2805 break; 2806 case GIC_PAGE_SIZE_64K: 2807 psz = SZ_64K; 2808 break; 2809 } 2810 2811 /* Don't allow vpe_id that exceeds single, flat table limit */ 2812 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2813 return (id < (npg * psz / (esz * SZ_8))); 2814 2815 /* Compute 1st level table index & check if that exceeds table limit */ 2816 idx = id >> ilog2(psz / (esz * SZ_8)); 2817 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2818 return false; 2819 2820 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2821 2822 /* Allocate memory for 2nd level table */ 2823 if (!table[idx]) { 2824 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2825 if (!page) 2826 return false; 2827 2828 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2829 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2830 gic_flush_dcache_to_poc(page_address(page), psz); 2831 2832 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2833 2834 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2835 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2836 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2837 2838 /* Ensure updated table contents are visible to RD hardware */ 2839 dsb(sy); 2840 } 2841 2842 return true; 2843 } 2844 2845 static int allocate_vpe_l1_table(void) 2846 { 2847 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2848 u64 val, gpsz, npg, pa; 2849 unsigned int psz = SZ_64K; 2850 unsigned int np, epp, esz; 2851 struct page *page; 2852 2853 if (!gic_rdists->has_rvpeid) 2854 return 0; 2855 2856 /* 2857 * if VPENDBASER.Valid is set, disable any previously programmed 2858 * VPE by setting PendingLast while clearing Valid. This has the 2859 * effect of making sure no doorbell will be generated and we can 2860 * then safely clear VPROPBASER.Valid. 2861 */ 2862 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2863 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2864 vlpi_base + GICR_VPENDBASER); 2865 2866 /* 2867 * If we can inherit the configuration from another RD, let's do 2868 * so. Otherwise, we have to go through the allocation process. We 2869 * assume that all RDs have the exact same requirements, as 2870 * nothing will work otherwise. 2871 */ 2872 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2873 if (val & GICR_VPROPBASER_4_1_VALID) 2874 goto out; 2875 2876 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2877 if (!gic_data_rdist()->vpe_table_mask) 2878 return -ENOMEM; 2879 2880 val = inherit_vpe_l1_table_from_its(); 2881 if (val & GICR_VPROPBASER_4_1_VALID) 2882 goto out; 2883 2884 /* First probe the page size */ 2885 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2886 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2887 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2888 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2889 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2890 2891 switch (gpsz) { 2892 default: 2893 gpsz = GIC_PAGE_SIZE_4K; 2894 fallthrough; 2895 case GIC_PAGE_SIZE_4K: 2896 psz = SZ_4K; 2897 break; 2898 case GIC_PAGE_SIZE_16K: 2899 psz = SZ_16K; 2900 break; 2901 case GIC_PAGE_SIZE_64K: 2902 psz = SZ_64K; 2903 break; 2904 } 2905 2906 /* 2907 * Start populating the register from scratch, including RO fields 2908 * (which we want to print in debug cases...) 2909 */ 2910 val = 0; 2911 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2912 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2913 2914 /* How many entries per GIC page? */ 2915 esz++; 2916 epp = psz / (esz * SZ_8); 2917 2918 /* 2919 * If we need more than just a single L1 page, flag the table 2920 * as indirect and compute the number of required L1 pages. 2921 */ 2922 if (epp < ITS_MAX_VPEID) { 2923 int nl2; 2924 2925 val |= GICR_VPROPBASER_4_1_INDIRECT; 2926 2927 /* Number of L2 pages required to cover the VPEID space */ 2928 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2929 2930 /* Number of L1 pages to point to the L2 pages */ 2931 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2932 } else { 2933 npg = 1; 2934 } 2935 2936 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2937 2938 /* Right, that's the number of CPU pages we need for L1 */ 2939 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2940 2941 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2942 np, npg, psz, epp, esz); 2943 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2944 if (!page) 2945 return -ENOMEM; 2946 2947 gic_data_rdist()->vpe_l1_base = page_address(page); 2948 pa = virt_to_phys(page_address(page)); 2949 WARN_ON(!IS_ALIGNED(pa, psz)); 2950 2951 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2952 if (rdists_support_shareable()) { 2953 val |= GICR_VPROPBASER_RaWb; 2954 val |= GICR_VPROPBASER_InnerShareable; 2955 } 2956 val |= GICR_VPROPBASER_4_1_Z; 2957 val |= GICR_VPROPBASER_4_1_VALID; 2958 2959 out: 2960 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2961 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2962 2963 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2964 smp_processor_id(), val, 2965 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2966 2967 return 0; 2968 } 2969 2970 static int its_alloc_collections(struct its_node *its) 2971 { 2972 int i; 2973 2974 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2975 GFP_KERNEL); 2976 if (!its->collections) 2977 return -ENOMEM; 2978 2979 for (i = 0; i < nr_cpu_ids; i++) 2980 its->collections[i].target_address = ~0ULL; 2981 2982 return 0; 2983 } 2984 2985 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2986 { 2987 struct page *pend_page; 2988 2989 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2990 get_order(LPI_PENDBASE_SZ)); 2991 if (!pend_page) 2992 return NULL; 2993 2994 /* Make sure the GIC will observe the zero-ed page */ 2995 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2996 2997 return pend_page; 2998 } 2999 3000 static void its_free_pending_table(struct page *pt) 3001 { 3002 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 3003 } 3004 3005 /* 3006 * Booting with kdump and LPIs enabled is generally fine. Any other 3007 * case is wrong in the absence of firmware/EFI support. 3008 */ 3009 static bool enabled_lpis_allowed(void) 3010 { 3011 phys_addr_t addr; 3012 u64 val; 3013 3014 /* Check whether the property table is in a reserved region */ 3015 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 3016 addr = val & GENMASK_ULL(51, 12); 3017 3018 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 3019 } 3020 3021 static int __init allocate_lpi_tables(void) 3022 { 3023 u64 val; 3024 int err, cpu; 3025 3026 /* 3027 * If LPIs are enabled while we run this from the boot CPU, 3028 * flag the RD tables as pre-allocated if the stars do align. 3029 */ 3030 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3031 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3032 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3033 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3034 pr_info("GICv3: Using preallocated redistributor tables\n"); 3035 } 3036 3037 err = its_setup_lpi_prop_table(); 3038 if (err) 3039 return err; 3040 3041 /* 3042 * We allocate all the pending tables anyway, as we may have a 3043 * mix of RDs that have had LPIs enabled, and some that 3044 * don't. We'll free the unused ones as each CPU comes online. 3045 */ 3046 for_each_possible_cpu(cpu) { 3047 struct page *pend_page; 3048 3049 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3050 if (!pend_page) { 3051 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3052 return -ENOMEM; 3053 } 3054 3055 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3056 } 3057 3058 return 0; 3059 } 3060 3061 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3062 { 3063 u32 count = 1000000; /* 1s! */ 3064 bool clean; 3065 u64 val; 3066 3067 do { 3068 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3069 clean = !(val & GICR_VPENDBASER_Dirty); 3070 if (!clean) { 3071 count--; 3072 cpu_relax(); 3073 udelay(1); 3074 } 3075 } while (!clean && count); 3076 3077 if (unlikely(!clean)) 3078 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3079 3080 return val; 3081 } 3082 3083 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3084 { 3085 u64 val; 3086 3087 /* Make sure we wait until the RD is done with the initial scan */ 3088 val = read_vpend_dirty_clear(vlpi_base); 3089 val &= ~GICR_VPENDBASER_Valid; 3090 val &= ~clr; 3091 val |= set; 3092 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3093 3094 val = read_vpend_dirty_clear(vlpi_base); 3095 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3096 val |= GICR_VPENDBASER_PendingLast; 3097 3098 return val; 3099 } 3100 3101 static void its_cpu_init_lpis(void) 3102 { 3103 void __iomem *rbase = gic_data_rdist_rd_base(); 3104 struct page *pend_page; 3105 phys_addr_t paddr; 3106 u64 val, tmp; 3107 3108 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3109 return; 3110 3111 val = readl_relaxed(rbase + GICR_CTLR); 3112 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3113 (val & GICR_CTLR_ENABLE_LPIS)) { 3114 /* 3115 * Check that we get the same property table on all 3116 * RDs. If we don't, this is hopeless. 