1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Broadcom BCM6345 style Level 1 interrupt controller driver 4 * 5 * Copyright (C) 2014 Broadcom Corporation 6 * Copyright 2015 Simon Arlott 7 * 8 * This is based on the BCM7038 (which supports SMP) but with a single 9 * enable register instead of separate mask/set/clear registers. 10 * 11 * The BCM3380 has a similar mask/status register layout, but each pair 12 * of words is at separate locations (and SMP is not supported). 13 * 14 * ENABLE/STATUS words are packed next to each other for each CPU: 15 * 16 * BCM6368: 17 * 0x1000_0020: CPU0_W0_ENABLE 18 * 0x1000_0024: CPU0_W1_ENABLE 19 * 0x1000_0028: CPU0_W0_STATUS IRQs 31-63 20 * 0x1000_002c: CPU0_W1_STATUS IRQs 0-31 21 * 0x1000_0030: CPU1_W0_ENABLE 22 * 0x1000_0034: CPU1_W1_ENABLE 23 * 0x1000_0038: CPU1_W0_STATUS IRQs 31-63 24 * 0x1000_003c: CPU1_W1_STATUS IRQs 0-31 25 * 26 * BCM63168: 27 * 0x1000_0020: CPU0_W0_ENABLE 28 * 0x1000_0024: CPU0_W1_ENABLE 29 * 0x1000_0028: CPU0_W2_ENABLE 30 * 0x1000_002c: CPU0_W3_ENABLE 31 * 0x1000_0030: CPU0_W0_STATUS IRQs 96-127 32 * 0x1000_0034: CPU0_W1_STATUS IRQs 64-95 33 * 0x1000_0038: CPU0_W2_STATUS IRQs 32-63 34 * 0x1000_003c: CPU0_W3_STATUS IRQs 0-31 35 * 0x1000_0040: CPU1_W0_ENABLE 36 * 0x1000_0044: CPU1_W1_ENABLE 37 * 0x1000_0048: CPU1_W2_ENABLE 38 * 0x1000_004c: CPU1_W3_ENABLE 39 * 0x1000_0050: CPU1_W0_STATUS IRQs 96-127 40 * 0x1000_0054: CPU1_W1_STATUS IRQs 64-95 41 * 0x1000_0058: CPU1_W2_STATUS IRQs 32-63 42 * 0x1000_005c: CPU1_W3_STATUS IRQs 0-31 43 * 44 * IRQs are numbered in CPU native endian order 45 * (which is big-endian in these examples) 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/bitops.h> 51 #include <linux/cpumask.h> 52 #include <linux/kernel.h> 53 #include <linux/init.h> 54 #include <linux/interrupt.h> 55 #include <linux/io.h> 56 #include <linux/ioport.h> 57 #include <linux/irq.h> 58 #include <linux/irqdomain.h> 59 #include <linux/module.h> 60 #include <linux/of.h> 61 #include <linux/of_irq.h> 62 #include <linux/of_address.h> 63 #include <linux/platform_device.h> 64 #include <linux/slab.h> 65 #include <linux/smp.h> 66 #include <linux/types.h> 67 #include <linux/irqchip.h> 68 #include <linux/irqchip/chained_irq.h> 69 70 #define IRQS_PER_WORD 32 71 #define REG_BYTES_PER_IRQ_WORD (sizeof(u32) * 2) 72 73 struct bcm6345_l1_cpu; 74 75 struct bcm6345_l1_chip { 76 raw_spinlock_t lock; 77 unsigned int n_words; 78 struct irq_domain *domain; 79 struct cpumask cpumask; 80 struct bcm6345_l1_cpu *cpus[NR_CPUS]; 81 }; 82 83 struct bcm6345_l1_cpu { 84 struct bcm6345_l1_chip *intc; 85 void __iomem *map_base; 86 unsigned int parent_irq; 87 u32 enable_cache[]; 88 }; 89 90 static inline unsigned int reg_enable(struct bcm6345_l1_chip *intc, 91 unsigned int word) 92 { 93 #ifdef __BIG_ENDIAN 94 return (1 * intc->n_words - word - 1) * sizeof(u32); 95 #else 96 return (0 * intc->n_words + word) * sizeof(u32); 97 #endif 98 } 99 100 static inline unsigned int reg_status(struct bcm6345_l1_chip *intc, 101 unsigned int word) 102 { 103 #ifdef __BIG_ENDIAN 104 return (2 * intc->n_words - word - 1) * sizeof(u32); 105 #else 106 return (1 * intc->n_words + word) * sizeof(u32); 107 #endif 108 } 109 110 static inline unsigned int cpu_for_irq(struct bcm6345_l1_chip *intc, 111 struct irq_data *d) 112 { 113 return cpumask_first_and(&intc->cpumask, irq_data_get_affinity_mask(d)); 