xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/bitmap.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dma-iommu.h>
23 #include <linux/interrupt.h>
24 #include <linux/irqdomain.h>
25 #include <linux/acpi_iort.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36 
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42 
43 #include "irq-gic-common.h"
44 
45 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
46 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
48 
49 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
50 
51 /*
52  * Collection structure - just an ID, and a redistributor address to
53  * ping. We use one per CPU as a bag of interrupts assigned to this
54  * CPU.
55  */
56 struct its_collection {
57 	u64			target_address;
58 	u16			col_id;
59 };
60 
61 /*
62  * The ITS_BASER structure - contains memory information, cached
63  * value of BASER register configuration and ITS page size.
64  */
65 struct its_baser {
66 	void		*base;
67 	u64		val;
68 	u32		order;
69 	u32		psz;
70 };
71 
72 /*
73  * The ITS structure - contains most of the infrastructure, with the
74  * top-level MSI domain, the command queue, the collections, and the
75  * list of devices writing to it.
76  */
77 struct its_node {
78 	raw_spinlock_t		lock;
79 	struct list_head	entry;
80 	void __iomem		*base;
81 	phys_addr_t		phys_base;
82 	struct its_cmd_block	*cmd_base;
83 	struct its_cmd_block	*cmd_write;
84 	struct its_baser	tables[GITS_BASER_NR_REGS];
85 	struct its_collection	*collections;
86 	struct list_head	its_device_list;
87 	u64			flags;
88 	u32			ite_size;
89 	u32			device_ids;
90 	int			numa_node;
91 };
92 
93 #define ITS_ITT_ALIGN		SZ_256
94 
95 /* Convert page order to size in bytes */
96 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
97 
98 struct event_lpi_map {
99 	unsigned long		*lpi_map;
100 	u16			*col_map;
101 	irq_hw_number_t		lpi_base;
102 	int			nr_lpis;
103 };
104 
105 /*
106  * The ITS view of a device - belongs to an ITS, a collection, owns an
107  * interrupt translation table, and a list of interrupts.
108  */
109 struct its_device {
110 	struct list_head	entry;
111 	struct its_node		*its;
112 	struct event_lpi_map	event_map;
113 	void			*itt;
114 	u32			nr_ites;
115 	u32			device_id;
116 };
117 
118 static LIST_HEAD(its_nodes);
119 static DEFINE_SPINLOCK(its_lock);
120 static struct rdists *gic_rdists;
121 static struct irq_domain *its_parent;
122 
123 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
124 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
125 
126 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
127 					       u32 event)
128 {
129 	struct its_node *its = its_dev->its;
130 
131 	return its->collections + its_dev->event_map.col_map[event];
132 }
133 
134 /*
135  * ITS command descriptors - parameters to be encoded in a command
136  * block.
137  */
138 struct its_cmd_desc {
139 	union {
140 		struct {
141 			struct its_device *dev;
142 			u32 event_id;
143 		} its_inv_cmd;
144 
145 		struct {
146 			struct its_device *dev;
147 			u32 event_id;
148 		} its_int_cmd;
149 
150 		struct {
151 			struct its_device *dev;
152 			int valid;
153 		} its_mapd_cmd;
154 
155 		struct {
156 			struct its_collection *col;
157 			int valid;
158 		} its_mapc_cmd;
159 
160 		struct {
161 			struct its_device *dev;
162 			u32 phys_id;
163 			u32 event_id;
164 		} its_mapvi_cmd;
165 
166 		struct {
167 			struct its_device *dev;
168 			struct its_collection *col;
169 			u32 event_id;
170 		} its_movi_cmd;
171 
172 		struct {
173 			struct its_device *dev;
174 			u32 event_id;
175 		} its_discard_cmd;
176 
177 		struct {
178 			struct its_collection *col;
179 		} its_invall_cmd;
180 	};
181 };
182 
183 /*
184  * The ITS command block, which is what the ITS actually parses.
185  */
186 struct its_cmd_block {
187 	u64	raw_cmd[4];
188 };
189 
190 #define ITS_CMD_QUEUE_SZ		SZ_64K
191 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
192 
193 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
194 						    struct its_cmd_desc *);
195 
196 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
197 {
198 	cmd->raw_cmd[0] &= ~0xffULL;
199 	cmd->raw_cmd[0] |= cmd_nr;
200 }
201 
202 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
203 {
204 	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
205 	cmd->raw_cmd[0] |= ((u64)devid) << 32;
206 }
207 
208 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
209 {
210 	cmd->raw_cmd[1] &= ~0xffffffffULL;
211 	cmd->raw_cmd[1] |= id;
212 }
213 
214 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
215 {
216 	cmd->raw_cmd[1] &= 0xffffffffULL;
217 	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
218 }
219 
220 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
221 {
222 	cmd->raw_cmd[1] &= ~0x1fULL;
223 	cmd->raw_cmd[1] |= size & 0x1f;
224 }
225 
226 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
227 {
228 	cmd->raw_cmd[2] &= ~0xffffffffffffULL;
229 	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00ULL;
230 }
231 
232 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
233 {
234 	cmd->raw_cmd[2] &= ~(1ULL << 63);
235 	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
236 }
237 
238 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
239 {
240 	cmd->raw_cmd[2] &= ~(0xffffffffULL << 16);
241 	cmd->raw_cmd[2] |= (target_addr & (0xffffffffULL << 16));
242 }
243 
244 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
245 {
246 	cmd->raw_cmd[2] &= ~0xffffULL;
247 	cmd->raw_cmd[2] |= col;
248 }
249 
250 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
251 {
252 	/* Let's fixup BE commands */
253 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
254 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
255 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
256 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
257 }
258 
259 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
260 						 struct its_cmd_desc *desc)
261 {
262 	unsigned long itt_addr;
263 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
264 
265 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
266 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
267 
268 	its_encode_cmd(cmd, GITS_CMD_MAPD);
269 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
270 	its_encode_size(cmd, size - 1);
271 	its_encode_itt(cmd, itt_addr);
272 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
273 
274 	its_fixup_cmd(cmd);
275 
276 	return NULL;
277 }
278 
279 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
280 						 struct its_cmd_desc *desc)
281 {
282 	its_encode_cmd(cmd, GITS_CMD_MAPC);
283 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
284 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
285 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
286 
287 	its_fixup_cmd(cmd);
288 
289 	return desc->its_mapc_cmd.col;
290 }
291 
292 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
293 						  struct its_cmd_desc *desc)
294 {
295 	struct its_collection *col;
296 
297 	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
298 			       desc->its_mapvi_cmd.event_id);
299 
300 	its_encode_cmd(cmd, GITS_CMD_MAPVI);
301 	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
302 	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
