xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision 31d166642c7c601c65eccf0ff2e0afe9a0538be2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitmap.h>
10 #include <linux/cpu.h>
11 #include <linux/crash_dump.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/list.h>
18 #include <linux/log2.h>
19 #include <linux/memblock.h>
20 #include <linux/mm.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_pci.h>
26 #include <linux/of_platform.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/syscore_ops.h>
30 
31 #include <linux/irqchip.h>
32 #include <linux/irqchip/arm-gic-v3.h>
33 #include <linux/irqchip/arm-gic-v4.h>
34 
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 
38 #include "irq-gic-common.h"
39 
40 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
41 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
42 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
43 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
44 
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
46 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
47 
48 static u32 lpi_id_bits;
49 
50 /*
51  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
52  * deal with (one configuration byte per interrupt). PENDBASE has to
53  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
54  */
55 #define LPI_NRBITS		lpi_id_bits
56 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
57 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
58 
59 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
60 
61 /*
62  * Collection structure - just an ID, and a redistributor address to
63  * ping. We use one per CPU as a bag of interrupts assigned to this
64  * CPU.
65  */
66 struct its_collection {
67 	u64			target_address;
68 	u16			col_id;
69 };
70 
71 /*
72  * The ITS_BASER structure - contains memory information, cached
73  * value of BASER register configuration and ITS page size.
74  */
75 struct its_baser {
76 	void		*base;
77 	u64		val;
78 	u32		order;
79 	u32		psz;
80 };
81 
82 struct its_device;
83 
84 /*
85  * The ITS structure - contains most of the infrastructure, with the
86  * top-level MSI domain, the command queue, the collections, and the
87  * list of devices writing to it.
88  *
89  * dev_alloc_lock has to be taken for device allocations, while the
90  * spinlock must be taken to parse data structures such as the device
91  * list.
92  */
93 struct its_node {
94 	raw_spinlock_t		lock;
95 	struct mutex		dev_alloc_lock;
96 	struct list_head	entry;
97 	void __iomem		*base;
98 	phys_addr_t		phys_base;
99 	struct its_cmd_block	*cmd_base;
100 	struct its_cmd_block	*cmd_write;
101 	struct its_baser	tables[GITS_BASER_NR_REGS];
102 	struct its_collection	*collections;
103 	struct fwnode_handle	*fwnode_handle;
104 	u64			(*get_msi_base)(struct its_device *its_dev);
105 	u64			cbaser_save;
106 	u32			ctlr_save;
107 	struct list_head	its_device_list;
108 	u64			flags;
109 	unsigned long		list_nr;
110 	u32			ite_size;
111 	u32			device_ids;
112 	int			numa_node;
113 	unsigned int		msi_domain_flags;
114 	u32			pre_its_base; /* for Socionext Synquacer */
115 	bool			is_v4;
116 	int			vlpi_redist_offset;
117 };
118 
119 #define ITS_ITT_ALIGN		SZ_256
120 
121 /* The maximum number of VPEID bits supported by VLPI commands */
122 #define ITS_MAX_VPEID_BITS	(16)
123 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
124 
125 /* Convert page order to size in bytes */
126 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
127 
128 struct event_lpi_map {
129 	unsigned long		*lpi_map;
130 	u16			*col_map;
131 	irq_hw_number_t		lpi_base;
132 	int			nr_lpis;
133 	struct mutex		vlpi_lock;
134 	struct its_vm		*vm;
135 	struct its_vlpi_map	*vlpi_maps;
136 	int			nr_vlpis;
137 };
138 
139 /*
140  * The ITS view of a device - belongs to an ITS, owns an interrupt
141  * translation table, and a list of interrupts.  If it some of its
142  * LPIs are injected into a guest (GICv4), the event_map.vm field
143  * indicates which one.
144  */
145 struct its_device {
146 	struct list_head	entry;
147 	struct its_node		*its;
148 	struct event_lpi_map	event_map;
149 	void			*itt;
150 	u32			nr_ites;
151 	u32			device_id;
152 	bool			shared;
153 };
154 
155 static struct {
156 	raw_spinlock_t		lock;
157 	struct its_device	*dev;
158 	struct its_vpe		**vpes;
159 	int			next_victim;
160 } vpe_proxy;
161 
162 static LIST_HEAD(its_nodes);
163 static DEFINE_RAW_SPINLOCK(its_lock);
164 static struct rdists *gic_rdists;
165 static struct irq_domain *its_parent;
166 
167 static unsigned long its_list_map;
168 static u16 vmovp_seq_num;
169 static DEFINE_RAW_SPINLOCK(vmovp_lock);
170 
171 static DEFINE_IDA(its_vpeid_ida);
172 
173 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
174 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
175 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
176 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
177 
178 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
179 					       u32 event)
180 {
181 	struct its_node *its = its_dev->its;
182 
183 	return its->collections + its_dev->event_map.col_map[event];
184 }
185 
186 static struct its_collection *valid_col(struct its_collection *col)
187 {
188 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15)))
189 		return NULL;
190 
191 	return col;
192 }
193 
194 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
195 {
196 	if (valid_col(its->collections + vpe->col_idx))
197 		return vpe;
198 
199 	return NULL;
200 }
201 
202 /*
203  * ITS command descriptors - parameters to be encoded in a command
204  * block.
205  */
206 struct its_cmd_desc {
207 	union {
208 		struct {
209 			struct its_device *dev;
210 			u32 event_id;
211 		} its_inv_cmd;
212 
213 		struct {
214 			struct its_device *dev;
215 			u32 event_id;
216 		} its_clear_cmd;
217 
218 		struct {
219 			struct its_device *dev;
220 			u32 event_id;
221 		} its_int_cmd;
222 
223 		struct {
224 			struct its_device *dev;
225 			int valid;
226 		} its_mapd_cmd;
227 
228 		struct {
229 			struct its_collection *col;
230 			int valid;
231 		} its_mapc_cmd;
232 
233 		struct {
234 			struct its_device *dev;
235 			u32 phys_id;
236 			u32 event_id;
237 		} its_mapti_cmd;
238 
239 		struct {
240 			struct its_device *dev;
241 			struct its_collection *col;
242 			u32 event_id;
243 		} its_movi_cmd;
244 
245 		struct {
246 			struct its_device *dev;
247 			u32 event_id;
248 		} its_discard_cmd;
249 
250 		struct {
251 			struct its_collection *col;
252 		} its_invall_cmd;
253 
254 		struct {
255 			struct its_vpe *vpe;
256 		} its_vinvall_cmd;
257 
258 		struct {
259 			struct its_vpe *vpe;
260 			struct its_collection *col;
261 			bool valid;
262 		} its_vmapp_cmd;
263 
264 		struct {
265 			struct its_vpe *vpe;
266 			struct its_device *dev;
267 			u32 virt_id;
268 			u32 event_id;
269 			bool db_enabled;
270 		} its_vmapti_cmd;
271 
272 		struct {
273 			struct its_vpe *vpe;
274 			struct its_device *dev;
275 			u32 event_id;
276 			bool db_enabled;
277 		} its_vmovi_cmd;
278 
279 		struct {
280 			struct its_vpe *vpe;
281 			struct its_collection *col;
282 			u16 seq_num;
283 			u16 its_list;
284 		} its_vmovp_cmd;
285 	};
286 };
287 
288 /*
289  * The ITS command block, which is what the ITS actually parses.
290  */
291 struct its_cmd_block {
292 	u64	raw_cmd[4];
293 };
294 
295 #define ITS_CMD_QUEUE_SZ		SZ_64K
296 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
297 
298 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
299 						    struct its_cmd_block *,
300 						    struct its_cmd_desc *);
301 
302 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
303 					      struct its_cmd_block *,
304 					      struct its_cmd_desc *);
305 
306 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
307 {
308 	u64 mask = GENMASK_ULL(h, l);
309 	*raw_cmd &= ~mask;
310 	*raw_cmd |= (val << l) & mask;
311 }
312 
313 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
314 {
315 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
316 }
317 
318 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
319 {
320 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
321 }
322 
323 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
324 {
325 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
326 }
327 
328 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
329 {
330 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
331 }
332 
333 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
334 {
335 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
336 }
337 
338 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
339 {
340 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
341 }
342 
343 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
344 {
345 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
346 }
347 
348 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
349 {
350 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
351 }
352 
353 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
354 {
355 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
356 }
357 
358 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
359 {
360 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
361 }
362 
363 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
364 {
365 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
366 }
367 
368 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
369 {
370 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
371 }
372 
373 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
374 {
375 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
376 }
377 
378 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
379 {
380 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
381 }
382 
383 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
384 {
385 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
386 }
387 
388 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
389 {
390 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
391 }
392 
393 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
394 {
395 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
396 }
397 
398 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
399 {
400 	/* Let's fixup BE commands */
401 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
402 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
403 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
404 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
405 }
406 
407 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
408 						 struct its_cmd_block *cmd,
409 						 struct its_cmd_desc *desc)
410 {
411 	unsigned long itt_addr;
412 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
413 
414 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
415 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
416 
417 	its_encode_cmd(cmd, GITS_CMD_MAPD);
418 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
419 	its_encode_size(cmd, size - 1);
420 	its_encode_itt(cmd, itt_addr);
421 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
422 
423 	its_fixup_cmd(cmd);
424 
425 	return NULL;
426 }
427 
428 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
429 						 struct its_cmd_block *cmd,
430 						 struct its_cmd_desc *desc)
431 {
432 	its_encode_cmd(cmd, GITS_CMD_MAPC);
433 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
434 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
435 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
436 
437 	its_fixup_cmd(cmd);
438 
439 	return desc->its_mapc_cmd.col;
440 }
441 
442 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
443 						  struct its_cmd_block *cmd,
444 						  struct its_cmd_desc *desc)
445 {
446 	struct its_collection *col;
447 
448 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
449 			       desc->its_mapti_cmd.event_id);
450 
451 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
452 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
453 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
454 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
455 	its_encode_collection(cmd, col->col_id);
456 
457 	its_fixup_cmd(cmd);
458 
459 	return valid_col(col);
460 }
461 
462 static struct its_collection *its_build_movi_cmd(struct its_node *its,
463 						 struct its_cmd_block *cmd,
464 						 struct its_cmd_desc *desc)
465 {
466 	struct its_collection *col;
467 
468 	col = dev_event_to_col(desc->its_movi_cmd.dev,
469 			       desc->its_movi_cmd.event_id);
470 
471 	its_encode_cmd(cmd, GITS_CMD_MOVI);
472 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
473 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
474 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
475 
476 	its_fixup_cmd(cmd);
477 
478 	return valid_col(col);
479 }
480 
481 static struct its_collection *its_build_discard_cmd(struct its_node *its,
482 						    struct its_cmd_block *cmd,
483 						    struct its_cmd_desc *desc)
484 {
485 	struct its_collection *col;
486 
487 	col = dev_event_to_col(desc->its_discard_cmd.dev,
488 			       desc->its_discard_cmd.event_id);
489 
490 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
491 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
492 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
493 
494 	its_fixup_cmd(cmd);
495 
496 	return valid_col(col);
497 }
498 
499 static struct its_collection *its_build_inv_cmd(struct its_node *its,
500 						struct its_cmd_block *cmd,
501 						struct its_cmd_desc *desc)
502 {
503 	struct its_collection *col;
504 
505 	col = dev_event_to_col(desc->its_inv_cmd.dev,
506 			       desc->its_inv_cmd.event_id);
507 
508 	its_encode_cmd(cmd, GITS_CMD_INV);
509 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
510 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
511 
512 	its_fixup_cmd(cmd);
513 
514 	return valid_col(col);
515 }
516 
517 static struct its_collection *its_build_int_cmd(struct its_node *its,
518 						struct its_cmd_block *cmd,
519 						struct its_cmd_desc *desc)
520 {
521 	struct its_collection *col;
522 
523 	col = dev_event_to_col(desc->its_int_cmd.dev,
524 			       desc->its_int_cmd.event_id);
525 
526 	its_encode_cmd(cmd, GITS_CMD_INT);
527 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
528 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
529 
530 	its_fixup_cmd(cmd);
531 
532 	return valid_col(col);
533 }
534 
535 static struct its_collection *its_build_clear_cmd(struct its_node *its,
536 						  struct its_cmd_block *cmd,
537 						  struct its_cmd_desc *desc)
538 {
539 	struct its_collection *col;
540 
541 	col = dev_event_to_col(desc->its_clear_cmd.dev,
542 			       desc->its_clear_cmd.event_id);
543 
544 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
545 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
546 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
547 
548 	its_fixup_cmd(cmd);
549 
550 	return valid_col(col);
551 }
552 
553 static struct its_collection *its_build_invall_cmd(struct its_node *its,
554 						   struct its_cmd_block *cmd,
555 						   struct its_cmd_desc *desc)
556 {
557 	its_encode_cmd(cmd, GITS_CMD_INVALL);
558 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
559 
560 	its_fixup_cmd(cmd);
561 
562 	return NULL;
563 }
564 
565 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
566 					     struct its_cmd_block *cmd,
567 					     struct its_cmd_desc *desc)
568 {
569 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
570 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
571 
572 	its_fixup_cmd(cmd);
573 
574 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
575 }
576 
577 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
578 					   struct its_cmd_block *cmd,
579 					   struct its_cmd_desc *desc)
580 {
581 	unsigned long vpt_addr;
582 	u64 target;
583 
584 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
585 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
586 
587 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
588 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
589 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
590 	its_encode_target(cmd, target);
591 	its_encode_vpt_addr(cmd, vpt_addr);
592 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
593 
594 	its_fixup_cmd(cmd);
595 
596 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
597 }
598 
599 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
600 					    struct its_cmd_block *cmd,
601 					    struct its_cmd_desc *desc)
602 {
603 	u32 db;
604 
605 	if (desc->its_vmapti_cmd.db_enabled)
606 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
607 	else
608 		db = 1023;
609 
610 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
611 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
612 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
613 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
614 	its_encode_db_phys_id(cmd, db);
615 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
616 
617 	its_fixup_cmd(cmd);
618 
619 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
620 }
621 
622 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
623 					   struct its_cmd_block *cmd,
624 					   struct its_cmd_desc *desc)
625 {
626 	u32 db;
627 
628 	if (desc->its_vmovi_cmd.db_enabled)
629 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
630 	else
631 		db = 1023;
632 
633 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
634 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
635 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
636 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
637 	its_encode_db_phys_id(cmd, db);
638 	its_encode_db_valid(cmd, true);
639 
640 	its_fixup_cmd(cmd);
641 
642 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
643 }
644 
645 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
646 					   struct its_cmd_block *cmd,
647 					   struct its_cmd_desc *desc)
648 {
649 	u64 target;
650 
651 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
652 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
653 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
654 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
655 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
656 	its_encode_target(cmd, target);
657 
658 	its_fixup_cmd(cmd);
659 
660 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
661 }
662 
663 static u64 its_cmd_ptr_to_offset(struct its_node *its,
664 				 struct its_cmd_block *ptr)
665 {
666 	return (ptr - its->cmd_base) * sizeof(*ptr);
667 }
668 
669 static int its_queue_full(struct its_node *its)
670 {
671 	int widx;
672 	int ridx;
673 
674 	widx = its->cmd_write - its->cmd_base;
675 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
676 
677 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
678 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
679 		return 1;
680 
681 	return 0;
682 }
683 
684 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
685 {
686 	struct its_cmd_block *cmd;
687 	u32 count = 1000000;	/* 1s! */
688 
689 	while (its_queue_full(its)) {
690 		count--;
691 		if (!count) {
692 			pr_err_ratelimited("ITS queue not draining\n");
693 			return NULL;
694 		}
695 		cpu_relax();
696 		udelay(1);
697 	}
698 
699 	cmd = its->cmd_write++;
700 
701 	/* Handle queue wrapping */
702 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
703 		its->cmd_write = its->cmd_base;
704 
705 	/* Clear command  */
706 	cmd->raw_cmd[0] = 0;
707 	cmd->raw_cmd[1] = 0;
708 	cmd->raw_cmd[2] = 0;
709 	cmd->raw_cmd[3] = 0;
710 
711 	return cmd;
712 }
713 
714 static struct its_cmd_block *its_post_commands(struct its_node *its)
715 {
716 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
717 
718 	writel_relaxed(wr, its->base + GITS_CWRITER);
719 
720 	return its->cmd_write;
721 }
722 
723 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
724 {
725 	/*
726 	 * Make sure the commands written to memory are observable by
727 	 * the ITS.
