1 /* 2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/acpi.h> 19 #include <linux/bitmap.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/dma-iommu.h> 23 #include <linux/interrupt.h> 24 #include <linux/irqdomain.h> 25 #include <linux/acpi_iort.h> 26 #include <linux/log2.h> 27 #include <linux/mm.h> 28 #include <linux/msi.h> 29 #include <linux/of.h> 30 #include <linux/of_address.h> 31 #include <linux/of_irq.h> 32 #include <linux/of_pci.h> 33 #include <linux/of_platform.h> 34 #include <linux/percpu.h> 35 #include <linux/slab.h> 36 37 #include <linux/irqchip.h> 38 #include <linux/irqchip/arm-gic-v3.h> 39 40 #include <asm/cputype.h> 41 #include <asm/exception.h> 42 43 #include "irq-gic-common.h" 44 45 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 46 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 47 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 48 49 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 50 51 /* 52 * Collection structure - just an ID, and a redistributor address to 53 * ping. We use one per CPU as a bag of interrupts assigned to this 54 * CPU. 55 */ 56 struct its_collection { 57 u64 target_address; 58 u16 col_id; 59 }; 60 61 /* 62 * The ITS_BASER structure - contains memory information, cached 63 * value of BASER register configuration and ITS page size. 64 */ 65 struct its_baser { 66 void *base; 67 u64 val; 68 u32 order; 69 u32 psz; 70 }; 71 72 /* 73 * The ITS structure - contains most of the infrastructure, with the 74 * top-level MSI domain, the command queue, the collections, and the 75 * list of devices writing to it. 76 */ 77 struct its_node { 78 raw_spinlock_t lock; 79 struct list_head entry; 80 void __iomem *base; 81 phys_addr_t phys_base; 82 struct its_cmd_block *cmd_base; 83 struct its_cmd_block *cmd_write; 84 struct its_baser tables[GITS_BASER_NR_REGS]; 85 struct its_collection *collections; 86 struct list_head its_device_list; 87 u64 flags; 88 u32 ite_size; 89 u32 device_ids; 90 int numa_node; 91 }; 92 93 #define ITS_ITT_ALIGN SZ_256 94 95 /* Convert page order to size in bytes */ 96 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 97 98 struct event_lpi_map { 99 unsigned long *lpi_map; 100 u16 *col_map; 101 irq_hw_number_t lpi_base; 102 int nr_lpis; 103 }; 104 105 /* 106 * The ITS view of a device - belongs to an ITS, a collection, owns an 107 * interrupt translation table, and a list of interrupts. 108 */ 109 struct its_device { 110 struct list_head entry; 111 struct its_node *its; 112 struct event_lpi_map event_map; 113 void *itt; 114 u32 nr_ites; 115 u32 device_id; 116 }; 117 118 static LIST_HEAD(its_nodes); 119 static DEFINE_SPINLOCK(its_lock); 120 static struct rdists *gic_rdists; 121 static struct irq_domain *its_parent; 122 123 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 124 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 125 126 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 127 u32 event) 128 { 129 struct its_node *its = its_dev->its; 130 131 return its->collections + its_dev->event_map.col_map[event]; 132 } 133 134 /* 135 * ITS command descriptors - parameters to be encoded in a command 136 * block. 137 */ 138 struct its_cmd_desc { 139 union { 140 struct { 141 struct its_device *dev; 142 u32 event_id; 143 } its_inv_cmd; 144 145 struct { 146 struct its_device *dev; 147 u32 event_id; 148 } its_int_cmd; 149 150 struct { 151 struct its_device *dev; 152 int valid; 153 } its_mapd_cmd; 154 155 struct { 156 struct its_collection *col; 157 int valid; 158 } its_mapc_cmd; 159 160 struct { 161 struct its_device *dev; 162 u32 phys_id; 163 u32 event_id; 164 } its_mapvi_cmd; 165 166 struct { 167 struct its_device *dev; 168 struct its_collection *col; 169 u32 event_id; 170 } its_movi_cmd; 171 172 struct { 173 struct its_device *dev; 174 u32 event_id; 175 } its_discard_cmd; 176 177 struct { 178 struct its_collection *col; 179 } its_invall_cmd; 180 }; 181 }; 182 183 /* 184 * The ITS command block, which is what the ITS actually parses. 185 */ 186 struct its_cmd_block { 187 u64 raw_cmd[4]; 188 }; 189 190 #define ITS_CMD_QUEUE_SZ SZ_64K 191 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 192 193 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *, 194 struct its_cmd_desc *); 195 196 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 197 { 198 cmd->raw_cmd[0] &= ~0xffULL; 199 cmd->raw_cmd[0] |= cmd_nr; 200 } 201 202 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 203 { 204 cmd->raw_cmd[0] &= BIT_ULL(32) - 1; 205 cmd->raw_cmd[0] |= ((u64)devid) << 32; 206 } 207 208 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 209 { 210 cmd->raw_cmd[1] &= ~0xffffffffULL; 211 cmd->raw_cmd[1] |= id; 212 } 213 214 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 215 { 216 cmd->raw_cmd[1] &= 0xffffffffULL; 217 cmd->raw_cmd[1] |= ((u64)phys_id) << 32; 218 } 219 220 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 221 { 222 cmd->raw_cmd[1] &= ~0x1fULL; 223 cmd->raw_cmd[1] |= size & 0x1f; 224 } 225 226 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 227 { 228 cmd->raw_cmd[2] &= ~0xffffffffffffULL; 229 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00ULL; 230 } 231 232 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 233 { 234 cmd->raw_cmd[2] &= ~(1ULL << 63); 235 cmd->raw_cmd[2] |= ((u64)!!valid) << 63; 236 } 237 238 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 239 { 240 cmd->raw_cmd[2] &= ~(0xffffffffULL << 16); 241 cmd->raw_cmd[2] |= (target_addr & (0xffffffffULL << 16)); 242 } 243 244 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 245 { 246 cmd->raw_cmd[2] &= ~0xffffULL; 247 cmd->raw_cmd[2] |= col; 248 } 249 250 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 251 { 252 /* Let's fixup BE commands */ 253 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 254 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 255 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 256 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 257 } 258 259 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd, 260 struct its_cmd_desc *desc) 261 { 262 unsigned long itt_addr; 263 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 264 265 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 266 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 267 268 its_encode_cmd(cmd, GITS_CMD_MAPD); 269 