303 	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
304 	its_encode_collection(cmd, col->col_id);
305 
306 	its_fixup_cmd(cmd);
307 
308 	return col;
309 }
310 
311 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
312 						 struct its_cmd_desc *desc)
313 {
314 	struct its_collection *col;
315 
316 	col = dev_event_to_col(desc->its_movi_cmd.dev,
317 			       desc->its_movi_cmd.event_id);
318 
319 	its_encode_cmd(cmd, GITS_CMD_MOVI);
320 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
321 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
322 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
323 
324 	its_fixup_cmd(cmd);
325 
326 	return col;
327 }
328 
329 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
330 						    struct its_cmd_desc *desc)
331 {
332 	struct its_collection *col;
333 
334 	col = dev_event_to_col(desc->its_discard_cmd.dev,
335 			       desc->its_discard_cmd.event_id);
336 
337 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
338 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
339 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
340 
341 	its_fixup_cmd(cmd);
342 
343 	return col;
344 }
345 
346 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
347 						struct its_cmd_desc *desc)
348 {
349 	struct its_collection *col;
350 
351 	col = dev_event_to_col(desc->its_inv_cmd.dev,
352 			       desc->its_inv_cmd.event_id);
353 
354 	its_encode_cmd(cmd, GITS_CMD_INV);
355 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
356 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
357 
358 	its_fixup_cmd(cmd);
359 
360 	return col;
361 }
362 
363 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
364 						   struct its_cmd_desc *desc)
365 {
366 	its_encode_cmd(cmd, GITS_CMD_INVALL);
367 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
368 
369 	its_fixup_cmd(cmd);
370 
371 	return NULL;
372 }
373 
374 static u64 its_cmd_ptr_to_offset(struct its_node *its,
375 				 struct its_cmd_block *ptr)
376 {
377 	return (ptr - its->cmd_base) * sizeof(*ptr);
378 }
379 
380 static int its_queue_full(struct its_node *its)
381 {
382 	int widx;
383 	int ridx;
384 
385 	widx = its->cmd_write - its->cmd_base;
386 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
387 
388 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
389 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
390 		return 1;
391 
392 	return 0;
393 }
394 
395 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
396 {
397 	struct its_cmd_block *cmd;
398 	u32 count = 1000000;	/* 1s! */
399 
400 	while (its_queue_full(its)) {
401 		count--;
402 		if (!count) {
403 			pr_err_ratelimited("ITS queue not draining\n");
404 			return NULL;
405 		}
406 		cpu_relax();
407 		udelay(1);
408 	}
409 
410 	cmd = its->cmd_write++;
411 
412 	/* Handle queue wrapping */
413 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
414 		its->cmd_write = its->cmd_base;
415 
416 	return cmd;
417 }
418 
419 static struct its_cmd_block *its_post_commands(struct its_node *its)
420 {
421 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
422 
423 	writel_relaxed(wr, its->base + GITS_CWRITER);
424 
425 	return its->cmd_write;
426 }
427 
428 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
429 {
430 	/*
431 	 * Make sure the commands written to memory are observable by
432 	 * the ITS.
433 	 */
434 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
435 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
436 	else
437 		dsb(ishst);
438 }
439 
440 static void its_wait_for_range_completion(struct its_node *its,
441 					  struct its_cmd_block *from,
442 					  struct its_cmd_block *to)
443 {
444 	u64 rd_idx, from_idx, to_idx;
445 	u32 count = 1000000;	/* 1s! */
446 
447 	from_idx = its_cmd_ptr_to_offset(its, from);
448 	to_idx = its_cmd_ptr_to_offset(its, to);
449 
450 	while (1) {
451 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
452 		if (rd_idx >= to_idx || rd_idx < from_idx)
453 			break;
454 
455 		count--;
456 		if (!count) {
457 			pr_err_ratelimited("ITS queue timeout\n");
458 			return;
459 		}
460 		cpu_relax();
461 		udelay(1);
462 	}
463 }
464 
465 static void its_send_single_command(struct its_node *its,
466 				    its_cmd_builder_t builder,
467 				    struct its_cmd_desc *desc)
468 {
469 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
470 	struct its_collection *sync_col;
471 	unsigned long flags;
472 
473 	raw_spin_lock_irqsave(&its->lock, flags);
474 
475 	cmd = its_allocate_entry(its);
476 	if (!cmd) {		/* We're soooooo screewed... */
477 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
478 		raw_spin_unlock_irqrestore(&its->lock, flags);
479 		return;
480 	}
481 	sync_col = builder(cmd, desc);
482 	its_flush_cmd(its, cmd);
483 
484 	if (sync_col) {
485 		sync_cmd = its_allocate_entry(its);
486 		if (!sync_cmd) {
487 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
488 			goto post;
489 		}
490 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
491 		its_encode_target(sync_cmd, sync_col->target_address);
492 		its_fixup_cmd(sync_cmd);
493 		its_flush_cmd(its, sync_cmd);
494 	}
495 
496 post:
497 	next_cmd = its_post_commands(its);
498 	raw_spin_unlock_irqrestore(&its->lock, flags);
499 
500 	its_wait_for_range_completion(its, cmd, next_cmd);
501 }
502 
503 static void its_send_inv(struct its_device *dev, u32 event_id)
504 {
505 	struct its_cmd_desc desc;
506 
507 	desc.its_inv_cmd.dev = dev;
508 	desc.its_inv_cmd.event_id = event_id;
509 
510 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
511 }
512 
513 static void its_send_mapd(struct its_device *dev, int valid)
514 {
515 	struct its_cmd_desc desc;
516 
517 	desc.its_mapd_cmd.dev = dev;
518 	desc.its_mapd_cmd.valid = !!valid;
519 
520 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
521 }
522 
523 static void its_send_mapc(struct its_node *its, struct its_collection *col,
524 			  int valid)
525 {
526 	struct its_cmd_desc desc;
527 
528 	desc.its_mapc_cmd.col = col;
529 	desc.its_mapc_cmd.valid = !!valid;
530 
531 	its_send_single_command(its, its_build_mapc_cmd, &desc);
532 }
533 
534 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
535 {
536 	struct its_cmd_desc desc;
537 
538 	desc.its_mapvi_cmd.dev = dev;
539 	desc.its_mapvi_cmd.phys_id = irq_id;
540 	desc.its_mapvi_cmd.event_id = id;
541 
542 	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
543 }
544 
545 static void its_send_movi(struct its_device *dev,
546 			  struct its_collection *col, u32 id)
547 {
548 	struct its_cmd_desc desc;
549 
550 	desc.its_movi_cmd.dev = dev;
551 	desc.its_movi_cmd.col = col;
552 	desc.its_movi_cmd.event_id = id;
553 
554 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
555 }
556 
557 static void its_send_discard(struct its_device *dev, u32 id)
558 {
559 	struct its_cmd_desc desc;
560 
561 	desc.its_discard_cmd.dev = dev;
562 	desc.its_discard_cmd.event_id = id;
563 
564 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
565 }
566 
567 static void its_send_invall(struct its_node *its, struct its_collection *col)
568 {
569 	struct its_cmd_desc desc;
570 
571 	desc.its_invall_cmd.col = col;
572 
573 	its_send_single_command(its, its_build_invall_cmd, &desc);
574 }
575 
576 /*
577  * irqchip functions - assumes MSI, mostly.
