xref: /linux/drivers/irqchip/irq-apple-aic.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright The Asahi Linux Contributors
4  *
5  * Based on irq-lpc32xx:
6  *   Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
7  * Based on irq-bcm2836:
8  *   Copyright 2015 Broadcom
9  */
10 
11 /*
12  * AIC is a fairly simple interrupt controller with the following features:
13  *
14  * - 896 level-triggered hardware IRQs
15  *   - Single mask bit per IRQ
16  *   - Per-IRQ affinity setting
17  *   - Automatic masking on event delivery (auto-ack)
18  *   - Software triggering (ORed with hw line)
19  * - 2 per-CPU IPIs (meant as "self" and "other", but they are
20  *   interchangeable if not symmetric)
21  * - Automatic prioritization (single event/ack register per CPU, lower IRQs =
22  *   higher priority)
23  * - Automatic masking on ack
24  * - Default "this CPU" register view and explicit per-CPU views
25  *
26  * In addition, this driver also handles FIQs, as these are routed to the same
27  * IRQ vector. These are used for Fast IPIs (TODO), the ARMv8 timer IRQs, and
28  * performance counters (TODO).
29  *
30  * Implementation notes:
31  *
32  * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
33  *   and one for IPIs.
34  * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
35  *   and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
36  * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
37  * - DT bindings use 3-cell form (like GIC):
38  *   - <0 nr flags> - hwirq #nr
39  *   - <1 nr flags> - FIQ #nr
40  *     - nr=0  Physical HV timer
41  *     - nr=1  Virtual HV timer
42  *     - nr=2  Physical guest timer
43  *     - nr=3  Virtual guest timer
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/bits.h>
49 #include <linux/bitfield.h>
50 #include <linux/cpuhotplug.h>
51 #include <linux/io.h>
52 #include <linux/irqchip.h>
53 #include <linux/irqchip/arm-vgic-info.h>
54 #include <linux/irqdomain.h>
55 #include <linux/limits.h>
56 #include <linux/of_address.h>
57 #include <linux/slab.h>
58 #include <asm/exception.h>
59 #include <asm/sysreg.h>
60 #include <asm/virt.h>
61 
62 #include <dt-bindings/interrupt-controller/apple-aic.h>
63 
64 /*
65  * AIC registers (MMIO)
66  */
67 
68 #define AIC_INFO		0x0004
69 #define AIC_INFO_NR_HW		GENMASK(15, 0)
70 
71 #define AIC_CONFIG		0x0010
72 
73 #define AIC_WHOAMI		0x2000
74 #define AIC_EVENT		0x2004
75 #define AIC_EVENT_TYPE		GENMASK(31, 16)
76 #define AIC_EVENT_NUM		GENMASK(15, 0)
77 
78 #define AIC_EVENT_TYPE_HW	1
79 #define AIC_EVENT_TYPE_IPI	4
80 #define AIC_EVENT_IPI_OTHER	1
81 #define AIC_EVENT_IPI_SELF	2
82 
83 #define AIC_IPI_SEND		0x2008
84 #define AIC_IPI_ACK		0x200c
85 #define AIC_IPI_MASK_SET	0x2024
86 #define AIC_IPI_MASK_CLR	0x2028
87 
88 #define AIC_IPI_SEND_CPU(cpu)	BIT(cpu)
89 
90 #define AIC_IPI_OTHER		BIT(0)
91 #define AIC_IPI_SELF		BIT(31)
92 
93 #define AIC_TARGET_CPU		0x3000
94 #define AIC_SW_SET		0x4000
95 #define AIC_SW_CLR		0x4080
96 #define AIC_MASK_SET		0x4100
97 #define AIC_MASK_CLR		0x4180
98 
99 #define AIC_CPU_IPI_SET(cpu)	(0x5008 + ((cpu) << 7))
100 #define AIC_CPU_IPI_CLR(cpu)	(0x500c + ((cpu) << 7))
101 #define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
102 #define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
103 
104 #define MASK_REG(x)		(4 * ((x) >> 5))
105 #define MASK_BIT(x)		BIT((x) & GENMASK(4, 0))
106 
107 /*
108  * IMP-DEF sysregs that control FIQ sources
109  * Note: sysreg-based IPIs are not supported yet.