728 	 */
729 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
730 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
731 	else
732 		dsb(ishst);
733 }
734 
735 static int its_wait_for_range_completion(struct its_node *its,
736 					 struct its_cmd_block *from,
737 					 struct its_cmd_block *to)
738 {
739 	u64 rd_idx, from_idx, to_idx;
740 	u32 count = 1000000;	/* 1s! */
741 
742 	from_idx = its_cmd_ptr_to_offset(its, from);
743 	to_idx = its_cmd_ptr_to_offset(its, to);
744 
745 	while (1) {
746 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
747 
748 		/* Direct case */
749 		if (from_idx < to_idx && rd_idx >= to_idx)
750 			break;
751 
752 		/* Wrapped case */
753 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
754 			break;
755 
756 		count--;
757 		if (!count) {
758 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
759 					   from_idx, to_idx, rd_idx);
760 			return -1;
761 		}
762 		cpu_relax();
763 		udelay(1);
764 	}
765 
766 	return 0;
767 }
768 
769 /* Warning, macro hell follows */
770 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
771 void name(struct its_node *its,						\
772 	  buildtype builder,						\
773 	  struct its_cmd_desc *desc)					\
774 {									\
775 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
776 	synctype *sync_obj;						\
777 	unsigned long flags;						\
778 									\
779 	raw_spin_lock_irqsave(&its->lock, flags);			\
780 									\
781 	cmd = its_allocate_entry(its);					\
782 	if (!cmd) {		/* We're soooooo screewed... */		\
783 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
784 		return;							\
785 	}								\
786 	sync_obj = builder(its, cmd, desc);				\
787 	its_flush_cmd(its, cmd);					\
788 									\
789 	if (sync_obj) {							\
790 		sync_cmd = its_allocate_entry(its);			\
791 		if (!sync_cmd)						\
792 			goto post;					\
793 									\
794 		buildfn(its, sync_cmd, sync_obj);			\
795 		its_flush_cmd(its, sync_cmd);				\
796 	}								\
797 									\
798 post:									\
799 	next_cmd = its_post_commands(its);				\
800 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
801 									\
802 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
803 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
804 }
805 
806 static void its_build_sync_cmd(struct its_node *its,
807 			       struct its_cmd_block *sync_cmd,
808 			       struct its_collection *sync_col)
809 {
810 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
811 	its_encode_target(sync_cmd, sync_col->target_address);
812 
813 	its_fixup_cmd(sync_cmd);
814 }
815 
816 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
817 			     struct its_collection, its_build_sync_cmd)
818 
819 static void its_build_vsync_cmd(struct its_node *its,
820 				struct its_cmd_block *sync_cmd,
821 				struct its_vpe *sync_vpe)
822 {
823 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
824 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
825 
826 	its_fixup_cmd(sync_cmd);
827 }
828 
829 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
830 			     struct its_vpe, its_build_vsync_cmd)
831 
832 static void its_send_int(struct its_device *dev, u32 event_id)
833 {
834 	struct its_cmd_desc desc;
835 
836 	desc.its_int_cmd.dev = dev;
837 	desc.its_int_cmd.event_id = event_id;
838 
839 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
840 }
841 
842 static void its_send_clear(struct its_device *dev, u32 event_id)
843 {
844 	struct its_cmd_desc desc;
845 
846 	desc.its_clear_cmd.dev = dev;
847 	desc.its_clear_cmd.event_id = event_id;
848 
849 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
850 }
851 
852 static void its_send_inv(struct its_device *dev, u32 event_id)
853 {
854 	struct its_cmd_desc desc;
855 
856 	desc.its_inv_cmd.dev = dev;
857 	desc.its_inv_cmd.event_id = event_id;
858 
859 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
860 }
861 
862 static void its_send_mapd(struct its_device *dev, int valid)
863 {
864 	struct its_cmd_desc desc;
865 
866 	desc.its_mapd_cmd.dev = dev;
867 	desc.its_mapd_cmd.valid = !!valid;
868 
869 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
870 }
871 
872 static void its_send_mapc(struct its_node *its, struct its_collection *col,
873 			  int valid)
874 {
875 	struct its_cmd_desc desc;
876 
877 	desc.its_mapc_cmd.col = col;
878 	desc.its_mapc_cmd.valid = !!valid;
879 
880 	its_send_single_command(its, its_build_mapc_cmd, &desc);
881 }
882 
883 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
884 {
885 	struct its_cmd_desc desc;
886 
887 	desc.its_mapti_cmd.dev = dev;
888 	desc.its_mapti_cmd.phys_id = irq_id;
889 	desc.its_mapti_cmd.event_id = id;
890 
891 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
892 }
893 
894 static void its_send_movi(struct its_device *dev,
895 			  struct its_collection *col, u32 id)
896 {
897 	struct its_cmd_desc desc;
898 
899 	desc.its_movi_cmd.dev = dev;
900 	desc.its_movi_cmd.col = col;
901 	desc.its_movi_cmd.event_id = id;
902 
903 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
904 }
905 
906 static void its_send_discard(struct its_device *dev, u32 id)
907 {
908 	struct its_cmd_desc desc;
909 
910 	desc.its_discard_cmd.dev = dev;
911 	desc.its_discard_cmd.event_id = id;
912 
913 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
914 }
915 
916 static void its_send_invall(struct its_node *its, struct its_collection *col)
917 {
918 	struct its_cmd_desc desc;
919 
920 	desc.its_invall_cmd.col = col;
921 
922 	its_send_single_command(its, its_build_invall_cmd, &desc);
923 }
924 
925 static void its_send_vmapti(struct its_device *dev, u32 id)
926 {
927 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
928 	struct its_cmd_desc desc;
929 
930 	desc.its_vmapti_cmd.vpe = map->vpe;
931 	desc.its_vmapti_cmd.dev = dev;
932 	desc.its_vmapti_cmd.virt_id = map->vintid;
933 	desc.its_vmapti_cmd.event_id = id;
934 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
935 
936 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
937 }
938 
939 static void its_send_vmovi(struct its_device *dev, u32 id)
940 {
941 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
942 	struct its_cmd_desc desc;
943 
944 	desc.its_vmovi_cmd.vpe = map->vpe;
945 	desc.its_vmovi_cmd.dev = dev;
946 	desc.its_vmovi_cmd.event_id = id;
947 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
948 
949 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
950 }
951 
952 static void its_send_vmapp(struct its_node *its,
953 			   struct its_vpe *vpe, bool valid)
954 {
955 	struct its_cmd_desc desc;
956 
957 	desc.its_vmapp_cmd.vpe = vpe;
958 	desc.its_vmapp_cmd.valid = valid;
959 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
960 
961 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
962 }
963 
964 static void its_send_vmovp(struct its_vpe *vpe)
965 {
966 	struct its_cmd_desc desc;
967 	struct its_node *its;
968 	unsigned long flags;
969 	int col_id = vpe->col_idx;
970 
971 	desc.its_vmovp_cmd.vpe = vpe;
972 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
973 
974 	if (!its_list_map) {
975 		its = list_first_entry(&its_nodes, struct its_node, entry);
976 		desc.its_vmovp_cmd.seq_num = 0;
977 		desc.its_vmovp_cmd.col = &its->collections[col_id];
978 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
979 		return;
980 	}
981 
982 	/*
983 	 * Yet another marvel of the architecture. If using the
984 	 * its_list "feature", we need to make sure that all ITSs
985 	 * receive all VMOVP commands in the same order. The only way
986 	 * to guarantee this is to make vmovp a serialization point.
987 	 *
988 	 * Wall <-- Head.
989 	 */
990 	raw_spin_lock_irqsave(&vmovp_lock, flags);
991 
992 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
993 
994 	/* Emit VMOVPs */
995 	list_for_each_entry(its, &its_nodes, entry) {
996 		if (!its->is_v4)
997 			continue;
998 
999 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1000 			continue;
1001 
1002 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1003 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1004 	}
1005 
1006 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1007 }
1008 
1009 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1010 {
1011 	struct its_cmd_desc desc;
1012 
1013 	desc.its_vinvall_cmd.vpe = vpe;
1014 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1015 }
1016 
1017 /*
1018  * irqchip functions - assumes MSI, mostly.
1019  */
1020 
1021 static inline u32 its_get_event_id(struct irq_data *d)
1022 {
1023 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1024 	return d->hwirq - its_dev->event_map.lpi_base;
1025 }
1026 
1027 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1028 {
1029 	irq_hw_number_t hwirq;
1030 	void *va;
1031 	u8 *cfg;
1032 
1033 	if (irqd_is_forwarded_to_vcpu(d)) {
1034 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1035 		u32 event = its_get_event_id(d);
1036 		struct its_vlpi_map *map;
1037 
1038 		va = page_address(its_dev->event_map.vm->vprop_page);
1039 		map = &its_dev->event_map.vlpi_maps[event];
1040 		hwirq = map->vintid;
1041 
1042 		/* Remember the updated property */
1043 		map->properties &= ~clr;
1044 		map->properties |= set | LPI_PROP_GROUP1;
1045 	} else {
1046 		va = gic_rdists->prop_table_va;
1047 		hwirq = d->hwirq;
1048 	}
1049 
1050 	cfg = va + hwirq - 8192;
1051 	*cfg &= ~clr;
1052 	*cfg |= set | LPI_PROP_GROUP1;
1053 
1054 	/*
1055 	 * Make the above write visible to the redistributors.
1056 	 * And yes, we're flushing exactly: One. Single. Byte.
1057 	 * Humpf...
1058 	 */
1059 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1060 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1061 	else
1062 		dsb(ishst);
1063 }
1064 
1065 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1066 {
1067 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1068 
1069 	lpi_write_config(d, clr, set);
1070 	its_send_inv(its_dev, its_get_event_id(d));
1071 }
1072 
1073 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1074 {
1075 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1076 	u32 event = its_get_event_id(d);
1077 
1078 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1079 		return;
1080 
1081 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1082 
1083 	/*
1084 	 * More fun with the architecture:
1085 	 *
1086 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1087 	 * value or to 1023, depending on the enable bit. But that
1088 	 * would be issueing a mapping for an /existing/ DevID+EventID
1089 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1090 	 * to the /same/ vPE, using this opportunity to adjust the
1091 	 * doorbell. Mouahahahaha. We loves it, Precious.