578  */
579 
580 static inline u32 its_get_event_id(struct irq_data *d)
581 {
582 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
583 	return d->hwirq - its_dev->event_map.lpi_base;
584 }
585 
586 static void lpi_set_config(struct irq_data *d, bool enable)
587 {
588 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
589 	irq_hw_number_t hwirq = d->hwirq;
590 	u32 id = its_get_event_id(d);
591 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
592 
593 	if (enable)
594 		*cfg |= LPI_PROP_ENABLED;
595 	else
596 		*cfg &= ~LPI_PROP_ENABLED;
597 
598 	/*
599 	 * Make the above write visible to the redistributors.
600 	 * And yes, we're flushing exactly: One. Single. Byte.
601 	 * Humpf...
602 	 */
603 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
604 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
605 	else
606 		dsb(ishst);
607 	its_send_inv(its_dev, id);
608 }
609 
610 static void its_mask_irq(struct irq_data *d)
611 {
612 	lpi_set_config(d, false);
613 }
614 
615 static void its_unmask_irq(struct irq_data *d)
616 {
617 	lpi_set_config(d, true);
618 }
619 
620 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
621 			    bool force)
622 {
623 	unsigned int cpu;
624 	const struct cpumask *cpu_mask = cpu_online_mask;
625 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
626 	struct its_collection *target_col;
627 	u32 id = its_get_event_id(d);
628 
629        /* lpi cannot be routed to a redistributor that is on a foreign node */
630 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
631 		if (its_dev->its->numa_node >= 0) {
632 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
633 			if (!cpumask_intersects(mask_val, cpu_mask))
634 				return -EINVAL;
635 		}
636 	}
637 
638 	cpu = cpumask_any_and(mask_val, cpu_mask);
639 
640 	if (cpu >= nr_cpu_ids)
641 		return -EINVAL;
642 
643 	target_col = &its_dev->its->collections[cpu];
644 	its_send_movi(its_dev, target_col, id);
645 	its_dev->event_map.col_map[id] = cpu;
646 
647 	return IRQ_SET_MASK_OK_DONE;
648 }
649 
650 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
651 {
652 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
653 	struct its_node *its;
654 	u64 addr;
655 
656 	its = its_dev->its;
657 	addr = its->phys_base + GITS_TRANSLATER;
658 
659 	msg->address_lo		= lower_32_bits(addr);
660 	msg->address_hi		= upper_32_bits(addr);
661 	msg->data		= its_get_event_id(d);
662 
663 	iommu_dma_map_msi_msg(d->irq, msg);
664 }
665 
666 static struct irq_chip its_irq_chip = {
667 	.name			= "ITS",
668 	.irq_mask		= its_mask_irq,
669 	.irq_unmask		= its_unmask_irq,
670 	.irq_eoi		= irq_chip_eoi_parent,
671 	.irq_set_affinity	= its_set_affinity,
672 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
673 };
674 
675 /*
676  * How we allocate LPIs:
677  *
678  * The GIC has id_bits bits for interrupt identifiers. From there, we
679  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
680  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
681  * bits to the right.
682  *
683  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
684  */
685 #define IRQS_PER_CHUNK_SHIFT	5
686 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
687 
688 static unsigned long *lpi_bitmap;
689 static u32 lpi_chunks;
690 static DEFINE_SPINLOCK(lpi_lock);
691 
692 static int its_lpi_to_chunk(int lpi)
693 {
694 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
695 }
696 
697 static int its_chunk_to_lpi(int chunk)
698 {
699 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
700 }
701 
702 static int __init its_lpi_init(u32 id_bits)
703 {
704 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
705 
706 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
707 			     GFP_KERNEL);
708 	if (!lpi_bitmap) {
709 		lpi_chunks = 0;
710 		return -ENOMEM;
711 	}
712 
713 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
714 	return 0;
715 }
716 
717 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
718 {
719 	unsigned long *bitmap = NULL;
720 	int chunk_id;
721 	int nr_chunks;
722 	int i;
723 
724 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
725 
726 	spin_lock(&lpi_lock);
727 
728 	do {
729 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
730 						      0, nr_chunks, 0);
731 		if (chunk_id < lpi_chunks)
732 			break;
733 
734 		nr_chunks--;
735 	} while (nr_chunks > 0);
736 
737 	if (!nr_chunks)
738 		goto out;
739 
740 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
741 			 GFP_ATOMIC);
742 	if (!bitmap)
743 		goto out;
744 
745 	for (i = 0; i < nr_chunks; i++)
746 		set_bit(chunk_id + i, lpi_bitmap);
747 
748 	*base = its_chunk_to_lpi(chunk_id);
749 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
750 
751 out:
752 	spin_unlock(&lpi_lock);
753 
754 	if (!bitmap)
755 		*base = *nr_ids = 0;
756 
757 	return bitmap;
758 }
759 
760 static void its_lpi_free(struct event_lpi_map *map)
761 {
762 	int base = map->lpi_base;
763 	int nr_ids = map->nr_lpis;
764 	int lpi;
765 
766 	spin_lock(&lpi_lock);
767 
768 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
769 		int chunk = its_lpi_to_chunk(lpi);
770 		BUG_ON(chunk > lpi_chunks);
771 		if (test_bit(chunk, lpi_bitmap)) {
772 			clear_bit(chunk, lpi_bitmap);
773 		} else {
774 			pr_err("Bad LPI chunk %d\n", chunk);
775 		}
776 	}
777 
778 	spin_unlock(&lpi_lock);
779 
780 	kfree(map->lpi_map);
781 	kfree(map->col_map);
782 }
783 
784 /*
785  * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
786  * deal with (one configuration byte per interrupt). PENDBASE has to
787  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
788  */
789 #define LPI_PROPBASE_SZ		SZ_64K
790 #define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
791 
792 /*
793  * This is how many bits of ID we need, including the useless ones.