3117 */ 3118 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3119 paddr &= GENMASK_ULL(51, 12); 3120 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3121 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3122 3123 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3124 paddr &= GENMASK_ULL(51, 16); 3125 3126 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3127 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3128 3129 goto out; 3130 } 3131 3132 pend_page = gic_data_rdist()->pend_page; 3133 paddr = page_to_phys(pend_page); 3134 3135 /* set PROPBASE */ 3136 val = (gic_rdists->prop_table_pa | 3137 GICR_PROPBASER_InnerShareable | 3138 GICR_PROPBASER_RaWaWb | 3139 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3140 3141 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3142 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3143 3144 if (!rdists_support_shareable()) 3145 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3146 3147 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3148 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3149 /* 3150 * The HW reports non-shareable, we must 3151 * remove the cacheability attributes as 3152 * well. 3153 */ 3154 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3155 GICR_PROPBASER_CACHEABILITY_MASK); 3156 val |= GICR_PROPBASER_nC; 3157 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3158 } 3159 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3160 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3161 } 3162 3163 /* set PENDBASE */ 3164 val = (page_to_phys(pend_page) | 3165 GICR_PENDBASER_InnerShareable | 3166 GICR_PENDBASER_RaWaWb); 3167 3168 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3169 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3170 3171 if (!rdists_support_shareable()) 3172 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3173 3174 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3175 /* 3176 * The HW reports non-shareable, we must remove the 3177 * cacheability attributes as well. 3178 */ 3179 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3180 GICR_PENDBASER_CACHEABILITY_MASK); 3181 val |= GICR_PENDBASER_nC; 3182 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3183 } 3184 3185 /* Enable LPIs */ 3186 val = readl_relaxed(rbase + GICR_CTLR); 3187 val |= GICR_CTLR_ENABLE_LPIS; 3188 writel_relaxed(val, rbase + GICR_CTLR); 3189 3190 out: 3191 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3192 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3193 3194 /* 3195 * It's possible for CPU to receive VLPIs before it is 3196 * scheduled as a vPE, especially for the first CPU, and the 3197 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3198 * as out of range and dropped by GIC. 3199 * So we initialize IDbits to known value to avoid VLPI drop. 3200 */ 3201 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3202 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3203 smp_processor_id(), val); 3204 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3205 3206 /* 3207 * Also clear Valid bit of GICR_VPENDBASER, in case some 3208 * ancient programming gets left in and has possibility of 3209 * corrupting memory. 3210 */ 3211 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3212 } 3213 3214 if (allocate_vpe_l1_table()) { 3215 /* 3216 * If the allocation has failed, we're in massive trouble. 3217 * Disable direct injection, and pray that no VM was 3218 * already running... 3219 */ 3220 gic_rdists->has_rvpeid = false; 3221 gic_rdists->has_vlpis = false; 3222 } 3223 3224 /* Make sure the GIC has seen the above */ 3225 dsb(sy); 3226 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3227 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3228 smp_processor_id(), 3229 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3230 "reserved" : "allocated", 3231 &paddr); 3232 } 3233 3234 static void its_cpu_init_collection(struct its_node *its) 3235 { 3236 int cpu = smp_processor_id(); 3237 u64 target; 3238 3239 /* avoid cross node collections and its mapping */ 3240 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3241 struct device_node *cpu_node; 3242 3243 cpu_node = of_get_cpu_node(cpu, NULL); 3244 if (its->numa_node != NUMA_NO_NODE && 3245 its->numa_node != of_node_to_nid(cpu_node)) 3246 return; 3247 } 3248 3249 /* 3250 * We now have to bind each collection to its target 3251 * redistributor. 3252 */ 3253 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3254 /* 3255 * This ITS wants the physical address of the 3256 * redistributor. 3257 */ 3258 target = gic_data_rdist()->phys_base; 3259 } else { 3260 /* This ITS wants a linear CPU number. */ 3261 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3262 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3263 } 3264 3265 /* Perform collection mapping */ 3266 its->collections[cpu].target_address = target; 3267 its->collections[cpu].col_id = cpu; 3268 3269 its_send_mapc(its, &its->collections[cpu], 1); 3270 its_send_invall(its, &its->collections[cpu]); 3271 } 3272 3273 static void its_cpu_init_collections(void) 3274 { 3275 struct its_node *its; 3276 3277 raw_spin_lock(&its_lock); 3278 3279 list_for_each_entry(its, &its_nodes, entry) 3280 its_cpu_init_collection(its); 3281 3282 raw_spin_unlock(&its_lock); 3283 } 3284 3285 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3286 { 3287 struct its_device *its_dev = NULL, *tmp; 3288 unsigned long flags; 3289 3290 raw_spin_lock_irqsave(&its->lock, flags); 3291 3292 list_for_each_entry(tmp, &its->its_device_list, entry) { 3293 if (tmp->device_id == dev_id) { 3294 its_dev = tmp; 3295 break; 3296 } 3297 } 3298 3299 raw_spin_unlock_irqrestore(&its->lock, flags); 3300 3301 return its_dev; 3302 } 3303 3304 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3305 { 3306 int i; 3307 3308 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3309 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3310 return &its->tables[i]; 3311 } 3312 3313 return NULL; 3314 } 3315 3316 static bool its_alloc_table_entry(struct its_node *its, 3317 struct its_baser *baser, u32 id) 3318 { 3319 struct page *page; 3320 u32 esz, idx; 3321 __le64 *table; 3322 3323 /* Don't allow device id that exceeds single, flat table limit */ 3324 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3325 if (!(baser->val & GITS_BASER_INDIRECT)) 3326 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3327 3328 /* Compute 1st level table index & check if that exceeds table limit */ 3329 idx = id >> ilog2(baser->psz / esz); 3330 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3331 return false; 3332 3333 table = baser->base; 3334 3335 /* Allocate memory for 2nd level table */ 3336 if (!table[idx]) { 3337 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3338 get_order(baser->psz)); 3339 if (!page) 3340 return false; 3341 3342 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3343 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3344 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3345 3346 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3347 3348 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3349 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3350 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3351 3352 /* Ensure updated table contents are visible to ITS hardware */ 3353 dsb(sy); 3354 } 3355 3356 return true; 3357 } 3358 3359 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3360 { 3361 struct its_baser *baser; 3362 3363 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3364 3365 /* Don't allow device id that exceeds ITS hardware limit */ 3366 if (!baser) 3367 return (ilog2(dev_id) < device_ids(its)); 3368 3369 return its_alloc_table_entry(its, baser, dev_id); 3370 } 3371 3372 static bool its_alloc_vpe_table(u32 vpe_id) 3373 { 3374 struct its_node *its; 3375 int cpu; 3376 3377 /* 3378 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3379 * could try and only do it on ITSs corresponding to devices 3380 * that have interrupts targeted at this VPE, but the 3381 * complexity becomes crazy (and you have tons of memory 3382 * anyway, right?). 3383 */ 3384 list_for_each_entry(its, &its_nodes, entry) { 3385 struct its_baser *baser; 3386 3387 if (!is_v4(its)) 3388 continue; 3389 3390 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3391 if (!baser) 3392 return false; 3393 3394 if (!its_alloc_table_entry(its, baser, vpe_id)) 3395 return false; 3396 } 3397 3398 /* Non v4.1? No need to iterate RDs and go back early. */ 3399 if (!gic_rdists->has_rvpeid) 3400 return true; 3401 3402 /* 3403 * Make sure the L2 tables are allocated for all copies of 3404 * the L1 table on *all* v4.1 RDs. 3405 */ 3406 for_each_possible_cpu(cpu) { 3407 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3408 return false; 3409 } 3410 3411 return true; 3412 } 3413 3414 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3415 int nvecs, bool alloc_lpis) 3416 { 3417 struct its_device *dev; 3418 unsigned long *lpi_map = NULL; 3419 unsigned long flags; 3420 u16 *col_map = NULL; 3421 void *itt; 3422 int lpi_base; 3423 int nr_lpis; 3424 int nr_ites; 3425 int sz; 3426 3427 if (!its_alloc_device_table(its, dev_id)) 3428 return NULL; 3429 3430 if (WARN_ON(!is_power_of_2(nvecs))) 3431 nvecs = roundup_pow_of_two(nvecs); 3432 3433 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3434 /* 3435 * Even if the device wants a single LPI, the ITT must be 3436 * sized as a power of two (and you need at least one bit...). 3437 */ 3438 nr_ites = max(2, nvecs); 3439 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3440 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3441 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3442 if (alloc_lpis) { 3443 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3444 if (lpi_map) 3445 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3446 GFP_KERNEL); 3447 } else { 3448 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3449 nr_lpis = 0; 3450 lpi_base = 0; 3451 } 3452 3453 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3454 kfree(dev); 3455 kfree(itt); 3456 bitmap_free(lpi_map); 3457 kfree(col_map); 3458 return NULL; 3459 } 3460 3461 gic_flush_dcache_to_poc(itt, sz); 3462 3463 dev->its = its; 3464 dev->itt = itt; 3465 dev->nr_ites = nr_ites; 3466 dev->event_map.lpi_map = lpi_map; 3467 dev->event_map.col_map = col_map; 3468 dev->event_map.lpi_base = lpi_base; 3469 dev->event_map.nr_lpis = nr_lpis; 3470 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3471 dev->device_id = dev_id; 3472 INIT_LIST_HEAD(&dev->entry); 3473 3474 raw_spin_lock_irqsave(&its->lock, flags); 3475 list_add(&dev->entry, &its->its_device_list); 3476 raw_spin_unlock_irqrestore(&its->lock, flags); 3477 3478 /* Map device to its ITT */ 3479 its_send_mapd(dev, 1); 3480 3481 return dev; 3482 } 3483 3484 static void its_free_device(struct its_device *its_dev) 3485 { 3486 unsigned long flags; 3487 3488 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3489 list_del(&its_dev->entry); 3490 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3491 kfree(its_dev->event_map.col_map); 3492 kfree(its_dev->itt); 3493 kfree(its_dev); 3494 } 3495 3496 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3497 { 3498 int idx; 3499 3500 /* Find a free LPI region in lpi_map and allocate them. */ 3501 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3502 dev->event_map.nr_lpis, 3503 get_count_order(nvecs)); 3504 if (idx < 0) 3505 return -ENOSPC; 3506 3507 *hwirq = dev->event_map.lpi_base + idx; 3508 3509 return 0; 3510 } 3511 3512 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3513 int nvec, msi_alloc_info_t *info) 3514 { 3515 struct its_node *its; 3516 struct its_device *its_dev; 3517 struct msi_domain_info *msi_info; 3518 u32 dev_id; 3519 int err = 0; 3520 3521 /* 3522 * We ignore "dev" entirely, and rely on the dev_id that has 3523 * been passed via the scratchpad. This limits this domain's 3524 * usefulness to upper layers that definitely know that they 3525 * are built on top of the ITS. 3526 */ 3527 dev_id = info->scratchpad[0].ul; 3528 3529 msi_info = msi_get_domain_info(domain); 3530 its = msi_info->data; 3531 3532 if (!gic_rdists->has_direct_lpi && 3533 vpe_proxy.dev && 3534 vpe_proxy.dev->its == its && 3535 dev_id == vpe_proxy.dev->device_id) { 3536 /* Bad luck. Get yourself a better implementation */ 3537 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3538 dev_id); 3539 return -EINVAL; 3540 } 3541 3542 mutex_lock(&its->dev_alloc_lock); 3543 its_dev = its_find_device(its, dev_id); 3544 if (its_dev) { 3545 /* 3546 * We already have seen this ID, probably through 3547 * another alias (PCI bridge of some sort). No need to 3548 * create the device. 