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 270 its_encode_size(cmd, size - 1); 271 its_encode_itt(cmd, itt_addr); 272 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 273 274 its_fixup_cmd(cmd); 275 276 return NULL; 277 } 278 279 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd, 280 struct its_cmd_desc *desc) 281 { 282 its_encode_cmd(cmd, GITS_CMD_MAPC); 283 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 284 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 285 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 286 287 its_fixup_cmd(cmd); 288 289 return desc->its_mapc_cmd.col; 290 } 291 292 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd, 293 struct its_cmd_desc *desc) 294 { 295 struct its_collection *col; 296 297 col = dev_event_to_col(desc->its_mapvi_cmd.dev, 298 desc->its_mapvi_cmd.event_id); 299 300 its_encode_cmd(cmd, GITS_CMD_MAPVI); 301 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id); 302 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id); 303 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id); 304 its_encode_collection(cmd, col->col_id); 305 306 its_fixup_cmd(cmd); 307 308 return col; 309 } 310 311 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd, 312 struct its_cmd_desc *desc) 313 { 314 struct its_collection *col; 315 316 col = dev_event_to_col(desc->its_movi_cmd.dev, 317 desc->its_movi_cmd.event_id); 318 319 its_encode_cmd(cmd, GITS_CMD_MOVI); 320 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 321 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 322 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 323 324 its_fixup_cmd(cmd); 325 326 return col; 327 } 328 329 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd, 330 struct its_cmd_desc *desc) 331 { 332 struct its_collection *col; 333 334 col = dev_event_to_col(desc->its_discard_cmd.dev, 335 desc->its_discard_cmd.event_id); 336 337 its_encode_cmd(cmd, GITS_CMD_DISCARD); 338 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 339 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 340 341 its_fixup_cmd(cmd); 342 343 return col; 344 } 345 346 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd, 347 struct its_cmd_desc *desc) 348 { 349 struct its_collection *col; 350 351 col = dev_event_to_col(desc->its_inv_cmd.dev, 352 desc->its_inv_cmd.event_id); 353 354 its_encode_cmd(cmd, GITS_CMD_INV); 355 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 356 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 357 358 its_fixup_cmd(cmd); 359 360 return col; 361 } 362 363 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd, 364 struct its_cmd_desc *desc) 365 { 366 its_encode_cmd(cmd, GITS_CMD_INVALL); 367 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 368 369 its_fixup_cmd(cmd); 370 371 return NULL; 372 } 373 374 static u64 its_cmd_ptr_to_offset(struct its_node *its, 375 struct its_cmd_block *ptr) 376 { 377 return (ptr - its->cmd_base) * sizeof(*ptr); 378 } 379 380 static int its_queue_full(struct its_node *its) 381 { 382 int widx; 383 int ridx; 384 385 widx = its->cmd_write - its->cmd_base; 386 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 387 388 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 389 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 390 return 1; 391 392 return 0; 393 } 394 395 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 396 { 397 struct its_cmd_block *cmd; 398 u32 count = 1000000; /* 1s! */ 399 400 while (its_queue_full(its)) { 401 count--; 402 if (!count) { 403 pr_err_ratelimited("ITS queue not draining\n"); 404 return NULL; 405 } 406 cpu_relax(); 407 udelay(1); 408 } 409 410 cmd = its->cmd_write++; 411 412 /* Handle queue wrapping */ 413 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 414 its->cmd_write = its->cmd_base; 415 416 return cmd; 417 } 418 419 static struct its_cmd_block *its_post_commands(struct its_node *its) 420 { 421 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 422 423 writel_relaxed(wr, its->base + GITS_CWRITER); 424 425 return its->cmd_write; 426 } 427 428 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 429 { 430 /* 431 * Make sure the commands written to memory are observable by 432 * the ITS. 433 */ 434 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 435 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 436 else 437 dsb(ishst); 438 } 439 440 static void its_wait_for_range_completion(struct its_node *its, 441 struct its_cmd_block *from, 442 struct its_cmd_block *to) 443 { 444 u64 rd_idx, from_idx, to_idx; 445 u32 count = 1000000; /* 1s! */ 446 447 from_idx = its_cmd_ptr_to_offset(its, from); 448 to_idx = its_cmd_ptr_to_offset(its, to); 449 450 while (1) { 451 rd_idx = readl_relaxed(its->base + GITS_CREADR); 452 if (rd_idx >= to_idx || rd_idx < from_idx) 453 break; 454 455 count--; 456 if (!count) { 457 pr_err_ratelimited("ITS queue timeout\n"); 458 return; 459 } 460 cpu_relax(); 461 udelay(1); 462 } 463 } 464 465 static void its_send_single_command(struct its_node *its, 466 its_cmd_builder_t builder, 467 struct its_cmd_desc *desc) 468 { 469 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; 470 struct its_collection *sync_col; 471 unsigned long flags; 472 473 raw_spin_lock_irqsave(&its->lock, flags); 474 475 cmd = its_allocate_entry(its); 476 if (!cmd) { /* We're soooooo screewed... */ 477 pr_err_ratelimited("ITS can't allocate, dropping command\n"); 478 raw_spin_unlock_irqrestore(&its->lock, flags); 479 return; 480 } 481 sync_col = builder(cmd, desc); 482 its_flush_cmd(its, cmd); 483 484 if (sync_col) { 485 sync_cmd = its_allocate_entry(its); 486 if (!sync_cmd) { 487 pr_err_ratelimited("ITS can't SYNC, skipping\n"); 488 goto post; 489 } 490 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 491 its_encode_target(sync_cmd, sync_col->target_address); 492 its_fixup_cmd(sync_cmd); 493 its_flush_cmd(its, sync_cmd); 494 } 495 496 post: 497 next_cmd = its_post_commands(its); 498 raw_spin_unlock_irqrestore(&its->lock, flags); 499 500 its_wait_for_range_completion(its, cmd, next_cmd); 501 } 502 503 static void its_send_inv(struct its_device *dev, u32 event_id) 504 { 505 struct its_cmd_desc desc; 506 507 desc.its_inv_cmd.dev = dev; 508 desc.its_inv_cmd.event_id = event_id; 509 510 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 511 } 512 513 static void its_send_mapd(struct