xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision 088e88be5a380cc4e81963a9a02815da465d144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitmap.h>
10 #include <linux/cpu.h>
11 #include <linux/crash_dump.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/list.h>
18 #include <linux/log2.h>
19 #include <linux/memblock.h>
20 #include <linux/mm.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_pci.h>
26 #include <linux/of_platform.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/syscore_ops.h>
30 
31 #include <linux/irqchip.h>
32 #include <linux/irqchip/arm-gic-v3.h>
33 #include <linux/irqchip/arm-gic-v4.h>
34 
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 
38 #include "irq-gic-common.h"
39 
40 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
41 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
42 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
43 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
44 
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
46 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
47 
48 static u32 lpi_id_bits;
49 
50 /*
51  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
52  * deal with (one configuration byte per interrupt). PENDBASE has to
53  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
54  */
55 #define LPI_NRBITS		lpi_id_bits
56 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
57 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
58 
59 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
60 
61 /*
62  * Collection structure - just an ID, and a redistributor address to
63  * ping. We use one per CPU as a bag of interrupts assigned to this
64  * CPU.
65  */
66 struct its_collection {
67 	u64			target_address;
68 	u16			col_id;
69 };
70 
71 /*
72  * The ITS_BASER structure - contains memory information, cached
73  * value of BASER register configuration and ITS page size.
74  */
75 struct its_baser {
76 	void		*base;
77 	u64		val;
78 	u32		order;
79 	u32		psz;
80 };
81 
82 struct its_device;
83 
84 /*
85  * The ITS structure - contains most of the infrastructure, with the
86  * top-level MSI domain, the command queue, the collections, and the
87  * list of devices writing to it.
88  *
89  * dev_alloc_lock has to be taken for device allocations, while the
90  * spinlock must be taken to parse data structures such as the device
91  * list.
92  */
93 struct its_node {
94 	raw_spinlock_t		lock;
95 	struct mutex		dev_alloc_lock;
96 	struct list_head	entry;
97 	void __iomem		*base;
98 	phys_addr_t		phys_base;
99 	struct its_cmd_block	*cmd_base;
100 	struct its_cmd_block	*cmd_write;
101 	struct its_baser	tables[GITS_BASER_NR_REGS];
102 	struct its_collection	*collections;
103 	struct fwnode_handle	*fwnode_handle;
104 	u64			(*get_msi_base)(struct its_device *its_dev);
105 	u64			cbaser_save;
106 	u32			ctlr_save;
107 	struct list_head	its_device_list;
108 	u64			flags;
109 	unsigned long		list_nr;
110 	u32			ite_size;
111 	u32			device_ids;
112 	int			numa_node;
113 	unsigned int		msi_domain_flags;
114 	u32			pre_its_base; /* for Socionext Synquacer */
115 	bool			is_v4;
116 	int			vlpi_redist_offset;
117 };
118 
119 #define ITS_ITT_ALIGN		SZ_256
120 
121 /* The maximum number of VPEID bits supported by VLPI commands */
122 #define ITS_MAX_VPEID_BITS	(16)
123 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
124 
125 /* Convert page order to size in bytes */
126 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
127 
128 struct event_lpi_map {
129 	unsigned long		*lpi_map;
130 	u16			*col_map;
131 	irq_hw_number_t		lpi_base;
132 	int			nr_lpis;
133 	struct mutex		vlpi_lock;
134 	struct its_vm		*vm;
135 	struct its_vlpi_map	*vlpi_maps;
136 	int			nr_vlpis;
137 };
138 
139 /*
140  * The ITS view of a device - belongs to an ITS, owns an interrupt
141  * translation table, and a list of interrupts.  If it some of its
142  * LPIs are injected into a guest (GICv4), the event_map.vm field
143  * indicates which one.
144  */
145 struct its_device {
146 	struct list_head	entry;
147 	struct its_node		*its;
148 	struct event_lpi_map	event_map;
149 	void			*itt;
150 	u32			nr_ites;
151 	u32			device_id;
152 	bool			shared;
153 };
154 
155 static struct {
156 	raw_spinlock_t		lock;
157 	struct its_device	*dev;
158 	struct its_vpe		**vpes;
159 	int			next_victim;
160 } vpe_proxy;
161 
162 static LIST_HEAD(its_nodes);
163 static DEFINE_RAW_SPINLOCK(its_lock);
164 static struct rdists *gic_rdists;
165 static struct irq_domain *its_parent;
166 
167 static unsigned long its_list_map;
168 static u16 vmovp_seq_num;
169 static DEFINE_RAW_SPINLOCK(vmovp_lock);
170 
171 static DEFINE_IDA(its_vpeid_ida);
172 
173 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
174 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
175 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
176 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
177 
178 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
179 					       u32 event)
180 {
181 	struct its_node *its = its_dev->its;
182 
183 	return its->collections + its_dev->event_map.col_map[event];
184 }
185 
186 static struct its_collection *valid_col(struct its_collection *col)
187 {
188 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
189 		return NULL;
190 
191 	return col;
192 }
193 
194 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
195 {
196 	if (valid_col(its->collections + vpe->col_idx))
197 		return vpe;
198 
199 	return NULL;
200 }
201 
202 /*
203  * ITS command descriptors - parameters to be encoded in a command
204  * block.
205  */
206 struct its_cmd_desc {
207 	union {
208 		struct {
209 			struct its_device *dev;
210 			u32 event_id;
211 		} its_inv_cmd;
212 
213 		struct {
214 			struct its_device *dev;
215 			u32 event_id;
216 		} its_clear_cmd;
217 
218 		struct {
219 			struct its_device *dev;
220 			u32 event_id;
221 		} its_int_cmd;
222 
223 		struct {
224 			struct its_device *dev;
225 			int valid;
226 		} its_mapd_cmd;
227 
228 		struct {
229 			struct its_collection *col;
230 			int valid;
231 		} its_mapc_cmd;
232 
233 		struct {
234 			struct its_device *dev;
235 			u32 phys_id;
236 			u32 event_id;
237 		} its_mapti_cmd;
238 
239 		struct {
240 			struct its_device *dev;
241 			struct its_collection *col;
242 			u32 event_id;
243 		} its_movi_cmd;
244 
245 		struct {
246 			struct its_device *dev;
247 			u32 event_id;
248 		} its_discard_cmd;
249 
250 		struct {
251 			struct its_collection *col;
252 		} its_invall_cmd;
253 
254 		struct {
255 			struct its_vpe *vpe;
256 		} its_vinvall_cmd;
257 
258 		struct {
259 			struct its_vpe *vpe;
260 			struct its_collection *col;
261 			bool valid;
262 		} its_vmapp_cmd;
263 
264 		struct {
265 			struct its_vpe *vpe;
266 			struct its_device *dev;
267 			u32 virt_id;
268 			u32 event_id;
269 			bool db_enabled;
270 		} its_vmapti_cmd;
271 
272 		struct {
273 			struct its_vpe *vpe;
274 			struct its_device *dev;
275 			u32 event_id;
276 			bool db_enabled;
277 		} its_vmovi_cmd;
278 
279 		struct {
280 			struct its_vpe *vpe;
281 			struct its_collection *col;
282 			u16 seq_num;
283 			u16 its_list;
284 		} its_vmovp_cmd;
285 	};
286 };
287 
288 /*
289  * The ITS command block, which is what the ITS actually parses.
290  */
291 struct its_cmd_block {
292 	u64	raw_cmd[4];
293 };
294 
295 #define ITS_CMD_QUEUE_SZ		SZ_64K
296 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
297 
298 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
299 						    struct its_cmd_block *,
300 						    struct its_cmd_desc *);
301 
302 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
303 					      struct its_cmd_block *,
304 					      struct its_cmd_desc *);
305 
306 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
307 {
308 	u64 mask = GENMASK_ULL(h, l);
309 	*raw_cmd &= ~mask;
310 	*raw_cmd |= (val << l) & mask;
311 }
312 
313 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
314 {
315 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
316 }
317 
318 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
319 {
320 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
321 }
322 
323 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
324 {
325 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
326 }
327 
328 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
329 {
330 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
331 }
332 
333 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
334 {
335 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
336 }
337 
338 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
339 {
340 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
341 }
342 
343 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
344 {
345 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
346 }
347 
348 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
349 {
350 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
351 }
352 
353 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
354 {
355 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
356 }
357 
358 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
359 {
360 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
361 }
362 
363 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
364 {
365 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
366 }
367 
368 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
369 {
370 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
371 }
372 
373 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
374 {
375 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
376 }
377 
378 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
379 {
380 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
381 }
382 
383 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
384 {
385 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
386 }
387 
388 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
389 {
390 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
391 }
392 
393 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
394 {
395 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
396 }
397 
398 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
399 {
400 	/* Let's fixup BE commands */
401 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
402 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
403 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
404 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
405 }
406 
407 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
408 						 struct its_cmd_block *cmd,
409 						 struct its_cmd_desc *desc)
410 {
411 	unsigned long itt_addr;
412 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
413 
414 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
415 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
416 
417 	its_encode_cmd(cmd, GITS_CMD_MAPD);
418 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
419 	its_encode_size(cmd, size - 1);
420 	its_encode_itt(cmd, itt_addr);
421 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
422 
423 	its_fixup_cmd(cmd);
424 
425 	return NULL;
426 }
427 
428 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
429 						 struct its_cmd_block *cmd,
430 						 struct its_cmd_desc *desc)
431 {
432 	its_encode_cmd(cmd, GITS_CMD_MAPC);
433 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
434 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
435 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
436 
437 	its_fixup_cmd(cmd);
438 
439 	return desc->its_mapc_cmd.col;
440 }
441 
442 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
443 						  struct its_cmd_block *cmd,
444 						  struct its_cmd_desc *desc)
445 {
446 	struct its_collection *col;
447 
448 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
449 			       desc->its_mapti_cmd.event_id);
450 
451 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
452 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
453 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
454 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
455 	its_encode_collection(cmd, col->col_id);
456 
457 	its_fixup_cmd(cmd);
458 
459 	return valid_col(col);
460 }
461 
462 static struct its_collection *its_build_movi_cmd(struct its_node *its,
463 						 struct its_cmd_block *cmd,
464 						 struct its_cmd_desc *desc)
465 {
466 	struct its_collection *col;
467 
468 	col = dev_event_to_col(desc->its_movi_cmd.dev,
469 			       desc->its_movi_cmd.event_id);
470 
471 	its_encode_cmd(cmd, GITS_CMD_MOVI);
472 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
473 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
474 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
475 
476 	its_fixup_cmd(cmd);
477 
478 	return valid_col(col);
479 }
480 
481 static struct its_collection *its_build_discard_cmd(struct its_node *its,
482 						    struct its_cmd_block *cmd,
483 						    struct its_cmd_desc *desc)
484 {
485 	struct its_collection *col;
486 
487 	col = dev_event_to_col(desc->its_discard_cmd.dev,
488 			       desc->its_discard_cmd.event_id);
489 
490 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
491 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
492 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
493 
494 	its_fixup_cmd(cmd);
495 
496 	return valid_col(col);
497 }
498 
499 static struct its_collection *its_build_inv_cmd(struct its_node *its,
500 						struct its_cmd_block *cmd,
501 						struct its_cmd_desc *desc)
502 {
503 	struct its_collection *col;
504 
505 	col = dev_event_to_col(desc->its_inv_cmd.dev,
506 			       desc->its_inv_cmd.event_id);
507 
508 	its_encode_cmd(cmd, GITS_CMD_INV);
509 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
510 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
511 
512 	its_fixup_cmd(cmd);
513 
514 	return valid_col(col);
515 }
516 
517 static struct its_collection *its_build_int_cmd(struct its_node *its,
518 						struct its_cmd_block *cmd,
519 						struct its_cmd_desc *desc)
520 {
521 	struct its_collection *col;
522 
523 	col = dev_event_to_col(desc->its_int_cmd.dev,
524 			       desc->its_int_cmd.event_id);
525 
526 	its_encode_cmd(cmd, GITS_CMD_INT);
527 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
528 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
529 
530 	its_fixup_cmd(cmd);
531 
532 	return valid_col(col);
533 }
534 
535 static struct its_collection *its_build_clear_cmd(struct its_node *its,
536 						  struct its_cmd_block *cmd,
537 						  struct its_cmd_desc *desc)
538 {
539 	struct its_collection *col;
540 
541 	col = dev_event_to_col(desc->its_clear_cmd.dev,
542 			       desc->its_clear_cmd.event_id);
543 
544 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
545 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
546 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
547 
548 	its_fixup_cmd(cmd);
549 
550 	return valid_col(col);
551 }
552 
553 static struct its_collection *its_build_invall_cmd(struct its_node *its,
554 						   struct its_cmd_block *cmd,
555 						   struct its_cmd_desc *desc)
556 {
557 	its_encode_cmd(cmd, GITS_CMD_INVALL);
558 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
559 
560 	its_fixup_cmd(cmd);
561 
562 	return NULL;
563 }
564 
565 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
566 					     struct its_cmd_block *cmd,
567 					     struct its_cmd_desc *desc)
568 {
569 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
570 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
571 
572 	its_fixup_cmd(cmd);
573 
574 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
575 }
576 
577 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
578 					   struct its_cmd_block *cmd,
579 					   struct its_cmd_desc *desc)
580 {
581 	unsigned long vpt_addr;
582 	u64 target;
583 
584 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
585 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
586 
587 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
588 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
589 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
590 	its_encode_target(cmd, target);
591 	its_encode_vpt_addr(cmd, vpt_addr);
592 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
593 
594 	its_fixup_cmd(cmd);
595 
596 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
597 }
598 
599 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
600 					    struct its_cmd_block *cmd,
601 					    struct its_cmd_desc *desc)
602 {
603 	u32 db;
604 
605 	if (desc->its_vmapti_cmd.db_enabled)
606 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
607 	else
608 		db = 1023;
609 
610 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
611 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
612 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
613 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
614 	its_encode_db_phys_id(cmd, db);
615 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
616 
617 	its_fixup_cmd(cmd);
618 
619 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
620 }
621 
622 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
623 					   struct its_cmd_block *cmd,
624 					   struct its_cmd_desc *desc)
625 {
626 	u32 db;
627 
628 	if (desc->its_vmovi_cmd.db_enabled)
629 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
630 	else
631 		db = 1023;
632 
633 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
634 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
635 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
636 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
637 	its_encode_db_phys_id(cmd, db);
638 	its_encode_db_valid(cmd, true);
639 
640 	its_fixup_cmd(cmd);
641 
642 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
643 }
644 
645 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
646 					   struct its_cmd_block *cmd,
647 					   struct its_cmd_desc *desc)
648 {
649 	u64 target;
650 
651 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
652 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
653 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
654 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
655 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
656 	its_encode_target(cmd, target);
657 
658 	its_fixup_cmd(cmd);
659 
660 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
661 }
662 
663 static u64 its_cmd_ptr_to_offset(struct its_node *its,
664 				 struct its_cmd_block *ptr)
665 {
666 	return (ptr - its->cmd_base) * sizeof(*ptr);
667 }
668 
669 static int its_queue_full(struct its_node *its)
670 {
671 	int widx;
672 	int ridx;
673 
674 	widx = its->cmd_write - its->cmd_base;
675 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
676 
677 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
678 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
679 		return 1;
680 
681 	return 0;
682 }
683 
684 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
685 {
686 	struct its_cmd_block *cmd;
687 	u32 count = 1000000;	/* 1s! */
688 
689 	while (its_queue_full(its)) {
690 		count--;
691 		if (!count) {
692 			pr_err_ratelimited("ITS queue not draining\n");
693 			return NULL;
694 		}
695 		cpu_relax();
696 		udelay(1);
697 	}
698 
699 	cmd = its->cmd_write++;
700 
701 	/* Handle queue wrapping */
702 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
703 		its->cmd_write = its->cmd_base;
704 
705 	/* Clear command  */
706 	cmd->raw_cmd[0] = 0;
707 	cmd->raw_cmd[1] = 0;
708 	cmd->raw_cmd[2] = 0;
709 	cmd->raw_cmd[3] = 0;
710 
711 	return cmd;
712 }
713 
714 static struct its_cmd_block *its_post_commands(struct its_node *its)
715 {
716 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
717 
718 	writel_relaxed(wr, its->base + GITS_CWRITER);
719 
720 	return its->cmd_write;
721 }
722 
723 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
724 {
725 	/*
726 	 * Make sure the commands written to memory are observable by
727 	 * the ITS.
