1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/genalloc.h> 16 #include <linux/interrupt.h> 17 #include <linux/iommu.h> 18 #include <linux/iopoll.h> 19 #include <linux/irqdomain.h> 20 #include <linux/list.h> 21 #include <linux/log2.h> 22 #include <linux/mem_encrypt.h> 23 #include <linux/memblock.h> 24 #include <linux/mm.h> 25 #include <linux/msi.h> 26 #include <linux/of.h> 27 #include <linux/of_address.h> 28 #include <linux/of_irq.h> 29 #include <linux/of_pci.h> 30 #include <linux/of_platform.h> 31 #include <linux/percpu.h> 32 #include <linux/set_memory.h> 33 #include <linux/slab.h> 34 #include <linux/syscore_ops.h> 35 36 #include <linux/irqchip.h> 37 #include <linux/irqchip/arm-gic-v3.h> 38 #include <linux/irqchip/arm-gic-v4.h> 39 40 #include <asm/cputype.h> 41 #include <asm/exception.h> 42 43 #include "irq-gic-common.h" 44 #include "irq-msi-lib.h" 45 46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 49 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 50 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801 (1ULL << 4) 51 52 #define RD_LOCAL_LPI_ENABLED BIT(0) 53 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 54 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 55 56 static u32 lpi_id_bits; 57 58 /* 59 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 60 * deal with (one configuration byte per interrupt). PENDBASE has to 61 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 62 */ 63 #define LPI_NRBITS lpi_id_bits 64 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 65 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 66 67 static u8 __ro_after_init lpi_prop_prio; 68 static struct its_node *find_4_1_its(void); 69 70 /* 71 * Collection structure - just an ID, and a redistributor address to 72 * ping. We use one per CPU as a bag of interrupts assigned to this 73 * CPU. 74 */ 75 struct its_collection { 76 u64 target_address; 77 u16 col_id; 78 }; 79 80 /* 81 * The ITS_BASER structure - contains memory information, cached 82 * value of BASER register configuration and ITS page size. 83 */ 84 struct its_baser { 85 void *base; 86 u64 val; 87 u32 order; 88 u32 psz; 89 }; 90 91 struct its_device; 92 93 /* 94 * The ITS structure - contains most of the infrastructure, with the 95 * top-level MSI domain, the command queue, the collections, and the 96 * list of devices writing to it. 97 * 98 * dev_alloc_lock has to be taken for device allocations, while the 99 * spinlock must be taken to parse data structures such as the device 100 * list. 101 */ 102 struct its_node { 103 raw_spinlock_t lock; 104 struct mutex dev_alloc_lock; 105 struct list_head entry; 106 void __iomem *base; 107 void __iomem *sgir_base; 108 phys_addr_t phys_base; 109 struct its_cmd_block *cmd_base; 110 struct its_cmd_block *cmd_write; 111 struct its_baser tables[GITS_BASER_NR_REGS]; 112 struct its_collection *collections; 113 struct fwnode_handle *fwnode_handle; 114 u64 (*get_msi_base)(struct its_device *its_dev); 115 u64 typer; 116 u64 cbaser_save; 117 u32 ctlr_save; 118 u32 mpidr; 119 struct list_head its_device_list; 120 u64 flags; 121 unsigned long list_nr; 122 int numa_node; 123 unsigned int msi_domain_flags; 124 u32 pre_its_base; /* for Socionext Synquacer */ 125 int vlpi_redist_offset; 126 }; 127 128 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 129 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 130 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 131 132 #define ITS_ITT_ALIGN SZ_256 133 134 /* The maximum number of VPEID bits supported by VLPI commands */ 135 #define ITS_MAX_VPEID_BITS \ 136 ({ \ 137 int nvpeid = 16; \ 138 if (gic_rdists->has_rvpeid && \ 139 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 140 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 141 GICD_TYPER2_VID); \ 142 \ 143 nvpeid; \ 144 }) 145 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 146 147 /* Convert page order to size in bytes */ 148 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 149 150 struct event_lpi_map { 151 unsigned long *lpi_map; 152 u16 *col_map; 153 irq_hw_number_t lpi_base; 154 int nr_lpis; 155 raw_spinlock_t vlpi_lock; 156 struct its_vm *vm; 157 struct its_vlpi_map *vlpi_maps; 158 int nr_vlpis; 159 }; 160 161 /* 162 * The ITS view of a device - belongs to an ITS, owns an interrupt 163 * translation table, and a list of interrupts. If it some of its 164 * LPIs are injected into a guest (GICv4), the event_map.vm field 165 * indicates which one. 166 */ 167 struct its_device { 168 struct list_head entry; 169 struct its_node *its; 170 struct event_lpi_map event_map; 171 void *itt; 172 u32 itt_sz; 173 u32 nr_ites; 174 u32 device_id; 175 bool shared; 176 }; 177 178 static struct { 179 raw_spinlock_t lock; 180 struct its_device *dev; 181 struct its_vpe **vpes; 182 int next_victim; 183 } vpe_proxy; 184 185 struct cpu_lpi_count { 186 atomic_t managed; 187 atomic_t unmanaged; 188 }; 189 190 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 191 192 static LIST_HEAD(its_nodes); 193 static DEFINE_RAW_SPINLOCK(its_lock); 194 static struct rdists *gic_rdists; 195 static struct irq_domain *its_parent; 196 197 static unsigned long its_list_map; 198 static u16 vmovp_seq_num; 199 static DEFINE_RAW_SPINLOCK(vmovp_lock); 200 201 static DEFINE_IDA(its_vpeid_ida); 202 203 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 204 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 205 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 206 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 207 208 static gfp_t gfp_flags_quirk; 209 210 static struct page *its_alloc_pages_node(int node, gfp_t gfp, 211 unsigned int order) 212 { 213 struct page *page; 214 int ret = 0; 215 216 page = alloc_pages_node(node, gfp | gfp_flags_quirk, order); 217 218 if (!page) 219 return NULL; 220 221 ret = set_memory_decrypted((unsigned long)page_address(page), 222 1 << order); 223 /* 224 * If set_memory_decrypted() fails then we don't know what state the 225 * page is in, so we can't free it. Instead we leak it. 226 * set_memory_decrypted() will already have WARNed. 227 */ 228 if (ret) 229 return NULL; 230 231 return page; 232 } 233 234 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order) 235 { 236 return its_alloc_pages_node(NUMA_NO_NODE, gfp, order); 237 } 238 239 static void its_free_pages(void *addr, unsigned int order) 240 { 241 /* 242 * If the memory cannot be encrypted again then we must leak the pages. 243 * set_memory_encrypted() will already have WARNed. 244 */ 245 if (set_memory_encrypted((unsigned long)addr, 1 << order)) 246 return; 247 free_pages((unsigned long)addr, order); 248 } 249 250 static struct gen_pool *itt_pool; 251 252 static void *itt_alloc_pool(int node, int size) 253 { 254 unsigned long addr; 255 struct page *page; 256 257 if (size >= PAGE_SIZE) { 258 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size)); 259 260 return page ? page_address(page) : NULL; 261 } 262 263 do { 264 addr = gen_pool_alloc(itt_pool, size); 265 if (addr) 266 break; 267 268 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 269 if (!page) 270 break; 271 272 gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node); 273 } while (!addr); 274 275 return (void *)addr; 276 } 277 278 static void itt_free_pool(void *addr, int size) 279 { 280 if (!addr) 281 return; 282 283 if (size >= PAGE_SIZE) { 284 its_free_pages(addr, get_order(size)); 285 return; 286 } 287 288 gen_pool_free(itt_pool, (unsigned long)addr, size); 289 } 290 291 /* 292 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 293 * always have vSGIs mapped. 294 */ 295 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 296 { 297 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 298 } 299 300 static bool rdists_support_shareable(void) 301 { 302 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 303 } 304 305 static u16 get_its_list(struct its_vm *vm) 306 { 307 struct its_node *its; 308 unsigned long its_list = 0; 309 310 list_for_each_entry(its, &its_nodes, entry) { 311 if (!is_v4(its)) 312 continue; 313 314 if (require_its_list_vmovp(vm, its)) 315 __set_bit(its->list_nr, &its_list); 316 } 317 318 return (u16)its_list; 319 } 320 321 static inline u32 its_get_event_id(struct irq_data *d) 322 { 323 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 324 return d->hwirq - its_dev->event_map.lpi_base; 325 } 326 327 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 328 u32 event) 329 { 330 struct its_node *its = its_dev->its; 331 332 return its->collections + its_dev->event_map.col_map[event]; 333 } 334 335 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 336 u32 event) 337 { 338 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 339 return NULL; 340 341 return &its_dev->event_map.vlpi_maps[event]; 342 } 343 344 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 345 { 346 if (irqd_is_forwarded_to_vcpu(d)) { 347 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 348 u32 event = its_get_event_id(d); 349 350 return dev_event_to_vlpi_map(its_dev, event); 351 } 352 353 return NULL; 354 } 355 356 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 357 { 358 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 359 return vpe->col_idx; 360 } 361 362 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 363 { 364 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 365 } 366 367 static struct irq_chip its_vpe_irq_chip; 368 369 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 370 { 371 struct its_vpe *vpe = NULL; 372 int cpu; 373 374 if (d->chip == &its_vpe_irq_chip) { 375 vpe = irq_data_get_irq_chip_data(d); 376 } else { 377 struct its_vlpi_map *map = get_vlpi_map(d); 378 if (map) 379 vpe = map->vpe; 380 } 381 382 if (vpe) { 383 cpu = vpe_to_cpuid_lock(vpe, flags); 384 } else { 385 /* Physical LPIs are already locked via the irq_desc lock */ 386 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 387 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 388 /* Keep GCC quiet... */ 389 *flags = 0; 390 } 391 392 return cpu; 393 } 394 395 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 396 { 397 struct its_vpe *vpe = NULL; 398 399 if (d->chip == &its_vpe_irq_chip) { 400 vpe = irq_data_get_irq_chip_data(d); 401 } else { 402 struct its_vlpi_map *map = get_vlpi_map(d); 403 if (map) 404 vpe = map->vpe; 405 } 406 407 if (vpe) 408 vpe_to_cpuid_unlock(vpe, flags); 409 } 410 411 static struct its_collection *valid_col(struct its_collection *col) 412 { 413 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 414 return NULL; 415 416 return col; 417 } 418 419 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 420 { 421 if (valid_col(its->collections + vpe->col_idx)) 422 return vpe; 423 424 return NULL; 425 } 426 427 /* 428 * ITS command descriptors - parameters to be encoded in a command 429 * block. 430 */ 431 struct its_cmd_desc { 432 union { 433 struct { 434 struct its_device *dev; 435 u32 event_id; 436 } its_inv_cmd; 437 438 struct { 439 struct its_device *dev; 440 u32 event_id; 441 } its_clear_cmd; 442 443 struct { 444 struct its_device *dev; 445 u32 event_id; 446 } its_int_cmd; 447 448 struct { 449 struct its_device *dev; 450 int valid; 451 } its_mapd_cmd; 452 453 struct { 454 struct its_collection *col; 455 int valid; 456 } its_mapc_cmd; 457 458 struct { 459 struct its_device *dev; 460 u32 phys_id; 461 u32 event_id; 462 } its_mapti_cmd; 463 464 struct { 465 struct its_device *dev; 466 struct its_collection *col; 467 u32 event_id; 468 } its_movi_cmd; 469 470 struct { 471 struct its_device *dev; 472 u32 event_id; 473 } its_discard_cmd; 474 475 struct { 476 struct its_collection *col; 477 } its_invall_cmd; 478 479 struct { 480 struct its_vpe *vpe; 481 } its_vinvall_cmd; 482 483 struct { 484 struct its_vpe *vpe; 485 struct its_collection *col; 486 bool valid; 487 } its_vmapp_cmd; 488 489 struct { 490 struct its_vpe *vpe; 491 struct its_device *dev; 492 u32 virt_id; 493 u32 event_id; 494 bool db_enabled; 495 } its_vmapti_cmd; 496 497 struct { 498 struct its_vpe *vpe; 499 struct its_device *dev; 500 u32 event_id; 501 bool db_enabled; 502 } its_vmovi_cmd; 503 504 struct { 505 struct its_vpe *vpe; 506 struct its_collection *col; 507 u16 seq_num; 508 u16 its_list; 509 } its_vmovp_cmd; 510 511 struct { 512 struct its_vpe *vpe; 513 } its_invdb_cmd; 514 515 struct { 516 struct its_vpe *vpe; 517 u8 sgi; 518 u8 priority; 519 bool enable; 520 bool group; 521 bool clear; 522 } its_vsgi_cmd; 523 }; 524 }; 525 526 /* 527 * The ITS command block, which is what the ITS actually parses. 528 */ 529 struct its_cmd_block { 530 union { 531 u64 raw_cmd[4]; 532 __le64 raw_cmd_le[4]; 533 }; 534 }; 535 536 #define ITS_CMD_QUEUE_SZ SZ_64K 537 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 538 539 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 540 struct its_cmd_block *, 541 struct its_cmd_desc *); 542 543 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 544 struct its_cmd_block *, 545 struct its_cmd_desc *); 546 547 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 548 { 549 u64 mask = GENMASK_ULL(h, l); 550 *raw_cmd &= ~mask; 551 *raw_cmd |= (val << l) & mask; 552 } 553 554 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 555 { 556 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 557 } 558 559 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 560 { 561 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 562 } 563 564 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 565 { 566 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 567 } 568 569 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 570 { 571 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 572 } 573 574 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 575 { 576 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 577 } 578 579 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 580 { 581 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 582 } 583 584 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 585 { 586 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 587 } 588 589 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 590 { 591 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 592 } 593 594 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 595 { 596 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 597 } 598 599 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 600 { 601 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 602 } 603 604 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 605 { 606 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 607 } 608 609 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 610 { 611 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 612 } 613 614 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 615 { 616 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 617 } 618 619 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 620 { 621 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 622 } 623 624 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 625 { 626 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 627 } 628 629 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 630 { 631 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 632 } 633 634 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 635 { 636 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 637 } 638 639 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 640 { 641 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 642 } 643 644 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 645 { 646 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 647 } 648 649 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 650 { 651 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 652 } 653 654 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 655 u32 vpe_db_lpi) 656 { 657 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 658 } 659 660 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 661 u32 vpe_db_lpi) 662 { 663 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 664 } 665 666 static void its_encode_db(struct its_cmd_block *cmd, bool db) 667 { 668 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 669 } 670 671 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 672 { 673 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 674 } 675 676 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 677 { 678 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 679 } 680 681 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 682 { 683 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 684 } 685 686 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 687 { 688 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 689 } 690 691 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 692 { 693 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 694 } 695 696 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 697 { 698 /* Let's fixup BE commands */ 699 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 700 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 701 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 702 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 703 } 704 705 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 706 struct its_cmd_block *cmd, 707 struct its_cmd_desc *desc) 708 { 709 unsigned long itt_addr; 710 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 711 712 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 713 714 its_encode_cmd(cmd, GITS_CMD_MAPD); 715 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 716 its_encode_size(cmd, size - 1); 717 its_encode_itt(cmd, itt_addr); 718 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 719 720 its_fixup_cmd(cmd); 721 722 return NULL; 723 } 724 725 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 726 struct its_cmd_block *cmd, 727 struct its_cmd_desc *desc) 728 { 729 its_encode_cmd(cmd, GITS_CMD_MAPC); 730 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 731 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 732 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 733 734 its_fixup_cmd(cmd); 735 736 return desc->its_mapc_cmd.col; 737 } 738 739 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 740 struct its_cmd_block *cmd, 741 struct its_cmd_desc *desc) 742 { 743 struct its_collection *col; 744 745 col = dev_event_to_col(desc->its_mapti_cmd.dev, 746 desc->its_mapti_cmd.event_id); 747 748 its_encode_cmd(cmd, GITS_CMD_MAPTI); 749 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 750 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 751 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 752 its_encode_collection(cmd, col->col_id); 753 754 its_fixup_cmd(cmd); 755 756 return valid_col(col); 757 } 758 759 static struct its_collection *its_build_movi_cmd(struct its_node *its, 760 struct its_cmd_block *cmd, 761 struct its_cmd_desc *desc) 762 { 763 struct its_collection *col; 764 765 col = dev_event_to_col(desc->its_movi_cmd.dev, 766 desc->its_movi_cmd.event_id); 767 768 its_encode_cmd(cmd, GITS_CMD_MOVI); 769 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 770 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 771 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 772 773 its_fixup_cmd(cmd); 774 775 return valid_col(col); 776 } 777 778 static struct its_collection *its_build_discard_cmd(struct its_node *its, 779 struct its_cmd_block *cmd, 780 struct its_cmd_desc *desc) 781 { 782 struct its_collection *col; 783 784 col = dev_event_to_col(desc->its_discard_cmd.dev, 785 desc->its_discard_cmd.event_id); 786 787 its_encode_cmd(cmd, GITS_CMD_DISCARD); 788 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 789 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 790 791 its_fixup_cmd(cmd); 792 793 return valid_col(col); 794 } 795 796 static struct its_collection *its_build_inv_cmd(struct its_node *its, 797 struct its_cmd_block *cmd, 798 struct its_cmd_desc *desc) 799 { 800 struct its_collection *col; 801 802 col = dev_event_to_col(desc->its_inv_cmd.dev, 803 desc->its_inv_cmd.event_id); 804 805 its_encode_cmd(cmd, GITS_CMD_INV); 806 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 807 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 808 809 its_fixup_cmd(cmd); 810 811 return valid_col(col); 812 } 813 814 static struct its_collection *its_build_int_cmd(struct its_node *its, 815 struct its_cmd_block *cmd, 816 struct its_cmd_desc *desc) 817 { 818 struct its_collection *col; 819 820 col = dev_event_to_col(desc->its_int_cmd.dev, 821 desc->its_int_cmd.event_id); 822 823 its_encode_cmd(cmd, GITS_CMD_INT); 824 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 825 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 826 827 its_fixup_cmd(cmd); 828 829 return valid_col(col); 830 } 831 832 static struct its_collection *its_build_clear_cmd(struct its_node *its, 833 struct its_cmd_block *cmd, 834 struct its_cmd_desc *desc) 835 { 836 struct its_collection *col; 837 838 col = dev_event_to_col(desc->its_clear_cmd.dev, 839 desc->its_clear_cmd.event_id); 840 841 its_encode_cmd(cmd, GITS_CMD_CLEAR); 842 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 843 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 844 845 its_fixup_cmd(cmd); 846 847 return valid_col(col); 848 } 849 850 static struct its_collection *its_build_invall_cmd(struct its_node *its, 851 struct its_cmd_block *cmd, 852 struct its_cmd_desc *desc) 853 { 854 its_encode_cmd(cmd, GITS_CMD_INVALL); 855 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 856 857 its_fixup_cmd(cmd); 858 859 return desc->its_invall_cmd.col; 860 } 861 862 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 863 struct its_cmd_block *cmd, 864 struct its_cmd_desc *desc) 865 { 866 its_encode_cmd(cmd, GITS_CMD_VINVALL); 867 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 868 869 its_fixup_cmd(cmd); 870 871 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 872 } 873 874 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 875 struct its_cmd_block *cmd, 876 struct its_cmd_desc *desc) 877 { 878 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); 879 unsigned long vpt_addr, vconf_addr; 880 u64 target; 881 bool alloc; 882 883 its_encode_cmd(cmd, GITS_CMD_VMAPP); 884 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 885 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 886 887 if (!desc->its_vmapp_cmd.valid) { 888 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 889 if (is_v4_1(its)) { 890 its_encode_alloc(cmd, alloc); 891 /* 892 * Unmapping a VPE is self-synchronizing on GICv4.1, 893 * no need to issue a VSYNC. 