794  */
795 #define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
796 
797 #define LPI_PROP_DEFAULT_PRIO	0xa0
798 
799 static int __init its_alloc_lpi_tables(void)
800 {
801 	phys_addr_t paddr;
802 
803 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
804 					   get_order(LPI_PROPBASE_SZ));
805 	if (!gic_rdists->prop_page) {
806 		pr_err("Failed to allocate PROPBASE\n");
807 		return -ENOMEM;
808 	}
809 
810 	paddr = page_to_phys(gic_rdists->prop_page);
811 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
812 
813 	/* Priority 0xa0, Group-1, disabled */
814 	memset(page_address(gic_rdists->prop_page),
815 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
816 	       LPI_PROPBASE_SZ);
817 
818 	/* Make sure the GIC will observe the written configuration */
819 	gic_flush_dcache_to_poc(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
820 
821 	return 0;
822 }
823 
824 static const char *its_base_type_string[] = {
825 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
826 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
827 	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
828 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
829 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
830 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
831 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
832 };
833 
834 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
835 {
836 	u32 idx = baser - its->tables;
837 
838 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
839 }
840 
841 static void its_write_baser(struct its_node *its, struct its_baser *baser,
842 			    u64 val)
843 {
844 	u32 idx = baser - its->tables;
845 
846 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
847 	baser->val = its_read_baser(its, baser);
848 }
849 
850 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
851 			   u64 cache, u64 shr, u32 psz, u32 order,
852 			   bool indirect)
853 {
854 	u64 val = its_read_baser(its, baser);
855 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
856 	u64 type = GITS_BASER_TYPE(val);
857 	u32 alloc_pages;
858 	void *base;
859 	u64 tmp;
860 
861 retry_alloc_baser:
862 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
863 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
864 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
865 			&its->phys_base, its_base_type_string[type],
866 			alloc_pages, GITS_BASER_PAGES_MAX);
867 		alloc_pages = GITS_BASER_PAGES_MAX;
868 		order = get_order(GITS_BASER_PAGES_MAX * psz);
869 	}
870 
871 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
872 	if (!base)
873 		return -ENOMEM;
874 
875 retry_baser:
876 	val = (virt_to_phys(base)				 |
877 		(type << GITS_BASER_TYPE_SHIFT)			 |
878 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
879 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
880 		cache						 |
881 		shr						 |
882 		GITS_BASER_VALID);
883 
884 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
885 
886 	switch (psz) {
887 	case SZ_4K:
888 		val |= GITS_BASER_PAGE_SIZE_4K;
889 		break;
890 	case SZ_16K:
891 		val |= GITS_BASER_PAGE_SIZE_16K;
892 		break;
893 	case SZ_64K:
894 		val |= GITS_BASER_PAGE_SIZE_64K;
895 		break;
896 	}
897 
898 	its_write_baser(its, baser, val);
899 	tmp = baser->val;
900 
901 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
902 		/*
903 		 * Shareability didn't stick. Just use
904 		 * whatever the read reported, which is likely
905 		 * to be the only thing this redistributor
906 		 * supports. If that's zero, make it
907 		 * non-cacheable as well.
908 		 */
909 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
910 		if (!shr) {
911 			cache = GITS_BASER_nC;
912 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
913 		}
914 		goto retry_baser;
915 	}
916 
917 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
918 		/*
919 		 * Page size didn't stick. Let's try a smaller
920 		 * size and retry. If we reach 4K, then
921 		 * something is horribly wrong...
922 		 */
923 		free_pages((unsigned long)base, order);
924 		baser->base = NULL;
925 
926 		switch (psz) {
927 		case SZ_16K:
928 			psz = SZ_4K;
929 			goto retry_alloc_baser;
930 		case SZ_64K:
931 			psz = SZ_16K;
932 			goto retry_alloc_baser;
933 		}
934 	}
935 
936 	if (val != tmp) {
937 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
938 		       &its->phys_base, its_base_type_string[type],
939 		       val, tmp);
940 		free_pages((unsigned long)base, order);
941 		return -ENXIO;
942 	}
943 
944 	baser->order = order;
945 	baser->base = base;
946 	baser->psz = psz;
947 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
948 
949 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
950 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
951 		its_base_type_string[type],
952 		(unsigned long)virt_to_phys(base),
953 		indirect ? "indirect" : "flat", (int)esz,
954 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
955 
956 	return 0;
957 }
958 
959 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
960 				   u32 psz, u32 *order)
961 {
962 	u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
963 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_WaWb;
964 	u32 ids = its->device_ids;
965 	u32 new_order = *order;
966 	bool indirect = false;
967 
968 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
969 	if ((esz << ids) > (psz * 2)) {
970 		/*
971 		 * Find out whether hw supports a single or two-level table by
972 		 * table by reading bit at offset '62' after writing '1' to it.
973 		 */
974 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
975 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
976 
977 		if (indirect) {
978 			/*
979 			 * The size of the lvl2 table is equal to ITS page size
980 			 * which is 'psz'. For computing lvl1 table size,
981 			 * subtract ID bits that sparse lvl2 table from 'ids'
982 			 * which is reported by ITS hardware times lvl1 table
983 			 * entry size.
984 			 */
985 			ids -= ilog2(psz / (int)esz);
986 			esz = GITS_LVL1_ENTRY_SIZE;
987 		}
988 	}
989 
990 	/*
991 	 * Allocate as many entries as required to fit the
992 	 * range of device IDs that the ITS can grok... The ID
993 	 * space being incredibly sparse, this results in a
994 	 * massive waste of memory if two-level device table
995 	 * feature is not supported by hardware.
