xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
46 
47 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
48 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
49 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
50 
51 static u32 lpi_id_bits;
52 
53 /*
54  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
55  * deal with (one configuration byte per interrupt). PENDBASE has to
56  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57  */
58 #define LPI_NRBITS		lpi_id_bits
59 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
60 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61 
62 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
63 
64 /*
65  * Collection structure - just an ID, and a redistributor address to
66  * ping. We use one per CPU as a bag of interrupts assigned to this
67  * CPU.
68  */
69 struct its_collection {
70 	u64			target_address;
71 	u16			col_id;
72 };
73 
74 /*
75  * The ITS_BASER structure - contains memory information, cached
76  * value of BASER register configuration and ITS page size.
77  */
78 struct its_baser {
79 	void		*base;
80 	u64		val;
81 	u32		order;
82 	u32		psz;
83 };
84 
85 struct its_device;
86 
87 /*
88  * The ITS structure - contains most of the infrastructure, with the
89  * top-level MSI domain, the command queue, the collections, and the
90  * list of devices writing to it.
91  *
92  * dev_alloc_lock has to be taken for device allocations, while the
93  * spinlock must be taken to parse data structures such as the device
94  * list.
95  */
96 struct its_node {
97 	raw_spinlock_t		lock;
98 	struct mutex		dev_alloc_lock;
99 	struct list_head	entry;
100 	void __iomem		*base;
101 	void __iomem		*sgir_base;
102 	phys_addr_t		phys_base;
103 	struct its_cmd_block	*cmd_base;
104 	struct its_cmd_block	*cmd_write;
105 	struct its_baser	tables[GITS_BASER_NR_REGS];
106 	struct its_collection	*collections;
107 	struct fwnode_handle	*fwnode_handle;
108 	u64			(*get_msi_base)(struct its_device *its_dev);
109 	u64			typer;
110 	u64			cbaser_save;
111 	u32			ctlr_save;
112 	u32			mpidr;
113 	struct list_head	its_device_list;
114 	u64			flags;
115 	unsigned long		list_nr;
116 	int			numa_node;
117 	unsigned int		msi_domain_flags;
118 	u32			pre_its_base; /* for Socionext Synquacer */
119 	int			vlpi_redist_offset;
120 };
121 
122 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
123 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
124 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125 
126 #define ITS_ITT_ALIGN		SZ_256
127 
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS						\
130 	({								\
131 		int nvpeid = 16;					\
132 		if (gic_rdists->has_rvpeid &&				\
133 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
134 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
135 				      GICD_TYPER2_VID);			\
136 									\
137 		nvpeid;							\
138 	})
139 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
140 
141 /* Convert page order to size in bytes */
142 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
143 
144 struct event_lpi_map {
145 	unsigned long		*lpi_map;
146 	u16			*col_map;
147 	irq_hw_number_t		lpi_base;
148 	int			nr_lpis;
149 	raw_spinlock_t		vlpi_lock;
150 	struct its_vm		*vm;
151 	struct its_vlpi_map	*vlpi_maps;
152 	int			nr_vlpis;
153 };
154 
155 /*
156  * The ITS view of a device - belongs to an ITS, owns an interrupt
157  * translation table, and a list of interrupts.  If it some of its
158  * LPIs are injected into a guest (GICv4), the event_map.vm field
159  * indicates which one.
160  */
161 struct its_device {
162 	struct list_head	entry;
163 	struct its_node		*its;
164 	struct event_lpi_map	event_map;
165 	void			*itt;
166 	u32			nr_ites;
167 	u32			device_id;
168 	bool			shared;
169 };
170 
171 static struct {
172 	raw_spinlock_t		lock;
173 	struct its_device	*dev;
174 	struct its_vpe		**vpes;
175 	int			next_victim;
176 } vpe_proxy;
177 
178 struct cpu_lpi_count {
179 	atomic_t	managed;
180 	atomic_t	unmanaged;
181 };
182 
183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
184 
185 static LIST_HEAD(its_nodes);
186 static DEFINE_RAW_SPINLOCK(its_lock);
187 static struct rdists *gic_rdists;
188 static struct irq_domain *its_parent;
189 
190 static unsigned long its_list_map;
191 static u16 vmovp_seq_num;
192 static DEFINE_RAW_SPINLOCK(vmovp_lock);
193 
194 static DEFINE_IDA(its_vpeid_ida);
195 
196 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
197 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
198 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
199 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
200 
201 /*
202  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
203  * always have vSGIs mapped.
204  */
205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
206 {
207 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
208 }
209 
210 static bool rdists_support_shareable(void)
211 {
212 	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
213 }
214 
215 static u16 get_its_list(struct its_vm *vm)
216 {
217 	struct its_node *its;
218 	unsigned long its_list = 0;
219 
220 	list_for_each_entry(its, &its_nodes, entry) {
221 		if (!is_v4(its))
222 			continue;
223 
224 		if (require_its_list_vmovp(vm, its))
225 			__set_bit(its->list_nr, &its_list);
226 	}
227 
228 	return (u16)its_list;
229 }
230 
231 static inline u32 its_get_event_id(struct irq_data *d)
232 {
233 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
234 	return d->hwirq - its_dev->event_map.lpi_base;
235 }
236 
237 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
238 					       u32 event)
239 {
240 	struct its_node *its = its_dev->its;
241 
242 	return its->collections + its_dev->event_map.col_map[event];
243 }
244 
245 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
246 					       u32 event)
247 {
248 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
249 		return NULL;
250 
251 	return &its_dev->event_map.vlpi_maps[event];
252 }
253 
254 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
255 {
256 	if (irqd_is_forwarded_to_vcpu(d)) {
257 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
258 		u32 event = its_get_event_id(d);
259 
260 		return dev_event_to_vlpi_map(its_dev, event);
261 	}
262 
263 	return NULL;
264 }
265 
266 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
267 {
268 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
269 	return vpe->col_idx;
270 }
271 
272 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
273 {
274 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
275 }
276 
277 static struct irq_chip its_vpe_irq_chip;
278 
279 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
280 {
281 	struct its_vpe *vpe = NULL;
282 	int cpu;
283 
284 	if (d->chip == &its_vpe_irq_chip) {
285 		vpe = irq_data_get_irq_chip_data(d);
286 	} else {
287 		struct its_vlpi_map *map = get_vlpi_map(d);
288 		if (map)
289 			vpe = map->vpe;
290 	}
291 
292 	if (vpe) {
293 		cpu = vpe_to_cpuid_lock(vpe, flags);
294 	} else {
295 		/* Physical LPIs are already locked via the irq_desc lock */
296 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
297 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
298 		/* Keep GCC quiet... */
299 		*flags = 0;
300 	}
301 
302 	return cpu;
303 }
304 
305 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
306 {
307 	struct its_vpe *vpe = NULL;
308 
309 	if (d->chip == &its_vpe_irq_chip) {
310 		vpe = irq_data_get_irq_chip_data(d);
311 	} else {
312 		struct its_vlpi_map *map = get_vlpi_map(d);
313 		if (map)
314 			vpe = map->vpe;
315 	}
316 
317 	if (vpe)
318 		vpe_to_cpuid_unlock(vpe, flags);
319 }
320 
321 static struct its_collection *valid_col(struct its_collection *col)
322 {
323 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
324 		return NULL;
325 
326 	return col;
327 }
328 
329 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
330 {
331 	if (valid_col(its->collections + vpe->col_idx))
332 		return vpe;
333 
334 	return NULL;
335 }
336 
337 /*
338  * ITS command descriptors - parameters to be encoded in a command
339  * block.
340  */
341 struct its_cmd_desc {
342 	union {
343 		struct {
344 			struct its_device *dev;
345 			u32 event_id;
346 		} its_inv_cmd;
347 
348 		struct {
349 			struct its_device *dev;
350 			u32 event_id;
351 		} its_clear_cmd;
352 
353 		struct {
354 			struct its_device *dev;
355 			u32 event_id;
356 		} its_int_cmd;
357 
358 		struct {
359 			struct its_device *dev;
360 			int valid;
361 		} its_mapd_cmd;
362 
363 		struct {
364 			struct its_collection *col;
365 			int valid;
366 		} its_mapc_cmd;
367 
368 		struct {
369 			struct its_device *dev;
370 			u32 phys_id;
371 			u32 event_id;
372 		} its_mapti_cmd;
373 
374 		struct {
375 			struct its_device *dev;
376 			struct its_collection *col;
377 			u32 event_id;
378 		} its_movi_cmd;
379 
380 		struct {
381 			struct its_device *dev;
382 			u32 event_id;
383 		} its_discard_cmd;
384 
385 		struct {
386 			struct its_collection *col;
387 		} its_invall_cmd;
388 
389 		struct {
390 			struct its_vpe *vpe;
391 		} its_vinvall_cmd;
392 
393 		struct {
394 			struct its_vpe *vpe;
395 			struct its_collection *col;
396 			bool valid;
397 		} its_vmapp_cmd;
398 
399 		struct {
400 			struct its_vpe *vpe;
401 			struct its_device *dev;
402 			u32 virt_id;
403 			u32 event_id;
404 			bool db_enabled;
405 		} its_vmapti_cmd;
406 
407 		struct {
408 			struct its_vpe *vpe;
409 			struct its_device *dev;
410 			u32 event_id;
411 			bool db_enabled;
412 		} its_vmovi_cmd;
413 
414 		struct {
415 			struct its_vpe *vpe;
416 			struct its_collection *col;
417 			u16 seq_num;
418 			u16 its_list;
419 		} its_vmovp_cmd;
420 
421 		struct {
422 			struct its_vpe *vpe;
423 		} its_invdb_cmd;
424 
425 		struct {
426 			struct its_vpe *vpe;
427 			u8 sgi;
428 			u8 priority;
429 			bool enable;
430 			bool group;
431 			bool clear;
432 		} its_vsgi_cmd;
433 	};
434 };
435 
436 /*
437  * The ITS command block, which is what the ITS actually parses.
438  */
439 struct its_cmd_block {
440 	union {
441 		u64	raw_cmd[4];
442 		__le64	raw_cmd_le[4];
443 	};
444 };
445 
446 #define ITS_CMD_QUEUE_SZ		SZ_64K
447 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
448 
449 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
450 						    struct its_cmd_block *,
451 						    struct its_cmd_desc *);
452 
453 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
454 					      struct its_cmd_block *,
455 					      struct its_cmd_desc *);
456 
457 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
458 {
459 	u64 mask = GENMASK_ULL(h, l);
460 	*raw_cmd &= ~mask;
461 	*raw_cmd |= (val << l) & mask;
462 }
463 
464 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
465 {
466 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
467 }
468 
469 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
470 {
471 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
472 }
473 
474 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
475 {
476 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
477 }
478 
479 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
480 {
481 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
482 }
483 
484 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
485 {
486 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
487 }
488 
489 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
490 {
491 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
492 }
493 
494 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
495 {
496 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
497 }
498 
499 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
500 {
501 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
502 }
503 
504 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
505 {
506 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
507 }
508 
509 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
510 {
511 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
512 }
513 
514 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
515 {
516 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
517 }
518 
519 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
520 {
521 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
522 }
523 
524 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
525 {
526 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
527 }
528 
529 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
530 {
531 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
532 }
533 
534 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
535 {
536 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
537 }
538 
539 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
540 {
541 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
542 }
543 
544 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
545 {
546 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
547 }
548 
549 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
550 {
551 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
552 }
553 
554 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
555 {
556 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
557 }
558 
559 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
560 {
561 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
562 }
563 
564 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
565 					u32 vpe_db_lpi)
566 {
567 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
568 }
569 
570 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
571 					u32 vpe_db_lpi)
572 {
573 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
574 }
575 
576 static void its_encode_db(struct its_cmd_block *cmd, bool db)
577 {
578 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
579 }
580 
581 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
582 {
583 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
584 }
585 
586 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
587 {
588 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
589 }
590 
591 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
592 {
593 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
594 }
595 
596 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
597 {
598 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
599 }
600 
601 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
602 {
603 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
604 }
605 
606 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
607 {
608 	/* Let's fixup BE commands */
609 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
610 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
611 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
612 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
613 }
614 
615 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
616 						 struct its_cmd_block *cmd,
617 						 struct its_cmd_desc *desc)
618 {
619 	unsigned long itt_addr;
620 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
621 
622 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
623 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
624 
625 	its_encode_cmd(cmd, GITS_CMD_MAPD);
626 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
627 	its_encode_size(cmd, size - 1);
628 	its_encode_itt(cmd, itt_addr);
629 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
630 
631 	its_fixup_cmd(cmd);
632 
633 	return NULL;
634 }
635 
636 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
637 						 struct its_cmd_block *cmd,
638 						 struct its_cmd_desc *desc)
639 {
640 	its_encode_cmd(cmd, GITS_CMD_MAPC);
641 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
642 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
643 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
644 
645 	its_fixup_cmd(cmd);
646 
647 	return desc->its_mapc_cmd.col;
648 }
649 
650 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
651 						  struct its_cmd_block *cmd,
652 						  struct its_cmd_desc *desc)
653 {
654 	struct its_collection *col;
655 
656 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
657 			       desc->its_mapti_cmd.event_id);
658 
659 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
660 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
661 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
662 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
663 	its_encode_collection(cmd, col->col_id);
664 
665 	its_fixup_cmd(cmd);
666 
667 	return valid_col(col);
668 }
669 
670 static struct its_collection *its_build_movi_cmd(struct its_node *its,
671 						 struct its_cmd_block *cmd,
672 						 struct its_cmd_desc *desc)
673 {
674 	struct its_collection *col;
675 
676 	col = dev_event_to_col(desc->its_movi_cmd.dev,
677 			       desc->its_movi_cmd.event_id);
678 
679 	its_encode_cmd(cmd, GITS_CMD_MOVI);
680 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
681 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
682 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
683 
684 	its_fixup_cmd(cmd);
685 
686 	return valid_col(col);
687 }
688 
689 static struct its_collection *its_build_discard_cmd(struct its_node *its,
690 						    struct its_cmd_block *cmd,
691 						    struct its_cmd_desc *desc)
692 {
693 	struct its_collection *col;
694 
695 	col = dev_event_to_col(desc->its_discard_cmd.dev,
696 			       desc->its_discard_cmd.event_id);
697 
698 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
699 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
700 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
701 
702 	its_fixup_cmd(cmd);
703 
704 	return valid_col(col);
705 }
706 
707 static struct its_collection *its_build_inv_cmd(struct its_node *its,
708 						struct its_cmd_block *cmd,
709 						struct its_cmd_desc *desc)
710 {
711 	struct its_collection *col;
712 
713 	col = dev_event_to_col(desc->its_inv_cmd.dev,
714 			       desc->its_inv_cmd.event_id);
715 
716 	its_encode_cmd(cmd, GITS_CMD_INV);
717 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
718 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
719 
720 	its_fixup_cmd(cmd);
721 
722 	return valid_col(col);
723 }
724 
725 static struct its_collection *its_build_int_cmd(struct its_node *its,
726 						struct its_cmd_block *cmd,
727 						struct its_cmd_desc *desc)
728 {
729 	struct its_collection *col;
730 
731 	col = dev_event_to_col(desc->its_int_cmd.dev,
732 			       desc->its_int_cmd.event_id);
733 
734 	its_encode_cmd(cmd, GITS_CMD_INT);
735 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
736 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
737 
738 	its_fixup_cmd(cmd);
739 
740 	return valid_col(col);
741 }
742 
743 static struct its_collection *its_build_clear_cmd(struct its_node *its,
744 						  struct its_cmd_block *cmd,
745 						  struct its_cmd_desc *desc)
746 {
747 	struct its_collection *col;
748 
749 	col = dev_event_to_col(desc->its_clear_cmd.dev,
750 			       desc->its_clear_cmd.event_id);
751 
752 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
753 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
754 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
755 
756 	its_fixup_cmd(cmd);
757 
758 	return valid_col(col);
759 }
760 
761 static struct its_collection *its_build_invall_cmd(struct its_node *its,
762 						   struct its_cmd_block *cmd,
763 						   struct its_cmd_desc *desc)
764 {
765 	its_encode_cmd(cmd, GITS_CMD_INVALL);
766 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
767 
768 	its_fixup_cmd(cmd);
769 
770 	return desc->its_invall_cmd.col;
771 }
772 
773 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
774 					     struct its_cmd_block *cmd,
775 					     struct its_cmd_desc *desc)
776 {
777 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
778 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
779 
780 	its_fixup_cmd(cmd);
781 
782 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
783 }
784 
785 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
786 					   struct its_cmd_block *cmd,
787 					   struct its_cmd_desc *desc)
788 {
789 	struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
790 	unsigned long vpt_addr, vconf_addr;
791 	u64 target;
792 	bool alloc;
793 
794 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
795 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
796 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
797 
798 	if (!desc->its_vmapp_cmd.valid) {
799 		if (is_v4_1(its)) {
800 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
801 			its_encode_alloc(cmd, alloc);
802 			/*
803 			 * Unmapping a VPE is self-synchronizing on GICv4.1,
804 			 * no need to issue a VSYNC.
805 			 */
806 			vpe = NULL;
807 		}
808 
809 		goto out;
810 	}
811 
812 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
813 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
814 
815 	its_encode_target(cmd, target);
816 	its_encode_vpt_addr(cmd, vpt_addr);
817 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
818 
819 	if (!is_v4_1(its))
820 		goto out;
821 
822 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
823 
824 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
825 
826 	its_encode_alloc(cmd, alloc);
827 
828 	/*
829 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
830 	 * to be unmapped first, and in this case, we may remap the vPE
831 	 * back while the VPT is not empty. So we can't assume that the
832 	 * VPT is empty on map. This is why we never advertise PTZ.