3549 */ 3550 its_dev->shared = true; 3551 pr_debug("Reusing ITT for devID %x\n", dev_id); 3552 goto out; 3553 } 3554 3555 its_dev = its_create_device(its, dev_id, nvec, true); 3556 if (!its_dev) { 3557 err = -ENOMEM; 3558 goto out; 3559 } 3560 3561 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3562 its_dev->shared = true; 3563 3564 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3565 out: 3566 mutex_unlock(&its->dev_alloc_lock); 3567 info->scratchpad[0].ptr = its_dev; 3568 return err; 3569 } 3570 3571 static struct msi_domain_ops its_msi_domain_ops = { 3572 .msi_prepare = its_msi_prepare, 3573 }; 3574 3575 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3576 unsigned int virq, 3577 irq_hw_number_t hwirq) 3578 { 3579 struct irq_fwspec fwspec; 3580 3581 if (irq_domain_get_of_node(domain->parent)) { 3582 fwspec.fwnode = domain->parent->fwnode; 3583 fwspec.param_count = 3; 3584 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3585 fwspec.param[1] = hwirq; 3586 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3587 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3588 fwspec.fwnode = domain->parent->fwnode; 3589 fwspec.param_count = 2; 3590 fwspec.param[0] = hwirq; 3591 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3592 } else { 3593 return -EINVAL; 3594 } 3595 3596 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3597 } 3598 3599 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3600 unsigned int nr_irqs, void *args) 3601 { 3602 msi_alloc_info_t *info = args; 3603 struct its_device *its_dev = info->scratchpad[0].ptr; 3604 struct its_node *its = its_dev->its; 3605 struct irq_data *irqd; 3606 irq_hw_number_t hwirq; 3607 int err; 3608 int i; 3609 3610 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3611 if (err) 3612 return err; 3613 3614 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3615 if (err) 3616 return err; 3617 3618 for (i = 0; i < nr_irqs; i++) { 3619 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3620 if (err) 3621 return err; 3622 3623 irq_domain_set_hwirq_and_chip(domain, virq + i, 3624 hwirq + i, &its_irq_chip, its_dev); 3625 irqd = irq_get_irq_data(virq + i); 3626 irqd_set_single_target(irqd); 3627 irqd_set_affinity_on_activate(irqd); 3628 irqd_set_resend_when_in_progress(irqd); 3629 pr_debug("ID:%d pID:%d vID:%d\n", 3630 (int)(hwirq + i - its_dev->event_map.lpi_base), 3631 (int)(hwirq + i), virq + i); 3632 } 3633 3634 return 0; 3635 } 3636 3637 static int its_irq_domain_activate(struct irq_domain *domain, 3638 struct irq_data *d, bool reserve) 3639 { 3640 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3641 u32 event = its_get_event_id(d); 3642 int cpu; 3643 3644 cpu = its_select_cpu(d, cpu_online_mask); 3645 if (cpu < 0 || cpu >= nr_cpu_ids) 3646 return -EINVAL; 3647 3648 its_inc_lpi_count(d, cpu); 3649 its_dev->event_map.col_map[event] = cpu; 3650 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3651 3652 /* Map the GIC IRQ and event to the device */ 3653 its_send_mapti(its_dev, d->hwirq, event); 3654 return 0; 3655 } 3656 3657 static void its_irq_domain_deactivate(struct irq_domain *domain, 3658 struct irq_data *d) 3659 { 3660 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3661 u32 event = its_get_event_id(d); 3662 3663 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3664 /* Stop the delivery of interrupts */ 3665 its_send_discard(its_dev, event); 3666 } 3667 3668 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3669 unsigned int nr_irqs) 3670 { 3671 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3672 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3673 struct its_node *its = its_dev->its; 3674 int i; 3675 3676 bitmap_release_region(its_dev->event_map.lpi_map, 3677 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3678 get_count_order(nr_irqs)); 3679 3680 for (i = 0; i < nr_irqs; i++) { 3681 struct irq_data *data = irq_domain_get_irq_data(domain, 3682 virq + i); 3683 /* Nuke the entry in the domain */ 3684 irq_domain_reset_irq_data(data); 3685 } 3686 3687 mutex_lock(&its->dev_alloc_lock); 3688 3689 /* 3690 * If all interrupts have been freed, start mopping the 3691 * floor. This is conditioned on the device not being shared. 3692 */ 3693 if (!its_dev->shared && 3694 bitmap_empty(its_dev->event_map.lpi_map, 3695 its_dev->event_map.nr_lpis)) { 3696 its_lpi_free(its_dev->event_map.lpi_map, 3697 its_dev->event_map.lpi_base, 3698 its_dev->event_map.nr_lpis); 3699 3700 /* Unmap device/itt */ 3701 its_send_mapd(its_dev, 0); 3702 its_free_device(its_dev); 3703 } 3704 3705 mutex_unlock(&its->dev_alloc_lock); 3706 3707 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3708 } 3709 3710 static const struct irq_domain_ops its_domain_ops = { 3711 .alloc = its_irq_domain_alloc, 3712 .free = its_irq_domain_free, 3713 .activate = its_irq_domain_activate, 3714 .deactivate = its_irq_domain_deactivate, 3715 }; 3716 3717 /* 3718 * This is insane. 3719 * 3720 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3721 * likely), the only way to perform an invalidate is to use a fake 3722 * device to issue an INV command, implying that the LPI has first 3723 * been mapped to some event on that device. Since this is not exactly 3724 * cheap, we try to keep that mapping around as long as possible, and 3725 * only issue an UNMAP if we're short on available slots. 3726 * 3727 * Broken by design(tm). 3728 * 3729 * GICv4.1, on the other hand, mandates that we're able to invalidate 3730 * by writing to a MMIO register. It doesn't implement the whole of 3731 * DirectLPI, but that's good enough. And most of the time, we don't 3732 * even have to invalidate anything, as the redistributor can be told 3733 * whether to generate a doorbell or not (we thus leave it enabled, 3734 * always). 3735 */ 3736 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3737 { 3738 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3739 if (gic_rdists->has_rvpeid) 3740 return; 3741 3742 /* Already unmapped? */ 3743 if (vpe->vpe_proxy_event == -1) 3744 return; 3745 3746 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3747 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3748 3749 /* 3750 * We don't track empty slots at all, so let's move the 3751 * next_victim pointer if we can quickly reuse that slot 3752 * instead of nuking an existing entry. Not clear that this is 3753 * always a win though, and this might just generate a ripple 3754 * effect... Let's just hope VPEs don't migrate too often. 3755 */ 3756 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3757 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3758 3759 vpe->vpe_proxy_event = -1; 3760 } 3761 3762 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3763 { 3764 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3765 if (gic_rdists->has_rvpeid) 3766 return; 3767 3768 if (!gic_rdists->has_direct_lpi) { 3769 unsigned long flags; 3770 3771 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3772 its_vpe_db_proxy_unmap_locked(vpe); 3773 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3774 } 3775 } 3776 3777 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3778 { 3779 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3780 if (gic_rdists->has_rvpeid) 3781 return; 3782 3783 /* Already mapped? */ 3784 if (vpe->vpe_proxy_event != -1) 3785 return; 3786 3787 /* This slot was already allocated. Kick the other VPE out. */ 3788 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3789 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3790 3791 /* Map the new VPE instead */ 3792 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3793 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3794 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3795 3796 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3797 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3798 } 3799 3800 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3801 { 3802 unsigned long flags; 3803 struct its_collection *target_col; 3804 3805 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3806 if (gic_rdists->has_rvpeid) 3807 return; 3808 3809 if (gic_rdists->has_direct_lpi) { 3810 void __iomem *rdbase; 3811 3812 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3813 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3814 wait_for_syncr(rdbase); 3815 3816 return; 3817 } 3818 3819 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3820 3821 its_vpe_db_proxy_map_locked(vpe); 3822 3823 target_col = &vpe_proxy.dev->its->collections[to]; 3824 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3825 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3826 3827 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3828 } 3829 3830 static int its_vpe_set_affinity(struct irq_data *d, 3831 const struct cpumask *mask_val, 3832 bool force) 3833 { 3834 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3835 unsigned int from, cpu = nr_cpu_ids; 3836 struct cpumask *table_mask; 3837 unsigned long flags; 3838 3839 /* 3840 * Changing affinity is mega expensive, so let's be as lazy as 3841 * we can and only do it if we really have to. Also, if mapped 3842 * into the proxy device, we need to move the doorbell 3843 * interrupt to its new location. 