996 	 */
997 	new_order = max_t(u32, get_order(esz << ids), new_order);
998 	if (new_order >= MAX_ORDER) {
999 		new_order = MAX_ORDER - 1;
1000 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1001 		pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
1002 			&its->phys_base, its->device_ids, ids);
1003 	}
1004 
1005 	*order = new_order;
1006 
1007 	return indirect;
1008 }
1009 
1010 static void its_free_tables(struct its_node *its)
1011 {
1012 	int i;
1013 
1014 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1015 		if (its->tables[i].base) {
1016 			free_pages((unsigned long)its->tables[i].base,
1017 				   its->tables[i].order);
1018 			its->tables[i].base = NULL;
1019 		}
1020 	}
1021 }
1022 
1023 static int its_alloc_tables(struct its_node *its)
1024 {
1025 	u64 typer = gic_read_typer(its->base + GITS_TYPER);
1026 	u32 ids = GITS_TYPER_DEVBITS(typer);
1027 	u64 shr = GITS_BASER_InnerShareable;
1028 	u64 cache = GITS_BASER_WaWb;
1029 	u32 psz = SZ_64K;
1030 	int err, i;
1031 
1032 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1033 		/*
1034 		* erratum 22375: only alloc 8MB table size
1035 		* erratum 24313: ignore memory access type
1036 		*/
1037 		cache   = GITS_BASER_nCnB;
1038 		ids     = 0x14;                 /* 20 bits, 8MB */
1039 	}
1040 
1041 	its->device_ids = ids;
1042 
1043 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1044 		struct its_baser *baser = its->tables + i;
1045 		u64 val = its_read_baser(its, baser);
1046 		u64 type = GITS_BASER_TYPE(val);
1047 		u32 order = get_order(psz);
1048 		bool indirect = false;
1049 
1050 		if (type == GITS_BASER_TYPE_NONE)
1051 			continue;
1052 
1053 		if (type == GITS_BASER_TYPE_DEVICE)
1054 			indirect = its_parse_baser_device(its, baser, psz, &order);
1055 
1056 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1057 		if (err < 0) {
1058 			its_free_tables(its);
1059 			return err;
1060 		}
1061 
1062 		/* Update settings which will be used for next BASERn */
1063 		psz = baser->psz;
1064 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1065 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static int its_alloc_collections(struct its_node *its)
1072 {
1073 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1074 				   GFP_KERNEL);
1075 	if (!its->collections)
1076 		return -ENOMEM;
1077 
1078 	return 0;
1079 }
1080 
1081 static void its_cpu_init_lpis(void)
1082 {
1083 	void __iomem *rbase = gic_data_rdist_rd_base();
1084 	struct page *pend_page;
1085 	u64 val, tmp;
1086 
1087 	/* If we didn't allocate the pending table yet, do it now */
1088 	pend_page = gic_data_rdist()->pend_page;
1089 	if (!pend_page) {
1090 		phys_addr_t paddr;
1091 		/*
1092 		 * The pending pages have to be at least 64kB aligned,
1093 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1094 		 */
1095 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1096 					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1097 		if (!pend_page) {
1098 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1099 			       smp_processor_id());
1100 			return;
1101 		}
1102 
1103 		/* Make sure the GIC will observe the zero-ed page */
1104 		gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1105 
1106 		paddr = page_to_phys(pend_page);
1107 		pr_info("CPU%d: using LPI pending table @%pa\n",
1108 			smp_processor_id(), &paddr);
1109 		gic_data_rdist()->pend_page = pend_page;
1110 	}
1111 
1112 	/* Disable LPIs */
1113 	val = readl_relaxed(rbase + GICR_CTLR);
1114 	val &= ~GICR_CTLR_ENABLE_LPIS;
1115 	writel_relaxed(val, rbase + GICR_CTLR);
1116 
1117 	/*
1118 	 * Make sure any change to the table is observable by the GIC.
1119 	 */
1120 	dsb(sy);
1121 
1122 	/* set PROPBASE */
1123 	val = (page_to_phys(gic_rdists->prop_page) |
1124 	       GICR_PROPBASER_InnerShareable |
1125 	       GICR_PROPBASER_WaWb |
1126 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1127 
1128 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1129 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1130 
1131 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1132 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1133 			/*
1134 			 * The HW reports non-shareable, we must
1135 			 * remove the cacheability attributes as
1136 			 * well.
1137 			 */
1138 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1139 				 GICR_PROPBASER_CACHEABILITY_MASK);
1140 			val |= GICR_PROPBASER_nC;
1141 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1142 		}
1143 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1144 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1145 	}
1146 
1147 	/* set PENDBASE */
1148 	val = (page_to_phys(pend_page) |
1149 	       GICR_PENDBASER_InnerShareable |
1150 	       GICR_PENDBASER_WaWb);
1151 
1152 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1153 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1154 
1155 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1156 		/*
1157 		 * The HW reports non-shareable, we must remove the
1158 		 * cacheability attributes as well.
1159 		 */
1160 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1161 			 GICR_PENDBASER_CACHEABILITY_MASK);
1162 		val |= GICR_PENDBASER_nC;
1163 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1164 	}
1165 
1166 	/* Enable LPIs */
1167 	val = readl_relaxed(rbase + GICR_CTLR);
1168 	val |= GICR_CTLR_ENABLE_LPIS;
1169 	writel_relaxed(val, rbase + GICR_CTLR);
1170 
1171 	/* Make sure the GIC has seen the above */
1172 	dsb(sy);
1173 }
1174 
1175 static void its_cpu_init_collection(void)
1176 {
1177 	struct its_node *its;
1178 	int cpu;
1179 
1180 	spin_lock(&its_lock);
1181 	cpu = smp_processor_id();
1182 
1183 	list_for_each_entry(its, &its_nodes, entry) {
1184 		u64 target;
1185 
1186 		/* avoid cross node collections and its mapping */
1187 		if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1188 			struct device_node *cpu_node;
1189 
1190 			cpu_node = of_get_cpu_node(cpu, NULL);
1191 			if (its->numa_node != NUMA_NO_NODE &&
1192 				its->numa_node != of_node_to_nid(cpu_node))
1193 				continue;
1194 		}
1195 
1196 		/*
1197 		 * We now have to bind each collection to its target
1198 		 * redistributor.
1199 		 */
1200 		if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1201 			/*
1202 			 * This ITS wants the physical address of the
1203 			 * redistributor.
1204 			 */
1205 			target = gic_data_rdist()->phys_base;
1206 		} else {
1207 			/*
1208 			 * This ITS wants a linear CPU number.