its_device *dev, int valid) 514 { 515 struct its_cmd_desc desc; 516 517 desc.its_mapd_cmd.dev = dev; 518 desc.its_mapd_cmd.valid = !!valid; 519 520 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 521 } 522 523 static void its_send_mapc(struct its_node *its, struct its_collection *col, 524 int valid) 525 { 526 struct its_cmd_desc desc; 527 528 desc.its_mapc_cmd.col = col; 529 desc.its_mapc_cmd.valid = !!valid; 530 531 its_send_single_command(its, its_build_mapc_cmd, &desc); 532 } 533 534 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id) 535 { 536 struct its_cmd_desc desc; 537 538 desc.its_mapvi_cmd.dev = dev; 539 desc.its_mapvi_cmd.phys_id = irq_id; 540 desc.its_mapvi_cmd.event_id = id; 541 542 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc); 543 } 544 545 static void its_send_movi(struct its_device *dev, 546 struct its_collection *col, u32 id) 547 { 548 struct its_cmd_desc desc; 549 550 desc.its_movi_cmd.dev = dev; 551 desc.its_movi_cmd.col = col; 552 desc.its_movi_cmd.event_id = id; 553 554 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 555 } 556 557 static void its_send_discard(struct its_device *dev, u32 id) 558 { 559 struct its_cmd_desc desc; 560 561 desc.its_discard_cmd.dev = dev; 562 desc.its_discard_cmd.event_id = id; 563 564 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 565 } 566 567 static void its_send_invall(struct its_node *its, struct its_collection *col) 568 { 569 struct its_cmd_desc desc; 570 571 desc.its_invall_cmd.col = col; 572 573 its_send_single_command(its, its_build_invall_cmd, &desc); 574 } 575 576 /* 577 * irqchip functions - assumes MSI, mostly. 578 */ 579 580 static inline u32 its_get_event_id(struct irq_data *d) 581 { 582 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 583 return d->hwirq - its_dev->event_map.lpi_base; 584 } 585 586 static void lpi_set_config(struct irq_data *d, bool enable) 587 { 588 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 589 irq_hw_number_t hwirq = d->hwirq; 590 u32 id = its_get_event_id(d); 591 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192; 592 593 if (enable) 594 *cfg |= LPI_PROP_ENABLED; 595 else 596 *cfg &= ~LPI_PROP_ENABLED; 597 598 /* 599 * Make the above write visible to the redistributors. 600 * And yes, we're flushing exactly: One. Single. Byte. 601 * Humpf... 602 */ 603 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 604 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 605 else 606 dsb(ishst); 607 its_send_inv(its_dev, id); 608 } 609 610 static void its_mask_irq(struct irq_data *d) 611 { 612 lpi_set_config(d, false); 613 } 614 615 static void its_unmask_irq(struct irq_data *d) 616 { 617 lpi_set_config(d, true); 618 } 619 620 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 621 bool force) 622 { 623 unsigned int cpu; 624 const struct cpumask *cpu_mask = cpu_online_mask; 625 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 626 struct its_collection *target_col; 627 u32 id = its_get_event_id(d); 628 629 /* lpi cannot be routed to a redistributor that is on a foreign node */ 630 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 631 if (its_dev->its->numa_node >= 0) { 632 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 633 if (!cpumask_intersects(mask_val, cpu_mask)) 634 return -EINVAL; 635 } 636 } 637 638 cpu = cpumask_any_and(mask_val, cpu_mask); 639 640 if (cpu >= nr_cpu_ids) 641 return -EINVAL; 642 643 target_col = &its_dev->its->collections[cpu]; 644 its_send_movi(its_dev, target_col, id); 645 its_dev->event_map.col_map[id] = cpu; 646 647 return IRQ_SET_MASK_OK_DONE; 648 } 649 650 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 651 { 652 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 653 struct its_node *its; 654 u64 addr; 655 656 its = its_dev->its; 657 addr = its->phys_base + GITS_TRANSLATER; 658 659 msg->address_lo = lower_32_bits(addr); 660 msg->address_hi = upper_32_bits(addr); 661 msg->data = its_get_event_id(d); 662 663 iommu_dma_map_msi_msg(d->irq, msg); 664 } 665 666 static struct irq_chip its_irq_chip = { 667 .name = "ITS", 668 .irq_mask = its_mask_irq, 669 .irq_unmask = its_unmask_irq, 670 .irq_eoi = irq_chip_eoi_parent, 671 .irq_set_affinity = its_set_affinity, 672 .irq_compose_msi_msg = its_irq_compose_msi_msg, 673 }; 674 675 /* 676 * How we allocate LPIs: 677 * 678 * The GIC has id_bits bits for interrupt identifiers. From there, we 679 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as 680 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5 681 * bits to the right. 682 * 683 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations. 684 */ 685 #define IRQS_PER_CHUNK_SHIFT 5 686 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT) 687 688 static unsigned long *lpi_bitmap; 689 static u32 lpi_chunks; 690 static DEFINE_SPINLOCK(lpi_lock); 691 692 static int its_lpi_to_chunk(int lpi) 693 { 694 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT; 695 } 696 697 static int its_chunk_to_lpi(int chunk) 698 { 699 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192; 700 } 701 702 static int __init its_lpi_init(u32 id_bits) 703 { 704 lpi_chunks = its_lpi_to_chunk(1UL << id_bits); 705 706 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long), 707 GFP_KERNEL); 708 if (!lpi_bitmap) { 709 lpi_chunks = 0; 710 return -ENOMEM; 711 } 712 713 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks); 714 return 0; 715 } 716 717 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids) 718 { 719 unsigned long *bitmap = NULL; 720 int chunk_id; 721 int nr_chunks; 722 int i; 723 724 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK); 725 726 spin_lock(&lpi_lock); 727 728 do { 729 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks, 730 0, nr_chunks, 0); 731 if (chunk_id < lpi_chunks) 732 break; 733 734 nr_chunks--; 735 } while (nr_chunks > 0); 736 737 if (!nr_chunks) 738 goto out; 739 740 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long), 741 GFP_ATOMIC); 742 if (!bitmap) 743 goto out; 744 745 for (i = 0; i < nr_chunks; i++) 746 set_bit(chunk_id + i, lpi_bitmap); 747 748 *base = its_chunk_to_lpi(chunk_id); 749 *nr_ids = nr_chunks * IRQS_PER_CHUNK; 750 751 out: 752 spin_unlock(&lpi_lock); 753 754 if (!bitmap) 755 *base = *nr_ids = 0; 756 757 return bitmap; 758 } 759 760 static void its_lpi_free(struct