728 	 */
729 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
730 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
731 	else
732 		dsb(ishst);
733 }
734 
735 static int its_wait_for_range_completion(struct its_node *its,
736 					 u64	prev_idx,
737 					 struct its_cmd_block *to)
738 {
739 	u64 rd_idx, to_idx, linear_idx;
740 	u32 count = 1000000;	/* 1s! */
741 
742 	/* Linearize to_idx if the command set has wrapped around */
743 	to_idx = its_cmd_ptr_to_offset(its, to);
744 	if (to_idx < prev_idx)
745 		to_idx += ITS_CMD_QUEUE_SZ;
746 
747 	linear_idx = prev_idx;
748 
749 	while (1) {
750 		s64 delta;
751 
752 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
753 
754 		/*
755 		 * Compute the read pointer progress, taking the
756 		 * potential wrap-around into account.
757 		 */
758 		delta = rd_idx - prev_idx;
759 		if (rd_idx < prev_idx)
760 			delta += ITS_CMD_QUEUE_SZ;
761 
762 		linear_idx += delta;
763 		if (linear_idx >= to_idx)
764 			break;
765 
766 		count--;
767 		if (!count) {
768 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
769 					   to_idx, linear_idx);
770 			return -1;
771 		}
772 		prev_idx = rd_idx;
773 		cpu_relax();
774 		udelay(1);
775 	}
776 
777 	return 0;
778 }
779 
780 /* Warning, macro hell follows */
781 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
782 void name(struct its_node *its,						\
783 	  buildtype builder,						\
784 	  struct its_cmd_desc *desc)					\
785 {									\
786 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
787 	synctype *sync_obj;						\
788 	unsigned long flags;						\
789 	u64 rd_idx;							\
790 									\
791 	raw_spin_lock_irqsave(&its->lock, flags);			\
792 									\
793 	cmd = its_allocate_entry(its);					\
794 	if (!cmd) {		/* We're soooooo screewed... */		\
795 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
796 		return;							\
797 	}								\
798 	sync_obj = builder(its, cmd, desc);				\
799 	its_flush_cmd(its, cmd);					\
800 									\
801 	if (sync_obj) {							\
802 		sync_cmd = its_allocate_entry(its);			\
803 		if (!sync_cmd)						\
804 			goto post;					\
805 									\
806 		buildfn(its, sync_cmd, sync_obj);			\
807 		its_flush_cmd(its, sync_cmd);				\
808 	}								\
809 									\
810 post:									\
811 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
812 	next_cmd = its_post_commands(its);				\
813 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
814 									\
815 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
816 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
817 }
818 
819 static void its_build_sync_cmd(struct its_node *its,
820 			       struct its_cmd_block *sync_cmd,
821 			       struct its_collection *sync_col)
822 {
823 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
824 	its_encode_target(sync_cmd, sync_col->target_address);
825 
826 	its_fixup_cmd(sync_cmd);
827 }
828 
829 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
830 			     struct its_collection, its_build_sync_cmd)
831 
832 static void its_build_vsync_cmd(struct its_node *its,
833 				struct its_cmd_block *sync_cmd,
834 				struct its_vpe *sync_vpe)
835 {
836 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
837 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
838 
839 	its_fixup_cmd(sync_cmd);
840 }
841 
842 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
843 			     struct its_vpe, its_build_vsync_cmd)
844 
845 static void its_send_int(struct its_device *dev, u32 event_id)
846 {
847 	struct its_cmd_desc desc;
848 
849 	desc.its_int_cmd.dev = dev;
850 	desc.its_int_cmd.event_id = event_id;
851 
852 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
853 }
854 
855 static void its_send_clear(struct its_device *dev, u32 event_id)
856 {
857 	struct its_cmd_desc desc;
858 
859 	desc.its_clear_cmd.dev = dev;
860 	desc.its_clear_cmd.event_id = event_id;
861 
862 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
863 }
864 
865 static void its_send_inv(struct its_device *dev, u32 event_id)
866 {
867 	struct its_cmd_desc desc;
868 
869 	desc.its_inv_cmd.dev = dev;
870 	desc.its_inv_cmd.event_id = event_id;
871 
872 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
873 }
874 
875 static void its_send_mapd(struct its_device *dev, int valid)
876 {
877 	struct its_cmd_desc desc;
878 
879 	desc.its_mapd_cmd.dev = dev;
880 	desc.its_mapd_cmd.valid = !!valid;
881 
882 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
883 }
884 
885 static void its_send_mapc(struct its_node *its, struct its_collection *col,
886 			  int valid)
887 {
888 	struct its_cmd_desc desc;
889 
890 	desc.its_mapc_cmd.col = col;
891 	desc.its_mapc_cmd.valid = !!valid;
892 
893 	its_send_single_command(its, its_build_mapc_cmd, &desc);
894 }
895 
896 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
897 {
898 	struct its_cmd_desc desc;
899 
900 	desc.its_mapti_cmd.dev = dev;
901 	desc.its_mapti_cmd.phys_id = irq_id;
902 	desc.its_mapti_cmd.event_id = id;
903 
904 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
905 }
906 
907 static void its_send_movi(struct its_device *dev,
908 			  struct its_collection *col, u32 id)
909 {
910 	struct its_cmd_desc desc;
911 
912 	desc.its_movi_cmd.dev = dev;
913 	desc.its_movi_cmd.col = col;
914 	desc.its_movi_cmd.event_id = id;
915 
916 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
917 }
918 
919 static void its_send_discard(struct its_device *dev, u32 id)
920 {
921 	struct its_cmd_desc desc;
922 
923 	desc.its_discard_cmd.dev = dev;
924 	desc.its_discard_cmd.event_id = id;
925 
926 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
927 }
928 
929 static void its_send_invall(struct its_node *its, struct its_collection *col)
930 {
931 	struct its_cmd_desc desc;
932 
933 	desc.its_invall_cmd.col = col;
934 
935 	its_send_single_command(its, its_build_invall_cmd, &desc);
936 }
937 
938 static void its_send_vmapti(struct its_device *dev, u32 id)
939 {
940 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
941 	struct its_cmd_desc desc;
942 
943 	desc.its_vmapti_cmd.vpe = map->vpe;
944 	desc.its_vmapti_cmd.dev = dev;
945 	desc.its_vmapti_cmd.virt_id = map->vintid;
946 	desc.its_vmapti_cmd.event_id = id;
947 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
948 
949 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
950 }
951 
952 static void its_send_vmovi(struct its_device *dev, u32 id)
953 {
954 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
955 	struct its_cmd_desc desc;
956 
957 	desc.its_vmovi_cmd.vpe = map->vpe;
958 	desc.its_vmovi_cmd.dev = dev;
959 	desc.its_vmovi_cmd.event_id = id;
960 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
961 
962 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
963 }
964 
965 static void its_send_vmapp(struct its_node *its,
966 			   struct its_vpe *vpe, bool valid)
967 {
968 	struct its_cmd_desc desc;
969 
970 	desc.its_vmapp_cmd.vpe = vpe;
971 	desc.its_vmapp_cmd.valid = valid;
972 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
973 
974 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
975 }
976 
977 static void its_send_vmovp(struct its_vpe *vpe)
978 {
979 	struct its_cmd_desc desc;
980 	struct its_node *its;
981 	unsigned long flags;
982 	int col_id = vpe->col_idx;
983 
984 	desc.its_vmovp_cmd.vpe = vpe;
985 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
986 
987 	if (!its_list_map) {
988 		its = list_first_entry(&its_nodes, struct its_node, entry);
989 		desc.its_vmovp_cmd.seq_num = 0;
990 		desc.its_vmovp_cmd.col = &its->collections[col_id];
991 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
992 		return;
993 	}
994 
995 	/*
996 	 * Yet another marvel of the architecture. If using the
997 	 * its_list "feature", we need to make sure that all ITSs
998 	 * receive all VMOVP commands in the same order. The only way
999 	 * to guarantee this is to make vmovp a serialization point.
1000 	 *
1001 	 * Wall <-- Head.
1002 	 */
1003 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1004 
1005 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1006 
1007 	/* Emit VMOVPs */
1008 	list_for_each_entry(its, &its_nodes, entry) {
1009 		if (!its->is_v4)
1010 			continue;
1011 
1012 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1013 			continue;
1014 
1015 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1016 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1017 	}
1018 
1019 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1020 }
1021 
1022 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1023 {
1024 	struct its_cmd_desc desc;
1025 
1026 	desc.its_vinvall_cmd.vpe = vpe;
1027 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1028 }
1029 
1030 /*
1031  * irqchip functions - assumes MSI, mostly.
1032  */
1033 
1034 static inline u32 its_get_event_id(struct irq_data *d)
1035 {
1036 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1037 	return d->hwirq - its_dev->event_map.lpi_base;
1038 }
1039 
1040 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1041 {
1042 	irq_hw_number_t hwirq;
1043 	void *va;
1044 	u8 *cfg;
1045 
1046 	if (irqd_is_forwarded_to_vcpu(d)) {
1047 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1048 		u32 event = its_get_event_id(d);
1049 		struct its_vlpi_map *map;
1050 
1051 		va = page_address(its_dev->event_map.vm->vprop_page);
1052 		map = &its_dev->event_map.vlpi_maps[event];
1053 		hwirq = map->vintid;
1054 
1055 		/* Remember the updated property */
1056 		map->properties &= ~clr;
1057 		map->properties |= set | LPI_PROP_GROUP1;
1058 	} else {
1059 		va = gic_rdists->prop_table_va;
1060 		hwirq = d->hwirq;
1061 	}
1062 
1063 	cfg = va + hwirq - 8192;
1064 	*cfg &= ~clr;
1065 	*cfg |= set | LPI_PROP_GROUP1;
1066 
1067 	/*
1068 	 * Make the above write visible to the redistributors.
1069 	 * And yes, we're flushing exactly: One. Single. Byte.
1070 	 * Humpf...
1071 	 */
1072 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1073 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1074 	else
1075 		dsb(ishst);
1076 }
1077 
1078 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1079 {
1080 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1081 
1082 	lpi_write_config(d, clr, set);
1083 	its_send_inv(its_dev, its_get_event_id(d));
1084 }
1085 
1086 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1087 {
1088 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1089 	u32 event = its_get_event_id(d);
1090 
1091 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1092 		return;
1093 
1094 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1095 
1096 	/*
1097 	 * More fun with the architecture:
1098 	 *
1099 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1100 	 * value or to 1023, depending on the enable bit. But that
1101 	 * would be issueing a mapping for an /existing/ DevID+EventID
1102 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1103 	 * to the /same/ vPE, using this opportunity to adjust the
1104 	 * doorbell. Mouahahahaha. We loves it, Precious.