110  */
111 
112 /* Core PMC control register */
113 #define SYS_IMP_APL_PMCR0_EL1		sys_reg(3, 1, 15, 0, 0)
114 #define PMCR0_IMODE			GENMASK(10, 8)
115 #define PMCR0_IMODE_OFF			0
116 #define PMCR0_IMODE_PMI			1
117 #define PMCR0_IMODE_AIC			2
118 #define PMCR0_IMODE_HALT		3
119 #define PMCR0_IMODE_FIQ			4
120 #define PMCR0_IACT			BIT(11)
121 
122 /* IPI request registers */
123 #define SYS_IMP_APL_IPI_RR_LOCAL_EL1	sys_reg(3, 5, 15, 0, 0)
124 #define SYS_IMP_APL_IPI_RR_GLOBAL_EL1	sys_reg(3, 5, 15, 0, 1)
125 #define IPI_RR_CPU			GENMASK(7, 0)
126 /* Cluster only used for the GLOBAL register */
127 #define IPI_RR_CLUSTER			GENMASK(23, 16)
128 #define IPI_RR_TYPE			GENMASK(29, 28)
129 #define IPI_RR_IMMEDIATE		0
130 #define IPI_RR_RETRACT			1
131 #define IPI_RR_DEFERRED			2
132 #define IPI_RR_NOWAKE			3
133 
134 /* IPI status register */
135 #define SYS_IMP_APL_IPI_SR_EL1		sys_reg(3, 5, 15, 1, 1)
136 #define IPI_SR_PENDING			BIT(0)
137 
138 /* Guest timer FIQ enable register */
139 #define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2	sys_reg(3, 5, 15, 1, 3)
140 #define VM_TMR_FIQ_ENABLE_V		BIT(0)
141 #define VM_TMR_FIQ_ENABLE_P		BIT(1)
142 
143 /* Deferred IPI countdown register */
144 #define SYS_IMP_APL_IPI_CR_EL1		sys_reg(3, 5, 15, 3, 1)
145 
146 /* Uncore PMC control register */
147 #define SYS_IMP_APL_UPMCR0_EL1		sys_reg(3, 7, 15, 0, 4)
148 #define UPMCR0_IMODE			GENMASK(18, 16)
149 #define UPMCR0_IMODE_OFF		0
150 #define UPMCR0_IMODE_AIC		2
151 #define UPMCR0_IMODE_HALT		3
152 #define UPMCR0_IMODE_FIQ		4
153 
154 /* Uncore PMC status register */
155 #define SYS_IMP_APL_UPMSR_EL1		sys_reg(3, 7, 15, 6, 4)
156 #define UPMSR_IACT			BIT(0)
157 
158 #define AIC_NR_FIQ		4
159 #define AIC_NR_SWIPI		32
160 
161 /*
162  * FIQ hwirq index definitions: FIQ sources use the DT binding defines
163  * directly, except that timers are special. At the irqchip level, the
164  * two timer types are represented by their access method: _EL0 registers
165  * or _EL02 registers. In the DT binding, the timers are represented
166  * by their purpose (HV or guest). This mapping is for when the kernel is
167  * running at EL2 (with VHE). When the kernel is running at EL1, the
168  * mapping differs and aic_irq_domain_translate() performs the remapping.