114 } 115 116 static void bcm6345_l1_irq_handle(struct irq_desc *desc) 117 { 118 struct bcm6345_l1_cpu *cpu = irq_desc_get_handler_data(desc); 119 struct bcm6345_l1_chip *intc = cpu->intc; 120 struct irq_chip *chip = irq_desc_get_chip(desc); 121 unsigned int idx; 122 123 chained_irq_enter(chip, desc); 124 125 for (idx = 0; idx < intc->n_words; idx++) { 126 int base = idx * IRQS_PER_WORD; 127 unsigned long pending; 128 irq_hw_number_t hwirq; 129 130 pending = __raw_readl(cpu->map_base + reg_status(intc, idx)); 131 pending &= __raw_readl(cpu->map_base + reg_enable(intc, idx)); 132 133 for_each_set_bit(hwirq, &pending, IRQS_PER_WORD) { 134 if (generic_handle_domain_irq(intc->domain, base + hwirq)) 135 spurious_interrupt(); 136 } 137 } 138 139 chained_irq_exit(chip, desc); 140 } 141 142 static inline void __bcm6345_l1_unmask(struct irq_data *d) 143 { 144 struct bcm6345_l1_chip *intc = irq_data_get_irq_chip_data(d); 145 u32 word = d->hwirq / IRQS_PER_WORD; 146 u32 mask = BIT(d->hwirq % IRQS_PER_WORD); 147 unsigned int cpu_idx = cpu_for_irq(intc, d); 148 149 intc->cpus[cpu_idx]->enable_cache[word] |= mask; 150 __raw_writel(intc->cpus[cpu_idx]->enable_cache[word], 151 intc->cpus[cpu_idx]->map_base + reg_enable(intc, word)); 152 } 153 154 static inline void __bcm6345_l1_mask(struct irq_data *d) 155 { 156 struct bcm6345_l1_chip *intc = irq_data_get_irq_chip_data(d); 157 u32 word = d->hwirq / IRQS_PER_WORD; 158 u32 mask = BIT(d->hwirq % IRQS_PER_WORD); 159 unsigned int cpu_idx = cpu_for_irq(intc, d); 160 161 intc->cpus[cpu_idx]->enable_cache[word] &= ~mask; 162 __raw_writel(intc->cpus[cpu_idx]->enable_cache[word], 163 intc->cpus[cpu_idx]->map_base + reg_enable(intc, word)); 164 } 165 166 static void bcm6345_l1_unmask(struct irq_data *d) 167 { 168 struct bcm6345_l1_chip *intc = irq_data_get_irq_chip_data(d); 169 unsigned long flags; 170 171 raw_spin_lock_irqsave(&intc->lock, flags); 172 __bcm6345_l1_unmask(d); 173 raw_spin_unlock_irqrestore(&intc->lock, flags); 174 } 175 176 static void bcm6345_l1_mask(struct irq_data *d) 177 { 178 struct bcm6345_l1_chip *intc = irq_data_get_irq_chip_data(d); 179 unsigned long flags; 180 181 raw_spin_lock_irqsave(&intc->lock, flags); 182 __bcm6345_l1_mask(d); 183 raw_spin_unlock_irqrestore(&intc->lock, flags); 184 } 185 186 static int bcm6345_l1_set_affinity(struct irq_data *d, 187 const struct cpumask *dest, 188 bool force) 189 { 190 struct bcm6345_l1_chip *intc = irq_data_get_irq_chip_data(d); 191 u32 word = d->hwirq / IRQS_PER_WORD; 192 u32 mask = BIT(d->hwirq % IRQS_PER_WORD); 193 unsigned int old_cpu = cpu_for_irq(intc, d); 194 unsigned int new_cpu; 195 unsigned long flags; 196 bool enabled; 197 198 new_cpu = cpumask_first_and_and(&intc->cpumask, dest, cpu_online_mask); 199 if (new_cpu >= nr_cpu_ids) 200 return -EINVAL; 201 202 dest = cpumask_of(new_cpu); 203 204 raw_spin_lock_irqsave(&intc->lock, flags); 205 if (old_cpu != new_cpu) { 206 enabled = intc->cpus[old_cpu]->enable_cache[word] & mask; 207 if (enabled) 208 __bcm6345_l1_mask(d); 209 irq_data_update_affinity(d, dest); 210 if (enabled) 211 __bcm6345_l1_unmask(d); 212 } else { 213 irq_data_update_affinity(d, dest); 214 } 215 raw_spin_unlock_irqrestore(&intc->lock, flags); 216 217 irq_data_update_effective_affinity(d, cpumask_of(new_cpu)); 218 219 return IRQ_SET_MASK_OK_NOCOPY; 220 } 221 