1209 			 */
1210 			target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1211 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1212 		}
1213 
1214 		/* Perform collection mapping */
1215 		its->collections[cpu].target_address = target;
1216 		its->collections[cpu].col_id = cpu;
1217 
1218 		its_send_mapc(its, &its->collections[cpu], 1);
1219 		its_send_invall(its, &its->collections[cpu]);
1220 	}
1221 
1222 	spin_unlock(&its_lock);
1223 }
1224 
1225 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1226 {
1227 	struct its_device *its_dev = NULL, *tmp;
1228 	unsigned long flags;
1229 
1230 	raw_spin_lock_irqsave(&its->lock, flags);
1231 
1232 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1233 		if (tmp->device_id == dev_id) {
1234 			its_dev = tmp;
1235 			break;
1236 		}
1237 	}
1238 
1239 	raw_spin_unlock_irqrestore(&its->lock, flags);
1240 
1241 	return its_dev;
1242 }
1243 
1244 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1245 {
1246 	int i;
1247 
1248 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1249 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
1250 			return &its->tables[i];
1251 	}
1252 
1253 	return NULL;
1254 }
1255 
1256 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1257 {
1258 	struct its_baser *baser;
1259 	struct page *page;
1260 	u32 esz, idx;
1261 	__le64 *table;
1262 
1263 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1264 
1265 	/* Don't allow device id that exceeds ITS hardware limit */
1266 	if (!baser)
1267 		return (ilog2(dev_id) < its->device_ids);
1268 
1269 	/* Don't allow device id that exceeds single, flat table limit */
1270 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
1271 	if (!(baser->val & GITS_BASER_INDIRECT))
1272 		return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1273 
1274 	/* Compute 1st level table index & check if that exceeds table limit */
1275 	idx = dev_id >> ilog2(baser->psz / esz);
1276 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1277 		return false;
1278 
1279 	table = baser->base;
1280 
1281 	/* Allocate memory for 2nd level table */
1282 	if (!table[idx]) {
1283 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1284 		if (!page)
1285 			return false;
1286 
1287 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
1288 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1289 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
1290 
1291 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1292 
1293 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1294 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1295 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
1296 
1297 		/* Ensure updated table contents are visible to ITS hardware */
1298 		dsb(sy);
1299 	}
1300 
1301 	return true;
1302 }
1303 
1304 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1305 					    int nvecs)
1306 {
1307 	struct its_device *dev;
1308 	unsigned long *lpi_map;
1309 	unsigned long flags;
1310 	u16 *col_map = NULL;
1311 	void *itt;
1312 	int lpi_base;
1313 	int nr_lpis;
1314 	int nr_ites;
1315 	int sz;
1316 
1317 	if (!its_alloc_device_table(its, dev_id))
1318 		return NULL;
1319 
1320 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1321 	/*
1322 	 * At least one bit of EventID is being used, hence a minimum
1323 	 * of two entries. No, the architecture doesn't let you
1324 	 * express an ITT with a single entry.
1325 	 */
1326 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1327 	sz = nr_ites * its->ite_size;
1328 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1329 	itt = kzalloc(sz, GFP_KERNEL);
1330 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1331 	if (lpi_map)
1332 		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1333 
1334 	if (!dev || !itt || !lpi_map || !col_map) {
1335 		kfree(dev);
1336 		kfree(itt);
1337 		kfree(lpi_map);
1338 		kfree(col_map);
1339 		return NULL;
1340 	}
1341 
1342 	gic_flush_dcache_to_poc(itt, sz);
1343 
1344 	dev->its = its;
1345 	dev->itt = itt;
1346 	dev->nr_ites = nr_ites;
1347 	dev->event_map.lpi_map = lpi_map;
1348 	dev->event_map.col_map = col_map;
1349 	dev->event_map.lpi_base = lpi_base;
1350 	dev->event_map.nr_lpis = nr_lpis;
1351 	dev->device_id = dev_id;
1352 	INIT_LIST_HEAD(&dev->entry);
1353 
1354 	raw_spin_lock_irqsave(&its->lock, flags);
1355 	list_add(&dev->entry, &its->its_device_list);
1356 	raw_spin_unlock_irqrestore(&its->lock, flags);
1357 
1358 	/* Map device to its ITT */
1359 	its_send_mapd(dev, 1);
1360 
1361 	return dev;
1362 }
1363 
1364 static void its_free_device(struct its_device *its_dev)
1365 {
1366 	unsigned long flags;
1367 
1368 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1369 	list_del(&its_dev->entry);
1370 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1371 	kfree(its_dev->itt);
1372 	kfree(its_dev);
1373 }
1374 
1375 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1376 {
1377 	int idx;
1378 
1379 	idx = find_first_zero_bit(dev->event_map.lpi_map,
1380 				  dev->event_map.nr_lpis);
1381 	if (idx == dev->event_map.nr_lpis)
1382 		return -ENOSPC;
1383 
1384 	*hwirq = dev->event_map.lpi_base + idx;
1385 	set_bit(idx, dev->event_map.lpi_map);
1386 
1387 	return 0;
1388 }
1389 
1390 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1391 			   int nvec, msi_alloc_info_t *info)
1392 {
1393 	struct its_node *its;
1394 	struct its_device *its_dev;
1395 	struct msi_domain_info *msi_info;
1396 	u32 dev_id;
1397 
1398 	/*
1399 	 * We ignore "dev" entierely, and rely on the dev_id that has
1400 	 * been passed via the scratchpad. This limits this domain's
1401 	 * usefulness to upper layers that definitely know that they
1402 	 * are built on top of the ITS.
1403 	 */
1404 	dev_id = info->scratchpad[0].ul;
1405 
1406 	msi_info = msi_get_domain_info(domain);
1407 	its = msi_info->data;
1408 
1409 	its_dev = its_find_device(its, dev_id);
1410 	if (its_dev) {
1411 		/*
1412 		 * We already have seen this ID, probably through
1413 		 * another alias (PCI bridge of some sort). No need to
1414 		 * create the device.