1092 	 */
1093 	its_send_vmovi(its_dev, event);
1094 }
1095 
1096 static void its_mask_irq(struct irq_data *d)
1097 {
1098 	if (irqd_is_forwarded_to_vcpu(d))
1099 		its_vlpi_set_doorbell(d, false);
1100 
1101 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1102 }
1103 
1104 static void its_unmask_irq(struct irq_data *d)
1105 {
1106 	if (irqd_is_forwarded_to_vcpu(d))
1107 		its_vlpi_set_doorbell(d, true);
1108 
1109 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1110 }
1111 
1112 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1113 			    bool force)
1114 {
1115 	unsigned int cpu;
1116 	const struct cpumask *cpu_mask = cpu_online_mask;
1117 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1118 	struct its_collection *target_col;
1119 	u32 id = its_get_event_id(d);
1120 
1121 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1122 	if (irqd_is_forwarded_to_vcpu(d))
1123 		return -EINVAL;
1124 
1125        /* lpi cannot be routed to a redistributor that is on a foreign node */
1126 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1127 		if (its_dev->its->numa_node >= 0) {
1128 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1129 			if (!cpumask_intersects(mask_val, cpu_mask))
1130 				return -EINVAL;
1131 		}
1132 	}
1133 
1134 	cpu = cpumask_any_and(mask_val, cpu_mask);
1135 
1136 	if (cpu >= nr_cpu_ids)
1137 		return -EINVAL;
1138 
1139 	/* don't set the affinity when the target cpu is same as current one */
1140 	if (cpu != its_dev->event_map.col_map[id]) {
1141 		target_col = &its_dev->its->collections[cpu];
1142 		its_send_movi(its_dev, target_col, id);
1143 		its_dev->event_map.col_map[id] = cpu;
1144 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1145 	}
1146 
1147 	return IRQ_SET_MASK_OK_DONE;
1148 }
1149 
1150 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1151 {
1152 	struct its_node *its = its_dev->its;
1153 
1154 	return its->phys_base + GITS_TRANSLATER;
1155 }
1156 
1157 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1158 {
1159 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1160 	struct its_node *its;
1161 	u64 addr;
1162 
1163 	its = its_dev->its;
1164 	addr = its->get_msi_base(its_dev);
1165 
1166 	msg->address_lo		= lower_32_bits(addr);
1167 	msg->address_hi		= upper_32_bits(addr);
1168 	msg->data		= its_get_event_id(d);
1169 
1170 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1171 }
1172 
1173 static int its_irq_set_irqchip_state(struct irq_data *d,
1174 				     enum irqchip_irq_state which,
1175 				     bool state)
1176 {
1177 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1178 	u32 event = its_get_event_id(d);
1179 
1180 	if (which != IRQCHIP_STATE_PENDING)
1181 		return -EINVAL;
1182 
1183 	if (state)
1184 		its_send_int(its_dev, event);
1185 	else
1186 		its_send_clear(its_dev, event);
1187 
1188 	return 0;
1189 }
1190 
1191 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1192 {
1193 	unsigned long flags;
1194 
1195 	/* Not using the ITS list? Everything is always mapped. */
1196 	if (!its_list_map)
1197 		return;
1198 
1199 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1200 
1201 	/*
1202 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1203 	 * them mapped now.
1204 	 */
1205 	vm->vlpi_count[its->list_nr]++;
1206 
1207 	if (vm->vlpi_count[its->list_nr] == 1) {
1208 		int i;
1209 
1210 		for (i = 0; i < vm->nr_vpes; i++) {
1211 			struct its_vpe *vpe = vm->vpes[i];
1212 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1213 
1214 			/* Map the VPE to the first possible CPU */
1215 			vpe->col_idx = cpumask_first(cpu_online_mask);
1216 			its_send_vmapp(its, vpe, true);
1217 			its_send_vinvall(its, vpe);
1218 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1219 		}
1220 	}
1221 
1222 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1223 }
1224 
1225 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1226 {
1227 	unsigned long flags;
1228 
1229 	/* Not using the ITS list? Everything is always mapped. */
1230 	if (!its_list_map)
1231 		return;
1232 
1233 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1234 
1235 	if (!--vm->vlpi_count[its->list_nr]) {
1236 		int i;
1237 
1238 		for (i = 0; i < vm->nr_vpes; i++)
1239 			its_send_vmapp(its, vm->vpes[i], false);
1240 	}
1241 
1242 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1243 }
1244 
1245 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1246 {
1247 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1248 	u32 event = its_get_event_id(d);
1249 	int ret = 0;
1250 
1251 	if (!info->map)
1252 		return -EINVAL;
1253 
1254 	mutex_lock(&its_dev->event_map.vlpi_lock);
1255 
1256 	if (!its_dev->event_map.vm) {
1257 		struct its_vlpi_map *maps;
1258 
1259 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1260 			       GFP_KERNEL);
1261 		if (!maps) {
1262 			ret = -ENOMEM;
1263 			goto out;
1264 		}
1265 
1266 		its_dev->event_map.vm = info->map->vm;
1267 		its_dev->event_map.vlpi_maps = maps;
1268 	} else if (its_dev->event_map.vm != info->map->vm) {
1269 		ret = -EINVAL;
1270 		goto out;
1271 	}
1272 
1273 	/* Get our private copy of the mapping information */
1274 	its_dev->event_map.vlpi_maps[event] = *info->map;
1275 
1276 	if (irqd_is_forwarded_to_vcpu(d)) {
1277 		/* Already mapped, move it around */
1278 		its_send_vmovi(its_dev, event);
1279 	} else {
1280 		/* Ensure all the VPEs are mapped on this ITS */
1281 		its_map_vm(its_dev->its, info->map->vm);
1282 
1283 		/*
1284 		 * Flag the interrupt as forwarded so that we can
1285 		 * start poking the virtual property table.
1286 		 */
1287 		irqd_set_forwarded_to_vcpu(d);
1288 
1289 		/* Write out the property to the prop table */
1290 		lpi_write_config(d, 0xff, info->map->properties);
1291 
1292 		/* Drop the physical mapping */
1293 		its_send_discard(its_dev, event);
1294 
1295 		/* and install the virtual one */
1296 		its_send_vmapti(its_dev, event);
1297 
1298 		/* Increment the number of VLPIs */
1299 		its_dev->event_map.nr_vlpis++;
1300 	}
1301 
1302 out:
1303 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1304 	return ret;
1305 }
1306 
1307 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1308 {
1309 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1310 	u32 event = its_get_event_id(d);
1311 	int ret = 0;
1312 
1313 	mutex_lock(&its_dev->event_map.vlpi_lock);
1314 
1315 	if (!its_dev->event_map.vm ||
1316 	    !its_dev->event_map.vlpi_maps[event].vm) {
1317 		ret = -EINVAL;
1318 		goto out;
1319 	}
1320 
1321 	/* Copy our mapping information to the incoming request */
1322 	*info->map = its_dev->event_map.vlpi_maps[event];
1323 
1324 out:
1325 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1326 	return ret;
1327 }
1328 
1329 static int its_vlpi_unmap(struct irq_data *d)
1330 {
1331 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1332 	u32 event = its_get_event_id(d);
1333 	int ret = 0;
1334 
1335 	mutex_lock(&its_dev->event_map.vlpi_lock);
1336 
1337 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1338 		ret = -EINVAL;
1339 		goto out;
1340 	}
1341 
1342 	/* Drop the virtual mapping */
1343 	its_send_discard(its_dev, event);
1344 
1345 	/* and restore the physical one */
1346 	irqd_clr_forwarded_to_vcpu(d);
1347 	its_send_mapti(its_dev, d->hwirq, event);
1348 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1349 				    LPI_PROP_ENABLED |
1350 				    LPI_PROP_GROUP1));
1351 
1352 	/* Potentially unmap the VM from this ITS */
1353 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1354 
1355 	/*
1356 	 * Drop the refcount and make the device available again if
1357 	 * this was the last VLPI.
1358 	 */
1359 	if (!--its_dev->event_map.nr_vlpis) {
1360 		its_dev->event_map.vm = NULL;
1361 		kfree(its_dev->event_map.vlpi_maps);
1362 	}
1363 
1364 out:
1365 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1366 	return ret;
1367 }
1368 
1369 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1370 {
1371 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1372 
1373 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1374 		return -EINVAL;
1375 
1376 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1377 		lpi_update_config(d, 0xff, info->config);
1378 	else
1379 		lpi_write_config(d, 0xff, info->config);
1380 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1381 
1382 	return 0;
1383 }
1384 
1385 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1386 {
1387 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1388 	struct its_cmd_info *info = vcpu_info;
1389 
1390 	/* Need a v4 ITS */
1391 	if (!its_dev->its->is_v4)
1392 		return -EINVAL;
1393 
1394 	/* Unmap request? */
1395 	if (!info)
1396 		return its_vlpi_unmap(d);
1397 
1398 	switch (info->cmd_type) {
1399 	case MAP_VLPI:
1400 		return its_vlpi_map(d, info);
1401 
1402 	case GET_VLPI:
1403 		return its_vlpi_get(d, info);
1404 
1405 	case PROP_UPDATE_VLPI:
1406 	case PROP_UPDATE_AND_INV_VLPI:
1407 		return its_vlpi_prop_update(d, info);
1408 
1409 	default:
1410 		return -EINVAL;
1411 	}
1412 }
1413 
1414 static struct irq_chip its_irq_chip = {
1415 	.name			= "ITS",
1416 	.irq_mask		= its_mask_irq,
1417 	.irq_unmask		= its_unmask_irq,
1418 	.irq_eoi		= irq_chip_eoi_parent,
1419 	.irq_set_affinity	= its_set_affinity,
1420 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1421 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1422 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1423 };
1424 
1425 
1426 /*
1427  * How we allocate LPIs:
1428  *
1429  * lpi_range_list contains ranges of LPIs that are to available to
1430  * allocate from. To allocate LPIs, just pick the first range that
1431  * fits the required allocation, and reduce it by the required
1432  * amount. Once empty, remove the range from the list.
1433  *
1434  * To free a range of LPIs, add a free range to the list, sort it and
1435  * merge the result if the new range happens to be adjacent to an
1436  * already free block.
1437  *
1438  * The consequence of the above is that allocation is cost is low, but
1439  * freeing is expensive. We assumes that freeing rarely occurs.
1440  */
1441 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1442 
1443 static DEFINE_MUTEX(lpi_range_lock);
1444 static LIST_HEAD(lpi_range_list);
1445 
1446 struct lpi_range {
1447 	struct list_head	entry;
1448 	u32			base_id;
1449 	u32			span;
1450 };
1451 
1452 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1453 {
1454 	struct lpi_range *range;
1455 
1456 	range = kmalloc(sizeof(*range), GFP_KERNEL);
1457 	if (range) {
1458 		range->base_id = base;
1459 		range->span = span;
1460 	}
1461 
1462 	return range;
1463 }
1464 
1465 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1466 {
1467 	struct lpi_range *range, *tmp;
1468 	int err = -ENOSPC;
1469 
1470 	mutex_lock(&lpi_range_lock);
1471 
1472 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1473 		if (range->span >= nr_lpis) {
1474 			*base = range->base_id;
1475 			range->base_id += nr_lpis;
1476 			range->span -= nr_lpis;
1477 
1478 			if (range->span == 0) {
1479 				list_del(&range->entry);
1480 				kfree(range);
1481 			}
1482 
1483 			err = 0;
1484 			break;
1485 		}
1486 	}
1487 
1488 	mutex_unlock(&lpi_range_lock);
1489 
1490 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1491 	return err;
1492 }
1493 
1494 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1495 {
1496 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1497 		return;
1498 	if (a->base_id + a->span != b->base_id)
1499 		return;
1500 	b->base_id = a->base_id;
1501 	b->span += a->span;
1502 	list_del(&a->entry);
1503 	kfree(a);
1504 }
1505 
1506 static int free_lpi_range(u32 base, u32 nr_lpis)
1507 {
1508 	struct lpi_range *new, *old;
1509 
1510 	new = mk_lpi_range(base, nr_lpis);
1511 	if (!new)
1512 		return -ENOMEM;
1513 
1514 	mutex_lock(&lpi_range_lock);
1515 
1516 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1517 		if (old->base_id < base)
1518 			break;
1519 	}
1520 	/*
1521 	 * old is the last element with ->base_id smaller than base,
1522 	 * so new goes right after it. If there are no elements with
1523 	 * ->base_id smaller than base, &old->entry ends up pointing
1524 	 * at the head of the list, and inserting new it the start of
1525 	 * the list is the right thing to do in that case as well.
1526 	 */
1527 	list_add(&new->entry, &old->entry);
1528 	/*
1529 	 * Now check if we can merge with the preceding and/or
1530 	 * following ranges.
1531 	 */
1532 	merge_lpi_ranges(old, new);
1533 	merge_lpi_ranges(new, list_next_entry(new, entry));
1534 
1535 	mutex_unlock(&lpi_range_lock);
1536 	return 0;
1537 }
1538 
1539 static int __init its_lpi_init(u32 id_bits)
1540 {
1541 	u32 lpis = (1UL << id_bits) - 8192;
1542 	u32 numlpis;
1543 	int err;
1544 
1545 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1546 
1547 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1548 		lpis = numlpis;
1549 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1550 			lpis);
1551 	}
1552 
1553 	/*
1554 	 * Initializing the allocator is just the same as freeing the
1555 	 * full range of LPIs.
