xref: /linux/drivers/iommu/rockchip-iommu.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * IOMMU API for Rockchip
4  *
5  * Module Authors:	Simon Xue <xxm@rock-chips.com>
6  *			Daniel Kurtz <djkurtz@chromium.org>
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/iopoll.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/init.h>
23 #include <linux/of.h>
24 #include <linux/of_iommu.h>
25 #include <linux/of_platform.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 
31 /** MMU register offsets */
32 #define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
33 #define RK_MMU_STATUS		0x04
34 #define RK_MMU_COMMAND		0x08
35 #define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
36 #define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
37 #define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
38 #define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
39 #define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
40 #define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
41 #define RK_MMU_AUTO_GATING	0x24
42 
43 #define DTE_ADDR_DUMMY		0xCAFEBABE
44 
45 #define RK_MMU_POLL_PERIOD_US		100
46 #define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
47 #define RK_MMU_POLL_TIMEOUT_US		1000
48 
49 /* RK_MMU_STATUS fields */
50 #define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
51 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
52 #define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
53 #define RK_MMU_STATUS_IDLE                 BIT(3)
54 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
55 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
56 #define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
57 
58 /* RK_MMU_COMMAND command values */
59 #define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
60 #define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
61 #define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
62 #define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
63 #define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
64 #define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
65 #define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
66 
67 /* RK_MMU_INT_* register fields */
68 #define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
69 #define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
70 #define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
71 
72 #define NUM_DT_ENTRIES 1024
73 #define NUM_PT_ENTRIES 1024
74 
75 #define SPAGE_ORDER 12
76 #define SPAGE_SIZE (1 << SPAGE_ORDER)
77 
78  /*
79   * Support mapping any size that fits in one page table:
80   *   4 KiB to 4 MiB
81   */
82 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
83 
84 struct rk_iommu_domain {
85 	struct list_head iommus;
86 	u32 *dt; /* page directory table */
87 	dma_addr_t dt_dma;
88 	spinlock_t iommus_lock; /* lock for iommus list */
89 	spinlock_t dt_lock; /* lock for modifying page directory table */
90 
91 	struct iommu_domain domain;
92 };
93 
94 /* list of clocks required by IOMMU */
95 static const char * const rk_iommu_clocks[] = {
96 	"aclk", "iface",
97 };
98 
99 struct rk_iommu {
100 	struct device *dev;
101 	void __iomem **bases;
102 	int num_mmu;
103 	struct clk_bulk_data *clocks;
104 	int num_clocks;
105 	bool reset_disabled;
106 	struct iommu_device iommu;
107 	struct list_head node; /* entry in rk_iommu_domain.iommus */
108 	struct iommu_domain *domain; /* domain to which iommu is attached */
109 	struct iommu_group *group;
110 };
111 
112 struct rk_iommudata {
113 	struct device_link *link; /* runtime PM link from IOMMU to master */
114 	struct rk_iommu *iommu;
115 };
116 
117 static struct device *dma_dev;
118 
119 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
120 				  unsigned int count)
121 {
122 	size_t size = count * sizeof(u32); /* count of u32 entry */
123 
124 	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
125 }
126 
127 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
128 {
129 	return container_of(dom, struct rk_iommu_domain, domain);
130 }
131 
132 /*
133  * The Rockchip rk3288 iommu uses a 2-level page table.
134  * The first level is the "Directory Table" (DT).
135  * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
136  * to a "Page Table".
137  * The second level is the 1024 Page Tables (PT).
138  * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
139  * a 4 KB page of physical memory.
140  *
141  * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
142  * Each iommu device has a MMU_DTE_ADDR register that contains the physical
143  * address of the start of the DT page.