3844 * 3845 * Another thing is that changing the affinity of a vPE affects 3846 * *other interrupts* such as all the vLPIs that are routed to 3847 * this vPE. This means that the irq_desc lock is not enough to 3848 * protect us, and that we must ensure nobody samples vpe->col_idx 3849 * during the update, hence the lock below which must also be 3850 * taken on any vLPI handling path that evaluates vpe->col_idx. 3851 */ 3852 from = vpe_to_cpuid_lock(vpe, &flags); 3853 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3854 3855 /* 3856 * If we are offered another CPU in the same GICv4.1 ITS 3857 * affinity, pick this one. Otherwise, any CPU will do. 3858 */ 3859 if (table_mask) 3860 cpu = cpumask_any_and(mask_val, table_mask); 3861 if (cpu < nr_cpu_ids) { 3862 if (cpumask_test_cpu(from, mask_val) && 3863 cpumask_test_cpu(from, table_mask)) 3864 cpu = from; 3865 } else { 3866 cpu = cpumask_first(mask_val); 3867 } 3868 3869 if (from == cpu) 3870 goto out; 3871 3872 vpe->col_idx = cpu; 3873 3874 its_send_vmovp(vpe); 3875 its_vpe_db_proxy_move(vpe, from, cpu); 3876 3877 out: 3878 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3879 vpe_to_cpuid_unlock(vpe, flags); 3880 3881 return IRQ_SET_MASK_OK_DONE; 3882 } 3883 3884 static void its_wait_vpt_parse_complete(void) 3885 { 3886 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3887 u64 val; 3888 3889 if (!gic_rdists->has_vpend_valid_dirty) 3890 return; 3891 3892 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3893 val, 3894 !(val & GICR_VPENDBASER_Dirty), 3895 1, 500)); 3896 } 3897 3898 static void its_vpe_schedule(struct its_vpe *vpe) 3899 { 3900 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3901 u64 val; 3902 3903 /* Schedule the VPE */ 3904 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3905 GENMASK_ULL(51, 12); 3906 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3907 if (rdists_support_shareable()) { 3908 val |= GICR_VPROPBASER_RaWb; 3909 val |= GICR_VPROPBASER_InnerShareable; 3910 } 3911 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3912 3913 val = virt_to_phys(page_address(vpe->vpt_page)) & 3914 GENMASK_ULL(51, 16); 3915 if (rdists_support_shareable()) { 3916 val |= GICR_VPENDBASER_RaWaWb; 3917 val |= GICR_VPENDBASER_InnerShareable; 3918 } 3919 /* 3920 * There is no good way of finding out if the pending table is 3921 * empty as we can race against the doorbell interrupt very 3922 * easily. So in the end, vpe->pending_last is only an 3923 * indication that the vcpu has something pending, not one 3924 * that the pending table is empty. A good implementation 3925 * would be able to read its coarse map pretty quickly anyway, 3926 * making this a tolerable issue. 3927 */ 3928 val |= GICR_VPENDBASER_PendingLast; 3929 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3930 val |= GICR_VPENDBASER_Valid; 3931 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3932 } 3933 3934 static void its_vpe_deschedule(struct its_vpe *vpe) 3935 { 3936 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3937 u64 val; 3938 3939 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3940 3941 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3942 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3943 } 3944 3945 static void its_vpe_invall(struct its_vpe *vpe) 3946 { 3947 struct its_node *its; 3948 3949 list_for_each_entry(its, &its_nodes, entry) { 3950 if (!is_v4(its)) 3951 continue; 3952 3953 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3954 continue; 3955 3956 /* 3957 * Sending a VINVALL to a single ITS is enough, as all 3958 * we need is to reach the redistributors. 3959 */ 3960 its_send_vinvall(its, vpe); 3961 return; 3962 } 3963 } 3964 3965 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3966 { 3967 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3968 struct its_cmd_info *info = vcpu_info; 3969 3970 switch (info->cmd_type) { 3971 case SCHEDULE_VPE: 3972 its_vpe_schedule(vpe); 3973 return 0; 3974 3975 case DESCHEDULE_VPE: 3976 its_vpe_deschedule(vpe); 3977 return 0; 3978 3979 case COMMIT_VPE: 3980 its_wait_vpt_parse_complete(); 3981 return 0; 3982 3983 case INVALL_VPE: 3984 its_vpe_invall(vpe); 3985 return 0; 3986 3987 default: 3988 return -EINVAL; 3989 } 3990 } 3991 3992 static void its_vpe_send_cmd(struct its_vpe *vpe, 3993 void (*cmd)(struct its_device *, u32)) 3994 { 3995 unsigned long flags; 3996 3997 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3998 3999 its_vpe_db_proxy_map_locked(vpe); 4000 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 4001 4002 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 4003 } 4004 4005 static void its_vpe_send_inv(struct irq_data *d) 4006 { 4007 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4008 4009 if (gic_rdists->has_direct_lpi) 4010 __direct_lpi_inv(d, d->parent_data->hwirq); 4011 else 4012 its_vpe_send_cmd(vpe, its_send_inv); 4013 } 4014 4015 static void its_vpe_mask_irq(struct irq_data *d) 4016 { 4017 /* 4018 * We need to unmask the LPI, which is described by the parent 4019 * irq_data. Instead of calling into the parent (which won't 4020 * exactly do the right thing, let's simply use the 4021 * parent_data pointer. Yes, I'm naughty. 4022 */ 4023 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4024 its_vpe_send_inv(d); 4025 } 4026 4027 static void its_vpe_unmask_irq(struct irq_data *d) 4028 { 4029 /* Same hack as above... */ 4030 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4031 its_vpe_send_inv(d); 4032 } 4033 4034 static int its_vpe_set_irqchip_state(struct irq_data *d, 4035 enum irqchip_irq_state which, 4036 bool state) 4037 { 4038 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4039 4040 if (which != IRQCHIP_STATE_PENDING) 4041 return -EINVAL; 4042 4043 if (gic_rdists->has_direct_lpi) { 4044 void __iomem *rdbase; 4045 4046 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4047 if (state) { 4048 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4049 } else { 4050 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4051 wait_for_syncr(rdbase); 4052 } 4053 } else { 4054 if (state) 4055 its_vpe_send_cmd(vpe, its_send_int); 4056 else 4057 its_vpe_send_cmd(vpe, its_send_clear); 4058 } 4059 4060 return 0; 4061 } 4062 4063 static int its_vpe_retrigger(struct irq_data *d) 4064 { 4065 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4066 } 4067 4068 static struct irq_chip its_vpe_irq_chip = { 4069 .name = "GICv4-vpe", 4070 .irq_mask = its_vpe_mask_irq, 4071 .irq_unmask = its_vpe_unmask_irq, 4072 .irq_eoi = irq_chip_eoi_parent, 4073 .irq_set_affinity = its_vpe_set_affinity, 4074 .irq_retrigger = its_vpe_retrigger, 4075 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4076 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4077 }; 4078 4079 static struct its_node *find_4_1_its(void) 4080 { 4081 static struct its_node *its = NULL; 4082 4083 if (!its) { 4084 list_for_each_entry(its, &its_nodes, entry) { 4085 if (is_v4_1(its)) 4086 return its; 4087 } 4088 4089 /* Oops? */ 4090 its = NULL; 4091 } 4092 4093 return its; 4094 } 4095 4096 static void its_vpe_4_1_send_inv(struct irq_data *d) 4097 { 4098 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4099 struct its_node *its; 4100 4101 /* 4102 * GICv4.1 wants doorbells to be invalidated using the 4103 * INVDB command in order to be broadcast to all RDs. Send 4104 * it to the first valid ITS, and let the HW do its magic. 4105 */ 4106 its = find_4_1_its(); 4107 if (its) 4108 its_send_invdb(its, vpe); 4109 } 4110 4111 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4112 { 4113 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4114 its_vpe_4_1_send_inv(d); 4115 } 4116 4117 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4118 { 4119 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4120 its_vpe_4_1_send_inv(d); 4121 } 4122 4123 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4124 struct its_cmd_info *info) 4125 { 4126 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4127 u64 val = 0; 4128 4129 /* Schedule the VPE */ 4130 val |= GICR_VPENDBASER_Valid; 4131 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4132 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4133 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4134 4135 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4136 } 4137 4138 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4139 struct its_cmd_info *info) 4140 { 4141 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4142 u64 val; 4143 4144 if (info->req_db) { 4145 unsigned long flags; 4146 4147 /* 4148 * vPE is going to block: make the vPE non-resident with 4149 * PendingLast clear and DB set. The GIC guarantees that if 4150 * we read-back PendingLast clear, then a doorbell will be 4151 * delivered when an interrupt comes. 4152 * 4153 * Note the locking to deal with the concurrent update of 4154 * pending_last from the doorbell interrupt handler that can 4155 * run concurrently. 