1556 	 */
1557 	err = free_lpi_range(8192, lpis);
1558 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1559 	return err;
1560 }
1561 
1562 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1563 {
1564 	unsigned long *bitmap = NULL;
1565 	int err = 0;
1566 
1567 	do {
1568 		err = alloc_lpi_range(nr_irqs, base);
1569 		if (!err)
1570 			break;
1571 
1572 		nr_irqs /= 2;
1573 	} while (nr_irqs > 0);
1574 
1575 	if (!nr_irqs)
1576 		err = -ENOSPC;
1577 
1578 	if (err)
1579 		goto out;
1580 
1581 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1582 	if (!bitmap)
1583 		goto out;
1584 
1585 	*nr_ids = nr_irqs;
1586 
1587 out:
1588 	if (!bitmap)
1589 		*base = *nr_ids = 0;
1590 
1591 	return bitmap;
1592 }
1593 
1594 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1595 {
1596 	WARN_ON(free_lpi_range(base, nr_ids));
1597 	kfree(bitmap);
1598 }
1599 
1600 static void gic_reset_prop_table(void *va)
1601 {
1602 	/* Priority 0xa0, Group-1, disabled */
1603 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1604 
1605 	/* Make sure the GIC will observe the written configuration */
1606 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1607 }
1608 
1609 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1610 {
1611 	struct page *prop_page;
1612 
1613 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1614 	if (!prop_page)
1615 		return NULL;
1616 
1617 	gic_reset_prop_table(page_address(prop_page));
1618 
1619 	return prop_page;
1620 }
1621 
1622 static void its_free_prop_table(struct page *prop_page)
1623 {
1624 	free_pages((unsigned long)page_address(prop_page),
1625 		   get_order(LPI_PROPBASE_SZ));
1626 }
1627 
1628 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1629 {
1630 	phys_addr_t start, end, addr_end;
1631 	u64 i;
1632 
1633 	/*
1634 	 * We don't bother checking for a kdump kernel as by
1635 	 * construction, the LPI tables are out of this kernel's
1636 	 * memory map.
1637 	 */
1638 	if (is_kdump_kernel())
1639 		return true;
1640 
1641 	addr_end = addr + size - 1;
1642 
1643 	for_each_reserved_mem_region(i, &start, &end) {
1644 		if (addr >= start && addr_end <= end)
1645 			return true;
1646 	}
1647 
1648 	/* Not found, not a good sign... */
1649 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1650 		&addr, &addr_end);
1651 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1652 	return false;
1653 }
1654 
1655 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1656 {
1657 	if (efi_enabled(EFI_CONFIG_TABLES))
1658 		return efi_mem_reserve_persistent(addr, size);
1659 
1660 	return 0;
1661 }
1662 
1663 static int __init its_setup_lpi_prop_table(void)
1664 {
1665 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1666 		u64 val;
1667 
1668 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1669 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1670 
1671 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1672 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1673 						     LPI_PROPBASE_SZ,
1674 						     MEMREMAP_WB);
1675 		gic_reset_prop_table(gic_rdists->prop_table_va);
1676 	} else {
1677 		struct page *page;
1678 
1679 		lpi_id_bits = min_t(u32,
1680 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1681 				    ITS_MAX_LPI_NRBITS);
1682 		page = its_allocate_prop_table(GFP_NOWAIT);
1683 		if (!page) {
1684 			pr_err("Failed to allocate PROPBASE\n");
1685 			return -ENOMEM;
1686 		}
1687 
1688 		gic_rdists->prop_table_pa = page_to_phys(page);
1689 		gic_rdists->prop_table_va = page_address(page);
1690 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1691 					  LPI_PROPBASE_SZ));
1692 	}
1693 
1694 	pr_info("GICv3: using LPI property table @%pa\n",
1695 		&gic_rdists->prop_table_pa);
1696 
1697 	return its_lpi_init(lpi_id_bits);
1698 }
1699 
1700 static const char *its_base_type_string[] = {
1701 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1702 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1703 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1704 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1705 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1706 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1707 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1708 };
1709 
1710 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1711 {
1712 	u32 idx = baser - its->tables;
1713 
1714 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1715 }
1716 
1717 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1718 			    u64 val)
1719 {
1720 	u32 idx = baser - its->tables;
1721 
1722 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1723 	baser->val = its_read_baser(its, baser);
1724 }
1725 
1726 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1727 			   u64 cache, u64 shr, u32 psz, u32 order,
1728 			   bool indirect)
1729 {
1730 	u64 val = its_read_baser(its, baser);
1731 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1732 	u64 type = GITS_BASER_TYPE(val);
1733 	u64 baser_phys, tmp;
1734 	u32 alloc_pages;
1735 	struct page *page;
1736 	void *base;
1737 
1738 retry_alloc_baser:
1739 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1740 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1741 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1742 			&its->phys_base, its_base_type_string[type],
1743 			alloc_pages, GITS_BASER_PAGES_MAX);
1744 		alloc_pages = GITS_BASER_PAGES_MAX;
1745 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1746 	}
1747 
1748 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1749 	if (!page)
1750 		return -ENOMEM;
1751 
1752 	base = (void *)page_address(page);
1753 	baser_phys = virt_to_phys(base);
1754 
1755 	/* Check if the physical address of the memory is above 48bits */
1756 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1757 
1758 		/* 52bit PA is supported only when PageSize=64K */
1759 		if (psz != SZ_64K) {
1760 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1761 			free_pages((unsigned long)base, order);
1762 			return -ENXIO;
1763 		}
1764 
1765 		/* Convert 52bit PA to 48bit field */
1766 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1767 	}
1768 
1769 retry_baser:
1770 	val = (baser_phys					 |
1771 		(type << GITS_BASER_TYPE_SHIFT)			 |
1772 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1773 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1774 		cache						 |
1775 		shr						 |
1776 		GITS_BASER_VALID);
1777 
1778 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1779 
1780 	switch (psz) {
1781 	case SZ_4K:
1782 		val |= GITS_BASER_PAGE_SIZE_4K;
1783 		break;
1784 	case SZ_16K:
1785 		val |= GITS_BASER_PAGE_SIZE_16K;
1786 		break;
1787 	case SZ_64K:
1788 		val |= GITS_BASER_PAGE_SIZE_64K;
1789 		break;
1790 	}
1791 
1792 	its_write_baser(its, baser, val);
1793 	tmp = baser->val;
1794 
1795 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1796 		/*
1797 		 * Shareability didn't stick. Just use
1798 		 * whatever the read reported, which is likely
1799 		 * to be the only thing this redistributor
1800 		 * supports. If that's zero, make it
1801 		 * non-cacheable as well.
1802 		 */
1803 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1804 		if (!shr) {
1805 			cache = GITS_BASER_nC;
1806 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1807 		}
1808 		goto retry_baser;
1809 	}
1810 
1811 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1812 		/*
1813 		 * Page size didn't stick. Let's try a smaller
1814 		 * size and retry. If we reach 4K, then
1815 		 * something is horribly wrong...
1816 		 */
1817 		free_pages((unsigned long)base, order);
1818 		baser->base = NULL;
1819 
1820 		switch (psz) {
1821 		case SZ_16K:
1822 			psz = SZ_4K;
1823 			goto retry_alloc_baser;
1824 		case SZ_64K:
1825 			psz = SZ_16K;
1826 			goto retry_alloc_baser;
1827 		}
1828 	}
1829 
1830 	if (val != tmp) {
1831 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1832 		       &its->phys_base, its_base_type_string[type],
1833 		       val, tmp);
1834 		free_pages((unsigned long)base, order);
1835 		return -ENXIO;
1836 	}
1837 
1838 	baser->order = order;
1839 	baser->base = base;
1840 	baser->psz = psz;
1841 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1842 
1843 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1844 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1845 		its_base_type_string[type],
1846 		(unsigned long)virt_to_phys(base),
1847 		indirect ? "indirect" : "flat", (int)esz,
1848 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1849 
1850 	return 0;
1851 }
1852 
1853 static bool its_parse_indirect_baser(struct its_node *its,
1854 				     struct its_baser *baser,
1855 				     u32 psz, u32 *order, u32 ids)
1856 {
1857 	u64 tmp = its_read_baser(its, baser);
1858 	u64 type = GITS_BASER_TYPE(tmp);
1859 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1860 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1861 	u32 new_order = *order;
1862 	bool indirect = false;
1863 
1864 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1865 	if ((esz << ids) > (psz * 2)) {
1866 		/*
1867 		 * Find out whether hw supports a single or two-level table by
1868 		 * table by reading bit at offset '62' after writing '1' to it.
1869 		 */
1870 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1871 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1872 
1873 		if (indirect) {
1874 			/*
1875 			 * The size of the lvl2 table is equal to ITS page size
1876 			 * which is 'psz'. For computing lvl1 table size,
1877 			 * subtract ID bits that sparse lvl2 table from 'ids'
1878 			 * which is reported by ITS hardware times lvl1 table
1879 			 * entry size.
1880 			 */
1881 			ids -= ilog2(psz / (int)esz);
1882 			esz = GITS_LVL1_ENTRY_SIZE;
1883 		}
1884 	}
1885 
1886 	/*
1887 	 * Allocate as many entries as required to fit the
1888 	 * range of device IDs that the ITS can grok... The ID
1889 	 * space being incredibly sparse, this results in a
1890 	 * massive waste of memory if two-level device table
1891 	 * feature is not supported by hardware.
1892 	 */
1893 	new_order = max_t(u32, get_order(esz << ids), new_order);
1894 	if (new_order >= MAX_ORDER) {
1895 		new_order = MAX_ORDER - 1;
1896 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1897 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1898 			&its->phys_base, its_base_type_string[type],
1899 			its->device_ids, ids);
1900 	}
1901 
1902 	*order = new_order;
1903 
1904 	return indirect;
1905 }
1906 
1907 static void its_free_tables(struct its_node *its)
1908 {
1909 	int i;
1910 
1911 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1912 		if (its->tables[i].base) {
1913 			free_pages((unsigned long)its->tables[i].base,
1914 				   its->tables[i].order);
1915 			its->tables[i].base = NULL;
1916 		}
1917 	}
1918 }
1919 
1920 static int its_alloc_tables(struct its_node *its)
1921 {
1922 	u64 shr = GITS_BASER_InnerShareable;
1923 	u64 cache = GITS_BASER_RaWaWb;
1924 	u32 psz = SZ_64K;
1925 	int err, i;
1926 
1927 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1928 		/* erratum 24313: ignore memory access type */
1929 		cache = GITS_BASER_nCnB;
1930 
1931 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1932 		struct its_baser *baser = its->tables + i;
1933 		u64 val = its_read_baser(its, baser);
1934 		u64 type = GITS_BASER_TYPE(val);
1935 		u32 order = get_order(psz);
1936 		bool indirect = false;
1937 
1938 		switch (type) {
1939 		case GITS_BASER_TYPE_NONE:
1940 			continue;
1941 
1942 		case GITS_BASER_TYPE_DEVICE:
1943 			indirect = its_parse_indirect_baser(its, baser,
1944 							    psz, &order,
1945 							    its->device_ids);
1946 			break;
1947 
1948 		case GITS_BASER_TYPE_VCPU:
1949 			indirect = its_parse_indirect_baser(its, baser,
1950 							    psz, &order,
1951 							    ITS_MAX_VPEID_BITS);
1952 			break;
1953 		}
1954 
1955 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1956 		if (err < 0) {
1957 			its_free_tables(its);
1958 			return err;
1959 		}
1960 
1961 		/* Update settings which will be used for next BASERn */
1962 		psz = baser->psz;
1963 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1964 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static int its_alloc_collections(struct its_node *its)
1971 {
1972 	int i;
1973 
1974 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1975 				   GFP_KERNEL);
1976 	if (!its->collections)
1977 		return -ENOMEM;
1978 
1979 	for (i = 0; i < nr_cpu_ids; i++)
1980 		its->collections[i].target_address = ~0ULL;
1981 
1982 	return 0;
1983 }
1984 
1985 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1986 {
1987 	struct page *pend_page;
1988 
1989 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1990 				get_order(LPI_PENDBASE_SZ));
1991 	if (!pend_page)
1992 		return NULL;
1993 
1994 	/* Make sure the GIC will observe the zero-ed page */
1995 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1996 
1997 	return pend_page;
1998 }
1999 
2000 static void its_free_pending_table(struct page *pt)
2001 {
2002 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2003 }
2004 
2005 /*
2006  * Booting with kdump and LPIs enabled is generally fine. Any other
2007  * case is wrong in the absence of firmware/EFI support.
2008  */
2009 static bool enabled_lpis_allowed(void)
2010 {
2011 	phys_addr_t addr;
2012 	u64 val;
2013 
2014 	/* Check whether the property table is in a reserved region */
2015 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2016 	addr = val & GENMASK_ULL(51, 12);
2017 
2018 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2019 }
2020 
2021 static int __init allocate_lpi_tables(void)
2022 {
2023 	u64 val;
2024 	int err, cpu;
2025 
2026 	/*
2027 	 * If LPIs are enabled while we run this from the boot CPU,
2028 	 * flag the RD tables as pre-allocated if the stars do align.
2029 	 */
2030 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2031 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2032 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2033 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2034 		pr_info("GICv3: Using preallocated redistributor tables\n");
2035 	}
2036 
2037 	err = its_setup_lpi_prop_table();
2038 	if (err)
2039 		return err;
2040 
2041 	/*
2042 	 * We allocate all the pending tables anyway, as we may have a
2043 	 * mix of RDs that have had LPIs enabled, and some that
2044 	 * don't. We'll free the unused ones as each CPU comes online.