event_lpi_map *map) 761 { 762 int base = map->lpi_base; 763 int nr_ids = map->nr_lpis; 764 int lpi; 765 766 spin_lock(&lpi_lock); 767 768 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) { 769 int chunk = its_lpi_to_chunk(lpi); 770 BUG_ON(chunk > lpi_chunks); 771 if (test_bit(chunk, lpi_bitmap)) { 772 clear_bit(chunk, lpi_bitmap); 773 } else { 774 pr_err("Bad LPI chunk %d\n", chunk); 775 } 776 } 777 778 spin_unlock(&lpi_lock); 779 780 kfree(map->lpi_map); 781 kfree(map->col_map); 782 } 783 784 /* 785 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to 786 * deal with (one configuration byte per interrupt). PENDBASE has to 787 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 788 */ 789 #define LPI_PROPBASE_SZ SZ_64K 790 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K) 791 792 /* 793 * This is how many bits of ID we need, including the useless ones. 794 */ 795 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K) 796 797 #define LPI_PROP_DEFAULT_PRIO 0xa0 798 799 static int __init its_alloc_lpi_tables(void) 800 { 801 phys_addr_t paddr; 802 803 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT, 804 get_order(LPI_PROPBASE_SZ)); 805 if (!gic_rdists->prop_page) { 806 pr_err("Failed to allocate PROPBASE\n"); 807 return -ENOMEM; 808 } 809 810 paddr = page_to_phys(gic_rdists->prop_page); 811 pr_info("GIC: using LPI property table @%pa\n", &paddr); 812 813 /* Priority 0xa0, Group-1, disabled */ 814 memset(page_address(gic_rdists->prop_page), 815 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 816 LPI_PROPBASE_SZ); 817 818 /* Make sure the GIC will observe the written configuration */ 819 gic_flush_dcache_to_poc(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ); 820 821 return 0; 822 } 823 824 static const char *its_base_type_string[] = { 825 [GITS_BASER_TYPE_DEVICE] = "Devices", 826 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 827 [GITS_BASER_TYPE_CPU] = "Physical CPUs", 828 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 829 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 830 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 831 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 832 }; 833 834 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 835 { 836 u32 idx = baser - its->tables; 837 838 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 839 } 840 841 static void its_write_baser(struct its_node *its, struct its_baser *baser, 842 u64 val) 843 { 844 u32 idx = baser - its->tables; 845 846 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 847 baser->val = its_read_baser(its, baser); 848 } 849 850 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 851 u64 cache, u64 shr, u32 psz, u32 order, 852 bool indirect) 853 { 854 u64 val = its_read_baser(its, baser); 855 u64 esz = GITS_BASER_ENTRY_SIZE(val); 856 u64 type = GITS_BASER_TYPE(val); 857 u32 alloc_pages; 858 void *base; 859 u64 tmp; 860 861 retry_alloc_baser: 862 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 863 if (alloc_pages > GITS_BASER_PAGES_MAX) { 864 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 865 &its->phys_base, its_base_type_string[type], 866 alloc_pages, GITS_BASER_PAGES_MAX); 867 alloc_pages = GITS_BASER_PAGES_MAX; 868 order = get_order(GITS_BASER_PAGES_MAX * psz); 869 } 870 871 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 872 if (!base) 873 return -ENOMEM; 874 875 retry_baser: 876 val = (virt_to_phys(base) | 877 (type << GITS_BASER_TYPE_SHIFT) | 878 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 879 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 880 cache | 881 shr | 882 GITS_BASER_VALID); 883 884 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 885 886 switch (psz) { 887 case SZ_4K: 888 val |= GITS_BASER_PAGE_SIZE_4K; 889 break; 890 case SZ_16K: 891 val |= GITS_BASER_PAGE_SIZE_16K; 892 break; 893 case SZ_64K: 894 val |= GITS_BASER_PAGE_SIZE_64K; 895 break; 896 } 897 898 its_write_baser(its, baser, val); 899 tmp = baser->val; 900 901 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 902 /* 903 * Shareability didn't stick. Just use 904 * whatever the read reported, which is likely 905 * to be the only thing this redistributor 906 * supports. If that's zero, make it 907 * non-cacheable as well. 908 */ 909 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 910 if (!shr) { 911 cache = GITS_BASER_nC; 912 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 913 } 914 goto retry_baser; 915 } 916 917 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 918 /* 919 * Page size didn't stick. Let's try a smaller 920 * size and retry. If we reach 4K, then 921 * something is horribly wrong... 922 */ 923 free_pages((unsigned long)base, order); 924 baser->base = NULL; 925 926 switch (psz) { 927 case SZ_16K: 928 psz = SZ_4K; 929 goto retry_alloc_baser; 930 case SZ_64K: 931 psz = SZ_16K; 932 goto retry_alloc_baser; 933 } 934 } 935 936 if (val != tmp) { 937 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 938 &its->phys_base, its_base_type_string[type], 939 val, tmp); 940 free_pages((unsigned long)base, order); 941 return -ENXIO; 942 } 943 944 baser->order = order; 945 baser->base = base; 946 baser->psz = psz; 947 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 948 949 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 950 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 951 its_base_type_string[type], 952 (unsigned long)virt_to_phys(base), 953 indirect ? "indirect" : "flat", (int)esz, 954 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 955 956 return 0; 957 } 958 959 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser, 960 u32 psz, u32 *order) 961 { 962 u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser)); 963 u64 val = GITS_BASER_InnerShareable | GITS_BASER_WaWb; 964 u32 ids = its->device_ids; 965 u32 new_order = *order; 966 bool indirect = false; 967 968 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 969 if ((esz << ids) > (psz * 2)) { 970 /* 971 * Find out whether hw supports a single or two-level table by 972 * table by reading bit at offset '62' after writing '1' to it. 973 */ 974 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 975 indirect = !!