222 static int __init bcm6345_l1_init_one(struct device_node *dn, 223 unsigned int idx, 224 struct bcm6345_l1_chip *intc) 225 { 226 struct resource res; 227 resource_size_t sz; 228 struct bcm6345_l1_cpu *cpu; 229 unsigned int i, n_words; 230 231 if (of_address_to_resource(dn, idx, &res)) 232 return -EINVAL; 233 sz = resource_size(&res); 234 n_words = sz / REG_BYTES_PER_IRQ_WORD; 235 236 if (!intc->n_words) 237 intc->n_words = n_words; 238 else if (intc->n_words != n_words) 239 return -EINVAL; 240 241 cpu = intc->cpus[idx] = kzalloc(struct_size(cpu, enable_cache, n_words), 242 GFP_KERNEL); 243 if (!cpu) 244 return -ENOMEM; 245 246 cpu->intc = intc; 247 cpu->map_base = ioremap(res.start, sz); 248 if (!cpu->map_base) 249 return -ENOMEM; 250 251 if (!request_mem_region(res.start, sz, res.name)) 252 pr_err("failed to request intc memory"); 253 254 for (i = 0; i < n_words; i++) { 255 cpu->enable_cache[i] = 0; 256 __raw_writel(0, cpu->map_base + reg_enable(intc, i)); 257 } 258 259 cpu->parent_irq = irq_of_parse_and_map(dn, idx); 260 if (!cpu->parent_irq) { 261 pr_err("failed to map parent interrupt %d\n", cpu->parent_irq); 262 return -EINVAL; 263 } 264 irq_set_chained_handler_and_data(cpu->parent_irq, 265 bcm6345_l1_irq_handle, cpu); 266 267 return 0; 268 } 269 270 static struct irq_chip bcm6345_l1_irq_chip = { 271 .name = "bcm6345-l1", 272 .irq_mask = bcm6345_l1_mask, 273 .irq_unmask = bcm6345_l1_unmask, 274 .irq_set_affinity = bcm6345_l1_set_affinity, 275 }; 276 277 static int bcm6345_l1_map(struct irq_domain *d, unsigned int virq, 278 irq_hw_number_t hw_irq) 279 { 280 irq_set_chip_and_handler(virq, 281 &bcm6345_l1_irq_chip, handle_percpu_irq); 282 irq_set_chip_data(virq, d->host_data); 283 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq))); 284 return 0; 285 } 286 287 static const struct irq_domain_ops bcm6345_l1_domain_ops = { 288 .xlate = irq_domain_xlate_onecell, 289 .map = bcm6345_l1_map, 290 }; 291 292 static int __init bcm6345_l1_of_init(struct device_node *dn, 293 struct device_node *parent) 294 { 295 struct bcm6345_l1_chip *intc; 296 unsigned int idx; 297 int ret; 298 299 intc = kzalloc(sizeof(*intc), GFP_KERNEL); 300 if (!intc) 301 return -ENOMEM; 302 303 for_each_possible_cpu(idx) { 304 ret = bcm6345_l1_init_one(dn, idx, intc); 305 if (ret) 306 pr_err("failed to init intc L1 for cpu %d: %d\n", 307 idx, ret); 308 else 309 cpumask_set_cpu(idx, &intc->cpumask); 310 } 311 312 if (cpumask_empty(&intc->cpumask)) { 313 ret = -ENODEV; 314 goto out_free; 315 } 316 317 raw_spin_lock_init(&intc->lock); 318 319 intc->domain = irq_domain_add_linear(dn, IRQS_PER_WORD * intc->n_words, 320 &bcm6345_l1_domain_ops, 321 intc); 322 if (!intc->domain) { 323 ret = -ENOMEM; 324 goto out_unmap; 325 } 326 327 pr_info("registered BCM6345 L1 intc (IRQs: %d)\n", 328 IRQS_PER_WORD * intc->n_words); 329 for_each_cpu(idx, &intc->cpumask) { 330 struct bcm6345_l1_cpu *cpu = intc->cpus[idx]; 331 332 pr_info(" CPU%u (irq = %d)\n", idx, cpu->parent_irq); 333 } 334 335 return 0; 336 337 out_unmap: 338 for_each_possible_cpu(idx) { 339 struct bcm6345_l1_cpu *cpu = intc->cpus[idx]; 340 341 if (cpu) { 342 if (cpu->map_base) 343 iounmap(cpu->map_base); 344 kfree(cpu); 345 } 346 } 347 out_free: 348 kfree(intc); 349 return ret; 350 } 351 352 IRQCHIP_DECLARE(bcm6345_l1, "brcm,bcm6345-l1-intc", bcm6345_l1_of_init); 353