833 	 */
834 	its_encode_ptz(cmd, false);
835 	its_encode_vconf_addr(cmd, vconf_addr);
836 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
837 
838 out:
839 	its_fixup_cmd(cmd);
840 
841 	return vpe;
842 }
843 
844 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
845 					    struct its_cmd_block *cmd,
846 					    struct its_cmd_desc *desc)
847 {
848 	u32 db;
849 
850 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
851 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
852 	else
853 		db = 1023;
854 
855 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
856 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
857 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
858 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
859 	its_encode_db_phys_id(cmd, db);
860 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
861 
862 	its_fixup_cmd(cmd);
863 
864 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
865 }
866 
867 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
868 					   struct its_cmd_block *cmd,
869 					   struct its_cmd_desc *desc)
870 {
871 	u32 db;
872 
873 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
874 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
875 	else
876 		db = 1023;
877 
878 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
879 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
880 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
881 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
882 	its_encode_db_phys_id(cmd, db);
883 	its_encode_db_valid(cmd, true);
884 
885 	its_fixup_cmd(cmd);
886 
887 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
888 }
889 
890 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
891 					   struct its_cmd_block *cmd,
892 					   struct its_cmd_desc *desc)
893 {
894 	u64 target;
895 
896 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
897 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
898 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
899 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
900 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
901 	its_encode_target(cmd, target);
902 
903 	if (is_v4_1(its)) {
904 		its_encode_db(cmd, true);
905 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
906 	}
907 
908 	its_fixup_cmd(cmd);
909 
910 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
911 }
912 
913 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
914 					  struct its_cmd_block *cmd,
915 					  struct its_cmd_desc *desc)
916 {
917 	struct its_vlpi_map *map;
918 
919 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
920 				    desc->its_inv_cmd.event_id);
921 
922 	its_encode_cmd(cmd, GITS_CMD_INV);
923 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
924 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
925 
926 	its_fixup_cmd(cmd);
927 
928 	return valid_vpe(its, map->vpe);
929 }
930 
931 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
932 					  struct its_cmd_block *cmd,
933 					  struct its_cmd_desc *desc)
934 {
935 	struct its_vlpi_map *map;
936 
937 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
938 				    desc->its_int_cmd.event_id);
939 
940 	its_encode_cmd(cmd, GITS_CMD_INT);
941 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
942 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
943 
944 	its_fixup_cmd(cmd);
945 
946 	return valid_vpe(its, map->vpe);
947 }
948 
949 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
950 					    struct its_cmd_block *cmd,
951 					    struct its_cmd_desc *desc)
952 {
953 	struct its_vlpi_map *map;
954 
955 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
956 				    desc->its_clear_cmd.event_id);
957 
958 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
959 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
960 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
961 
962 	its_fixup_cmd(cmd);
963 
964 	return valid_vpe(its, map->vpe);
965 }
966 
967 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
968 					   struct its_cmd_block *cmd,
969 					   struct its_cmd_desc *desc)
970 {
971 	if (WARN_ON(!is_v4_1(its)))
972 		return NULL;
973 
974 	its_encode_cmd(cmd, GITS_CMD_INVDB);
975 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
976 
977 	its_fixup_cmd(cmd);
978 
979 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
980 }
981 
982 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
983 					  struct its_cmd_block *cmd,
984 					  struct its_cmd_desc *desc)
985 {
986 	if (WARN_ON(!is_v4_1(its)))
987 		return NULL;
988 
989 	its_encode_cmd(cmd, GITS_CMD_VSGI);
990 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
991 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
992 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
993 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
994 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
995 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
996 
997 	its_fixup_cmd(cmd);
998 
999 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1000 }
1001 
1002 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1003 				 struct its_cmd_block *ptr)
1004 {
1005 	return (ptr - its->cmd_base) * sizeof(*ptr);
1006 }
1007 
1008 static int its_queue_full(struct its_node *its)
1009 {
1010 	int widx;
1011 	int ridx;
1012 
1013 	widx = its->cmd_write - its->cmd_base;
1014 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1015 
1016 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1017 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1018 		return 1;
1019 
1020 	return 0;
1021 }
1022 
1023 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1024 {
1025 	struct its_cmd_block *cmd;
1026 	u32 count = 1000000;	/* 1s! */
1027 
1028 	while (its_queue_full(its)) {
1029 		count--;
1030 		if (!count) {
1031 			pr_err_ratelimited("ITS queue not draining\n");
1032 			return NULL;
1033 		}
1034 		cpu_relax();
1035 		udelay(1);
1036 	}
1037 
1038 	cmd = its->cmd_write++;
1039 
1040 	/* Handle queue wrapping */
1041 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1042 		its->cmd_write = its->cmd_base;
1043 
1044 	/* Clear command  */
1045 	cmd->raw_cmd[0] = 0;
1046 	cmd->raw_cmd[1] = 0;
1047 	cmd->raw_cmd[2] = 0;
1048 	cmd->raw_cmd[3] = 0;
1049 
1050 	return cmd;
1051 }
1052 
1053 static struct its_cmd_block *its_post_commands(struct its_node *its)
1054 {
1055 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1056 
1057 	writel_relaxed(wr, its->base + GITS_CWRITER);
1058 
1059 	return its->cmd_write;
1060 }
1061 
1062 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1063 {
1064 	/*
1065 	 * Make sure the commands written to memory are observable by
1066 	 * the ITS.
1067 	 */
1068 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1069 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1070 	else
1071 		dsb(ishst);
1072 }
1073 
1074 static int its_wait_for_range_completion(struct its_node *its,
1075 					 u64	prev_idx,
1076 					 struct its_cmd_block *to)
1077 {
1078 	u64 rd_idx, to_idx, linear_idx;
1079 	u32 count = 1000000;	/* 1s! */
1080 
1081 	/* Linearize to_idx if the command set has wrapped around */
1082 	to_idx = its_cmd_ptr_to_offset(its, to);
1083 	if (to_idx < prev_idx)
1084 		to_idx += ITS_CMD_QUEUE_SZ;
1085 
1086 	linear_idx = prev_idx;
1087 
1088 	while (1) {
1089 		s64 delta;
1090 
1091 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1092 
1093 		/*
1094 		 * Compute the read pointer progress, taking the
1095 		 * potential wrap-around into account.
1096 		 */
1097 		delta = rd_idx - prev_idx;
1098 		if (rd_idx < prev_idx)
1099 			delta += ITS_CMD_QUEUE_SZ;
1100 
1101 		linear_idx += delta;
1102 		if (linear_idx >= to_idx)
1103 			break;
1104 
1105 		count--;
1106 		if (!count) {
1107 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1108 					   to_idx, linear_idx);
1109 			return -1;
1110 		}
1111 		prev_idx = rd_idx;
1112 		cpu_relax();
1113 		udelay(1);
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 /* Warning, macro hell follows */
1120 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1121 void name(struct its_node *its,						\
1122 	  buildtype builder,						\
1123 	  struct its_cmd_desc *desc)					\
1124 {									\
1125 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1126 	synctype *sync_obj;						\
1127 	unsigned long flags;						\
1128 	u64 rd_idx;							\
1129 									\
1130 	raw_spin_lock_irqsave(&its->lock, flags);			\
1131 									\
1132 	cmd = its_allocate_entry(its);					\
1133 	if (!cmd) {		/* We're soooooo screewed... */		\
1134 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1135 		return;							\
1136 	}								\
1137 	sync_obj = builder(its, cmd, desc);				\
1138 	its_flush_cmd(its, cmd);					\
1139 									\
1140 	if (sync_obj) {							\
1141 		sync_cmd = its_allocate_entry(its);			\
1142 		if (!sync_cmd)						\
1143 			goto post;					\
1144 									\
1145 		buildfn(its, sync_cmd, sync_obj);			\
1146 		its_flush_cmd(its, sync_cmd);				\
1147 	}								\
1148 									\
1149 post:									\
1150 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1151 	next_cmd = its_post_commands(its);				\
1152 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1153 									\
1154 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1155 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1156 }
1157 
1158 static void its_build_sync_cmd(struct its_node *its,
1159 			       struct its_cmd_block *sync_cmd,
1160 			       struct its_collection *sync_col)
1161 {
1162 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1163 	its_encode_target(sync_cmd, sync_col->target_address);
1164 
1165 	its_fixup_cmd(sync_cmd);
1166 }
1167 
1168 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1169 			     struct its_collection, its_build_sync_cmd)
1170 
1171 static void its_build_vsync_cmd(struct its_node *its,
1172 				struct its_cmd_block *sync_cmd,
1173 				struct its_vpe *sync_vpe)
1174 {
1175 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1176 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1177 
1178 	its_fixup_cmd(sync_cmd);
1179 }
1180 
1181 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1182 			     struct its_vpe, its_build_vsync_cmd)
1183 
1184 static void its_send_int(struct its_device *dev, u32 event_id)
1185 {
1186 	struct its_cmd_desc desc;
1187 
1188 	desc.its_int_cmd.dev = dev;
1189 	desc.its_int_cmd.event_id = event_id;
1190 
1191 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1192 }
1193 
1194 static void its_send_clear(struct its_device *dev, u32 event_id)
1195 {
1196 	struct its_cmd_desc desc;
1197 
1198 	desc.its_clear_cmd.dev = dev;
1199 	desc.its_clear_cmd.event_id = event_id;
1200 
1201 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1202 }
1203 
1204 static void its_send_inv(struct its_device *dev, u32 event_id)
1205 {
1206 	struct its_cmd_desc desc;
1207 
1208 	desc.its_inv_cmd.dev = dev;
1209 	desc.its_inv_cmd.event_id = event_id;
1210 
1211 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1212 }
1213 
1214 static void its_send_mapd(struct its_device *dev, int valid)
1215 {
1216 	struct its_cmd_desc desc;
1217 
1218 	desc.its_mapd_cmd.dev = dev;
1219 	desc.its_mapd_cmd.valid = !!valid;
1220 
1221 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1222 }
1223 
1224 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1225 			  int valid)
1226 {
1227 	struct its_cmd_desc desc;
1228 
1229 	desc.its_mapc_cmd.col = col;
1230 	desc.its_mapc_cmd.valid = !!valid;
1231 
1232 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1233 }
1234 
1235 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1236 {
1237 	struct its_cmd_desc desc;
1238 
1239 	desc.its_mapti_cmd.dev = dev;
1240 	desc.its_mapti_cmd.phys_id = irq_id;
1241 	desc.its_mapti_cmd.event_id = id;
1242 
1243 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1244 }
1245 
1246 static void its_send_movi(struct its_device *dev,
1247 			  struct its_collection *col, u32 id)
1248 {
1249 	struct its_cmd_desc desc;
1250 
1251 	desc.its_movi_cmd.dev = dev;
1252 	desc.its_movi_cmd.col = col;
1253 	desc.its_movi_cmd.event_id = id;
1254 
1255 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1256 }
1257 
1258 static void its_send_discard(struct its_device *dev, u32 id)
1259 {
1260 	struct its_cmd_desc desc;
1261 
1262 	desc.its_discard_cmd.dev = dev;
1263 	desc.its_discard_cmd.event_id = id;
1264 
1265 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1266 }
1267 
1268 static void its_send_invall(struct its_node *its, struct its_collection *col)
1269 {
1270 	struct its_cmd_desc desc;
1271 
1272 	desc.its_invall_cmd.col = col;
1273 
1274 	its_send_single_command(its, its_build_invall_cmd, &desc);
1275 }
1276 
1277 static void its_send_vmapti(struct its_device *dev, u32 id)
1278 {
1279 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1280 	struct its_cmd_desc desc;
1281 
1282 	desc.its_vmapti_cmd.vpe = map->vpe;
1283 	desc.its_vmapti_cmd.dev = dev;
1284 	desc.its_vmapti_cmd.virt_id = map->vintid;
1285 	desc.its_vmapti_cmd.event_id = id;
1286 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1287 
1288 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1289 }
1290 
1291 static void its_send_vmovi(struct its_device *dev, u32 id)
1292 {
1293 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1294 	struct its_cmd_desc desc;
1295 
1296 	desc.its_vmovi_cmd.vpe = map->vpe;
1297 	desc.its_vmovi_cmd.dev = dev;
1298 	desc.its_vmovi_cmd.event_id = id;
1299 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1300 
1301 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1302 }
1303 
1304 static void its_send_vmapp(struct its_node *its,
1305 			   struct its_vpe *vpe, bool valid)
1306 {
1307 	struct its_cmd_desc desc;
1308 
1309 	desc.its_vmapp_cmd.vpe = vpe;
1310 	desc.its_vmapp_cmd.valid = valid;
1311 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1312 
1313 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1314 }
1315 
1316 static void its_send_vmovp(struct its_vpe *vpe)
1317 {
1318 	struct its_cmd_desc desc = {};
1319 	struct its_node *its;
1320 	unsigned long flags;
1321 	int col_id = vpe->col_idx;
1322 
1323 	desc.its_vmovp_cmd.vpe = vpe;
1324 
1325 	if (!its_list_map) {
1326 		its = list_first_entry(&its_nodes, struct its_node, entry);
1327 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1328 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1329 		return;
1330 	}
1331 
1332 	/*
1333 	 * Yet another marvel of the architecture. If using the
1334 	 * its_list "feature", we need to make sure that all ITSs
1335 	 * receive all VMOVP commands in the same order. The only way
1336 	 * to guarantee this is to make vmovp a serialization point.
1337 	 *
1338 	 * Wall <-- Head.
1339 	 */
1340 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1341 
1342 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1343 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1344 
1345 	/* Emit VMOVPs */
1346 	list_for_each_entry(its, &its_nodes, entry) {
1347 		if (!is_v4(its))
1348 			continue;
1349 
1350 		if (!require_its_list_vmovp(vpe->its_vm, its))
1351 			continue;
1352 
1353 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1354 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1355 	}
1356 
1357 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1358 }
1359 
1360 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1361 {
1362 	struct its_cmd_desc desc;
1363 
1364 	desc.its_vinvall_cmd.vpe = vpe;
1365 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1366 }
1367 
1368 static void its_send_vinv(struct its_device *dev, u32 event_id)
1369 {
1370 	struct its_cmd_desc desc;
1371 
1372 	/*
1373 	 * There is no real VINV command. This is just a normal INV,
1374 	 * with a VSYNC instead of a SYNC.
1375 	 */
1376 	desc.its_inv_cmd.dev = dev;
1377 	desc.its_inv_cmd.event_id = event_id;
1378 
1379 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1380 }
1381 
1382 static void its_send_vint(struct its_device *dev, u32 event_id)
1383 {
1384 	struct its_cmd_desc desc;
1385 
1386 	/*
1387 	 * There is no real VINT command. This is just a normal INT,
1388 	 * with a VSYNC instead of a SYNC.
1389 	 */
1390 	desc.its_int_cmd.dev = dev;
1391 	desc.its_int_cmd.event_id = event_id;
1392 
1393 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1394 }
1395 
1396 static void its_send_vclear(struct its_device *dev, u32 event_id)
1397 {
1398 	struct its_cmd_desc desc;
1399 
1400 	/*
1401 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1402 	 * with a VSYNC instead of a SYNC.
1403 	 */
1404 	desc.its_clear_cmd.dev = dev;
1405 	desc.its_clear_cmd.event_id = event_id;
1406 
1407 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1408 }
1409 
1410 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1411 {
1412 	struct its_cmd_desc desc;
1413 
1414 	desc.its_invdb_cmd.vpe = vpe;
1415 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1416 }
1417 
1418 /*
1419  * irqchip functions - assumes MSI, mostly.
1420  */
1421 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1422 {
1423 	struct its_vlpi_map *map = get_vlpi_map(d);
1424 	irq_hw_number_t hwirq;
1425 	void *va;
1426 	u8 *cfg;
1427 
1428 	if (map) {
1429 		va = page_address(map->vm->vprop_page);
1430 		hwirq = map->vintid;
1431 
1432 		/* Remember the updated property */
1433 		map->properties &= ~clr;
1434 		map->properties |= set | LPI_PROP_GROUP1;
1435 	} else {
1436 		va = gic_rdists->prop_table_va;
1437 		hwirq = d->hwirq;
1438 	}
1439 
1440 	cfg = va + hwirq - 8192;
1441 	*cfg &= ~clr;
1442 	*cfg |= set | LPI_PROP_GROUP1;
1443 
1444 	/*
1445 	 * Make the above write visible to the redistributors.
1446 	 * And yes, we're flushing exactly: One. Single. Byte.
1447 	 * Humpf...
1448 	 */
1449 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1450 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1451 	else
1452 		dsb(ishst);
1453 }
1454 
1455 static void wait_for_syncr(void __iomem *rdbase)
1456 {
1457 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1458 		cpu_relax();
1459 }
1460 
1461 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1462 {
1463 	void __iomem *rdbase;
1464 	unsigned long flags;
1465 	int cpu;
1466 
1467 	/* Target the redistributor this LPI is currently routed to */
1468 	cpu = irq_to_cpuid_lock(d, &flags);
1469 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1470 
1471 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1472 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1473 	wait_for_syncr(rdbase);
1474 
1475 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1476 	irq_to_cpuid_unlock(d, flags);
1477 }
1478 
1479 static void direct_lpi_inv(struct irq_data *d)
1480 {
1481 	struct its_vlpi_map *map = get_vlpi_map(d);
1482 	u64 val;
1483 
1484 	if (map) {
1485 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1486 
1487 		WARN_ON(!is_v4_1(its_dev->its));
1488 
1489 		val  = GICR_INVLPIR_V;
1490 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1491 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1492 	} else {
1493 		val = d->hwirq;
1494 	}
1495 
1496 	__direct_lpi_inv(d, val);
1497 }
1498 
1499 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1500 {
1501 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1502 
1503 	lpi_write_config(d, clr, set);
1504 	if (gic_rdists->has_direct_lpi &&
1505 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1506 		direct_lpi_inv(d);
1507 	else if (!irqd_is_forwarded_to_vcpu(d))
1508 		its_send_inv(its_dev, its_get_event_id(d));
1509 	else
1510 		its_send_vinv(its_dev, its_get_event_id(d));
1511 }
1512 
1513 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1514 {
1515 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1516 	u32 event = its_get_event_id(d);
1517 	struct its_vlpi_map *map;
1518 
1519 	/*
1520 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1521 	 * here.
1522 	 */
1523 	if (is_v4_1(its_dev->its))
1524 		return;
1525 
1526 	map = dev_event_to_vlpi_map(its_dev, event);
1527 
1528 	if (map->db_enabled == enable)
1529 		return;
1530 
1531 	map->db_enabled = enable;
1532 
1533 	/*
1534 	 * More fun with the architecture:
1535 	 *
1536 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1537 	 * value or to 1023, depending on the enable bit. But that
1538 	 * would be issuing a mapping for an /existing/ DevID+EventID
1539 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1540 	 * to the /same/ vPE, using this opportunity to adjust the
1541 	 * doorbell. Mouahahahaha. We loves it, Precious.
1542 	 */
1543 	its_send_vmovi(its_dev, event);
1544 }
1545 
1546 static void its_mask_irq(struct irq_data *d)
1547 {
1548 	if (irqd_is_forwarded_to_vcpu(d))
1549 		its_vlpi_set_doorbell(d, false);
1550 
1551 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1552 }
1553 
1554 static void its_unmask_irq(struct irq_data *d)
1555 {
1556 	if (irqd_is_forwarded_to_vcpu(d))
1557 		its_vlpi_set_doorbell(d, true);
1558 
1559 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1560 }
1561 
1562 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1563 {
1564 	if (irqd_affinity_is_managed(d))
1565 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1566 
1567 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1568 }
1569 
1570 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1571 {
1572 	if (irqd_affinity_is_managed(d))
1573 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1574 	else
1575 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1576 }
1577 
1578 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1579 {
1580 	if (irqd_affinity_is_managed(d))
1581 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1582 	else
1583 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1584 }
1585 
1586 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1587 					      const struct cpumask *cpu_mask)
1588 {
1589 	unsigned int cpu = nr_cpu_ids, tmp;
1590 	int count = S32_MAX;
1591 
1592 	for_each_cpu(tmp, cpu_mask) {
1593 		int this_count = its_read_lpi_count(d, tmp);
1594 		if (this_count < count) {
1595 			cpu = tmp;
1596 		        count = this_count;
1597 		}
1598 	}
1599 
1600 	return cpu;
1601 }
1602 
1603 /*
1604  * As suggested by Thomas Gleixner in:
1605  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1606  */
1607 static int its_select_cpu(struct irq_data *d,
1608 			  const struct cpumask *aff_mask)
1609 {
1610 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1611 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1612 	static struct cpumask __tmpmask;
1613 	struct cpumask *tmpmask;
1614 	unsigned long flags;
1615 	int cpu, node;
1616 	node = its_dev->its->numa_node;
1617 	tmpmask = &__tmpmask;
1618 
1619 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1620 
1621 	if (!irqd_affinity_is_managed(d)) {
1622 		/* First try the NUMA node */
1623 		if (node != NUMA_NO_NODE) {
1624 			/*
1625 			 * Try the intersection of the affinity mask and the
1626 			 * node mask (and the online mask, just to be safe).