2045 	 */
2046 	for_each_possible_cpu(cpu) {
2047 		struct page *pend_page;
2048 
2049 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2050 		if (!pend_page) {
2051 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2052 			return -ENOMEM;
2053 		}
2054 
2055 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2062 {
2063 	u32 count = 1000000;	/* 1s! */
2064 	bool clean;
2065 	u64 val;
2066 
2067 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2068 	val &= ~GICR_VPENDBASER_Valid;
2069 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2070 
2071 	do {
2072 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2073 		clean = !(val & GICR_VPENDBASER_Dirty);
2074 		if (!clean) {
2075 			count--;
2076 			cpu_relax();
2077 			udelay(1);
2078 		}
2079 	} while (!clean && count);
2080 
2081 	return val;
2082 }
2083 
2084 static void its_cpu_init_lpis(void)
2085 {
2086 	void __iomem *rbase = gic_data_rdist_rd_base();
2087 	struct page *pend_page;
2088 	phys_addr_t paddr;
2089 	u64 val, tmp;
2090 
2091 	if (gic_data_rdist()->lpi_enabled)
2092 		return;
2093 
2094 	val = readl_relaxed(rbase + GICR_CTLR);
2095 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2096 	    (val & GICR_CTLR_ENABLE_LPIS)) {
2097 		/*
2098 		 * Check that we get the same property table on all
2099 		 * RDs. If we don't, this is hopeless.
2100 		 */
2101 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2102 		paddr &= GENMASK_ULL(51, 12);
2103 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2104 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2105 
2106 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2107 		paddr &= GENMASK_ULL(51, 16);
2108 
2109 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2110 		its_free_pending_table(gic_data_rdist()->pend_page);
2111 		gic_data_rdist()->pend_page = NULL;
2112 
2113 		goto out;
2114 	}
2115 
2116 	pend_page = gic_data_rdist()->pend_page;
2117 	paddr = page_to_phys(pend_page);
2118 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2119 
2120 	/* set PROPBASE */
2121 	val = (gic_rdists->prop_table_pa |
2122 	       GICR_PROPBASER_InnerShareable |
2123 	       GICR_PROPBASER_RaWaWb |
2124 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2125 
2126 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2127 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2128 
2129 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2130 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2131 			/*
2132 			 * The HW reports non-shareable, we must
2133 			 * remove the cacheability attributes as
2134 			 * well.
2135 			 */
2136 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2137 				 GICR_PROPBASER_CACHEABILITY_MASK);
2138 			val |= GICR_PROPBASER_nC;
2139 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2140 		}
2141 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2142 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2143 	}
2144 
2145 	/* set PENDBASE */
2146 	val = (page_to_phys(pend_page) |
2147 	       GICR_PENDBASER_InnerShareable |
2148 	       GICR_PENDBASER_RaWaWb);
2149 
2150 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2151 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2152 
2153 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2154 		/*
2155 		 * The HW reports non-shareable, we must remove the
2156 		 * cacheability attributes as well.
2157 		 */
2158 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2159 			 GICR_PENDBASER_CACHEABILITY_MASK);
2160 		val |= GICR_PENDBASER_nC;
2161 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2162 	}
2163 
2164 	/* Enable LPIs */
2165 	val = readl_relaxed(rbase + GICR_CTLR);
2166 	val |= GICR_CTLR_ENABLE_LPIS;
2167 	writel_relaxed(val, rbase + GICR_CTLR);
2168 
2169 	if (gic_rdists->has_vlpis) {
2170 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2171 
2172 		/*
2173 		 * It's possible for CPU to receive VLPIs before it is
2174 		 * sheduled as a vPE, especially for the first CPU, and the
2175 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2176 		 * as out of range and dropped by GIC.
2177 		 * So we initialize IDbits to known value to avoid VLPI drop.
2178 		 */
2179 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2180 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2181 			smp_processor_id(), val);
2182 		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2183 
2184 		/*
2185 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
2186 		 * ancient programming gets left in and has possibility of
2187 		 * corrupting memory.
2188 		 */
2189 		val = its_clear_vpend_valid(vlpi_base);
2190 		WARN_ON(val & GICR_VPENDBASER_Dirty);
2191 	}
2192 
2193 	/* Make sure the GIC has seen the above */
2194 	dsb(sy);
2195 out:
2196 	gic_data_rdist()->lpi_enabled = true;
2197 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2198 		smp_processor_id(),
2199 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
2200 		&paddr);
2201 }
2202 
2203 static void its_cpu_init_collection(struct its_node *its)
2204 {
2205 	int cpu = smp_processor_id();
2206 	u64 target;
2207 
2208 	/* avoid cross node collections and its mapping */
2209 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2210 		struct device_node *cpu_node;
2211 
2212 		cpu_node = of_get_cpu_node(cpu, NULL);
2213 		if (its->numa_node != NUMA_NO_NODE &&
2214 			its->numa_node != of_node_to_nid(cpu_node))
2215 			return;
2216 	}
2217 
2218 	/*
2219 	 * We now have to bind each collection to its target
2220 	 * redistributor.
2221 	 */
2222 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2223 		/*
2224 		 * This ITS wants the physical address of the
2225 		 * redistributor.
2226 		 */
2227 		target = gic_data_rdist()->phys_base;
2228 	} else {
2229 		/* This ITS wants a linear CPU number. */
2230 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2231 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2232 	}
2233 
2234 	/* Perform collection mapping */
2235 	its->collections[cpu].target_address = target;
2236 	its->collections[cpu].col_id = cpu;
2237 
2238 	its_send_mapc(its, &its->collections[cpu], 1);
2239 	its_send_invall(its, &its->collections[cpu]);
2240 }
2241 
2242 static void its_cpu_init_collections(void)
2243 {
2244 	struct its_node *its;
2245 
2246 	raw_spin_lock(&its_lock);
2247 
2248 	list_for_each_entry(its, &its_nodes, entry)
2249 		its_cpu_init_collection(its);
2250 
2251 	raw_spin_unlock(&its_lock);
2252 }
2253 
2254 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2255 {
2256 	struct its_device *its_dev = NULL, *tmp;
2257 	unsigned long flags;
2258 
2259 	raw_spin_lock_irqsave(&its->lock, flags);
2260 
2261 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2262 		if (tmp->device_id == dev_id) {
2263 			its_dev = tmp;
2264 			break;
2265 		}
2266 	}
2267 
2268 	raw_spin_unlock_irqrestore(&its->lock, flags);
2269 
2270 	return its_dev;
2271 }
2272 
2273 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2274 {
2275 	int i;
2276 
2277 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2278 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2279 			return &its->tables[i];
2280 	}
2281 
2282 	return NULL;
2283 }
2284 
2285 static bool its_alloc_table_entry(struct its_node *its,
2286 				  struct its_baser *baser, u32 id)
2287 {
2288 	struct page *page;
2289 	u32 esz, idx;
2290 	__le64 *table;
2291 
2292 	/* Don't allow device id that exceeds single, flat table limit */
2293 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2294 	if (!(baser->val & GITS_BASER_INDIRECT))
2295 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2296 
2297 	/* Compute 1st level table index & check if that exceeds table limit */
2298 	idx = id >> ilog2(baser->psz / esz);
2299 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2300 		return false;
2301 
2302 	table = baser->base;
2303 
2304 	/* Allocate memory for 2nd level table */
2305 	if (!table[idx]) {
2306 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2307 					get_order(baser->psz));
2308 		if (!page)
2309 			return false;
2310 
2311 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2312 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2313 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2314 
2315 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2316 
2317 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2318 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2319 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2320 
2321 		/* Ensure updated table contents are visible to ITS hardware */
2322 		dsb(sy);
2323 	}
2324 
2325 	return true;
2326 }
2327 
2328 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2329 {
2330 	struct its_baser *baser;
2331 
2332 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2333 
2334 	/* Don't allow device id that exceeds ITS hardware limit */
2335 	if (!baser)
2336 		return (ilog2(dev_id) < its->device_ids);
2337 
2338 	return its_alloc_table_entry(its, baser, dev_id);
2339 }
2340 
2341 static bool its_alloc_vpe_table(u32 vpe_id)
2342 {
2343 	struct its_node *its;
2344 
2345 	/*
2346 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2347 	 * could try and only do it on ITSs corresponding to devices
2348 	 * that have interrupts targeted at this VPE, but the
2349 	 * complexity becomes crazy (and you have tons of memory
2350 	 * anyway, right?).
2351 	 */
2352 	list_for_each_entry(its, &its_nodes, entry) {
2353 		struct its_baser *baser;
2354 
2355 		if (!its->is_v4)
2356 			continue;
2357 
2358 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2359 		if (!baser)
2360 			return false;
2361 
2362 		if (!its_alloc_table_entry(its, baser, vpe_id))
2363 			return false;
2364 	}
2365 
2366 	return true;
2367 }
2368 
2369 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2370 					    int nvecs, bool alloc_lpis)
2371 {
2372 	struct its_device *dev;
2373 	unsigned long *lpi_map = NULL;
2374 	unsigned long flags;
2375 	u16 *col_map = NULL;
2376 	void *itt;
2377 	int lpi_base;
2378 	int nr_lpis;
2379 	int nr_ites;
2380 	int sz;
2381 
2382 	if (!its_alloc_device_table(its, dev_id))
2383 		return NULL;
2384 
2385 	if (WARN_ON(!is_power_of_2(nvecs)))
2386 		nvecs = roundup_pow_of_two(nvecs);
2387 
2388 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2389 	/*
2390 	 * Even if the device wants a single LPI, the ITT must be
2391 	 * sized as a power of two (and you need at least one bit...).
2392 	 */
2393 	nr_ites = max(2, nvecs);
2394 	sz = nr_ites * its->ite_size;
2395 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2396 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2397 	if (alloc_lpis) {
2398 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2399 		if (lpi_map)
2400 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2401 					  GFP_KERNEL);
2402 	} else {
2403 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2404 		nr_lpis = 0;
2405 		lpi_base = 0;
2406 	}
2407 
2408 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2409 		kfree(dev);
2410 		kfree(itt);
2411 		kfree(lpi_map);
2412 		kfree(col_map);
2413 		return NULL;
2414 	}
2415 
2416 	gic_flush_dcache_to_poc(itt, sz);
2417 
2418 	dev->its = its;
2419 	dev->itt = itt;
2420 	dev->nr_ites = nr_ites;
2421 	dev->event_map.lpi_map = lpi_map;
2422 	dev->event_map.col_map = col_map;
2423 	dev->event_map.lpi_base = lpi_base;
2424 	dev->event_map.nr_lpis = nr_lpis;
2425 	mutex_init(&dev->event_map.vlpi_lock);
2426 	dev->device_id = dev_id;
2427 	INIT_LIST_HEAD(&dev->entry);
2428 
2429 	raw_spin_lock_irqsave(&its->lock, flags);
2430 	list_add(&dev->entry, &its->its_device_list);
2431 	raw_spin_unlock_irqrestore(&its->lock, flags);
2432 
2433 	/* Map device to its ITT */
2434 	its_send_mapd(dev, 1);
2435 
2436 	return dev;
2437 }
2438 
2439 static void its_free_device(struct its_device *its_dev)
2440 {
2441 	unsigned long flags;
2442 
2443 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2444 	list_del(&its_dev->entry);
2445 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2446 	kfree(its_dev->itt);
2447 	kfree(its_dev);
2448 }
2449 
2450 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2451 {
2452 	int idx;
2453 
2454 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
2455 				      dev->event_map.nr_lpis,
2456 				      get_count_order(nvecs));
2457 	if (idx < 0)
2458 		return -ENOSPC;
2459 
2460 	*hwirq = dev->event_map.lpi_base + idx;
2461 	set_bit(idx, dev->event_map.lpi_map);
2462 
2463 	return 0;
2464 }
2465 
2466 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2467 			   int nvec, msi_alloc_info_t *info)
2468 {
2469 	struct its_node *its;
2470 	struct its_device *its_dev;
2471 	struct msi_domain_info *msi_info;
2472 	u32 dev_id;
2473 	int err = 0;
2474 
2475 	/*
2476 	 * We ignore "dev" entirely, and rely on the dev_id that has
2477 	 * been passed via the scratchpad. This limits this domain's
2478 	 * usefulness to upper layers that definitely know that they
2479 	 * are built on top of the ITS.
2480 	 */
2481 	dev_id = info->scratchpad[0].ul;
2482 
2483 	msi_info = msi_get_domain_info(domain);
2484 	its = msi_info->data;
2485 
2486 	if (!gic_rdists->has_direct_lpi &&
2487 	    vpe_proxy.dev &&
2488 	    vpe_proxy.dev->its == its &&
2489 	    dev_id == vpe_proxy.dev->device_id) {
2490 		/* Bad luck. Get yourself a better implementation */
2491 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2492 			  dev_id);
2493 		return -EINVAL;
2494 	}
2495 
2496 	mutex_lock(&its->dev_alloc_lock);
2497 	its_dev = its_find_device(its, dev_id);
2498 	if (its_dev) {
2499 		/*
2500 		 * We already have seen this ID, probably through
2501 		 * another alias (PCI bridge of some sort). No need to
2502 		 * create the device.