(baser->val & GITS_BASER_INDIRECT); 976 977 if (indirect) { 978 /* 979 * The size of the lvl2 table is equal to ITS page size 980 * which is 'psz'. For computing lvl1 table size, 981 * subtract ID bits that sparse lvl2 table from 'ids' 982 * which is reported by ITS hardware times lvl1 table 983 * entry size. 984 */ 985 ids -= ilog2(psz / (int)esz); 986 esz = GITS_LVL1_ENTRY_SIZE; 987 } 988 } 989 990 /* 991 * Allocate as many entries as required to fit the 992 * range of device IDs that the ITS can grok... The ID 993 * space being incredibly sparse, this results in a 994 * massive waste of memory if two-level device table 995 * feature is not supported by hardware. 996 */ 997 new_order = max_t(u32, get_order(esz << ids), new_order); 998 if (new_order >= MAX_ORDER) { 999 new_order = MAX_ORDER - 1; 1000 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 1001 pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n", 1002 &its->phys_base, its->device_ids, ids); 1003 } 1004 1005 *order = new_order; 1006 1007 return indirect; 1008 } 1009 1010 static void its_free_tables(struct its_node *its) 1011 { 1012 int i; 1013 1014 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1015 if (its->tables[i].base) { 1016 free_pages((unsigned long)its->tables[i].base, 1017 its->tables[i].order); 1018 its->tables[i].base = NULL; 1019 } 1020 } 1021 } 1022 1023 static int its_alloc_tables(struct its_node *its) 1024 { 1025 u64 typer = gic_read_typer(its->base + GITS_TYPER); 1026 u32 ids = GITS_TYPER_DEVBITS(typer); 1027 u64 shr = GITS_BASER_InnerShareable; 1028 u64 cache = GITS_BASER_WaWb; 1029 u32 psz = SZ_64K; 1030 int err, i; 1031 1032 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) { 1033 /* 1034 * erratum 22375: only alloc 8MB table size 1035 * erratum 24313: ignore memory access type 1036 */ 1037 cache = GITS_BASER_nCnB; 1038 ids = 0x14; /* 20 bits, 8MB */ 1039 } 1040 1041 its->device_ids = ids; 1042 1043 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1044 struct its_baser *baser = its->tables + i; 1045 u64 val = its_read_baser(its, baser); 1046 u64 type = GITS_BASER_TYPE(val); 1047 u32 order = get_order(psz); 1048 bool indirect = false; 1049 1050 if (type == GITS_BASER_TYPE_NONE) 1051 continue; 1052 1053 if (type == GITS_BASER_TYPE_DEVICE) 1054 indirect = its_parse_baser_device(its, baser, psz, &order); 1055 1056 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1057 if (err < 0) { 1058 its_free_tables(its); 1059 return err; 1060 } 1061 1062 /* Update settings which will be used for next BASERn */ 1063 psz = baser->psz; 1064 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1065 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1066 } 1067 1068 return 0; 1069 } 1070 1071 static int its_alloc_collections(struct its_node *its) 1072 { 1073 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections), 1074 GFP_KERNEL); 1075 if (!its->collections) 1076 return -ENOMEM; 1077 1078 return 0; 1079 } 1080 1081 static void its_cpu_init_lpis(void) 1082 { 1083 void __iomem *rbase = gic_data_rdist_rd_base(); 1084 struct page *pend_page; 1085 u64 val, tmp; 1086 1087 /* If we didn't allocate the pending table yet, do it now */ 1088 pend_page = gic_data_rdist()->pend_page; 1089 if (!pend_page) { 1090 phys_addr_t paddr; 1091 /* 1092 * The pending pages have to be at least 64kB aligned, 1093 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 1094 */ 1095 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO, 1096 get_order(max(LPI_PENDBASE_SZ, SZ_64K))); 1097 if (!pend_page) { 1098 pr_err("Failed to allocate PENDBASE for CPU%d\n", 1099 smp_processor_id()); 1100 return; 1101 } 1102 1103 /* Make sure the GIC will observe the zero-ed page */ 1104 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 1105 1106 paddr = page_to_phys(pend_page); 1107 pr_info("CPU%d: using LPI pending table @%pa\n", 1108 smp_processor_id(), &paddr); 1109 gic_data_rdist()->pend_page = pend_page; 1110 } 1111 1112 /* Disable LPIs */ 1113 val = readl_relaxed(rbase + GICR_CTLR); 1114 val &= ~GICR_CTLR_ENABLE_LPIS; 1115 writel_relaxed(val, rbase + GICR_CTLR); 1116 1117 /* 1118 * Make sure any change to the table is observable by the GIC. 1119 */ 1120 dsb(sy); 1121 1122 /* set PROPBASE */ 1123 val = (page_to_phys(gic_rdists->prop_page) | 1124 GICR_PROPBASER_InnerShareable | 1125 GICR_PROPBASER_WaWb | 1126 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1127 1128 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1129 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 1130 1131 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1132 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1133 /* 1134 * The HW reports non-shareable, we must 1135 * remove the cacheability attributes as 1136 * well. 1137 */ 1138 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1139 GICR_PROPBASER_CACHEABILITY_MASK); 1140 val |= GICR_PROPBASER_nC; 1141 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1142 } 1143 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1144 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1145 } 1146 1147 /* set PENDBASE */ 1148 val = (page_to_phys(pend_page) | 1149 GICR_PENDBASER_InnerShareable | 1150 GICR_PENDBASER_WaWb); 1151 1152 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 1153 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 1154 1155 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 1156 /* 1157 * The HW reports non-shareable, we must remove the 1158 * cacheability attributes as well. 1159 */ 1160 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 1161 GICR_PENDBASER_CACHEABILITY_MASK); 1162 val |= GICR_PENDBASER_nC; 1163 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 1164 } 1165 1166 /* Enable LPIs */ 1167 val = readl_relaxed(rbase + GICR_CTLR); 1168 val |= GICR_CTLR_ENABLE_LPIS; 1169 writel_relaxed(val, rbase + GICR_CTLR); 1170 1171 /* Make sure the GIC has seen the above */ 1172 dsb(sy); 1173 } 1174 1175 static void its_cpu_init_collection(void) 1176 { 1177 struct its_node *its; 1178 int cpu; 1179 1180 spin_lock(&its_lock); 1181 cpu = smp_processor_id(); 1182 1183 list_for_each_entry(its, &its_nodes, entry) { 1184 u64 target; 1185 1186 /* avoid cross node collections and its mapping */ 1187 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1188 struct device_node *cpu_node; 1189 1190 cpu_node = of_get_cpu_node(cpu, NULL); 1191 if (its->numa_node != NUMA_NO_NODE && 1192 its->numa_node != of_node_to_nid(cpu_node)) 1193 continue; 1194 } 1195 1196 /* 1197 * We now have to bind each collection to its target 1198 * redistributor. 