1627 			 */
1628 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1629 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1630 
1631 			/*
1632 			 * Ideally, we would check if the mask is empty, and
1633 			 * try again on the full node here.
1634 			 *
1635 			 * But it turns out that the way ACPI describes the
1636 			 * affinity for ITSs only deals about memory, and
1637 			 * not target CPUs, so it cannot describe a single
1638 			 * ITS placed next to two NUMA nodes.
1639 			 *
1640 			 * Instead, just fallback on the online mask. This
1641 			 * diverges from Thomas' suggestion above.
1642 			 */
1643 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1644 			if (cpu < nr_cpu_ids)
1645 				goto out;
1646 
1647 			/* If we can't cross sockets, give up */
1648 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1649 				goto out;
1650 
1651 			/* If the above failed, expand the search */
1652 		}
1653 
1654 		/* Try the intersection of the affinity and online masks */
1655 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1656 
1657 		/* If that doesn't fly, the online mask is the last resort */
1658 		if (cpumask_empty(tmpmask))
1659 			cpumask_copy(tmpmask, cpu_online_mask);
1660 
1661 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1662 	} else {
1663 		cpumask_copy(tmpmask, aff_mask);
1664 
1665 		/* If we cannot cross sockets, limit the search to that node */
1666 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1667 		    node != NUMA_NO_NODE)
1668 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1669 
1670 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1671 	}
1672 out:
1673 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1674 
1675 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1676 	return cpu;
1677 }
1678 
1679 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1680 			    bool force)
1681 {
1682 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1683 	struct its_collection *target_col;
1684 	u32 id = its_get_event_id(d);
1685 	int cpu, prev_cpu;
1686 
1687 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1688 	if (irqd_is_forwarded_to_vcpu(d))
1689 		return -EINVAL;
1690 
1691 	prev_cpu = its_dev->event_map.col_map[id];
1692 	its_dec_lpi_count(d, prev_cpu);
1693 
1694 	if (!force)
1695 		cpu = its_select_cpu(d, mask_val);
1696 	else
1697 		cpu = cpumask_pick_least_loaded(d, mask_val);
1698 
1699 	if (cpu < 0 || cpu >= nr_cpu_ids)
1700 		goto err;
1701 
1702 	/* don't set the affinity when the target cpu is same as current one */
1703 	if (cpu != prev_cpu) {
1704 		target_col = &its_dev->its->collections[cpu];
1705 		its_send_movi(its_dev, target_col, id);
1706 		its_dev->event_map.col_map[id] = cpu;
1707 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1708 	}
1709 
1710 	its_inc_lpi_count(d, cpu);
1711 
1712 	return IRQ_SET_MASK_OK_DONE;
1713 
1714 err:
1715 	its_inc_lpi_count(d, prev_cpu);
1716 	return -EINVAL;
1717 }
1718 
1719 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1720 {
1721 	struct its_node *its = its_dev->its;
1722 
1723 	return its->phys_base + GITS_TRANSLATER;
1724 }
1725 
1726 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1727 {
1728 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1729 	struct its_node *its;
1730 	u64 addr;
1731 
1732 	its = its_dev->its;
1733 	addr = its->get_msi_base(its_dev);
1734 
1735 	msg->address_lo		= lower_32_bits(addr);
1736 	msg->address_hi		= upper_32_bits(addr);
1737 	msg->data		= its_get_event_id(d);
1738 
1739 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1740 }
1741 
1742 static int its_irq_set_irqchip_state(struct irq_data *d,
1743 				     enum irqchip_irq_state which,
1744 				     bool state)
1745 {
1746 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1747 	u32 event = its_get_event_id(d);
1748 
1749 	if (which != IRQCHIP_STATE_PENDING)
1750 		return -EINVAL;
1751 
1752 	if (irqd_is_forwarded_to_vcpu(d)) {
1753 		if (state)
1754 			its_send_vint(its_dev, event);
1755 		else
1756 			its_send_vclear(its_dev, event);
1757 	} else {
1758 		if (state)
1759 			its_send_int(its_dev, event);
1760 		else
1761 			its_send_clear(its_dev, event);
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 static int its_irq_retrigger(struct irq_data *d)
1768 {
1769 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1770 }
1771 
1772 /*
1773  * Two favourable cases:
1774  *
1775  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1776  *     for vSGI delivery
1777  *
1778  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1779  *     and we're better off mapping all VPEs always
1780  *
1781  * If neither (a) nor (b) is true, then we map vPEs on demand.
1782  *
1783  */
1784 static bool gic_requires_eager_mapping(void)
1785 {
1786 	if (!its_list_map || gic_rdists->has_rvpeid)
1787 		return true;
1788 
1789 	return false;
1790 }
1791 
1792 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1793 {
1794 	unsigned long flags;
1795 
1796 	if (gic_requires_eager_mapping())
1797 		return;
1798 
1799 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1800 
1801 	/*
1802 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1803 	 * them mapped now.
1804 	 */
1805 	vm->vlpi_count[its->list_nr]++;
1806 
1807 	if (vm->vlpi_count[its->list_nr] == 1) {
1808 		int i;
1809 
1810 		for (i = 0; i < vm->nr_vpes; i++) {
1811 			struct its_vpe *vpe = vm->vpes[i];
1812 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1813 
1814 			/* Map the VPE to the first possible CPU */
1815 			vpe->col_idx = cpumask_first(cpu_online_mask);
1816 			its_send_vmapp(its, vpe, true);
1817 			its_send_vinvall(its, vpe);
1818 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1819 		}
1820 	}
1821 
1822 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1823 }
1824 
1825 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1826 {
1827 	unsigned long flags;
1828 
1829 	/* Not using the ITS list? Everything is always mapped. */
1830 	if (gic_requires_eager_mapping())
1831 		return;
1832 
1833 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1834 
1835 	if (!--vm->vlpi_count[its->list_nr]) {
1836 		int i;
1837 
1838 		for (i = 0; i < vm->nr_vpes; i++)
1839 			its_send_vmapp(its, vm->vpes[i], false);
1840 	}
1841 
1842 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1843 }
1844 
1845 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1846 {
1847 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1848 	u32 event = its_get_event_id(d);
1849 	int ret = 0;
1850 
1851 	if (!info->map)
1852 		return -EINVAL;
1853 
1854 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1855 
1856 	if (!its_dev->event_map.vm) {
1857 		struct its_vlpi_map *maps;
1858 
1859 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1860 			       GFP_ATOMIC);
1861 		if (!maps) {
1862 			ret = -ENOMEM;
1863 			goto out;
1864 		}
1865 
1866 		its_dev->event_map.vm = info->map->vm;
1867 		its_dev->event_map.vlpi_maps = maps;
1868 	} else if (its_dev->event_map.vm != info->map->vm) {
1869 		ret = -EINVAL;
1870 		goto out;
1871 	}
1872 
1873 	/* Get our private copy of the mapping information */
1874 	its_dev->event_map.vlpi_maps[event] = *info->map;
1875 
1876 	if (irqd_is_forwarded_to_vcpu(d)) {
1877 		/* Already mapped, move it around */
1878 		its_send_vmovi(its_dev, event);
1879 	} else {
1880 		/* Ensure all the VPEs are mapped on this ITS */
1881 		its_map_vm(its_dev->its, info->map->vm);
1882 
1883 		/*
1884 		 * Flag the interrupt as forwarded so that we can
1885 		 * start poking the virtual property table.
1886 		 */
1887 		irqd_set_forwarded_to_vcpu(d);
1888 
1889 		/* Write out the property to the prop table */
1890 		lpi_write_config(d, 0xff, info->map->properties);
1891 
1892 		/* Drop the physical mapping */
1893 		its_send_discard(its_dev, event);
1894 
1895 		/* and install the virtual one */
1896 		its_send_vmapti(its_dev, event);
1897 
1898 		/* Increment the number of VLPIs */
1899 		its_dev->event_map.nr_vlpis++;
1900 	}
1901 
1902 out:
1903 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1904 	return ret;
1905 }
1906 
1907 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1908 {
1909 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1910 	struct its_vlpi_map *map;
1911 	int ret = 0;
1912 
1913 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1914 
1915 	map = get_vlpi_map(d);
1916 
1917 	if (!its_dev->event_map.vm || !map) {
1918 		ret = -EINVAL;
1919 		goto out;
1920 	}
1921 
1922 	/* Copy our mapping information to the incoming request */
1923 	*info->map = *map;
1924 
1925 out:
1926 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1927 	return ret;
1928 }
1929 
1930 static int its_vlpi_unmap(struct irq_data *d)
1931 {
1932 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1933 	u32 event = its_get_event_id(d);
1934 	int ret = 0;
1935 
1936 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1937 
1938 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1939 		ret = -EINVAL;
1940 		goto out;
1941 	}
1942 
1943 	/* Drop the virtual mapping */
1944 	its_send_discard(its_dev, event);
1945 
1946 	/* and restore the physical one */
1947 	irqd_clr_forwarded_to_vcpu(d);
1948 	its_send_mapti(its_dev, d->hwirq, event);
1949 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1950 				    LPI_PROP_ENABLED |
1951 				    LPI_PROP_GROUP1));
1952 
1953 	/* Potentially unmap the VM from this ITS */
1954 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1955 
1956 	/*
1957 	 * Drop the refcount and make the device available again if
1958 	 * this was the last VLPI.
1959 	 */
1960 	if (!--its_dev->event_map.nr_vlpis) {
1961 		its_dev->event_map.vm = NULL;
1962 		kfree(its_dev->event_map.vlpi_maps);
1963 	}
1964 
1965 out:
1966 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1967 	return ret;
1968 }
1969 
1970 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1971 {
1972 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1973 
1974 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1975 		return -EINVAL;
1976 
1977 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1978 		lpi_update_config(d, 0xff, info->config);
1979 	else
1980 		lpi_write_config(d, 0xff, info->config);
1981 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1982 
1983 	return 0;
1984 }
1985 
1986 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1987 {
1988 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1989 	struct its_cmd_info *info = vcpu_info;
1990 
1991 	/* Need a v4 ITS */
1992 	if (!is_v4(its_dev->its))
1993 		return -EINVAL;
1994 
1995 	/* Unmap request? */
1996 	if (!info)
1997 		return its_vlpi_unmap(d);
1998 
1999 	switch (info->cmd_type) {
2000 	case MAP_VLPI:
2001 		return its_vlpi_map(d, info);
2002 
2003 	case GET_VLPI:
2004 		return its_vlpi_get(d, info);
2005 
2006 	case PROP_UPDATE_VLPI:
2007 	case PROP_UPDATE_AND_INV_VLPI:
2008 		return its_vlpi_prop_update(d, info);
2009 
2010 	default:
2011 		return -EINVAL;
2012 	}
2013 }
2014 
2015 static struct irq_chip its_irq_chip = {
2016 	.name			= "ITS",
2017 	.irq_mask		= its_mask_irq,
2018 	.irq_unmask		= its_unmask_irq,
2019 	.irq_eoi		= irq_chip_eoi_parent,
2020 	.irq_set_affinity	= its_set_affinity,
2021 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2022 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2023 	.irq_retrigger		= its_irq_retrigger,
2024 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2025 };
2026 
2027 
2028 /*
2029  * How we allocate LPIs:
2030  *
2031  * lpi_range_list contains ranges of LPIs that are to available to
2032  * allocate from. To allocate LPIs, just pick the first range that
2033  * fits the required allocation, and reduce it by the required
2034  * amount. Once empty, remove the range from the list.
2035  *
2036  * To free a range of LPIs, add a free range to the list, sort it and
2037  * merge the result if the new range happens to be adjacent to an
2038  * already free block.
2039  *
2040  * The consequence of the above is that allocation is cost is low, but
2041  * freeing is expensive. We assumes that freeing rarely occurs.
2042  */
2043 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2044 
2045 static DEFINE_MUTEX(lpi_range_lock);
2046 static LIST_HEAD(lpi_range_list);
2047 
2048 struct lpi_range {
2049 	struct list_head	entry;
2050 	u32			base_id;
2051 	u32			span;
2052 };
2053 
2054 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2055 {
2056 	struct lpi_range *range;
2057 
2058 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2059 	if (range) {
2060 		range->base_id = base;
2061 		range->span = span;
2062 	}
2063 
2064 	return range;
2065 }
2066 
2067 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2068 {
2069 	struct lpi_range *range, *tmp;
2070 	int err = -ENOSPC;
2071 
2072 	mutex_lock(&lpi_range_lock);
2073 
2074 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2075 		if (range->span >= nr_lpis) {
2076 			*base = range->base_id;
2077 			range->base_id += nr_lpis;
2078 			range->span -= nr_lpis;
2079 
2080 			if (range->span == 0) {
2081 				list_del(&range->entry);
2082 				kfree(range);
2083 			}
2084 
2085 			err = 0;
2086 			break;
2087 		}
2088 	}
2089 
2090 	mutex_unlock(&lpi_range_lock);
2091 
2092 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2093 	return err;
2094 }
2095 
2096 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2097 {
2098 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2099 		return;
2100 	if (a->base_id + a->span != b->base_id)
2101 		return;
2102 	b->base_id = a->base_id;
2103 	b->span += a->span;
2104 	list_del(&a->entry);
2105 	kfree(a);
2106 }
2107 
2108 static int free_lpi_range(u32 base, u32 nr_lpis)
2109 {
2110 	struct lpi_range *new, *old;
2111 
2112 	new = mk_lpi_range(base, nr_lpis);
2113 	if (!new)
2114 		return -ENOMEM;
2115 
2116 	mutex_lock(&lpi_range_lock);
2117 
2118 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2119 		if (old->base_id < base)
2120 			break;
2121 	}
2122 	/*
2123 	 * old is the last element with ->base_id smaller than base,
2124 	 * so new goes right after it. If there are no elements with
2125 	 * ->base_id smaller than base, &old->entry ends up pointing
2126 	 * at the head of the list, and inserting new it the start of
2127 	 * the list is the right thing to do in that case as well.
2128 	 */
2129 	list_add(&new->entry, &old->entry);
2130 	/*
2131 	 * Now check if we can merge with the preceding and/or
2132 	 * following ranges.
2133 	 */
2134 	merge_lpi_ranges(old, new);
2135 	merge_lpi_ranges(new, list_next_entry(new, entry));
2136 
2137 	mutex_unlock(&lpi_range_lock);
2138 	return 0;
2139 }
2140 
2141 static int __init its_lpi_init(u32 id_bits)
2142 {
2143 	u32 lpis = (1UL << id_bits) - 8192;
2144 	u32 numlpis;
2145 	int err;
2146 
2147 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2148 
2149 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2150 		lpis = numlpis;
2151 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2152 			lpis);
2153 	}
2154 
2155 	/*
2156 	 * Initializing the allocator is just the same as freeing the
2157 	 * full range of LPIs.
2158 	 */
2159 	err = free_lpi_range(8192, lpis);
2160 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2161 	return err;
2162 }
2163 
2164 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2165 {
2166 	unsigned long *bitmap = NULL;
2167 	int err = 0;
2168 
2169 	do {
2170 		err = alloc_lpi_range(nr_irqs, base);
2171 		if (!err)
2172 			break;
2173 
2174 		nr_irqs /= 2;
2175 	} while (nr_irqs > 0);
2176 
2177 	if (!nr_irqs)
2178 		err = -ENOSPC;
2179 
2180 	if (err)
2181 		goto out;
2182 
2183 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2184 	if (!bitmap)
2185 		goto out;
2186 
2187 	*nr_ids = nr_irqs;
2188 
2189 out:
2190 	if (!bitmap)
2191 		*base = *nr_ids = 0;
2192 
2193 	return bitmap;
2194 }
2195 
2196 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2197 {
2198 	WARN_ON(free_lpi_range(base, nr_ids));
2199 	bitmap_free(bitmap);
2200 }
2201 
2202 static void gic_reset_prop_table(void *va)
2203 {
2204 	/* Priority 0xa0, Group-1, disabled */
2205 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2206 
2207 	/* Make sure the GIC will observe the written configuration */
2208 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2209 }
2210 
2211 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2212 {
2213 	struct page *prop_page;
2214 
2215 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2216 	if (!prop_page)
2217 		return NULL;
2218 
2219 	gic_reset_prop_table(page_address(prop_page));
2220 
2221 	return prop_page;
2222 }
2223 
2224 static void its_free_prop_table(struct page *prop_page)
2225 {
2226 	free_pages((unsigned long)page_address(prop_page),
2227 		   get_order(LPI_PROPBASE_SZ));
2228 }
2229 
2230 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2231 {
2232 	phys_addr_t start, end, addr_end;
2233 	u64 i;
2234 
2235 	/*
2236 	 * We don't bother checking for a kdump kernel as by
2237 	 * construction, the LPI tables are out of this kernel's
2238 	 * memory map.