2503 		 */
2504 		its_dev->shared = true;
2505 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2506 		goto out;
2507 	}
2508 
2509 	its_dev = its_create_device(its, dev_id, nvec, true);
2510 	if (!its_dev) {
2511 		err = -ENOMEM;
2512 		goto out;
2513 	}
2514 
2515 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2516 out:
2517 	mutex_unlock(&its->dev_alloc_lock);
2518 	info->scratchpad[0].ptr = its_dev;
2519 	return err;
2520 }
2521 
2522 static struct msi_domain_ops its_msi_domain_ops = {
2523 	.msi_prepare	= its_msi_prepare,
2524 };
2525 
2526 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2527 				    unsigned int virq,
2528 				    irq_hw_number_t hwirq)
2529 {
2530 	struct irq_fwspec fwspec;
2531 
2532 	if (irq_domain_get_of_node(domain->parent)) {
2533 		fwspec.fwnode = domain->parent->fwnode;
2534 		fwspec.param_count = 3;
2535 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2536 		fwspec.param[1] = hwirq;
2537 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2538 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2539 		fwspec.fwnode = domain->parent->fwnode;
2540 		fwspec.param_count = 2;
2541 		fwspec.param[0] = hwirq;
2542 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2543 	} else {
2544 		return -EINVAL;
2545 	}
2546 
2547 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2548 }
2549 
2550 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2551 				unsigned int nr_irqs, void *args)
2552 {
2553 	msi_alloc_info_t *info = args;
2554 	struct its_device *its_dev = info->scratchpad[0].ptr;
2555 	struct its_node *its = its_dev->its;
2556 	irq_hw_number_t hwirq;
2557 	int err;
2558 	int i;
2559 
2560 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2561 	if (err)
2562 		return err;
2563 
2564 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2565 	if (err)
2566 		return err;
2567 
2568 	for (i = 0; i < nr_irqs; i++) {
2569 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2570 		if (err)
2571 			return err;
2572 
2573 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2574 					      hwirq + i, &its_irq_chip, its_dev);
2575 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2576 		pr_debug("ID:%d pID:%d vID:%d\n",
2577 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
2578 			 (int)(hwirq + i), virq + i);
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 static int its_irq_domain_activate(struct irq_domain *domain,
2585 				   struct irq_data *d, bool reserve)
2586 {
2587 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2588 	u32 event = its_get_event_id(d);
2589 	const struct cpumask *cpu_mask = cpu_online_mask;
2590 	int cpu;
2591 
2592 	/* get the cpu_mask of local node */
2593 	if (its_dev->its->numa_node >= 0)
2594 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2595 
2596 	/* Bind the LPI to the first possible CPU */
2597 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2598 	if (cpu >= nr_cpu_ids) {
2599 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2600 			return -EINVAL;
2601 
2602 		cpu = cpumask_first(cpu_online_mask);
2603 	}
2604 
2605 	its_dev->event_map.col_map[event] = cpu;
2606 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2607 
2608 	/* Map the GIC IRQ and event to the device */
2609 	its_send_mapti(its_dev, d->hwirq, event);
2610 	return 0;
2611 }
2612 
2613 static void its_irq_domain_deactivate(struct irq_domain *domain,
2614 				      struct irq_data *d)
2615 {
2616 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2617 	u32 event = its_get_event_id(d);
2618 
2619 	/* Stop the delivery of interrupts */
2620 	its_send_discard(its_dev, event);
2621 }
2622 
2623 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2624 				unsigned int nr_irqs)
2625 {
2626 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2627 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2628 	struct its_node *its = its_dev->its;
2629 	int i;
2630 
2631 	for (i = 0; i < nr_irqs; i++) {
2632 		struct irq_data *data = irq_domain_get_irq_data(domain,
2633 								virq + i);
2634 		u32 event = its_get_event_id(data);
2635 
2636 		/* Mark interrupt index as unused */
2637 		clear_bit(event, its_dev->event_map.lpi_map);
2638 
2639 		/* Nuke the entry in the domain */
2640 		irq_domain_reset_irq_data(data);
2641 	}
2642 
2643 	mutex_lock(&its->dev_alloc_lock);
2644 
2645 	/*
2646 	 * If all interrupts have been freed, start mopping the
2647 	 * floor. This is conditionned on the device not being shared.
2648 	 */
2649 	if (!its_dev->shared &&
2650 	    bitmap_empty(its_dev->event_map.lpi_map,
2651 			 its_dev->event_map.nr_lpis)) {
2652 		its_lpi_free(its_dev->event_map.lpi_map,
2653 			     its_dev->event_map.lpi_base,
2654 			     its_dev->event_map.nr_lpis);
2655 		kfree(its_dev->event_map.col_map);
2656 
2657 		/* Unmap device/itt */
2658 		its_send_mapd(its_dev, 0);
2659 		its_free_device(its_dev);
2660 	}
2661 
2662 	mutex_unlock(&its->dev_alloc_lock);
2663 
2664 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2665 }
2666 
2667 static const struct irq_domain_ops its_domain_ops = {
2668 	.alloc			= its_irq_domain_alloc,
2669 	.free			= its_irq_domain_free,
2670 	.activate		= its_irq_domain_activate,
2671 	.deactivate		= its_irq_domain_deactivate,
2672 };
2673 
2674 /*
2675  * This is insane.
2676  *
2677  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2678  * likely), the only way to perform an invalidate is to use a fake
2679  * device to issue an INV command, implying that the LPI has first
2680  * been mapped to some event on that device. Since this is not exactly
2681  * cheap, we try to keep that mapping around as long as possible, and
2682  * only issue an UNMAP if we're short on available slots.
2683  *
2684  * Broken by design(tm).
2685  */
2686 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2687 {
2688 	/* Already unmapped? */
2689 	if (vpe->vpe_proxy_event == -1)
2690 		return;
2691 
2692 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2693 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2694 
2695 	/*
2696 	 * We don't track empty slots at all, so let's move the
2697 	 * next_victim pointer if we can quickly reuse that slot
2698 	 * instead of nuking an existing entry. Not clear that this is
2699 	 * always a win though, and this might just generate a ripple
2700 	 * effect... Let's just hope VPEs don't migrate too often.
2701 	 */
2702 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2703 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2704 
2705 	vpe->vpe_proxy_event = -1;
2706 }
2707 
2708 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2709 {
2710 	if (!gic_rdists->has_direct_lpi) {
2711 		unsigned long flags;
2712 
2713 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2714 		its_vpe_db_proxy_unmap_locked(vpe);
2715 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2716 	}
2717 }
2718 
2719 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2720 {
2721 	/* Already mapped? */
2722 	if (vpe->vpe_proxy_event != -1)
2723 		return;
2724 
2725 	/* This slot was already allocated. Kick the other VPE out. */
2726 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2727 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2728 
2729 	/* Map the new VPE instead */
2730 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2731 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2732 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2733 
2734 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2735 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2736 }
2737 
2738 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2739 {
2740 	unsigned long flags;
2741 	struct its_collection *target_col;
2742 
2743 	if (gic_rdists->has_direct_lpi) {
2744 		void __iomem *rdbase;
2745 
2746 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2747 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2748 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2749 			cpu_relax();
2750 
2751 		return;
2752 	}
2753 
2754 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2755 
2756 	its_vpe_db_proxy_map_locked(vpe);
2757 
2758 	target_col = &vpe_proxy.dev->its->collections[to];
2759 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2760 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2761 
2762 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2763 }
2764 
2765 static int its_vpe_set_affinity(struct irq_data *d,
2766 				const struct cpumask *mask_val,
2767 				bool force)
2768 {
2769 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2770 	int cpu = cpumask_first(mask_val);
2771 
2772 	/*
2773 	 * Changing affinity is mega expensive, so let's be as lazy as
2774 	 * we can and only do it if we really have to. Also, if mapped
2775 	 * into the proxy device, we need to move the doorbell
2776 	 * interrupt to its new location.
2777 	 */
2778 	if (vpe->col_idx != cpu) {
2779 		int from = vpe->col_idx;
2780 
2781 		vpe->col_idx = cpu;
2782 		its_send_vmovp(vpe);
2783 		its_vpe_db_proxy_move(vpe, from, cpu);
2784 	}
2785 
2786 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2787 
2788 	return IRQ_SET_MASK_OK_DONE;
2789 }
2790 
2791 static void its_vpe_schedule(struct its_vpe *vpe)
2792 {
2793 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2794 	u64 val;
2795 
2796 	/* Schedule the VPE */
2797 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2798 		GENMASK_ULL(51, 12);
2799 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2800 	val |= GICR_VPROPBASER_RaWb;
2801 	val |= GICR_VPROPBASER_InnerShareable;
2802 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2803 
2804 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2805 		GENMASK_ULL(51, 16);
2806 	val |= GICR_VPENDBASER_RaWaWb;
2807 	val |= GICR_VPENDBASER_NonShareable;
2808 	/*
2809 	 * There is no good way of finding out if the pending table is
2810 	 * empty as we can race against the doorbell interrupt very
2811 	 * easily. So in the end, vpe->pending_last is only an
2812 	 * indication that the vcpu has something pending, not one
2813 	 * that the pending table is empty. A good implementation
2814 	 * would be able to read its coarse map pretty quickly anyway,
2815 	 * making this a tolerable issue.
2816 	 */
2817 	val |= GICR_VPENDBASER_PendingLast;
2818 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2819 	val |= GICR_VPENDBASER_Valid;
2820 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2821 }
2822 
2823 static void its_vpe_deschedule(struct its_vpe *vpe)
2824 {
2825 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2826 	u64 val;
2827 
2828 	val = its_clear_vpend_valid(vlpi_base);
2829 
2830 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2831 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2832 		vpe->idai = false;
2833 		vpe->pending_last = true;
2834 	} else {
2835 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2836 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2837 	}
2838 }
2839 
2840 static void its_vpe_invall(struct its_vpe *vpe)
2841 {
2842 	struct its_node *its;
2843 
2844 	list_for_each_entry(its, &its_nodes, entry) {
2845 		if (!its->is_v4)
2846 			continue;
2847 
2848 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2849 			continue;
2850 
2851 		/*
2852 		 * Sending a VINVALL to a single ITS is enough, as all
2853 		 * we need is to reach the redistributors.
2854 		 */
2855 		its_send_vinvall(its, vpe);
2856 		return;
2857 	}
2858 }
2859 
2860 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2861 {
2862 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2863 	struct its_cmd_info *info = vcpu_info;
2864 
2865 	switch (info->cmd_type) {
2866 	case SCHEDULE_VPE:
2867 		its_vpe_schedule(vpe);
2868 		return 0;
2869 
2870 	case DESCHEDULE_VPE:
2871 		its_vpe_deschedule(vpe);
2872 		return 0;
2873 
2874 	case INVALL_VPE:
2875 		its_vpe_invall(vpe);
2876 		return 0;
2877 
2878 	default:
2879 		return -EINVAL;
2880 	}
2881 }
2882 
2883 static void its_vpe_send_cmd(struct its_vpe *vpe,
2884 			     void (*cmd)(struct its_device *, u32))
2885 {
2886 	unsigned long flags;
2887 
2888 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2889 
2890 	its_vpe_db_proxy_map_locked(vpe);
2891 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2892 
2893 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2894 }
2895 
2896 static void its_vpe_send_inv(struct irq_data *d)
2897 {
2898 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2899 
2900 	if (gic_rdists->has_direct_lpi) {
2901 		void __iomem *rdbase;
2902 
2903 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2904 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2905 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2906 			cpu_relax();
2907 	} else {
2908 		its_vpe_send_cmd(vpe, its_send_inv);
2909 	}
2910 }
2911 
2912 static void its_vpe_mask_irq(struct irq_data *d)
2913 {
2914 	/*
2915 	 * We need to unmask the LPI, which is described by the parent
2916 	 * irq_data. Instead of calling into the parent (which won't
2917 	 * exactly do the right thing, let's simply use the
2918 	 * parent_data pointer. Yes, I'm naughty.