1199 */ 1200 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 1201 /* 1202 * This ITS wants the physical address of the 1203 * redistributor. 1204 */ 1205 target = gic_data_rdist()->phys_base; 1206 } else { 1207 /* 1208 * This ITS wants a linear CPU number. 1209 */ 1210 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 1211 target = GICR_TYPER_CPU_NUMBER(target) << 16; 1212 } 1213 1214 /* Perform collection mapping */ 1215 its->collections[cpu].target_address = target; 1216 its->collections[cpu].col_id = cpu; 1217 1218 its_send_mapc(its, &its->collections[cpu], 1); 1219 its_send_invall(its, &its->collections[cpu]); 1220 } 1221 1222 spin_unlock(&its_lock); 1223 } 1224 1225 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 1226 { 1227 struct its_device *its_dev = NULL, *tmp; 1228 unsigned long flags; 1229 1230 raw_spin_lock_irqsave(&its->lock, flags); 1231 1232 list_for_each_entry(tmp, &its->its_device_list, entry) { 1233 if (tmp->device_id == dev_id) { 1234 its_dev = tmp; 1235 break; 1236 } 1237 } 1238 1239 raw_spin_unlock_irqrestore(&its->lock, flags); 1240 1241 return its_dev; 1242 } 1243 1244 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 1245 { 1246 int i; 1247 1248 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1249 if (GITS_BASER_TYPE(its->tables[i].val) == type) 1250 return &its->tables[i]; 1251 } 1252 1253 return NULL; 1254 } 1255 1256 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 1257 { 1258 struct its_baser *baser; 1259 struct page *page; 1260 u32 esz, idx; 1261 __le64 *table; 1262 1263 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 1264 1265 /* Don't allow device id that exceeds ITS hardware limit */ 1266 if (!baser) 1267 return (ilog2(dev_id) < its->device_ids); 1268 1269 /* Don't allow device id that exceeds single, flat table limit */ 1270 esz = GITS_BASER_ENTRY_SIZE(baser->val); 1271 if (!(baser->val & GITS_BASER_INDIRECT)) 1272 return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 1273 1274 /* Compute 1st level table index & check if that exceeds table limit */ 1275 idx = dev_id >> ilog2(baser->psz / esz); 1276 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 1277 return false; 1278 1279 table = baser->base; 1280 1281 /* Allocate memory for 2nd level table */ 1282 if (!table[idx]) { 1283 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); 1284 if (!page) 1285 return false; 1286 1287 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 1288 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 1289 gic_flush_dcache_to_poc(page_address(page), baser->psz); 1290 1291 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 1292 1293 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 1294 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 1295 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 1296 1297 /* Ensure updated table contents are visible to ITS hardware */ 1298 dsb(sy); 1299 } 1300 1301 return true; 1302 } 1303 1304 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 1305 int nvecs) 1306 { 1307 struct its_device *dev; 1308 unsigned long *lpi_map; 1309 unsigned long flags; 1310 u16 *col_map = NULL; 1311 void *itt; 1312 int lpi_base; 1313 int nr_lpis; 1314 int nr_ites; 1315 int sz; 1316 1317 if (!its_alloc_device_table(its, dev_id)) 1318 return NULL; 1319 1320 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1321 /* 1322 * At least one bit of EventID is being used, hence a minimum 1323 * of two entries. No, the architecture doesn't let you 1324 * express an ITT with a single entry. 1325 */ 1326 nr_ites = max(2UL, roundup_pow_of_two(nvecs)); 1327 sz = nr_ites * its->ite_size; 1328 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 1329 itt = kzalloc(sz, GFP_KERNEL); 1330 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis); 1331 if (lpi_map) 1332 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL); 1333 1334 if (!dev || !itt || !lpi_map || !col_map) { 1335 kfree(dev); 1336 kfree(itt); 1337 kfree(lpi_map); 1338 kfree(col_map); 1339 return NULL; 1340 } 1341 1342 gic_flush_dcache_to_poc(itt, sz); 1343 1344 dev->its = its; 1345 dev->itt = itt; 1346 dev->nr_ites = nr_ites; 1347 dev->event_map.lpi_map = lpi_map; 1348 dev->event_map.col_map = col_map; 1349 dev->event_map.lpi_base = lpi_base; 1350 dev->event_map.nr_lpis = nr_lpis; 1351 dev->device_id = dev_id; 1352 INIT_LIST_HEAD(&dev->entry); 1353 1354 raw_spin_lock_irqsave(&its->lock, flags); 1355 list_add(&dev->entry, &its->its_device_list); 1356 raw_spin_unlock_irqrestore(&its->lock, flags); 1357 1358 /* Map device to its ITT */ 1359 its_send_mapd(dev, 1); 1360 1361 return dev; 1362 } 1363 1364 static void its_free_device(struct its_device *its_dev) 1365 { 1366 unsigned long flags; 1367 1368 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 1369 list_del(&its_dev->entry); 1370 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 1371 kfree(its_dev->itt); 1372 kfree(its_dev); 1373 } 1374 1375 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 1376 { 1377 int idx; 1378 1379 idx = find_first_zero_bit(dev->event_map.lpi_map, 1380 dev->event_map.nr_lpis); 1381 if (idx == dev->event_map.nr_lpis) 1382 return -ENOSPC; 1383 1384 *hwirq = dev->event_map.lpi_base + idx; 1385 set_bit(idx, dev->event_map.lpi_map); 1386 1387 return 0; 1388 } 1389 1390 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 1391 int nvec, msi_alloc_info_t *info) 1392 { 1393 struct its_node *its; 1394 struct its_device *its_dev; 1395 struct msi_domain_info *msi_info; 1396 u32 dev_id; 1397 1398 /* 1399 * We ignore "dev" entierely, and rely on the dev_id that has 1400 * been passed via the scratchpad. This limits this domain's 1401 * usefulness to upper layers that definitely know that they 1402 * are built on top of the ITS. 1403 */ 1404 dev_id = info->scratchpad[0].ul; 1405 1406 msi_info = msi_get_domain_info(domain); 1407 its = msi_info->data; 1408 1409 its_dev = its_find_device(its, dev_id); 1410 if (its_dev) { 1411 /* 1412 * We already have seen this ID, probably through 1413 * another alias (PCI bridge of some sort). No need to 1414 * create the device. 