169  */
170 
171 #define AIC_TMR_EL0_PHYS	AIC_TMR_HV_PHYS
172 #define AIC_TMR_EL0_VIRT	AIC_TMR_HV_VIRT
173 #define AIC_TMR_EL02_PHYS	AIC_TMR_GUEST_PHYS
174 #define AIC_TMR_EL02_VIRT	AIC_TMR_GUEST_VIRT
175 
176 struct aic_irq_chip {
177 	void __iomem *base;
178 	struct irq_domain *hw_domain;
179 	struct irq_domain *ipi_domain;
180 	int nr_hw;
181 	int ipi_hwirq;
182 };
183 
184 static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
185 
186 static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
187 static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
188 
189 static struct aic_irq_chip *aic_irqc;
190 
191 static void aic_handle_ipi(struct pt_regs *regs);
192 
193 static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
194 {
195 	return readl_relaxed(ic->base + reg);
196 }
197 
198 static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
199 {
200 	writel_relaxed(val, ic->base + reg);
201 }
202 
203 /*
204  * IRQ irqchip
205  */
206 
207 static void aic_irq_mask(struct irq_data *d)
208 {
209 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
210 
211 	aic_ic_write(ic, AIC_MASK_SET + MASK_REG(irqd_to_hwirq(d)),
212 		     MASK_BIT(irqd_to_hwirq(d)));
213 }
214 
215 static void aic_irq_unmask(struct irq_data *d)
216 {
217 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
218 
219 	aic_ic_write(ic, AIC_MASK_CLR + MASK_REG(d->hwirq),
220 		     MASK_BIT(irqd_to_hwirq(d)));
221 }
222 
223 static void aic_irq_eoi(struct irq_data *d)
224 {
225 	/*
226 	 * Reading the interrupt reason automatically acknowledges and masks
227 	 * the IRQ, so we just unmask it here if needed.
228 	 */
229 	if (!irqd_irq_masked(d))
230 		aic_irq_unmask(d);
231 }
232 
233 static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
234 {
235 	struct aic_irq_chip *ic = aic_irqc;
236 	u32 event, type, irq;
237 
238 	do {
239 		/*
240 		 * We cannot use a relaxed read here, as reads from DMA buffers
241 		 * need to be ordered after the IRQ fires.
242 		 */
243 		event = readl(ic->base + AIC_EVENT);
244 		type = FIELD_GET(AIC_EVENT_TYPE, event);
245 		irq = FIELD_GET(AIC_EVENT_NUM, event);
246 
247 		if (type == AIC_EVENT_TYPE_HW)
248 			generic_handle_domain_irq(aic_irqc->hw_domain, irq);
249 		else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
250 			aic_handle_ipi(regs);
251 		else if (event != 0)
252 			pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
253 	} while (event);
254 
255 	/*
256 	 * vGIC maintenance interrupts end up here too, so we need to check
257 	 * for them separately. This should never trigger if KVM is working
258 	 * properly, because it will have already taken care of clearing it
259 	 * on guest exit before this handler runs.
260 	 */
261 	if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
262 		read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
263 		pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
264 		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
265 	}
266 }
267 
268 static int aic_irq_set_affinity(struct irq_data *d,
269 				const struct cpumask *mask_val, bool force)
270 {
271 	irq_hw_number_t hwirq = irqd_to_hwirq(d);
272 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
273 	int cpu;
274 
275 	if (force)
276 		cpu = cpumask_first(mask_val);
277 	else
278 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
279 
280 	aic_ic_write(ic, AIC_TARGET_CPU + hwirq * 4, BIT(cpu));
281 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
282 
283 	return IRQ_SET_MASK_OK;
284 }
285 
286 static int aic_irq_set_type(struct irq_data *d, unsigned int type)
287 {
288 	/*
289 	 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
290 	 * have a way to find out the type of any given IRQ, so just allow both.