2919 	 */
2920 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2921 	its_vpe_send_inv(d);
2922 }
2923 
2924 static void its_vpe_unmask_irq(struct irq_data *d)
2925 {
2926 	/* Same hack as above... */
2927 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2928 	its_vpe_send_inv(d);
2929 }
2930 
2931 static int its_vpe_set_irqchip_state(struct irq_data *d,
2932 				     enum irqchip_irq_state which,
2933 				     bool state)
2934 {
2935 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2936 
2937 	if (which != IRQCHIP_STATE_PENDING)
2938 		return -EINVAL;
2939 
2940 	if (gic_rdists->has_direct_lpi) {
2941 		void __iomem *rdbase;
2942 
2943 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2944 		if (state) {
2945 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2946 		} else {
2947 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2948 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2949 				cpu_relax();
2950 		}
2951 	} else {
2952 		if (state)
2953 			its_vpe_send_cmd(vpe, its_send_int);
2954 		else
2955 			its_vpe_send_cmd(vpe, its_send_clear);
2956 	}
2957 
2958 	return 0;
2959 }
2960 
2961 static struct irq_chip its_vpe_irq_chip = {
2962 	.name			= "GICv4-vpe",
2963 	.irq_mask		= its_vpe_mask_irq,
2964 	.irq_unmask		= its_vpe_unmask_irq,
2965 	.irq_eoi		= irq_chip_eoi_parent,
2966 	.irq_set_affinity	= its_vpe_set_affinity,
2967 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2968 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2969 };
2970 
2971 static int its_vpe_id_alloc(void)
2972 {
2973 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2974 }
2975 
2976 static void its_vpe_id_free(u16 id)
2977 {
2978 	ida_simple_remove(&its_vpeid_ida, id);
2979 }
2980 
2981 static int its_vpe_init(struct its_vpe *vpe)
2982 {
2983 	struct page *vpt_page;
2984 	int vpe_id;
2985 
2986 	/* Allocate vpe_id */
2987 	vpe_id = its_vpe_id_alloc();
2988 	if (vpe_id < 0)
2989 		return vpe_id;
2990 
2991 	/* Allocate VPT */
2992 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2993 	if (!vpt_page) {
2994 		its_vpe_id_free(vpe_id);
2995 		return -ENOMEM;
2996 	}
2997 
2998 	if (!its_alloc_vpe_table(vpe_id)) {
2999 		its_vpe_id_free(vpe_id);
3000 		its_free_pending_table(vpe->vpt_page);
3001 		return -ENOMEM;
3002 	}
3003 
3004 	vpe->vpe_id = vpe_id;
3005 	vpe->vpt_page = vpt_page;
3006 	vpe->vpe_proxy_event = -1;
3007 
3008 	return 0;
3009 }
3010 
3011 static void its_vpe_teardown(struct its_vpe *vpe)
3012 {
3013 	its_vpe_db_proxy_unmap(vpe);
3014 	its_vpe_id_free(vpe->vpe_id);
3015 	its_free_pending_table(vpe->vpt_page);
3016 }
3017 
3018 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3019 				    unsigned int virq,
3020 				    unsigned int nr_irqs)
3021 {
3022 	struct its_vm *vm = domain->host_data;
3023 	int i;
3024 
3025 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3026 
3027 	for (i = 0; i < nr_irqs; i++) {
3028 		struct irq_data *data = irq_domain_get_irq_data(domain,
3029 								virq + i);
3030 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3031 
3032 		BUG_ON(vm != vpe->its_vm);
3033 
3034 		clear_bit(data->hwirq, vm->db_bitmap);
3035 		its_vpe_teardown(vpe);
3036 		irq_domain_reset_irq_data(data);
3037 	}
3038 
3039 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3040 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3041 		its_free_prop_table(vm->vprop_page);
3042 	}
3043 }
3044 
3045 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3046 				    unsigned int nr_irqs, void *args)
3047 {
3048 	struct its_vm *vm = args;
3049 	unsigned long *bitmap;
3050 	struct page *vprop_page;
3051 	int base, nr_ids, i, err = 0;
3052 
3053 	BUG_ON(!vm);
3054 
3055 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3056 	if (!bitmap)
3057 		return -ENOMEM;
3058 
3059 	if (nr_ids < nr_irqs) {
3060 		its_lpi_free(bitmap, base, nr_ids);
3061 		return -ENOMEM;
3062 	}
3063 
3064 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
3065 	if (!vprop_page) {
3066 		its_lpi_free(bitmap, base, nr_ids);
3067 		return -ENOMEM;
3068 	}
3069 
3070 	vm->db_bitmap = bitmap;
3071 	vm->db_lpi_base = base;
3072 	vm->nr_db_lpis = nr_ids;
3073 	vm->vprop_page = vprop_page;
3074 
3075 	for (i = 0; i < nr_irqs; i++) {
3076 		vm->vpes[i]->vpe_db_lpi = base + i;
3077 		err = its_vpe_init(vm->vpes[i]);
3078 		if (err)
3079 			break;
3080 		err = its_irq_gic_domain_alloc(domain, virq + i,
3081 					       vm->vpes[i]->vpe_db_lpi);
3082 		if (err)
3083 			break;
3084 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3085 					      &its_vpe_irq_chip, vm->vpes[i]);
3086 		set_bit(i, bitmap);
3087 	}
3088 
3089 	if (err) {
3090 		if (i > 0)
3091 			its_vpe_irq_domain_free(domain, virq, i - 1);
3092 
3093 		its_lpi_free(bitmap, base, nr_ids);
3094 		its_free_prop_table(vprop_page);
3095 	}
3096 
3097 	return err;
3098 }
3099 
3100 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3101 				       struct irq_data *d, bool reserve)
3102 {
3103 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3104 	struct its_node *its;
3105 
3106 	/* If we use the list map, we issue VMAPP on demand... */
3107 	if (its_list_map)
3108 		return 0;
3109 
3110 	/* Map the VPE to the first possible CPU */
3111 	vpe->col_idx = cpumask_first(cpu_online_mask);
3112 
3113 	list_for_each_entry(its, &its_nodes, entry) {
3114 		if (!its->is_v4)
3115 			continue;
3116 
3117 		its_send_vmapp(its, vpe, true);
3118 		its_send_vinvall(its, vpe);
3119 	}
3120 
3121 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3122 
3123 	return 0;
3124 }
3125 
3126 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3127 					  struct irq_data *d)
3128 {
3129 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3130 	struct its_node *its;
3131 
3132 	/*
3133 	 * If we use the list map, we unmap the VPE once no VLPIs are
3134 	 * associated with the VM.
3135 	 */
3136 	if (its_list_map)
3137 		return;
3138 
3139 	list_for_each_entry(its, &its_nodes, entry) {
3140 		if (!its->is_v4)
3141 			continue;
3142 
3143 		its_send_vmapp(its, vpe, false);
3144 	}
3145 }
3146 
3147 static const struct irq_domain_ops its_vpe_domain_ops = {
3148 	.alloc			= its_vpe_irq_domain_alloc,
3149 	.free			= its_vpe_irq_domain_free,
3150 	.activate		= its_vpe_irq_domain_activate,
3151 	.deactivate		= its_vpe_irq_domain_deactivate,
3152 };
3153 
3154 static int its_force_quiescent(void __iomem *base)
3155 {
3156 	u32 count = 1000000;	/* 1s */
3157 	u32 val;
3158 
3159 	val = readl_relaxed(base + GITS_CTLR);
3160 	/*
3161 	 * GIC architecture specification requires the ITS to be both
3162 	 * disabled and quiescent for writes to GITS_BASER<n> or
3163 	 * GITS_CBASER to not have UNPREDICTABLE results.
3164 	 */
3165 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3166 		return 0;
3167 
3168 	/* Disable the generation of all interrupts to this ITS */
3169 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3170 	writel_relaxed(val, base + GITS_CTLR);
3171 
3172 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3173 	while (1) {
3174 		val = readl_relaxed(base + GITS_CTLR);
3175 		if (val & GITS_CTLR_QUIESCENT)
3176 			return 0;
3177 
3178 		count--;
3179 		if (!count)
3180 			return -EBUSY;
3181 
3182 		cpu_relax();
3183 		udelay(1);
3184 	}
3185 }
3186 
3187 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3188 {
3189 	struct its_node *its = data;
3190 
3191 	/* erratum 22375: only alloc 8MB table size */
3192 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3193 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3194 
3195 	return true;
3196 }
3197 
3198 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3199 {
3200 	struct its_node *its = data;
3201 
3202 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3203 
3204 	return true;
3205 }
3206 
3207 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3208 {
3209 	struct its_node *its = data;
3210 
3211 	/* On QDF2400, the size of the ITE is 16Bytes */
3212 	its->ite_size = 16;
3213 
3214 	return true;
3215 }
3216 
3217 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3218 {
3219 	struct its_node *its = its_dev->its;
3220 
3221 	/*
3222 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3223 	 * which maps 32-bit writes targeted at a separate window of
3224 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3225 	 * with device ID taken from bits [device_id_bits + 1:2] of
3226 	 * the window offset.
3227 	 */
3228 	return its->pre_its_base + (its_dev->device_id << 2);
3229 }
3230 
3231 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3232 {
3233 	struct its_node *its = data;
3234 	u32 pre_its_window[2];
3235 	u32 ids;
3236 
3237 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3238 					   "socionext,synquacer-pre-its",
3239 					   pre_its_window,
3240 					   ARRAY_SIZE(pre_its_window))) {
3241 
3242 		its->pre_its_base = pre_its_window[0];
3243 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3244 
3245 		ids = ilog2(pre_its_window[1]) - 2;
3246 		if (its->device_ids > ids)
3247 			its->device_ids = ids;
3248 
3249 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3250 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3251 		return true;
3252 	}
3253 	return false;
3254 }
3255 
3256 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3257 {
3258 	struct its_node *its = data;
3259 
3260 	/*
3261 	 * Hip07 insists on using the wrong address for the VLPI
3262 	 * page. Trick it into doing the right thing...
3263 	 */
3264 	its->vlpi_redist_offset = SZ_128K;
3265 	return true;
3266 }
3267 
3268 static const struct gic_quirk its_quirks[] = {
3269 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3270 	{
3271 		.desc	= "ITS: Cavium errata 22375, 24313",
3272 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3273 		.mask	= 0xffff0fff,
3274 		.init	= its_enable_quirk_cavium_22375,
3275 	},
3276 #endif
3277 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3278 	{
3279 		.desc	= "ITS: Cavium erratum 23144",
3280 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3281 		.mask	= 0xffff0fff,
3282 		.init	= its_enable_quirk_cavium_23144,
3283 	},
3284 #endif
3285 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3286 	{
3287 		.desc	= "ITS: QDF2400 erratum 0065",
3288 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3289 		.mask	= 0xffffffff,
3290 		.init	= its_enable_quirk_qdf2400_e0065,
3291 	},
3292 #endif
3293 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3294 	{
3295 		/*
3296 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3297 		 * implementation, but with a 'pre-ITS' added that requires
3298 		 * special handling in software.
3299 		 */
3300 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3301 		.iidr	= 0x0001143b,
3302 		.mask	= 0xffffffff,
3303 		.init	= its_enable_quirk_socionext_synquacer,
3304 	},
3305 #endif
3306 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3307 	{
3308 		.desc	= "ITS: Hip07 erratum 161600802",
3309 		.iidr	= 0x00000004,
3310 		.mask	= 0xffffffff,
3311 		.init	= its_enable_quirk_hip07_161600802,
3312 	},
3313 #endif
3314 	{
3315 	}
3316 };
3317 
3318 static void its_enable_quirks(struct its_node *its)
3319 {
3320 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3321 
3322 	gic_enable_quirks(iidr, its_quirks, its);
3323 }
3324 
3325 static int its_save_disable(void)
3326 {
3327 	struct its_node *its;
3328 	int err = 0;
3329 
3330 	raw_spin_lock(&its_lock);
3331 	list_for_each_entry(its, &its_nodes, entry) {
3332 		void __iomem *base;
3333 
3334 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3335 			continue;
3336 
3337 		base = its->base;
3338 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3339 		err = its_force_quiescent(base);
3340 		if (err) {
3341 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3342 			       &its->phys_base, err);
3343 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3344 			goto err;
3345 		}
3346 
3347 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3348 	}
3349 
3350 err:
3351 	if (err) {
3352 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3353 			void __iomem *base;
3354 
3355 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3356 				continue;
3357 
3358 			base = its->base;
3359 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3360 		}
3361 	}
3362 	raw_spin_unlock(&its_lock);
3363 
3364 	return err;
3365 }
3366 
3367 static void its_restore_enable(void)
3368 {
3369 	struct its_node *its;
3370 	int ret;
3371 
3372 	raw_spin_lock(&its_lock);
3373 	list_for_each_entry(its, &its_nodes, entry) {
3374 		void __iomem *base;
3375 		int i;
3376 
3377 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3378 			continue;
3379 
3380 		base = its->base;
3381 
3382 		/*
3383 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3384 		 * don't restore it since writing to CBASER or BASER<n>
3385 		 * registers is undefined according to the GIC v3 ITS
3386 		 * Specification.
3387 		 */
3388 		ret = its_force_quiescent(base);
3389 		if (ret) {
3390 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3391 			       &its->phys_base, ret);
3392 			continue;
3393 		}
3394 
3395 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3396 
3397 		/*
3398 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3399 		 * cmd_write line up with it.
3400 		 */
3401 		its->cmd_write = its->cmd_base;
3402 		gits_write_cwriter(0, base + GITS_CWRITER);
3403 
3404 		/* Restore GITS_BASER from the value cache. */
3405 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3406 			struct its_baser *baser = &its->tables[i];
3407 
3408 			if (!(baser->val & GITS_BASER_VALID))
3409 				continue;
3410 
3411 			its_write_baser(its, baser, baser->val);
3412 		}
3413 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3414 
3415 		/*
3416 		 * Reinit the collection if it's stored in the ITS. This is
3417 		 * indicated by the col_id being less than the HCC field.
3418 		 * CID < HCC as specified in the GIC v3 Documentation.
3419 		 */
3420 		if (its->collections[smp_processor_id()].col_id <
3421 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3422 			its_cpu_init_collection(its);
3423 	}
3424 	raw_spin_unlock(&its_lock);
3425 }
3426 
3427 static struct syscore_ops its_syscore_ops = {
3428 	.suspend = its_save_disable,
3429 	.resume = its_restore_enable,
3430 };
3431 
3432 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3433 {
3434 	struct irq_domain *inner_domain;
3435 	struct msi_domain_info *info;
3436 
3437 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3438 	if (!info)
3439 		return -ENOMEM;
3440 
3441 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3442 	if (!inner_domain) {
3443 		kfree(info);
3444 		return -ENOMEM;
3445 	}
3446 
3447 	inner_domain->parent = its_parent;
3448 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3449 	inner_domain->flags |= its->msi_domain_flags;
3450 	info->ops = &its_msi_domain_ops;
3451 	info->data = its;
3452 	inner_domain->host_data = info;
3453 
3454 	return 0;
3455 }
3456 
3457 static int its_init_vpe_domain(void)
3458 {
3459 	struct its_node *its;
3460 	u32 devid;
3461 	int entries;
3462 
3463 	if (gic_rdists->has_direct_lpi) {
3464 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3465 		return 0;
3466 	}
3467 
3468 	/* Any ITS will do, even if not v4 */
3469 	its = list_first_entry(&its_nodes, struct its_node, entry);
3470 
3471 	entries = roundup_pow_of_two(nr_cpu_ids);
3472 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3473 				 GFP_KERNEL);
3474 	if (!vpe_proxy.vpes) {
3475 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3476 		return -ENOMEM;
3477 	}
3478 
3479 	/* Use the last possible DevID */
3480 	devid = GENMASK(its->device_ids - 1, 0);
3481 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3482 	if (!vpe_proxy.dev) {
3483 		kfree(vpe_proxy.vpes);
3484 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3485 		return -ENOMEM;
3486 	}
3487 
3488 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3489 
3490 	raw_spin_lock_init(&vpe_proxy.lock);
3491 	vpe_proxy.next_victim = 0;
3492 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3493 		devid, vpe_proxy.dev->nr_ites);
3494 
3495 	return 0;
3496 }
3497 
3498 static int __init its_compute_its_list_map(struct resource *res,
3499 					   void __iomem *its_base)
3500 {
3501 	int its_number;
3502 	u32 ctlr;
3503 
3504 	/*
3505 	 * This is assumed to be done early enough that we're
3506 	 * guaranteed to be single-threaded, hence no
3507 	 * locking. Should this change, we should address
3508 	 * this.