4156 */ 4157 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4158 val = its_clear_vpend_valid(vlpi_base, 4159 GICR_VPENDBASER_PendingLast, 4160 GICR_VPENDBASER_4_1_DB); 4161 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4162 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4163 } else { 4164 /* 4165 * We're not blocking, so just make the vPE non-resident 4166 * with PendingLast set, indicating that we'll be back. 4167 */ 4168 val = its_clear_vpend_valid(vlpi_base, 4169 0, 4170 GICR_VPENDBASER_PendingLast); 4171 vpe->pending_last = true; 4172 } 4173 } 4174 4175 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4176 { 4177 void __iomem *rdbase; 4178 unsigned long flags; 4179 u64 val; 4180 int cpu; 4181 4182 val = GICR_INVALLR_V; 4183 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4184 4185 /* Target the redistributor this vPE is currently known on */ 4186 cpu = vpe_to_cpuid_lock(vpe, &flags); 4187 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4188 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4189 gic_write_lpir(val, rdbase + GICR_INVALLR); 4190 4191 wait_for_syncr(rdbase); 4192 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4193 vpe_to_cpuid_unlock(vpe, flags); 4194 } 4195 4196 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4197 { 4198 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4199 struct its_cmd_info *info = vcpu_info; 4200 4201 switch (info->cmd_type) { 4202 case SCHEDULE_VPE: 4203 its_vpe_4_1_schedule(vpe, info); 4204 return 0; 4205 4206 case DESCHEDULE_VPE: 4207 its_vpe_4_1_deschedule(vpe, info); 4208 return 0; 4209 4210 case COMMIT_VPE: 4211 its_wait_vpt_parse_complete(); 4212 return 0; 4213 4214 case INVALL_VPE: 4215 its_vpe_4_1_invall(vpe); 4216 return 0; 4217 4218 default: 4219 return -EINVAL; 4220 } 4221 } 4222 4223 static struct irq_chip its_vpe_4_1_irq_chip = { 4224 .name = "GICv4.1-vpe", 4225 .irq_mask = its_vpe_4_1_mask_irq, 4226 .irq_unmask = its_vpe_4_1_unmask_irq, 4227 .irq_eoi = irq_chip_eoi_parent, 4228 .irq_set_affinity = its_vpe_set_affinity, 4229 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4230 }; 4231 4232 static void its_configure_sgi(struct irq_data *d, bool clear) 4233 { 4234 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4235 struct its_cmd_desc desc; 4236 4237 desc.its_vsgi_cmd.vpe = vpe; 4238 desc.its_vsgi_cmd.sgi = d->hwirq; 4239 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4240 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4241 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4242 desc.its_vsgi_cmd.clear = clear; 4243 4244 /* 4245 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4246 * destination VPE is mapped there. Since we map them eagerly at 4247 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4248 */ 4249 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4250 } 4251 4252 static void its_sgi_mask_irq(struct irq_data *d) 4253 { 4254 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4255 4256 vpe->sgi_config[d->hwirq].enabled = false; 4257 its_configure_sgi(d, false); 4258 } 4259 4260 static void its_sgi_unmask_irq(struct irq_data *d) 4261 { 4262 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4263 4264 vpe->sgi_config[d->hwirq].enabled = true; 4265 its_configure_sgi(d, false); 4266 } 4267 4268 static int its_sgi_set_affinity(struct irq_data *d, 4269 const struct cpumask *mask_val, 4270 bool force) 4271 { 4272 /* 4273 * There is no notion of affinity for virtual SGIs, at least 4274 * not on the host (since they can only be targeting a vPE). 4275 * Tell the kernel we've done whatever it asked for. 4276 */ 4277 irq_data_update_effective_affinity(d, mask_val); 4278 return IRQ_SET_MASK_OK; 4279 } 4280 4281 static int its_sgi_set_irqchip_state(struct irq_data *d, 4282 enum irqchip_irq_state which, 4283 bool state) 4284 { 4285 if (which != IRQCHIP_STATE_PENDING) 4286 return -EINVAL; 4287 4288 if (state) { 4289 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4290 struct its_node *its = find_4_1_its(); 4291 u64 val; 4292 4293 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4294 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4295 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4296 } else { 4297 its_configure_sgi(d, true); 4298 } 4299 4300 return 0; 4301 } 4302 4303 static int its_sgi_get_irqchip_state(struct irq_data *d, 4304 enum irqchip_irq_state which, bool *val) 4305 { 4306 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4307 void __iomem *base; 4308 unsigned long flags; 4309 u32 count = 1000000; /* 1s! */ 4310 u32 status; 4311 int cpu; 4312 4313 if (which != IRQCHIP_STATE_PENDING) 4314 return -EINVAL; 4315 4316 /* 4317 * Locking galore! We can race against two different events: 4318 * 4319 * - Concurrent vPE affinity change: we must make sure it cannot 4320 * happen, or we'll talk to the wrong redistributor. This is 4321 * identical to what happens with vLPIs. 4322 * 4323 * - Concurrent VSGIPENDR access: As it involves accessing two 4324 * MMIO registers, this must be made atomic one way or another. 4325 */ 4326 cpu = vpe_to_cpuid_lock(vpe, &flags); 4327 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4328 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4329 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4330 do { 4331 status = readl_relaxed(base + GICR_VSGIPENDR); 4332 if (!(status & GICR_VSGIPENDR_BUSY)) 4333 goto out; 4334 4335 count--; 4336 if (!count) { 4337 pr_err_ratelimited("Unable to get SGI status\n"); 4338 goto out; 4339 } 4340 cpu_relax(); 4341 udelay(1); 4342 } while (count); 4343 4344 out: 4345 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4346 vpe_to_cpuid_unlock(vpe, flags); 4347 4348 if (!count) 4349 return -ENXIO; 4350 4351 *val = !!(status & (1 << d->hwirq)); 4352 4353 return 0; 4354 } 4355 4356 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4357 { 4358 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4359 struct its_cmd_info *info = vcpu_info; 4360 4361 switch (info->cmd_type) { 4362 case PROP_UPDATE_VSGI: 4363 vpe->sgi_config[d->hwirq].priority = info->priority; 4364 vpe->sgi_config[d->hwirq].group = info->group; 4365 its_configure_sgi(d, false); 4366 return 0; 4367 4368 default: 4369 return -EINVAL; 4370 } 4371 } 4372 4373 static struct irq_chip its_sgi_irq_chip = { 4374 .name = "GICv4.1-sgi", 4375 .irq_mask = its_sgi_mask_irq, 4376 .irq_unmask = its_sgi_unmask_irq, 4377 .irq_set_affinity = its_sgi_set_affinity, 4378 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4379 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4380 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4381 }; 4382 4383 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4384 unsigned int virq, unsigned int nr_irqs, 4385 void *args) 4386 { 4387 struct its_vpe *vpe = args; 4388 int i; 4389 4390 /* Yes, we do want 16 SGIs */ 4391 WARN_ON(nr_irqs != 16); 4392 4393 for (i = 0; i < 16; i++) { 4394 vpe->sgi_config[i].priority = 0; 4395 vpe->sgi_config[i].enabled = false; 4396 vpe->sgi_config[i].group = false; 4397 4398 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4399 &its_sgi_irq_chip, vpe); 4400 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4401 } 4402 4403 return 0; 4404 } 4405 4406 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4407 unsigned int virq, 4408 unsigned int nr_irqs) 4409 { 4410 /* Nothing to do */ 4411 } 4412 4413 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4414 struct irq_data *d, bool reserve) 4415 { 4416 /* Write out the initial SGI configuration */ 4417 its_configure_sgi(d, false); 4418 return 0; 4419 } 4420 4421 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4422 struct irq_data *d) 4423 { 4424 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4425 4426 /* 4427 * The VSGI command is awkward: 4428 * 4429 * - To change the configuration, CLEAR must be set to false, 4430 * leaving the pending bit unchanged. 4431 * - To clear the pending bit, CLEAR must be set to true, leaving 4432 * the configuration unchanged. 4433 * 4434 * You just can't do both at once, hence the two commands below. 4435 */ 4436 vpe->sgi_config[d->hwirq].enabled = false; 4437 its_configure_sgi(d, false); 4438 its_configure_sgi(d, true); 4439 } 4440 4441 static const struct irq_domain_ops its_sgi_domain_ops = { 4442 .alloc = its_sgi_irq_domain_alloc, 4443 .free = its_sgi_irq_domain_free, 4444 .activate = its_sgi_irq_domain_activate, 4445 .deactivate = its_sgi_irq_domain_deactivate, 4446 }; 4447 4448 static int its_vpe_id_alloc(void) 4449 { 4450 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL); 4451 } 4452 4453 static void its_vpe_id_free(u16 id) 4454 { 4455 ida_free(&its_vpeid_ida, id); 4456 } 4457 4458 static int its_vpe_init(struct its_vpe *vpe) 4459 { 4460 struct page *vpt_page; 4461 int vpe_id; 4462 4463 /* Allocate vpe_id */ 4464 vpe_id = its_vpe_id_alloc(); 4465 if (vpe_id < 0) 4466 return vpe_id; 4467 4468 /* Allocate VPT */ 4469 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4470 if (!vpt_page) { 4471 its_vpe_id_free(vpe_id); 4472 return -ENOMEM; 4473 } 4474 4475 if (!its_alloc_vpe_table(vpe_id)) { 4476 its_vpe_id_free(vpe_id); 4477 its_free_pending_table(vpt_page); 4478 return -ENOMEM; 4479 } 4480 4481 raw_spin_lock_init(&vpe->vpe_lock); 4482 vpe->vpe_id = vpe_id; 4483 vpe->vpt_page = vpt_page; 4484 if (gic_rdists->has_rvpeid) 4485 atomic_set(&vpe->vmapp_count, 0); 4486 else 4487 vpe->vpe_proxy_event = -1; 4488 4489 return 0; 4490 } 4491 4492 static void its_vpe_teardown(struct its_vpe *vpe) 4493 { 4494 its_vpe_db_proxy_unmap(vpe); 4495 its_vpe_id_free(vpe->vpe_id); 4496 its_free_pending_table(vpe->vpt_page); 4497 } 4498 4499 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4500 unsigned int virq, 4501 unsigned int nr_irqs) 4502 { 4503 struct its_vm *vm = domain->host_data; 4504 int i; 4505 4506 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4507 4508 for (i = 0; i < nr_irqs; i++) { 4509 struct irq_data *data = irq_domain_get_irq_data(domain, 4510 virq + i); 4511 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4512 4513 BUG_ON(vm != vpe->its_vm); 4514 4515 clear_bit(data->hwirq, vm->db_bitmap); 4516 its_vpe_teardown(vpe); 4517 irq_domain_reset_irq_data(data); 4518 } 4519 4520 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4521 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4522 its_free_prop_table(vm->vprop_page); 4523 } 4524 } 4525 4526 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4527 unsigned int nr_irqs, void *args) 4528 { 4529 struct irq_chip *irqchip = &its_vpe_irq_chip; 4530 struct its_vm *vm = args; 4531 unsigned long *bitmap; 4532 struct page *vprop_page; 4533 int base, nr_ids, i, err = 0; 4534 4535 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4536 if (!bitmap) 4537 return -ENOMEM; 4538 4539 if (nr_ids < nr_irqs) { 4540 its_lpi_free(bitmap, base, nr_ids); 4541 return -ENOMEM; 4542 } 4543 4544 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4545 if (!vprop_page) { 4546 its_lpi_free(bitmap, base, nr_ids); 4547 return -ENOMEM; 4548 } 4549 4550 vm->db_bitmap = bitmap; 4551 vm->db_lpi_base = base; 4552 vm->nr_db_lpis = nr_ids; 4553 vm->vprop_page = vprop_page; 4554 4555 if (gic_rdists->has_rvpeid) 4556 irqchip = &its_vpe_4_1_irq_chip; 4557 4558 for (i = 0; i < nr_irqs; i++) { 4559 vm->vpes[i]->vpe_db_lpi = base + i; 4560 err = its_vpe_init(vm->vpes[i]); 4561 if (err) 4562 break; 4563 err = its_irq_gic_domain_alloc(domain, virq + i, 4564 vm->vpes[i]->vpe_db_lpi); 4565 if (err) 4566 break; 4567 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4568 irqchip, vm->vpes[i]); 4569 set_bit(i, bitmap); 4570 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4571 } 4572 4573 if (err) 4574 its_vpe_irq_domain_free(domain, virq, i); 4575 4576 return err; 4577 } 4578 4579 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4580 struct irq_data *d, bool reserve) 4581 { 4582 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4583 