144  *
145  * The structure of the page table is as follows:
146  *
147  *                   DT
148  * MMU_DTE_ADDR -> +-----+
149  *                 |     |
150  *                 +-----+     PT
151  *                 | DTE | -> +-----+
152  *                 +-----+    |     |     Memory
153  *                 |     |    +-----+     Page
154  *                 |     |    | PTE | -> +-----+
155  *                 +-----+    +-----+    |     |
156  *                            |     |    |     |
157  *                            |     |    |     |
158  *                            +-----+    |     |
159  *                                       |     |
160  *                                       |     |
161  *                                       +-----+
162  */
163 
164 /*
165  * Each DTE has a PT address and a valid bit:
166  * +---------------------+-----------+-+
167  * | PT address          | Reserved  |V|
168  * +---------------------+-----------+-+
169  *  31:12 - PT address (PTs always starts on a 4 KB boundary)
170  *  11: 1 - Reserved
171  *      0 - 1 if PT @ PT address is valid
172  */
173 #define RK_DTE_PT_ADDRESS_MASK    0xfffff000
174 #define RK_DTE_PT_VALID           BIT(0)
175 
176 static inline phys_addr_t rk_dte_pt_address(u32 dte)
177 {
178 	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
179 }
180 
181 static inline bool rk_dte_is_pt_valid(u32 dte)
182 {
183 	return dte & RK_DTE_PT_VALID;
184 }
185 
186 static inline u32 rk_mk_dte(dma_addr_t pt_dma)
187 {
188 	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
189 }
190 
191 /*
192  * Each PTE has a Page address, some flags and a valid bit:
193  * +---------------------+---+-------+-+
194  * | Page address        |Rsv| Flags |V|
195  * +---------------------+---+-------+-+
196  *  31:12 - Page address (Pages always start on a 4 KB boundary)
197  *  11: 9 - Reserved
198  *   8: 1 - Flags
199  *      8 - Read allocate - allocate cache space on read misses
200  *      7 - Read cache - enable cache & prefetch of data
201  *      6 - Write buffer - enable delaying writes on their way to memory
202  *      5 - Write allocate - allocate cache space on write misses
203  *      4 - Write cache - different writes can be merged together
204  *      3 - Override cache attributes
205  *          if 1, bits 4-8 control cache attributes
206  *          if 0, the system bus defaults are used
207  *      2 - Writable
208  *      1 - Readable
209  *      0 - 1 if Page @ Page address is valid
210  */
211 #define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
212 #define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
213 #define RK_PTE_PAGE_WRITABLE      BIT(2)
214 #define RK_PTE_PAGE_READABLE      BIT(1)
215 #define RK_PTE_PAGE_VALID         BIT(0)
216 
217 static inline phys_addr_t rk_pte_page_address(u32 pte)
218 {
219 	return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK;
220 }
221 
222 static inline bool rk_pte_is_page_valid(u32 pte)
223 {
224 	return pte & RK_PTE_PAGE_VALID;
225 }
226 
227 /* TODO: set cache flags per prot IOMMU_CACHE */
228 static u32 rk_mk_pte(phys_addr_t page, int prot)
229 {
230 	u32 flags = 0;
231 	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
232 	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
233 	page &= RK_PTE_PAGE_ADDRESS_MASK;
234 	return page | flags | RK_PTE_PAGE_VALID;
235 }
236 
237 static u32 rk_mk_pte_invalid(u32 pte)
238 {
239 	return pte & ~RK_PTE_PAGE_VALID;
240 }
241 
242 /*
243  * rk3288 iova (IOMMU Virtual Address) format
244  *  31       22.21       12.11          0
245  * +-----------+-----------+-------------+
246  * | DTE index | PTE index | Page offset |
247  * +-----------+-----------+-------------+
248  *  31:22 - DTE index   - index of DTE in DT
249  *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
250  *  11: 0 - Page offset - offset into page @ PTE.page_address
251  */
252 #define RK_IOVA_DTE_MASK    0xffc00000
253 #define RK_IOVA_DTE_SHIFT   22
254 #define RK_IOVA_PTE_MASK    0x003ff000
255 #define RK_IOVA_PTE_SHIFT   12
256 #define RK_IOVA_PAGE_MASK   0x00000fff
257 #define RK_IOVA_PAGE_SHIFT  0
258 
259 static u32 rk_iova_dte_index(dma_addr_t iova)
260 {
261 	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
262 }
263 
264 static u32 rk_iova_pte_index(dma_addr_t iova)
265 {
266 	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
267 }
268 
269 static u32 rk_iova_page_offset(dma_addr_t iova)
270 {
271 	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
272 }
273 
274 static u32 rk_iommu_read(void __iomem *base, u32 offset)
275 {
276 	return readl(base + offset);
277 }
278 
279 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
280 {
281 	writel(value, base + offset);
282 }
283 
284 static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
285 {
286 	int i;
287 
288 	for (i = 0; i < iommu->num_mmu; i++)
289 		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
290 }
291 
292 static void rk_iommu_base_command(void __iomem *base, u32 command)
293 {
294 	writel(command, base + RK_MMU_COMMAND);
295 }
296 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
297 			       size_t size)
298 {
299 	int i;
300 	dma_addr_t iova_end = iova_start + size;
301 	/*
302 	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
303 	 * entire iotlb rather than iterate over individual iovas.