3509 	 */
3510 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3511 	if (its_number >= GICv4_ITS_LIST_MAX) {
3512 		pr_err("ITS@%pa: No ITSList entry available!\n",
3513 		       &res->start);
3514 		return -EINVAL;
3515 	}
3516 
3517 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3518 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3519 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3520 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3521 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3522 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3523 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3524 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3525 	}
3526 
3527 	if (test_and_set_bit(its_number, &its_list_map)) {
3528 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3529 		       &res->start, its_number);
3530 		return -EINVAL;
3531 	}
3532 
3533 	return its_number;
3534 }
3535 
3536 static int __init its_probe_one(struct resource *res,
3537 				struct fwnode_handle *handle, int numa_node)
3538 {
3539 	struct its_node *its;
3540 	void __iomem *its_base;
3541 	u32 val, ctlr;
3542 	u64 baser, tmp, typer;
3543 	struct page *page;
3544 	int err;
3545 
3546 	its_base = ioremap(res->start, resource_size(res));
3547 	if (!its_base) {
3548 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3549 		return -ENOMEM;
3550 	}
3551 
3552 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3553 	if (val != 0x30 && val != 0x40) {
3554 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3555 		err = -ENODEV;
3556 		goto out_unmap;
3557 	}
3558 
3559 	err = its_force_quiescent(its_base);
3560 	if (err) {
3561 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3562 		goto out_unmap;
3563 	}
3564 
3565 	pr_info("ITS %pR\n", res);
3566 
3567 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3568 	if (!its) {
3569 		err = -ENOMEM;
3570 		goto out_unmap;
3571 	}
3572 
3573 	raw_spin_lock_init(&its->lock);
3574 	mutex_init(&its->dev_alloc_lock);
3575 	INIT_LIST_HEAD(&its->entry);
3576 	INIT_LIST_HEAD(&its->its_device_list);
3577 	typer = gic_read_typer(its_base + GITS_TYPER);
3578 	its->base = its_base;
3579 	its->phys_base = res->start;
3580 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3581 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3582 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3583 	if (its->is_v4) {
3584 		if (!(typer & GITS_TYPER_VMOVP)) {
3585 			err = its_compute_its_list_map(res, its_base);
3586 			if (err < 0)
3587 				goto out_free_its;
3588 
3589 			its->list_nr = err;
3590 
3591 			pr_info("ITS@%pa: Using ITS number %d\n",
3592 				&res->start, err);
3593 		} else {
3594 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3595 		}
3596 	}
3597 
3598 	its->numa_node = numa_node;
3599 
3600 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3601 				get_order(ITS_CMD_QUEUE_SZ));
3602 	if (!page) {
3603 		err = -ENOMEM;
3604 		goto out_free_its;
3605 	}
3606 	its->cmd_base = (void *)page_address(page);
3607 	its->cmd_write = its->cmd_base;
3608 	its->fwnode_handle = handle;
3609 	its->get_msi_base = its_irq_get_msi_base;
3610 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3611 
3612 	its_enable_quirks(its);
3613 
3614 	err = its_alloc_tables(its);
3615 	if (err)
3616 		goto out_free_cmd;
3617 
3618 	err = its_alloc_collections(its);
3619 	if (err)
3620 		goto out_free_tables;
3621 
3622 	baser = (virt_to_phys(its->cmd_base)	|
3623 		 GITS_CBASER_RaWaWb		|
3624 		 GITS_CBASER_InnerShareable	|
3625 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3626 		 GITS_CBASER_VALID);
3627 
3628 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3629 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3630 
3631 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3632 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3633 			/*
3634 			 * The HW reports non-shareable, we must
3635 			 * remove the cacheability attributes as
3636 			 * well.
3637 			 */
3638 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3639 				   GITS_CBASER_CACHEABILITY_MASK);
3640 			baser |= GITS_CBASER_nC;
3641 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3642 		}
3643 		pr_info("ITS: using cache flushing for cmd queue\n");
3644 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3645 	}
3646 
3647 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3648 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3649 	ctlr |= GITS_CTLR_ENABLE;
3650 	if (its->is_v4)
3651 		ctlr |= GITS_CTLR_ImDe;
3652 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3653 
3654 	if (GITS_TYPER_HCC(typer))
3655 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3656 
3657 	err = its_init_domain(handle, its);
3658 	if (err)
3659 		goto out_free_tables;
3660 
3661 	raw_spin_lock(&its_lock);
3662 	list_add(&its->entry, &its_nodes);
3663 	raw_spin_unlock(&its_lock);
3664 
3665 	return 0;
3666 
3667 out_free_tables:
3668 	its_free_tables(its);
3669 out_free_cmd:
3670 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3671 out_free_its:
3672 	kfree(its);
3673 out_unmap:
3674 	iounmap(its_base);
3675 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3676 	return err;
3677 }
3678 
3679 static bool gic_rdists_supports_plpis(void)
3680 {
3681 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3682 }
3683 
3684 static int redist_disable_lpis(void)
3685 {
3686 	void __iomem *rbase = gic_data_rdist_rd_base();
3687 	u64 timeout = USEC_PER_SEC;
3688 	u64 val;
3689 
3690 	if (!gic_rdists_supports_plpis()) {
3691 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3692 		return -ENXIO;
3693 	}
3694 
3695 	val = readl_relaxed(rbase + GICR_CTLR);
3696 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3697 		return 0;
3698 
3699 	/*
3700 	 * If coming via a CPU hotplug event, we don't need to disable
3701 	 * LPIs before trying to re-enable them. They are already
3702 	 * configured and all is well in the world.
3703 	 *
3704 	 * If running with preallocated tables, there is nothing to do.
3705 	 */
3706 	if (gic_data_rdist()->lpi_enabled ||
3707 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3708 		return 0;
3709 
3710 	/*
3711 	 * From that point on, we only try to do some damage control.
3712 	 */
3713 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3714 		smp_processor_id());
3715 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3716 
3717 	/* Disable LPIs */
3718 	val &= ~GICR_CTLR_ENABLE_LPIS;
3719 	writel_relaxed(val, rbase + GICR_CTLR);
3720 
3721 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3722 	dsb(sy);
3723 
3724 	/*
3725 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3726 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3727 	 * Error out if we time out waiting for RWP to clear.
3728 	 */
3729 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3730 		if (!timeout) {
3731 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3732 			       smp_processor_id());
3733 			return -ETIMEDOUT;
3734 		}
3735 		udelay(1);
3736 		timeout--;
3737 	}
3738 
3739 	/*
3740 	 * After it has been written to 1, it is IMPLEMENTATION
3741 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3742 	 * cleared to 0. Error out if clearing the bit failed.
3743 	 */
3744 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3745 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3746 		return -EBUSY;
3747 	}
3748 
3749 	return 0;
3750 }
3751 
3752 int its_cpu_init(void)
3753 {
3754 	if (!list_empty(&its_nodes)) {
3755 		int ret;
3756 
3757 		ret = redist_disable_lpis();
3758 		if (ret)
3759 			return ret;
3760 
3761 		its_cpu_init_lpis();
3762 		its_cpu_init_collections();
3763 	}
3764 
3765 	return 0;
3766 }
3767 
3768 static const struct of_device_id its_device_id[] = {
3769 	{	.compatible	= "arm,gic-v3-its",	},
3770 	{},
3771 };
3772 
3773 static int __init its_of_probe(struct device_node *node)
3774 {
3775 	struct device_node *np;
3776 	struct resource res;
3777 
3778 	for (np = of_find_matching_node(node, its_device_id); np;
3779 	     np = of_find_matching_node(np, its_device_id)) {
3780 		if (!of_device_is_available(np))
3781 			continue;
3782 		if (!of_property_read_bool(np, "msi-controller")) {
3783 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3784 				np);
3785 			continue;
3786 		}
3787 
3788 		if (of_address_to_resource(np, 0, &res)) {
3789 			pr_warn("%pOF: no regs?\n", np);
3790 			continue;
3791 		}
3792 
3793 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3794 	}
3795 	return 0;
3796 }
3797 
3798 #ifdef CONFIG_ACPI
3799 
3800 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3801 
3802 #ifdef CONFIG_ACPI_NUMA
3803 struct its_srat_map {
3804 	/* numa node id */
3805 	u32	numa_node;
3806 	/* GIC ITS ID */
3807 	u32	its_id;
3808 };
3809 
3810 static struct its_srat_map *its_srat_maps __initdata;
3811 static int its_in_srat __initdata;
3812 
3813 static int __init acpi_get_its_numa_node(u32 its_id)
3814 {
3815 	int i;
3816 
3817 	for (i = 0; i < its_in_srat; i++) {
3818 		if (its_id == its_srat_maps[i].its_id)
3819 			return its_srat_maps[i].numa_node;
3820 	}
3821 	return NUMA_NO_NODE;
3822 }
3823 
3824 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
3825 					  const unsigned long end)
3826 {
3827 	return 0;
3828 }
3829 
3830 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
3831 			 const unsigned long end)
3832 {
3833 	int node;
3834 	struct acpi_srat_gic_its_affinity *its_affinity;
3835 
3836 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3837 	if (!its_affinity)
3838 		return -EINVAL;
3839 
3840 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3841 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3842 			its_affinity->header.length);
3843 		return -EINVAL;
3844 	}
3845 
3846 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3847 
3848 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3849 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3850 		return 0;
3851 	}
3852 
3853 	its_srat_maps[its_in_srat].numa_node = node;
3854 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3855 	its_in_srat++;
3856 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3857 		its_affinity->proximity_domain, its_affinity->its_id, node);
3858 
3859 	return 0;
3860 }
3861 
3862 static void __init acpi_table_parse_srat_its(void)
3863 {
3864 	int count;
3865 
3866 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3867 			sizeof(struct acpi_table_srat),
3868 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3869 			gic_acpi_match_srat_its, 0);
3870 	if (count <= 0)
3871 		return;
3872 
3873 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3874 				      GFP_KERNEL);
3875 	if (!its_srat_maps) {
3876 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3877 		return;
3878 	}
3879 
3880 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3881 			sizeof(struct acpi_table_srat),
3882 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3883 			gic_acpi_parse_srat_its, 0);
3884 }
3885 
3886 /* free the its_srat_maps after ITS probing */
3887 static void __init acpi_its_srat_maps_free(void)
3888 {
3889 	kfree(its_srat_maps);
3890 }
3891 #else
3892 static void __init acpi_table_parse_srat_its(void)	{ }
3893 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3894 static void __init acpi_its_srat_maps_free(void) { }
3895 #endif
3896 
3897 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3898 					  const unsigned long end)
3899 {
3900 	struct acpi_madt_generic_translator *its_entry;
3901 	struct fwnode_handle *dom_handle;
3902 	struct resource res;
3903 	int err;
3904 
3905 	its_entry = (struct acpi_madt_generic_translator *)header;
3906 	memset(&res, 0, sizeof(res));
3907 	res.start = its_entry->base_address;
3908 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3909 	res.flags = IORESOURCE_MEM;
3910 
3911 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3912 	if (!dom_handle) {
3913 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3914 		       &res.start);
3915 		return -ENOMEM;
3916 	}
3917 
3918 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3919 					 dom_handle);
3920 	if (err) {
3921 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3922 		       &res.start, its_entry->translation_id);
3923 		goto dom_err;
3924 	}
3925 
3926 	err = its_probe_one(&res, dom_handle,
3927 			acpi_get_its_numa_node(its_entry->translation_id));
3928 	if (!err)
3929 		return 0;
3930 
3931 	iort_deregister_domain_token(its_entry->translation_id);
3932 dom_err:
3933 	irq_domain_free_fwnode(dom_handle);
3934 	return err;
3935 }
3936 
3937 static void __init its_acpi_probe(void)
3938 {
3939 	acpi_table_parse_srat_its();
3940 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3941 			      gic_acpi_parse_madt_its, 0);
3942 	acpi_its_srat_maps_free();
3943 }
3944 #else
3945 static void __init its_acpi_probe(void) { }
3946 #endif
3947 
3948 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3949 		    struct irq_domain *parent_domain)
3950 {
3951 	struct device_node *of_node;
3952 	struct its_node *its;
3953 	bool has_v4 = false;
3954 	int err;
3955 
3956 	its_parent = parent_domain;
3957 	of_node = to_of_node(handle);
3958 	if (of_node)
3959 		its_of_probe(of_node);
3960 	else
3961 		its_acpi_probe();
3962 
3963 	if (list_empty(&its_nodes)) {
3964 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3965 		return -ENXIO;
3966 	}
3967 
3968 	gic_rdists = rdists;
3969 
3970 	err = allocate_lpi_tables();
3971 	if (err)
3972 		return err;
3973 
3974 	list_for_each_entry(its, &its_nodes, entry)
3975 		has_v4 |= its->is_v4;
3976 
3977 	if (has_v4 & rdists->has_vlpis) {
3978 		if (its_init_vpe_domain() ||
3979 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3980 			rdists->has_vlpis = false;
3981 			pr_err("ITS: Disabling GICv4 support\n");
3982 		}
3983 	}
3984 
3985 	register_syscore_ops(&its_syscore_ops);
3986 
3987 	return 0;
3988 }
3989