291 	 */
292 	return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
293 }
294 
295 static struct irq_chip aic_chip = {
296 	.name = "AIC",
297 	.irq_mask = aic_irq_mask,
298 	.irq_unmask = aic_irq_unmask,
299 	.irq_eoi = aic_irq_eoi,
300 	.irq_set_affinity = aic_irq_set_affinity,
301 	.irq_set_type = aic_irq_set_type,
302 };
303 
304 /*
305  * FIQ irqchip
306  */
307 
308 static unsigned long aic_fiq_get_idx(struct irq_data *d)
309 {
310 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
311 
312 	return irqd_to_hwirq(d) - ic->nr_hw;
313 }
314 
315 static void aic_fiq_set_mask(struct irq_data *d)
316 {
317 	/* Only the guest timers have real mask bits, unfortunately. */
318 	switch (aic_fiq_get_idx(d)) {
319 	case AIC_TMR_EL02_PHYS:
320 		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
321 		isb();
322 		break;
323 	case AIC_TMR_EL02_VIRT:
324 		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
325 		isb();
326 		break;
327 	default:
328 		break;
329 	}
330 }
331 
332 static void aic_fiq_clear_mask(struct irq_data *d)
333 {
334 	switch (aic_fiq_get_idx(d)) {
335 	case AIC_TMR_EL02_PHYS:
336 		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
337 		isb();
338 		break;
339 	case AIC_TMR_EL02_VIRT:
340 		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
341 		isb();
342 		break;
343 	default:
344 		break;
345 	}
346 }
347 
348 static void aic_fiq_mask(struct irq_data *d)
349 {
350 	aic_fiq_set_mask(d);
351 	__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
352 }
353 
354 static void aic_fiq_unmask(struct irq_data *d)
355 {
356 	aic_fiq_clear_mask(d);
357 	__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
358 }
359 
360 static void aic_fiq_eoi(struct irq_data *d)
361 {
362 	/* We mask to ack (where we can), so we need to unmask at EOI. */
363 	if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
364 		aic_fiq_clear_mask(d);
365 }
366 
367 #define TIMER_FIRING(x)                                                        \
368 	(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK |            \
369 		 ARCH_TIMER_CTRL_IT_STAT)) ==                                  \
370 	 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
371 
372 static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
373 {
374 	/*
375 	 * It would be really nice if we had a system register that lets us get
376 	 * the FIQ source state without having to peek down into sources...
377 	 * but such a register does not seem to exist.
378 	 *
379 	 * So, we have these potential sources to test for:
380 	 *  - Fast IPIs (not yet used)
381 	 *  - The 4 timers (CNTP, CNTV for each of HV and guest)
382 	 *  - Per-core PMCs (not yet supported)
383 	 *  - Per-cluster uncore PMCs (not yet supported)
384 	 *
385 	 * Since not dealing with any of these results in a FIQ storm,
386 	 * we check for everything here, even things we don't support yet.
387 	 */
388 
389 	if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
390 		pr_err_ratelimited("Fast IPI fired. Acking.\n");
391 		write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
392 	}
393 
394 	if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
395 		generic_handle_domain_irq(aic_irqc->hw_domain,
396 					  aic_irqc->nr_hw + AIC_TMR_EL0_PHYS);
397 
398 	if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
399 		generic_handle_domain_irq(aic_irqc->hw_domain,
400 					  aic_irqc->nr_hw + AIC_TMR_EL0_VIRT);
401 
402 	if (is_kernel_in_hyp_mode()) {
403 		uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
404 
405 		if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
406 		    TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
407 			generic_handle_domain_irq(aic_irqc->hw_domain,
408 						  aic_irqc->nr_hw + AIC_TMR_EL02_PHYS);
409 
410 		if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
411 		    TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
412 			generic_handle_domain_irq(aic_irqc->hw_domain,
413 						  aic_irqc->nr_hw + AIC_TMR_EL02_VIRT);
414 	}
415 
416 	if ((read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & (PMCR0_IMODE | PMCR0_IACT)) ==
417 			(FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_FIQ) | PMCR0_IACT)) {
418 		/*
419 		 * Not supported yet, let's figure out how to handle this when
420 		 * we implement these proprietary performance counters. For now,
421 		 * just mask it and move on.