2239 	 */
2240 	if (is_kdump_kernel())
2241 		return true;
2242 
2243 	addr_end = addr + size - 1;
2244 
2245 	for_each_reserved_mem_range(i, &start, &end) {
2246 		if (addr >= start && addr_end <= end)
2247 			return true;
2248 	}
2249 
2250 	/* Not found, not a good sign... */
2251 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2252 		&addr, &addr_end);
2253 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2254 	return false;
2255 }
2256 
2257 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2258 {
2259 	if (efi_enabled(EFI_CONFIG_TABLES))
2260 		return efi_mem_reserve_persistent(addr, size);
2261 
2262 	return 0;
2263 }
2264 
2265 static int __init its_setup_lpi_prop_table(void)
2266 {
2267 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2268 		u64 val;
2269 
2270 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2271 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2272 
2273 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2274 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2275 						     LPI_PROPBASE_SZ,
2276 						     MEMREMAP_WB);
2277 		gic_reset_prop_table(gic_rdists->prop_table_va);
2278 	} else {
2279 		struct page *page;
2280 
2281 		lpi_id_bits = min_t(u32,
2282 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2283 				    ITS_MAX_LPI_NRBITS);
2284 		page = its_allocate_prop_table(GFP_NOWAIT);
2285 		if (!page) {
2286 			pr_err("Failed to allocate PROPBASE\n");
2287 			return -ENOMEM;
2288 		}
2289 
2290 		gic_rdists->prop_table_pa = page_to_phys(page);
2291 		gic_rdists->prop_table_va = page_address(page);
2292 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2293 					  LPI_PROPBASE_SZ));
2294 	}
2295 
2296 	pr_info("GICv3: using LPI property table @%pa\n",
2297 		&gic_rdists->prop_table_pa);
2298 
2299 	return its_lpi_init(lpi_id_bits);
2300 }
2301 
2302 static const char *its_base_type_string[] = {
2303 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2304 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2305 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2306 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2307 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2308 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2309 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2310 };
2311 
2312 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2313 {
2314 	u32 idx = baser - its->tables;
2315 
2316 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2317 }
2318 
2319 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2320 			    u64 val)
2321 {
2322 	u32 idx = baser - its->tables;
2323 
2324 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2325 	baser->val = its_read_baser(its, baser);
2326 }
2327 
2328 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2329 			   u64 cache, u64 shr, u32 order, bool indirect)
2330 {
2331 	u64 val = its_read_baser(its, baser);
2332 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2333 	u64 type = GITS_BASER_TYPE(val);
2334 	u64 baser_phys, tmp;
2335 	u32 alloc_pages, psz;
2336 	struct page *page;
2337 	void *base;
2338 
2339 	psz = baser->psz;
2340 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2341 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2342 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2343 			&its->phys_base, its_base_type_string[type],
2344 			alloc_pages, GITS_BASER_PAGES_MAX);
2345 		alloc_pages = GITS_BASER_PAGES_MAX;
2346 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2347 	}
2348 
2349 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2350 	if (!page)
2351 		return -ENOMEM;
2352 
2353 	base = (void *)page_address(page);
2354 	baser_phys = virt_to_phys(base);
2355 
2356 	/* Check if the physical address of the memory is above 48bits */
2357 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2358 
2359 		/* 52bit PA is supported only when PageSize=64K */
2360 		if (psz != SZ_64K) {
2361 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2362 			free_pages((unsigned long)base, order);
2363 			return -ENXIO;
2364 		}
2365 
2366 		/* Convert 52bit PA to 48bit field */
2367 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2368 	}
2369 
2370 retry_baser:
2371 	val = (baser_phys					 |
2372 		(type << GITS_BASER_TYPE_SHIFT)			 |
2373 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2374 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2375 		cache						 |
2376 		shr						 |
2377 		GITS_BASER_VALID);
2378 
2379 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2380 
2381 	switch (psz) {
2382 	case SZ_4K:
2383 		val |= GITS_BASER_PAGE_SIZE_4K;
2384 		break;
2385 	case SZ_16K:
2386 		val |= GITS_BASER_PAGE_SIZE_16K;
2387 		break;
2388 	case SZ_64K:
2389 		val |= GITS_BASER_PAGE_SIZE_64K;
2390 		break;
2391 	}
2392 
2393 	if (!shr)
2394 		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2395 
2396 	its_write_baser(its, baser, val);
2397 	tmp = baser->val;
2398 
2399 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2400 		/*
2401 		 * Shareability didn't stick. Just use
2402 		 * whatever the read reported, which is likely
2403 		 * to be the only thing this redistributor
2404 		 * supports. If that's zero, make it
2405 		 * non-cacheable as well.
2406 		 */
2407 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2408 		if (!shr)
2409 			cache = GITS_BASER_nC;
2410 
2411 		goto retry_baser;
2412 	}
2413 
2414 	if (val != tmp) {
2415 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2416 		       &its->phys_base, its_base_type_string[type],
2417 		       val, tmp);
2418 		free_pages((unsigned long)base, order);
2419 		return -ENXIO;
2420 	}
2421 
2422 	baser->order = order;
2423 	baser->base = base;
2424 	baser->psz = psz;
2425 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2426 
2427 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2428 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2429 		its_base_type_string[type],
2430 		(unsigned long)virt_to_phys(base),
2431 		indirect ? "indirect" : "flat", (int)esz,
2432 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2433 
2434 	return 0;
2435 }
2436 
2437 static bool its_parse_indirect_baser(struct its_node *its,
2438 				     struct its_baser *baser,
2439 				     u32 *order, u32 ids)
2440 {
2441 	u64 tmp = its_read_baser(its, baser);
2442 	u64 type = GITS_BASER_TYPE(tmp);
2443 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2444 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2445 	u32 new_order = *order;
2446 	u32 psz = baser->psz;
2447 	bool indirect = false;
2448 
2449 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2450 	if ((esz << ids) > (psz * 2)) {
2451 		/*
2452 		 * Find out whether hw supports a single or two-level table by
2453 		 * table by reading bit at offset '62' after writing '1' to it.
2454 		 */
2455 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2456 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2457 
2458 		if (indirect) {
2459 			/*
2460 			 * The size of the lvl2 table is equal to ITS page size
2461 			 * which is 'psz'. For computing lvl1 table size,
2462 			 * subtract ID bits that sparse lvl2 table from 'ids'
2463 			 * which is reported by ITS hardware times lvl1 table
2464 			 * entry size.
2465 			 */
2466 			ids -= ilog2(psz / (int)esz);
2467 			esz = GITS_LVL1_ENTRY_SIZE;
2468 		}
2469 	}
2470 
2471 	/*
2472 	 * Allocate as many entries as required to fit the
2473 	 * range of device IDs that the ITS can grok... The ID
2474 	 * space being incredibly sparse, this results in a
2475 	 * massive waste of memory if two-level device table
2476 	 * feature is not supported by hardware.
2477 	 */
2478 	new_order = max_t(u32, get_order(esz << ids), new_order);
2479 	if (new_order > MAX_PAGE_ORDER) {
2480 		new_order = MAX_PAGE_ORDER;
2481 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2482 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2483 			&its->phys_base, its_base_type_string[type],
2484 			device_ids(its), ids);
2485 	}
2486 
2487 	*order = new_order;
2488 
2489 	return indirect;
2490 }
2491 
2492 static u32 compute_common_aff(u64 val)
2493 {
2494 	u32 aff, clpiaff;
2495 
2496 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2497 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2498 
2499 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2500 }
2501 
2502 static u32 compute_its_aff(struct its_node *its)
2503 {
2504 	u64 val;
2505 	u32 svpet;
2506 
2507 	/*
2508 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2509 	 * the resulting affinity. We then use that to see if this match
2510 	 * our own affinity.
2511 	 */
2512 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2513 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2514 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2515 	return compute_common_aff(val);
2516 }
2517 
2518 static struct its_node *find_sibling_its(struct its_node *cur_its)
2519 {
2520 	struct its_node *its;
2521 	u32 aff;
2522 
2523 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2524 		return NULL;
2525 
2526 	aff = compute_its_aff(cur_its);
2527 
2528 	list_for_each_entry(its, &its_nodes, entry) {
2529 		u64 baser;
2530 
2531 		if (!is_v4_1(its) || its == cur_its)
2532 			continue;
2533 
2534 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2535 			continue;
2536 
2537 		if (aff != compute_its_aff(its))
2538 			continue;
2539 
2540 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2541 		baser = its->tables[2].val;
2542 		if (!(baser & GITS_BASER_VALID))
2543 			continue;
2544 
2545 		return its;
2546 	}
2547 
2548 	return NULL;
2549 }
2550 
2551 static void its_free_tables(struct its_node *its)
2552 {
2553 	int i;
2554 
2555 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2556 		if (its->tables[i].base) {
2557 			free_pages((unsigned long)its->tables[i].base,
2558 				   its->tables[i].order);
2559 			its->tables[i].base = NULL;
2560 		}
2561 	}
2562 }
2563 
2564 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2565 {
2566 	u64 psz = SZ_64K;
2567 
2568 	while (psz) {
2569 		u64 val, gpsz;
2570 
2571 		val = its_read_baser(its, baser);
2572 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2573 
2574 		switch (psz) {
2575 		case SZ_64K:
2576 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2577 			break;
2578 		case SZ_16K:
2579 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2580 			break;
2581 		case SZ_4K:
2582 		default:
2583 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2584 			break;
2585 		}
2586 
2587 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2588 
2589 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2590 		its_write_baser(its, baser, val);
2591 
2592 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2593 			break;
2594 
2595 		switch (psz) {
2596 		case SZ_64K:
2597 			psz = SZ_16K;
2598 			break;
2599 		case SZ_16K:
2600 			psz = SZ_4K;
2601 			break;
2602 		case SZ_4K:
2603 		default:
2604 			return -1;
2605 		}
2606 	}
2607 
2608 	baser->psz = psz;
2609 	return 0;
2610 }
2611 
2612 static int its_alloc_tables(struct its_node *its)
2613 {
2614 	u64 shr = GITS_BASER_InnerShareable;
2615 	u64 cache = GITS_BASER_RaWaWb;
2616 	int err, i;
2617 
2618 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2619 		/* erratum 24313: ignore memory access type */
2620 		cache = GITS_BASER_nCnB;
2621 
2622 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2623 		cache = GITS_BASER_nC;
2624 		shr = 0;
2625 	}
2626 
2627 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2628 		struct its_baser *baser = its->tables + i;
2629 		u64 val = its_read_baser(its, baser);
2630 		u64 type = GITS_BASER_TYPE(val);
2631 		bool indirect = false;
2632 		u32 order;
2633 
2634 		if (type == GITS_BASER_TYPE_NONE)
2635 			continue;
2636 
2637 		if (its_probe_baser_psz(its, baser)) {
2638 			its_free_tables(its);
2639 			return -ENXIO;
2640 		}
2641 
2642 		order = get_order(baser->psz);
2643 
2644 		switch (type) {
2645 		case GITS_BASER_TYPE_DEVICE:
2646 			indirect = its_parse_indirect_baser(its, baser, &order,
2647 							    device_ids(its));
2648 			break;
2649 
2650 		case GITS_BASER_TYPE_VCPU:
2651 			if (is_v4_1(its)) {
2652 				struct its_node *sibling;
2653 
2654 				WARN_ON(i != 2);
2655 				if ((sibling = find_sibling_its(its))) {
2656 					*baser = sibling->tables[2];
2657 					its_write_baser(its, baser, baser->val);
2658 					continue;
2659 				}
2660 			}
2661 
2662 			indirect = its_parse_indirect_baser(its, baser, &order,
2663 							    ITS_MAX_VPEID_BITS);
2664 			break;
2665 		}
2666 
2667 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2668 		if (err < 0) {
2669 			its_free_tables(its);
2670 			return err;
2671 		}
2672 
2673 		/* Update settings which will be used for next BASERn */
2674 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2675 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2676 	}
2677 
2678 	return 0;
2679 }
2680 
2681 static u64 inherit_vpe_l1_table_from_its(void)
2682 {
2683 	struct its_node *its;
2684 	u64 val;
2685 	u32 aff;
2686 
2687 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2688 	aff = compute_common_aff(val);
2689 
2690 	list_for_each_entry(its, &its_nodes, entry) {
2691 		u64 baser, addr;
2692 
2693 		if (!is_v4_1(its))
2694 			continue;
2695 
2696 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2697 			continue;
2698 
2699 		if (aff != compute_its_aff(its))
2700 			continue;
2701 
2702 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2703 		baser = its->tables[2].val;
2704 		if (!(baser & GITS_BASER_VALID))
2705 			continue;
2706 
2707 		/* We have a winner! */
2708 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2709 
2710 		val  = GICR_VPROPBASER_4_1_VALID;
2711 		if (baser & GITS_BASER_INDIRECT)
2712 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2713 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2714 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2715 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2716 		case GIC_PAGE_SIZE_64K:
2717 			addr = GITS_BASER_ADDR_48_to_52(baser);
2718 			break;
2719 		default:
2720 			addr = baser & GENMASK_ULL(47, 12);
2721 			break;
2722 		}
2723 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2724 		if (rdists_support_shareable()) {
2725 			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2726 					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2727 			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2728 					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2729 		}
2730 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2731 
2732 		return val;
2733 	}
2734 
2735 	return 0;
2736 }
2737 
2738 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2739 {
2740 	u32 aff;
2741 	u64 val;
2742 	int cpu;
2743 
2744 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2745 	aff = compute_common_aff(val);
2746 
2747 	for_each_possible_cpu(cpu) {
2748 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2749 
2750 		if (!base || cpu == smp_processor_id())
2751 			continue;
2752 
2753 		val = gic_read_typer(base + GICR_TYPER);
2754 		if (aff != compute_common_aff(val))
2755 			continue;
2756 
2757 		/*
2758 		 * At this point, we have a victim. This particular CPU
2759 		 * has already booted, and has an affinity that matches
2760 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2761 		 * Make sure we don't write the Z bit in that case.
2762 		 */
2763 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2764 		val &= ~GICR_VPROPBASER_4_1_Z;
2765 
2766 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2767 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2768 
2769 		return val;
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 static bool allocate_vpe_l2_table(int cpu, u32 id)
2776 {
2777 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2778 	unsigned int psz, esz, idx, npg, gpsz;
2779 	u64 val;
2780 	struct page *page;
2781 	__le64 *table;
2782 
2783 	if (!gic_rdists->has_rvpeid)
2784 		return true;
2785 
2786 	/* Skip non-present CPUs */
2787 	if (!base)
2788 		return true;
2789 
2790 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2791 
2792 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2793 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2794 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2795 
2796 	switch (gpsz) {
2797 	default:
2798 		WARN_ON(1);
2799 		fallthrough;
2800 	case GIC_PAGE_SIZE_4K:
2801 		psz = SZ_4K;
2802 		break;
2803 	case GIC_PAGE_SIZE_16K:
2804 		psz = SZ_16K;
2805 		break;
2806 	case GIC_PAGE_SIZE_64K:
2807 		psz = SZ_64K;
2808 		break;
2809 	}
2810 
2811 	/* Don't allow vpe_id that exceeds single, flat table limit */
2812 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2813 		return (id < (npg * psz / (esz * SZ_8)));
2814 
2815 	/* Compute 1st level table index & check if that exceeds table limit */
2816 	idx = id >> ilog2(psz / (esz * SZ_8));
2817 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2818 		return false;
2819 
2820 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2821 
2822 	/* Allocate memory for 2nd level table */
2823 	if (!table[idx]) {
2824 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2825 		if (!page)
2826 			return false;
2827 
2828 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2829 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2830 			gic_flush_dcache_to_poc(page_address(page), psz);
2831 
2832 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2833 
2834 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2835 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2836 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2837 
2838 		/* Ensure updated table contents are visible to RD hardware */
2839 		dsb(sy);
2840 	}
2841 
2842 	return true;
2843 }
2844 
2845 static int allocate_vpe_l1_table(void)
2846 {
2847 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2848 	u64 val, gpsz, npg, pa;
2849 	unsigned int psz = SZ_64K;
2850 	unsigned int np, epp, esz;
2851 	struct page *page;
2852 
2853 	if (!gic_rdists->has_rvpeid)
2854 		return 0;
2855 
2856 	/*
2857 	 * if VPENDBASER.Valid is set, disable any previously programmed
2858 	 * VPE by setting PendingLast while clearing Valid. This has the
2859 	 * effect of making sure no doorbell will be generated and we can
2860 	 * then safely clear VPROPBASER.Valid.
2861 	 */
2862 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2863 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2864 				      vlpi_base + GICR_VPENDBASER);
2865 
2866 	/*
2867 	 * If we can inherit the configuration from another RD, let's do
2868 	 * so. Otherwise, we have to go through the allocation process. We
2869 	 * assume that all RDs have the exact same requirements, as
2870 	 * nothing will work otherwise.
2871 	 */
2872 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2873 	if (val & GICR_VPROPBASER_4_1_VALID)
2874 		goto out;
2875 
2876 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2877 	if (!gic_data_rdist()->vpe_table_mask)
2878 		return -ENOMEM;
2879 
2880 	val = inherit_vpe_l1_table_from_its();
2881 	if (val & GICR_VPROPBASER_4_1_VALID)
2882 		goto out;
2883 
2884 	/* First probe the page size */
2885 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2886 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2887 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2888 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2889 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2890 
2891 	switch (gpsz) {
2892 	default:
2893 		gpsz = GIC_PAGE_SIZE_4K;
2894 		fallthrough;
2895 	case GIC_PAGE_SIZE_4K:
2896 		psz = SZ_4K;
2897 		break;
2898 	case GIC_PAGE_SIZE_16K:
2899 		psz = SZ_16K;
2900 		break;
2901 	case GIC_PAGE_SIZE_64K:
2902 		psz = SZ_64K;
2903 		break;
2904 	}
2905 
2906 	/*
2907 	 * Start populating the register from scratch, including RO fields
2908 	 * (which we want to print in debug cases...)
2909 	 */
2910 	val = 0;
2911 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2912 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2913 
2914 	/* How many entries per GIC page? */
2915 	esz++;
2916 	epp = psz / (esz * SZ_8);
2917 
2918 	/*
2919 	 * If we need more than just a single L1 page, flag the table
2920 	 * as indirect and compute the number of required L1 pages.
2921 	 */
2922 	if (epp < ITS_MAX_VPEID) {
2923 		int nl2;
2924 
2925 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2926 
2927 		/* Number of L2 pages required to cover the VPEID space */
2928 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2929 
2930 		/* Number of L1 pages to point to the L2 pages */
2931 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2932 	} else {
2933 		npg = 1;
2934 	}
2935 
2936 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2937 
2938 	/* Right, that's the number of CPU pages we need for L1 */
2939 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2940 
2941 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2942 		 np, npg, psz, epp, esz);
2943 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2944 	if (!page)
2945 		return -ENOMEM;
2946 
2947 	gic_data_rdist()->vpe_l1_base = page_address(page);
2948 	pa = virt_to_phys(page_address(page));
2949 	WARN_ON(!IS_ALIGNED(pa, psz));
2950 
2951 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2952 	if (rdists_support_shareable()) {
2953 		val |= GICR_VPROPBASER_RaWb;
2954 		val |= GICR_VPROPBASER_InnerShareable;
2955 	}
2956 	val |= GICR_VPROPBASER_4_1_Z;
2957 	val |= GICR_VPROPBASER_4_1_VALID;
2958 
2959 out:
2960 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2961 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2962 
2963 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2964 		 smp_processor_id(), val,
2965 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2966 
2967 	return 0;
2968 }
2969 
2970 static int its_alloc_collections(struct its_node *its)
2971 {
2972 	int i;
2973 
2974 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2975 				   GFP_KERNEL);
2976 	if (!its->collections)
2977 		return -ENOMEM;
2978 
2979 	for (i = 0; i < nr_cpu_ids; i++)
2980 		its->collections[i].target_address = ~0ULL;
2981 
2982 	return 0;
2983 }
2984 
2985 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2986 {
2987 	struct page *pend_page;
2988 
2989 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2990 				get_order(LPI_PENDBASE_SZ));
2991 	if (!pend_page)
2992 		return NULL;
2993 
2994 	/* Make sure the GIC will observe the zero-ed page */
2995 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2996 
2997 	return pend_page;
2998 }
2999 
3000 static void its_free_pending_table(struct page *pt)
3001 {
3002 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
3003 }
3004 
3005 /*
3006  * Booting with kdump and LPIs enabled is generally fine. Any other
3007  * case is wrong in the absence of firmware/EFI support.
3008  */
3009 static bool enabled_lpis_allowed(void)
3010 {
3011 	phys_addr_t addr;
3012 	u64 val;
3013 
3014 	/* Check whether the property table is in a reserved region */
3015 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3016 	addr = val & GENMASK_ULL(51, 12);
3017 
3018 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3019 }
3020 
3021 static int __init allocate_lpi_tables(void)
3022 {
3023 	u64 val;
3024 	int err, cpu;
3025 
3026 	/*
3027 	 * If LPIs are enabled while we run this from the boot CPU,
3028 	 * flag the RD tables as pre-allocated if the stars do align.