1105 	 */
1106 	its_send_vmovi(its_dev, event);
1107 }
1108 
1109 static void its_mask_irq(struct irq_data *d)
1110 {
1111 	if (irqd_is_forwarded_to_vcpu(d))
1112 		its_vlpi_set_doorbell(d, false);
1113 
1114 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1115 }
1116 
1117 static void its_unmask_irq(struct irq_data *d)
1118 {
1119 	if (irqd_is_forwarded_to_vcpu(d))
1120 		its_vlpi_set_doorbell(d, true);
1121 
1122 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1123 }
1124 
1125 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1126 			    bool force)
1127 {
1128 	unsigned int cpu;
1129 	const struct cpumask *cpu_mask = cpu_online_mask;
1130 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1131 	struct its_collection *target_col;
1132 	u32 id = its_get_event_id(d);
1133 
1134 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1135 	if (irqd_is_forwarded_to_vcpu(d))
1136 		return -EINVAL;
1137 
1138        /* lpi cannot be routed to a redistributor that is on a foreign node */
1139 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1140 		if (its_dev->its->numa_node >= 0) {
1141 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1142 			if (!cpumask_intersects(mask_val, cpu_mask))
1143 				return -EINVAL;
1144 		}
1145 	}
1146 
1147 	cpu = cpumask_any_and(mask_val, cpu_mask);
1148 
1149 	if (cpu >= nr_cpu_ids)
1150 		return -EINVAL;
1151 
1152 	/* don't set the affinity when the target cpu is same as current one */
1153 	if (cpu != its_dev->event_map.col_map[id]) {
1154 		target_col = &its_dev->its->collections[cpu];
1155 		its_send_movi(its_dev, target_col, id);
1156 		its_dev->event_map.col_map[id] = cpu;
1157 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1158 	}
1159 
1160 	return IRQ_SET_MASK_OK_DONE;
1161 }
1162 
1163 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1164 {
1165 	struct its_node *its = its_dev->its;
1166 
1167 	return its->phys_base + GITS_TRANSLATER;
1168 }
1169 
1170 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1171 {
1172 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1173 	struct its_node *its;
1174 	u64 addr;
1175 
1176 	its = its_dev->its;
1177 	addr = its->get_msi_base(its_dev);
1178 
1179 	msg->address_lo		= lower_32_bits(addr);
1180 	msg->address_hi		= upper_32_bits(addr);
1181 	msg->data		= its_get_event_id(d);
1182 
1183 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1184 }
1185 
1186 static int its_irq_set_irqchip_state(struct irq_data *d,
1187 				     enum irqchip_irq_state which,
1188 				     bool state)
1189 {
1190 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1191 	u32 event = its_get_event_id(d);
1192 
1193 	if (which != IRQCHIP_STATE_PENDING)
1194 		return -EINVAL;
1195 
1196 	if (state)
1197 		its_send_int(its_dev, event);
1198 	else
1199 		its_send_clear(its_dev, event);
1200 
1201 	return 0;
1202 }
1203 
1204 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1205 {
1206 	unsigned long flags;
1207 
1208 	/* Not using the ITS list? Everything is always mapped. */
1209 	if (!its_list_map)
1210 		return;
1211 
1212 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1213 
1214 	/*
1215 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1216 	 * them mapped now.
1217 	 */
1218 	vm->vlpi_count[its->list_nr]++;
1219 
1220 	if (vm->vlpi_count[its->list_nr] == 1) {
1221 		int i;
1222 
1223 		for (i = 0; i < vm->nr_vpes; i++) {
1224 			struct its_vpe *vpe = vm->vpes[i];
1225 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1226 
1227 			/* Map the VPE to the first possible CPU */
1228 			vpe->col_idx = cpumask_first(cpu_online_mask);
1229 			its_send_vmapp(its, vpe, true);
1230 			its_send_vinvall(its, vpe);
1231 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1232 		}
1233 	}
1234 
1235 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1236 }
1237 
1238 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1239 {
1240 	unsigned long flags;
1241 
1242 	/* Not using the ITS list? Everything is always mapped. */
1243 	if (!its_list_map)
1244 		return;
1245 
1246 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1247 
1248 	if (!--vm->vlpi_count[its->list_nr]) {
1249 		int i;
1250 
1251 		for (i = 0; i < vm->nr_vpes; i++)
1252 			its_send_vmapp(its, vm->vpes[i], false);
1253 	}
1254 
1255 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1256 }
1257 
1258 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1259 {
1260 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1261 	u32 event = its_get_event_id(d);
1262 	int ret = 0;
1263 
1264 	if (!info->map)
1265 		return -EINVAL;
1266 
1267 	mutex_lock(&its_dev->event_map.vlpi_lock);
1268 
1269 	if (!its_dev->event_map.vm) {
1270 		struct its_vlpi_map *maps;
1271 
1272 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1273 			       GFP_KERNEL);
1274 		if (!maps) {
1275 			ret = -ENOMEM;
1276 			goto out;
1277 		}
1278 
1279 		its_dev->event_map.vm = info->map->vm;
1280 		its_dev->event_map.vlpi_maps = maps;
1281 	} else if (its_dev->event_map.vm != info->map->vm) {
1282 		ret = -EINVAL;
1283 		goto out;
1284 	}
1285 
1286 	/* Get our private copy of the mapping information */
1287 	its_dev->event_map.vlpi_maps[event] = *info->map;
1288 
1289 	if (irqd_is_forwarded_to_vcpu(d)) {
1290 		/* Already mapped, move it around */
1291 		its_send_vmovi(its_dev, event);
1292 	} else {
1293 		/* Ensure all the VPEs are mapped on this ITS */
1294 		its_map_vm(its_dev->its, info->map->vm);
1295 
1296 		/*
1297 		 * Flag the interrupt as forwarded so that we can
1298 		 * start poking the virtual property table.
1299 		 */
1300 		irqd_set_forwarded_to_vcpu(d);
1301 
1302 		/* Write out the property to the prop table */
1303 		lpi_write_config(d, 0xff, info->map->properties);
1304 
1305 		/* Drop the physical mapping */
1306 		its_send_discard(its_dev, event);
1307 
1308 		/* and install the virtual one */
1309 		its_send_vmapti(its_dev, event);
1310 
1311 		/* Increment the number of VLPIs */
1312 		its_dev->event_map.nr_vlpis++;
1313 	}
1314 
1315 out:
1316 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1317 	return ret;
1318 }
1319 
1320 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1321 {
1322 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1323 	u32 event = its_get_event_id(d);
1324 	int ret = 0;
1325 
1326 	mutex_lock(&its_dev->event_map.vlpi_lock);
1327 
1328 	if (!its_dev->event_map.vm ||
1329 	    !its_dev->event_map.vlpi_maps[event].vm) {
1330 		ret = -EINVAL;
1331 		goto out;
1332 	}
1333 
1334 	/* Copy our mapping information to the incoming request */
1335 	*info->map = its_dev->event_map.vlpi_maps[event];
1336 
1337 out:
1338 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1339 	return ret;
1340 }
1341 
1342 static int its_vlpi_unmap(struct irq_data *d)
1343 {
1344 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1345 	u32 event = its_get_event_id(d);
1346 	int ret = 0;
1347 
1348 	mutex_lock(&its_dev->event_map.vlpi_lock);
1349 
1350 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1351 		ret = -EINVAL;
1352 		goto out;
1353 	}
1354 
1355 	/* Drop the virtual mapping */
1356 	its_send_discard(its_dev, event);
1357 
1358 	/* and restore the physical one */
1359 	irqd_clr_forwarded_to_vcpu(d);
1360 	its_send_mapti(its_dev, d->hwirq, event);
1361 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1362 				    LPI_PROP_ENABLED |
1363 				    LPI_PROP_GROUP1));
1364 
1365 	/* Potentially unmap the VM from this ITS */
1366 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1367 
1368 	/*
1369 	 * Drop the refcount and make the device available again if
1370 	 * this was the last VLPI.
1371 	 */
1372 	if (!--its_dev->event_map.nr_vlpis) {
1373 		its_dev->event_map.vm = NULL;
1374 		kfree(its_dev->event_map.vlpi_maps);
1375 	}
1376 
1377 out:
1378 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1379 	return ret;
1380 }
1381 
1382 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1383 {
1384 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1385 
1386 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1387 		return -EINVAL;
1388 
1389 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1390 		lpi_update_config(d, 0xff, info->config);
1391 	else
1392 		lpi_write_config(d, 0xff, info->config);
1393 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1394 
1395 	return 0;
1396 }
1397 
1398 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1399 {
1400 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1401 	struct its_cmd_info *info = vcpu_info;
1402 
1403 	/* Need a v4 ITS */
1404 	if (!its_dev->its->is_v4)
1405 		return -EINVAL;
1406 
1407 	/* Unmap request? */
1408 	if (!info)
1409 		return its_vlpi_unmap(d);
1410 
1411 	switch (info->cmd_type) {
1412 	case MAP_VLPI:
1413 		return its_vlpi_map(d, info);
1414 
1415 	case GET_VLPI:
1416 		return its_vlpi_get(d, info);
1417 
1418 	case PROP_UPDATE_VLPI:
1419 	case PROP_UPDATE_AND_INV_VLPI:
1420 		return its_vlpi_prop_update(d, info);
1421 
1422 	default:
1423 		return -EINVAL;
1424 	}
1425 }
1426 
1427 static struct irq_chip its_irq_chip = {
1428 	.name			= "ITS",
1429 	.irq_mask		= its_mask_irq,
1430 	.irq_unmask		= its_unmask_irq,
1431 	.irq_eoi		= irq_chip_eoi_parent,
1432 	.irq_set_affinity	= its_set_affinity,
1433 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1434 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1435 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1436 };
1437 
1438 
1439 /*
1440  * How we allocate LPIs:
1441  *
1442  * lpi_range_list contains ranges of LPIs that are to available to
1443  * allocate from. To allocate LPIs, just pick the first range that
1444  * fits the required allocation, and reduce it by the required
1445  * amount. Once empty, remove the range from the list.
1446  *
1447  * To free a range of LPIs, add a free range to the list, sort it and
1448  * merge the result if the new range happens to be adjacent to an
1449  * already free block.
1450  *
1451  * The consequence of the above is that allocation is cost is low, but
1452  * freeing is expensive. We assumes that freeing rarely occurs.
1453  */
1454 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1455 
1456 static DEFINE_MUTEX(lpi_range_lock);
1457 static LIST_HEAD(lpi_range_list);
1458 
1459 struct lpi_range {
1460 	struct list_head	entry;
1461 	u32			base_id;
1462 	u32			span;
1463 };
1464 
1465 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1466 {
1467 	struct lpi_range *range;
1468 
1469 	range = kmalloc(sizeof(*range), GFP_KERNEL);
1470 	if (range) {
1471 		range->base_id = base;
1472 		range->span = span;
1473 	}
1474 
1475 	return range;
1476 }
1477 
1478 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1479 {
1480 	struct lpi_range *range, *tmp;
1481 	int err = -ENOSPC;
1482 
1483 	mutex_lock(&lpi_range_lock);
1484 
1485 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1486 		if (range->span >= nr_lpis) {
1487 			*base = range->base_id;
1488 			range->base_id += nr_lpis;
1489 			range->span -= nr_lpis;
1490 
1491 			if (range->span == 0) {
1492 				list_del(&range->entry);
1493 				kfree(range);
1494 			}
1495 
1496 			err = 0;
1497 			break;
1498 		}
1499 	}
1500 
1501 	mutex_unlock(&lpi_range_lock);
1502 
1503 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1504 	return err;
1505 }
1506 
1507 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1508 {
1509 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1510 		return;
1511 	if (a->base_id + a->span != b->base_id)
1512 		return;
1513 	b->base_id = a->base_id;
1514 	b->span += a->span;
1515 	list_del(&a->entry);
1516 	kfree(a);
1517 }
1518 
1519 static int free_lpi_range(u32 base, u32 nr_lpis)
1520 {
1521 	struct lpi_range *new, *old;
1522 
1523 	new = mk_lpi_range(base, nr_lpis);
1524 	if (!new)
1525 		return -ENOMEM;
1526 
1527 	mutex_lock(&lpi_range_lock);
1528 
1529 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1530 		if (old->base_id < base)
1531 			break;
1532 	}
1533 	/*
1534 	 * old is the last element with ->base_id smaller than base,
1535 	 * so new goes right after it. If there are no elements with
1536 	 * ->base_id smaller than base, &old->entry ends up pointing
1537 	 * at the head of the list, and inserting new it the start of
1538 	 * the list is the right thing to do in that case as well.
1539 	 */
1540 	list_add(&new->entry, &old->entry);
1541 	/*
1542 	 * Now check if we can merge with the preceding and/or
1543 	 * following ranges.
1544 	 */
1545 	merge_lpi_ranges(old, new);
1546 	merge_lpi_ranges(new, list_next_entry(new, entry));
1547 
1548 	mutex_unlock(&lpi_range_lock);
1549 	return 0;
1550 }
1551 
1552 static int __init its_lpi_init(u32 id_bits)
1553 {
1554 	u32 lpis = (1UL << id_bits) - 8192;
1555 	u32 numlpis;
1556 	int err;
1557 
1558 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1559 
1560 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1561 		lpis = numlpis;
1562 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1563 			lpis);
1564 	}
1565 
1566 	/*
1567 	 * Initializing the allocator is just the same as freeing the
1568 	 * full range of LPIs.