894 */ 895 vpe = NULL; 896 } 897 898 goto out; 899 } 900 901 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 902 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 903 904 its_encode_target(cmd, target); 905 its_encode_vpt_addr(cmd, vpt_addr); 906 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 907 908 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 909 910 if (!is_v4_1(its)) 911 goto out; 912 913 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 914 915 its_encode_alloc(cmd, alloc); 916 917 /* 918 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 919 * to be unmapped first, and in this case, we may remap the vPE 920 * back while the VPT is not empty. So we can't assume that the 921 * VPT is empty on map. This is why we never advertise PTZ. 922 */ 923 its_encode_ptz(cmd, false); 924 its_encode_vconf_addr(cmd, vconf_addr); 925 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 926 927 out: 928 its_fixup_cmd(cmd); 929 930 return vpe; 931 } 932 933 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 934 struct its_cmd_block *cmd, 935 struct its_cmd_desc *desc) 936 { 937 u32 db; 938 939 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 940 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 941 else 942 db = 1023; 943 944 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 945 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 946 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 947 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 948 its_encode_db_phys_id(cmd, db); 949 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 950 951 its_fixup_cmd(cmd); 952 953 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 954 } 955 956 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 957 struct its_cmd_block *cmd, 958 struct its_cmd_desc *desc) 959 { 960 u32 db; 961 962 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 963 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 964 else 965 db = 1023; 966 967 its_encode_cmd(cmd, GITS_CMD_VMOVI); 968 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 969 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 970 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 971 its_encode_db_phys_id(cmd, db); 972 its_encode_db_valid(cmd, true); 973 974 its_fixup_cmd(cmd); 975 976 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 977 } 978 979 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 980 struct its_cmd_block *cmd, 981 struct its_cmd_desc *desc) 982 { 983 u64 target; 984 985 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 986 its_encode_cmd(cmd, GITS_CMD_VMOVP); 987 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 988 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 989 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 990 its_encode_target(cmd, target); 991 992 if (is_v4_1(its)) { 993 its_encode_db(cmd, true); 994 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 995 } 996 997 its_fixup_cmd(cmd); 998 999 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 1000 } 1001 1002 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 1003 struct its_cmd_block *cmd, 1004 struct its_cmd_desc *desc) 1005 { 1006 struct its_vlpi_map *map; 1007 1008 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 1009 desc->its_inv_cmd.event_id); 1010 1011 its_encode_cmd(cmd, GITS_CMD_INV); 1012 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 1013 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 1014 1015 its_fixup_cmd(cmd); 1016 1017 return valid_vpe(its, map->vpe); 1018 } 1019 1020 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 1021 struct its_cmd_block *cmd, 1022 struct its_cmd_desc *desc) 1023 { 1024 struct its_vlpi_map *map; 1025 1026 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 1027 desc->its_int_cmd.event_id); 1028 1029 its_encode_cmd(cmd, GITS_CMD_INT); 1030 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 1031 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 1032 1033 its_fixup_cmd(cmd); 1034 1035 return valid_vpe(its, map->vpe); 1036 } 1037 1038 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 1039 struct its_cmd_block *cmd, 1040 struct its_cmd_desc *desc) 1041 { 1042 struct its_vlpi_map *map; 1043 1044 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 1045 desc->its_clear_cmd.event_id); 1046 1047 its_encode_cmd(cmd, GITS_CMD_CLEAR); 1048 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 1049 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 1050 1051 its_fixup_cmd(cmd); 1052 1053 return valid_vpe(its, map->vpe); 1054 } 1055 1056 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 1057 struct its_cmd_block *cmd, 1058 struct its_cmd_desc *desc) 1059 { 1060 if (WARN_ON(!is_v4_1(its))) 1061 return NULL; 1062 1063 its_encode_cmd(cmd, GITS_CMD_INVDB); 1064 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 1065 1066 its_fixup_cmd(cmd); 1067 1068 return valid_vpe(its, desc->its_invdb_cmd.vpe); 1069 } 1070 1071 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 1072 struct its_cmd_block *cmd, 1073 struct its_cmd_desc *desc) 1074 { 1075 if (WARN_ON(!is_v4_1(its))) 1076 return NULL; 1077 1078 its_encode_cmd(cmd, GITS_CMD_VSGI); 1079 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 1080 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 1081 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 1082 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 1083 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 1084 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 1085 1086 its_fixup_cmd(cmd); 1087 1088 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 1089 } 1090 1091 static u64 its_cmd_ptr_to_offset(struct its_node *its, 1092 struct its_cmd_block *ptr) 1093 { 1094 return (ptr - its->cmd_base) * sizeof(*ptr); 1095 } 1096 1097 static int its_queue_full(struct its_node *its) 1098 { 1099 int widx; 1100 int ridx; 1101 1102 widx = its->cmd_write - its->cmd_base; 1103 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1104 1105 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1106 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1107 return 1; 1108 1109 return 0; 1110 } 1111 1112 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1113 { 1114 struct its_cmd_block *cmd; 1115 u32 count = 1000000; /* 1s! */ 1116 1117 while (its_queue_full(its)) { 1118 count--; 1119 if (!count) { 1120 pr_err_ratelimited("ITS queue not draining\n"); 1121 return NULL; 1122 } 1123 cpu_relax(); 1124 udelay(1); 1125 } 1126 1127 cmd = its->cmd_write++; 1128 1129 /* Handle queue wrapping */ 1130 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1131 its->cmd_write = its->cmd_base; 1132 1133 /* Clear command */ 1134 cmd->raw_cmd[0] = 0; 1135 cmd->raw_cmd[1] = 0; 1136 cmd->raw_cmd[2] = 0; 1137 cmd->raw_cmd[3] = 0; 1138 1139 return cmd; 1140 } 1141 1142 static struct its_cmd_block *its_post_commands(struct its_node *its) 1143 { 1144 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1145 1146 writel_relaxed(wr, its->base + GITS_CWRITER); 1147 1148 return its->cmd_write; 1149 } 1150 1151 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1152 { 1153 /* 1154 * Make sure the commands written to memory are observable by 1155 * the ITS. 1156 */ 1157 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1158 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1159 else 1160 dsb(ishst); 1161 } 1162 1163 static int its_wait_for_range_completion(struct its_node *its, 1164 u64 prev_idx, 1165 struct its_cmd_block *to) 1166 { 1167 u64 rd_idx, to_idx, linear_idx; 1168 u32 count = 1000000; /* 1s! */ 1169 1170 /* Linearize to_idx if the command set has wrapped around */ 1171 to_idx = its_cmd_ptr_to_offset(its, to); 1172 if (to_idx < prev_idx) 1173 to_idx += ITS_CMD_QUEUE_SZ; 1174 1175 linear_idx = prev_idx; 1176 1177 while (1) { 1178 s64 delta; 1179 1180 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1181 1182 /* 1183 * Compute the read pointer progress, taking the 1184 * potential wrap-around into account. 1185 */ 1186 delta = rd_idx - prev_idx; 1187 if (rd_idx < prev_idx) 1188 delta += ITS_CMD_QUEUE_SZ; 1189 1190 linear_idx += delta; 1191 if (linear_idx >= to_idx) 1192 break; 1193 1194 count--; 1195 if (!count) { 1196 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1197 to_idx, linear_idx); 1198 return -1; 1199 } 1200 prev_idx = rd_idx; 1201 cpu_relax(); 1202 udelay(1); 1203 } 1204 1205 return 0; 1206 } 1207 1208 /* Warning, macro hell follows */ 1209 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1210 void name(struct its_node *its, \ 1211 buildtype builder, \ 1212 struct its_cmd_desc *desc) \ 1213 { \ 1214 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1215 synctype *sync_obj; \ 1216 unsigned long flags; \ 1217 u64 rd_idx; \ 1218 \ 1219 raw_spin_lock_irqsave(&its->lock, flags); \ 1220 \ 1221 cmd = its_allocate_entry(its); \ 1222 if (!cmd) { /* We're soooooo screewed... */ \ 1223 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1224 return; \ 1225 } \ 1226 sync_obj = builder(its, cmd, desc); \ 1227 its_flush_cmd(its, cmd); \ 1228 \ 1229 if (sync_obj) { \ 1230 sync_cmd = its_allocate_entry(its); \ 1231 if (!sync_cmd) \ 1232 goto post; \ 1233 \ 1234 buildfn(its, sync_cmd, sync_obj); \ 1235 its_flush_cmd(its, sync_cmd); \ 1236 } \ 1237 \ 1238 post: \ 1239 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1240 next_cmd = its_post_commands(its); \ 1241 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1242 \ 1243 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1244 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1245 } 1246 1247 static void its_build_sync_cmd(struct its_node *its, 1248 struct its_cmd_block *sync_cmd, 1249 struct its_collection *sync_col) 1250 { 1251 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1252 its_encode_target(sync_cmd, sync_col->target_address); 1253 1254 its_fixup_cmd(sync_cmd); 1255 } 1256 1257 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1258 struct its_collection, its_build_sync_cmd) 1259 1260 static void its_build_vsync_cmd(struct its_node *its, 1261 struct its_cmd_block *sync_cmd, 1262 struct its_vpe *sync_vpe) 1263 { 1264 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1265 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1266 1267 its_fixup_cmd(sync_cmd); 1268 } 1269 1270 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1271 struct its_vpe, its_build_vsync_cmd) 1272 1273 static void its_send_int(struct its_device *dev, u32 event_id) 1274 { 1275 struct its_cmd_desc desc; 1276 1277 desc.its_int_cmd.dev = dev; 1278 desc.its_int_cmd.event_id = event_id; 1279 1280 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1281 } 1282 1283 static void its_send_clear(struct its_device *dev, u32 event_id) 1284 { 1285 struct its_cmd_desc desc; 1286 1287 desc.its_clear_cmd.dev = dev; 1288 desc.its_clear_cmd.event_id = event_id; 1289 1290 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1291 } 1292 1293 static void its_send_inv(struct its_device *dev, u32 event_id) 1294 { 1295 struct its_cmd_desc desc; 1296 1297 desc.its_inv_cmd.dev = dev; 1298 desc.its_inv_cmd.event_id = event_id; 1299 1300 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1301 } 1302 1303 static void its_send_mapd(struct its_device *dev, int valid) 1304 { 1305 struct its_cmd_desc desc; 1306 1307 desc.its_mapd_cmd.dev = dev; 1308 desc.its_mapd_cmd.valid = !!valid; 1309 1310 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1311 } 1312 1313 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1314 int valid) 1315 { 1316 struct its_cmd_desc desc; 1317 1318 desc.its_mapc_cmd.col = col; 1319 desc.its_mapc_cmd.valid = !!valid; 1320 1321 its_send_single_command(its, its_build_mapc_cmd, &desc); 1322 } 1323 1324 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1325 { 1326 struct its_cmd_desc desc; 1327 1328 desc.its_mapti_cmd.dev = dev; 1329 desc.its_mapti_cmd.phys_id = irq_id; 1330 desc.its_mapti_cmd.event_id = id; 1331 1332 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1333 } 1334 1335 static void its_send_movi(struct its_device *dev, 1336 struct its_collection *col, u32 id) 1337 { 1338 struct its_cmd_desc desc; 1339 1340 desc.its_movi_cmd.dev = dev; 1341 desc.its_movi_cmd.col = col; 1342 desc.its_movi_cmd.event_id = id; 1343 1344 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1345 } 1346 1347 static void its_send_discard(struct its_device *dev, u32 id) 1348 { 1349 struct its_cmd_desc desc; 1350 1351 desc.its_discard_cmd.dev = dev; 1352 desc.its_discard_cmd.event_id = id; 1353 1354 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1355 } 1356 1357 static void its_send_invall(struct its_node *its, struct its_collection *col) 1358 { 1359 struct its_cmd_desc desc; 1360 1361 desc.its_invall_cmd.col = col; 1362 1363 its_send_single_command(its, its_build_invall_cmd, &desc); 1364 } 1365 1366 static void its_send_vmapti(struct its_device *dev, u32 id) 1367 { 1368 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1369 struct its_cmd_desc desc; 1370 1371 desc.its_vmapti_cmd.vpe = map->vpe; 1372 desc.its_vmapti_cmd.dev = dev; 1373 desc.its_vmapti_cmd.virt_id = map->vintid; 1374 desc.its_vmapti_cmd.event_id = id; 1375 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1376 1377 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1378 } 1379 1380 static void its_send_vmovi(struct its_device *dev, u32 id) 1381 { 1382 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1383 struct its_cmd_desc desc; 1384 1385 desc.its_vmovi_cmd.vpe = map->vpe; 1386 desc.its_vmovi_cmd.dev = dev; 1387 desc.its_vmovi_cmd.event_id = id; 1388 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1389 1390 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1391 } 1392 1393 static void its_send_vmapp(struct its_node *its, 1394 struct its_vpe *vpe, bool valid) 1395 { 1396 struct its_cmd_desc desc; 1397 1398 desc.its_vmapp_cmd.vpe = vpe; 1399 desc.its_vmapp_cmd.valid = valid; 1400 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1401 1402 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1403 } 1404 1405 static void its_send_vmovp(struct its_vpe *vpe) 1406 { 1407 struct its_cmd_desc desc = {}; 1408 struct its_node *its; 1409 int col_id = vpe->col_idx; 1410 1411 desc.its_vmovp_cmd.vpe = vpe; 1412 1413 if (!its_list_map) { 1414 its = list_first_entry(&its_nodes, struct its_node, entry); 1415 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1416 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1417 return; 1418 } 1419 1420 /* 1421 * Yet another marvel of the architecture. If using the 1422 * its_list "feature", we need to make sure that all ITSs 1423 * receive all VMOVP commands in the same order. The only way 1424 * to guarantee this is to make vmovp a serialization point. 1425 * 1426 * Wall <-- Head. 1427 */ 1428 guard(raw_spinlock)(&vmovp_lock); 1429 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1430 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1431 1432 /* Emit VMOVPs */ 1433 list_for_each_entry(its, &its_nodes, entry) { 1434 if (!is_v4(its)) 1435 continue; 1436 1437 if (!require_its_list_vmovp(vpe->its_vm, its)) 1438 continue; 1439 1440 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1441 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1442 } 1443 } 1444 1445 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1446 { 1447 struct its_cmd_desc desc; 1448 1449 desc.its_vinvall_cmd.vpe = vpe; 1450 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1451 } 1452 1453 static void its_send_vinv(struct its_device *dev, u32 event_id) 1454 { 1455 struct its_cmd_desc desc; 1456 1457 /* 1458 * There is no real VINV command. This is just a normal INV, 1459 * with a VSYNC instead of a SYNC. 1460 */ 1461 desc.its_inv_cmd.dev = dev; 1462 desc.its_inv_cmd.event_id = event_id; 1463 1464 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1465 } 1466 1467 static void its_send_vint(struct its_device *dev, u32 event_id) 1468 { 1469 struct its_cmd_desc desc; 1470 1471 /* 1472 * There is no real VINT command. This is just a normal INT, 1473 * with a VSYNC instead of a SYNC. 1474 */ 1475 desc.its_int_cmd.dev = dev; 1476 desc.its_int_cmd.event_id = event_id; 1477 1478 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1479 } 1480 1481 static void its_send_vclear(struct its_device *dev, u32 event_id) 1482 { 1483 struct its_cmd_desc desc; 1484 1485 /* 1486 * There is no real VCLEAR command. This is just a normal CLEAR, 1487 * with a VSYNC instead of a SYNC. 1488 */ 1489 desc.its_clear_cmd.dev = dev; 1490 desc.its_clear_cmd.event_id = event_id; 1491 1492 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1493 } 1494 1495 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1496 { 1497 struct its_cmd_desc desc; 1498 1499 desc.its_invdb_cmd.vpe = vpe; 1500 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1501 } 1502 1503 /* 1504 * irqchip functions - assumes MSI, mostly. 1505 */ 1506 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1507 { 1508 struct its_vlpi_map *map = get_vlpi_map(d); 1509 irq_hw_number_t hwirq; 1510 void *va; 1511 u8 *cfg; 1512 1513 if (map) { 1514 va = page_address(map->vm->vprop_page); 1515 hwirq = map->vintid; 1516 1517 /* Remember the updated property */ 1518 map->properties &= ~clr; 1519 map->properties |= set | LPI_PROP_GROUP1; 1520 } else { 1521 va = gic_rdists->prop_table_va; 1522 hwirq = d->hwirq; 1523 } 1524 1525 cfg = va + hwirq - 8192; 1526 *cfg &= ~clr; 1527 *cfg |= set | LPI_PROP_GROUP1; 1528 1529 /* 1530 * Make the above write visible to the redistributors. 1531 * And yes, we're flushing exactly: One. Single. Byte. 1532 * Humpf... 