1415 */ 1416 pr_debug("Reusing ITT for devID %x\n", dev_id); 1417 goto out; 1418 } 1419 1420 its_dev = its_create_device(its, dev_id, nvec); 1421 if (!its_dev) 1422 return -ENOMEM; 1423 1424 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 1425 out: 1426 info->scratchpad[0].ptr = its_dev; 1427 return 0; 1428 } 1429 1430 static struct msi_domain_ops its_msi_domain_ops = { 1431 .msi_prepare = its_msi_prepare, 1432 }; 1433 1434 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 1435 unsigned int virq, 1436 irq_hw_number_t hwirq) 1437 { 1438 struct irq_fwspec fwspec; 1439 1440 if (irq_domain_get_of_node(domain->parent)) { 1441 fwspec.fwnode = domain->parent->fwnode; 1442 fwspec.param_count = 3; 1443 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 1444 fwspec.param[1] = hwirq; 1445 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 1446 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 1447 fwspec.fwnode = domain->parent->fwnode; 1448 fwspec.param_count = 2; 1449 fwspec.param[0] = hwirq; 1450 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 1451 } else { 1452 return -EINVAL; 1453 } 1454 1455 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 1456 } 1457 1458 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1459 unsigned int nr_irqs, void *args) 1460 { 1461 msi_alloc_info_t *info = args; 1462 struct its_device *its_dev = info->scratchpad[0].ptr; 1463 irq_hw_number_t hwirq; 1464 int err; 1465 int i; 1466 1467 for (i = 0; i < nr_irqs; i++) { 1468 err = its_alloc_device_irq(its_dev, &hwirq); 1469 if (err) 1470 return err; 1471 1472 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 1473 if (err) 1474 return err; 1475 1476 irq_domain_set_hwirq_and_chip(domain, virq + i, 1477 hwirq, &its_irq_chip, its_dev); 1478 pr_debug("ID:%d pID:%d vID:%d\n", 1479 (int)(hwirq - its_dev->event_map.lpi_base), 1480 (int) hwirq, virq + i); 1481 } 1482 1483 return 0; 1484 } 1485 1486 static void its_irq_domain_activate(struct irq_domain *domain, 1487 struct irq_data *d) 1488 { 1489 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1490 u32 event = its_get_event_id(d); 1491 const struct cpumask *cpu_mask = cpu_online_mask; 1492 1493 /* get the cpu_mask of local node */ 1494 if (its_dev->its->numa_node >= 0) 1495 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1496 1497 /* Bind the LPI to the first possible CPU */ 1498 its_dev->event_map.col_map[event] = cpumask_first(cpu_mask); 1499 1500 /* Map the GIC IRQ and event to the device */ 1501 its_send_mapvi(its_dev, d->hwirq, event); 1502 } 1503 1504 static void its_irq_domain_deactivate(struct irq_domain *domain, 1505 struct irq_data *d) 1506 { 1507 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1508 u32 event = its_get_event_id(d); 1509 1510 /* Stop the delivery of interrupts */ 1511 its_send_discard(its_dev, event); 1512 } 1513 1514 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1515 unsigned int nr_irqs) 1516 { 1517 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 1518 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1519 int i; 1520 1521 for (i = 0; i < nr_irqs; i++) { 1522 struct irq_data *data = irq_domain_get_irq_data(domain, 1523 virq + i); 1524 u32 event = its_get_event_id(data); 1525 1526 /* Mark interrupt index as unused */ 1527 clear_bit(event, its_dev->event_map.lpi_map); 1528 1529 /* Nuke the entry in the domain */ 1530 irq_domain_reset_irq_data(data); 1531 } 1532 1533 /* If all interrupts have been freed, start mopping the floor */ 1534 if (bitmap_empty(its_dev->event_map.lpi_map, 1535 its_dev->event_map.nr_lpis)) { 1536 its_lpi_free(&its_dev->event_map); 1537 1538 /* Unmap device/itt */ 1539 its_send_mapd(its_dev, 0); 1540 its_free_device(its_dev); 1541 } 1542 1543 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 1544 } 1545 1546 static const struct irq_domain_ops its_domain_ops = { 1547 .alloc = its_irq_domain_alloc, 1548 .free = its_irq_domain_free, 1549 .activate = its_irq_domain_activate, 1550 .deactivate = its_irq_domain_deactivate, 1551 }; 1552 1553 static int its_force_quiescent(void __iomem *base) 1554 { 1555 u32 count = 1000000; /* 1s */ 1556 u32 val; 1557 1558 val = readl_relaxed(base + GITS_CTLR); 1559 /* 1560 * GIC architecture specification requires the ITS to be both 1561 * disabled and quiescent for writes to GITS_BASER<n> or 1562 * GITS_CBASER to not have UNPREDICTABLE results. 1563 */ 1564 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 1565 return 0; 1566 1567 /* Disable the generation of all interrupts to this ITS */ 1568 val &= ~GITS_CTLR_ENABLE; 1569 writel_relaxed(val, base + GITS_CTLR); 1570 1571 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 1572 while (1) { 1573 val = readl_relaxed(base + GITS_CTLR); 1574 if (val & GITS_CTLR_QUIESCENT) 1575 return 0; 1576 1577 count--; 1578 if (!count) 1579 return -EBUSY; 1580 1581 cpu_relax(); 1582 udelay(1); 1583 } 1584 } 1585 1586 static void __maybe_unused its_enable_quirk_cavium_22375(void *data) 1587 { 1588 struct its_node *its = data; 1589 1590 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 1591 } 1592 1593 static void __maybe_unused its_enable_quirk_cavium_23144(void *data) 1594 { 1595 struct its_node *its = data; 1596 1597 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 1598 } 1599 1600 static const struct gic_quirk its_quirks[] = { 1601 #ifdef CONFIG_CAVIUM_ERRATUM_22375 1602 { 1603 .desc = "ITS: Cavium errata 22375, 24313", 1604 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 1605 .mask = 0xffff0fff, 1606 .init = its_enable_quirk_cavium_22375, 1607 }, 1608 #endif 1609 #ifdef CONFIG_CAVIUM_ERRATUM_23144 1610 { 1611 .desc = "ITS: Cavium erratum 23144", 1612 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 1613 .mask = 0xffff0fff, 1614 .init = its_enable_quirk_cavium_23144, 1615 }, 1616 #endif 1617 { 1618 } 1619 }; 1620 1621 static void its_enable_quirks(struct its_node *its) 1622 { 1623 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 1624 1625 gic_enable_quirks(iidr, its_quirks, its); 1626 } 1627 1628 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 1629 { 1630 struct irq_domain *inner_domain; 1631 struct msi_domain_info *info; 1632 1633 info = kzalloc(sizeof(*info), GFP_KERNEL); 1634 if (!info) 1635 return -ENOMEM; 1636 1637 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 1638 if (!inner_domain) { 1639 kfree(info); 1640 return -ENOMEM; 1641 } 1642 1643 inner_domain->parent = its_parent; 1644 inner_domain->bus_token = DOMAIN_BUS_NEXUS; 