3029 	 */
3030 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3031 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3032 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3033 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3034 		pr_info("GICv3: Using preallocated redistributor tables\n");
3035 	}
3036 
3037 	err = its_setup_lpi_prop_table();
3038 	if (err)
3039 		return err;
3040 
3041 	/*
3042 	 * We allocate all the pending tables anyway, as we may have a
3043 	 * mix of RDs that have had LPIs enabled, and some that
3044 	 * don't. We'll free the unused ones as each CPU comes online.
3045 	 */
3046 	for_each_possible_cpu(cpu) {
3047 		struct page *pend_page;
3048 
3049 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3050 		if (!pend_page) {
3051 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3052 			return -ENOMEM;
3053 		}
3054 
3055 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3056 	}
3057 
3058 	return 0;
3059 }
3060 
3061 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3062 {
3063 	u32 count = 1000000;	/* 1s! */
3064 	bool clean;
3065 	u64 val;
3066 
3067 	do {
3068 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3069 		clean = !(val & GICR_VPENDBASER_Dirty);
3070 		if (!clean) {
3071 			count--;
3072 			cpu_relax();
3073 			udelay(1);
3074 		}
3075 	} while (!clean && count);
3076 
3077 	if (unlikely(!clean))
3078 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3079 
3080 	return val;
3081 }
3082 
3083 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3084 {
3085 	u64 val;
3086 
3087 	/* Make sure we wait until the RD is done with the initial scan */
3088 	val = read_vpend_dirty_clear(vlpi_base);
3089 	val &= ~GICR_VPENDBASER_Valid;
3090 	val &= ~clr;
3091 	val |= set;
3092 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3093 
3094 	val = read_vpend_dirty_clear(vlpi_base);
3095 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3096 		val |= GICR_VPENDBASER_PendingLast;
3097 
3098 	return val;
3099 }
3100 
3101 static void its_cpu_init_lpis(void)
3102 {
3103 	void __iomem *rbase = gic_data_rdist_rd_base();
3104 	struct page *pend_page;
3105 	phys_addr_t paddr;
3106 	u64 val, tmp;
3107 
3108 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3109 		return;
3110 
3111 	val = readl_relaxed(rbase + GICR_CTLR);
3112 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3113 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3114 		/*
3115 		 * Check that we get the same property table on all
3116 		 * RDs. If we don't, this is hopeless.
3117 		 */
3118 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3119 		paddr &= GENMASK_ULL(51, 12);
3120 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3121 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3122 
3123 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3124 		paddr &= GENMASK_ULL(51, 16);
3125 
3126 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3127 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3128 
3129 		goto out;
3130 	}
3131 
3132 	pend_page = gic_data_rdist()->pend_page;
3133 	paddr = page_to_phys(pend_page);
3134 
3135 	/* set PROPBASE */
3136 	val = (gic_rdists->prop_table_pa |
3137 	       GICR_PROPBASER_InnerShareable |
3138 	       GICR_PROPBASER_RaWaWb |
3139 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3140 
3141 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3142 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3143 
3144 	if (!rdists_support_shareable())
3145 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3146 
3147 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3148 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3149 			/*
3150 			 * The HW reports non-shareable, we must
3151 			 * remove the cacheability attributes as
3152 			 * well.
3153 			 */
3154 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3155 				 GICR_PROPBASER_CACHEABILITY_MASK);
3156 			val |= GICR_PROPBASER_nC;
3157 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3158 		}
3159 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3160 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3161 	}
3162 
3163 	/* set PENDBASE */
3164 	val = (page_to_phys(pend_page) |
3165 	       GICR_PENDBASER_InnerShareable |
3166 	       GICR_PENDBASER_RaWaWb);
3167 
3168 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3169 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3170 
3171 	if (!rdists_support_shareable())
3172 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3173 
3174 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3175 		/*
3176 		 * The HW reports non-shareable, we must remove the
3177 		 * cacheability attributes as well.
3178 		 */
3179 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3180 			 GICR_PENDBASER_CACHEABILITY_MASK);
3181 		val |= GICR_PENDBASER_nC;
3182 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3183 	}
3184 
3185 	/* Enable LPIs */
3186 	val = readl_relaxed(rbase + GICR_CTLR);
3187 	val |= GICR_CTLR_ENABLE_LPIS;
3188 	writel_relaxed(val, rbase + GICR_CTLR);
3189 
3190 out:
3191 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3192 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3193 
3194 		/*
3195 		 * It's possible for CPU to receive VLPIs before it is
3196 		 * scheduled as a vPE, especially for the first CPU, and the
3197 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3198 		 * as out of range and dropped by GIC.
3199 		 * So we initialize IDbits to known value to avoid VLPI drop.
3200 		 */
3201 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3202 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3203 			smp_processor_id(), val);
3204 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3205 
3206 		/*
3207 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3208 		 * ancient programming gets left in and has possibility of
3209 		 * corrupting memory.
3210 		 */
3211 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3212 	}
3213 
3214 	if (allocate_vpe_l1_table()) {
3215 		/*
3216 		 * If the allocation has failed, we're in massive trouble.
3217 		 * Disable direct injection, and pray that no VM was
3218 		 * already running...
3219 		 */
3220 		gic_rdists->has_rvpeid = false;
3221 		gic_rdists->has_vlpis = false;
3222 	}
3223 
3224 	/* Make sure the GIC has seen the above */
3225 	dsb(sy);
3226 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3227 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3228 		smp_processor_id(),
3229 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3230 		"reserved" : "allocated",
3231 		&paddr);
3232 }
3233 
3234 static void its_cpu_init_collection(struct its_node *its)
3235 {
3236 	int cpu = smp_processor_id();
3237 	u64 target;
3238 
3239 	/* avoid cross node collections and its mapping */
3240 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3241 		struct device_node *cpu_node;
3242 
3243 		cpu_node = of_get_cpu_node(cpu, NULL);
3244 		if (its->numa_node != NUMA_NO_NODE &&
3245 			its->numa_node != of_node_to_nid(cpu_node))
3246 			return;
3247 	}
3248 
3249 	/*
3250 	 * We now have to bind each collection to its target
3251 	 * redistributor.
3252 	 */
3253 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3254 		/*
3255 		 * This ITS wants the physical address of the
3256 		 * redistributor.
3257 		 */
3258 		target = gic_data_rdist()->phys_base;
3259 	} else {
3260 		/* This ITS wants a linear CPU number. */
3261 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3262 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3263 	}
3264 
3265 	/* Perform collection mapping */
3266 	its->collections[cpu].target_address = target;
3267 	its->collections[cpu].col_id = cpu;
3268 
3269 	its_send_mapc(its, &its->collections[cpu], 1);
3270 	its_send_invall(its, &its->collections[cpu]);
3271 }
3272 
3273 static void its_cpu_init_collections(void)
3274 {
3275 	struct its_node *its;
3276 
3277 	raw_spin_lock(&its_lock);
3278 
3279 	list_for_each_entry(its, &its_nodes, entry)
3280 		its_cpu_init_collection(its);
3281 
3282 	raw_spin_unlock(&its_lock);
3283 }
3284 
3285 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3286 {
3287 	struct its_device *its_dev = NULL, *tmp;
3288 	unsigned long flags;
3289 
3290 	raw_spin_lock_irqsave(&its->lock, flags);
3291 
3292 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3293 		if (tmp->device_id == dev_id) {
3294 			its_dev = tmp;
3295 			break;
3296 		}
3297 	}
3298 
3299 	raw_spin_unlock_irqrestore(&its->lock, flags);
3300 
3301 	return its_dev;
3302 }
3303 
3304 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3305 {
3306 	int i;
3307 
3308 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3309 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3310 			return &its->tables[i];
3311 	}
3312 
3313 	return NULL;
3314 }
3315 
3316 static bool its_alloc_table_entry(struct its_node *its,
3317 				  struct its_baser *baser, u32 id)
3318 {
3319 	struct page *page;
3320 	u32 esz, idx;
3321 	__le64 *table;
3322 
3323 	/* Don't allow device id that exceeds single, flat table limit */
3324 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3325 	if (!(baser->val & GITS_BASER_INDIRECT))
3326 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3327 
3328 	/* Compute 1st level table index & check if that exceeds table limit */
3329 	idx = id >> ilog2(baser->psz / esz);
3330 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3331 		return false;
3332 
3333 	table = baser->base;
3334 
3335 	/* Allocate memory for 2nd level table */
3336 	if (!table[idx]) {
3337 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3338 					get_order(baser->psz));
3339 		if (!page)
3340 			return false;
3341 
3342 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3343 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3344 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3345 
3346 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3347 
3348 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3349 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3350 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3351 
3352 		/* Ensure updated table contents are visible to ITS hardware */
3353 		dsb(sy);
3354 	}
3355 
3356 	return true;
3357 }
3358 
3359 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3360 {
3361 	struct its_baser *baser;
3362 
3363 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3364 
3365 	/* Don't allow device id that exceeds ITS hardware limit */
3366 	if (!baser)
3367 		return (ilog2(dev_id) < device_ids(its));
3368 
3369 	return its_alloc_table_entry(its, baser, dev_id);
3370 }
3371 
3372 static bool its_alloc_vpe_table(u32 vpe_id)
3373 {
3374 	struct its_node *its;
3375 	int cpu;
3376 
3377 	/*
3378 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3379 	 * could try and only do it on ITSs corresponding to devices
3380 	 * that have interrupts targeted at this VPE, but the
3381 	 * complexity becomes crazy (and you have tons of memory
3382 	 * anyway, right?).
3383 	 */
3384 	list_for_each_entry(its, &its_nodes, entry) {
3385 		struct its_baser *baser;
3386 
3387 		if (!is_v4(its))
3388 			continue;
3389 
3390 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3391 		if (!baser)
3392 			return false;
3393 
3394 		if (!its_alloc_table_entry(its, baser, vpe_id))
3395 			return false;
3396 	}
3397 
3398 	/* Non v4.1? No need to iterate RDs and go back early. */
3399 	if (!gic_rdists->has_rvpeid)
3400 		return true;
3401 
3402 	/*
3403 	 * Make sure the L2 tables are allocated for all copies of
3404 	 * the L1 table on *all* v4.1 RDs.
3405 	 */
3406 	for_each_possible_cpu(cpu) {
3407 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3408 			return false;
3409 	}
3410 
3411 	return true;
3412 }
3413 
3414 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3415 					    int nvecs, bool alloc_lpis)
3416 {
3417 	struct its_device *dev;
3418 	unsigned long *lpi_map = NULL;
3419 	unsigned long flags;
3420 	u16 *col_map = NULL;
3421 	void *itt;
3422 	int lpi_base;
3423 	int nr_lpis;
3424 	int nr_ites;
3425 	int sz;
3426 
3427 	if (!its_alloc_device_table(its, dev_id))
3428 		return NULL;
3429 
3430 	if (WARN_ON(!is_power_of_2(nvecs)))
3431 		nvecs = roundup_pow_of_two(nvecs);
3432 
3433 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3434 	/*
3435 	 * Even if the device wants a single LPI, the ITT must be
3436 	 * sized as a power of two (and you need at least one bit...).
3437 	 */
3438 	nr_ites = max(2, nvecs);
3439 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3440 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3441 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3442 	if (alloc_lpis) {
3443 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3444 		if (lpi_map)
3445 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3446 					  GFP_KERNEL);
3447 	} else {
3448 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3449 		nr_lpis = 0;
3450 		lpi_base = 0;
3451 	}
3452 
3453 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3454 		kfree(dev);
3455 		kfree(itt);
3456 		bitmap_free(lpi_map);
3457 		kfree(col_map);
3458 		return NULL;
3459 	}
3460 
3461 	gic_flush_dcache_to_poc(itt, sz);
3462 
3463 	dev->its = its;
3464 	dev->itt = itt;
3465 	dev->nr_ites = nr_ites;
3466 	dev->event_map.lpi_map = lpi_map;
3467 	dev->event_map.col_map = col_map;
3468 	dev->event_map.lpi_base = lpi_base;
3469 	dev->event_map.nr_lpis = nr_lpis;
3470 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3471 	dev->device_id = dev_id;
3472 	INIT_LIST_HEAD(&dev->entry);
3473 
3474 	raw_spin_lock_irqsave(&its->lock, flags);
3475 	list_add(&dev->entry, &its->its_device_list);
3476 	raw_spin_unlock_irqrestore(&its->lock, flags);
3477 
3478 	/* Map device to its ITT */
3479 	its_send_mapd(dev, 1);
3480 
3481 	return dev;
3482 }
3483 
3484 static void its_free_device(struct its_device *its_dev)
3485 {
3486 	unsigned long flags;
3487 
3488 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3489 	list_del(&its_dev->entry);
3490 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3491 	kfree(its_dev->event_map.col_map);
3492 	kfree(its_dev->itt);
3493 	kfree(its_dev);
3494 }
3495 
3496 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3497 {
3498 	int idx;
3499 
3500 	/* Find a free LPI region in lpi_map and allocate them. */
3501 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3502 				      dev->event_map.nr_lpis,
3503 				      get_count_order(nvecs));
3504 	if (idx < 0)
3505 		return -ENOSPC;
3506 
3507 	*hwirq = dev->event_map.lpi_base + idx;
3508 
3509 	return 0;
3510 }
3511 
3512 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3513 			   int nvec, msi_alloc_info_t *info)
3514 {
3515 	struct its_node *its;
3516 	struct its_device *its_dev;
3517 	struct msi_domain_info *msi_info;
3518 	u32 dev_id;
3519 	int err = 0;
3520 
3521 	/*
3522 	 * We ignore "dev" entirely, and rely on the dev_id that has
3523 	 * been passed via the scratchpad. This limits this domain's
3524 	 * usefulness to upper layers that definitely know that they
3525 	 * are built on top of the ITS.
3526 	 */
3527 	dev_id = info->scratchpad[0].ul;
3528 
3529 	msi_info = msi_get_domain_info(domain);
3530 	its = msi_info->data;
3531 
3532 	if (!gic_rdists->has_direct_lpi &&
3533 	    vpe_proxy.dev &&
3534 	    vpe_proxy.dev->its == its &&
3535 	    dev_id == vpe_proxy.dev->device_id) {
3536 		/* Bad luck. Get yourself a better implementation */
3537 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3538 			  dev_id);
3539 		return -EINVAL;
3540 	}
3541 
3542 	mutex_lock(&its->dev_alloc_lock);
3543 	its_dev = its_find_device(its, dev_id);
3544 	if (its_dev) {
3545 		/*
3546 		 * We already have seen this ID, probably through
3547 		 * another alias (PCI bridge of some sort). No need to
3548 		 * create the device.
3549 		 */
3550 		its_dev->shared = true;
3551 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3552 		goto out;
3553 	}
3554 
3555 	its_dev = its_create_device(its, dev_id, nvec, true);
3556 	if (!its_dev) {
3557 		err = -ENOMEM;
3558 		goto out;
3559 	}
3560 
3561 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3562 		its_dev->shared = true;
3563 
3564 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3565 out:
3566 	mutex_unlock(&its->dev_alloc_lock);
3567 	info->scratchpad[0].ptr = its_dev;
3568 	return err;
3569 }
3570 
3571 static struct msi_domain_ops its_msi_domain_ops = {
3572 	.msi_prepare	= its_msi_prepare,
3573 };
3574 
3575 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3576 				    unsigned int virq,
3577 				    irq_hw_number_t hwirq)
3578 {
3579 	struct irq_fwspec fwspec;
3580 
3581 	if (irq_domain_get_of_node(domain->parent)) {
3582 		fwspec.fwnode = domain->parent->fwnode;
3583 		fwspec.param_count = 3;
3584 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3585 		fwspec.param[1] = hwirq;
3586 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3587 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3588 		fwspec.fwnode = domain->parent->fwnode;
3589 		fwspec.param_count = 2;
3590 		fwspec.param[0] = hwirq;
3591 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3592 	} else {
3593 		return -EINVAL;
3594 	}
3595 
3596 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3597 }
3598 
3599 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3600 				unsigned int nr_irqs, void *args)
3601 {
3602 	msi_alloc_info_t *info = args;
3603 	struct its_device *its_dev = info->scratchpad[0].ptr;
3604 	struct its_node *its = its_dev->its;
3605 	struct irq_data *irqd;
3606 	irq_hw_number_t hwirq;
3607 	int err;
3608 	int i;
3609 
3610 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3611 	if (err)
3612 		return err;
3613 
3614 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3615 	if (err)
3616 		return err;
3617 
3618 	for (i = 0; i < nr_irqs; i++) {
3619 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3620 		if (err)
3621 			return err;
3622 
3623 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3624 					      hwirq + i, &its_irq_chip, its_dev);
3625 		irqd = irq_get_irq_data(virq + i);
3626 		irqd_set_single_target(irqd);
3627 		irqd_set_affinity_on_activate(irqd);
3628 		irqd_set_resend_when_in_progress(irqd);
3629 		pr_debug("ID:%d pID:%d vID:%d\n",
3630 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3631 			 (int)(hwirq + i), virq + i);
3632 	}
3633 
3634 	return 0;
3635 }
3636 
3637 static int its_irq_domain_activate(struct irq_domain *domain,
3638 				   struct irq_data *d, bool reserve)
3639 {
3640 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3641 	u32 event = its_get_event_id(d);
3642 	int cpu;
3643 
3644 	cpu = its_select_cpu(d, cpu_online_mask);
3645 	if (cpu < 0 || cpu >= nr_cpu_ids)
3646 		return -EINVAL;
3647 
3648 	its_inc_lpi_count(d, cpu);
3649 	its_dev->event_map.col_map[event] = cpu;
3650 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3651 
3652 	/* Map the GIC IRQ and event to the device */
3653 	its_send_mapti(its_dev, d->hwirq, event);
3654 	return 0;
3655 }
3656 
3657 static void its_irq_domain_deactivate(struct irq_domain *domain,
3658 				      struct irq_data *d)
3659 {
3660 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3661 	u32 event = its_get_event_id(d);
3662 
3663 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3664 	/* Stop the delivery of interrupts */
3665 	its_send_discard(its_dev, event);
3666 }
3667 
3668 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3669 				unsigned int nr_irqs)
3670 {
3671 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3672 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3673 	struct its_node *its = its_dev->its;
3674 	int i;
3675 
3676 	bitmap_release_region(its_dev->event_map.lpi_map,
3677 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3678 			      get_count_order(nr_irqs));
3679 
3680 	for (i = 0; i < nr_irqs; i++) {
3681 		struct irq_data *data = irq_domain_get_irq_data(domain,
3682 								virq + i);
3683 		/* Nuke the entry in the domain */
3684 		irq_domain_reset_irq_data(data);
3685 	}
3686 
3687 	mutex_lock(&its->dev_alloc_lock);
3688 
3689 	/*
3690 	 * If all interrupts have been freed, start mopping the
3691 	 * floor. This is conditioned on the device not being shared.