1569 	 */
1570 	err = free_lpi_range(8192, lpis);
1571 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1572 	return err;
1573 }
1574 
1575 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1576 {
1577 	unsigned long *bitmap = NULL;
1578 	int err = 0;
1579 
1580 	do {
1581 		err = alloc_lpi_range(nr_irqs, base);
1582 		if (!err)
1583 			break;
1584 
1585 		nr_irqs /= 2;
1586 	} while (nr_irqs > 0);
1587 
1588 	if (!nr_irqs)
1589 		err = -ENOSPC;
1590 
1591 	if (err)
1592 		goto out;
1593 
1594 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1595 	if (!bitmap)
1596 		goto out;
1597 
1598 	*nr_ids = nr_irqs;
1599 
1600 out:
1601 	if (!bitmap)
1602 		*base = *nr_ids = 0;
1603 
1604 	return bitmap;
1605 }
1606 
1607 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1608 {
1609 	WARN_ON(free_lpi_range(base, nr_ids));
1610 	kfree(bitmap);
1611 }
1612 
1613 static void gic_reset_prop_table(void *va)
1614 {
1615 	/* Priority 0xa0, Group-1, disabled */
1616 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1617 
1618 	/* Make sure the GIC will observe the written configuration */
1619 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1620 }
1621 
1622 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1623 {
1624 	struct page *prop_page;
1625 
1626 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1627 	if (!prop_page)
1628 		return NULL;
1629 
1630 	gic_reset_prop_table(page_address(prop_page));
1631 
1632 	return prop_page;
1633 }
1634 
1635 static void its_free_prop_table(struct page *prop_page)
1636 {
1637 	free_pages((unsigned long)page_address(prop_page),
1638 		   get_order(LPI_PROPBASE_SZ));
1639 }
1640 
1641 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1642 {
1643 	phys_addr_t start, end, addr_end;
1644 	u64 i;
1645 
1646 	/*
1647 	 * We don't bother checking for a kdump kernel as by
1648 	 * construction, the LPI tables are out of this kernel's
1649 	 * memory map.
1650 	 */
1651 	if (is_kdump_kernel())
1652 		return true;
1653 
1654 	addr_end = addr + size - 1;
1655 
1656 	for_each_reserved_mem_region(i, &start, &end) {
1657 		if (addr >= start && addr_end <= end)
1658 			return true;
1659 	}
1660 
1661 	/* Not found, not a good sign... */
1662 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1663 		&addr, &addr_end);
1664 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1665 	return false;
1666 }
1667 
1668 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1669 {
1670 	if (efi_enabled(EFI_CONFIG_TABLES))
1671 		return efi_mem_reserve_persistent(addr, size);
1672 
1673 	return 0;
1674 }
1675 
1676 static int __init its_setup_lpi_prop_table(void)
1677 {
1678 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1679 		u64 val;
1680 
1681 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1682 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1683 
1684 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1685 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1686 						     LPI_PROPBASE_SZ,
1687 						     MEMREMAP_WB);
1688 		gic_reset_prop_table(gic_rdists->prop_table_va);
1689 	} else {
1690 		struct page *page;
1691 
1692 		lpi_id_bits = min_t(u32,
1693 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1694 				    ITS_MAX_LPI_NRBITS);
1695 		page = its_allocate_prop_table(GFP_NOWAIT);
1696 		if (!page) {
1697 			pr_err("Failed to allocate PROPBASE\n");
1698 			return -ENOMEM;
1699 		}
1700 
1701 		gic_rdists->prop_table_pa = page_to_phys(page);
1702 		gic_rdists->prop_table_va = page_address(page);
1703 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1704 					  LPI_PROPBASE_SZ));
1705 	}
1706 
1707 	pr_info("GICv3: using LPI property table @%pa\n",
1708 		&gic_rdists->prop_table_pa);
1709 
1710 	return its_lpi_init(lpi_id_bits);
1711 }
1712 
1713 static const char *its_base_type_string[] = {
1714 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1715 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1716 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1717 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1718 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1719 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1720 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1721 };
1722 
1723 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1724 {
1725 	u32 idx = baser - its->tables;
1726 
1727 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1728 }
1729 
1730 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1731 			    u64 val)
1732 {
1733 	u32 idx = baser - its->tables;
1734 
1735 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1736 	baser->val = its_read_baser(its, baser);
1737 }
1738 
1739 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1740 			   u64 cache, u64 shr, u32 psz, u32 order,
1741 			   bool indirect)
1742 {
1743 	u64 val = its_read_baser(its, baser);
1744 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1745 	u64 type = GITS_BASER_TYPE(val);
1746 	u64 baser_phys, tmp;
1747 	u32 alloc_pages;
1748 	struct page *page;
1749 	void *base;
1750 
1751 retry_alloc_baser:
1752 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1753 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1754 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1755 			&its->phys_base, its_base_type_string[type],
1756 			alloc_pages, GITS_BASER_PAGES_MAX);
1757 		alloc_pages = GITS_BASER_PAGES_MAX;
1758 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1759 	}
1760 
1761 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1762 	if (!page)
1763 		return -ENOMEM;
1764 
1765 	base = (void *)page_address(page);
1766 	baser_phys = virt_to_phys(base);
1767 
1768 	/* Check if the physical address of the memory is above 48bits */
1769 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1770 
1771 		/* 52bit PA is supported only when PageSize=64K */
1772 		if (psz != SZ_64K) {
1773 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1774 			free_pages((unsigned long)base, order);
1775 			return -ENXIO;
1776 		}
1777 
1778 		/* Convert 52bit PA to 48bit field */
1779 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1780 	}
1781 
1782 retry_baser:
1783 	val = (baser_phys					 |
1784 		(type << GITS_BASER_TYPE_SHIFT)			 |
1785 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1786 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1787 		cache						 |
1788 		shr						 |
1789 		GITS_BASER_VALID);
1790 
1791 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1792 
1793 	switch (psz) {
1794 	case SZ_4K:
1795 		val |= GITS_BASER_PAGE_SIZE_4K;
1796 		break;
1797 	case SZ_16K:
1798 		val |= GITS_BASER_PAGE_SIZE_16K;
1799 		break;
1800 	case SZ_64K:
1801 		val |= GITS_BASER_PAGE_SIZE_64K;
1802 		break;
1803 	}
1804 
1805 	its_write_baser(its, baser, val);
1806 	tmp = baser->val;
1807 
1808 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1809 		/*
1810 		 * Shareability didn't stick. Just use
1811 		 * whatever the read reported, which is likely
1812 		 * to be the only thing this redistributor
1813 		 * supports. If that's zero, make it
1814 		 * non-cacheable as well.
1815 		 */
1816 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1817 		if (!shr) {
1818 			cache = GITS_BASER_nC;
1819 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1820 		}
1821 		goto retry_baser;
1822 	}
1823 
1824 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1825 		/*
1826 		 * Page size didn't stick. Let's try a smaller
1827 		 * size and retry. If we reach 4K, then
1828 		 * something is horribly wrong...
1829 		 */
1830 		free_pages((unsigned long)base, order);
1831 		baser->base = NULL;
1832 
1833 		switch (psz) {
1834 		case SZ_16K:
1835 			psz = SZ_4K;
1836 			goto retry_alloc_baser;
1837 		case SZ_64K:
1838 			psz = SZ_16K;
1839 			goto retry_alloc_baser;
1840 		}
1841 	}
1842 
1843 	if (val != tmp) {
1844 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1845 		       &its->phys_base, its_base_type_string[type],
1846 		       val, tmp);
1847 		free_pages((unsigned long)base, order);
1848 		return -ENXIO;
1849 	}
1850 
1851 	baser->order = order;
1852 	baser->base = base;
1853 	baser->psz = psz;
1854 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1855 
1856 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1857 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1858 		its_base_type_string[type],
1859 		(unsigned long)virt_to_phys(base),
1860 		indirect ? "indirect" : "flat", (int)esz,
1861 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1862 
1863 	return 0;
1864 }
1865 
1866 static bool its_parse_indirect_baser(struct its_node *its,
1867 				     struct its_baser *baser,
1868 				     u32 psz, u32 *order, u32 ids)
1869 {
1870 	u64 tmp = its_read_baser(its, baser);
1871 	u64 type = GITS_BASER_TYPE(tmp);
1872 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1873 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1874 	u32 new_order = *order;
1875 	bool indirect = false;
1876 
1877 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1878 	if ((esz << ids) > (psz * 2)) {
1879 		/*
1880 		 * Find out whether hw supports a single or two-level table by
1881 		 * table by reading bit at offset '62' after writing '1' to it.
1882 		 */
1883 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1884 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1885 
1886 		if (indirect) {
1887 			/*
1888 			 * The size of the lvl2 table is equal to ITS page size
1889 			 * which is 'psz'. For computing lvl1 table size,
1890 			 * subtract ID bits that sparse lvl2 table from 'ids'
1891 			 * which is reported by ITS hardware times lvl1 table
1892 			 * entry size.
1893 			 */
1894 			ids -= ilog2(psz / (int)esz);
1895 			esz = GITS_LVL1_ENTRY_SIZE;
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * Allocate as many entries as required to fit the
1901 	 * range of device IDs that the ITS can grok... The ID
1902 	 * space being incredibly sparse, this results in a
1903 	 * massive waste of memory if two-level device table
1904 	 * feature is not supported by hardware.
1905 	 */
1906 	new_order = max_t(u32, get_order(esz << ids), new_order);
1907 	if (new_order >= MAX_ORDER) {
1908 		new_order = MAX_ORDER - 1;
1909 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1910 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1911 			&its->phys_base, its_base_type_string[type],
1912 			its->device_ids, ids);
1913 	}
1914 
1915 	*order = new_order;
1916 
1917 	return indirect;
1918 }
1919 
1920 static void its_free_tables(struct its_node *its)
1921 {
1922 	int i;
1923 
1924 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1925 		if (its->tables[i].base) {
1926 			free_pages((unsigned long)its->tables[i].base,
1927 				   its->tables[i].order);
1928 			its->tables[i].base = NULL;
1929 		}
1930 	}
1931 }
1932 
1933 static int its_alloc_tables(struct its_node *its)
1934 {
1935 	u64 shr = GITS_BASER_InnerShareable;
1936 	u64 cache = GITS_BASER_RaWaWb;
1937 	u32 psz = SZ_64K;
1938 	int err, i;
1939 
1940 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1941 		/* erratum 24313: ignore memory access type */
1942 		cache = GITS_BASER_nCnB;
1943 
1944 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1945 		struct its_baser *baser = its->tables + i;
1946 		u64 val = its_read_baser(its, baser);
1947 		u64 type = GITS_BASER_TYPE(val);
1948 		u32 order = get_order(psz);
1949 		bool indirect = false;
1950 
1951 		switch (type) {
1952 		case GITS_BASER_TYPE_NONE:
1953 			continue;
1954 
1955 		case GITS_BASER_TYPE_DEVICE:
1956 			indirect = its_parse_indirect_baser(its, baser,
1957 							    psz, &order,
1958 							    its->device_ids);
1959 			break;
1960 
1961 		case GITS_BASER_TYPE_VCPU:
1962 			indirect = its_parse_indirect_baser(its, baser,
1963 							    psz, &order,
1964 							    ITS_MAX_VPEID_BITS);
1965 			break;
1966 		}
1967 
1968 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1969 		if (err < 0) {
1970 			its_free_tables(its);
1971 			return err;
1972 		}
1973 
1974 		/* Update settings which will be used for next BASERn */
1975 		psz = baser->psz;
1976 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1977 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 static int its_alloc_collections(struct its_node *its)
1984 {
1985 	int i;
1986 
1987 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1988 				   GFP_KERNEL);
1989 	if (!its->collections)
1990 		return -ENOMEM;
1991 
1992 	for (i = 0; i < nr_cpu_ids; i++)
1993 		its->collections[i].target_address = ~0ULL;
1994 
1995 	return 0;
1996 }
1997 
1998 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1999 {
2000 	struct page *pend_page;
2001 
2002 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2003 				get_order(LPI_PENDBASE_SZ));
2004 	if (!pend_page)
2005 		return NULL;
2006 
2007 	/* Make sure the GIC will observe the zero-ed page */
2008 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2009 
2010 	return pend_page;
2011 }
2012 
2013 static void its_free_pending_table(struct page *pt)
2014 {
2015 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2016 }
2017 
2018 /*
2019  * Booting with kdump and LPIs enabled is generally fine. Any other
2020  * case is wrong in the absence of firmware/EFI support.
2021  */
2022 static bool enabled_lpis_allowed(void)
2023 {
2024 	phys_addr_t addr;
2025 	u64 val;
2026 
2027 	/* Check whether the property table is in a reserved region */
2028 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2029 	addr = val & GENMASK_ULL(51, 12);
2030 
2031 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2032 }
2033 
2034 static int __init allocate_lpi_tables(void)
2035 {
2036 	u64 val;
2037 	int err, cpu;
2038 
2039 	/*
2040 	 * If LPIs are enabled while we run this from the boot CPU,
2041 	 * flag the RD tables as pre-allocated if the stars do align.
2042 	 */
2043 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2044 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2045 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2046 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2047 		pr_info("GICv3: Using preallocated redistributor tables\n");
2048 	}
2049 
2050 	err = its_setup_lpi_prop_table();
2051 	if (err)
2052 		return err;
2053 
2054 	/*
2055 	 * We allocate all the pending tables anyway, as we may have a
2056 	 * mix of RDs that have had LPIs enabled, and some that
2057 	 * don't. We'll free the unused ones as each CPU comes online.