1533 */ 1534 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1535 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1536 else 1537 dsb(ishst); 1538 } 1539 1540 static void wait_for_syncr(void __iomem *rdbase) 1541 { 1542 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1543 cpu_relax(); 1544 } 1545 1546 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1547 { 1548 void __iomem *rdbase; 1549 unsigned long flags; 1550 int cpu; 1551 1552 /* Target the redistributor this LPI is currently routed to */ 1553 cpu = irq_to_cpuid_lock(d, &flags); 1554 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1555 1556 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1557 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1558 wait_for_syncr(rdbase); 1559 1560 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1561 irq_to_cpuid_unlock(d, flags); 1562 } 1563 1564 static void direct_lpi_inv(struct irq_data *d) 1565 { 1566 struct its_vlpi_map *map = get_vlpi_map(d); 1567 u64 val; 1568 1569 if (map) { 1570 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1571 1572 WARN_ON(!is_v4_1(its_dev->its)); 1573 1574 val = GICR_INVLPIR_V; 1575 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1576 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1577 } else { 1578 val = d->hwirq; 1579 } 1580 1581 __direct_lpi_inv(d, val); 1582 } 1583 1584 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1585 { 1586 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1587 1588 lpi_write_config(d, clr, set); 1589 if (gic_rdists->has_direct_lpi && 1590 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1591 direct_lpi_inv(d); 1592 else if (!irqd_is_forwarded_to_vcpu(d)) 1593 its_send_inv(its_dev, its_get_event_id(d)); 1594 else 1595 its_send_vinv(its_dev, its_get_event_id(d)); 1596 } 1597 1598 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1599 { 1600 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1601 u32 event = its_get_event_id(d); 1602 struct its_vlpi_map *map; 1603 1604 /* 1605 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1606 * here. 1607 */ 1608 if (is_v4_1(its_dev->its)) 1609 return; 1610 1611 map = dev_event_to_vlpi_map(its_dev, event); 1612 1613 if (map->db_enabled == enable) 1614 return; 1615 1616 map->db_enabled = enable; 1617 1618 /* 1619 * More fun with the architecture: 1620 * 1621 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1622 * value or to 1023, depending on the enable bit. But that 1623 * would be issuing a mapping for an /existing/ DevID+EventID 1624 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1625 * to the /same/ vPE, using this opportunity to adjust the 1626 * doorbell. Mouahahahaha. We loves it, Precious. 1627 */ 1628 its_send_vmovi(its_dev, event); 1629 } 1630 1631 static void its_mask_irq(struct irq_data *d) 1632 { 1633 if (irqd_is_forwarded_to_vcpu(d)) 1634 its_vlpi_set_doorbell(d, false); 1635 1636 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1637 } 1638 1639 static void its_unmask_irq(struct irq_data *d) 1640 { 1641 if (irqd_is_forwarded_to_vcpu(d)) 1642 its_vlpi_set_doorbell(d, true); 1643 1644 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1645 } 1646 1647 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1648 { 1649 if (irqd_affinity_is_managed(d)) 1650 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1651 1652 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1653 } 1654 1655 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1656 { 1657 if (irqd_affinity_is_managed(d)) 1658 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1659 else 1660 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1661 } 1662 1663 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1664 { 1665 if (irqd_affinity_is_managed(d)) 1666 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1667 else 1668 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1669 } 1670 1671 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1672 const struct cpumask *cpu_mask) 1673 { 1674 unsigned int cpu = nr_cpu_ids, tmp; 1675 int count = S32_MAX; 1676 1677 for_each_cpu(tmp, cpu_mask) { 1678 int this_count = its_read_lpi_count(d, tmp); 1679 if (this_count < count) { 1680 cpu = tmp; 1681 count = this_count; 1682 } 1683 } 1684 1685 return cpu; 1686 } 1687 1688 /* 1689 * As suggested by Thomas Gleixner in: 1690 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1691 */ 1692 static int its_select_cpu(struct irq_data *d, 1693 const struct cpumask *aff_mask) 1694 { 1695 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1696 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1697 static struct cpumask __tmpmask; 1698 struct cpumask *tmpmask; 1699 unsigned long flags; 1700 int cpu, node; 1701 node = its_dev->its->numa_node; 1702 tmpmask = &__tmpmask; 1703 1704 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1705 1706 if (!irqd_affinity_is_managed(d)) { 1707 /* First try the NUMA node */ 1708 if (node != NUMA_NO_NODE) { 1709 /* 1710 * Try the intersection of the affinity mask and the 1711 * node mask (and the online mask, just to be safe). 1712 */ 1713 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1714 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1715 1716 /* 1717 * Ideally, we would check if the mask is empty, and 1718 * try again on the full node here. 1719 * 1720 * But it turns out that the way ACPI describes the 1721 * affinity for ITSs only deals about memory, and 1722 * not target CPUs, so it cannot describe a single 1723 * ITS placed next to two NUMA nodes. 1724 * 1725 * Instead, just fallback on the online mask. This 1726 * diverges from Thomas' suggestion above. 1727 */ 1728 cpu = cpumask_pick_least_loaded(d, tmpmask); 1729 if (cpu < nr_cpu_ids) 1730 goto out; 1731 1732 /* If we can't cross sockets, give up */ 1733 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1734 goto out; 1735 1736 /* If the above failed, expand the search */ 1737 } 1738 1739 /* Try the intersection of the affinity and online masks */ 1740 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1741 1742 /* If that doesn't fly, the online mask is the last resort */ 1743 if (cpumask_empty(tmpmask)) 1744 cpumask_copy(tmpmask, cpu_online_mask); 1745 1746 cpu = cpumask_pick_least_loaded(d, tmpmask); 1747 } else { 1748 cpumask_copy(tmpmask, aff_mask); 1749 1750 /* If we cannot cross sockets, limit the search to that node */ 1751 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1752 node != NUMA_NO_NODE) 1753 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1754 1755 cpu = cpumask_pick_least_loaded(d, tmpmask); 1756 } 1757 out: 1758 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1759 1760 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1761 return cpu; 1762 } 1763 1764 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1765 bool force) 1766 { 1767 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1768 struct its_collection *target_col; 1769 u32 id = its_get_event_id(d); 1770 int cpu, prev_cpu; 1771 1772 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1773 if (irqd_is_forwarded_to_vcpu(d)) 1774 return -EINVAL; 1775 1776 prev_cpu = its_dev->event_map.col_map[id]; 1777 its_dec_lpi_count(d, prev_cpu); 1778 1779 if (!force) 1780 cpu = its_select_cpu(d, mask_val); 1781 else 1782 cpu = cpumask_pick_least_loaded(d, mask_val); 1783 1784 if (cpu < 0 || cpu >= nr_cpu_ids) 1785 goto err; 1786 1787 /* don't set the affinity when the target cpu is same as current one */ 1788 if (cpu != prev_cpu) { 1789 target_col = &its_dev->its->collections[cpu]; 1790 its_send_movi(its_dev, target_col, id); 1791 its_dev->event_map.col_map[id] = cpu; 1792 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1793 } 1794 1795 its_inc_lpi_count(d, cpu); 1796 1797 return IRQ_SET_MASK_OK_DONE; 1798 1799 err: 1800 its_inc_lpi_count(d, prev_cpu); 1801 return -EINVAL; 1802 } 1803 1804 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1805 { 1806 struct its_node *its = its_dev->its; 1807 1808 return its->phys_base + GITS_TRANSLATER; 1809 } 1810 1811 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1812 { 1813 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1814 1815 msg->data = its_get_event_id(d); 1816 msi_msg_set_addr(irq_data_get_msi_desc(d), msg, 1817 its_dev->its->get_msi_base(its_dev)); 1818 } 1819 1820 static int its_irq_set_irqchip_state(struct irq_data *d, 1821 enum irqchip_irq_state which, 1822 bool state) 1823 { 1824 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1825 u32 event = its_get_event_id(d); 1826 1827 if (which != IRQCHIP_STATE_PENDING) 1828 return -EINVAL; 1829 1830 if (irqd_is_forwarded_to_vcpu(d)) { 1831 if (state) 1832 its_send_vint(its_dev, event); 1833 else 1834 its_send_vclear(its_dev, event); 1835 } else { 1836 if (state) 1837 its_send_int(its_dev, event); 1838 else 1839 its_send_clear(its_dev, event); 1840 } 1841 1842 return 0; 1843 } 1844 1845 static int its_irq_retrigger(struct irq_data *d) 1846 { 1847 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1848 } 1849 1850 /* 1851 * Two favourable cases: 1852 * 1853 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1854 * for vSGI delivery 1855 * 1856 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1857 * and we're better off mapping all VPEs always 1858 * 1859 * If neither (a) nor (b) is true, then we map vPEs on demand. 1860 * 1861 */ 1862 static bool gic_requires_eager_mapping(void) 1863 { 1864 if (!its_list_map || gic_rdists->has_rvpeid) 1865 return true; 1866 1867 return false; 1868 } 1869 1870 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1871 { 1872 if (gic_requires_eager_mapping()) 1873 return; 1874 1875 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1876 1877 /* 1878 * If the VM wasn't mapped yet, iterate over the vpes and get 1879 * them mapped now. 1880 */ 1881 vm->vlpi_count[its->list_nr]++; 1882 1883 if (vm->vlpi_count[its->list_nr] == 1) { 1884 int i; 1885 1886 for (i = 0; i < vm->nr_vpes; i++) { 1887 struct its_vpe *vpe = vm->vpes[i]; 1888 1889 scoped_guard(raw_spinlock, &vpe->vpe_lock) 1890 its_send_vmapp(its, vpe, true); 1891 1892 its_send_vinvall(its, vpe); 1893 } 1894 } 1895 } 1896 1897 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1898 { 1899 /* Not using the ITS list? Everything is always mapped. */ 1900 if (gic_requires_eager_mapping()) 1901 return; 1902 1903 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1904 1905 if (!--vm->vlpi_count[its->list_nr]) { 1906 int i; 1907 1908 for (i = 0; i < vm->nr_vpes; i++) { 1909 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock); 1910 its_send_vmapp(its, vm->vpes[i], false); 1911 } 1912 } 1913 } 1914 1915 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1916 { 1917 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1918 u32 event = its_get_event_id(d); 1919 1920 if (!info->map) 1921 return -EINVAL; 1922 1923 if (!its_dev->event_map.vm) { 1924 struct its_vlpi_map *maps; 1925 1926 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1927 GFP_ATOMIC); 1928 if (!maps) 1929 return -ENOMEM; 1930 1931 its_dev->event_map.vm = info->map->vm; 1932 its_dev->event_map.vlpi_maps = maps; 1933 } else if (its_dev->event_map.vm != info->map->vm) { 1934 return -EINVAL; 1935 } 1936 1937 /* Get our private copy of the mapping information */ 1938 its_dev->event_map.vlpi_maps[event] = *info->map; 1939 1940 if (irqd_is_forwarded_to_vcpu(d)) { 1941 /* Already mapped, move it around */ 1942 its_send_vmovi(its_dev, event); 1943 } else { 1944 /* Ensure all the VPEs are mapped on this ITS */ 1945 its_map_vm(its_dev->its, info->map->vm); 1946 1947 /* 1948 * Flag the interrupt as forwarded so that we can 1949 * start poking the virtual property table. 1950 */ 1951 irqd_set_forwarded_to_vcpu(d); 1952 1953 /* Write out the property to the prop table */ 1954 lpi_write_config(d, 0xff, info->map->properties); 1955 1956 /* Drop the physical mapping */ 1957 its_send_discard(its_dev, event); 1958 1959 /* and install the virtual one */ 1960 its_send_vmapti(its_dev, event); 1961 1962 /* Increment the number of VLPIs */ 1963 its_dev->event_map.nr_vlpis++; 1964 } 1965 1966 return 0; 1967 } 1968 1969 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1970 { 1971 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1972 struct its_vlpi_map *map; 1973 1974 map = get_vlpi_map(d); 1975 1976 if (!its_dev->event_map.vm || !map) 1977 return -EINVAL; 1978 1979 /* Copy our mapping information to the incoming request */ 1980 *info->map = *map; 1981 1982 return 0; 1983 } 1984 1985 static int its_vlpi_unmap(struct irq_data *d) 1986 { 1987 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1988 u32 event = its_get_event_id(d); 1989 1990 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1991 return -EINVAL; 1992 1993 /* Drop the virtual mapping */ 1994 its_send_discard(its_dev, event); 1995 1996 /* and restore the physical one */ 1997 irqd_clr_forwarded_to_vcpu(d); 1998 its_send_mapti(its_dev, d->hwirq, event); 1999 lpi_update_config(d, 0xff, (lpi_prop_prio | 2000 LPI_PROP_ENABLED | 2001 LPI_PROP_GROUP1)); 2002 2003 /* Potentially unmap the VM from this ITS */ 2004 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 2005 2006 /* 2007 * Drop the refcount and make the device available again if 2008 * this was the last VLPI. 2009 */ 2010 if (!--its_dev->event_map.nr_vlpis) { 2011 its_dev->event_map.vm = NULL; 2012 kfree(its_dev->event_map.vlpi_maps); 2013 } 2014 2015 return 0; 2016 } 2017 2018 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 2019 { 2020 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2021 2022 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 2023 return -EINVAL; 2024 2025 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 2026 lpi_update_config(d, 0xff, info->config); 2027 else 2028 lpi_write_config(d, 0xff, info->config); 2029 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 2030 2031 return 0; 2032 } 2033 2034 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2035 { 2036 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2037 struct its_cmd_info *info = vcpu_info; 2038 2039 /* Need a v4 ITS */ 2040 if (!is_v4(its_dev->its)) 2041 return -EINVAL; 2042 2043 guard(raw_spinlock)(&its_dev->event_map.vlpi_lock); 2044 2045 /* Unmap request? */ 2046 if (!info) 2047 return its_vlpi_unmap(d); 2048 2049 switch (info->cmd_type) { 2050 case MAP_VLPI: 2051 return its_vlpi_map(d, info); 2052 2053 case GET_VLPI: 2054 return its_vlpi_get(d, info); 2055 2056 case PROP_UPDATE_VLPI: 2057 case PROP_UPDATE_AND_INV_VLPI: 2058 return its_vlpi_prop_update(d, info); 2059 2060 default: 2061 return -EINVAL; 2062 } 2063 } 2064 2065 static struct irq_chip its_irq_chip = { 2066 .name = "ITS", 2067 .irq_mask = its_mask_irq, 2068 .irq_unmask = its_unmask_irq, 2069 .irq_eoi = irq_chip_eoi_parent, 2070 .irq_set_affinity = its_set_affinity, 2071 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2072 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2073 .irq_retrigger = its_irq_retrigger, 2074 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2075 }; 2076 2077 2078 /* 2079 * How we allocate LPIs: 2080 * 2081 * lpi_range_list contains ranges of LPIs that are to available to 2082 * allocate from. To allocate LPIs, just pick the first range that 2083 * fits the required allocation, and reduce it by the required 2084 * amount. Once empty, remove the range from the list. 2085 * 2086 * To free a range of LPIs, add a free range to the list, sort it and 2087 * merge the result if the new range happens to be adjacent to an 2088 * already free block. 2089 * 2090 * The consequence of the above is that allocation is cost is low, but 2091 * freeing is expensive. We assumes that freeing rarely occurs. 2092 */ 2093 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2094 2095 static DEFINE_MUTEX(lpi_range_lock); 2096 static LIST_HEAD(lpi_range_list); 2097 2098 struct lpi_range { 2099 struct list_head entry; 2100 u32 base_id; 2101 u32 span; 2102 }; 2103 2104 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2105 { 2106 struct lpi_range *range; 2107 2108 range = kmalloc(sizeof(*range), GFP_KERNEL); 2109 if (range) { 2110 range->base_id = base; 2111 range->span = span; 2112 } 2113 2114 return range; 2115 } 2116 2117 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2118 { 2119 struct lpi_range *range, *tmp; 2120 int err = -ENOSPC; 2121 2122 mutex_lock(&lpi_range_lock); 2123 2124 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2125 if (range->span >= nr_lpis) { 2126 *base = range->base_id; 2127 range->base_id += nr_lpis; 2128 range->span -= nr_lpis; 2129 2130 if (range->span == 0) { 2131 list_del(&range->entry); 2132 kfree(range); 2133 } 2134 2135 err = 0; 2136 break; 2137 } 2138 } 2139 2140 mutex_unlock(&lpi_range_lock); 2141 2142 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2143 return err; 2144 } 2145 2146 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2147 { 2148 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2149 return; 2150 if (a->base_id + a->span != b->base_id) 2151 return; 2152 b->base_id = a->base_id; 2153 b->span += a->span; 2154 list_del(&a->entry); 2155 kfree(a); 2156 } 2157 2158 static int free_lpi_range(u32 base, u32 nr_lpis) 2159 { 2160 struct lpi_range *new, *old; 2161 2162 new = mk_lpi_range(base, nr_lpis); 2163 if (!new) 2164 return -ENOMEM; 2165 2166 mutex_lock(&lpi_range_lock); 2167 2168 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2169 if (old->base_id < base) 2170 break; 2171 } 2172 /* 2173 * old is the last element with ->base_id smaller than base, 2174 * so new goes right after it. If there are no elements with 2175 * ->base_id smaller than base, &old->entry ends up pointing 2176 * at the head of the list, and inserting new it the start of 2177 * the list is the right thing to do in that case as well. 2178 */ 2179 list_add(&new->entry, &old->entry); 2180 /* 2181 * Now check if we can merge with the preceding and/or 2182 * following ranges. 