3692 	 */
3693 	if (!its_dev->shared &&
3694 	    bitmap_empty(its_dev->event_map.lpi_map,
3695 			 its_dev->event_map.nr_lpis)) {
3696 		its_lpi_free(its_dev->event_map.lpi_map,
3697 			     its_dev->event_map.lpi_base,
3698 			     its_dev->event_map.nr_lpis);
3699 
3700 		/* Unmap device/itt */
3701 		its_send_mapd(its_dev, 0);
3702 		its_free_device(its_dev);
3703 	}
3704 
3705 	mutex_unlock(&its->dev_alloc_lock);
3706 
3707 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3708 }
3709 
3710 static const struct irq_domain_ops its_domain_ops = {
3711 	.alloc			= its_irq_domain_alloc,
3712 	.free			= its_irq_domain_free,
3713 	.activate		= its_irq_domain_activate,
3714 	.deactivate		= its_irq_domain_deactivate,
3715 };
3716 
3717 /*
3718  * This is insane.
3719  *
3720  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3721  * likely), the only way to perform an invalidate is to use a fake
3722  * device to issue an INV command, implying that the LPI has first
3723  * been mapped to some event on that device. Since this is not exactly
3724  * cheap, we try to keep that mapping around as long as possible, and
3725  * only issue an UNMAP if we're short on available slots.
3726  *
3727  * Broken by design(tm).
3728  *
3729  * GICv4.1, on the other hand, mandates that we're able to invalidate
3730  * by writing to a MMIO register. It doesn't implement the whole of
3731  * DirectLPI, but that's good enough. And most of the time, we don't
3732  * even have to invalidate anything, as the redistributor can be told
3733  * whether to generate a doorbell or not (we thus leave it enabled,
3734  * always).
3735  */
3736 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3737 {
3738 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3739 	if (gic_rdists->has_rvpeid)
3740 		return;
3741 
3742 	/* Already unmapped? */
3743 	if (vpe->vpe_proxy_event == -1)
3744 		return;
3745 
3746 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3747 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3748 
3749 	/*
3750 	 * We don't track empty slots at all, so let's move the
3751 	 * next_victim pointer if we can quickly reuse that slot
3752 	 * instead of nuking an existing entry. Not clear that this is
3753 	 * always a win though, and this might just generate a ripple
3754 	 * effect... Let's just hope VPEs don't migrate too often.
3755 	 */
3756 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3757 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3758 
3759 	vpe->vpe_proxy_event = -1;
3760 }
3761 
3762 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3763 {
3764 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3765 	if (gic_rdists->has_rvpeid)
3766 		return;
3767 
3768 	if (!gic_rdists->has_direct_lpi) {
3769 		unsigned long flags;
3770 
3771 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3772 		its_vpe_db_proxy_unmap_locked(vpe);
3773 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3774 	}
3775 }
3776 
3777 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3778 {
3779 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3780 	if (gic_rdists->has_rvpeid)
3781 		return;
3782 
3783 	/* Already mapped? */
3784 	if (vpe->vpe_proxy_event != -1)
3785 		return;
3786 
3787 	/* This slot was already allocated. Kick the other VPE out. */
3788 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3789 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3790 
3791 	/* Map the new VPE instead */
3792 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3793 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3794 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3795 
3796 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3797 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3798 }
3799 
3800 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3801 {
3802 	unsigned long flags;
3803 	struct its_collection *target_col;
3804 
3805 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3806 	if (gic_rdists->has_rvpeid)
3807 		return;
3808 
3809 	if (gic_rdists->has_direct_lpi) {
3810 		void __iomem *rdbase;
3811 
3812 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3813 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3814 		wait_for_syncr(rdbase);
3815 
3816 		return;
3817 	}
3818 
3819 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3820 
3821 	its_vpe_db_proxy_map_locked(vpe);
3822 
3823 	target_col = &vpe_proxy.dev->its->collections[to];
3824 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3825 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3826 
3827 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3828 }
3829 
3830 static int its_vpe_set_affinity(struct irq_data *d,
3831 				const struct cpumask *mask_val,
3832 				bool force)
3833 {
3834 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3835 	struct cpumask common, *table_mask;
3836 	unsigned long flags;
3837 	int from, cpu;
3838 
3839 	/*
3840 	 * Changing affinity is mega expensive, so let's be as lazy as
3841 	 * we can and only do it if we really have to. Also, if mapped
3842 	 * into the proxy device, we need to move the doorbell
3843 	 * interrupt to its new location.
3844 	 *
3845 	 * Another thing is that changing the affinity of a vPE affects
3846 	 * *other interrupts* such as all the vLPIs that are routed to
3847 	 * this vPE. This means that the irq_desc lock is not enough to
3848 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3849 	 * during the update, hence the lock below which must also be
3850 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3851 	 */
3852 	from = vpe_to_cpuid_lock(vpe, &flags);
3853 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3854 
3855 	/*
3856 	 * If we are offered another CPU in the same GICv4.1 ITS
3857 	 * affinity, pick this one. Otherwise, any CPU will do.
3858 	 */
3859 	if (table_mask && cpumask_and(&common, mask_val, table_mask))
3860 		cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3861 	else
3862 		cpu = cpumask_first(mask_val);
3863 
3864 	if (from == cpu)
3865 		goto out;
3866 
3867 	vpe->col_idx = cpu;
3868 
3869 	its_send_vmovp(vpe);
3870 	its_vpe_db_proxy_move(vpe, from, cpu);
3871 
3872 out:
3873 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3874 	vpe_to_cpuid_unlock(vpe, flags);
3875 
3876 	return IRQ_SET_MASK_OK_DONE;
3877 }
3878 
3879 static void its_wait_vpt_parse_complete(void)
3880 {
3881 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3882 	u64 val;
3883 
3884 	if (!gic_rdists->has_vpend_valid_dirty)
3885 		return;
3886 
3887 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3888 						       val,
3889 						       !(val & GICR_VPENDBASER_Dirty),
3890 						       1, 500));
3891 }
3892 
3893 static void its_vpe_schedule(struct its_vpe *vpe)
3894 {
3895 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3896 	u64 val;
3897 
3898 	/* Schedule the VPE */
3899 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3900 		GENMASK_ULL(51, 12);
3901 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3902 	if (rdists_support_shareable()) {
3903 		val |= GICR_VPROPBASER_RaWb;
3904 		val |= GICR_VPROPBASER_InnerShareable;
3905 	}
3906 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3907 
3908 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3909 		GENMASK_ULL(51, 16);
3910 	if (rdists_support_shareable()) {
3911 		val |= GICR_VPENDBASER_RaWaWb;
3912 		val |= GICR_VPENDBASER_InnerShareable;
3913 	}
3914 	/*
3915 	 * There is no good way of finding out if the pending table is
3916 	 * empty as we can race against the doorbell interrupt very
3917 	 * easily. So in the end, vpe->pending_last is only an
3918 	 * indication that the vcpu has something pending, not one
3919 	 * that the pending table is empty. A good implementation
3920 	 * would be able to read its coarse map pretty quickly anyway,
3921 	 * making this a tolerable issue.
3922 	 */
3923 	val |= GICR_VPENDBASER_PendingLast;
3924 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3925 	val |= GICR_VPENDBASER_Valid;
3926 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3927 }
3928 
3929 static void its_vpe_deschedule(struct its_vpe *vpe)
3930 {
3931 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3932 	u64 val;
3933 
3934 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3935 
3936 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3937 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3938 }
3939 
3940 static void its_vpe_invall(struct its_vpe *vpe)
3941 {
3942 	struct its_node *its;
3943 
3944 	list_for_each_entry(its, &its_nodes, entry) {
3945 		if (!is_v4(its))
3946 			continue;
3947 
3948 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3949 			continue;
3950 
3951 		/*
3952 		 * Sending a VINVALL to a single ITS is enough, as all
3953 		 * we need is to reach the redistributors.
3954 		 */
3955 		its_send_vinvall(its, vpe);
3956 		return;
3957 	}
3958 }
3959 
3960 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3961 {
3962 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3963 	struct its_cmd_info *info = vcpu_info;
3964 
3965 	switch (info->cmd_type) {
3966 	case SCHEDULE_VPE:
3967 		its_vpe_schedule(vpe);
3968 		return 0;
3969 
3970 	case DESCHEDULE_VPE:
3971 		its_vpe_deschedule(vpe);
3972 		return 0;
3973 
3974 	case COMMIT_VPE:
3975 		its_wait_vpt_parse_complete();
3976 		return 0;
3977 
3978 	case INVALL_VPE:
3979 		its_vpe_invall(vpe);
3980 		return 0;
3981 
3982 	default:
3983 		return -EINVAL;
3984 	}
3985 }
3986 
3987 static void its_vpe_send_cmd(struct its_vpe *vpe,
3988 			     void (*cmd)(struct its_device *, u32))
3989 {
3990 	unsigned long flags;
3991 
3992 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3993 
3994 	its_vpe_db_proxy_map_locked(vpe);
3995 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3996 
3997 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3998 }
3999 
4000 static void its_vpe_send_inv(struct irq_data *d)
4001 {
4002 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4003 
4004 	if (gic_rdists->has_direct_lpi)
4005 		__direct_lpi_inv(d, d->parent_data->hwirq);
4006 	else
4007 		its_vpe_send_cmd(vpe, its_send_inv);
4008 }
4009 
4010 static void its_vpe_mask_irq(struct irq_data *d)
4011 {
4012 	/*
4013 	 * We need to unmask the LPI, which is described by the parent
4014 	 * irq_data. Instead of calling into the parent (which won't
4015 	 * exactly do the right thing, let's simply use the
4016 	 * parent_data pointer. Yes, I'm naughty.
4017 	 */
4018 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4019 	its_vpe_send_inv(d);
4020 }
4021 
4022 static void its_vpe_unmask_irq(struct irq_data *d)
4023 {
4024 	/* Same hack as above... */
4025 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4026 	its_vpe_send_inv(d);
4027 }
4028 
4029 static int its_vpe_set_irqchip_state(struct irq_data *d,
4030 				     enum irqchip_irq_state which,
4031 				     bool state)
4032 {
4033 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4034 
4035 	if (which != IRQCHIP_STATE_PENDING)
4036 		return -EINVAL;
4037 
4038 	if (gic_rdists->has_direct_lpi) {
4039 		void __iomem *rdbase;
4040 
4041 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4042 		if (state) {
4043 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4044 		} else {
4045 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4046 			wait_for_syncr(rdbase);
4047 		}
4048 	} else {
4049 		if (state)
4050 			its_vpe_send_cmd(vpe, its_send_int);
4051 		else
4052 			its_vpe_send_cmd(vpe, its_send_clear);
4053 	}
4054 
4055 	return 0;
4056 }
4057 
4058 static int its_vpe_retrigger(struct irq_data *d)
4059 {
4060 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4061 }
4062 
4063 static struct irq_chip its_vpe_irq_chip = {
4064 	.name			= "GICv4-vpe",
4065 	.irq_mask		= its_vpe_mask_irq,
4066 	.irq_unmask		= its_vpe_unmask_irq,
4067 	.irq_eoi		= irq_chip_eoi_parent,
4068 	.irq_set_affinity	= its_vpe_set_affinity,
4069 	.irq_retrigger		= its_vpe_retrigger,
4070 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4071 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4072 };
4073 
4074 static struct its_node *find_4_1_its(void)
4075 {
4076 	static struct its_node *its = NULL;
4077 
4078 	if (!its) {
4079 		list_for_each_entry(its, &its_nodes, entry) {
4080 			if (is_v4_1(its))
4081 				return its;
4082 		}
4083 
4084 		/* Oops? */
4085 		its = NULL;
4086 	}
4087 
4088 	return its;
4089 }
4090 
4091 static void its_vpe_4_1_send_inv(struct irq_data *d)
4092 {
4093 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4094 	struct its_node *its;
4095 
4096 	/*
4097 	 * GICv4.1 wants doorbells to be invalidated using the
4098 	 * INVDB command in order to be broadcast to all RDs. Send
4099 	 * it to the first valid ITS, and let the HW do its magic.
4100 	 */
4101 	its = find_4_1_its();
4102 	if (its)
4103 		its_send_invdb(its, vpe);
4104 }
4105 
4106 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4107 {
4108 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4109 	its_vpe_4_1_send_inv(d);
4110 }
4111 
4112 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4113 {
4114 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4115 	its_vpe_4_1_send_inv(d);
4116 }
4117 
4118 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4119 				 struct its_cmd_info *info)
4120 {
4121 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4122 	u64 val = 0;
4123 
4124 	/* Schedule the VPE */
4125 	val |= GICR_VPENDBASER_Valid;
4126 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4127 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4128 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4129 
4130 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4131 }
4132 
4133 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4134 				   struct its_cmd_info *info)
4135 {
4136 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4137 	u64 val;
4138 
4139 	if (info->req_db) {
4140 		unsigned long flags;
4141 
4142 		/*
4143 		 * vPE is going to block: make the vPE non-resident with
4144 		 * PendingLast clear and DB set. The GIC guarantees that if
4145 		 * we read-back PendingLast clear, then a doorbell will be
4146 		 * delivered when an interrupt comes.
4147 		 *
4148 		 * Note the locking to deal with the concurrent update of
4149 		 * pending_last from the doorbell interrupt handler that can
4150 		 * run concurrently.
4151 		 */
4152 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4153 		val = its_clear_vpend_valid(vlpi_base,
4154 					    GICR_VPENDBASER_PendingLast,
4155 					    GICR_VPENDBASER_4_1_DB);
4156 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4157 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4158 	} else {
4159 		/*
4160 		 * We're not blocking, so just make the vPE non-resident
4161 		 * with PendingLast set, indicating that we'll be back.
4162 		 */
4163 		val = its_clear_vpend_valid(vlpi_base,
4164 					    0,
4165 					    GICR_VPENDBASER_PendingLast);
4166 		vpe->pending_last = true;
4167 	}
4168 }
4169 
4170 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4171 {
4172 	void __iomem *rdbase;
4173 	unsigned long flags;
4174 	u64 val;
4175 	int cpu;
4176 
4177 	val  = GICR_INVALLR_V;
4178 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4179 
4180 	/* Target the redistributor this vPE is currently known on */
4181 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4182 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4183 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4184 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4185 
4186 	wait_for_syncr(rdbase);
4187 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4188 	vpe_to_cpuid_unlock(vpe, flags);
4189 }
4190 
4191 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4192 {
4193 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4194 	struct its_cmd_info *info = vcpu_info;
4195 
4196 	switch (info->cmd_type) {
4197 	case SCHEDULE_VPE:
4198 		its_vpe_4_1_schedule(vpe, info);
4199 		return 0;
4200 
4201 	case DESCHEDULE_VPE:
4202 		its_vpe_4_1_deschedule(vpe, info);
4203 		return 0;
4204 
4205 	case COMMIT_VPE:
4206 		its_wait_vpt_parse_complete();
4207 		return 0;
4208 
4209 	case INVALL_VPE:
4210 		its_vpe_4_1_invall(vpe);
4211 		return 0;
4212 
4213 	default:
4214 		return -EINVAL;
4215 	}
4216 }
4217 
4218 static struct irq_chip its_vpe_4_1_irq_chip = {
4219 	.name			= "GICv4.1-vpe",
4220 	.irq_mask		= its_vpe_4_1_mask_irq,
4221 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4222 	.irq_eoi		= irq_chip_eoi_parent,
4223 	.irq_set_affinity	= its_vpe_set_affinity,
4224 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4225 };
4226 
4227 static void its_configure_sgi(struct irq_data *d, bool clear)
4228 {
4229 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4230 	struct its_cmd_desc desc;
4231 
4232 	desc.its_vsgi_cmd.vpe = vpe;
4233 	desc.its_vsgi_cmd.sgi = d->hwirq;
4234 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4235 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4236 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4237 	desc.its_vsgi_cmd.clear = clear;
4238 
4239 	/*
4240 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4241 	 * destination VPE is mapped there. Since we map them eagerly at
4242 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4243 	 */
4244 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4245 }
4246 
4247 static void its_sgi_mask_irq(struct irq_data *d)
4248 {
4249 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4250 
4251 	vpe->sgi_config[d->hwirq].enabled = false;
4252 	its_configure_sgi(d, false);
4253 }
4254 
4255 static void its_sgi_unmask_irq(struct irq_data *d)
4256 {
4257 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4258 
4259 	vpe->sgi_config[d->hwirq].enabled = true;
4260 	its_configure_sgi(d, false);
4261 }
4262 
4263 static int its_sgi_set_affinity(struct irq_data *d,
4264 				const struct cpumask *mask_val,
4265 				bool force)
4266 {
4267 	/*
4268 	 * There is no notion of affinity for virtual SGIs, at least
4269 	 * not on the host (since they can only be targeting a vPE).
4270 	 * Tell the kernel we've done whatever it asked for.
4271 	 */
4272 	irq_data_update_effective_affinity(d, mask_val);
4273 	return IRQ_SET_MASK_OK;
4274 }
4275 
4276 static int its_sgi_set_irqchip_state(struct irq_data *d,
4277 				     enum irqchip_irq_state which,
4278 				     bool state)
4279 {
4280 	if (which != IRQCHIP_STATE_PENDING)
4281 		return -EINVAL;
4282 
4283 	if (state) {
4284 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4285 		struct its_node *its = find_4_1_its();
4286 		u64 val;
4287 
4288 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4289 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4290 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4291 	} else {
4292 		its_configure_sgi(d, true);
4293 	}
4294 
4295 	return 0;
4296 }
4297 
4298 static int its_sgi_get_irqchip_state(struct irq_data *d,
4299 				     enum irqchip_irq_state which, bool *val)
4300 {
4301 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4302 	void __iomem *base;
4303 	unsigned long flags;
4304 	u32 count = 1000000;	/* 1s! */
4305 	u32 status;
4306 	int cpu;
4307 
4308 	if (which != IRQCHIP_STATE_PENDING)
4309 		return -EINVAL;
4310 
4311 	/*
4312 	 * Locking galore! We can race against two different events:
4313 	 *
4314 	 * - Concurrent vPE affinity change: we must make sure it cannot
4315 	 *   happen, or we'll talk to the wrong redistributor. This is
4316 	 *   identical to what happens with vLPIs.
4317 	 *
4318 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4319 	 *   MMIO registers, this must be made atomic one way or another.