2058 	 */
2059 	for_each_possible_cpu(cpu) {
2060 		struct page *pend_page;
2061 
2062 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2063 		if (!pend_page) {
2064 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2065 			return -ENOMEM;
2066 		}
2067 
2068 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2075 {
2076 	u32 count = 1000000;	/* 1s! */
2077 	bool clean;
2078 	u64 val;
2079 
2080 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2081 	val &= ~GICR_VPENDBASER_Valid;
2082 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2083 
2084 	do {
2085 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2086 		clean = !(val & GICR_VPENDBASER_Dirty);
2087 		if (!clean) {
2088 			count--;
2089 			cpu_relax();
2090 			udelay(1);
2091 		}
2092 	} while (!clean && count);
2093 
2094 	return val;
2095 }
2096 
2097 static void its_cpu_init_lpis(void)
2098 {
2099 	void __iomem *rbase = gic_data_rdist_rd_base();
2100 	struct page *pend_page;
2101 	phys_addr_t paddr;
2102 	u64 val, tmp;
2103 
2104 	if (gic_data_rdist()->lpi_enabled)
2105 		return;
2106 
2107 	val = readl_relaxed(rbase + GICR_CTLR);
2108 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2109 	    (val & GICR_CTLR_ENABLE_LPIS)) {
2110 		/*
2111 		 * Check that we get the same property table on all
2112 		 * RDs. If we don't, this is hopeless.
2113 		 */
2114 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2115 		paddr &= GENMASK_ULL(51, 12);
2116 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2117 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2118 
2119 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2120 		paddr &= GENMASK_ULL(51, 16);
2121 
2122 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2123 		its_free_pending_table(gic_data_rdist()->pend_page);
2124 		gic_data_rdist()->pend_page = NULL;
2125 
2126 		goto out;
2127 	}
2128 
2129 	pend_page = gic_data_rdist()->pend_page;
2130 	paddr = page_to_phys(pend_page);
2131 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2132 
2133 	/* set PROPBASE */
2134 	val = (gic_rdists->prop_table_pa |
2135 	       GICR_PROPBASER_InnerShareable |
2136 	       GICR_PROPBASER_RaWaWb |
2137 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2138 
2139 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2140 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2141 
2142 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2143 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2144 			/*
2145 			 * The HW reports non-shareable, we must
2146 			 * remove the cacheability attributes as
2147 			 * well.
2148 			 */
2149 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2150 				 GICR_PROPBASER_CACHEABILITY_MASK);
2151 			val |= GICR_PROPBASER_nC;
2152 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2153 		}
2154 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2155 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2156 	}
2157 
2158 	/* set PENDBASE */
2159 	val = (page_to_phys(pend_page) |
2160 	       GICR_PENDBASER_InnerShareable |
2161 	       GICR_PENDBASER_RaWaWb);
2162 
2163 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2164 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2165 
2166 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2167 		/*
2168 		 * The HW reports non-shareable, we must remove the
2169 		 * cacheability attributes as well.
2170 		 */
2171 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2172 			 GICR_PENDBASER_CACHEABILITY_MASK);
2173 		val |= GICR_PENDBASER_nC;
2174 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2175 	}
2176 
2177 	/* Enable LPIs */
2178 	val = readl_relaxed(rbase + GICR_CTLR);
2179 	val |= GICR_CTLR_ENABLE_LPIS;
2180 	writel_relaxed(val, rbase + GICR_CTLR);
2181 
2182 	if (gic_rdists->has_vlpis) {
2183 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2184 
2185 		/*
2186 		 * It's possible for CPU to receive VLPIs before it is
2187 		 * sheduled as a vPE, especially for the first CPU, and the
2188 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2189 		 * as out of range and dropped by GIC.
2190 		 * So we initialize IDbits to known value to avoid VLPI drop.
2191 		 */
2192 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2193 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2194 			smp_processor_id(), val);
2195 		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2196 
2197 		/*
2198 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
2199 		 * ancient programming gets left in and has possibility of
2200 		 * corrupting memory.
2201 		 */
2202 		val = its_clear_vpend_valid(vlpi_base);
2203 		WARN_ON(val & GICR_VPENDBASER_Dirty);
2204 	}
2205 
2206 	/* Make sure the GIC has seen the above */
2207 	dsb(sy);
2208 out:
2209 	gic_data_rdist()->lpi_enabled = true;
2210 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2211 		smp_processor_id(),
2212 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
2213 		&paddr);
2214 }
2215 
2216 static void its_cpu_init_collection(struct its_node *its)
2217 {
2218 	int cpu = smp_processor_id();
2219 	u64 target;
2220 
2221 	/* avoid cross node collections and its mapping */
2222 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2223 		struct device_node *cpu_node;
2224 
2225 		cpu_node = of_get_cpu_node(cpu, NULL);
2226 		if (its->numa_node != NUMA_NO_NODE &&
2227 			its->numa_node != of_node_to_nid(cpu_node))
2228 			return;
2229 	}
2230 
2231 	/*
2232 	 * We now have to bind each collection to its target
2233 	 * redistributor.
2234 	 */
2235 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2236 		/*
2237 		 * This ITS wants the physical address of the
2238 		 * redistributor.
2239 		 */
2240 		target = gic_data_rdist()->phys_base;
2241 	} else {
2242 		/* This ITS wants a linear CPU number. */
2243 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2244 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2245 	}
2246 
2247 	/* Perform collection mapping */
2248 	its->collections[cpu].target_address = target;
2249 	its->collections[cpu].col_id = cpu;
2250 
2251 	its_send_mapc(its, &its->collections[cpu], 1);
2252 	its_send_invall(its, &its->collections[cpu]);
2253 }
2254 
2255 static void its_cpu_init_collections(void)
2256 {
2257 	struct its_node *its;
2258 
2259 	raw_spin_lock(&its_lock);
2260 
2261 	list_for_each_entry(its, &its_nodes, entry)
2262 		its_cpu_init_collection(its);
2263 
2264 	raw_spin_unlock(&its_lock);
2265 }
2266 
2267 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2268 {
2269 	struct its_device *its_dev = NULL, *tmp;
2270 	unsigned long flags;
2271 
2272 	raw_spin_lock_irqsave(&its->lock, flags);
2273 
2274 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2275 		if (tmp->device_id == dev_id) {
2276 			its_dev = tmp;
2277 			break;
2278 		}
2279 	}
2280 
2281 	raw_spin_unlock_irqrestore(&its->lock, flags);
2282 
2283 	return its_dev;
2284 }
2285 
2286 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2287 {
2288 	int i;
2289 
2290 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2291 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2292 			return &its->tables[i];
2293 	}
2294 
2295 	return NULL;
2296 }
2297 
2298 static bool its_alloc_table_entry(struct its_node *its,
2299 				  struct its_baser *baser, u32 id)
2300 {
2301 	struct page *page;
2302 	u32 esz, idx;
2303 	__le64 *table;
2304 
2305 	/* Don't allow device id that exceeds single, flat table limit */
2306 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2307 	if (!(baser->val & GITS_BASER_INDIRECT))
2308 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2309 
2310 	/* Compute 1st level table index & check if that exceeds table limit */
2311 	idx = id >> ilog2(baser->psz / esz);
2312 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2313 		return false;
2314 
2315 	table = baser->base;
2316 
2317 	/* Allocate memory for 2nd level table */
2318 	if (!table[idx]) {
2319 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2320 					get_order(baser->psz));
2321 		if (!page)
2322 			return false;
2323 
2324 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2325 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2326 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2327 
2328 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2329 
2330 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2331 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2332 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2333 
2334 		/* Ensure updated table contents are visible to ITS hardware */
2335 		dsb(sy);
2336 	}
2337 
2338 	return true;
2339 }
2340 
2341 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2342 {
2343 	struct its_baser *baser;
2344 
2345 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2346 
2347 	/* Don't allow device id that exceeds ITS hardware limit */
2348 	if (!baser)
2349 		return (ilog2(dev_id) < its->device_ids);
2350 
2351 	return its_alloc_table_entry(its, baser, dev_id);
2352 }
2353 
2354 static bool its_alloc_vpe_table(u32 vpe_id)
2355 {
2356 	struct its_node *its;
2357 
2358 	/*
2359 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2360 	 * could try and only do it on ITSs corresponding to devices
2361 	 * that have interrupts targeted at this VPE, but the
2362 	 * complexity becomes crazy (and you have tons of memory
2363 	 * anyway, right?).
2364 	 */
2365 	list_for_each_entry(its, &its_nodes, entry) {
2366 		struct its_baser *baser;
2367 
2368 		if (!its->is_v4)
2369 			continue;
2370 
2371 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2372 		if (!baser)
2373 			return false;
2374 
2375 		if (!its_alloc_table_entry(its, baser, vpe_id))
2376 			return false;
2377 	}
2378 
2379 	return true;
2380 }
2381 
2382 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2383 					    int nvecs, bool alloc_lpis)
2384 {
2385 	struct its_device *dev;
2386 	unsigned long *lpi_map = NULL;
2387 	unsigned long flags;
2388 	u16 *col_map = NULL;
2389 	void *itt;
2390 	int lpi_base;
2391 	int nr_lpis;
2392 	int nr_ites;
2393 	int sz;
2394 
2395 	if (!its_alloc_device_table(its, dev_id))
2396 		return NULL;
2397 
2398 	if (WARN_ON(!is_power_of_2(nvecs)))
2399 		nvecs = roundup_pow_of_two(nvecs);
2400 
2401 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2402 	/*
2403 	 * Even if the device wants a single LPI, the ITT must be
2404 	 * sized as a power of two (and you need at least one bit...).
2405 	 */
2406 	nr_ites = max(2, nvecs);
2407 	sz = nr_ites * its->ite_size;
2408 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2409 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2410 	if (alloc_lpis) {
2411 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2412 		if (lpi_map)
2413 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2414 					  GFP_KERNEL);
2415 	} else {
2416 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2417 		nr_lpis = 0;
2418 		lpi_base = 0;
2419 	}
2420 
2421 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2422 		kfree(dev);
2423 		kfree(itt);
2424 		kfree(lpi_map);
2425 		kfree(col_map);
2426 		return NULL;
2427 	}
2428 
2429 	gic_flush_dcache_to_poc(itt, sz);
2430 
2431 	dev->its = its;
2432 	dev->itt = itt;
2433 	dev->nr_ites = nr_ites;
2434 	dev->event_map.lpi_map = lpi_map;
2435 	dev->event_map.col_map = col_map;
2436 	dev->event_map.lpi_base = lpi_base;
2437 	dev->event_map.nr_lpis = nr_lpis;
2438 	mutex_init(&dev->event_map.vlpi_lock);
2439 	dev->device_id = dev_id;
2440 	INIT_LIST_HEAD(&dev->entry);
2441 
2442 	raw_spin_lock_irqsave(&its->lock, flags);
2443 	list_add(&dev->entry, &its->its_device_list);
2444 	raw_spin_unlock_irqrestore(&its->lock, flags);
2445 
2446 	/* Map device to its ITT */
2447 	its_send_mapd(dev, 1);
2448 
2449 	return dev;
2450 }
2451 
2452 static void its_free_device(struct its_device *its_dev)
2453 {
2454 	unsigned long flags;
2455 
2456 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2457 	list_del(&its_dev->entry);
2458 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2459 	kfree(its_dev->itt);
2460 	kfree(its_dev);
2461 }
2462 
2463 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2464 {
2465 	int idx;
2466 
2467 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
2468 				      dev->event_map.nr_lpis,
2469 				      get_count_order(nvecs));
2470 	if (idx < 0)
2471 		return -ENOSPC;
2472 
2473 	*hwirq = dev->event_map.lpi_base + idx;
2474 	set_bit(idx, dev->event_map.lpi_map);
2475 
2476 	return 0;
2477 }
2478 
2479 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2480 			   int nvec, msi_alloc_info_t *info)
2481 {
2482 	struct its_node *its;
2483 	struct its_device *its_dev;
2484 	struct msi_domain_info *msi_info;
2485 	u32 dev_id;
2486 	int err = 0;
2487 
2488 	/*
2489 	 * We ignore "dev" entirely, and rely on the dev_id that has
2490 	 * been passed via the scratchpad. This limits this domain's
2491 	 * usefulness to upper layers that definitely know that they
2492 	 * are built on top of the ITS.
2493 	 */
2494 	dev_id = info->scratchpad[0].ul;
2495 
2496 	msi_info = msi_get_domain_info(domain);
2497 	its = msi_info->data;
2498 
2499 	if (!gic_rdists->has_direct_lpi &&
2500 	    vpe_proxy.dev &&
2501 	    vpe_proxy.dev->its == its &&
2502 	    dev_id == vpe_proxy.dev->device_id) {
2503 		/* Bad luck. Get yourself a better implementation */
2504 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2505 			  dev_id);
2506 		return -EINVAL;
2507 	}
2508 
2509 	mutex_lock(&its->dev_alloc_lock);
2510 	its_dev = its_find_device(its, dev_id);
2511 	if (its_dev) {
2512 		/*
2513 		 * We already have seen this ID, probably through
2514 		 * another alias (PCI bridge of some sort). No need to
2515 		 * create the device.