1415 		 */
1416 		pr_debug("Reusing ITT for devID %x\n", dev_id);
1417 		goto out;
1418 	}
1419 
1420 	its_dev = its_create_device(its, dev_id, nvec);
1421 	if (!its_dev)
1422 		return -ENOMEM;
1423 
1424 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1425 out:
1426 	info->scratchpad[0].ptr = its_dev;
1427 	return 0;
1428 }
1429 
1430 static struct msi_domain_ops its_msi_domain_ops = {
1431 	.msi_prepare	= its_msi_prepare,
1432 };
1433 
1434 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1435 				    unsigned int virq,
1436 				    irq_hw_number_t hwirq)
1437 {
1438 	struct irq_fwspec fwspec;
1439 
1440 	if (irq_domain_get_of_node(domain->parent)) {
1441 		fwspec.fwnode = domain->parent->fwnode;
1442 		fwspec.param_count = 3;
1443 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1444 		fwspec.param[1] = hwirq;
1445 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1446 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
1447 		fwspec.fwnode = domain->parent->fwnode;
1448 		fwspec.param_count = 2;
1449 		fwspec.param[0] = hwirq;
1450 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1451 	} else {
1452 		return -EINVAL;
1453 	}
1454 
1455 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1456 }
1457 
1458 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1459 				unsigned int nr_irqs, void *args)
1460 {
1461 	msi_alloc_info_t *info = args;
1462 	struct its_device *its_dev = info->scratchpad[0].ptr;
1463 	irq_hw_number_t hwirq;
1464 	int err;
1465 	int i;
1466 
1467 	for (i = 0; i < nr_irqs; i++) {
1468 		err = its_alloc_device_irq(its_dev, &hwirq);
1469 		if (err)
1470 			return err;
1471 
1472 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1473 		if (err)
1474 			return err;
1475 
1476 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1477 					      hwirq, &its_irq_chip, its_dev);
1478 		pr_debug("ID:%d pID:%d vID:%d\n",
1479 			 (int)(hwirq - its_dev->event_map.lpi_base),
1480 			 (int) hwirq, virq + i);
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 static void its_irq_domain_activate(struct irq_domain *domain,
1487 				    struct irq_data *d)
1488 {
1489 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1490 	u32 event = its_get_event_id(d);
1491 	const struct cpumask *cpu_mask = cpu_online_mask;
1492 
1493 	/* get the cpu_mask of local node */
1494 	if (its_dev->its->numa_node >= 0)
1495 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1496 
1497 	/* Bind the LPI to the first possible CPU */
1498 	its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1499 
1500 	/* Map the GIC IRQ and event to the device */
1501 	its_send_mapvi(its_dev, d->hwirq, event);
1502 }
1503 
1504 static void its_irq_domain_deactivate(struct irq_domain *domain,
1505 				      struct irq_data *d)
1506 {
1507 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1508 	u32 event = its_get_event_id(d);
1509 
1510 	/* Stop the delivery of interrupts */
1511 	its_send_discard(its_dev, event);
1512 }
1513 
1514 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1515 				unsigned int nr_irqs)
1516 {
1517 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1518 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1519 	int i;
1520 
1521 	for (i = 0; i < nr_irqs; i++) {
1522 		struct irq_data *data = irq_domain_get_irq_data(domain,
1523 								virq + i);
1524 		u32 event = its_get_event_id(data);
1525 
1526 		/* Mark interrupt index as unused */
1527 		clear_bit(event, its_dev->event_map.lpi_map);
1528 
1529 		/* Nuke the entry in the domain */
1530 		irq_domain_reset_irq_data(data);
1531 	}
1532 
1533 	/* If all interrupts have been freed, start mopping the floor */
1534 	if (bitmap_empty(its_dev->event_map.lpi_map,
1535 			 its_dev->event_map.nr_lpis)) {
1536 		its_lpi_free(&its_dev->event_map);
1537 
1538 		/* Unmap device/itt */
1539 		its_send_mapd(its_dev, 0);
1540 		its_free_device(its_dev);
1541 	}
1542 
1543 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1544 }
1545 
1546 static const struct irq_domain_ops its_domain_ops = {
1547 	.alloc			= its_irq_domain_alloc,
1548 	.free			= its_irq_domain_free,
1549 	.activate		= its_irq_domain_activate,
1550 	.deactivate		= its_irq_domain_deactivate,
1551 };
1552 
1553 static int its_force_quiescent(void __iomem *base)
1554 {
1555 	u32 count = 1000000;	/* 1s */
1556 	u32 val;
1557 
1558 	val = readl_relaxed(base + GITS_CTLR);
1559 	/*
1560 	 * GIC architecture specification requires the ITS to be both
1561 	 * disabled and quiescent for writes to GITS_BASER<n> or
1562 	 * GITS_CBASER to not have UNPREDICTABLE results.
1563 	 */
1564 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
1565 		return 0;
1566 
1567 	/* Disable the generation of all interrupts to this ITS */
1568 	val &= ~GITS_CTLR_ENABLE;
1569 	writel_relaxed(val, base + GITS_CTLR);
1570 
1571 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1572 	while (1) {
1573 		val = readl_relaxed(base + GITS_CTLR);
1574 		if (val & GITS_CTLR_QUIESCENT)
1575 			return 0;
1576 
1577 		count--;
1578 		if (!count)
1579 			return -EBUSY;
1580 
1581 		cpu_relax();
1582 		udelay(1);
1583 	}
1584 }
1585 
1586 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1587 {
1588 	struct its_node *its = data;
1589 
1590 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1591 }
1592 
1593 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1594 {
1595 	struct its_node *its = data;
1596 
1597 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1598 }
1599 
1600 static const struct gic_quirk its_quirks[] = {
1601 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1602 	{
1603 		.desc	= "ITS: Cavium errata 22375, 24313",
1604 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1605 		.mask	= 0xffff0fff,
1606 		.init	= its_enable_quirk_cavium_22375,
1607 	},
1608 #endif
1609 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1610 	{
1611 		.desc	= "ITS: Cavium erratum 23144",
1612 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1613 		.mask	= 0xffff0fff,
1614 		.init	= its_enable_quirk_cavium_23144,
1615 	},
1616 #endif
1617 	{
1618 	}
1619 };
1620 
1621 static void its_enable_quirks(struct its_node *its)
1622 {
1623 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1624 
1625 	gic_enable_quirks(iidr, its_quirks, its);
1626 }
1627 
1628 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
1629 {
1630 	struct irq_domain *inner_domain;
1631 	struct msi_domain_info *info;
1632 
1633 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1634 	if (!info)
1635 		return -ENOMEM;
1636 
1637 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
1638 	if (!inner_domain) {
1639 		kfree(info);
1640 		return -ENOMEM;
1641 	}
1642 
1643 	inner_domain->parent = its_parent;