2183 */ 2184 merge_lpi_ranges(old, new); 2185 merge_lpi_ranges(new, list_next_entry(new, entry)); 2186 2187 mutex_unlock(&lpi_range_lock); 2188 return 0; 2189 } 2190 2191 static int __init its_lpi_init(u32 id_bits) 2192 { 2193 u32 lpis = (1UL << id_bits) - 8192; 2194 u32 numlpis; 2195 int err; 2196 2197 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2198 2199 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2200 lpis = numlpis; 2201 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2202 lpis); 2203 } 2204 2205 /* 2206 * Initializing the allocator is just the same as freeing the 2207 * full range of LPIs. 2208 */ 2209 err = free_lpi_range(8192, lpis); 2210 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2211 return err; 2212 } 2213 2214 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2215 { 2216 unsigned long *bitmap = NULL; 2217 int err = 0; 2218 2219 do { 2220 err = alloc_lpi_range(nr_irqs, base); 2221 if (!err) 2222 break; 2223 2224 nr_irqs /= 2; 2225 } while (nr_irqs > 0); 2226 2227 if (!nr_irqs) 2228 err = -ENOSPC; 2229 2230 if (err) 2231 goto out; 2232 2233 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2234 if (!bitmap) 2235 goto out; 2236 2237 *nr_ids = nr_irqs; 2238 2239 out: 2240 if (!bitmap) 2241 *base = *nr_ids = 0; 2242 2243 return bitmap; 2244 } 2245 2246 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2247 { 2248 WARN_ON(free_lpi_range(base, nr_ids)); 2249 bitmap_free(bitmap); 2250 } 2251 2252 static void gic_reset_prop_table(void *va) 2253 { 2254 /* Regular IRQ priority, Group-1, disabled */ 2255 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2256 2257 /* Make sure the GIC will observe the written configuration */ 2258 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2259 } 2260 2261 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2262 { 2263 struct page *prop_page; 2264 2265 prop_page = its_alloc_pages(gfp_flags, 2266 get_order(LPI_PROPBASE_SZ)); 2267 if (!prop_page) 2268 return NULL; 2269 2270 gic_reset_prop_table(page_address(prop_page)); 2271 2272 return prop_page; 2273 } 2274 2275 static void its_free_prop_table(struct page *prop_page) 2276 { 2277 its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ)); 2278 } 2279 2280 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2281 { 2282 phys_addr_t start, end, addr_end; 2283 u64 i; 2284 2285 /* 2286 * We don't bother checking for a kdump kernel as by 2287 * construction, the LPI tables are out of this kernel's 2288 * memory map. 2289 */ 2290 if (is_kdump_kernel()) 2291 return true; 2292 2293 addr_end = addr + size - 1; 2294 2295 for_each_reserved_mem_range(i, &start, &end) { 2296 if (addr >= start && addr_end <= end) 2297 return true; 2298 } 2299 2300 /* Not found, not a good sign... */ 2301 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2302 &addr, &addr_end); 2303 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2304 return false; 2305 } 2306 2307 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2308 { 2309 if (efi_enabled(EFI_CONFIG_TABLES)) 2310 return efi_mem_reserve_persistent(addr, size); 2311 2312 return 0; 2313 } 2314 2315 static int __init its_setup_lpi_prop_table(void) 2316 { 2317 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2318 u64 val; 2319 2320 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2321 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2322 2323 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2324 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2325 LPI_PROPBASE_SZ, 2326 MEMREMAP_WB); 2327 gic_reset_prop_table(gic_rdists->prop_table_va); 2328 } else { 2329 struct page *page; 2330 2331 lpi_id_bits = min_t(u32, 2332 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2333 ITS_MAX_LPI_NRBITS); 2334 page = its_allocate_prop_table(GFP_NOWAIT); 2335 if (!page) { 2336 pr_err("Failed to allocate PROPBASE\n"); 2337 return -ENOMEM; 2338 } 2339 2340 gic_rdists->prop_table_pa = page_to_phys(page); 2341 gic_rdists->prop_table_va = page_address(page); 2342 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2343 LPI_PROPBASE_SZ)); 2344 } 2345 2346 pr_info("GICv3: using LPI property table @%pa\n", 2347 &gic_rdists->prop_table_pa); 2348 2349 return its_lpi_init(lpi_id_bits); 2350 } 2351 2352 static const char *its_base_type_string[] = { 2353 [GITS_BASER_TYPE_DEVICE] = "Devices", 2354 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2355 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2356 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2357 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2358 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2359 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2360 }; 2361 2362 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2363 { 2364 u32 idx = baser - its->tables; 2365 2366 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2367 } 2368 2369 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2370 u64 val) 2371 { 2372 u32 idx = baser - its->tables; 2373 2374 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2375 baser->val = its_read_baser(its, baser); 2376 } 2377 2378 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2379 u64 cache, u64 shr, u32 order, bool indirect) 2380 { 2381 u64 val = its_read_baser(its, baser); 2382 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2383 u64 type = GITS_BASER_TYPE(val); 2384 u64 baser_phys, tmp; 2385 u32 alloc_pages, psz; 2386 struct page *page; 2387 void *base; 2388 2389 psz = baser->psz; 2390 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2391 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2392 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2393 &its->phys_base, its_base_type_string[type], 2394 alloc_pages, GITS_BASER_PAGES_MAX); 2395 alloc_pages = GITS_BASER_PAGES_MAX; 2396 order = get_order(GITS_BASER_PAGES_MAX * psz); 2397 } 2398 2399 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2400 if (!page) 2401 return -ENOMEM; 2402 2403 base = (void *)page_address(page); 2404 baser_phys = virt_to_phys(base); 2405 2406 /* Check if the physical address of the memory is above 48bits */ 2407 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2408 2409 /* 52bit PA is supported only when PageSize=64K */ 2410 if (psz != SZ_64K) { 2411 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2412 its_free_pages(base, order); 2413 return -ENXIO; 2414 } 2415 2416 /* Convert 52bit PA to 48bit field */ 2417 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2418 } 2419 2420 retry_baser: 2421 val = (baser_phys | 2422 (type << GITS_BASER_TYPE_SHIFT) | 2423 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2424 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2425 cache | 2426 shr | 2427 GITS_BASER_VALID); 2428 2429 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2430 2431 switch (psz) { 2432 case SZ_4K: 2433 val |= GITS_BASER_PAGE_SIZE_4K; 2434 break; 2435 case SZ_16K: 2436 val |= GITS_BASER_PAGE_SIZE_16K; 2437 break; 2438 case SZ_64K: 2439 val |= GITS_BASER_PAGE_SIZE_64K; 2440 break; 2441 } 2442 2443 if (!shr) 2444 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2445 2446 its_write_baser(its, baser, val); 2447 tmp = baser->val; 2448 2449 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2450 /* 2451 * Shareability didn't stick. Just use 2452 * whatever the read reported, which is likely 2453 * to be the only thing this redistributor 2454 * supports. If that's zero, make it 2455 * non-cacheable as well. 2456 */ 2457 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2458 if (!shr) 2459 cache = GITS_BASER_nC; 2460 2461 goto retry_baser; 2462 } 2463 2464 if (val != tmp) { 2465 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2466 &its->phys_base, its_base_type_string[type], 2467 val, tmp); 2468 its_free_pages(base, order); 2469 return -ENXIO; 2470 } 2471 2472 baser->order = order; 2473 baser->base = base; 2474 baser->psz = psz; 2475 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2476 2477 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2478 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2479 its_base_type_string[type], 2480 (unsigned long)virt_to_phys(base), 2481 indirect ? "indirect" : "flat", (int)esz, 2482 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2483 2484 return 0; 2485 } 2486 2487 static bool its_parse_indirect_baser(struct its_node *its, 2488 struct its_baser *baser, 2489 u32 *order, u32 ids) 2490 { 2491 u64 tmp = its_read_baser(its, baser); 2492 u64 type = GITS_BASER_TYPE(tmp); 2493 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2494 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2495 u32 new_order = *order; 2496 u32 psz = baser->psz; 2497 bool indirect = false; 2498 2499 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2500 if ((esz << ids) > (psz * 2)) { 2501 /* 2502 * Find out whether hw supports a single or two-level table by 2503 * table by reading bit at offset '62' after writing '1' to it. 2504 */ 2505 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2506 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2507 2508 if (indirect) { 2509 /* 2510 * The size of the lvl2 table is equal to ITS page size 2511 * which is 'psz'. For computing lvl1 table size, 2512 * subtract ID bits that sparse lvl2 table from 'ids' 2513 * which is reported by ITS hardware times lvl1 table 2514 * entry size. 2515 */ 2516 ids -= ilog2(psz / (int)esz); 2517 esz = GITS_LVL1_ENTRY_SIZE; 2518 } 2519 } 2520 2521 /* 2522 * Allocate as many entries as required to fit the 2523 * range of device IDs that the ITS can grok... The ID 2524 * space being incredibly sparse, this results in a 2525 * massive waste of memory if two-level device table 2526 * feature is not supported by hardware. 2527 */ 2528 new_order = max_t(u32, get_order(esz << ids), new_order); 2529 if (new_order > MAX_PAGE_ORDER) { 2530 new_order = MAX_PAGE_ORDER; 2531 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2532 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2533 &its->phys_base, its_base_type_string[type], 2534 device_ids(its), ids); 2535 } 2536 2537 *order = new_order; 2538 2539 return indirect; 2540 } 2541 2542 static u32 compute_common_aff(u64 val) 2543 { 2544 u32 aff, clpiaff; 2545 2546 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2547 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2548 2549 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2550 } 2551 2552 static u32 compute_its_aff(struct its_node *its) 2553 { 2554 u64 val; 2555 u32 svpet; 2556 2557 /* 2558 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2559 * the resulting affinity. We then use that to see if this match 2560 * our own affinity. 2561 */ 2562 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2563 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2564 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2565 return compute_common_aff(val); 2566 } 2567 2568 static struct its_node *find_sibling_its(struct its_node *cur_its) 2569 { 2570 struct its_node *its; 2571 u32 aff; 2572 2573 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2574 return NULL; 2575 2576 aff = compute_its_aff(cur_its); 2577 2578 list_for_each_entry(its, &its_nodes, entry) { 2579 u64 baser; 2580 2581 if (!is_v4_1(its) || its == cur_its) 2582 continue; 2583 2584 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2585 continue; 2586 2587 if (aff != compute_its_aff(its)) 2588 continue; 2589 2590 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2591 baser = its->tables[2].val; 2592 if (!(baser & GITS_BASER_VALID)) 2593 continue; 2594 2595 return its; 2596 } 2597 2598 return NULL; 2599 } 2600 2601 static void its_free_tables(struct its_node *its) 2602 { 2603 int i; 2604 2605 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2606 if (its->tables[i].base) { 2607 its_free_pages(its->tables[i].base, its->tables[i].order); 2608 its->tables[i].base = NULL; 2609 } 2610 } 2611 } 2612 2613 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2614 { 2615 u64 psz = SZ_64K; 2616 2617 while (psz) { 2618 u64 val, gpsz; 2619 2620 val = its_read_baser(its, baser); 2621 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2622 2623 switch (psz) { 2624 case SZ_64K: 2625 gpsz = GITS_BASER_PAGE_SIZE_64K; 2626 break; 2627 case SZ_16K: 2628 gpsz = GITS_BASER_PAGE_SIZE_16K; 2629 break; 2630 case SZ_4K: 2631 default: 2632 gpsz = GITS_BASER_PAGE_SIZE_4K; 2633 break; 2634 } 2635 2636 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2637 2638 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2639 its_write_baser(its, baser, val); 2640 2641 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2642 break; 2643 2644 switch (psz) { 2645 case SZ_64K: 2646 psz = SZ_16K; 2647 break; 2648 case SZ_16K: 2649 psz = SZ_4K; 2650 break; 2651 case SZ_4K: 2652 default: 2653 return -1; 2654 } 2655 } 2656 2657 baser->psz = psz; 2658 return 0; 2659 } 2660 2661 static int its_alloc_tables(struct its_node *its) 2662 { 2663 u64 shr = GITS_BASER_InnerShareable; 2664 u64 cache = GITS_BASER_RaWaWb; 2665 int err, i; 2666 2667 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2668 /* erratum 24313: ignore memory access type */ 2669 cache = GITS_BASER_nCnB; 2670 2671 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2672 cache = GITS_BASER_nC; 2673 shr = 0; 2674 } 2675 2676 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2677 struct its_baser *baser = its->tables + i; 2678 u64 val = its_read_baser(its, baser); 2679 u64 type = GITS_BASER_TYPE(val); 2680 bool indirect = false; 2681 u32 order; 2682 2683 if (type == GITS_BASER_TYPE_NONE) 2684 continue; 2685 2686 if (its_probe_baser_psz(its, baser)) { 2687 its_free_tables(its); 2688 return -ENXIO; 2689 } 2690 2691 order = get_order(baser->psz); 2692 2693 switch (type) { 2694 case GITS_BASER_TYPE_DEVICE: 2695 indirect = its_parse_indirect_baser(its, baser, &order, 2696 device_ids(its)); 2697 break; 2698 2699 case GITS_BASER_TYPE_VCPU: 2700 if (is_v4_1(its)) { 2701 struct its_node *sibling; 2702 2703 WARN_ON(i != 2); 2704 if ((sibling = find_sibling_its(its))) { 2705 *baser = sibling->tables[2]; 2706 its_write_baser(its, baser, baser->val); 2707 continue; 2708 } 2709 } 2710 2711 indirect = its_parse_indirect_baser(its, baser, &order, 2712 ITS_MAX_VPEID_BITS); 2713 break; 2714 } 2715 2716 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2717 if (err < 0) { 2718 its_free_tables(its); 2719 return err; 2720 } 2721 2722 /* Update settings which will be used for next BASERn */ 2723 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2724 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2725 } 2726 2727 return 0; 2728 } 2729 2730 static u64 inherit_vpe_l1_table_from_its(void) 2731 { 2732 struct its_node *its; 2733 u64 val; 2734 u32 aff; 2735 2736 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2737 aff = compute_common_aff(val); 2738 2739 list_for_each_entry(its, &its_nodes, entry) { 2740 u64 baser, addr; 2741 2742 if (!is_v4_1(its)) 2743 continue; 2744 2745 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2746 continue; 2747 2748 if (aff != compute_its_aff(its)) 2749 continue; 2750 2751 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2752 baser = its->tables[2].val; 2753 if (!(baser & GITS_BASER_VALID)) 2754 continue; 2755 2756 /* We have a winner! */ 2757 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2758 2759 val = GICR_VPROPBASER_4_1_VALID; 2760 if (baser & GITS_BASER_INDIRECT) 2761 val |= GICR_VPROPBASER_4_1_INDIRECT; 2762 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2763 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2764 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2765 case GIC_PAGE_SIZE_64K: 2766 addr = GITS_BASER_ADDR_48_to_52(baser); 2767 break; 2768 default: 2769 addr = baser & GENMASK_ULL(47, 12); 2770 break; 2771 } 2772 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2773 if (rdists_support_shareable()) { 2774 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2775 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2776 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2777 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2778 } 2779 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2780 2781 return val; 2782 } 2783 2784 return 0; 2785 } 2786 2787 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2788 { 2789 u32 aff; 2790 u64 val; 2791 int cpu; 2792 2793 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2794 aff = compute_common_aff(val); 2795 2796 for_each_possible_cpu(cpu) { 2797 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2798 2799 if (!base || cpu == smp_processor_id()) 2800 continue; 2801 2802 val = gic_read_typer(base + GICR_TYPER); 2803 if (aff != compute_common_aff(val)) 2804 continue; 2805 2806 /* 2807 * At this point, we have a victim. This particular CPU 2808 * has already booted, and has an affinity that matches 2809 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2810 * Make sure we don't write the Z bit in that case. 2811 */ 2812 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2813 val &= ~GICR_VPROPBASER_4_1_Z; 2814 2815 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2816 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2817 2818 return val; 2819 } 2820 2821 return 0; 2822 } 2823 2824 static bool allocate_vpe_l2_table(int cpu, u32 id) 2825 { 2826 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2827 unsigned int psz, esz, idx, npg, gpsz; 2828 u64 val; 2829 struct page *page; 2830 __le64 *table; 2831 2832 if (!gic_rdists->has_rvpeid) 2833 return true; 2834 2835 /* Skip non-present CPUs */ 2836 if (!base) 2837 return true; 2838 2839 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2840 2841 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2842 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2843 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2844 2845 switch (gpsz) { 2846 default: 2847 WARN_ON(1); 2848 fallthrough; 2849 case GIC_PAGE_SIZE_4K: 2850 psz = SZ_4K; 2851 break; 2852 case GIC_PAGE_SIZE_16K: 2853 psz = SZ_16K; 2854 break; 2855 case GIC_PAGE_SIZE_64K: 2856 psz = SZ_64K; 2857 break; 2858 } 2859 2860 /* Don't allow vpe_id that exceeds single, flat table limit */ 2861 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2862 return (id < (npg * psz / (esz * SZ_8))); 2863 2864 /* Compute 1st level table index & check if that exceeds table limit */ 2865 idx = id >> ilog2(psz / (esz * SZ_8)); 2866 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2867 return false; 2868 2869 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2870 2871 /* Allocate memory for 2nd level table */ 2872 if (!table[idx]) { 2873 page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2874 if (!page) 2875 return false; 2876 2877 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2878 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2879 gic_flush_dcache_to_poc(page_address(page), psz); 2880 2881 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2882 2883 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2884 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2885 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2886 2887 /* Ensure updated table contents are visible to RD hardware */ 2888 dsb(sy); 2889 } 2890 2891 return true; 2892 } 2893 2894 static int allocate_vpe_l1_table(void) 2895 { 2896 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2897 u64 val, gpsz, npg, pa; 2898 unsigned int psz = SZ_64K; 2899 unsigned int np, epp, esz; 2900 struct page *page; 2901 2902 if (!gic_rdists->has_rvpeid) 2903 return 0; 2904 2905 /* 2906 * if VPENDBASER.Valid is set, disable any previously programmed 2907 * VPE by setting PendingLast while clearing Valid. This has the 2908 * effect of making sure no doorbell will be generated and we can 2909 * then safely clear VPROPBASER.Valid. 2910 */ 2911 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2912 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2913 vlpi_base + GICR_VPENDBASER); 2914 2915 /* 2916 * If we can inherit the configuration from another RD, let's do 2917 * so. Otherwise, we have to go through the allocation process. We 2918 * assume that all RDs have the exact same requirements, as 2919 * nothing will work otherwise. 2920 */ 2921 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2922 if (val & GICR_VPROPBASER_4_1_VALID) 2923 goto out; 2924 2925 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2926 if (!gic_data_rdist()->vpe_table_mask) 2927 return -ENOMEM; 2928 2929 val = inherit_vpe_l1_table_from_its(); 2930 if (val & GICR_VPROPBASER_4_1_VALID) 2931 goto out; 2932 2933 /* First probe the page size */ 2934 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2935 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2936 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2937 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2938 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2939 2940 switch (gpsz) { 2941 default: 2942 gpsz = GIC_PAGE_SIZE_4K; 2943 fallthrough; 2944 case GIC_PAGE_SIZE_4K: 2945 psz = SZ_4K; 2946 break; 2947 case GIC_PAGE_SIZE_16K: 2948 psz = SZ_16K; 2949 break; 2950 case GIC_PAGE_SIZE_64K: 2951 psz = SZ_64K; 2952 break; 2953 } 2954 2955 /* 2956 * Start populating the register from scratch, including RO fields 2957 * (which we want to print in debug cases...) 2958 */ 2959 val = 0; 2960 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2961 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2962 2963 /* How many entries per GIC page? */ 2964 esz++; 2965 epp = psz / (esz * SZ_8); 2966 2967 /* 2968 * If we need more than just a single L1 page, flag the table 2969 * as indirect and compute the number of required L1 pages. 