2516 		 */
2517 		its_dev->shared = true;
2518 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2519 		goto out;
2520 	}
2521 
2522 	its_dev = its_create_device(its, dev_id, nvec, true);
2523 	if (!its_dev) {
2524 		err = -ENOMEM;
2525 		goto out;
2526 	}
2527 
2528 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2529 out:
2530 	mutex_unlock(&its->dev_alloc_lock);
2531 	info->scratchpad[0].ptr = its_dev;
2532 	return err;
2533 }
2534 
2535 static struct msi_domain_ops its_msi_domain_ops = {
2536 	.msi_prepare	= its_msi_prepare,
2537 };
2538 
2539 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2540 				    unsigned int virq,
2541 				    irq_hw_number_t hwirq)
2542 {
2543 	struct irq_fwspec fwspec;
2544 
2545 	if (irq_domain_get_of_node(domain->parent)) {
2546 		fwspec.fwnode = domain->parent->fwnode;
2547 		fwspec.param_count = 3;
2548 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2549 		fwspec.param[1] = hwirq;
2550 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2551 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2552 		fwspec.fwnode = domain->parent->fwnode;
2553 		fwspec.param_count = 2;
2554 		fwspec.param[0] = hwirq;
2555 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2556 	} else {
2557 		return -EINVAL;
2558 	}
2559 
2560 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2561 }
2562 
2563 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2564 				unsigned int nr_irqs, void *args)
2565 {
2566 	msi_alloc_info_t *info = args;
2567 	struct its_device *its_dev = info->scratchpad[0].ptr;
2568 	struct its_node *its = its_dev->its;
2569 	irq_hw_number_t hwirq;
2570 	int err;
2571 	int i;
2572 
2573 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2574 	if (err)
2575 		return err;
2576 
2577 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2578 	if (err)
2579 		return err;
2580 
2581 	for (i = 0; i < nr_irqs; i++) {
2582 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2583 		if (err)
2584 			return err;
2585 
2586 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2587 					      hwirq + i, &its_irq_chip, its_dev);
2588 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2589 		pr_debug("ID:%d pID:%d vID:%d\n",
2590 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
2591 			 (int)(hwirq + i), virq + i);
2592 	}
2593 
2594 	return 0;
2595 }
2596 
2597 static int its_irq_domain_activate(struct irq_domain *domain,
2598 				   struct irq_data *d, bool reserve)
2599 {
2600 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2601 	u32 event = its_get_event_id(d);
2602 	const struct cpumask *cpu_mask = cpu_online_mask;
2603 	int cpu;
2604 
2605 	/* get the cpu_mask of local node */
2606 	if (its_dev->its->numa_node >= 0)
2607 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2608 
2609 	/* Bind the LPI to the first possible CPU */
2610 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2611 	if (cpu >= nr_cpu_ids) {
2612 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2613 			return -EINVAL;
2614 
2615 		cpu = cpumask_first(cpu_online_mask);
2616 	}
2617 
2618 	its_dev->event_map.col_map[event] = cpu;
2619 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2620 
2621 	/* Map the GIC IRQ and event to the device */
2622 	its_send_mapti(its_dev, d->hwirq, event);
2623 	return 0;
2624 }
2625 
2626 static void its_irq_domain_deactivate(struct irq_domain *domain,
2627 				      struct irq_data *d)
2628 {
2629 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2630 	u32 event = its_get_event_id(d);
2631 
2632 	/* Stop the delivery of interrupts */
2633 	its_send_discard(its_dev, event);
2634 }
2635 
2636 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2637 				unsigned int nr_irqs)
2638 {
2639 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2640 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2641 	struct its_node *its = its_dev->its;
2642 	int i;
2643 
2644 	for (i = 0; i < nr_irqs; i++) {
2645 		struct irq_data *data = irq_domain_get_irq_data(domain,
2646 								virq + i);
2647 		u32 event = its_get_event_id(data);
2648 
2649 		/* Mark interrupt index as unused */
2650 		clear_bit(event, its_dev->event_map.lpi_map);
2651 
2652 		/* Nuke the entry in the domain */
2653 		irq_domain_reset_irq_data(data);
2654 	}
2655 
2656 	mutex_lock(&its->dev_alloc_lock);
2657 
2658 	/*
2659 	 * If all interrupts have been freed, start mopping the
2660 	 * floor. This is conditionned on the device not being shared.
2661 	 */
2662 	if (!its_dev->shared &&
2663 	    bitmap_empty(its_dev->event_map.lpi_map,
2664 			 its_dev->event_map.nr_lpis)) {
2665 		its_lpi_free(its_dev->event_map.lpi_map,
2666 			     its_dev->event_map.lpi_base,
2667 			     its_dev->event_map.nr_lpis);
2668 		kfree(its_dev->event_map.col_map);
2669 
2670 		/* Unmap device/itt */
2671 		its_send_mapd(its_dev, 0);
2672 		its_free_device(its_dev);
2673 	}
2674 
2675 	mutex_unlock(&its->dev_alloc_lock);
2676 
2677 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2678 }
2679 
2680 static const struct irq_domain_ops its_domain_ops = {
2681 	.alloc			= its_irq_domain_alloc,
2682 	.free			= its_irq_domain_free,
2683 	.activate		= its_irq_domain_activate,
2684 	.deactivate		= its_irq_domain_deactivate,
2685 };
2686 
2687 /*
2688  * This is insane.
2689  *
2690  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2691  * likely), the only way to perform an invalidate is to use a fake
2692  * device to issue an INV command, implying that the LPI has first
2693  * been mapped to some event on that device. Since this is not exactly
2694  * cheap, we try to keep that mapping around as long as possible, and
2695  * only issue an UNMAP if we're short on available slots.
2696  *
2697  * Broken by design(tm).
2698  */
2699 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2700 {
2701 	/* Already unmapped? */
2702 	if (vpe->vpe_proxy_event == -1)
2703 		return;
2704 
2705 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2706 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2707 
2708 	/*
2709 	 * We don't track empty slots at all, so let's move the
2710 	 * next_victim pointer if we can quickly reuse that slot
2711 	 * instead of nuking an existing entry. Not clear that this is
2712 	 * always a win though, and this might just generate a ripple
2713 	 * effect... Let's just hope VPEs don't migrate too often.
2714 	 */
2715 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2716 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2717 
2718 	vpe->vpe_proxy_event = -1;
2719 }
2720 
2721 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2722 {
2723 	if (!gic_rdists->has_direct_lpi) {
2724 		unsigned long flags;
2725 
2726 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2727 		its_vpe_db_proxy_unmap_locked(vpe);
2728 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2729 	}
2730 }
2731 
2732 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2733 {
2734 	/* Already mapped? */
2735 	if (vpe->vpe_proxy_event != -1)
2736 		return;
2737 
2738 	/* This slot was already allocated. Kick the other VPE out. */
2739 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2740 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2741 
2742 	/* Map the new VPE instead */
2743 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2744 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2745 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2746 
2747 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2748 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2749 }
2750 
2751 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2752 {
2753 	unsigned long flags;
2754 	struct its_collection *target_col;
2755 
2756 	if (gic_rdists->has_direct_lpi) {
2757 		void __iomem *rdbase;
2758 
2759 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2760 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2761 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2762 			cpu_relax();
2763 
2764 		return;
2765 	}
2766 
2767 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2768 
2769 	its_vpe_db_proxy_map_locked(vpe);
2770 
2771 	target_col = &vpe_proxy.dev->its->collections[to];
2772 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2773 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2774 
2775 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2776 }
2777 
2778 static int its_vpe_set_affinity(struct irq_data *d,
2779 				const struct cpumask *mask_val,
2780 				bool force)
2781 {
2782 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2783 	int cpu = cpumask_first(mask_val);
2784 
2785 	/*
2786 	 * Changing affinity is mega expensive, so let's be as lazy as
2787 	 * we can and only do it if we really have to. Also, if mapped
2788 	 * into the proxy device, we need to move the doorbell
2789 	 * interrupt to its new location.
2790 	 */
2791 	if (vpe->col_idx != cpu) {
2792 		int from = vpe->col_idx;
2793 
2794 		vpe->col_idx = cpu;
2795 		its_send_vmovp(vpe);
2796 		its_vpe_db_proxy_move(vpe, from, cpu);
2797 	}
2798 
2799 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2800 
2801 	return IRQ_SET_MASK_OK_DONE;
2802 }
2803 
2804 static void its_vpe_schedule(struct its_vpe *vpe)
2805 {
2806 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2807 	u64 val;
2808 
2809 	/* Schedule the VPE */
2810 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2811 		GENMASK_ULL(51, 12);
2812 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2813 	val |= GICR_VPROPBASER_RaWb;
2814 	val |= GICR_VPROPBASER_InnerShareable;
2815 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2816 
2817 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2818 		GENMASK_ULL(51, 16);
2819 	val |= GICR_VPENDBASER_RaWaWb;
2820 	val |= GICR_VPENDBASER_NonShareable;
2821 	/*
2822 	 * There is no good way of finding out if the pending table is
2823 	 * empty as we can race against the doorbell interrupt very
2824 	 * easily. So in the end, vpe->pending_last is only an
2825 	 * indication that the vcpu has something pending, not one
2826 	 * that the pending table is empty. A good implementation
2827 	 * would be able to read its coarse map pretty quickly anyway,
2828 	 * making this a tolerable issue.
2829 	 */
2830 	val |= GICR_VPENDBASER_PendingLast;
2831 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2832 	val |= GICR_VPENDBASER_Valid;
2833 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2834 }
2835 
2836 static void its_vpe_deschedule(struct its_vpe *vpe)
2837 {
2838 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2839 	u64 val;
2840 
2841 	val = its_clear_vpend_valid(vlpi_base);
2842 
2843 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2844 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2845 		vpe->idai = false;
2846 		vpe->pending_last = true;
2847 	} else {
2848 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2849 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2850 	}
2851 }
2852 
2853 static void its_vpe_invall(struct its_vpe *vpe)
2854 {
2855 	struct its_node *its;
2856 
2857 	list_for_each_entry(its, &its_nodes, entry) {
2858 		if (!its->is_v4)
2859 			continue;
2860 
2861 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2862 			continue;
2863 
2864 		/*
2865 		 * Sending a VINVALL to a single ITS is enough, as all
2866 		 * we need is to reach the redistributors.
2867 		 */
2868 		its_send_vinvall(its, vpe);
2869 		return;
2870 	}
2871 }
2872 
2873 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2874 {
2875 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2876 	struct its_cmd_info *info = vcpu_info;
2877 
2878 	switch (info->cmd_type) {
2879 	case SCHEDULE_VPE:
2880 		its_vpe_schedule(vpe);
2881 		return 0;
2882 
2883 	case DESCHEDULE_VPE:
2884 		its_vpe_deschedule(vpe);
2885 		return 0;
2886 
2887 	case INVALL_VPE:
2888 		its_vpe_invall(vpe);
2889 		return 0;
2890 
2891 	default:
2892 		return -EINVAL;
2893 	}
2894 }
2895 
2896 static void its_vpe_send_cmd(struct its_vpe *vpe,
2897 			     void (*cmd)(struct its_device *, u32))
2898 {
2899 	unsigned long flags;
2900 
2901 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2902 
2903 	its_vpe_db_proxy_map_locked(vpe);
2904 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2905 
2906 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2907 }
2908 
2909 static void its_vpe_send_inv(struct irq_data *d)
2910 {
2911 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2912 
2913 	if (gic_rdists->has_direct_lpi) {
2914 		void __iomem *rdbase;
2915 
2916 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2917 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2918 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2919 			cpu_relax();
2920 	} else {
2921 		its_vpe_send_cmd(vpe, its_send_inv);
2922 	}
2923 }
2924 
2925 static void its_vpe_mask_irq(struct irq_data *d)
2926 {
2927 	/*
2928 	 * We need to unmask the LPI, which is described by the parent
2929 	 * irq_data. Instead of calling into the parent (which won't
2930 	 * exactly do the right thing, let's simply use the
2931 	 * parent_data pointer. Yes, I'm naughty.