422 		 */
423 		pr_err_ratelimited("PMC FIQ fired. Masking.\n");
424 		sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
425 				   FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
426 	}
427 
428 	if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
429 			(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
430 		/* Same story with uncore PMCs */
431 		pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
432 		sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
433 				   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
434 	}
435 }
436 
437 static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
438 {
439 	return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
440 }
441 
442 static struct irq_chip fiq_chip = {
443 	.name = "AIC-FIQ",
444 	.irq_mask = aic_fiq_mask,
445 	.irq_unmask = aic_fiq_unmask,
446 	.irq_ack = aic_fiq_set_mask,
447 	.irq_eoi = aic_fiq_eoi,
448 	.irq_set_type = aic_fiq_set_type,
449 };
450 
451 /*
452  * Main IRQ domain
453  */
454 
455 static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
456 			      irq_hw_number_t hw)
457 {
458 	struct aic_irq_chip *ic = id->host_data;
459 
460 	if (hw < ic->nr_hw) {
461 		irq_domain_set_info(id, irq, hw, &aic_chip, id->host_data,
462 				    handle_fasteoi_irq, NULL, NULL);
463 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
464 	} else {
465 		irq_set_percpu_devid(irq);
466 		irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
467 				    handle_percpu_devid_irq, NULL, NULL);
468 	}
469 
470 	return 0;
471 }
472 
473 static int aic_irq_domain_translate(struct irq_domain *id,
474 				    struct irq_fwspec *fwspec,
475 				    unsigned long *hwirq,
476 				    unsigned int *type)
477 {
478 	struct aic_irq_chip *ic = id->host_data;
479 
480 	if (fwspec->param_count != 3 || !is_of_node(fwspec->fwnode))
481 		return -EINVAL;
482 
483 	switch (fwspec->param[0]) {
484 	case AIC_IRQ:
485 		if (fwspec->param[1] >= ic->nr_hw)
486 			return -EINVAL;
487 		*hwirq = fwspec->param[1];
488 		break;
489 	case AIC_FIQ:
490 		if (fwspec->param[1] >= AIC_NR_FIQ)
491 			return -EINVAL;
492 		*hwirq = ic->nr_hw + fwspec->param[1];
493 
494 		/*
495 		 * In EL1 the non-redirected registers are the guest's,
496 		 * not EL2's, so remap the hwirqs to match.
497 		 */
498 		if (!is_kernel_in_hyp_mode()) {
499 			switch (fwspec->param[1]) {
500 			case AIC_TMR_GUEST_PHYS:
501 				*hwirq = ic->nr_hw + AIC_TMR_EL0_PHYS;
502 				break;
503 			case AIC_TMR_GUEST_VIRT:
504 				*hwirq = ic->nr_hw + AIC_TMR_EL0_VIRT;
505 				break;
506 			case AIC_TMR_HV_PHYS:
507 			case AIC_TMR_HV_VIRT:
508 				return -ENOENT;
509 			default:
510 				break;
511 			}
512 		}
513 		break;
514 	default:
515 		return -EINVAL;
516 	}
517 
518 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
519 
520 	return 0;
521 }
522 
523 static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
524 				unsigned int nr_irqs, void *arg)
525 {
526 	unsigned int type = IRQ_TYPE_NONE;
527 	struct irq_fwspec *fwspec = arg;
528 	irq_hw_number_t hwirq;
529 	int i, ret;
530 
531 	ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
532 	if (ret)
533 		return ret;
534 
535 	for (i = 0; i < nr_irqs; i++) {
536 		ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
537 		if (ret)
538 			return ret;
539 	}
540 
541 	return 0;
542 }
543 
544 static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
545 				unsigned int nr_irqs)
546 {
547 	int i;
548 
549 	for (i = 0; i < nr_irqs; i++) {
550 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
551 
552 		irq_set_handler(virq + i, NULL);
553 		irq_domain_reset_irq_data(d);
554 	}
555 }
556 
557 static const struct irq_domain_ops aic_irq_domain_ops = {
558 	.translate	= aic_irq_domain_translate,
559 	.alloc		= aic_irq_domain_alloc,
560 	.free		= aic_irq_domain_free,
561 };
562 
563 /*
564  * IPI irqchip
565  */
566 
567 static void aic_ipi_mask(struct irq_data *d)
568 {
569 	u32 irq_bit = BIT(irqd_to_hwirq(d));
570 
571 	/* No specific ordering requirements needed here. */
572 	atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
573 }
574 
575 static void aic_ipi_unmask(struct irq_data *d)
576 {
577 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
578 	u32 irq_bit = BIT(irqd_to_hwirq(d));
579 
580 	atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
581 
582 	/*
583 	 * The atomic_or() above must complete before the atomic_read()
584 	 * below to avoid racing aic_ipi_send_mask().
585 	 */
586 	smp_mb__after_atomic();
587 
588 	/*
589 	 * If a pending vIPI was unmasked, raise a HW IPI to ourselves.
590 	 * No barriers needed here since this is a self-IPI.