2970 */ 2971 if (epp < ITS_MAX_VPEID) { 2972 int nl2; 2973 2974 val |= GICR_VPROPBASER_4_1_INDIRECT; 2975 2976 /* Number of L2 pages required to cover the VPEID space */ 2977 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2978 2979 /* Number of L1 pages to point to the L2 pages */ 2980 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2981 } else { 2982 npg = 1; 2983 } 2984 2985 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2986 2987 /* Right, that's the number of CPU pages we need for L1 */ 2988 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2989 2990 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2991 np, npg, psz, epp, esz); 2992 page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2993 if (!page) 2994 return -ENOMEM; 2995 2996 gic_data_rdist()->vpe_l1_base = page_address(page); 2997 pa = virt_to_phys(page_address(page)); 2998 WARN_ON(!IS_ALIGNED(pa, psz)); 2999 3000 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 3001 if (rdists_support_shareable()) { 3002 val |= GICR_VPROPBASER_RaWb; 3003 val |= GICR_VPROPBASER_InnerShareable; 3004 } 3005 val |= GICR_VPROPBASER_4_1_Z; 3006 val |= GICR_VPROPBASER_4_1_VALID; 3007 3008 out: 3009 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3010 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 3011 3012 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 3013 smp_processor_id(), val, 3014 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 3015 3016 return 0; 3017 } 3018 3019 static int its_alloc_collections(struct its_node *its) 3020 { 3021 int i; 3022 3023 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 3024 GFP_KERNEL); 3025 if (!its->collections) 3026 return -ENOMEM; 3027 3028 for (i = 0; i < nr_cpu_ids; i++) 3029 its->collections[i].target_address = ~0ULL; 3030 3031 return 0; 3032 } 3033 3034 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 3035 { 3036 struct page *pend_page; 3037 3038 pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ)); 3039 if (!pend_page) 3040 return NULL; 3041 3042 /* Make sure the GIC will observe the zero-ed page */ 3043 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 3044 3045 return pend_page; 3046 } 3047 3048 static void its_free_pending_table(struct page *pt) 3049 { 3050 its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ)); 3051 } 3052 3053 /* 3054 * Booting with kdump and LPIs enabled is generally fine. Any other 3055 * case is wrong in the absence of firmware/EFI support. 3056 */ 3057 static bool enabled_lpis_allowed(void) 3058 { 3059 phys_addr_t addr; 3060 u64 val; 3061 3062 /* Check whether the property table is in a reserved region */ 3063 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 3064 addr = val & GENMASK_ULL(51, 12); 3065 3066 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 3067 } 3068 3069 static int __init allocate_lpi_tables(void) 3070 { 3071 u64 val; 3072 int err, cpu; 3073 3074 /* 3075 * If LPIs are enabled while we run this from the boot CPU, 3076 * flag the RD tables as pre-allocated if the stars do align. 3077 */ 3078 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3079 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3080 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3081 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3082 pr_info("GICv3: Using preallocated redistributor tables\n"); 3083 } 3084 3085 err = its_setup_lpi_prop_table(); 3086 if (err) 3087 return err; 3088 3089 /* 3090 * We allocate all the pending tables anyway, as we may have a 3091 * mix of RDs that have had LPIs enabled, and some that 3092 * don't. We'll free the unused ones as each CPU comes online. 3093 */ 3094 for_each_possible_cpu(cpu) { 3095 struct page *pend_page; 3096 3097 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3098 if (!pend_page) { 3099 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3100 return -ENOMEM; 3101 } 3102 3103 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3104 } 3105 3106 return 0; 3107 } 3108 3109 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3110 { 3111 u32 count = 1000000; /* 1s! */ 3112 bool clean; 3113 u64 val; 3114 3115 do { 3116 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3117 clean = !(val & GICR_VPENDBASER_Dirty); 3118 if (!clean) { 3119 count--; 3120 cpu_relax(); 3121 udelay(1); 3122 } 3123 } while (!clean && count); 3124 3125 if (unlikely(!clean)) 3126 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3127 3128 return val; 3129 } 3130 3131 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3132 { 3133 u64 val; 3134 3135 /* Make sure we wait until the RD is done with the initial scan */ 3136 val = read_vpend_dirty_clear(vlpi_base); 3137 val &= ~GICR_VPENDBASER_Valid; 3138 val &= ~clr; 3139 val |= set; 3140 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3141 3142 val = read_vpend_dirty_clear(vlpi_base); 3143 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3144 val |= GICR_VPENDBASER_PendingLast; 3145 3146 return val; 3147 } 3148 3149 static void its_cpu_init_lpis(void) 3150 { 3151 void __iomem *rbase = gic_data_rdist_rd_base(); 3152 struct page *pend_page; 3153 phys_addr_t paddr; 3154 u64 val, tmp; 3155 3156 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3157 return; 3158 3159 val = readl_relaxed(rbase + GICR_CTLR); 3160 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3161 (val & GICR_CTLR_ENABLE_LPIS)) { 3162 /* 3163 * Check that we get the same property table on all 3164 * RDs. If we don't, this is hopeless. 3165 */ 3166 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3167 paddr &= GENMASK_ULL(51, 12); 3168 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3169 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3170 3171 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3172 paddr &= GENMASK_ULL(51, 16); 3173 3174 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3175 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3176 3177 goto out; 3178 } 3179 3180 pend_page = gic_data_rdist()->pend_page; 3181 paddr = page_to_phys(pend_page); 3182 3183 /* set PROPBASE */ 3184 val = (gic_rdists->prop_table_pa | 3185 GICR_PROPBASER_InnerShareable | 3186 GICR_PROPBASER_RaWaWb | 3187 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3188 3189 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3190 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3191 3192 if (!rdists_support_shareable()) 3193 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3194 3195 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3196 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3197 /* 3198 * The HW reports non-shareable, we must 3199 * remove the cacheability attributes as 3200 * well. 3201 */ 3202 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3203 GICR_PROPBASER_CACHEABILITY_MASK); 3204 val |= GICR_PROPBASER_nC; 3205 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3206 } 3207 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3208 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3209 } 3210 3211 /* set PENDBASE */ 3212 val = (page_to_phys(pend_page) | 3213 GICR_PENDBASER_InnerShareable | 3214 GICR_PENDBASER_RaWaWb); 3215 3216 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3217 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3218 3219 if (!rdists_support_shareable()) 3220 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3221 3222 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3223 /* 3224 * The HW reports non-shareable, we must remove the 3225 * cacheability attributes as well. 3226 */ 3227 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3228 GICR_PENDBASER_CACHEABILITY_MASK); 3229 val |= GICR_PENDBASER_nC; 3230 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3231 } 3232 3233 /* Enable LPIs */ 3234 val = readl_relaxed(rbase + GICR_CTLR); 3235 val |= GICR_CTLR_ENABLE_LPIS; 3236 writel_relaxed(val, rbase + GICR_CTLR); 3237 3238 out: 3239 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3240 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3241 3242 /* 3243 * It's possible for CPU to receive VLPIs before it is 3244 * scheduled as a vPE, especially for the first CPU, and the 3245 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3246 * as out of range and dropped by GIC. 3247 * So we initialize IDbits to known value to avoid VLPI drop. 3248 */ 3249 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3250 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3251 smp_processor_id(), val); 3252 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3253 3254 /* 3255 * Also clear Valid bit of GICR_VPENDBASER, in case some 3256 * ancient programming gets left in and has possibility of 3257 * corrupting memory. 3258 */ 3259 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3260 } 3261 3262 if (allocate_vpe_l1_table()) { 3263 /* 3264 * If the allocation has failed, we're in massive trouble. 3265 * Disable direct injection, and pray that no VM was 3266 * already running... 3267 */ 3268 gic_rdists->has_rvpeid = false; 3269 gic_rdists->has_vlpis = false; 3270 } 3271 3272 /* Make sure the GIC has seen the above */ 3273 dsb(sy); 3274 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3275 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3276 smp_processor_id(), 3277 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3278 "reserved" : "allocated", 3279 &paddr); 3280 } 3281 3282 static void its_cpu_init_collection(struct its_node *its) 3283 { 3284 int cpu = smp_processor_id(); 3285 u64 target; 3286 3287 /* avoid cross node collections and its mapping */ 3288 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3289 struct device_node *cpu_node; 3290 3291 cpu_node = of_get_cpu_node(cpu, NULL); 3292 if (its->numa_node != NUMA_NO_NODE && 3293 its->numa_node != of_node_to_nid(cpu_node)) 3294 return; 3295 } 3296 3297 /* 3298 * We now have to bind each collection to its target 3299 * redistributor. 3300 */ 3301 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3302 /* 3303 * This ITS wants the physical address of the 3304 * redistributor. 3305 */ 3306 target = gic_data_rdist()->phys_base; 3307 } else { 3308 /* This ITS wants a linear CPU number. */ 3309 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3310 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3311 } 3312 3313 /* Perform collection mapping */ 3314 its->collections[cpu].target_address = target; 3315 its->collections[cpu].col_id = cpu; 3316 3317 its_send_mapc(its, &its->collections[cpu], 1); 3318 its_send_invall(its, &its->collections[cpu]); 3319 } 3320 3321 static void its_cpu_init_collections(void) 3322 { 3323 struct its_node *its; 3324 3325 raw_spin_lock(&its_lock); 3326 3327 list_for_each_entry(its, &its_nodes, entry) 3328 its_cpu_init_collection(its); 3329 3330 raw_spin_unlock(&its_lock); 3331 } 3332 3333 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3334 { 3335 struct its_device *its_dev = NULL, *tmp; 3336 unsigned long flags; 3337 3338 raw_spin_lock_irqsave(&its->lock, flags); 3339 3340 list_for_each_entry(tmp, &its->its_device_list, entry) { 3341 if (tmp->device_id == dev_id) { 3342 its_dev = tmp; 3343 break; 3344 } 3345 } 3346 3347 raw_spin_unlock_irqrestore(&its->lock, flags); 3348 3349 return its_dev; 3350 } 3351 3352 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3353 { 3354 int i; 3355 3356 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3357 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3358 return &its->tables[i]; 3359 } 3360 3361 return NULL; 3362 } 3363 3364 static bool its_alloc_table_entry(struct its_node *its, 3365 struct its_baser *baser, u32 id) 3366 { 3367 struct page *page; 3368 u32 esz, idx; 3369 __le64 *table; 3370 3371 /* Don't allow device id that exceeds single, flat table limit */ 3372 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3373 if (!(baser->val & GITS_BASER_INDIRECT)) 3374 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3375 3376 /* Compute 1st level table index & check if that exceeds table limit */ 3377 idx = id >> ilog2(baser->psz / esz); 3378 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3379 return false; 3380 3381 table = baser->base; 3382 3383 /* Allocate memory for 2nd level table */ 3384 if (!table[idx]) { 3385 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3386 get_order(baser->psz)); 3387 if (!page) 3388 return false; 3389 3390 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3391 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3392 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3393 3394 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3395 3396 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3397 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3398 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3399 3400 /* Ensure updated table contents are visible to ITS hardware */ 3401 dsb(sy); 3402 } 3403 3404 return true; 3405 } 3406 3407 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3408 { 3409 struct its_baser *baser; 3410 3411 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3412 3413 /* Don't allow device id that exceeds ITS hardware limit */ 3414 if (!baser) 3415 return (ilog2(dev_id) < device_ids(its)); 3416 3417 return its_alloc_table_entry(its, baser, dev_id); 3418 } 3419 3420 static bool its_alloc_vpe_table(u32 vpe_id) 3421 { 3422 struct its_node *its; 3423 int cpu; 3424 3425 /* 3426 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3427 * could try and only do it on ITSs corresponding to devices 3428 * that have interrupts targeted at this VPE, but the 3429 * complexity becomes crazy (and you have tons of memory 3430 * anyway, right?). 3431 */ 3432 list_for_each_entry(its, &its_nodes, entry) { 3433 struct its_baser *baser; 3434 3435 if (!is_v4(its)) 3436 continue; 3437 3438 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3439 if (!baser) 3440 return false; 3441 3442 if (!its_alloc_table_entry(its, baser, vpe_id)) 3443 return false; 3444 } 3445 3446 /* Non v4.1? No need to iterate RDs and go back early. */ 3447 if (!gic_rdists->has_rvpeid) 3448 return true; 3449 3450 /* 3451 * Make sure the L2 tables are allocated for all copies of 3452 * the L1 table on *all* v4.1 RDs. 3453 */ 3454 for_each_possible_cpu(cpu) { 3455 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3456 return false; 3457 } 3458 3459 return true; 3460 } 3461 3462 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3463 int nvecs, bool alloc_lpis) 3464 { 3465 struct its_device *dev; 3466 unsigned long *lpi_map = NULL; 3467 unsigned long flags; 3468 u16 *col_map = NULL; 3469 void *itt; 3470 int lpi_base; 3471 int nr_lpis; 3472 int nr_ites; 3473 int sz; 3474 3475 if (!its_alloc_device_table(its, dev_id)) 3476 return NULL; 3477 3478 if (WARN_ON(!is_power_of_2(nvecs))) 3479 nvecs = roundup_pow_of_two(nvecs); 3480 3481 /* 3482 * Even if the device wants a single LPI, the ITT must be 3483 * sized as a power of two (and you need at least one bit...). 3484 */ 3485 nr_ites = max(2, nvecs); 3486 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3487 sz = max(sz, ITS_ITT_ALIGN); 3488 3489 itt = itt_alloc_pool(its->numa_node, sz); 3490 3491 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3492 3493 if (alloc_lpis) { 3494 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3495 if (lpi_map) 3496 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3497 GFP_KERNEL); 3498 } else { 3499 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3500 nr_lpis = 0; 3501 lpi_base = 0; 3502 } 3503 3504 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3505 kfree(dev); 3506 itt_free_pool(itt, sz); 3507 bitmap_free(lpi_map); 3508 kfree(col_map); 3509 return NULL; 3510 } 3511 3512 gic_flush_dcache_to_poc(itt, sz); 3513 3514 dev->its = its; 3515 dev->itt = itt; 3516 dev->itt_sz = sz; 3517 dev->nr_ites = nr_ites; 3518 dev->event_map.lpi_map = lpi_map; 3519 dev->event_map.col_map = col_map; 3520 dev->event_map.lpi_base = lpi_base; 3521 dev->event_map.nr_lpis = nr_lpis; 3522 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3523 dev->device_id = dev_id; 3524 INIT_LIST_HEAD(&dev->entry); 3525 3526 raw_spin_lock_irqsave(&its->lock, flags); 3527 list_add(&dev->entry, &its->its_device_list); 3528 raw_spin_unlock_irqrestore(&its->lock, flags); 3529 3530 /* Map device to its ITT */ 3531 its_send_mapd(dev, 1); 3532 3533 return dev; 3534 } 3535 3536 static void its_free_device(struct its_device *its_dev) 3537 { 3538 unsigned long flags; 3539 3540 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3541 list_del(&its_dev->entry); 3542 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3543 kfree(its_dev->event_map.col_map); 3544 itt_free_pool(its_dev->itt, its_dev->itt_sz); 3545 kfree(its_dev); 3546 } 3547 3548 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3549 { 3550 int idx; 3551 3552 /* Find a free LPI region in lpi_map and allocate them. */ 3553 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3554 dev->event_map.nr_lpis, 3555 get_count_order(nvecs)); 3556 if (idx < 0) 3557 return -ENOSPC; 3558 3559 *hwirq = dev->event_map.lpi_base + idx; 3560 3561 return 0; 3562 } 3563 3564 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3565 int nvec, msi_alloc_info_t *info) 3566 { 3567 struct its_node *its; 3568 struct its_device *its_dev; 3569 struct msi_domain_info *msi_info; 3570 u32 dev_id; 3571 int err = 0; 3572 3573 /* 3574 * We ignore "dev" entirely, and rely on the dev_id that has 3575 * been passed via the scratchpad. This limits this domain's 3576 * usefulness to upper layers that definitely know that they 3577 * are built on top of the ITS. 3578 */ 3579 dev_id = info->scratchpad[0].ul; 3580 3581 msi_info = msi_get_domain_info(domain); 3582 its = msi_info->data; 3583 3584 if (!gic_rdists->has_direct_lpi && 3585 vpe_proxy.dev && 3586 vpe_proxy.dev->its == its && 3587 dev_id == vpe_proxy.dev->device_id) { 3588 /* Bad luck. Get yourself a better implementation */ 3589 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3590 dev_id); 3591 return -EINVAL; 3592 } 3593 3594 mutex_lock(&its->dev_alloc_lock); 3595 its_dev = its_find_device(its, dev_id); 3596 if (its_dev) { 3597 /* 3598 * We already have seen this ID, probably through 3599 * another alias (PCI bridge of some sort). No need to 3600 * create the device. 3601 */ 3602 its_dev->shared = true; 3603 pr_debug("Reusing ITT for devID %x\n", dev_id); 3604 goto out; 3605 } 3606 3607 its_dev = its_create_device(its, dev_id, nvec, true); 3608 if (!its_dev) { 3609 err = -ENOMEM; 3610 goto out; 3611 } 3612 3613 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3614 its_dev->shared = true; 3615 3616 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3617 out: 3618 mutex_unlock(&its->dev_alloc_lock); 3619 info->scratchpad[0].ptr = its_dev; 3620 return err; 3621 } 3622 3623 static struct msi_domain_ops its_msi_domain_ops = { 3624 .msi_prepare = its_msi_prepare, 3625 }; 3626 3627 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3628 unsigned int virq, 3629 irq_hw_number_t hwirq) 3630 { 3631 struct irq_fwspec fwspec; 3632 3633 if (irq_domain_get_of_node(domain->parent)) { 3634 fwspec.fwnode = domain->parent->fwnode; 3635 fwspec.param_count = 3; 3636 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3637 fwspec.param[1] = hwirq; 3638 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3639 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3640 fwspec.fwnode = domain->parent->fwnode; 3641 fwspec.param_count = 2; 3642 fwspec.param[0] = hwirq; 3643 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3644 } else { 3645 return -EINVAL; 3646 } 3647 3648 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3649 } 3650 3651 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3652 unsigned int nr_irqs, void *args) 3653 { 3654 msi_alloc_info_t *info = args; 3655 struct its_device *its_dev = info->scratchpad[0].ptr; 3656 struct its_node *its = its_dev->its; 3657 struct irq_data *irqd; 3658 irq_hw_number_t hwirq; 3659 int err; 3660 int i; 3661 3662 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3663 if (err) 3664 return err; 3665 3666 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3667 if (err) 3668 return err; 3669 3670 for (i = 0; i < nr_irqs; i++) { 3671 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3672 if (err) 3673 return err; 3674 3675 irq_domain_set_hwirq_and_chip(domain, virq + i, 3676 hwirq + i, &its_irq_chip, its_dev); 3677 irqd = irq_get_irq_data(virq + i); 3678 irqd_set_single_target(irqd); 3679 irqd_set_affinity_on_activate(irqd); 3680 irqd_set_resend_when_in_progress(irqd); 3681 pr_debug("ID:%d pID:%d vID:%d\n", 3682 (int)(hwirq + i - its_dev->event_map.lpi_base), 3683 (int)(hwirq + i), virq + i); 3684 } 3685 3686 return 0; 3687 } 3688 3689 static int its_irq_domain_activate(struct irq_domain *domain, 3690 struct irq_data *d, bool reserve) 3691 { 3692 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3693 u32 event = its_get_event_id(d); 3694 int cpu; 3695 3696 cpu = its_select_cpu(d, cpu_online_mask); 3697 if (cpu < 0 || cpu >= nr_cpu_ids) 3698 return -EINVAL; 3699 3700 its_inc_lpi_count(d, cpu); 3701 its_dev->event_map.col_map[event] = cpu; 3702 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3703 3704 /* Map the GIC IRQ and event to the device */ 3705 its_send_mapti(its_dev, d->hwirq, event); 3706 return 0; 3707 } 3708 3709 static void its_irq_domain_deactivate(struct irq_domain *domain, 3710 struct irq_data *d) 3711 { 3712 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3713 u32 event = its_get_event_id(d); 3714 3715 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3716 /* Stop the delivery of interrupts */ 3717 its_send_discard(its_dev, event); 3718 } 3719 3720 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3721 unsigned int nr_irqs) 3722 { 3723 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3724 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3725 struct its_node *its = its_dev->its; 3726 int i; 3727 3728 bitmap_release_region(its_dev->event_map.lpi_map, 3729 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3730 get_count_order(nr_irqs)); 3731 3732 for (i = 0; i < nr_irqs; i++) { 3733 struct irq_data *data = irq_domain_get_irq_data(domain, 3734 virq + i); 3735 /* Nuke the entry in the domain */ 3736 irq_domain_reset_irq_data(data); 3737 } 3738 3739 mutex_lock(&its->dev_alloc_lock); 3740 3741 /* 3742 * If all interrupts have been freed, start mopping the 3743 * floor. This is conditioned on the device not being shared. 