2932 	 */
2933 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2934 	its_vpe_send_inv(d);
2935 }
2936 
2937 static void its_vpe_unmask_irq(struct irq_data *d)
2938 {
2939 	/* Same hack as above... */
2940 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2941 	its_vpe_send_inv(d);
2942 }
2943 
2944 static int its_vpe_set_irqchip_state(struct irq_data *d,
2945 				     enum irqchip_irq_state which,
2946 				     bool state)
2947 {
2948 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2949 
2950 	if (which != IRQCHIP_STATE_PENDING)
2951 		return -EINVAL;
2952 
2953 	if (gic_rdists->has_direct_lpi) {
2954 		void __iomem *rdbase;
2955 
2956 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2957 		if (state) {
2958 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2959 		} else {
2960 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2961 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2962 				cpu_relax();
2963 		}
2964 	} else {
2965 		if (state)
2966 			its_vpe_send_cmd(vpe, its_send_int);
2967 		else
2968 			its_vpe_send_cmd(vpe, its_send_clear);
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 static struct irq_chip its_vpe_irq_chip = {
2975 	.name			= "GICv4-vpe",
2976 	.irq_mask		= its_vpe_mask_irq,
2977 	.irq_unmask		= its_vpe_unmask_irq,
2978 	.irq_eoi		= irq_chip_eoi_parent,
2979 	.irq_set_affinity	= its_vpe_set_affinity,
2980 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2981 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2982 };
2983 
2984 static int its_vpe_id_alloc(void)
2985 {
2986 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2987 }
2988 
2989 static void its_vpe_id_free(u16 id)
2990 {
2991 	ida_simple_remove(&its_vpeid_ida, id);
2992 }
2993 
2994 static int its_vpe_init(struct its_vpe *vpe)
2995 {
2996 	struct page *vpt_page;
2997 	int vpe_id;
2998 
2999 	/* Allocate vpe_id */
3000 	vpe_id = its_vpe_id_alloc();
3001 	if (vpe_id < 0)
3002 		return vpe_id;
3003 
3004 	/* Allocate VPT */
3005 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
3006 	if (!vpt_page) {
3007 		its_vpe_id_free(vpe_id);
3008 		return -ENOMEM;
3009 	}
3010 
3011 	if (!its_alloc_vpe_table(vpe_id)) {
3012 		its_vpe_id_free(vpe_id);
3013 		its_free_pending_table(vpe->vpt_page);
3014 		return -ENOMEM;
3015 	}
3016 
3017 	vpe->vpe_id = vpe_id;
3018 	vpe->vpt_page = vpt_page;
3019 	vpe->vpe_proxy_event = -1;
3020 
3021 	return 0;
3022 }
3023 
3024 static void its_vpe_teardown(struct its_vpe *vpe)
3025 {
3026 	its_vpe_db_proxy_unmap(vpe);
3027 	its_vpe_id_free(vpe->vpe_id);
3028 	its_free_pending_table(vpe->vpt_page);
3029 }
3030 
3031 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3032 				    unsigned int virq,
3033 				    unsigned int nr_irqs)
3034 {
3035 	struct its_vm *vm = domain->host_data;
3036 	int i;
3037 
3038 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3039 
3040 	for (i = 0; i < nr_irqs; i++) {
3041 		struct irq_data *data = irq_domain_get_irq_data(domain,
3042 								virq + i);
3043 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3044 
3045 		BUG_ON(vm != vpe->its_vm);
3046 
3047 		clear_bit(data->hwirq, vm->db_bitmap);
3048 		its_vpe_teardown(vpe);
3049 		irq_domain_reset_irq_data(data);
3050 	}
3051 
3052 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3053 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3054 		its_free_prop_table(vm->vprop_page);
3055 	}
3056 }
3057 
3058 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3059 				    unsigned int nr_irqs, void *args)
3060 {
3061 	struct its_vm *vm = args;
3062 	unsigned long *bitmap;
3063 	struct page *vprop_page;
3064 	int base, nr_ids, i, err = 0;
3065 
3066 	BUG_ON(!vm);
3067 
3068 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3069 	if (!bitmap)
3070 		return -ENOMEM;
3071 
3072 	if (nr_ids < nr_irqs) {
3073 		its_lpi_free(bitmap, base, nr_ids);
3074 		return -ENOMEM;
3075 	}
3076 
3077 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
3078 	if (!vprop_page) {
3079 		its_lpi_free(bitmap, base, nr_ids);
3080 		return -ENOMEM;
3081 	}
3082 
3083 	vm->db_bitmap = bitmap;
3084 	vm->db_lpi_base = base;
3085 	vm->nr_db_lpis = nr_ids;
3086 	vm->vprop_page = vprop_page;
3087 
3088 	for (i = 0; i < nr_irqs; i++) {
3089 		vm->vpes[i]->vpe_db_lpi = base + i;
3090 		err = its_vpe_init(vm->vpes[i]);
3091 		if (err)
3092 			break;
3093 		err = its_irq_gic_domain_alloc(domain, virq + i,
3094 					       vm->vpes[i]->vpe_db_lpi);
3095 		if (err)
3096 			break;
3097 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3098 					      &its_vpe_irq_chip, vm->vpes[i]);
3099 		set_bit(i, bitmap);
3100 	}
3101 
3102 	if (err) {
3103 		if (i > 0)
3104 			its_vpe_irq_domain_free(domain, virq, i - 1);
3105 
3106 		its_lpi_free(bitmap, base, nr_ids);
3107 		its_free_prop_table(vprop_page);
3108 	}
3109 
3110 	return err;
3111 }
3112 
3113 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3114 				       struct irq_data *d, bool reserve)
3115 {
3116 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3117 	struct its_node *its;
3118 
3119 	/* If we use the list map, we issue VMAPP on demand... */
3120 	if (its_list_map)
3121 		return 0;
3122 
3123 	/* Map the VPE to the first possible CPU */
3124 	vpe->col_idx = cpumask_first(cpu_online_mask);
3125 
3126 	list_for_each_entry(its, &its_nodes, entry) {
3127 		if (!its->is_v4)
3128 			continue;
3129 
3130 		its_send_vmapp(its, vpe, true);
3131 		its_send_vinvall(its, vpe);
3132 	}
3133 
3134 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3135 
3136 	return 0;
3137 }
3138 
3139 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3140 					  struct irq_data *d)
3141 {
3142 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3143 	struct its_node *its;
3144 
3145 	/*
3146 	 * If we use the list map, we unmap the VPE once no VLPIs are
3147 	 * associated with the VM.
3148 	 */
3149 	if (its_list_map)
3150 		return;
3151 
3152 	list_for_each_entry(its, &its_nodes, entry) {
3153 		if (!its->is_v4)
3154 			continue;
3155 
3156 		its_send_vmapp(its, vpe, false);
3157 	}
3158 }
3159 
3160 static const struct irq_domain_ops its_vpe_domain_ops = {
3161 	.alloc			= its_vpe_irq_domain_alloc,
3162 	.free			= its_vpe_irq_domain_free,
3163 	.activate		= its_vpe_irq_domain_activate,
3164 	.deactivate		= its_vpe_irq_domain_deactivate,
3165 };
3166 
3167 static int its_force_quiescent(void __iomem *base)
3168 {
3169 	u32 count = 1000000;	/* 1s */
3170 	u32 val;
3171 
3172 	val = readl_relaxed(base + GITS_CTLR);
3173 	/*
3174 	 * GIC architecture specification requires the ITS to be both
3175 	 * disabled and quiescent for writes to GITS_BASER<n> or
3176 	 * GITS_CBASER to not have UNPREDICTABLE results.
3177 	 */
3178 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3179 		return 0;
3180 
3181 	/* Disable the generation of all interrupts to this ITS */
3182 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3183 	writel_relaxed(val, base + GITS_CTLR);
3184 
3185 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3186 	while (1) {
3187 		val = readl_relaxed(base + GITS_CTLR);
3188 		if (val & GITS_CTLR_QUIESCENT)
3189 			return 0;
3190 
3191 		count--;
3192 		if (!count)
3193 			return -EBUSY;
3194 
3195 		cpu_relax();
3196 		udelay(1);
3197 	}
3198 }
3199 
3200 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3201 {
3202 	struct its_node *its = data;
3203 
3204 	/* erratum 22375: only alloc 8MB table size */
3205 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3206 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3207 
3208 	return true;
3209 }
3210 
3211 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3212 {
3213 	struct its_node *its = data;
3214 
3215 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3216 
3217 	return true;
3218 }
3219 
3220 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3221 {
3222 	struct its_node *its = data;
3223 
3224 	/* On QDF2400, the size of the ITE is 16Bytes */
3225 	its->ite_size = 16;
3226 
3227 	return true;
3228 }
3229 
3230 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3231 {
3232 	struct its_node *its = its_dev->its;
3233 
3234 	/*
3235 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3236 	 * which maps 32-bit writes targeted at a separate window of
3237 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3238 	 * with device ID taken from bits [device_id_bits + 1:2] of
3239 	 * the window offset.
3240 	 */
3241 	return its->pre_its_base + (its_dev->device_id << 2);
3242 }
3243 
3244 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3245 {
3246 	struct its_node *its = data;
3247 	u32 pre_its_window[2];
3248 	u32 ids;
3249 
3250 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3251 					   "socionext,synquacer-pre-its",
3252 					   pre_its_window,
3253 					   ARRAY_SIZE(pre_its_window))) {
3254 
3255 		its->pre_its_base = pre_its_window[0];
3256 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3257 
3258 		ids = ilog2(pre_its_window[1]) - 2;
3259 		if (its->device_ids > ids)
3260 			its->device_ids = ids;
3261 
3262 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3263 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3264 		return true;
3265 	}
3266 	return false;
3267 }
3268 
3269 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3270 {
3271 	struct its_node *its = data;
3272 
3273 	/*
3274 	 * Hip07 insists on using the wrong address for the VLPI
3275 	 * page. Trick it into doing the right thing...
3276 	 */
3277 	its->vlpi_redist_offset = SZ_128K;
3278 	return true;
3279 }
3280 
3281 static const struct gic_quirk its_quirks[] = {
3282 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3283 	{
3284 		.desc	= "ITS: Cavium errata 22375, 24313",
3285 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3286 		.mask	= 0xffff0fff,
3287 		.init	= its_enable_quirk_cavium_22375,
3288 	},
3289 #endif
3290 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3291 	{
3292 		.desc	= "ITS: Cavium erratum 23144",
3293 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3294 		.mask	= 0xffff0fff,
3295 		.init	= its_enable_quirk_cavium_23144,
3296 	},
3297 #endif
3298 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3299 	{
3300 		.desc	= "ITS: QDF2400 erratum 0065",
3301 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3302 		.mask	= 0xffffffff,
3303 		.init	= its_enable_quirk_qdf2400_e0065,
3304 	},
3305 #endif
3306 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3307 	{
3308 		/*
3309 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3310 		 * implementation, but with a 'pre-ITS' added that requires
3311 		 * special handling in software.
3312 		 */
3313 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3314 		.iidr	= 0x0001143b,
3315 		.mask	= 0xffffffff,
3316 		.init	= its_enable_quirk_socionext_synquacer,
3317 	},
3318 #endif
3319 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3320 	{
3321 		.desc	= "ITS: Hip07 erratum 161600802",
3322 		.iidr	= 0x00000004,
3323 		.mask	= 0xffffffff,
3324 		.init	= its_enable_quirk_hip07_161600802,
3325 	},
3326 #endif
3327 	{
3328 	}
3329 };
3330 
3331 static void its_enable_quirks(struct its_node *its)
3332 {
3333 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3334 
3335 	gic_enable_quirks(iidr, its_quirks, its);
3336 }
3337 
3338 static int its_save_disable(void)
3339 {
3340 	struct its_node *its;
3341 	int err = 0;
3342 
3343 	raw_spin_lock(&its_lock);
3344 	list_for_each_entry(its, &its_nodes, entry) {
3345 		void __iomem *base;
3346 
3347 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3348 			continue;
3349 
3350 		base = its->base;
3351 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3352 		err = its_force_quiescent(base);
3353 		if (err) {
3354 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3355 			       &its->phys_base, err);
3356 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3357 			goto err;
3358 		}
3359 
3360 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3361 	}
3362 
3363 err:
3364 	if (err) {
3365 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3366 			void __iomem *base;
3367 
3368 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3369 				continue;
3370 
3371 			base = its->base;
3372 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3373 		}
3374 	}
3375 	raw_spin_unlock(&its_lock);
3376 
3377 	return err;
3378 }
3379 
3380 static void its_restore_enable(void)
3381 {
3382 	struct its_node *its;
3383 	int ret;
3384 
3385 	raw_spin_lock(&its_lock);
3386 	list_for_each_entry(its, &its_nodes, entry) {
3387 		void __iomem *base;
3388 		int i;
3389 
3390 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3391 			continue;
3392 
3393 		base = its->base;
3394 
3395 		/*
3396 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3397 		 * don't restore it since writing to CBASER or BASER<n>
3398 		 * registers is undefined according to the GIC v3 ITS
3399 		 * Specification.
3400 		 */
3401 		ret = its_force_quiescent(base);
3402 		if (ret) {
3403 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3404 			       &its->phys_base, ret);
3405 			continue;
3406 		}
3407 
3408 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3409 
3410 		/*
3411 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3412 		 * cmd_write line up with it.
3413 		 */
3414 		its->cmd_write = its->cmd_base;
3415 		gits_write_cwriter(0, base + GITS_CWRITER);
3416 
3417 		/* Restore GITS_BASER from the value cache. */
3418 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3419 			struct its_baser *baser = &its->tables[i];
3420 
3421 			if (!(baser->val & GITS_BASER_VALID))
3422 				continue;
3423 
3424 			its_write_baser(its, baser, baser->val);
3425 		}
3426 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3427 
3428 		/*
3429 		 * Reinit the collection if it's stored in the ITS. This is
3430 		 * indicated by the col_id being less than the HCC field.
3431 		 * CID < HCC as specified in the GIC v3 Documentation.
3432 		 */
3433 		if (its->collections[smp_processor_id()].col_id <
3434 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3435 			its_cpu_init_collection(its);
3436 	}
3437 	raw_spin_unlock(&its_lock);
3438 }
3439 
3440 static struct syscore_ops its_syscore_ops = {
3441 	.suspend = its_save_disable,
3442 	.resume = its_restore_enable,
3443 };
3444 
3445 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3446 {
3447 	struct irq_domain *inner_domain;
3448 	struct msi_domain_info *info;
3449 
3450 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3451 	if (!info)
3452 		return -ENOMEM;
3453 
3454 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3455 	if (!inner_domain) {
3456 		kfree(info);
3457 		return -ENOMEM;
3458 	}
3459 
3460 	inner_domain->parent = its_parent;
3461 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3462 	inner_domain->flags |= its->msi_domain_flags;
3463 	info->ops = &its_msi_domain_ops;
3464 	info->data = its;
3465 	inner_domain->host_data = info;
3466 
3467 	return 0;
3468 }
3469 
3470 static int its_init_vpe_domain(void)
3471 {
3472 	struct its_node *its;
3473 	u32 devid;
3474 	int entries;
3475 
3476 	if (gic_rdists->has_direct_lpi) {
3477 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3478 		return 0;
3479 	}
3480 
3481 	/* Any ITS will do, even if not v4 */
3482 	its = list_first_entry(&its_nodes, struct its_node, entry);
3483 
3484 	entries = roundup_pow_of_two(nr_cpu_ids);
3485 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3486 				 GFP_KERNEL);
3487 	if (!vpe_proxy.vpes) {
3488 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3489 		return -ENOMEM;
3490 	}
3491 
3492 	/* Use the last possible DevID */
3493 	devid = GENMASK(its->device_ids - 1, 0);
3494 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3495 	if (!vpe_proxy.dev) {
3496 		kfree(vpe_proxy.vpes);
3497 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3498 		return -ENOMEM;
3499 	}
3500 
3501 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3502 
3503 	raw_spin_lock_init(&vpe_proxy.lock);
3504 	vpe_proxy.next_victim = 0;
3505 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3506 		devid, vpe_proxy.dev->nr_ites);
3507 
3508 	return 0;
3509 }
3510 
3511 static int __init its_compute_its_list_map(struct resource *res,
3512 					   void __iomem *its_base)
3513 {
3514 	int its_number;
3515 	u32 ctlr;
3516 
3517 	/*
3518 	 * This is assumed to be done early enough that we're
3519 	 * guaranteed to be single-threaded, hence no
3520 	 * locking. Should this change, we should address
3521 	 * this.