1644 	inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1645 	info->ops = &its_msi_domain_ops;
1646 	info->data = its;
1647 	inner_domain->host_data = info;
1648 
1649 	return 0;
1650 }
1651 
1652 static int __init its_probe_one(struct resource *res,
1653 				struct fwnode_handle *handle, int numa_node)
1654 {
1655 	struct its_node *its;
1656 	void __iomem *its_base;
1657 	u32 val;
1658 	u64 baser, tmp;
1659 	int err;
1660 
1661 	its_base = ioremap(res->start, resource_size(res));
1662 	if (!its_base) {
1663 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
1664 		return -ENOMEM;
1665 	}
1666 
1667 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1668 	if (val != 0x30 && val != 0x40) {
1669 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
1670 		err = -ENODEV;
1671 		goto out_unmap;
1672 	}
1673 
1674 	err = its_force_quiescent(its_base);
1675 	if (err) {
1676 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
1677 		goto out_unmap;
1678 	}
1679 
1680 	pr_info("ITS %pR\n", res);
1681 
1682 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1683 	if (!its) {
1684 		err = -ENOMEM;
1685 		goto out_unmap;
1686 	}
1687 
1688 	raw_spin_lock_init(&its->lock);
1689 	INIT_LIST_HEAD(&its->entry);
1690 	INIT_LIST_HEAD(&its->its_device_list);
1691 	its->base = its_base;
1692 	its->phys_base = res->start;
1693 	its->ite_size = ((gic_read_typer(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1694 	its->numa_node = numa_node;
1695 
1696 	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1697 	if (!its->cmd_base) {
1698 		err = -ENOMEM;
1699 		goto out_free_its;
1700 	}
1701 	its->cmd_write = its->cmd_base;
1702 
1703 	its_enable_quirks(its);
1704 
1705 	err = its_alloc_tables(its);
1706 	if (err)
1707 		goto out_free_cmd;
1708 
1709 	err = its_alloc_collections(its);
1710 	if (err)
1711 		goto out_free_tables;
1712 
1713 	baser = (virt_to_phys(its->cmd_base)	|
1714 		 GITS_CBASER_WaWb		|
1715 		 GITS_CBASER_InnerShareable	|
1716 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1717 		 GITS_CBASER_VALID);
1718 
1719 	gits_write_cbaser(baser, its->base + GITS_CBASER);
1720 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
1721 
1722 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1723 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1724 			/*
1725 			 * The HW reports non-shareable, we must
1726 			 * remove the cacheability attributes as
1727 			 * well.
1728 			 */
1729 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1730 				   GITS_CBASER_CACHEABILITY_MASK);
1731 			baser |= GITS_CBASER_nC;
1732 			gits_write_cbaser(baser, its->base + GITS_CBASER);
1733 		}
1734 		pr_info("ITS: using cache flushing for cmd queue\n");
1735 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1736 	}
1737 
1738 	gits_write_cwriter(0, its->base + GITS_CWRITER);
1739 	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1740 
1741 	err = its_init_domain(handle, its);
1742 	if (err)
1743 		goto out_free_tables;
1744 
1745 	spin_lock(&its_lock);
1746 	list_add(&its->entry, &its_nodes);
1747 	spin_unlock(&its_lock);
1748 
1749 	return 0;
1750 
1751 out_free_tables:
1752 	its_free_tables(its);
1753 out_free_cmd:
1754 	kfree(its->cmd_base);
1755 out_free_its:
1756 	kfree(its);
1757 out_unmap:
1758 	iounmap(its_base);
1759 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
1760 	return err;
1761 }
1762 
1763 static bool gic_rdists_supports_plpis(void)
1764 {
1765 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1766 }
1767 
1768 int its_cpu_init(void)
1769 {
1770 	if (!list_empty(&its_nodes)) {
1771 		if (!gic_rdists_supports_plpis()) {
1772 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1773 			return -ENXIO;
1774 		}
1775 		its_cpu_init_lpis();
1776 		its_cpu_init_collection();
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 static struct of_device_id its_device_id[] = {
1783 	{	.compatible	= "arm,gic-v3-its",	},
1784 	{},
1785 };
1786 
1787 static int __init its_of_probe(struct device_node *node)
1788 {
1789 	struct device_node *np;
1790 	struct resource res;
1791 
1792 	for (np = of_find_matching_node(node, its_device_id); np;
1793 	     np = of_find_matching_node(np, its_device_id)) {
1794 		if (!of_property_read_bool(np, "msi-controller")) {
1795 			pr_warn("%s: no msi-controller property, ITS ignored\n",
1796 				np->full_name);
1797 			continue;
1798 		}
1799 
1800 		if (of_address_to_resource(np, 0, &res)) {
1801 			pr_warn("%s: no regs?\n", np->full_name);
1802 			continue;
1803 		}
1804 
1805 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
1806 	}
1807 	return 0;
1808 }
1809 
1810 #ifdef CONFIG_ACPI
1811 
1812 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
1813 
1814 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
1815 					  const unsigned long end)
1816 {
1817 	struct acpi_madt_generic_translator *its_entry;
1818 	struct fwnode_handle *dom_handle;
1819 	struct resource res;
1820 	int err;
1821 
1822 	its_entry = (struct acpi_madt_generic_translator *)header;
1823 	memset(&res, 0, sizeof(res));
1824 	res.start = its_entry->base_address;
1825 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
1826 	res.flags = IORESOURCE_MEM;
1827 
1828 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
1829 	if (!dom_handle) {
1830 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
1831 		       &res.start);
1832 		return -ENOMEM;
1833 	}
1834 
1835 	err = iort_register_domain_token(its_entry->translation_id, dom_handle);
1836 	if (err) {
1837 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
1838 		       &res.start, its_entry->translation_id);
1839 		goto dom_err;
1840 	}
1841 
1842 	err = its_probe_one(&res, dom_handle, NUMA_NO_NODE);
1843 	if (!err)
1844 		return 0;
1845 
1846 	iort_deregister_domain_token(its_entry->translation_id);
1847 dom_err:
1848 	irq_domain_free_fwnode(dom_handle);
1849 	return err;
1850 }
1851 
1852 static void __init its_acpi_probe(void)
1853 {
1854 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
1855 			      gic_acpi_parse_madt_its, 0);
1856 }
1857 #else
1858 static void __init its_acpi_probe(void) { }
1859 #endif
1860 
1861 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
1862 		    struct irq_domain *parent_domain)
1863 {
1864 	struct device_node *of_node;
1865 
1866 	its_parent = parent_domain;
1867 	of_node = to_of_node(handle);
1868 	if (of_node)
1869 		its_of_probe(of_node);
1870 	else
1871 		its_acpi_probe();
1872 
1873 	if (list_empty(&its_nodes)) {
1874 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1875 		return -ENXIO;
1876 	}
1877 
1878 	gic_rdists = rdists;
1879 	its_alloc_lpi_tables();
1880 	its_lpi_init(rdists->id_bits);
1881 
1882 	return 0;
1883 }
1884