3744 */ 3745 if (!its_dev->shared && 3746 bitmap_empty(its_dev->event_map.lpi_map, 3747 its_dev->event_map.nr_lpis)) { 3748 its_lpi_free(its_dev->event_map.lpi_map, 3749 its_dev->event_map.lpi_base, 3750 its_dev->event_map.nr_lpis); 3751 3752 /* Unmap device/itt */ 3753 its_send_mapd(its_dev, 0); 3754 its_free_device(its_dev); 3755 } 3756 3757 mutex_unlock(&its->dev_alloc_lock); 3758 3759 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3760 } 3761 3762 static const struct irq_domain_ops its_domain_ops = { 3763 .select = msi_lib_irq_domain_select, 3764 .alloc = its_irq_domain_alloc, 3765 .free = its_irq_domain_free, 3766 .activate = its_irq_domain_activate, 3767 .deactivate = its_irq_domain_deactivate, 3768 }; 3769 3770 /* 3771 * This is insane. 3772 * 3773 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3774 * likely), the only way to perform an invalidate is to use a fake 3775 * device to issue an INV command, implying that the LPI has first 3776 * been mapped to some event on that device. Since this is not exactly 3777 * cheap, we try to keep that mapping around as long as possible, and 3778 * only issue an UNMAP if we're short on available slots. 3779 * 3780 * Broken by design(tm). 3781 * 3782 * GICv4.1, on the other hand, mandates that we're able to invalidate 3783 * by writing to a MMIO register. It doesn't implement the whole of 3784 * DirectLPI, but that's good enough. And most of the time, we don't 3785 * even have to invalidate anything, as the redistributor can be told 3786 * whether to generate a doorbell or not (we thus leave it enabled, 3787 * always). 3788 */ 3789 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3790 { 3791 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3792 if (gic_rdists->has_rvpeid) 3793 return; 3794 3795 /* Already unmapped? */ 3796 if (vpe->vpe_proxy_event == -1) 3797 return; 3798 3799 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3800 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3801 3802 /* 3803 * We don't track empty slots at all, so let's move the 3804 * next_victim pointer if we can quickly reuse that slot 3805 * instead of nuking an existing entry. Not clear that this is 3806 * always a win though, and this might just generate a ripple 3807 * effect... Let's just hope VPEs don't migrate too often. 3808 */ 3809 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3810 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3811 3812 vpe->vpe_proxy_event = -1; 3813 } 3814 3815 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3816 { 3817 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3818 if (gic_rdists->has_rvpeid) 3819 return; 3820 3821 if (!gic_rdists->has_direct_lpi) { 3822 unsigned long flags; 3823 3824 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3825 its_vpe_db_proxy_unmap_locked(vpe); 3826 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3827 } 3828 } 3829 3830 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3831 { 3832 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3833 if (gic_rdists->has_rvpeid) 3834 return; 3835 3836 /* Already mapped? */ 3837 if (vpe->vpe_proxy_event != -1) 3838 return; 3839 3840 /* This slot was already allocated. Kick the other VPE out. */ 3841 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3842 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3843 3844 /* Map the new VPE instead */ 3845 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3846 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3847 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3848 3849 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3850 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3851 } 3852 3853 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3854 { 3855 unsigned long flags; 3856 struct its_collection *target_col; 3857 3858 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3859 if (gic_rdists->has_rvpeid) 3860 return; 3861 3862 if (gic_rdists->has_direct_lpi) { 3863 void __iomem *rdbase; 3864 3865 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3866 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3867 wait_for_syncr(rdbase); 3868 3869 return; 3870 } 3871 3872 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3873 3874 its_vpe_db_proxy_map_locked(vpe); 3875 3876 target_col = &vpe_proxy.dev->its->collections[to]; 3877 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3878 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3879 3880 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3881 } 3882 3883 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe) 3884 { 3885 void __iomem *rdbase; 3886 u64 val; 3887 3888 val = GICR_INVALLR_V; 3889 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 3890 3891 guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock); 3892 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 3893 gic_write_lpir(val, rdbase + GICR_INVALLR); 3894 wait_for_syncr(rdbase); 3895 } 3896 3897 static int its_vpe_set_affinity(struct irq_data *d, 3898 const struct cpumask *mask_val, 3899 bool force) 3900 { 3901 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3902 unsigned int from, cpu = nr_cpu_ids; 3903 struct cpumask *table_mask; 3904 struct its_node *its; 3905 unsigned long flags; 3906 3907 /* 3908 * Check if we're racing against a VPE being destroyed, for 3909 * which we don't want to allow a VMOVP. 3910 */ 3911 if (!atomic_read(&vpe->vmapp_count)) { 3912 if (gic_requires_eager_mapping()) 3913 return -EINVAL; 3914 3915 /* 3916 * If we lazily map the VPEs, this isn't an error and 3917 * we can exit cleanly. 3918 */ 3919 cpu = cpumask_first(mask_val); 3920 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3921 return IRQ_SET_MASK_OK_DONE; 3922 } 3923 3924 /* 3925 * Changing affinity is mega expensive, so let's be as lazy as 3926 * we can and only do it if we really have to. Also, if mapped 3927 * into the proxy device, we need to move the doorbell 3928 * interrupt to its new location. 3929 * 3930 * Another thing is that changing the affinity of a vPE affects 3931 * *other interrupts* such as all the vLPIs that are routed to 3932 * this vPE. This means that the irq_desc lock is not enough to 3933 * protect us, and that we must ensure nobody samples vpe->col_idx 3934 * during the update, hence the lock below which must also be 3935 * taken on any vLPI handling path that evaluates vpe->col_idx. 3936 * 3937 * Finally, we must protect ourselves against concurrent updates of 3938 * the mapping state on this VM should the ITS list be in use (see 3939 * the shortcut in its_send_vmovp() otherewise). 3940 */ 3941 if (its_list_map) 3942 raw_spin_lock(&vpe->its_vm->vmapp_lock); 3943 3944 from = vpe_to_cpuid_lock(vpe, &flags); 3945 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3946 3947 /* 3948 * If we are offered another CPU in the same GICv4.1 ITS 3949 * affinity, pick this one. Otherwise, any CPU will do. 3950 */ 3951 if (table_mask) 3952 cpu = cpumask_any_and(mask_val, table_mask); 3953 if (cpu < nr_cpu_ids) { 3954 if (cpumask_test_cpu(from, mask_val) && 3955 cpumask_test_cpu(from, table_mask)) 3956 cpu = from; 3957 } else { 3958 cpu = cpumask_first(mask_val); 3959 } 3960 3961 if (from == cpu) 3962 goto out; 3963 3964 vpe->col_idx = cpu; 3965 3966 its_send_vmovp(vpe); 3967 3968 its = find_4_1_its(); 3969 if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801) 3970 its_vpe_4_1_invall_locked(cpu, vpe); 3971 3972 its_vpe_db_proxy_move(vpe, from, cpu); 3973 3974 out: 3975 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3976 vpe_to_cpuid_unlock(vpe, flags); 3977 3978 if (its_list_map) 3979 raw_spin_unlock(&vpe->its_vm->vmapp_lock); 3980 3981 return IRQ_SET_MASK_OK_DONE; 3982 } 3983 3984 static void its_wait_vpt_parse_complete(void) 3985 { 3986 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3987 u64 val; 3988 3989 if (!gic_rdists->has_vpend_valid_dirty) 3990 return; 3991 3992 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3993 val, 3994 !(val & GICR_VPENDBASER_Dirty), 3995 1, 500)); 3996 } 3997 3998 static void its_vpe_schedule(struct its_vpe *vpe) 3999 { 4000 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4001 u64 val; 4002 4003 /* Schedule the VPE */ 4004 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 4005 GENMASK_ULL(51, 12); 4006 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 4007 if (rdists_support_shareable()) { 4008 val |= GICR_VPROPBASER_RaWb; 4009 val |= GICR_VPROPBASER_InnerShareable; 4010 } 4011 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 4012 4013 val = virt_to_phys(page_address(vpe->vpt_page)) & 4014 GENMASK_ULL(51, 16); 4015 if (rdists_support_shareable()) { 4016 val |= GICR_VPENDBASER_RaWaWb; 4017 val |= GICR_VPENDBASER_InnerShareable; 4018 } 4019 /* 4020 * There is no good way of finding out if the pending table is 4021 * empty as we can race against the doorbell interrupt very 4022 * easily. So in the end, vpe->pending_last is only an 4023 * indication that the vcpu has something pending, not one 4024 * that the pending table is empty. A good implementation 4025 * would be able to read its coarse map pretty quickly anyway, 4026 * making this a tolerable issue. 4027 */ 4028 val |= GICR_VPENDBASER_PendingLast; 4029 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 4030 val |= GICR_VPENDBASER_Valid; 4031 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4032 } 4033 4034 static void its_vpe_deschedule(struct its_vpe *vpe) 4035 { 4036 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4037 u64 val; 4038 4039 val = its_clear_vpend_valid(vlpi_base, 0, 0); 4040 4041 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 4042 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4043 } 4044 4045 static void its_vpe_invall(struct its_vpe *vpe) 4046 { 4047 struct its_node *its; 4048 4049 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock); 4050 4051 list_for_each_entry(its, &its_nodes, entry) { 4052 if (!is_v4(its)) 4053 continue; 4054 4055 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 4056 continue; 4057 4058 /* 4059 * Sending a VINVALL to a single ITS is enough, as all 4060 * we need is to reach the redistributors. 4061 */ 4062 its_send_vinvall(its, vpe); 4063 return; 4064 } 4065 } 4066 4067 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4068 { 4069 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4070 struct its_cmd_info *info = vcpu_info; 4071 4072 switch (info->cmd_type) { 4073 case SCHEDULE_VPE: 4074 its_vpe_schedule(vpe); 4075 return 0; 4076 4077 case DESCHEDULE_VPE: 4078 its_vpe_deschedule(vpe); 4079 return 0; 4080 4081 case COMMIT_VPE: 4082 its_wait_vpt_parse_complete(); 4083 return 0; 4084 4085 case INVALL_VPE: 4086 its_vpe_invall(vpe); 4087 return 0; 4088 4089 default: 4090 return -EINVAL; 4091 } 4092 } 4093 4094 static void its_vpe_send_cmd(struct its_vpe *vpe, 4095 void (*cmd)(struct its_device *, u32)) 4096 { 4097 unsigned long flags; 4098 4099 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 4100 4101 its_vpe_db_proxy_map_locked(vpe); 4102 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 4103 4104 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 4105 } 4106 4107 static void its_vpe_send_inv(struct irq_data *d) 4108 { 4109 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4110 4111 if (gic_rdists->has_direct_lpi) 4112 __direct_lpi_inv(d, d->parent_data->hwirq); 4113 else 4114 its_vpe_send_cmd(vpe, its_send_inv); 4115 } 4116 4117 static void its_vpe_mask_irq(struct irq_data *d) 4118 { 4119 /* 4120 * We need to unmask the LPI, which is described by the parent 4121 * irq_data. Instead of calling into the parent (which won't 4122 * exactly do the right thing, let's simply use the 4123 * parent_data pointer. Yes, I'm naughty. 4124 */ 4125 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4126 its_vpe_send_inv(d); 4127 } 4128 4129 static void its_vpe_unmask_irq(struct irq_data *d) 4130 { 4131 /* Same hack as above... */ 4132 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4133 its_vpe_send_inv(d); 4134 } 4135 4136 static int its_vpe_set_irqchip_state(struct irq_data *d, 4137 enum irqchip_irq_state which, 4138 bool state) 4139 { 4140 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4141 4142 if (which != IRQCHIP_STATE_PENDING) 4143 return -EINVAL; 4144 4145 if (gic_rdists->has_direct_lpi) { 4146 void __iomem *rdbase; 4147 4148 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4149 if (state) { 4150 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4151 } else { 4152 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4153 wait_for_syncr(rdbase); 4154 } 4155 } else { 4156 if (state) 4157 its_vpe_send_cmd(vpe, its_send_int); 4158 else 4159 its_vpe_send_cmd(vpe, its_send_clear); 4160 } 4161 4162 return 0; 4163 } 4164 4165 static int its_vpe_retrigger(struct irq_data *d) 4166 { 4167 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4168 } 4169 4170 static struct irq_chip its_vpe_irq_chip = { 4171 .name = "GICv4-vpe", 4172 .irq_mask = its_vpe_mask_irq, 4173 .irq_unmask = its_vpe_unmask_irq, 4174 .irq_eoi = irq_chip_eoi_parent, 4175 .irq_set_affinity = its_vpe_set_affinity, 4176 .irq_retrigger = its_vpe_retrigger, 4177 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4178 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4179 }; 4180 4181 static struct its_node *find_4_1_its(void) 4182 { 4183 static struct its_node *its = NULL; 4184 4185 if (!its) { 4186 list_for_each_entry(its, &its_nodes, entry) { 4187 if (is_v4_1(its)) 4188 return its; 4189 } 4190 4191 /* Oops? */ 4192 its = NULL; 4193 } 4194 4195 return its; 4196 } 4197 4198 static void its_vpe_4_1_send_inv(struct irq_data *d) 4199 { 4200 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4201 struct its_node *its; 4202 4203 /* 4204 * GICv4.1 wants doorbells to be invalidated using the 4205 * INVDB command in order to be broadcast to all RDs. Send 4206 * it to the first valid ITS, and let the HW do its magic. 4207 */ 4208 its = find_4_1_its(); 4209 if (its) 4210 its_send_invdb(its, vpe); 4211 } 4212 4213 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4214 { 4215 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4216 its_vpe_4_1_send_inv(d); 4217 } 4218 4219 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4220 { 4221 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4222 its_vpe_4_1_send_inv(d); 4223 } 4224 4225 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4226 struct its_cmd_info *info) 4227 { 4228 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4229 u64 val = 0; 4230 4231 /* Schedule the VPE */ 4232 val |= GICR_VPENDBASER_Valid; 4233 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4234 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4235 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4236 4237 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4238 } 4239 4240 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4241 struct its_cmd_info *info) 4242 { 4243 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4244 u64 val; 4245 4246 if (info->req_db) { 4247 unsigned long flags; 4248 4249 /* 4250 * vPE is going to block: make the vPE non-resident with 4251 * PendingLast clear and DB set. The GIC guarantees that if 4252 * we read-back PendingLast clear, then a doorbell will be 4253 * delivered when an interrupt comes. 4254 * 4255 * Note the locking to deal with the concurrent update of 4256 * pending_last from the doorbell interrupt handler that can 4257 * run concurrently. 4258 */ 4259 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4260 val = its_clear_vpend_valid(vlpi_base, 4261 GICR_VPENDBASER_PendingLast, 4262 GICR_VPENDBASER_4_1_DB); 4263 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4264 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4265 } else { 4266 /* 4267 * We're not blocking, so just make the vPE non-resident 4268 * with PendingLast set, indicating that we'll be back. 4269 */ 4270 val = its_clear_vpend_valid(vlpi_base, 4271 0, 4272 GICR_VPENDBASER_PendingLast); 4273 vpe->pending_last = true; 4274 } 4275 } 4276 4277 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4278 { 4279 unsigned long flags; 4280 int cpu; 4281 4282 /* Target the redistributor this vPE is currently known on */ 4283 cpu = vpe_to_cpuid_lock(vpe, &flags); 4284 its_vpe_4_1_invall_locked(cpu, vpe); 4285 vpe_to_cpuid_unlock(vpe, flags); 4286 } 4287 4288 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4289 { 4290 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4291 struct its_cmd_info *info = vcpu_info; 4292 4293 switch (info->cmd_type) { 4294 case SCHEDULE_VPE: 4295 its_vpe_4_1_schedule(vpe, info); 4296 return 0; 4297 4298 case DESCHEDULE_VPE: 4299 its_vpe_4_1_deschedule(vpe, info); 4300 return 0; 4301 4302 case COMMIT_VPE: 4303 its_wait_vpt_parse_complete(); 4304 return 0; 4305 4306 case INVALL_VPE: 4307 its_vpe_4_1_invall(vpe); 4308 return 0; 4309 4310 default: 4311 return -EINVAL; 4312 } 4313 } 4314 4315 static struct irq_chip its_vpe_4_1_irq_chip = { 4316 .name = "GICv4.1-vpe", 4317 .irq_mask = its_vpe_4_1_mask_irq, 4318 .irq_unmask = its_vpe_4_1_unmask_irq, 4319 .irq_eoi = irq_chip_eoi_parent, 4320 .irq_set_affinity = its_vpe_set_affinity, 4321 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4322 }; 4323 4324 static void its_configure_sgi(struct irq_data *d, bool clear) 4325 { 4326 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4327 struct its_cmd_desc desc; 4328 4329 desc.its_vsgi_cmd.vpe = vpe; 4330 desc.its_vsgi_cmd.sgi = d->hwirq; 4331 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4332 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4333 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4334 desc.its_vsgi_cmd.clear = clear; 4335 4336 /* 4337 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4338 * destination VPE is mapped there. Since we map them eagerly at 4339 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4340 */ 4341 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4342 } 4343 4344 static void its_sgi_mask_irq(struct irq_data *d) 4345 { 4346 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4347 4348 vpe->sgi_config[d->hwirq].enabled = false; 4349 its_configure_sgi(d, false); 4350 } 4351 4352 static void its_sgi_unmask_irq(struct irq_data *d) 4353 { 4354 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4355 4356 vpe->sgi_config[d->hwirq].enabled = true; 4357 its_configure_sgi(d, false); 4358 } 4359 4360 static int its_sgi_set_affinity(struct irq_data *d, 4361 const struct cpumask *mask_val, 4362 bool force) 4363 { 4364 /* 4365 * There is no notion of affinity for virtual SGIs, at least 4366 * not on the host (since they can only be targeting a vPE). 