591 	 */
592 	if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit)
593 		aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
594 }
595 
596 static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
597 {
598 	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
599 	u32 irq_bit = BIT(irqd_to_hwirq(d));
600 	u32 send = 0;
601 	int cpu;
602 	unsigned long pending;
603 
604 	for_each_cpu(cpu, mask) {
605 		/*
606 		 * This sequence is the mirror of the one in aic_ipi_unmask();
607 		 * see the comment there. Additionally, release semantics
608 		 * ensure that the vIPI flag set is ordered after any shared
609 		 * memory accesses that precede it. This therefore also pairs
610 		 * with the atomic_fetch_andnot in aic_handle_ipi().
611 		 */
612 		pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
613 
614 		/*
615 		 * The atomic_fetch_or_release() above must complete before the
616 		 * atomic_read() below to avoid racing aic_ipi_unmask().
617 		 */
618 		smp_mb__after_atomic();
619 
620 		if (!(pending & irq_bit) &&
621 		    (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit))
622 			send |= AIC_IPI_SEND_CPU(cpu);
623 	}
624 
625 	/*
626 	 * The flag writes must complete before the physical IPI is issued
627 	 * to another CPU. This is implied by the control dependency on
628 	 * the result of atomic_read_acquire() above, which is itself
629 	 * already ordered after the vIPI flag write.
630 	 */
631 	if (send)
632 		aic_ic_write(ic, AIC_IPI_SEND, send);
633 }
634 
635 static struct irq_chip ipi_chip = {
636 	.name = "AIC-IPI",
637 	.irq_mask = aic_ipi_mask,
638 	.irq_unmask = aic_ipi_unmask,
639 	.ipi_send_mask = aic_ipi_send_mask,
640 };
641 
642 /*
643  * IPI IRQ domain
644  */
645 
646 static void aic_handle_ipi(struct pt_regs *regs)
647 {
648 	int i;
649 	unsigned long enabled, firing;
650 
651 	/*
652 	 * Ack the IPI. We need to order this after the AIC event read, but
653 	 * that is enforced by normal MMIO ordering guarantees.
654 	 */
655 	aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
656 
657 	/*
658 	 * The mask read does not need to be ordered. Only we can change
659 	 * our own mask anyway, so no races are possible here, as long as
660 	 * we are properly in the interrupt handler (which is covered by
661 	 * the barrier that is part of the top-level AIC handler's readl()).
662 	 */
663 	enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
664 
665 	/*
666 	 * Clear the IPIs we are about to handle. This pairs with the
667 	 * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
668 	 * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
669 	 * before IPI handling code (to avoid races handling vIPIs before they
670 	 * are signaled). The former is taken care of by the release semantics
671 	 * of the write portion, while the latter is taken care of by the
672 	 * acquire semantics of the read portion.
673 	 */
674 	firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
675 
676 	for_each_set_bit(i, &firing, AIC_NR_SWIPI)
677 		generic_handle_domain_irq(aic_irqc->ipi_domain, i);
678 
679 	/*
680 	 * No ordering needed here; at worst this just changes the timing of
681 	 * when the next IPI will be delivered.
682 	 */
683 	aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
684 }
685 
686 static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
687 			 unsigned int nr_irqs, void *args)
688 {
689 	int i;
690 
691 	for (i = 0; i < nr_irqs; i++) {
692 		irq_set_percpu_devid(virq + i);
693 		irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
694 				    handle_percpu_devid_irq, NULL, NULL);
695 	}
696 
697 	return 0;
698 }
699 
700 static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
701 {
702 	/* Not freeing IPIs */
703 }
704 
705 static const struct irq_domain_ops aic_ipi_domain_ops = {
706 	.alloc = aic_ipi_alloc,
707 	.free = aic_ipi_free,
708 };
709 
710 static int aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
711 {
712 	struct irq_domain *ipi_domain;
713 	int base_ipi;
714 
715 	ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
716 					      &aic_ipi_domain_ops, irqc);
717 	if (WARN_ON(!ipi_domain))
718 		return -ENODEV;
719 
720 	ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
721 	irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
722 
723 	base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
724 					   NUMA_NO_NODE, NULL, false, NULL);
725 
726 	if (WARN_ON(!base_ipi)) {
727 		irq_domain_remove(ipi_domain);
728 		return -ENODEV;
729 	}
730 
731 	set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
732 
733 	irqc->ipi_domain = ipi_domain;
734 
735 	return 0;
736 }
737 
738 static int aic_init_cpu(unsigned int cpu)
739 {
740 	/* Mask all hard-wired per-CPU IRQ/FIQ sources */
741 
742 	/* Pending Fast IPI FIQs */
743 	write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
744 
745 	/* Timer FIQs */
746 	sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
747 	sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
748 
749 	/* EL2-only (VHE mode) IRQ sources */
750 	if (is_kernel_in_hyp_mode()) {
751 		/* Guest timers */
752 		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
753 				   VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
754 
755 		/* vGIC maintenance IRQ */
756 		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
757 	}
758 
759 	/* PMC FIQ */
760 	sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
761 			   FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
762 
763 	/* Uncore PMC FIQ */
764 	sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
765 			   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
766 
767 	/* Commit all of the above */
768 	isb();
769 
770 	/*
771 	 * Make sure the kernel's idea of logical CPU order is the same as AIC's
772 	 * If we ever end up with a mismatch here, we will have to introduce
773 	 * a mapping table similar to what other irqchip drivers do.