3522 	 */
3523 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3524 	if (its_number >= GICv4_ITS_LIST_MAX) {
3525 		pr_err("ITS@%pa: No ITSList entry available!\n",
3526 		       &res->start);
3527 		return -EINVAL;
3528 	}
3529 
3530 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3531 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3532 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3533 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3534 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3535 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3536 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3537 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3538 	}
3539 
3540 	if (test_and_set_bit(its_number, &its_list_map)) {
3541 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3542 		       &res->start, its_number);
3543 		return -EINVAL;
3544 	}
3545 
3546 	return its_number;
3547 }
3548 
3549 static int __init its_probe_one(struct resource *res,
3550 				struct fwnode_handle *handle, int numa_node)
3551 {
3552 	struct its_node *its;
3553 	void __iomem *its_base;
3554 	u32 val, ctlr;
3555 	u64 baser, tmp, typer;
3556 	struct page *page;
3557 	int err;
3558 
3559 	its_base = ioremap(res->start, resource_size(res));
3560 	if (!its_base) {
3561 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3562 		return -ENOMEM;
3563 	}
3564 
3565 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3566 	if (val != 0x30 && val != 0x40) {
3567 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3568 		err = -ENODEV;
3569 		goto out_unmap;
3570 	}
3571 
3572 	err = its_force_quiescent(its_base);
3573 	if (err) {
3574 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3575 		goto out_unmap;
3576 	}
3577 
3578 	pr_info("ITS %pR\n", res);
3579 
3580 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3581 	if (!its) {
3582 		err = -ENOMEM;
3583 		goto out_unmap;
3584 	}
3585 
3586 	raw_spin_lock_init(&its->lock);
3587 	mutex_init(&its->dev_alloc_lock);
3588 	INIT_LIST_HEAD(&its->entry);
3589 	INIT_LIST_HEAD(&its->its_device_list);
3590 	typer = gic_read_typer(its_base + GITS_TYPER);
3591 	its->base = its_base;
3592 	its->phys_base = res->start;
3593 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3594 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3595 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3596 	if (its->is_v4) {
3597 		if (!(typer & GITS_TYPER_VMOVP)) {
3598 			err = its_compute_its_list_map(res, its_base);
3599 			if (err < 0)
3600 				goto out_free_its;
3601 
3602 			its->list_nr = err;
3603 
3604 			pr_info("ITS@%pa: Using ITS number %d\n",
3605 				&res->start, err);
3606 		} else {
3607 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3608 		}
3609 	}
3610 
3611 	its->numa_node = numa_node;
3612 
3613 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3614 				get_order(ITS_CMD_QUEUE_SZ));
3615 	if (!page) {
3616 		err = -ENOMEM;
3617 		goto out_free_its;
3618 	}
3619 	its->cmd_base = (void *)page_address(page);
3620 	its->cmd_write = its->cmd_base;
3621 	its->fwnode_handle = handle;
3622 	its->get_msi_base = its_irq_get_msi_base;
3623 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3624 
3625 	its_enable_quirks(its);
3626 
3627 	err = its_alloc_tables(its);
3628 	if (err)
3629 		goto out_free_cmd;
3630 
3631 	err = its_alloc_collections(its);
3632 	if (err)
3633 		goto out_free_tables;
3634 
3635 	baser = (virt_to_phys(its->cmd_base)	|
3636 		 GITS_CBASER_RaWaWb		|
3637 		 GITS_CBASER_InnerShareable	|
3638 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3639 		 GITS_CBASER_VALID);
3640 
3641 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3642 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3643 
3644 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3645 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3646 			/*
3647 			 * The HW reports non-shareable, we must
3648 			 * remove the cacheability attributes as
3649 			 * well.
3650 			 */
3651 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3652 				   GITS_CBASER_CACHEABILITY_MASK);
3653 			baser |= GITS_CBASER_nC;
3654 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3655 		}
3656 		pr_info("ITS: using cache flushing for cmd queue\n");
3657 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3658 	}
3659 
3660 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3661 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3662 	ctlr |= GITS_CTLR_ENABLE;
3663 	if (its->is_v4)
3664 		ctlr |= GITS_CTLR_ImDe;
3665 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3666 
3667 	if (GITS_TYPER_HCC(typer))
3668 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3669 
3670 	err = its_init_domain(handle, its);
3671 	if (err)
3672 		goto out_free_tables;
3673 
3674 	raw_spin_lock(&its_lock);
3675 	list_add(&its->entry, &its_nodes);
3676 	raw_spin_unlock(&its_lock);
3677 
3678 	return 0;
3679 
3680 out_free_tables:
3681 	its_free_tables(its);
3682 out_free_cmd:
3683 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3684 out_free_its:
3685 	kfree(its);
3686 out_unmap:
3687 	iounmap(its_base);
3688 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3689 	return err;
3690 }
3691 
3692 static bool gic_rdists_supports_plpis(void)
3693 {
3694 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3695 }
3696 
3697 static int redist_disable_lpis(void)
3698 {
3699 	void __iomem *rbase = gic_data_rdist_rd_base();
3700 	u64 timeout = USEC_PER_SEC;
3701 	u64 val;
3702 
3703 	if (!gic_rdists_supports_plpis()) {
3704 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3705 		return -ENXIO;
3706 	}
3707 
3708 	val = readl_relaxed(rbase + GICR_CTLR);
3709 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3710 		return 0;
3711 
3712 	/*
3713 	 * If coming via a CPU hotplug event, we don't need to disable
3714 	 * LPIs before trying to re-enable them. They are already
3715 	 * configured and all is well in the world.
3716 	 *
3717 	 * If running with preallocated tables, there is nothing to do.
3718 	 */
3719 	if (gic_data_rdist()->lpi_enabled ||
3720 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3721 		return 0;
3722 
3723 	/*
3724 	 * From that point on, we only try to do some damage control.
3725 	 */
3726 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3727 		smp_processor_id());
3728 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3729 
3730 	/* Disable LPIs */
3731 	val &= ~GICR_CTLR_ENABLE_LPIS;
3732 	writel_relaxed(val, rbase + GICR_CTLR);
3733 
3734 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3735 	dsb(sy);
3736 
3737 	/*
3738 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3739 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3740 	 * Error out if we time out waiting for RWP to clear.
3741 	 */
3742 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3743 		if (!timeout) {
3744 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3745 			       smp_processor_id());
3746 			return -ETIMEDOUT;
3747 		}
3748 		udelay(1);
3749 		timeout--;
3750 	}
3751 
3752 	/*
3753 	 * After it has been written to 1, it is IMPLEMENTATION
3754 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3755 	 * cleared to 0. Error out if clearing the bit failed.
3756 	 */
3757 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3758 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3759 		return -EBUSY;
3760 	}
3761 
3762 	return 0;
3763 }
3764 
3765 int its_cpu_init(void)
3766 {
3767 	if (!list_empty(&its_nodes)) {
3768 		int ret;
3769 
3770 		ret = redist_disable_lpis();
3771 		if (ret)
3772 			return ret;
3773 
3774 		its_cpu_init_lpis();
3775 		its_cpu_init_collections();
3776 	}
3777 
3778 	return 0;
3779 }
3780 
3781 static const struct of_device_id its_device_id[] = {
3782 	{	.compatible	= "arm,gic-v3-its",	},
3783 	{},
3784 };
3785 
3786 static int __init its_of_probe(struct device_node *node)
3787 {
3788 	struct device_node *np;
3789 	struct resource res;
3790 
3791 	for (np = of_find_matching_node(node, its_device_id); np;
3792 	     np = of_find_matching_node(np, its_device_id)) {
3793 		if (!of_device_is_available(np))
3794 			continue;
3795 		if (!of_property_read_bool(np, "msi-controller")) {
3796 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3797 				np);
3798 			continue;
3799 		}
3800 
3801 		if (of_address_to_resource(np, 0, &res)) {
3802 			pr_warn("%pOF: no regs?\n", np);
3803 			continue;
3804 		}
3805 
3806 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3807 	}
3808 	return 0;
3809 }
3810 
3811 #ifdef CONFIG_ACPI
3812 
3813 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3814 
3815 #ifdef CONFIG_ACPI_NUMA
3816 struct its_srat_map {
3817 	/* numa node id */
3818 	u32	numa_node;
3819 	/* GIC ITS ID */
3820 	u32	its_id;
3821 };
3822 
3823 static struct its_srat_map *its_srat_maps __initdata;
3824 static int its_in_srat __initdata;
3825 
3826 static int __init acpi_get_its_numa_node(u32 its_id)
3827 {
3828 	int i;
3829 
3830 	for (i = 0; i < its_in_srat; i++) {
3831 		if (its_id == its_srat_maps[i].its_id)
3832 			return its_srat_maps[i].numa_node;
3833 	}
3834 	return NUMA_NO_NODE;
3835 }
3836 
3837 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
3838 					  const unsigned long end)
3839 {
3840 	return 0;
3841 }
3842 
3843 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
3844 			 const unsigned long end)
3845 {
3846 	int node;
3847 	struct acpi_srat_gic_its_affinity *its_affinity;
3848 
3849 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3850 	if (!its_affinity)
3851 		return -EINVAL;
3852 
3853 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3854 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3855 			its_affinity->header.length);
3856 		return -EINVAL;
3857 	}
3858 
3859 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3860 
3861 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3862 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3863 		return 0;
3864 	}
3865 
3866 	its_srat_maps[its_in_srat].numa_node = node;
3867 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3868 	its_in_srat++;
3869 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3870 		its_affinity->proximity_domain, its_affinity->its_id, node);
3871 
3872 	return 0;
3873 }
3874 
3875 static void __init acpi_table_parse_srat_its(void)
3876 {
3877 	int count;
3878 
3879 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3880 			sizeof(struct acpi_table_srat),
3881 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3882 			gic_acpi_match_srat_its, 0);
3883 	if (count <= 0)
3884 		return;
3885 
3886 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3887 				      GFP_KERNEL);
3888 	if (!its_srat_maps) {
3889 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3890 		return;
3891 	}
3892 
3893 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3894 			sizeof(struct acpi_table_srat),
3895 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3896 			gic_acpi_parse_srat_its, 0);
3897 }
3898 
3899 /* free the its_srat_maps after ITS probing */
3900 static void __init acpi_its_srat_maps_free(void)
3901 {
3902 	kfree(its_srat_maps);
3903 }
3904 #else
3905 static void __init acpi_table_parse_srat_its(void)	{ }
3906 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3907 static void __init acpi_its_srat_maps_free(void) { }
3908 #endif
3909 
3910 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3911 					  const unsigned long end)
3912 {
3913 	struct acpi_madt_generic_translator *its_entry;
3914 	struct fwnode_handle *dom_handle;
3915 	struct resource res;
3916 	int err;
3917 
3918 	its_entry = (struct acpi_madt_generic_translator *)header;
3919 	memset(&res, 0, sizeof(res));
3920 	res.start = its_entry->base_address;
3921 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3922 	res.flags = IORESOURCE_MEM;
3923 
3924 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3925 	if (!dom_handle) {
3926 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3927 		       &res.start);
3928 		return -ENOMEM;
3929 	}
3930 
3931 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3932 					 dom_handle);
3933 	if (err) {
3934 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3935 		       &res.start, its_entry->translation_id);
3936 		goto dom_err;
3937 	}
3938 
3939 	err = its_probe_one(&res, dom_handle,
3940 			acpi_get_its_numa_node(its_entry->translation_id));
3941 	if (!err)
3942 		return 0;
3943 
3944 	iort_deregister_domain_token(its_entry->translation_id);
3945 dom_err:
3946 	irq_domain_free_fwnode(dom_handle);
3947 	return err;
3948 }
3949 
3950 static void __init its_acpi_probe(void)
3951 {
3952 	acpi_table_parse_srat_its();
3953 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3954 			      gic_acpi_parse_madt_its, 0);
3955 	acpi_its_srat_maps_free();
3956 }
3957 #else
3958 static void __init its_acpi_probe(void) { }
3959 #endif
3960 
3961 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3962 		    struct irq_domain *parent_domain)
3963 {
3964 	struct device_node *of_node;
3965 	struct its_node *its;
3966 	bool has_v4 = false;
3967 	int err;
3968 
3969 	its_parent = parent_domain;
3970 	of_node = to_of_node(handle);
3971 	if (of_node)
3972 		its_of_probe(of_node);
3973 	else
3974 		its_acpi_probe();
3975 
3976 	if (list_empty(&its_nodes)) {
3977 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3978 		return -ENXIO;
3979 	}
3980 
3981 	gic_rdists = rdists;
3982 
3983 	err = allocate_lpi_tables();
3984 	if (err)
3985 		return err;
3986 
3987 	list_for_each_entry(its, &its_nodes, entry)
3988 		has_v4 |= its->is_v4;
3989 
3990 	if (has_v4 & rdists->has_vlpis) {
3991 		if (its_init_vpe_domain() ||
3992 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3993 			rdists->has_vlpis = false;
3994 			pr_err("ITS: Disabling GICv4 support\n");
3995 		}
3996 	}
3997 
3998 	register_syscore_ops(&its_syscore_ops);
3999 
4000 	return 0;
4001 }
4002