4367 * Tell the kernel we've done whatever it asked for. 4368 */ 4369 irq_data_update_effective_affinity(d, mask_val); 4370 return IRQ_SET_MASK_OK; 4371 } 4372 4373 static int its_sgi_set_irqchip_state(struct irq_data *d, 4374 enum irqchip_irq_state which, 4375 bool state) 4376 { 4377 if (which != IRQCHIP_STATE_PENDING) 4378 return -EINVAL; 4379 4380 if (state) { 4381 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4382 struct its_node *its = find_4_1_its(); 4383 u64 val; 4384 4385 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4386 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4387 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4388 } else { 4389 its_configure_sgi(d, true); 4390 } 4391 4392 return 0; 4393 } 4394 4395 static int its_sgi_get_irqchip_state(struct irq_data *d, 4396 enum irqchip_irq_state which, bool *val) 4397 { 4398 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4399 void __iomem *base; 4400 unsigned long flags; 4401 u32 count = 1000000; /* 1s! */ 4402 u32 status; 4403 int cpu; 4404 4405 if (which != IRQCHIP_STATE_PENDING) 4406 return -EINVAL; 4407 4408 /* 4409 * Locking galore! We can race against two different events: 4410 * 4411 * - Concurrent vPE affinity change: we must make sure it cannot 4412 * happen, or we'll talk to the wrong redistributor. This is 4413 * identical to what happens with vLPIs. 4414 * 4415 * - Concurrent VSGIPENDR access: As it involves accessing two 4416 * MMIO registers, this must be made atomic one way or another. 4417 */ 4418 cpu = vpe_to_cpuid_lock(vpe, &flags); 4419 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4420 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4421 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4422 do { 4423 status = readl_relaxed(base + GICR_VSGIPENDR); 4424 if (!(status & GICR_VSGIPENDR_BUSY)) 4425 goto out; 4426 4427 count--; 4428 if (!count) { 4429 pr_err_ratelimited("Unable to get SGI status\n"); 4430 goto out; 4431 } 4432 cpu_relax(); 4433 udelay(1); 4434 } while (count); 4435 4436 out: 4437 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4438 vpe_to_cpuid_unlock(vpe, flags); 4439 4440 if (!count) 4441 return -ENXIO; 4442 4443 *val = !!(status & (1 << d->hwirq)); 4444 4445 return 0; 4446 } 4447 4448 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4449 { 4450 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4451 struct its_cmd_info *info = vcpu_info; 4452 4453 switch (info->cmd_type) { 4454 case PROP_UPDATE_VSGI: 4455 vpe->sgi_config[d->hwirq].priority = info->priority; 4456 vpe->sgi_config[d->hwirq].group = info->group; 4457 its_configure_sgi(d, false); 4458 return 0; 4459 4460 default: 4461 return -EINVAL; 4462 } 4463 } 4464 4465 static struct irq_chip its_sgi_irq_chip = { 4466 .name = "GICv4.1-sgi", 4467 .irq_mask = its_sgi_mask_irq, 4468 .irq_unmask = its_sgi_unmask_irq, 4469 .irq_set_affinity = its_sgi_set_affinity, 4470 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4471 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4472 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4473 }; 4474 4475 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4476 unsigned int virq, unsigned int nr_irqs, 4477 void *args) 4478 { 4479 struct its_vpe *vpe = args; 4480 int i; 4481 4482 /* Yes, we do want 16 SGIs */ 4483 WARN_ON(nr_irqs != 16); 4484 4485 for (i = 0; i < 16; i++) { 4486 vpe->sgi_config[i].priority = 0; 4487 vpe->sgi_config[i].enabled = false; 4488 vpe->sgi_config[i].group = false; 4489 4490 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4491 &its_sgi_irq_chip, vpe); 4492 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4493 } 4494 4495 return 0; 4496 } 4497 4498 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4499 unsigned int virq, 4500 unsigned int nr_irqs) 4501 { 4502 /* Nothing to do */ 4503 } 4504 4505 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4506 struct irq_data *d, bool reserve) 4507 { 4508 /* Write out the initial SGI configuration */ 4509 its_configure_sgi(d, false); 4510 return 0; 4511 } 4512 4513 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4514 struct irq_data *d) 4515 { 4516 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4517 4518 /* 4519 * The VSGI command is awkward: 4520 * 4521 * - To change the configuration, CLEAR must be set to false, 4522 * leaving the pending bit unchanged. 4523 * - To clear the pending bit, CLEAR must be set to true, leaving 4524 * the configuration unchanged. 4525 * 4526 * You just can't do both at once, hence the two commands below. 4527 */ 4528 vpe->sgi_config[d->hwirq].enabled = false; 4529 its_configure_sgi(d, false); 4530 its_configure_sgi(d, true); 4531 } 4532 4533 static const struct irq_domain_ops its_sgi_domain_ops = { 4534 .alloc = its_sgi_irq_domain_alloc, 4535 .free = its_sgi_irq_domain_free, 4536 .activate = its_sgi_irq_domain_activate, 4537 .deactivate = its_sgi_irq_domain_deactivate, 4538 }; 4539 4540 static int its_vpe_id_alloc(void) 4541 { 4542 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL); 4543 } 4544 4545 static void its_vpe_id_free(u16 id) 4546 { 4547 ida_free(&its_vpeid_ida, id); 4548 } 4549 4550 static int its_vpe_init(struct its_vpe *vpe) 4551 { 4552 struct page *vpt_page; 4553 int vpe_id; 4554 4555 /* Allocate vpe_id */ 4556 vpe_id = its_vpe_id_alloc(); 4557 if (vpe_id < 0) 4558 return vpe_id; 4559 4560 /* Allocate VPT */ 4561 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4562 if (!vpt_page) { 4563 its_vpe_id_free(vpe_id); 4564 return -ENOMEM; 4565 } 4566 4567 if (!its_alloc_vpe_table(vpe_id)) { 4568 its_vpe_id_free(vpe_id); 4569 its_free_pending_table(vpt_page); 4570 return -ENOMEM; 4571 } 4572 4573 raw_spin_lock_init(&vpe->vpe_lock); 4574 vpe->vpe_id = vpe_id; 4575 vpe->vpt_page = vpt_page; 4576 atomic_set(&vpe->vmapp_count, 0); 4577 if (!gic_rdists->has_rvpeid) 4578 vpe->vpe_proxy_event = -1; 4579 4580 return 0; 4581 } 4582 4583 static void its_vpe_teardown(struct its_vpe *vpe) 4584 { 4585 its_vpe_db_proxy_unmap(vpe); 4586 its_vpe_id_free(vpe->vpe_id); 4587 its_free_pending_table(vpe->vpt_page); 4588 } 4589 4590 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4591 unsigned int virq, 4592 unsigned int nr_irqs) 4593 { 4594 struct its_vm *vm = domain->host_data; 4595 int i; 4596 4597 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4598 4599 for (i = 0; i < nr_irqs; i++) { 4600 struct irq_data *data = irq_domain_get_irq_data(domain, 4601 virq + i); 4602 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4603 4604 BUG_ON(vm != vpe->its_vm); 4605 4606 clear_bit(data->hwirq, vm->db_bitmap); 4607 its_vpe_teardown(vpe); 4608 irq_domain_reset_irq_data(data); 4609 } 4610 4611 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4612 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4613 its_free_prop_table(vm->vprop_page); 4614 } 4615 } 4616 4617 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4618 unsigned int nr_irqs, void *args) 4619 { 4620 struct irq_chip *irqchip = &its_vpe_irq_chip; 4621 struct its_vm *vm = args; 4622 unsigned long *bitmap; 4623 struct page *vprop_page; 4624 int base, nr_ids, i, err = 0; 4625 4626 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4627 if (!bitmap) 4628 return -ENOMEM; 4629 4630 if (nr_ids < nr_irqs) { 4631 its_lpi_free(bitmap, base, nr_ids); 4632 return -ENOMEM; 4633 } 4634 4635 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4636 if (!vprop_page) { 4637 its_lpi_free(bitmap, base, nr_ids); 4638 return -ENOMEM; 4639 } 4640 4641 vm->db_bitmap = bitmap; 4642 vm->db_lpi_base = base; 4643 vm->nr_db_lpis = nr_ids; 4644 vm->vprop_page = vprop_page; 4645 raw_spin_lock_init(&vm->vmapp_lock); 4646 4647 if (gic_rdists->has_rvpeid) 4648 irqchip = &its_vpe_4_1_irq_chip; 4649 4650 for (i = 0; i < nr_irqs; i++) { 4651 vm->vpes[i]->vpe_db_lpi = base + i; 4652 err = its_vpe_init(vm->vpes[i]); 4653 if (err) 4654 break; 4655 err = its_irq_gic_domain_alloc(domain, virq + i, 4656 vm->vpes[i]->vpe_db_lpi); 4657 if (err) 4658 break; 4659 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4660 irqchip, vm->vpes[i]); 4661 set_bit(i, bitmap); 4662 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4663 } 4664 4665 if (err) 4666 its_vpe_irq_domain_free(domain, virq, i); 4667 4668 return err; 4669 } 4670 4671 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4672 struct irq_data *d, bool reserve) 4673 { 4674 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4675 struct its_node *its; 4676 4677 /* Map the VPE to the first possible CPU */ 4678 vpe->col_idx = cpumask_first(cpu_online_mask); 4679 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4680 4681 /* 4682 * If we use the list map, we issue VMAPP on demand... Unless 4683 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4684 * so that VSGIs can work. 4685 */ 4686 if (!gic_requires_eager_mapping()) 4687 return 0; 4688 4689 list_for_each_entry(its, &its_nodes, entry) { 4690 if (!is_v4(its)) 4691 continue; 4692 4693 its_send_vmapp(its, vpe, true); 4694 its_send_vinvall(its, vpe); 4695 } 4696 4697 return 0; 4698 } 4699 4700 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4701 struct irq_data *d) 4702 { 4703 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4704 struct its_node *its; 4705 4706 /* 4707 * If we use the list map on GICv4.0, we unmap the VPE once no 4708 * VLPIs are associated with the VM. 4709 */ 4710 if (!gic_requires_eager_mapping()) 4711 return; 4712 4713 list_for_each_entry(its, &its_nodes, entry) { 4714 if (!is_v4(its)) 4715 continue; 4716 4717 its_send_vmapp(its, vpe, false); 4718 } 4719 4720 /* 4721 * There may be a direct read to the VPT after unmapping the 4722 * vPE, to guarantee the validity of this, we make the VPT 4723 * memory coherent with the CPU caches here. 4724 */ 4725 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4726 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4727 LPI_PENDBASE_SZ); 4728 } 4729 4730 static const struct irq_domain_ops its_vpe_domain_ops = { 4731 .alloc = its_vpe_irq_domain_alloc, 4732 .free = its_vpe_irq_domain_free, 4733 .activate = its_vpe_irq_domain_activate, 4734 .deactivate = its_vpe_irq_domain_deactivate, 4735 }; 4736 4737 static int its_force_quiescent(void __iomem *base) 4738 { 4739 u32 count = 1000000; /* 1s */ 4740 u32 val; 4741 4742 val = readl_relaxed(base + GITS_CTLR); 4743 /* 4744 * GIC architecture specification requires the ITS to be both 4745 * disabled and quiescent for writes to GITS_BASER<n> or 4746 * GITS_CBASER to not have UNPREDICTABLE results. 4747 */ 4748 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4749 return 0; 4750 4751 /* Disable the generation of all interrupts to this ITS */ 4752 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4753 writel_relaxed(val, base + GITS_CTLR); 4754 4755 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4756 while (1) { 4757 val = readl_relaxed(base + GITS_CTLR); 4758 if (val & GITS_CTLR_QUIESCENT) 4759 return 0; 4760 4761 count--; 4762 if (!count) 4763 return -EBUSY; 4764 4765 cpu_relax(); 4766 udelay(1); 4767 } 4768 } 4769 4770 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4771 { 4772 struct its_node *its = data; 4773 4774 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4775 its->typer &= ~GITS_TYPER_DEVBITS; 4776 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4777 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4778 4779 return true; 4780 } 4781 4782 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4783 { 4784 struct its_node *its = data; 4785 4786 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4787 4788 return true; 4789 } 4790 4791 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4792 { 4793 struct its_node *its = data; 4794 4795 /* On QDF2400, the size of the ITE is 16Bytes */ 4796 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4797 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4798 4799 return true; 4800 } 4801 4802 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4803 { 4804 struct its_node *its = its_dev->its; 4805 4806 /* 4807 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4808 * which maps 32-bit writes targeted at a separate window of 4809 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4810 * with device ID taken from bits [device_id_bits + 1:2] of 4811 * the window offset. 4812 */ 4813 return its->pre_its_base + (its_dev->device_id << 2); 4814 } 4815 4816 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4817 { 4818 struct its_node *its = data; 4819 u32 pre_its_window[2]; 4820 u32 ids; 4821 4822 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4823 "socionext,synquacer-pre-its", 4824 pre_its_window, 4825 ARRAY_SIZE(pre_its_window))) { 4826 4827 its->pre_its_base = pre_its_window[0]; 4828 its->get_msi_base = its_irq_get_msi_base_pre_its; 4829 4830 ids = ilog2(pre_its_window[1]) - 2; 4831 if (device_ids(its) > ids) { 4832 its->typer &= ~GITS_TYPER_DEVBITS; 4833 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4834 } 4835 4836 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4837 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4838 return true; 4839 } 4840 return false; 4841 } 4842 4843 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4844 { 4845 struct its_node *its = data; 4846 4847 /* 4848 * Hip07 insists on using the wrong address for the VLPI 4849 * page. Trick it into doing the right thing... 4850 */ 4851 its->vlpi_redist_offset = SZ_128K; 4852 return true; 4853 } 4854 4855 static bool __maybe_unused its_enable_rk3588001(void *data) 4856 { 4857 struct its_node *its = data; 4858 4859 if (!of_machine_is_compatible("rockchip,rk3588") && 4860 !of_machine_is_compatible("rockchip,rk3588s")) 4861 return false; 4862 4863 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4864 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4865 4866 return true; 4867 } 4868 4869 static bool its_set_non_coherent(void *data) 4870 { 4871 struct its_node *its = data; 4872 4873 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4874 return true; 4875 } 4876 4877 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data) 4878 { 4879 struct its_node *its = data; 4880 4881 its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801; 4882 return true; 4883 } 4884 4885 static bool __maybe_unused its_enable_rk3568002(void *data) 4886 { 4887 if (!of_machine_is_compatible("rockchip,rk3566") && 4888 !of_machine_is_compatible("rockchip,rk3568")) 4889 return false; 4890 4891 gfp_flags_quirk |= GFP_DMA32; 4892 4893 return true; 4894 } 4895 4896 static const struct gic_quirk its_quirks[] = { 4897 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4898 { 4899 .desc = "ITS: Cavium errata 22375, 24313", 4900 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4901 .mask = 0xffff0fff, 4902 .init = its_enable_quirk_cavium_22375, 4903 }, 4904 #endif 4905 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4906 { 4907 .desc = "ITS: Cavium erratum 23144", 4908 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4909 .mask = 0xffff0fff, 4910 .init = its_enable_quirk_cavium_23144, 4911 }, 4912 #endif 4913 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4914 { 4915 .desc = "ITS: QDF2400 erratum 0065", 4916 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4917 .mask = 0xffffffff, 4918 .init = its_enable_quirk_qdf2400_e0065, 4919 }, 4920 #endif 4921 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4922 { 4923 /* 4924 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4925 * implementation, but with a 'pre-ITS' added that requires 4926 * special handling in software. 4927 */ 4928 .desc = "ITS: Socionext Synquacer pre-ITS", 4929 .iidr = 0x0001143b, 4930 .mask = 0xffffffff, 4931 .init = its_enable_quirk_socionext_synquacer, 4932 }, 4933 #endif 4934 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4935 { 4936 .desc = "ITS: Hip07 erratum 161600802", 4937 .iidr = 0x00000004, 4938 .mask = 0xffffffff, 4939 .init = its_enable_quirk_hip07_161600802, 4940 }, 4941 #endif 4942 #ifdef CONFIG_HISILICON_ERRATUM_162100801 4943 { 4944 .desc = "ITS: Hip09 erratum 162100801", 4945 .iidr = 0x00051736, 4946 .mask = 0xffffffff, 4947 .init = its_enable_quirk_hip09_162100801, 4948 }, 4949 #endif 4950 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4951 { 4952 .desc = "ITS: Rockchip erratum RK3588001", 4953 .iidr = 0x0201743b, 4954 .mask = 0xffffffff, 4955 .init = its_enable_rk3588001, 4956 }, 4957 #endif 4958 { 4959 .desc = "ITS: non-coherent attribute", 4960 .property = "dma-noncoherent", 4961 .init = its_set_non_coherent, 4962 }, 4963 #ifdef CONFIG_ROCKCHIP_ERRATUM_3568002 4964 { 4965 .desc = "ITS: Rockchip erratum RK3568002", 4966 .iidr = 0x0201743b, 4967 .mask = 0xffffffff, 4968 .init = its_enable_rk3568002, 4969 }, 4970 #endif 4971 { 4972 } 4973 }; 4974 4975 static void its_enable_quirks(struct its_node *its) 4976 { 4977 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4978 4979 gic_enable_quirks(iidr, its_quirks, its); 4980 4981 if (is_of_node(its->fwnode_handle)) 4982 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4983 its_quirks, its); 4984 } 4985 4986 static int its_save_disable(void) 4987 { 4988 struct its_node *its; 4989 int err = 0; 4990 4991 raw_spin_lock(&its_lock); 4992 list_for_each_entry(its, &its_nodes, entry) { 4993 void __iomem *base; 4994 4995 base = its->base; 4996 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4997 err = its_force_quiescent(base); 4998 if (err) { 4999 pr_err("ITS@%pa: failed to quiesce: %d\n", 5000 &its->phys_base, err); 5001 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5002 goto err; 5003 } 5004 5005 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 5006 } 5007 5008 err: 5009 if (err) { 5010 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 5011 void __iomem *base; 5012 5013 base = its->base; 5014 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5015 } 5016 } 5017 raw_spin_unlock(&its_lock); 5018 5019 return err; 5020 } 5021 5022 static void its_restore_enable(void) 5023 { 5024 struct its_node *its; 5025 int ret; 5026 5027 raw_spin_lock(&its_lock); 5028 list_for_each_entry(its, &its_nodes, entry) { 5029 void __iomem *base; 5030 int i; 5031 5032 base = its->base; 5033 5034 /* 5035 * Make sure that the ITS is disabled. If it fails to quiesce, 5036 * don't restore it since writing to CBASER or BASER<n> 5037 * registers is undefined according to the GIC v3 ITS 5038 * Specification. 5039 * 5040 * Firmware resuming with the ITS enabled is terminally broken. 5041 */ 5042 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 5043 ret = its_force_quiescent(base); 5044 if (ret) { 5045 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 5046 &its->phys_base, ret); 5047 continue; 5048 } 5049 5050 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 5051 5052 /* 5053 * Writing CBASER resets CREADR to 0, so make CWRITER and 5054 * cmd_write line up with it. 5055 */ 5056 its->cmd_write = its->cmd_base; 5057 gits_write_cwriter(0, base + GITS_CWRITER); 5058 5059 /* Restore GITS_BASER from the value cache. */ 5060 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 5061 struct its_baser *baser = &its->tables[i]; 5062 5063 if (!(baser->val & GITS_BASER_VALID)) 5064 continue; 5065 5066 its_write_baser(its, baser, baser->val); 5067 } 5068 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5069 5070 /* 5071 * Reinit the collection if it's stored in the ITS. This is 5072 * indicated by the col_id being less than the HCC field. 5073 * CID < HCC as specified in the GIC v3 Documentation. 