struct its_node *its; 4584 4585 /* 4586 * If we use the list map, we issue VMAPP on demand... Unless 4587 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4588 * so that VSGIs can work. 4589 */ 4590 if (!gic_requires_eager_mapping()) 4591 return 0; 4592 4593 /* Map the VPE to the first possible CPU */ 4594 vpe->col_idx = cpumask_first(cpu_online_mask); 4595 4596 list_for_each_entry(its, &its_nodes, entry) { 4597 if (!is_v4(its)) 4598 continue; 4599 4600 its_send_vmapp(its, vpe, true); 4601 its_send_vinvall(its, vpe); 4602 } 4603 4604 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4605 4606 return 0; 4607 } 4608 4609 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4610 struct irq_data *d) 4611 { 4612 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4613 struct its_node *its; 4614 4615 /* 4616 * If we use the list map on GICv4.0, we unmap the VPE once no 4617 * VLPIs are associated with the VM. 4618 */ 4619 if (!gic_requires_eager_mapping()) 4620 return; 4621 4622 list_for_each_entry(its, &its_nodes, entry) { 4623 if (!is_v4(its)) 4624 continue; 4625 4626 its_send_vmapp(its, vpe, false); 4627 } 4628 4629 /* 4630 * There may be a direct read to the VPT after unmapping the 4631 * vPE, to guarantee the validity of this, we make the VPT 4632 * memory coherent with the CPU caches here. 4633 */ 4634 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4635 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4636 LPI_PENDBASE_SZ); 4637 } 4638 4639 static const struct irq_domain_ops its_vpe_domain_ops = { 4640 .alloc = its_vpe_irq_domain_alloc, 4641 .free = its_vpe_irq_domain_free, 4642 .activate = its_vpe_irq_domain_activate, 4643 .deactivate = its_vpe_irq_domain_deactivate, 4644 }; 4645 4646 static int its_force_quiescent(void __iomem *base) 4647 { 4648 u32 count = 1000000; /* 1s */ 4649 u32 val; 4650 4651 val = readl_relaxed(base + GITS_CTLR); 4652 /* 4653 * GIC architecture specification requires the ITS to be both 4654 * disabled and quiescent for writes to GITS_BASER<n> or 4655 * GITS_CBASER to not have UNPREDICTABLE results. 4656 */ 4657 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4658 return 0; 4659 4660 /* Disable the generation of all interrupts to this ITS */ 4661 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4662 writel_relaxed(val, base + GITS_CTLR); 4663 4664 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4665 while (1) { 4666 val = readl_relaxed(base + GITS_CTLR); 4667 if (val & GITS_CTLR_QUIESCENT) 4668 return 0; 4669 4670 count--; 4671 if (!count) 4672 return -EBUSY; 4673 4674 cpu_relax(); 4675 udelay(1); 4676 } 4677 } 4678 4679 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4680 { 4681 struct its_node *its = data; 4682 4683 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4684 its->typer &= ~GITS_TYPER_DEVBITS; 4685 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4686 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4687 4688 return true; 4689 } 4690 4691 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4692 { 4693 struct its_node *its = data; 4694 4695 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4696 4697 return true; 4698 } 4699 4700 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4701 { 4702 struct its_node *its = data; 4703 4704 /* On QDF2400, the size of the ITE is 16Bytes */ 4705 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4706 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4707 4708 return true; 4709 } 4710 4711 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4712 { 4713 struct its_node *its = its_dev->its; 4714 4715 /* 4716 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4717 * which maps 32-bit writes targeted at a separate window of 4718 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4719 * with device ID taken from bits [device_id_bits + 1:2] of 4720 * the window offset. 4721 */ 4722 return its->pre_its_base + (its_dev->device_id << 2); 4723 } 4724 4725 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4726 { 4727 struct its_node *its = data; 4728 u32 pre_its_window[2]; 4729 u32 ids; 4730 4731 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4732 "socionext,synquacer-pre-its", 4733 pre_its_window, 4734 ARRAY_SIZE(pre_its_window))) { 4735 4736 its->pre_its_base = pre_its_window[0]; 4737 its->get_msi_base = its_irq_get_msi_base_pre_its; 4738 4739 ids = ilog2(pre_its_window[1]) - 2; 4740 if (device_ids(its) > ids) { 4741 its->typer &= ~GITS_TYPER_DEVBITS; 4742 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4743 } 4744 4745 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4746 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4747 return true; 4748 } 4749 return false; 4750 } 4751 4752 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4753 { 4754 struct its_node *its = data; 4755 4756 /* 4757 * Hip07 insists on using the wrong address for the VLPI 4758 * page. Trick it into doing the right thing... 4759 */ 4760 its->vlpi_redist_offset = SZ_128K; 4761 return true; 4762 } 4763 4764 static bool __maybe_unused its_enable_rk3588001(void *data) 4765 { 4766 struct its_node *its = data; 4767 4768 if (!of_machine_is_compatible("rockchip,rk3588") && 4769 !of_machine_is_compatible("rockchip,rk3588s")) 4770 return false; 4771 4772 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4773 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4774 4775 return true; 4776 } 4777 4778 static bool its_set_non_coherent(void *data) 4779 { 4780 struct its_node *its = data; 4781 4782 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4783 return true; 4784 } 4785 4786 static const struct gic_quirk its_quirks[] = { 4787 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4788 { 4789 .desc = "ITS: Cavium errata 22375, 24313", 4790 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4791 .mask = 0xffff0fff, 4792 .init = its_enable_quirk_cavium_22375, 4793 }, 4794 #endif 4795 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4796 { 4797 .desc = "ITS: Cavium erratum 23144", 4798 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4799 .mask = 0xffff0fff, 4800 .init = its_enable_quirk_cavium_23144, 4801 }, 4802 #endif 4803 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4804 { 4805 .desc = "ITS: QDF2400 erratum 0065", 4806 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4807 .mask = 0xffffffff, 4808 .init = its_enable_quirk_qdf2400_e0065, 4809 }, 4810 #endif 4811 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4812 { 4813 /* 4814 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4815 * implementation, but with a 'pre-ITS' added that requires 4816 * special handling in software. 4817 */ 4818 .desc = "ITS: Socionext Synquacer pre-ITS", 4819 .iidr = 0x0001143b, 4820 .mask = 0xffffffff, 4821 .init = its_enable_quirk_socionext_synquacer, 4822 }, 4823 #endif 4824 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4825 { 4826 .desc = "ITS: Hip07 erratum 161600802", 4827 .iidr = 0x00000004, 4828 .mask = 0xffffffff, 4829 .init = its_enable_quirk_hip07_161600802, 4830 }, 4831 #endif 4832 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4833 { 4834 .desc = "ITS: Rockchip erratum RK3588001", 4835 .iidr = 0x0201743b, 4836 .mask = 0xffffffff, 4837 .init = its_enable_rk3588001, 4838 }, 4839 #endif 4840 { 4841 .desc = "ITS: non-coherent attribute", 4842 .property = "dma-noncoherent", 4843 .init = its_set_non_coherent, 4844 }, 4845 { 4846 } 4847 }; 4848 4849 static void its_enable_quirks(struct its_node *its) 4850 { 4851 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4852 4853 gic_enable_quirks(iidr, its_quirks, its); 4854 4855 if (is_of_node(its->fwnode_handle)) 4856 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4857 its_quirks, its); 4858 } 4859 4860 static int its_save_disable(void) 4861 { 4862 struct its_node *its; 4863 int err = 0; 4864 4865 raw_spin_lock(&its_lock); 4866 list_for_each_entry(its, &its_nodes, entry) { 4867 void __iomem *base; 4868 4869 base = its->base; 4870 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4871 err = its_force_quiescent(base); 4872 if (err) { 4873 pr_err("ITS@%pa: failed to quiesce: %d\n", 4874 &its->phys_base, err); 4875 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4876 goto err; 4877 } 4878 4879 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4880 } 4881 4882 err: 4883 if (err) { 4884 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4885 void __iomem *base; 4886 4887 base = its->base; 4888 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4889 } 4890 } 4891 raw_spin_unlock(&its_lock); 4892 4893 return err; 4894 } 4895 4896 static void its_restore_enable(void) 4897 { 4898 struct its_node *its; 4899 int ret; 4900 4901 raw_spin_lock(&its_lock); 4902 list_for_each_entry(its, &its_nodes, entry) { 4903 void __iomem *base; 4904 int i; 4905 4906 base = its->base; 4907 4908 /* 4909 * Make sure that the ITS is disabled. If it fails to quiesce, 4910 * don't restore it since writing to CBASER or BASER<n> 4911 * registers is undefined according to the GIC v3 ITS 4912 * Specification. 4913 * 4914 * Firmware resuming with the ITS enabled is terminally broken. 4915 */ 4916 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4917 ret = its_force_quiescent(base); 4918 if (ret) { 4919 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4920 &its->phys_base, ret); 4921 continue; 4922 } 4923 4924 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4925 4926 /* 4927 * Writing CBASER resets CREADR to 0, so make CWRITER and 4928 * cmd_write line up with it. 4929 */ 4930 its->cmd_write = its->cmd_base; 4931 gits_write_cwriter(0, base + GITS_CWRITER); 4932 4933 /* Restore GITS_BASER from the value cache. */ 4934 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4935 struct its_baser *baser = &its->tables[i]; 4936 4937 if (!(baser->val & GITS_BASER_VALID)) 4938 continue; 4939 4940 its_write_baser(its, baser, baser->val); 4941 } 4942 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4943 4944 /* 4945 * Reinit the collection if it's stored in the ITS. This is 4946 * indicated by the col_id being less than the HCC field. 4947 * CID < HCC as specified in the GIC v3 Documentation. 