774 	 */
775 	WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
776 
777 	/*
778 	 * Always keep IPIs unmasked at the hardware level (except auto-masking
779 	 * by AIC during processing). We manage masks at the vIPI level.
780 	 */
781 	aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
782 	aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
783 	aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
784 
785 	/* Initialize the local mask state */
786 	__this_cpu_write(aic_fiq_unmasked, 0);
787 
788 	return 0;
789 }
790 
791 static struct gic_kvm_info vgic_info __initdata = {
792 	.type			= GIC_V3,
793 	.no_maint_irq_mask	= true,
794 	.no_hw_deactivation	= true,
795 };
796 
797 static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
798 {
799 	int i;
800 	void __iomem *regs;
801 	u32 info;
802 	struct aic_irq_chip *irqc;
803 
804 	regs = of_iomap(node, 0);
805 	if (WARN_ON(!regs))
806 		return -EIO;
807 
808 	irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
809 	if (!irqc)
810 		return -ENOMEM;
811 
812 	aic_irqc = irqc;
813 	irqc->base = regs;
814 
815 	info = aic_ic_read(irqc, AIC_INFO);
816 	irqc->nr_hw = FIELD_GET(AIC_INFO_NR_HW, info);
817 
818 	irqc->hw_domain = irq_domain_create_linear(of_node_to_fwnode(node),
819 						   irqc->nr_hw + AIC_NR_FIQ,
820 						   &aic_irq_domain_ops, irqc);
821 	if (WARN_ON(!irqc->hw_domain)) {
822 		iounmap(irqc->base);
823 		kfree(irqc);
824 		return -ENODEV;
825 	}
826 
827 	irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
828 
829 	if (aic_init_smp(irqc, node)) {
830 		irq_domain_remove(irqc->hw_domain);
831 		iounmap(irqc->base);
832 		kfree(irqc);
833 		return -ENODEV;
834 	}
835 
836 	set_handle_irq(aic_handle_irq);
837 	set_handle_fiq(aic_handle_fiq);
838 
839 	for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++)
840 		aic_ic_write(irqc, AIC_MASK_SET + i * 4, U32_MAX);
841 	for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++)
842 		aic_ic_write(irqc, AIC_SW_CLR + i * 4, U32_MAX);
843 	for (i = 0; i < irqc->nr_hw; i++)
844 		aic_ic_write(irqc, AIC_TARGET_CPU + i * 4, 1);
845 
846 	if (!is_kernel_in_hyp_mode())
847 		pr_info("Kernel running in EL1, mapping interrupts");
848 
849 	cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
850 			  "irqchip/apple-aic/ipi:starting",
851 			  aic_init_cpu, NULL);
852 
853 	vgic_set_kvm_info(&vgic_info);
854 
855 	pr_info("Initialized with %d IRQs, %d FIQs, %d vIPIs\n",
856 		irqc->nr_hw, AIC_NR_FIQ, AIC_NR_SWIPI);
857 
858 	return 0;
859 }
860 
861 IRQCHIP_DECLARE(apple_m1_aic, "apple,aic", aic_of_ic_init);
862