5074 */ 5075 if (its->collections[smp_processor_id()].col_id < 5076 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 5077 its_cpu_init_collection(its); 5078 } 5079 raw_spin_unlock(&its_lock); 5080 } 5081 5082 static struct syscore_ops its_syscore_ops = { 5083 .suspend = its_save_disable, 5084 .resume = its_restore_enable, 5085 }; 5086 5087 static void __init __iomem *its_map_one(struct resource *res, int *err) 5088 { 5089 void __iomem *its_base; 5090 u32 val; 5091 5092 its_base = ioremap(res->start, SZ_64K); 5093 if (!its_base) { 5094 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 5095 *err = -ENOMEM; 5096 return NULL; 5097 } 5098 5099 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 5100 if (val != 0x30 && val != 0x40) { 5101 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 5102 *err = -ENODEV; 5103 goto out_unmap; 5104 } 5105 5106 *err = its_force_quiescent(its_base); 5107 if (*err) { 5108 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 5109 goto out_unmap; 5110 } 5111 5112 return its_base; 5113 5114 out_unmap: 5115 iounmap(its_base); 5116 return NULL; 5117 } 5118 5119 static int its_init_domain(struct its_node *its) 5120 { 5121 struct irq_domain *inner_domain; 5122 struct msi_domain_info *info; 5123 5124 info = kzalloc(sizeof(*info), GFP_KERNEL); 5125 if (!info) 5126 return -ENOMEM; 5127 5128 info->ops = &its_msi_domain_ops; 5129 info->data = its; 5130 5131 inner_domain = irq_domain_create_hierarchy(its_parent, 5132 its->msi_domain_flags, 0, 5133 its->fwnode_handle, &its_domain_ops, 5134 info); 5135 if (!inner_domain) { 5136 kfree(info); 5137 return -ENOMEM; 5138 } 5139 5140 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 5141 5142 inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops; 5143 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT; 5144 5145 return 0; 5146 } 5147 5148 static int its_init_vpe_domain(void) 5149 { 5150 struct its_node *its; 5151 u32 devid; 5152 int entries; 5153 5154 if (gic_rdists->has_direct_lpi) { 5155 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5156 return 0; 5157 } 5158 5159 /* Any ITS will do, even if not v4 */ 5160 its = list_first_entry(&its_nodes, struct its_node, entry); 5161 5162 entries = roundup_pow_of_two(nr_cpu_ids); 5163 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5164 GFP_KERNEL); 5165 if (!vpe_proxy.vpes) 5166 return -ENOMEM; 5167 5168 /* Use the last possible DevID */ 5169 devid = GENMASK(device_ids(its) - 1, 0); 5170 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5171 if (!vpe_proxy.dev) { 5172 kfree(vpe_proxy.vpes); 5173 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5174 return -ENOMEM; 5175 } 5176 5177 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5178 5179 raw_spin_lock_init(&vpe_proxy.lock); 5180 vpe_proxy.next_victim = 0; 5181 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5182 devid, vpe_proxy.dev->nr_ites); 5183 5184 return 0; 5185 } 5186 5187 static int __init its_compute_its_list_map(struct its_node *its) 5188 { 5189 int its_number; 5190 u32 ctlr; 5191 5192 /* 5193 * This is assumed to be done early enough that we're 5194 * guaranteed to be single-threaded, hence no 5195 * locking. Should this change, we should address 5196 * this. 5197 */ 5198 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5199 if (its_number >= GICv4_ITS_LIST_MAX) { 5200 pr_err("ITS@%pa: No ITSList entry available!\n", 5201 &its->phys_base); 5202 return -EINVAL; 5203 } 5204 5205 ctlr = readl_relaxed(its->base + GITS_CTLR); 5206 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5207 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5208 writel_relaxed(ctlr, its->base + GITS_CTLR); 5209 ctlr = readl_relaxed(its->base + GITS_CTLR); 5210 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5211 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5212 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5213 } 5214 5215 if (test_and_set_bit(its_number, &its_list_map)) { 5216 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5217 &its->phys_base, its_number); 5218 return -EINVAL; 5219 } 5220 5221 return its_number; 5222 } 5223 5224 static int __init its_probe_one(struct its_node *its) 5225 { 5226 u64 baser, tmp; 5227 struct page *page; 5228 u32 ctlr; 5229 int err; 5230 5231 its_enable_quirks(its); 5232 5233 if (is_v4(its)) { 5234 if (!(its->typer & GITS_TYPER_VMOVP)) { 5235 err = its_compute_its_list_map(its); 5236 if (err < 0) 5237 goto out; 5238 5239 its->list_nr = err; 5240 5241 pr_info("ITS@%pa: Using ITS number %d\n", 5242 &its->phys_base, err); 5243 } else { 5244 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5245 } 5246 5247 if (is_v4_1(its)) { 5248 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5249 5250 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5251 if (!its->sgir_base) { 5252 err = -ENOMEM; 5253 goto out; 5254 } 5255 5256 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5257 5258 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5259 &its->phys_base, its->mpidr, svpet); 5260 } 5261 } 5262 5263 page = its_alloc_pages_node(its->numa_node, 5264 GFP_KERNEL | __GFP_ZERO, 5265 get_order(ITS_CMD_QUEUE_SZ)); 5266 if (!page) { 5267 err = -ENOMEM; 5268 goto out_unmap_sgir; 5269 } 5270 its->cmd_base = (void *)page_address(page); 5271 its->cmd_write = its->cmd_base; 5272 5273 err = its_alloc_tables(its); 5274 if (err) 5275 goto out_free_cmd; 5276 5277 err = its_alloc_collections(its); 5278 if (err) 5279 goto out_free_tables; 5280 5281 baser = (virt_to_phys(its->cmd_base) | 5282 GITS_CBASER_RaWaWb | 5283 GITS_CBASER_InnerShareable | 5284 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5285 GITS_CBASER_VALID); 5286 5287 gits_write_cbaser(baser, its->base + GITS_CBASER); 5288 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5289 5290 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5291 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5292 5293 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5294 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5295 /* 5296 * The HW reports non-shareable, we must 5297 * remove the cacheability attributes as 5298 * well. 5299 */ 5300 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5301 GITS_CBASER_CACHEABILITY_MASK); 5302 baser |= GITS_CBASER_nC; 5303 gits_write_cbaser(baser, its->base + GITS_CBASER); 5304 } 5305 pr_info("ITS: using cache flushing for cmd queue\n"); 5306 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5307 } 5308 5309 gits_write_cwriter(0, its->base + GITS_CWRITER); 5310 ctlr = readl_relaxed(its->base + GITS_CTLR); 5311 ctlr |= GITS_CTLR_ENABLE; 5312 if (is_v4(its)) 5313 ctlr |= GITS_CTLR_ImDe; 5314 writel_relaxed(ctlr, its->base + GITS_CTLR); 5315 5316 err = its_init_domain(its); 5317 if (err) 5318 goto out_free_tables; 5319 5320 raw_spin_lock(&its_lock); 5321 list_add(&its->entry, &its_nodes); 5322 raw_spin_unlock(&its_lock); 5323 5324 return 0; 5325 5326 out_free_tables: 5327 its_free_tables(its); 5328 out_free_cmd: 5329 its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5330 out_unmap_sgir: 5331 if (its->sgir_base) 5332 iounmap(its->sgir_base); 5333 out: 5334 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5335 return err; 5336 } 5337 5338 static bool gic_rdists_supports_plpis(void) 5339 { 5340 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5341 } 5342 5343 static int redist_disable_lpis(void) 5344 { 5345 void __iomem *rbase = gic_data_rdist_rd_base(); 5346 u64 timeout = USEC_PER_SEC; 5347 u64 val; 5348 5349 if (!gic_rdists_supports_plpis()) { 5350 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5351 return -ENXIO; 5352 } 5353 5354 val = readl_relaxed(rbase + GICR_CTLR); 5355 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5356 return 0; 5357 5358 /* 5359 * If coming via a CPU hotplug event, we don't need to disable 5360 * LPIs before trying to re-enable them. They are already 5361 * configured and all is well in the world. 5362 * 5363 * If running with preallocated tables, there is nothing to do. 5364 */ 5365 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5366 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5367 return 0; 5368 5369 /* 5370 * From that point on, we only try to do some damage control. 5371 */ 5372 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5373 smp_processor_id()); 5374 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5375 5376 /* Disable LPIs */ 5377 val &= ~GICR_CTLR_ENABLE_LPIS; 5378 writel_relaxed(val, rbase + GICR_CTLR); 5379 5380 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5381 dsb(sy); 5382 5383 /* 5384 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5385 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5386 * Error out if we time out waiting for RWP to clear. 5387 */ 5388 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5389 if (!timeout) { 5390 pr_err("CPU%d: Timeout while disabling LPIs\n", 5391 smp_processor_id()); 5392 return -ETIMEDOUT; 5393 } 5394 udelay(1); 5395 timeout--; 5396 } 5397 5398 /* 5399 * After it has been written to 1, it is IMPLEMENTATION 5400 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5401 * cleared to 0. Error out if clearing the bit failed. 5402 */ 5403 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5404 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5405 return -EBUSY; 5406 } 5407 5408 return 0; 5409 } 5410 5411 int its_cpu_init(void) 5412 { 5413 if (!list_empty(&its_nodes)) { 5414 int ret; 5415 5416 ret = redist_disable_lpis(); 5417 if (ret) 5418 return ret; 5419 5420 its_cpu_init_lpis(); 5421 its_cpu_init_collections(); 5422 } 5423 5424 return 0; 5425 } 5426 5427 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5428 { 5429 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5430 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5431 } 5432 5433 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5434 rdist_memreserve_cpuhp_cleanup_workfn); 5435 5436 static int its_cpu_memreserve_lpi(unsigned int cpu) 5437 { 5438 struct page *pend_page; 5439 int ret = 0; 5440 5441 /* This gets to run exactly once per CPU */ 5442 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5443 return 0; 5444 5445 pend_page = gic_data_rdist()->pend_page; 5446 if (WARN_ON(!pend_page)) { 5447 ret = -ENOMEM; 5448 goto out; 5449 } 5450 /* 5451 * If the pending table was pre-programmed, free the memory we 5452 * preemptively allocated. Otherwise, reserve that memory for 5453 * later kexecs. 5454 */ 5455 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5456 its_free_pending_table(pend_page); 5457 gic_data_rdist()->pend_page = NULL; 5458 } else { 5459 phys_addr_t paddr = page_to_phys(pend_page); 5460 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5461 } 5462 5463 out: 5464 /* Last CPU being brought up gets to issue the cleanup */ 5465 if (!IS_ENABLED(CONFIG_SMP) || 5466 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5467 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5468 5469 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5470 return ret; 5471 } 5472 5473 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5474 static int __init its_reset_one(struct resource *res) 5475 { 5476 void __iomem *its_base; 5477 int err, i; 5478 5479 its_base = its_map_one(res, &err); 5480 if (!its_base) 5481 return err; 5482 5483 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5484 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5485 5486 iounmap(its_base); 5487 return 0; 5488 } 5489 5490 static const struct of_device_id its_device_id[] = { 5491 { .compatible = "arm,gic-v3-its", }, 5492 {}, 5493 }; 5494 5495 static struct its_node __init *its_node_init(struct resource *res, 5496 struct fwnode_handle *handle, int numa_node) 5497 { 5498 void __iomem *its_base; 5499 struct its_node *its; 5500 int err; 5501 5502 its_base = its_map_one(res, &err); 5503 if (!its_base) 5504 return NULL; 5505 5506 pr_info("ITS %pR\n", res); 5507 5508 its = kzalloc(sizeof(*its), GFP_KERNEL); 5509 if (!its) 5510 goto out_unmap; 5511 5512 raw_spin_lock_init(&its->lock); 5513 mutex_init(&its->dev_alloc_lock); 5514 INIT_LIST_HEAD(&its->entry); 5515 INIT_LIST_HEAD(&its->its_device_list); 5516 5517 its->typer = gic_read_typer(its_base + GITS_TYPER); 5518 its->base = its_base; 5519 its->phys_base = res->start; 5520 its->get_msi_base = its_irq_get_msi_base; 5521 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5522 5523 its->numa_node = numa_node; 5524 its->fwnode_handle = handle; 5525 5526 return its; 5527 5528 out_unmap: 5529 iounmap(its_base); 5530 return NULL; 5531 } 5532 5533 static void its_node_destroy(struct its_node *its) 5534 { 5535 iounmap(its->base); 5536 kfree(its); 5537 } 5538 5539 static int __init its_of_probe(struct device_node *node) 5540 { 5541 struct device_node *np; 5542 struct resource res; 5543 int err; 5544 5545 /* 5546 * Make sure *all* the ITS are reset before we probe any, as 5547 * they may be sharing memory. If any of the ITS fails to 5548 * reset, don't even try to go any further, as this could 5549 * result in something even worse. 5550 */ 5551 for (np = of_find_matching_node(node, its_device_id); np; 5552 np = of_find_matching_node(np, its_device_id)) { 5553 if (!of_device_is_available(np) || 5554 !of_property_read_bool(np, "msi-controller") || 5555 of_address_to_resource(np, 0, &res)) 5556 continue; 5557 5558 err = its_reset_one(&res); 5559 if (err) 5560 return err; 5561 } 5562 5563 for (np = of_find_matching_node(node, its_device_id); np; 5564 np = of_find_matching_node(np, its_device_id)) { 5565 struct its_node *its; 5566 5567 if (!of_device_is_available(np)) 5568 continue; 5569 if (!of_property_read_bool(np, "msi-controller")) { 5570 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5571 np); 5572 continue; 5573 } 5574 5575 if (of_address_to_resource(np, 0, &res)) { 5576 pr_warn("%pOF: no regs?\n", np); 5577 continue; 5578 } 5579 5580 5581 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5582 if (!its) 5583 return -ENOMEM; 5584 5585 err = its_probe_one(its); 5586 if (err) { 5587 its_node_destroy(its); 5588 return err; 5589 } 5590 } 5591 return 0; 5592 } 5593 5594 #ifdef CONFIG_ACPI 5595 5596 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5597 5598 #ifdef CONFIG_ACPI_NUMA 5599 struct its_srat_map { 5600 /* numa node id */ 5601 u32 numa_node; 5602 /* GIC ITS ID */ 5603 u32 its_id; 5604 }; 5605 5606 static struct its_srat_map *its_srat_maps __initdata; 5607 static int its_in_srat __initdata; 5608 5609 static int __init acpi_get_its_numa_node(u32 its_id) 5610 { 5611 int i; 5612 5613 for (i = 0; i < its_in_srat; i++) { 5614 if (its_id == its_srat_maps[i].its_id) 5615 return its_srat_maps[i].numa_node; 5616 } 5617 return NUMA_NO_NODE; 5618 } 5619 5620 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5621 const unsigned long end) 5622 { 5623 return 0; 5624 } 5625 5626 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5627 const unsigned long end) 5628 { 5629 int node; 5630 struct acpi_srat_gic_its_affinity *its_affinity; 5631 5632 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5633 if (!its_affinity) 5634 return -EINVAL; 5635 5636 if (its_affinity->header.length < sizeof(*its_affinity)) { 5637 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5638 its_affinity->header.length); 5639 return -EINVAL; 5640 } 5641 5642 /* 5643 * Note that in theory a new proximity node could be created by this 5644 * entry as it is an SRAT resource allocation structure. 5645 * We do not currently support doing so. 5646 */ 5647 node = pxm_to_node(its_affinity->proximity_domain); 5648 5649 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5650 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5651 return 0; 5652 } 5653 5654 its_srat_maps[its_in_srat].numa_node = node; 5655 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5656 its_in_srat++; 5657 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5658 its_affinity->proximity_domain, its_affinity->its_id, node); 5659 5660 return 0; 5661 } 5662 5663 static void __init acpi_table_parse_srat_its(void) 5664 { 5665 int count; 5666 5667 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5668 sizeof(struct acpi_table_srat), 5669 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5670 gic_acpi_match_srat_its, 0); 5671 if (count <= 0) 5672 return; 5673 5674 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5675 GFP_KERNEL); 5676 if (!its_srat_maps) 5677 return; 5678 5679 acpi_table_parse_entries(ACPI_SIG_SRAT, 5680 sizeof(struct acpi_table_srat), 5681 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5682 gic_acpi_parse_srat_its, 0); 5683 } 5684 5685 /* free the its_srat_maps after ITS probing */ 5686 static void __init acpi_its_srat_maps_free(void) 5687 { 5688 kfree(its_srat_maps); 5689 } 5690 #else 5691 static void __init acpi_table_parse_srat_its(void) { } 5692 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5693 static void __init acpi_its_srat_maps_free(void) { } 5694 #endif 5695 5696 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5697 const unsigned long end) 5698 { 5699 struct acpi_madt_generic_translator *its_entry; 5700 struct fwnode_handle *dom_handle; 5701 struct its_node *its; 5702 struct resource res; 5703 int err; 5704 5705 its_entry = (struct acpi_madt_generic_translator *)header; 5706 memset(&res, 0, sizeof(res)); 5707 res.start = its_entry->base_address; 5708 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5709 res.flags = IORESOURCE_MEM; 5710 5711 dom_handle = irq_domain_alloc_fwnode(&res.start); 5712 if (!dom_handle) { 5713 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5714 &res.start); 5715 return -ENOMEM; 5716 } 5717 5718 err = iort_register_domain_token(its_entry->translation_id, res.start, 5719 dom_handle); 5720 if (err) { 5721 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5722 &res.start, its_entry->translation_id); 5723 goto dom_err; 5724 } 5725 5726 its = its_node_init(&res, dom_handle, 5727 acpi_get_its_numa_node(its_entry->translation_id)); 5728 if (!its) { 5729 err = -ENOMEM; 5730 goto node_err; 5731 } 5732 5733 if (acpi_get_madt_revision() >= 7 && 5734 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT)) 5735 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 5736 5737 err = its_probe_one(its); 5738 if (!err) 5739 return 0; 5740 5741 node_err: 5742 iort_deregister_domain_token(its_entry->translation_id); 5743 dom_err: 5744 irq_domain_free_fwnode(dom_handle); 5745 return err; 5746 } 5747 5748 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5749 const unsigned long end) 5750 { 5751 struct acpi_madt_generic_translator *its_entry; 5752 struct resource res; 5753 5754 its_entry = (struct acpi_madt_generic_translator *)header; 5755 res = (struct resource) { 5756 .start = its_entry->base_address, 5757 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5758 .flags = IORESOURCE_MEM, 5759 }; 5760 5761 return its_reset_one(&res); 5762 } 5763 5764 static void __init its_acpi_probe(void) 5765 { 5766 acpi_table_parse_srat_its(); 5767 /* 5768 * Make sure *all* the ITS are reset before we probe any, as 5769 * they may be sharing memory. If any of the ITS fails to 5770 * reset, don't even try to go any further, as this could 5771 * result in something even worse. 5772 */ 5773 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5774 its_acpi_reset, 0) > 0) 5775 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5776 gic_acpi_parse_madt_its, 0); 5777 acpi_its_srat_maps_free(); 5778 } 5779 #else 5780 static void __init its_acpi_probe(void) { } 5781 #endif 5782 5783 int __init its_lpi_memreserve_init(void) 5784 { 5785 int state; 5786 5787 if (!efi_enabled(EFI_CONFIG_TABLES)) 5788 return 0; 5789 5790 if (list_empty(&its_nodes)) 5791 return 0; 5792 5793 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5794 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5795 "irqchip/arm/gicv3/memreserve:online", 5796 its_cpu_memreserve_lpi, 5797 NULL); 5798 if (state < 0) 5799 return state; 5800 5801 gic_rdists->cpuhp_memreserve_state = state; 5802 5803 return 0; 5804 } 5805 5806 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5807 struct irq_domain *parent_domain, u8 irq_prio) 5808 { 5809 struct device_node *of_node; 5810 struct its_node *its; 5811 bool has_v4 = false; 5812 bool has_v4_1 = false; 5813 int err; 5814 5815 itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1); 5816 if (!itt_pool) 5817 return -ENOMEM; 5818 5819 gic_rdists = rdists; 5820 5821 lpi_prop_prio = irq_prio; 5822 its_parent = parent_domain; 5823 of_node = to_of_node(handle); 5824 if (of_node) 5825 its_of_probe(of_node); 5826 else 5827 its_acpi_probe(); 5828 5829 if (list_empty(&its_nodes)) { 5830 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5831 return -ENXIO; 5832 } 5833 5834 err = allocate_lpi_tables(); 5835 if (err) 5836 return err; 5837 5838 list_for_each_entry(its, &its_nodes, entry) { 5839 has_v4 |= is_v4(its); 5840 has_v4_1 |= is_v4_1(its); 5841 } 5842 5843 /* Don't bother with inconsistent systems */ 5844 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5845 rdists->has_rvpeid = false; 5846 5847 if (has_v4 & rdists->has_vlpis) { 5848 const struct irq_domain_ops *sgi_ops; 5849 5850 if (has_v4_1) 5851 sgi_ops = &its_sgi_domain_ops; 5852 else 5853 sgi_ops = NULL; 5854 5855 if (its_init_vpe_domain() || 5856 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5857 rdists->has_vlpis = false; 5858 pr_err("ITS: Disabling GICv4 support\n"); 5859 } 5860 } 5861 5862 register_syscore_ops(&its_syscore_ops); 5863 5864 return 0; 5865 } 5866