4948 */ 4949 if (its->collections[smp_processor_id()].col_id < 4950 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4951 its_cpu_init_collection(its); 4952 } 4953 raw_spin_unlock(&its_lock); 4954 } 4955 4956 static struct syscore_ops its_syscore_ops = { 4957 .suspend = its_save_disable, 4958 .resume = its_restore_enable, 4959 }; 4960 4961 static void __init __iomem *its_map_one(struct resource *res, int *err) 4962 { 4963 void __iomem *its_base; 4964 u32 val; 4965 4966 its_base = ioremap(res->start, SZ_64K); 4967 if (!its_base) { 4968 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4969 *err = -ENOMEM; 4970 return NULL; 4971 } 4972 4973 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4974 if (val != 0x30 && val != 0x40) { 4975 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4976 *err = -ENODEV; 4977 goto out_unmap; 4978 } 4979 4980 *err = its_force_quiescent(its_base); 4981 if (*err) { 4982 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4983 goto out_unmap; 4984 } 4985 4986 return its_base; 4987 4988 out_unmap: 4989 iounmap(its_base); 4990 return NULL; 4991 } 4992 4993 static int its_init_domain(struct its_node *its) 4994 { 4995 struct irq_domain *inner_domain; 4996 struct msi_domain_info *info; 4997 4998 info = kzalloc(sizeof(*info), GFP_KERNEL); 4999 if (!info) 5000 return -ENOMEM; 5001 5002 info->ops = &its_msi_domain_ops; 5003 info->data = its; 5004 5005 inner_domain = irq_domain_create_hierarchy(its_parent, 5006 its->msi_domain_flags, 0, 5007 its->fwnode_handle, &its_domain_ops, 5008 info); 5009 if (!inner_domain) { 5010 kfree(info); 5011 return -ENOMEM; 5012 } 5013 5014 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 5015 5016 return 0; 5017 } 5018 5019 static int its_init_vpe_domain(void) 5020 { 5021 struct its_node *its; 5022 u32 devid; 5023 int entries; 5024 5025 if (gic_rdists->has_direct_lpi) { 5026 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5027 return 0; 5028 } 5029 5030 /* Any ITS will do, even if not v4 */ 5031 its = list_first_entry(&its_nodes, struct its_node, entry); 5032 5033 entries = roundup_pow_of_two(nr_cpu_ids); 5034 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5035 GFP_KERNEL); 5036 if (!vpe_proxy.vpes) 5037 return -ENOMEM; 5038 5039 /* Use the last possible DevID */ 5040 devid = GENMASK(device_ids(its) - 1, 0); 5041 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5042 if (!vpe_proxy.dev) { 5043 kfree(vpe_proxy.vpes); 5044 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5045 return -ENOMEM; 5046 } 5047 5048 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5049 5050 raw_spin_lock_init(&vpe_proxy.lock); 5051 vpe_proxy.next_victim = 0; 5052 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5053 devid, vpe_proxy.dev->nr_ites); 5054 5055 return 0; 5056 } 5057 5058 static int __init its_compute_its_list_map(struct its_node *its) 5059 { 5060 int its_number; 5061 u32 ctlr; 5062 5063 /* 5064 * This is assumed to be done early enough that we're 5065 * guaranteed to be single-threaded, hence no 5066 * locking. Should this change, we should address 5067 * this. 5068 */ 5069 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5070 if (its_number >= GICv4_ITS_LIST_MAX) { 5071 pr_err("ITS@%pa: No ITSList entry available!\n", 5072 &its->phys_base); 5073 return -EINVAL; 5074 } 5075 5076 ctlr = readl_relaxed(its->base + GITS_CTLR); 5077 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5078 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5079 writel_relaxed(ctlr, its->base + GITS_CTLR); 5080 ctlr = readl_relaxed(its->base + GITS_CTLR); 5081 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5082 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5083 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5084 } 5085 5086 if (test_and_set_bit(its_number, &its_list_map)) { 5087 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5088 &its->phys_base, its_number); 5089 return -EINVAL; 5090 } 5091 5092 return its_number; 5093 } 5094 5095 static int __init its_probe_one(struct its_node *its) 5096 { 5097 u64 baser, tmp; 5098 struct page *page; 5099 u32 ctlr; 5100 int err; 5101 5102 its_enable_quirks(its); 5103 5104 if (is_v4(its)) { 5105 if (!(its->typer & GITS_TYPER_VMOVP)) { 5106 err = its_compute_its_list_map(its); 5107 if (err < 0) 5108 goto out; 5109 5110 its->list_nr = err; 5111 5112 pr_info("ITS@%pa: Using ITS number %d\n", 5113 &its->phys_base, err); 5114 } else { 5115 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5116 } 5117 5118 if (is_v4_1(its)) { 5119 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5120 5121 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5122 if (!its->sgir_base) { 5123 err = -ENOMEM; 5124 goto out; 5125 } 5126 5127 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5128 5129 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5130 &its->phys_base, its->mpidr, svpet); 5131 } 5132 } 5133 5134 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5135 get_order(ITS_CMD_QUEUE_SZ)); 5136 if (!page) { 5137 err = -ENOMEM; 5138 goto out_unmap_sgir; 5139 } 5140 its->cmd_base = (void *)page_address(page); 5141 its->cmd_write = its->cmd_base; 5142 5143 err = its_alloc_tables(its); 5144 if (err) 5145 goto out_free_cmd; 5146 5147 err = its_alloc_collections(its); 5148 if (err) 5149 goto out_free_tables; 5150 5151 baser = (virt_to_phys(its->cmd_base) | 5152 GITS_CBASER_RaWaWb | 5153 GITS_CBASER_InnerShareable | 5154 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5155 GITS_CBASER_VALID); 5156 5157 gits_write_cbaser(baser, its->base + GITS_CBASER); 5158 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5159 5160 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5161 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5162 5163 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5164 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5165 /* 5166 * The HW reports non-shareable, we must 5167 * remove the cacheability attributes as 5168 * well. 5169 */ 5170 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5171 GITS_CBASER_CACHEABILITY_MASK); 5172 baser |= GITS_CBASER_nC; 5173 gits_write_cbaser(baser, its->base + GITS_CBASER); 5174 } 5175 pr_info("ITS: using cache flushing for cmd queue\n"); 5176 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5177 } 5178 5179 gits_write_cwriter(0, its->base + GITS_CWRITER); 5180 ctlr = readl_relaxed(its->base + GITS_CTLR); 5181 ctlr |= GITS_CTLR_ENABLE; 5182 if (is_v4(its)) 5183 ctlr |= GITS_CTLR_ImDe; 5184 writel_relaxed(ctlr, its->base + GITS_CTLR); 5185 5186 err = its_init_domain(its); 5187 if (err) 5188 goto out_free_tables; 5189 5190 raw_spin_lock(&its_lock); 5191 list_add(&its->entry, &its_nodes); 5192 raw_spin_unlock(&its_lock); 5193 5194 return 0; 5195 5196 out_free_tables: 5197 its_free_tables(its); 5198 out_free_cmd: 5199 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5200 out_unmap_sgir: 5201 if (its->sgir_base) 5202 iounmap(its->sgir_base); 5203 out: 5204 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5205 return err; 5206 } 5207 5208 static bool gic_rdists_supports_plpis(void) 5209 { 5210 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5211 } 5212 5213 static int redist_disable_lpis(void) 5214 { 5215 void __iomem *rbase = gic_data_rdist_rd_base(); 5216 u64 timeout = USEC_PER_SEC; 5217 u64 val; 5218 5219 if (!gic_rdists_supports_plpis()) { 5220 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5221 return -ENXIO; 5222 } 5223 5224 val = readl_relaxed(rbase + GICR_CTLR); 5225 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5226 return 0; 5227 5228 /* 5229 * If coming via a CPU hotplug event, we don't need to disable 5230 * LPIs before trying to re-enable them. They are already 5231 * configured and all is well in the world. 5232 * 5233 * If running with preallocated tables, there is nothing to do. 5234 */ 5235 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5236 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5237 return 0; 5238 5239 /* 5240 * From that point on, we only try to do some damage control. 5241 */ 5242 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5243 smp_processor_id()); 5244 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5245 5246 /* Disable LPIs */ 5247 val &= ~GICR_CTLR_ENABLE_LPIS; 5248 writel_relaxed(val, rbase + GICR_CTLR); 5249 5250 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5251 dsb(sy); 5252 5253 /* 5254 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5255 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5256 * Error out if we time out waiting for RWP to clear. 5257 */ 5258 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5259 if (!timeout) { 5260 pr_err("CPU%d: Timeout while disabling LPIs\n", 5261 smp_processor_id()); 5262 return -ETIMEDOUT; 5263 } 5264 udelay(1); 5265 timeout--; 5266 } 5267 5268 /* 5269 * After it has been written to 1, it is IMPLEMENTATION 5270 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5271 * cleared to 0. Error out if clearing the bit failed. 5272 */ 5273 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5274 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5275 return -EBUSY; 5276 } 5277 5278 return 0; 5279 } 5280 5281 int its_cpu_init(void) 5282 { 5283 if (!list_empty(&its_nodes)) { 5284 int ret; 5285 5286 ret = redist_disable_lpis(); 5287 if (ret) 5288 return ret; 5289 5290 its_cpu_init_lpis(); 5291 its_cpu_init_collections(); 5292 } 5293 5294 return 0; 5295 } 5296 5297 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5298 { 5299 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5300 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5301 } 5302 5303 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5304 rdist_memreserve_cpuhp_cleanup_workfn); 5305 5306 static int its_cpu_memreserve_lpi(unsigned int cpu) 5307 { 5308 struct page *pend_page; 5309 int ret = 0; 5310 5311 /* This gets to run exactly once per CPU */ 5312 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5313 return 0; 5314 5315 pend_page = gic_data_rdist()->pend_page; 5316 if (WARN_ON(!pend_page)) { 5317 ret = -ENOMEM; 5318 goto out; 5319 } 5320 /* 5321 * If the pending table was pre-programmed, free the memory we 5322 * preemptively allocated. Otherwise, reserve that memory for 5323 * later kexecs. 