4320 	 */
4321 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4322 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4323 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4324 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4325 	do {
4326 		status = readl_relaxed(base + GICR_VSGIPENDR);
4327 		if (!(status & GICR_VSGIPENDR_BUSY))
4328 			goto out;
4329 
4330 		count--;
4331 		if (!count) {
4332 			pr_err_ratelimited("Unable to get SGI status\n");
4333 			goto out;
4334 		}
4335 		cpu_relax();
4336 		udelay(1);
4337 	} while (count);
4338 
4339 out:
4340 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4341 	vpe_to_cpuid_unlock(vpe, flags);
4342 
4343 	if (!count)
4344 		return -ENXIO;
4345 
4346 	*val = !!(status & (1 << d->hwirq));
4347 
4348 	return 0;
4349 }
4350 
4351 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4352 {
4353 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4354 	struct its_cmd_info *info = vcpu_info;
4355 
4356 	switch (info->cmd_type) {
4357 	case PROP_UPDATE_VSGI:
4358 		vpe->sgi_config[d->hwirq].priority = info->priority;
4359 		vpe->sgi_config[d->hwirq].group = info->group;
4360 		its_configure_sgi(d, false);
4361 		return 0;
4362 
4363 	default:
4364 		return -EINVAL;
4365 	}
4366 }
4367 
4368 static struct irq_chip its_sgi_irq_chip = {
4369 	.name			= "GICv4.1-sgi",
4370 	.irq_mask		= its_sgi_mask_irq,
4371 	.irq_unmask		= its_sgi_unmask_irq,
4372 	.irq_set_affinity	= its_sgi_set_affinity,
4373 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4374 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4375 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4376 };
4377 
4378 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4379 				    unsigned int virq, unsigned int nr_irqs,
4380 				    void *args)
4381 {
4382 	struct its_vpe *vpe = args;
4383 	int i;
4384 
4385 	/* Yes, we do want 16 SGIs */
4386 	WARN_ON(nr_irqs != 16);
4387 
4388 	for (i = 0; i < 16; i++) {
4389 		vpe->sgi_config[i].priority = 0;
4390 		vpe->sgi_config[i].enabled = false;
4391 		vpe->sgi_config[i].group = false;
4392 
4393 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4394 					      &its_sgi_irq_chip, vpe);
4395 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4396 	}
4397 
4398 	return 0;
4399 }
4400 
4401 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4402 				    unsigned int virq,
4403 				    unsigned int nr_irqs)
4404 {
4405 	/* Nothing to do */
4406 }
4407 
4408 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4409 				       struct irq_data *d, bool reserve)
4410 {
4411 	/* Write out the initial SGI configuration */
4412 	its_configure_sgi(d, false);
4413 	return 0;
4414 }
4415 
4416 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4417 					  struct irq_data *d)
4418 {
4419 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4420 
4421 	/*
4422 	 * The VSGI command is awkward:
4423 	 *
4424 	 * - To change the configuration, CLEAR must be set to false,
4425 	 *   leaving the pending bit unchanged.
4426 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4427 	 *   the configuration unchanged.
4428 	 *
4429 	 * You just can't do both at once, hence the two commands below.
4430 	 */
4431 	vpe->sgi_config[d->hwirq].enabled = false;
4432 	its_configure_sgi(d, false);
4433 	its_configure_sgi(d, true);
4434 }
4435 
4436 static const struct irq_domain_ops its_sgi_domain_ops = {
4437 	.alloc		= its_sgi_irq_domain_alloc,
4438 	.free		= its_sgi_irq_domain_free,
4439 	.activate	= its_sgi_irq_domain_activate,
4440 	.deactivate	= its_sgi_irq_domain_deactivate,
4441 };
4442 
4443 static int its_vpe_id_alloc(void)
4444 {
4445 	return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4446 }
4447 
4448 static void its_vpe_id_free(u16 id)
4449 {
4450 	ida_free(&its_vpeid_ida, id);
4451 }
4452 
4453 static int its_vpe_init(struct its_vpe *vpe)
4454 {
4455 	struct page *vpt_page;
4456 	int vpe_id;
4457 
4458 	/* Allocate vpe_id */
4459 	vpe_id = its_vpe_id_alloc();
4460 	if (vpe_id < 0)
4461 		return vpe_id;
4462 
4463 	/* Allocate VPT */
4464 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4465 	if (!vpt_page) {
4466 		its_vpe_id_free(vpe_id);
4467 		return -ENOMEM;
4468 	}
4469 
4470 	if (!its_alloc_vpe_table(vpe_id)) {
4471 		its_vpe_id_free(vpe_id);
4472 		its_free_pending_table(vpt_page);
4473 		return -ENOMEM;
4474 	}
4475 
4476 	raw_spin_lock_init(&vpe->vpe_lock);
4477 	vpe->vpe_id = vpe_id;
4478 	vpe->vpt_page = vpt_page;
4479 	if (gic_rdists->has_rvpeid)
4480 		atomic_set(&vpe->vmapp_count, 0);
4481 	else
4482 		vpe->vpe_proxy_event = -1;
4483 
4484 	return 0;
4485 }
4486 
4487 static void its_vpe_teardown(struct its_vpe *vpe)
4488 {
4489 	its_vpe_db_proxy_unmap(vpe);
4490 	its_vpe_id_free(vpe->vpe_id);
4491 	its_free_pending_table(vpe->vpt_page);
4492 }
4493 
4494 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4495 				    unsigned int virq,
4496 				    unsigned int nr_irqs)
4497 {
4498 	struct its_vm *vm = domain->host_data;
4499 	int i;
4500 
4501 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4502 
4503 	for (i = 0; i < nr_irqs; i++) {
4504 		struct irq_data *data = irq_domain_get_irq_data(domain,
4505 								virq + i);
4506 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4507 
4508 		BUG_ON(vm != vpe->its_vm);
4509 
4510 		clear_bit(data->hwirq, vm->db_bitmap);
4511 		its_vpe_teardown(vpe);
4512 		irq_domain_reset_irq_data(data);
4513 	}
4514 
4515 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4516 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4517 		its_free_prop_table(vm->vprop_page);
4518 	}
4519 }
4520 
4521 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4522 				    unsigned int nr_irqs, void *args)
4523 {
4524 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4525 	struct its_vm *vm = args;
4526 	unsigned long *bitmap;
4527 	struct page *vprop_page;
4528 	int base, nr_ids, i, err = 0;
4529 
4530 	BUG_ON(!vm);
4531 
4532 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4533 	if (!bitmap)
4534 		return -ENOMEM;
4535 
4536 	if (nr_ids < nr_irqs) {
4537 		its_lpi_free(bitmap, base, nr_ids);
4538 		return -ENOMEM;
4539 	}
4540 
4541 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4542 	if (!vprop_page) {
4543 		its_lpi_free(bitmap, base, nr_ids);
4544 		return -ENOMEM;
4545 	}
4546 
4547 	vm->db_bitmap = bitmap;
4548 	vm->db_lpi_base = base;
4549 	vm->nr_db_lpis = nr_ids;
4550 	vm->vprop_page = vprop_page;
4551 
4552 	if (gic_rdists->has_rvpeid)
4553 		irqchip = &its_vpe_4_1_irq_chip;
4554 
4555 	for (i = 0; i < nr_irqs; i++) {
4556 		vm->vpes[i]->vpe_db_lpi = base + i;
4557 		err = its_vpe_init(vm->vpes[i]);
4558 		if (err)
4559 			break;
4560 		err = its_irq_gic_domain_alloc(domain, virq + i,
4561 					       vm->vpes[i]->vpe_db_lpi);
4562 		if (err)
4563 			break;
4564 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4565 					      irqchip, vm->vpes[i]);
4566 		set_bit(i, bitmap);
4567 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4568 	}
4569 
4570 	if (err) {
4571 		if (i > 0)
4572 			its_vpe_irq_domain_free(domain, virq, i);
4573 
4574 		its_lpi_free(bitmap, base, nr_ids);
4575 		its_free_prop_table(vprop_page);
4576 	}
4577 
4578 	return err;
4579 }
4580 
4581 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4582 				       struct irq_data *d, bool reserve)
4583 {
4584 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4585 	struct its_node *its;
4586 
4587 	/*
4588 	 * If we use the list map, we issue VMAPP on demand... Unless
4589 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4590 	 * so that VSGIs can work.
4591 	 */
4592 	if (!gic_requires_eager_mapping())
4593 		return 0;
4594 
4595 	/* Map the VPE to the first possible CPU */
4596 	vpe->col_idx = cpumask_first(cpu_online_mask);
4597 
4598 	list_for_each_entry(its, &its_nodes, entry) {
4599 		if (!is_v4(its))
4600 			continue;
4601 
4602 		its_send_vmapp(its, vpe, true);
4603 		its_send_vinvall(its, vpe);
4604 	}
4605 
4606 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4607 
4608 	return 0;
4609 }
4610 
4611 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4612 					  struct irq_data *d)
4613 {
4614 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4615 	struct its_node *its;
4616 
4617 	/*
4618 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4619 	 * VLPIs are associated with the VM.
4620 	 */
4621 	if (!gic_requires_eager_mapping())
4622 		return;
4623 
4624 	list_for_each_entry(its, &its_nodes, entry) {
4625 		if (!is_v4(its))
4626 			continue;
4627 
4628 		its_send_vmapp(its, vpe, false);
4629 	}
4630 
4631 	/*
4632 	 * There may be a direct read to the VPT after unmapping the
4633 	 * vPE, to guarantee the validity of this, we make the VPT
4634 	 * memory coherent with the CPU caches here.
4635 	 */
4636 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4637 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4638 					LPI_PENDBASE_SZ);
4639 }
4640 
4641 static const struct irq_domain_ops its_vpe_domain_ops = {
4642 	.alloc			= its_vpe_irq_domain_alloc,
4643 	.free			= its_vpe_irq_domain_free,
4644 	.activate		= its_vpe_irq_domain_activate,
4645 	.deactivate		= its_vpe_irq_domain_deactivate,
4646 };
4647 
4648 static int its_force_quiescent(void __iomem *base)
4649 {
4650 	u32 count = 1000000;	/* 1s */
4651 	u32 val;
4652 
4653 	val = readl_relaxed(base + GITS_CTLR);
4654 	/*
4655 	 * GIC architecture specification requires the ITS to be both
4656 	 * disabled and quiescent for writes to GITS_BASER<n> or
4657 	 * GITS_CBASER to not have UNPREDICTABLE results.
4658 	 */
4659 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4660 		return 0;
4661 
4662 	/* Disable the generation of all interrupts to this ITS */
4663 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4664 	writel_relaxed(val, base + GITS_CTLR);
4665 
4666 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4667 	while (1) {
4668 		val = readl_relaxed(base + GITS_CTLR);
4669 		if (val & GITS_CTLR_QUIESCENT)
4670 			return 0;
4671 
4672 		count--;
4673 		if (!count)
4674 			return -EBUSY;
4675 
4676 		cpu_relax();
4677 		udelay(1);
4678 	}
4679 }
4680 
4681 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4682 {
4683 	struct its_node *its = data;
4684 
4685 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4686 	its->typer &= ~GITS_TYPER_DEVBITS;
4687 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4688 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4689 
4690 	return true;
4691 }
4692 
4693 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4694 {
4695 	struct its_node *its = data;
4696 
4697 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4698 
4699 	return true;
4700 }
4701 
4702 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4703 {
4704 	struct its_node *its = data;
4705 
4706 	/* On QDF2400, the size of the ITE is 16Bytes */
4707 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4708 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4709 
4710 	return true;
4711 }
4712 
4713 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4714 {
4715 	struct its_node *its = its_dev->its;
4716 
4717 	/*
4718 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4719 	 * which maps 32-bit writes targeted at a separate window of
4720 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4721 	 * with device ID taken from bits [device_id_bits + 1:2] of
4722 	 * the window offset.
4723 	 */
4724 	return its->pre_its_base + (its_dev->device_id << 2);
4725 }
4726 
4727 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4728 {
4729 	struct its_node *its = data;
4730 	u32 pre_its_window[2];
4731 	u32 ids;
4732 
4733 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4734 					   "socionext,synquacer-pre-its",
4735 					   pre_its_window,
4736 					   ARRAY_SIZE(pre_its_window))) {
4737 
4738 		its->pre_its_base = pre_its_window[0];
4739 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4740 
4741 		ids = ilog2(pre_its_window[1]) - 2;
4742 		if (device_ids(its) > ids) {
4743 			its->typer &= ~GITS_TYPER_DEVBITS;
4744 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4745 		}
4746 
4747 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4748 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4749 		return true;
4750 	}
4751 	return false;
4752 }
4753 
4754 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4755 {
4756 	struct its_node *its = data;
4757 
4758 	/*
4759 	 * Hip07 insists on using the wrong address for the VLPI
4760 	 * page. Trick it into doing the right thing...
4761 	 */
4762 	its->vlpi_redist_offset = SZ_128K;
4763 	return true;
4764 }
4765 
4766 static bool __maybe_unused its_enable_rk3588001(void *data)
4767 {
4768 	struct its_node *its = data;
4769 
4770 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4771 	    !of_machine_is_compatible("rockchip,rk3588s"))
4772 		return false;
4773 
4774 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4775 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4776 
4777 	return true;
4778 }
4779 
4780 static bool its_set_non_coherent(void *data)
4781 {
4782 	struct its_node *its = data;
4783 
4784 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4785 	return true;
4786 }
4787 
4788 static const struct gic_quirk its_quirks[] = {
4789 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4790 	{
4791 		.desc	= "ITS: Cavium errata 22375, 24313",
4792 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4793 		.mask	= 0xffff0fff,
4794 		.init	= its_enable_quirk_cavium_22375,
4795 	},
4796 #endif
4797 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4798 	{
4799 		.desc	= "ITS: Cavium erratum 23144",
4800 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4801 		.mask	= 0xffff0fff,
4802 		.init	= its_enable_quirk_cavium_23144,
4803 	},
4804 #endif
4805 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4806 	{
4807 		.desc	= "ITS: QDF2400 erratum 0065",
4808 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4809 		.mask	= 0xffffffff,
4810 		.init	= its_enable_quirk_qdf2400_e0065,
4811 	},
4812 #endif
4813 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4814 	{
4815 		/*
4816 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4817 		 * implementation, but with a 'pre-ITS' added that requires
4818 		 * special handling in software.
4819 		 */
4820 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4821 		.iidr	= 0x0001143b,
4822 		.mask	= 0xffffffff,
4823 		.init	= its_enable_quirk_socionext_synquacer,
4824 	},
4825 #endif
4826 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4827 	{
4828 		.desc	= "ITS: Hip07 erratum 161600802",
4829 		.iidr	= 0x00000004,
4830 		.mask	= 0xffffffff,
4831 		.init	= its_enable_quirk_hip07_161600802,
4832 	},
4833 #endif
4834 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4835 	{
4836 		.desc   = "ITS: Rockchip erratum RK3588001",
4837 		.iidr   = 0x0201743b,
4838 		.mask   = 0xffffffff,
4839 		.init   = its_enable_rk3588001,
4840 	},
4841 #endif
4842 	{
4843 		.desc   = "ITS: non-coherent attribute",
4844 		.property = "dma-noncoherent",
4845 		.init   = its_set_non_coherent,
4846 	},
4847 	{
4848 	}
4849 };
4850 
4851 static void its_enable_quirks(struct its_node *its)
4852 {
4853 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4854 
4855 	gic_enable_quirks(iidr, its_quirks, its);
4856 
4857 	if (is_of_node(its->fwnode_handle))
4858 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4859 				     its_quirks, its);
4860 }
4861 
4862 static int its_save_disable(void)
4863 {
4864 	struct its_node *its;
4865 	int err = 0;
4866 
4867 	raw_spin_lock(&its_lock);
4868 	list_for_each_entry(its, &its_nodes, entry) {
4869 		void __iomem *base;
4870 
4871 		base = its->base;
4872 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4873 		err = its_force_quiescent(base);
4874 		if (err) {
4875 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4876 			       &its->phys_base, err);
4877 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4878 			goto err;
4879 		}
4880 
4881 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4882 	}
4883 
4884 err:
4885 	if (err) {
4886 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4887 			void __iomem *base;
4888 
4889 			base = its->base;
4890 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4891 		}
4892 	}
4893 	raw_spin_unlock(&its_lock);
4894 
4895 	return err;
4896 }
4897 
4898 static void its_restore_enable(void)
4899 {
4900 	struct its_node *its;
4901 	int ret;
4902 
4903 	raw_spin_lock(&its_lock);
4904 	list_for_each_entry(its, &its_nodes, entry) {
4905 		void __iomem *base;
4906 		int i;
4907 
4908 		base = its->base;
4909 
4910 		/*
4911 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4912 		 * don't restore it since writing to CBASER or BASER<n>
4913 		 * registers is undefined according to the GIC v3 ITS
4914 		 * Specification.
4915 		 *
4916 		 * Firmware resuming with the ITS enabled is terminally broken.
4917 		 */
4918 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4919 		ret = its_force_quiescent(base);
4920 		if (ret) {
4921 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4922 			       &its->phys_base, ret);
4923 			continue;
4924 		}
4925 
4926 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4927 
4928 		/*
4929 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4930 		 * cmd_write line up with it.
4931 		 */
4932 		its->cmd_write = its->cmd_base;
4933 		gits_write_cwriter(0, base + GITS_CWRITER);
4934 
4935 		/* Restore GITS_BASER from the value cache. */
4936 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4937 			struct its_baser *baser = &its->tables[i];
4938 
4939 			if (!(baser->val & GITS_BASER_VALID))
4940 				continue;
4941 
4942 			its_write_baser(its, baser, baser->val);
4943 		}
4944 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4945 
4946 		/*
4947 		 * Reinit the collection if it's stored in the ITS. This is
4948 		 * indicated by the col_id being less than the HCC field.
4949 		 * CID < HCC as specified in the GIC v3 Documentation.
4950 		 */
4951 		if (its->collections[smp_processor_id()].col_id <
4952 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4953 			its_cpu_init_collection(its);
4954 	}
4955 	raw_spin_unlock(&its_lock);
4956 }
4957 
4958 static struct syscore_ops its_syscore_ops = {
4959 	.suspend = its_save_disable,
4960 	.resume = its_restore_enable,
4961 };
4962 
4963 static void __init __iomem *its_map_one(struct resource *res, int *err)
4964 {
4965 	void __iomem *its_base;
4966 	u32 val;
4967 
4968 	its_base = ioremap(res->start, SZ_64K);
4969 	if (!its_base) {
4970 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4971 		*err = -ENOMEM;
4972 		return NULL;
4973 	}
4974 
4975 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4976 	if (val != 0x30 && val != 0x40) {
4977 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4978 		*err = -ENODEV;
4979 		goto out_unmap;
4980 	}
4981 
4982 	*err = its_force_quiescent(its_base);
4983 	if (*err) {
4984 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4985 		goto out_unmap;
4986 	}
4987 
4988 	return its_base;
4989 
4990 out_unmap:
4991 	iounmap(its_base);
4992 	return NULL;
4993 }
4994 
4995 static int its_init_domain(struct its_node *its)
4996 {
4997 	struct irq_domain *inner_domain;
4998 	struct msi_domain_info *info;
4999 
5000 	info = kzalloc(sizeof(*info), GFP_KERNEL);
5001 	if (!info)
5002 		return -ENOMEM;
5003 
5004 	info->ops = &its_msi_domain_ops;
5005 	info->data = its;
5006 
5007 	inner_domain = irq_domain_create_hierarchy(its_parent,
5008 						   its->msi_domain_flags, 0,
5009 						   its->fwnode_handle, &its_domain_ops,
5010 						   info);
5011 	if (!inner_domain) {
5012 		kfree(info);
5013 		return -ENOMEM;
5014 	}
5015 
5016 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
5017 
5018 	return 0;
5019 }
5020 
5021 static int its_init_vpe_domain(void)
5022 {
5023 	struct its_node *its;
5024 	u32 devid;
5025 	int entries;
5026 
5027 	if (gic_rdists->has_direct_lpi) {
5028 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5029 		return 0;
5030 	}
5031 
5032 	/* Any ITS will do, even if not v4 */
5033 	its = list_first_entry(&its_nodes, struct its_node, entry);
5034 
5035 	entries = roundup_pow_of_two(nr_cpu_ids);
5036 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5037 				 GFP_KERNEL);
5038 	if (!vpe_proxy.vpes)
5039 		return -ENOMEM;
5040 
5041 	/* Use the last possible DevID */
5042 	devid = GENMASK(device_ids(its) - 1, 0);
5043 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5044 	if (!vpe_proxy.dev) {
5045 		kfree(vpe_proxy.vpes);
5046 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5047 		return -ENOMEM;
5048 	}
5049 
5050 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5051 
5052 	raw_spin_lock_init(&vpe_proxy.lock);
5053 	vpe_proxy.next_victim = 0;
5054 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5055 		devid, vpe_proxy.dev->nr_ites);
5056 
5057 	return 0;
5058 }
5059 
5060 static int __init its_compute_its_list_map(struct its_node *its)
5061 {
5062 	int its_number;
5063 	u32 ctlr;
5064 
5065 	/*
5066 	 * This is assumed to be done early enough that we're
5067 	 * guaranteed to be single-threaded, hence no
5068 	 * locking. Should this change, we should address
5069 	 * this.