1645 info->ops = &its_msi_domain_ops; 1646 info->data = its; 1647 inner_domain->host_data = info; 1648 1649 return 0; 1650 } 1651 1652 static int __init its_probe_one(struct resource *res, 1653 struct fwnode_handle *handle, int numa_node) 1654 { 1655 struct its_node *its; 1656 void __iomem *its_base; 1657 u32 val; 1658 u64 baser, tmp; 1659 int err; 1660 1661 its_base = ioremap(res->start, resource_size(res)); 1662 if (!its_base) { 1663 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 1664 return -ENOMEM; 1665 } 1666 1667 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 1668 if (val != 0x30 && val != 0x40) { 1669 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 1670 err = -ENODEV; 1671 goto out_unmap; 1672 } 1673 1674 err = its_force_quiescent(its_base); 1675 if (err) { 1676 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 1677 goto out_unmap; 1678 } 1679 1680 pr_info("ITS %pR\n", res); 1681 1682 its = kzalloc(sizeof(*its), GFP_KERNEL); 1683 if (!its) { 1684 err = -ENOMEM; 1685 goto out_unmap; 1686 } 1687 1688 raw_spin_lock_init(&its->lock); 1689 INIT_LIST_HEAD(&its->entry); 1690 INIT_LIST_HEAD(&its->its_device_list); 1691 its->base = its_base; 1692 its->phys_base = res->start; 1693 its->ite_size = ((gic_read_typer(its_base + GITS_TYPER) >> 4) & 0xf) + 1; 1694 its->numa_node = numa_node; 1695 1696 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL); 1697 if (!its->cmd_base) { 1698 err = -ENOMEM; 1699 goto out_free_its; 1700 } 1701 its->cmd_write = its->cmd_base; 1702 1703 its_enable_quirks(its); 1704 1705 err = its_alloc_tables(its); 1706 if (err) 1707 goto out_free_cmd; 1708 1709 err = its_alloc_collections(its); 1710 if (err) 1711 goto out_free_tables; 1712 1713 baser = (virt_to_phys(its->cmd_base) | 1714 GITS_CBASER_WaWb | 1715 GITS_CBASER_InnerShareable | 1716 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 1717 GITS_CBASER_VALID); 1718 1719 gits_write_cbaser(baser, its->base + GITS_CBASER); 1720 tmp = gits_read_cbaser(its->base + GITS_CBASER); 1721 1722 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 1723 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 1724 /* 1725 * The HW reports non-shareable, we must 1726 * remove the cacheability attributes as 1727 * well. 1728 */ 1729 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 1730 GITS_CBASER_CACHEABILITY_MASK); 1731 baser |= GITS_CBASER_nC; 1732 gits_write_cbaser(baser, its->base + GITS_CBASER); 1733 } 1734 pr_info("ITS: using cache flushing for cmd queue\n"); 1735 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 1736 } 1737 1738 gits_write_cwriter(0, its->base + GITS_CWRITER); 1739 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR); 1740 1741 err = its_init_domain(handle, its); 1742 if (err) 1743 goto out_free_tables; 1744 1745 spin_lock(&its_lock); 1746 list_add(&its->entry, &its_nodes); 1747 spin_unlock(&its_lock); 1748 1749 return 0; 1750 1751 out_free_tables: 1752 its_free_tables(its); 1753 out_free_cmd: 1754 kfree(its->cmd_base); 1755 out_free_its: 1756 kfree(its); 1757 out_unmap: 1758 iounmap(its_base); 1759 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 1760 return err; 1761 } 1762 1763 static bool gic_rdists_supports_plpis(void) 1764 { 1765 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 1766 } 1767 1768 int its_cpu_init(void) 1769 { 1770 if (!list_empty(&its_nodes)) { 1771 if (!gic_rdists_supports_plpis()) { 1772 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 1773 return -ENXIO; 1774 } 1775 its_cpu_init_lpis(); 1776 its_cpu_init_collection(); 1777 } 1778 1779 return 0; 1780 } 1781 1782 static struct of_device_id its_device_id[] = { 1783 { .compatible = "arm,gic-v3-its", }, 1784 {}, 1785 }; 1786 1787 static int __init its_of_probe(struct device_node *node) 1788 { 1789 struct device_node *np; 1790 struct resource res; 1791 1792 for (np = of_find_matching_node(node, its_device_id); np; 1793 np = of_find_matching_node(np, its_device_id)) { 1794 if (!of_property_read_bool(np, "msi-controller")) { 1795 pr_warn("%s: no msi-controller property, ITS ignored\n", 1796 np->full_name); 1797 continue; 1798 } 1799 1800 if (of_address_to_resource(np, 0, &res)) { 1801 pr_warn("%s: no regs?\n", np->full_name); 1802 continue; 1803 } 1804 1805 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 1806 } 1807 return 0; 1808 } 1809 1810 #ifdef CONFIG_ACPI 1811 1812 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 1813 1814 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, 1815 const unsigned long end) 1816 { 1817 struct acpi_madt_generic_translator *its_entry; 1818 struct fwnode_handle *dom_handle; 1819 struct resource res; 1820 int err; 1821 1822 its_entry = (struct acpi_madt_generic_translator *)header; 1823 memset(&res, 0, sizeof(res)); 1824 res.start = its_entry->base_address; 1825 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 1826 res.flags = IORESOURCE_MEM; 1827 1828 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); 1829 if (!dom_handle) { 1830 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 1831 &res.start); 1832 return -ENOMEM; 1833 } 1834 1835 err = iort_register_domain_token(its_entry->translation_id, dom_handle); 1836 if (err) { 1837 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 1838 &res.start, its_entry->translation_id); 1839 goto dom_err; 1840 } 1841 1842 err = its_probe_one(&res, dom_handle, NUMA_NO_NODE); 1843 if (!err) 1844 return 0; 1845 1846 iort_deregister_domain_token(its_entry->translation_id); 1847 dom_err: 1848 irq_domain_free_fwnode(dom_handle); 1849 return err; 1850 } 1851 1852 static void __init its_acpi_probe(void) 1853 { 1854 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 1855 gic_acpi_parse_madt_its, 0); 1856 } 1857 #else 1858 static void __init its_acpi_probe(void) { } 1859 #endif 1860 1861 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 1862 struct irq_domain *parent_domain) 1863 { 1864 struct device_node *of_node; 1865 1866 its_parent = parent_domain; 1867 of_node = to_of_node(handle); 1868 if (of_node) 1869 its_of_probe(of_node); 1870 else 1871 its_acpi_probe(); 1872 1873 if (list_empty(&its_nodes)) { 1874 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 1875 return -ENXIO; 1876 } 1877 1878 gic_rdists = rdists; 1879 its_alloc_lpi_tables(); 1880 its_lpi_init(rdists->id_bits); 1881 1882 return 0; 1883 } 1884