5324 */ 5325 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5326 its_free_pending_table(pend_page); 5327 gic_data_rdist()->pend_page = NULL; 5328 } else { 5329 phys_addr_t paddr = page_to_phys(pend_page); 5330 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5331 } 5332 5333 out: 5334 /* Last CPU being brought up gets to issue the cleanup */ 5335 if (!IS_ENABLED(CONFIG_SMP) || 5336 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5337 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5338 5339 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5340 return ret; 5341 } 5342 5343 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5344 static int __init its_reset_one(struct resource *res) 5345 { 5346 void __iomem *its_base; 5347 int err, i; 5348 5349 its_base = its_map_one(res, &err); 5350 if (!its_base) 5351 return err; 5352 5353 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5354 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5355 5356 iounmap(its_base); 5357 return 0; 5358 } 5359 5360 static const struct of_device_id its_device_id[] = { 5361 { .compatible = "arm,gic-v3-its", }, 5362 {}, 5363 }; 5364 5365 static struct its_node __init *its_node_init(struct resource *res, 5366 struct fwnode_handle *handle, int numa_node) 5367 { 5368 void __iomem *its_base; 5369 struct its_node *its; 5370 int err; 5371 5372 its_base = its_map_one(res, &err); 5373 if (!its_base) 5374 return NULL; 5375 5376 pr_info("ITS %pR\n", res); 5377 5378 its = kzalloc(sizeof(*its), GFP_KERNEL); 5379 if (!its) 5380 goto out_unmap; 5381 5382 raw_spin_lock_init(&its->lock); 5383 mutex_init(&its->dev_alloc_lock); 5384 INIT_LIST_HEAD(&its->entry); 5385 INIT_LIST_HEAD(&its->its_device_list); 5386 5387 its->typer = gic_read_typer(its_base + GITS_TYPER); 5388 its->base = its_base; 5389 its->phys_base = res->start; 5390 its->get_msi_base = its_irq_get_msi_base; 5391 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5392 5393 its->numa_node = numa_node; 5394 its->fwnode_handle = handle; 5395 5396 return its; 5397 5398 out_unmap: 5399 iounmap(its_base); 5400 return NULL; 5401 } 5402 5403 static void its_node_destroy(struct its_node *its) 5404 { 5405 iounmap(its->base); 5406 kfree(its); 5407 } 5408 5409 static int __init its_of_probe(struct device_node *node) 5410 { 5411 struct device_node *np; 5412 struct resource res; 5413 int err; 5414 5415 /* 5416 * Make sure *all* the ITS are reset before we probe any, as 5417 * they may be sharing memory. If any of the ITS fails to 5418 * reset, don't even try to go any further, as this could 5419 * result in something even worse. 5420 */ 5421 for (np = of_find_matching_node(node, its_device_id); np; 5422 np = of_find_matching_node(np, its_device_id)) { 5423 if (!of_device_is_available(np) || 5424 !of_property_read_bool(np, "msi-controller") || 5425 of_address_to_resource(np, 0, &res)) 5426 continue; 5427 5428 err = its_reset_one(&res); 5429 if (err) 5430 return err; 5431 } 5432 5433 for (np = of_find_matching_node(node, its_device_id); np; 5434 np = of_find_matching_node(np, its_device_id)) { 5435 struct its_node *its; 5436 5437 if (!of_device_is_available(np)) 5438 continue; 5439 if (!of_property_read_bool(np, "msi-controller")) { 5440 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5441 np); 5442 continue; 5443 } 5444 5445 if (of_address_to_resource(np, 0, &res)) { 5446 pr_warn("%pOF: no regs?\n", np); 5447 continue; 5448 } 5449 5450 5451 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5452 if (!its) 5453 return -ENOMEM; 5454 5455 err = its_probe_one(its); 5456 if (err) { 5457 its_node_destroy(its); 5458 return err; 5459 } 5460 } 5461 return 0; 5462 } 5463 5464 #ifdef CONFIG_ACPI 5465 5466 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5467 5468 #ifdef CONFIG_ACPI_NUMA 5469 struct its_srat_map { 5470 /* numa node id */ 5471 u32 numa_node; 5472 /* GIC ITS ID */ 5473 u32 its_id; 5474 }; 5475 5476 static struct its_srat_map *its_srat_maps __initdata; 5477 static int its_in_srat __initdata; 5478 5479 static int __init acpi_get_its_numa_node(u32 its_id) 5480 { 5481 int i; 5482 5483 for (i = 0; i < its_in_srat; i++) { 5484 if (its_id == its_srat_maps[i].its_id) 5485 return its_srat_maps[i].numa_node; 5486 } 5487 return NUMA_NO_NODE; 5488 } 5489 5490 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5491 const unsigned long end) 5492 { 5493 return 0; 5494 } 5495 5496 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5497 const unsigned long end) 5498 { 5499 int node; 5500 struct acpi_srat_gic_its_affinity *its_affinity; 5501 5502 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5503 if (!its_affinity) 5504 return -EINVAL; 5505 5506 if (its_affinity->header.length < sizeof(*its_affinity)) { 5507 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5508 its_affinity->header.length); 5509 return -EINVAL; 5510 } 5511 5512 /* 5513 * Note that in theory a new proximity node could be created by this 5514 * entry as it is an SRAT resource allocation structure. 5515 * We do not currently support doing so. 5516 */ 5517 node = pxm_to_node(its_affinity->proximity_domain); 5518 5519 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5520 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5521 return 0; 5522 } 5523 5524 its_srat_maps[its_in_srat].numa_node = node; 5525 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5526 its_in_srat++; 5527 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5528 its_affinity->proximity_domain, its_affinity->its_id, node); 5529 5530 return 0; 5531 } 5532 5533 static void __init acpi_table_parse_srat_its(void) 5534 { 5535 int count; 5536 5537 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5538 sizeof(struct acpi_table_srat), 5539 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5540 gic_acpi_match_srat_its, 0); 5541 if (count <= 0) 5542 return; 5543 5544 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5545 GFP_KERNEL); 5546 if (!its_srat_maps) 5547 return; 5548 5549 acpi_table_parse_entries(ACPI_SIG_SRAT, 5550 sizeof(struct acpi_table_srat), 5551 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5552 gic_acpi_parse_srat_its, 0); 5553 } 5554 5555 /* free the its_srat_maps after ITS probing */ 5556 static void __init acpi_its_srat_maps_free(void) 5557 { 5558 kfree(its_srat_maps); 5559 } 5560 #else 5561 static void __init acpi_table_parse_srat_its(void) { } 5562 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5563 static void __init acpi_its_srat_maps_free(void) { } 5564 #endif 5565 5566 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5567 const unsigned long end) 5568 { 5569 struct acpi_madt_generic_translator *its_entry; 5570 struct fwnode_handle *dom_handle; 5571 struct its_node *its; 5572 struct resource res; 5573 int err; 5574 5575 its_entry = (struct acpi_madt_generic_translator *)header; 5576 memset(&res, 0, sizeof(res)); 5577 res.start = its_entry->base_address; 5578 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5579 res.flags = IORESOURCE_MEM; 5580 5581 dom_handle = irq_domain_alloc_fwnode(&res.start); 5582 if (!dom_handle) { 5583 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5584 &res.start); 5585 return -ENOMEM; 5586 } 5587 5588 err = iort_register_domain_token(its_entry->translation_id, res.start, 5589 dom_handle); 5590 if (err) { 5591 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5592 &res.start, its_entry->translation_id); 5593 goto dom_err; 5594 } 5595 5596 its = its_node_init(&res, dom_handle, 5597 acpi_get_its_numa_node(its_entry->translation_id)); 5598 if (!its) { 5599 err = -ENOMEM; 5600 goto node_err; 5601 } 5602 5603 err = its_probe_one(its); 5604 if (!err) 5605 return 0; 5606 5607 node_err: 5608 iort_deregister_domain_token(its_entry->translation_id); 5609 dom_err: 5610 irq_domain_free_fwnode(dom_handle); 5611 return err; 5612 } 5613 5614 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5615 const unsigned long end) 5616 { 5617 struct acpi_madt_generic_translator *its_entry; 5618 struct resource res; 5619 5620 its_entry = (struct acpi_madt_generic_translator *)header; 5621 res = (struct resource) { 5622 .start = its_entry->base_address, 5623 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5624 .flags = IORESOURCE_MEM, 5625 }; 5626 5627 return its_reset_one(&res); 5628 } 5629 5630 static void __init its_acpi_probe(void) 5631 { 5632 acpi_table_parse_srat_its(); 5633 /* 5634 * Make sure *all* the ITS are reset before we probe any, as 5635 * they may be sharing memory. If any of the ITS fails to 5636 * reset, don't even try to go any further, as this could 5637 * result in something even worse. 5638 */ 5639 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5640 its_acpi_reset, 0) > 0) 5641 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5642 gic_acpi_parse_madt_its, 0); 5643 acpi_its_srat_maps_free(); 5644 } 5645 #else 5646 static void __init its_acpi_probe(void) { } 5647 #endif 5648 5649 int __init its_lpi_memreserve_init(void) 5650 { 5651 int state; 5652 5653 if (!efi_enabled(EFI_CONFIG_TABLES)) 5654 return 0; 5655 5656 if (list_empty(&its_nodes)) 5657 return 0; 5658 5659 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5660 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5661 "irqchip/arm/gicv3/memreserve:online", 5662 its_cpu_memreserve_lpi, 5663 NULL); 5664 if (state < 0) 5665 return state; 5666 5667 gic_rdists->cpuhp_memreserve_state = state; 5668 5669 return 0; 5670 } 5671 5672 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5673 struct irq_domain *parent_domain) 5674 { 5675 struct device_node *of_node; 5676 struct its_node *its; 5677 bool has_v4 = false; 5678 bool has_v4_1 = false; 5679 int err; 5680 5681 gic_rdists = rdists; 5682 5683 its_parent = parent_domain; 5684 of_node = to_of_node(handle); 5685 if (of_node) 5686 its_of_probe(of_node); 5687 else 5688 its_acpi_probe(); 5689 5690 if (list_empty(&its_nodes)) { 5691 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5692 return -ENXIO; 5693 } 5694 5695 err = allocate_lpi_tables(); 5696 if (err) 5697 return err; 5698 5699 list_for_each_entry(its, &its_nodes, entry) { 5700 has_v4 |= is_v4(its); 5701 has_v4_1 |= is_v4_1(its); 5702 } 5703 5704 /* Don't bother with inconsistent systems */ 5705 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5706 rdists->has_rvpeid = false; 5707 5708 if (has_v4 & rdists->has_vlpis) { 5709 const struct irq_domain_ops *sgi_ops; 5710 5711 if (has_v4_1) 5712 sgi_ops = &its_sgi_domain_ops; 5713 else 5714 sgi_ops = NULL; 5715 5716 if (its_init_vpe_domain() || 5717 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5718 rdists->has_vlpis = false; 5719 pr_err("ITS: Disabling GICv4 support\n"); 5720 } 5721 } 5722 5723 register_syscore_ops(&its_syscore_ops); 5724 5725 return 0; 5726 } 5727