5070 	 */
5071 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5072 	if (its_number >= GICv4_ITS_LIST_MAX) {
5073 		pr_err("ITS@%pa: No ITSList entry available!\n",
5074 		       &its->phys_base);
5075 		return -EINVAL;
5076 	}
5077 
5078 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5079 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5080 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5081 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5082 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5083 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5084 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5085 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5086 	}
5087 
5088 	if (test_and_set_bit(its_number, &its_list_map)) {
5089 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5090 		       &its->phys_base, its_number);
5091 		return -EINVAL;
5092 	}
5093 
5094 	return its_number;
5095 }
5096 
5097 static int __init its_probe_one(struct its_node *its)
5098 {
5099 	u64 baser, tmp;
5100 	struct page *page;
5101 	u32 ctlr;
5102 	int err;
5103 
5104 	its_enable_quirks(its);
5105 
5106 	if (is_v4(its)) {
5107 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5108 			err = its_compute_its_list_map(its);
5109 			if (err < 0)
5110 				goto out;
5111 
5112 			its->list_nr = err;
5113 
5114 			pr_info("ITS@%pa: Using ITS number %d\n",
5115 				&its->phys_base, err);
5116 		} else {
5117 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5118 		}
5119 
5120 		if (is_v4_1(its)) {
5121 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5122 
5123 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5124 			if (!its->sgir_base) {
5125 				err = -ENOMEM;
5126 				goto out;
5127 			}
5128 
5129 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5130 
5131 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5132 				&its->phys_base, its->mpidr, svpet);
5133 		}
5134 	}
5135 
5136 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5137 				get_order(ITS_CMD_QUEUE_SZ));
5138 	if (!page) {
5139 		err = -ENOMEM;
5140 		goto out_unmap_sgir;
5141 	}
5142 	its->cmd_base = (void *)page_address(page);
5143 	its->cmd_write = its->cmd_base;
5144 
5145 	err = its_alloc_tables(its);
5146 	if (err)
5147 		goto out_free_cmd;
5148 
5149 	err = its_alloc_collections(its);
5150 	if (err)
5151 		goto out_free_tables;
5152 
5153 	baser = (virt_to_phys(its->cmd_base)	|
5154 		 GITS_CBASER_RaWaWb		|
5155 		 GITS_CBASER_InnerShareable	|
5156 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5157 		 GITS_CBASER_VALID);
5158 
5159 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5160 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5161 
5162 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5163 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5164 
5165 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5166 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5167 			/*
5168 			 * The HW reports non-shareable, we must
5169 			 * remove the cacheability attributes as
5170 			 * well.
5171 			 */
5172 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5173 				   GITS_CBASER_CACHEABILITY_MASK);
5174 			baser |= GITS_CBASER_nC;
5175 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5176 		}
5177 		pr_info("ITS: using cache flushing for cmd queue\n");
5178 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5179 	}
5180 
5181 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5182 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5183 	ctlr |= GITS_CTLR_ENABLE;
5184 	if (is_v4(its))
5185 		ctlr |= GITS_CTLR_ImDe;
5186 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5187 
5188 	err = its_init_domain(its);
5189 	if (err)
5190 		goto out_free_tables;
5191 
5192 	raw_spin_lock(&its_lock);
5193 	list_add(&its->entry, &its_nodes);
5194 	raw_spin_unlock(&its_lock);
5195 
5196 	return 0;
5197 
5198 out_free_tables:
5199 	its_free_tables(its);
5200 out_free_cmd:
5201 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5202 out_unmap_sgir:
5203 	if (its->sgir_base)
5204 		iounmap(its->sgir_base);
5205 out:
5206 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5207 	return err;
5208 }
5209 
5210 static bool gic_rdists_supports_plpis(void)
5211 {
5212 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5213 }
5214 
5215 static int redist_disable_lpis(void)
5216 {
5217 	void __iomem *rbase = gic_data_rdist_rd_base();
5218 	u64 timeout = USEC_PER_SEC;
5219 	u64 val;
5220 
5221 	if (!gic_rdists_supports_plpis()) {
5222 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5223 		return -ENXIO;
5224 	}
5225 
5226 	val = readl_relaxed(rbase + GICR_CTLR);
5227 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5228 		return 0;
5229 
5230 	/*
5231 	 * If coming via a CPU hotplug event, we don't need to disable
5232 	 * LPIs before trying to re-enable them. They are already
5233 	 * configured and all is well in the world.
5234 	 *
5235 	 * If running with preallocated tables, there is nothing to do.
5236 	 */
5237 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5238 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5239 		return 0;
5240 
5241 	/*
5242 	 * From that point on, we only try to do some damage control.
5243 	 */
5244 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5245 		smp_processor_id());
5246 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5247 
5248 	/* Disable LPIs */
5249 	val &= ~GICR_CTLR_ENABLE_LPIS;
5250 	writel_relaxed(val, rbase + GICR_CTLR);
5251 
5252 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5253 	dsb(sy);
5254 
5255 	/*
5256 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5257 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5258 	 * Error out if we time out waiting for RWP to clear.
5259 	 */
5260 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5261 		if (!timeout) {
5262 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5263 			       smp_processor_id());
5264 			return -ETIMEDOUT;
5265 		}
5266 		udelay(1);
5267 		timeout--;
5268 	}
5269 
5270 	/*
5271 	 * After it has been written to 1, it is IMPLEMENTATION
5272 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5273 	 * cleared to 0. Error out if clearing the bit failed.
5274 	 */
5275 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5276 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5277 		return -EBUSY;
5278 	}
5279 
5280 	return 0;
5281 }
5282 
5283 int its_cpu_init(void)
5284 {
5285 	if (!list_empty(&its_nodes)) {
5286 		int ret;
5287 
5288 		ret = redist_disable_lpis();
5289 		if (ret)
5290 			return ret;
5291 
5292 		its_cpu_init_lpis();
5293 		its_cpu_init_collections();
5294 	}
5295 
5296 	return 0;
5297 }
5298 
5299 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5300 {
5301 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5302 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5303 }
5304 
5305 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5306 		    rdist_memreserve_cpuhp_cleanup_workfn);
5307 
5308 static int its_cpu_memreserve_lpi(unsigned int cpu)
5309 {
5310 	struct page *pend_page;
5311 	int ret = 0;
5312 
5313 	/* This gets to run exactly once per CPU */
5314 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5315 		return 0;
5316 
5317 	pend_page = gic_data_rdist()->pend_page;
5318 	if (WARN_ON(!pend_page)) {
5319 		ret = -ENOMEM;
5320 		goto out;
5321 	}
5322 	/*
5323 	 * If the pending table was pre-programmed, free the memory we
5324 	 * preemptively allocated. Otherwise, reserve that memory for
5325 	 * later kexecs.
5326 	 */
5327 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5328 		its_free_pending_table(pend_page);
5329 		gic_data_rdist()->pend_page = NULL;
5330 	} else {
5331 		phys_addr_t paddr = page_to_phys(pend_page);
5332 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5333 	}
5334 
5335 out:
5336 	/* Last CPU being brought up gets to issue the cleanup */
5337 	if (!IS_ENABLED(CONFIG_SMP) ||
5338 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5339 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5340 
5341 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5342 	return ret;
5343 }
5344 
5345 /* Mark all the BASER registers as invalid before they get reprogrammed */
5346 static int __init its_reset_one(struct resource *res)
5347 {
5348 	void __iomem *its_base;
5349 	int err, i;
5350 
5351 	its_base = its_map_one(res, &err);
5352 	if (!its_base)
5353 		return err;
5354 
5355 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5356 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5357 
5358 	iounmap(its_base);
5359 	return 0;
5360 }
5361 
5362 static const struct of_device_id its_device_id[] = {
5363 	{	.compatible	= "arm,gic-v3-its",	},
5364 	{},
5365 };
5366 
5367 static struct its_node __init *its_node_init(struct resource *res,
5368 					     struct fwnode_handle *handle, int numa_node)
5369 {
5370 	void __iomem *its_base;
5371 	struct its_node *its;
5372 	int err;
5373 
5374 	its_base = its_map_one(res, &err);
5375 	if (!its_base)
5376 		return NULL;
5377 
5378 	pr_info("ITS %pR\n", res);
5379 
5380 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5381 	if (!its)
5382 		goto out_unmap;
5383 
5384 	raw_spin_lock_init(&its->lock);
5385 	mutex_init(&its->dev_alloc_lock);
5386 	INIT_LIST_HEAD(&its->entry);
5387 	INIT_LIST_HEAD(&its->its_device_list);
5388 
5389 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5390 	its->base = its_base;
5391 	its->phys_base = res->start;
5392 	its->get_msi_base = its_irq_get_msi_base;
5393 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5394 
5395 	its->numa_node = numa_node;
5396 	its->fwnode_handle = handle;
5397 
5398 	return its;
5399 
5400 out_unmap:
5401 	iounmap(its_base);
5402 	return NULL;
5403 }
5404 
5405 static void its_node_destroy(struct its_node *its)
5406 {
5407 	iounmap(its->base);
5408 	kfree(its);
5409 }
5410 
5411 static int __init its_of_probe(struct device_node *node)
5412 {
5413 	struct device_node *np;
5414 	struct resource res;
5415 	int err;
5416 
5417 	/*
5418 	 * Make sure *all* the ITS are reset before we probe any, as
5419 	 * they may be sharing memory. If any of the ITS fails to
5420 	 * reset, don't even try to go any further, as this could
5421 	 * result in something even worse.
5422 	 */
5423 	for (np = of_find_matching_node(node, its_device_id); np;
5424 	     np = of_find_matching_node(np, its_device_id)) {
5425 		if (!of_device_is_available(np) ||
5426 		    !of_property_read_bool(np, "msi-controller") ||
5427 		    of_address_to_resource(np, 0, &res))
5428 			continue;
5429 
5430 		err = its_reset_one(&res);
5431 		if (err)
5432 			return err;
5433 	}
5434 
5435 	for (np = of_find_matching_node(node, its_device_id); np;
5436 	     np = of_find_matching_node(np, its_device_id)) {
5437 		struct its_node *its;
5438 
5439 		if (!of_device_is_available(np))
5440 			continue;
5441 		if (!of_property_read_bool(np, "msi-controller")) {
5442 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5443 				np);
5444 			continue;
5445 		}
5446 
5447 		if (of_address_to_resource(np, 0, &res)) {
5448 			pr_warn("%pOF: no regs?\n", np);
5449 			continue;
5450 		}
5451 
5452 
5453 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5454 		if (!its)
5455 			return -ENOMEM;
5456 
5457 		err = its_probe_one(its);
5458 		if (err)  {
5459 			its_node_destroy(its);
5460 			return err;
5461 		}
5462 	}
5463 	return 0;
5464 }
5465 
5466 #ifdef CONFIG_ACPI
5467 
5468 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5469 
5470 #ifdef CONFIG_ACPI_NUMA
5471 struct its_srat_map {
5472 	/* numa node id */
5473 	u32	numa_node;
5474 	/* GIC ITS ID */
5475 	u32	its_id;
5476 };
5477 
5478 static struct its_srat_map *its_srat_maps __initdata;
5479 static int its_in_srat __initdata;
5480 
5481 static int __init acpi_get_its_numa_node(u32 its_id)
5482 {
5483 	int i;
5484 
5485 	for (i = 0; i < its_in_srat; i++) {
5486 		if (its_id == its_srat_maps[i].its_id)
5487 			return its_srat_maps[i].numa_node;
5488 	}
5489 	return NUMA_NO_NODE;
5490 }
5491 
5492 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5493 					  const unsigned long end)
5494 {
5495 	return 0;
5496 }
5497 
5498 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5499 			 const unsigned long end)
5500 {
5501 	int node;
5502 	struct acpi_srat_gic_its_affinity *its_affinity;
5503 
5504 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5505 	if (!its_affinity)
5506 		return -EINVAL;
5507 
5508 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5509 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5510 			its_affinity->header.length);
5511 		return -EINVAL;
5512 	}
5513 
5514 	/*
5515 	 * Note that in theory a new proximity node could be created by this
5516 	 * entry as it is an SRAT resource allocation structure.
5517 	 * We do not currently support doing so.
5518 	 */
5519 	node = pxm_to_node(its_affinity->proximity_domain);
5520 
5521 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5522 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5523 		return 0;
5524 	}
5525 
5526 	its_srat_maps[its_in_srat].numa_node = node;
5527 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5528 	its_in_srat++;
5529 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5530 		its_affinity->proximity_domain, its_affinity->its_id, node);
5531 
5532 	return 0;
5533 }
5534 
5535 static void __init acpi_table_parse_srat_its(void)
5536 {
5537 	int count;
5538 
5539 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5540 			sizeof(struct acpi_table_srat),
5541 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5542 			gic_acpi_match_srat_its, 0);
5543 	if (count <= 0)
5544 		return;
5545 
5546 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5547 				      GFP_KERNEL);
5548 	if (!its_srat_maps)
5549 		return;
5550 
5551 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5552 			sizeof(struct acpi_table_srat),
5553 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5554 			gic_acpi_parse_srat_its, 0);
5555 }
5556 
5557 /* free the its_srat_maps after ITS probing */
5558 static void __init acpi_its_srat_maps_free(void)
5559 {
5560 	kfree(its_srat_maps);
5561 }
5562 #else
5563 static void __init acpi_table_parse_srat_its(void)	{ }
5564 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5565 static void __init acpi_its_srat_maps_free(void) { }
5566 #endif
5567 
5568 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5569 					  const unsigned long end)
5570 {
5571 	struct acpi_madt_generic_translator *its_entry;
5572 	struct fwnode_handle *dom_handle;
5573 	struct its_node *its;
5574 	struct resource res;
5575 	int err;
5576 
5577 	its_entry = (struct acpi_madt_generic_translator *)header;
5578 	memset(&res, 0, sizeof(res));
5579 	res.start = its_entry->base_address;
5580 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5581 	res.flags = IORESOURCE_MEM;
5582 
5583 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5584 	if (!dom_handle) {
5585 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5586 		       &res.start);
5587 		return -ENOMEM;
5588 	}
5589 
5590 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5591 					 dom_handle);
5592 	if (err) {
5593 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5594 		       &res.start, its_entry->translation_id);
5595 		goto dom_err;
5596 	}
5597 
5598 	its = its_node_init(&res, dom_handle,
5599 			    acpi_get_its_numa_node(its_entry->translation_id));
5600 	if (!its) {
5601 		err = -ENOMEM;
5602 		goto node_err;
5603 	}
5604 
5605 	err = its_probe_one(its);
5606 	if (!err)
5607 		return 0;
5608 
5609 node_err:
5610 	iort_deregister_domain_token(its_entry->translation_id);
5611 dom_err:
5612 	irq_domain_free_fwnode(dom_handle);
5613 	return err;
5614 }
5615 
5616 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5617 				 const unsigned long end)
5618 {
5619 	struct acpi_madt_generic_translator *its_entry;
5620 	struct resource res;
5621 
5622 	its_entry = (struct acpi_madt_generic_translator *)header;
5623 	res = (struct resource) {
5624 		.start	= its_entry->base_address,
5625 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5626 		.flags	= IORESOURCE_MEM,
5627 	};
5628 
5629 	return its_reset_one(&res);
5630 }
5631 
5632 static void __init its_acpi_probe(void)
5633 {
5634 	acpi_table_parse_srat_its();
5635 	/*
5636 	 * Make sure *all* the ITS are reset before we probe any, as
5637 	 * they may be sharing memory. If any of the ITS fails to
5638 	 * reset, don't even try to go any further, as this could
5639 	 * result in something even worse.
5640 	 */
5641 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5642 				  its_acpi_reset, 0) > 0)
5643 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5644 				      gic_acpi_parse_madt_its, 0);
5645 	acpi_its_srat_maps_free();
5646 }
5647 #else
5648 static void __init its_acpi_probe(void) { }
5649 #endif
5650 
5651 int __init its_lpi_memreserve_init(void)
5652 {
5653 	int state;
5654 
5655 	if (!efi_enabled(EFI_CONFIG_TABLES))
5656 		return 0;
5657 
5658 	if (list_empty(&its_nodes))
5659 		return 0;
5660 
5661 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5662 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5663 				  "irqchip/arm/gicv3/memreserve:online",
5664 				  its_cpu_memreserve_lpi,
5665 				  NULL);
5666 	if (state < 0)
5667 		return state;
5668 
5669 	gic_rdists->cpuhp_memreserve_state = state;
5670 
5671 	return 0;
5672 }
5673 
5674 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5675 		    struct irq_domain *parent_domain)
5676 {
5677 	struct device_node *of_node;
5678 	struct its_node *its;
5679 	bool has_v4 = false;
5680 	bool has_v4_1 = false;
5681 	int err;
5682 
5683 	gic_rdists = rdists;
5684 
5685 	its_parent = parent_domain;
5686 	of_node = to_of_node(handle);
5687 	if (of_node)
5688 		its_of_probe(of_node);
5689 	else
5690 		its_acpi_probe();
5691 
5692 	if (list_empty(&its_nodes)) {
5693 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5694 		return -ENXIO;
5695 	}
5696 
5697 	err = allocate_lpi_tables();
5698 	if (err)
5699 		return err;
5700 
5701 	list_for_each_entry(its, &its_nodes, entry) {
5702 		has_v4 |= is_v4(its);
5703 		has_v4_1 |= is_v4_1(its);
5704 	}
5705 
5706 	/* Don't bother with inconsistent systems */
5707 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5708 		rdists->has_rvpeid = false;
5709 
5710 	if (has_v4 & rdists->has_vlpis) {
5711 		const struct irq_domain_ops *sgi_ops;
5712 
5713 		if (has_v4_1)
5714 			sgi_ops = &its_sgi_domain_ops;
5715 		else
5716 			sgi_ops = NULL;
5717 
5718 		if (its_init_vpe_domain() ||
5719 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5720 			rdists->has_vlpis = false;
5721 			pr_err("ITS: Disabling GICv4 support\n");
5722 		}
5723 	}
5724 
5725 	register_syscore_ops(&its_syscore_ops);
5726 
5727 	return 0;
5728 }
5729