304 	 */
305 	for (i = 0; i < iommu->num_mmu; i++) {
306 		dma_addr_t iova;
307 
308 		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
309 			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
310 	}
311 }
312 
313 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
314 {
315 	bool active = true;
316 	int i;
317 
318 	for (i = 0; i < iommu->num_mmu; i++)
319 		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
320 					   RK_MMU_STATUS_STALL_ACTIVE);
321 
322 	return active;
323 }
324 
325 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
326 {
327 	bool enable = true;
328 	int i;
329 
330 	for (i = 0; i < iommu->num_mmu; i++)
331 		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
332 					   RK_MMU_STATUS_PAGING_ENABLED);
333 
334 	return enable;
335 }
336 
337 static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
338 {
339 	bool done = true;
340 	int i;
341 
342 	for (i = 0; i < iommu->num_mmu; i++)
343 		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
344 
345 	return done;
346 }
347 
348 static int rk_iommu_enable_stall(struct rk_iommu *iommu)
349 {
350 	int ret, i;
351 	bool val;
352 
353 	if (rk_iommu_is_stall_active(iommu))
354 		return 0;
355 
356 	/* Stall can only be enabled if paging is enabled */
357 	if (!rk_iommu_is_paging_enabled(iommu))
358 		return 0;
359 
360 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
361 
362 	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
363 				 val, RK_MMU_POLL_PERIOD_US,
364 				 RK_MMU_POLL_TIMEOUT_US);
365 	if (ret)
366 		for (i = 0; i < iommu->num_mmu; i++)
367 			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
368 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
369 
370 	return ret;
371 }
372 
373 static int rk_iommu_disable_stall(struct rk_iommu *iommu)
374 {
375 	int ret, i;
376 	bool val;
377 
378 	if (!rk_iommu_is_stall_active(iommu))
379 		return 0;
380 
381 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
382 
383 	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
384 				 !val, RK_MMU_POLL_PERIOD_US,
385 				 RK_MMU_POLL_TIMEOUT_US);
386 	if (ret)
387 		for (i = 0; i < iommu->num_mmu; i++)
388 			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
389 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
390 
391 	return ret;
392 }
393 
394 static int rk_iommu_enable_paging(struct rk_iommu *iommu)
395 {
396 	int ret, i;
397 	bool val;
398 
399 	if (rk_iommu_is_paging_enabled(iommu))
400 		return 0;
401 
402 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
403 
404 	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
405 				 val, RK_MMU_POLL_PERIOD_US,
406 				 RK_MMU_POLL_TIMEOUT_US);
407 	if (ret)
408 		for (i = 0; i < iommu->num_mmu; i++)
409 			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
410 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
411 
412 	return ret;
413 }
414 
415 static int rk_iommu_disable_paging(struct rk_iommu *iommu)
416 {
417 	int ret, i;
418 	bool val;
419 
420 	if (!rk_iommu_is_paging_enabled(iommu))
421 		return 0;
422 
423 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
424 
425 	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
426 				 !val, RK_MMU_POLL_PERIOD_US,
427 				 RK_MMU_POLL_TIMEOUT_US);
428 	if (ret)
429 		for (i = 0; i < iommu->num_mmu; i++)
430 			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
431 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
432 
433 	return ret;
434 }
435 
436 static int rk_iommu_force_reset(struct rk_iommu *iommu)
437 {
438 	int ret, i;
439 	u32 dte_addr;
440 	bool val;
441 
442 	if (iommu->reset_disabled)
443 		return 0;
444 
445 	/*
446 	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
447 	 * and verifying that upper 5 nybbles are read back.
448 	 */
449 	for (i = 0; i < iommu->num_mmu; i++) {
450 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY);
451 
452 		dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR);
453 		if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) {
454 			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
455 			return -EFAULT;
456 		}
457 	}
458 
459 	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
460 
461 	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
462 				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
463 				 RK_MMU_POLL_TIMEOUT_US);
464 	if (ret) {
465 		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
466 		return ret;
467 	}
468 
469 	return 0;
470 }
471 
472 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
473 {
474 	void __iomem *base = iommu->bases[index];
475 	u32 dte_index, pte_index, page_offset;
476 	u32 mmu_dte_addr;
477 	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
478 	u32 *dte_addr;
479 	u32 dte;
480 	phys_addr_t pte_addr_phys = 0;
481 	u32 *pte_addr = NULL;
482 	u32 pte = 0;
483 	phys_addr_t page_addr_phys = 0;
484 	u32 page_flags = 0;
485 
486 	dte_index = rk_iova_dte_index(iova);
487 	pte_index = rk_iova_pte_index(iova);
488 	page_offset = rk_iova_page_offset(iova);
489 
490 	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
491 	mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr;
492 
493 	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
494 	dte_addr = phys_to_virt(dte_addr_phys);
495 	dte = *dte_addr;
496 
497 	if (!rk_dte_is_pt_valid(dte))
498 		goto print_it;
499 
500 	pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4);
501 	pte_addr = phys_to_virt(pte_addr_phys);
502 	pte = *pte_addr;
503 
504 	if (!rk_pte_is_page_valid(pte))
505 		goto print_it;
506 
507 	page_addr_phys = rk_pte_page_address(pte) + page_offset;
508 	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
509 
510 print_it:
511 	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
512 		&iova, dte_index, pte_index, page_offset);
513 	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
514 		&mmu_dte_addr_phys, &dte_addr_phys, dte,
515 		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
516 		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
517 }
518 
519 static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
520 {
521 	struct rk_iommu *iommu = dev_id;
522 	u32 status;
523 	u32 int_status;
524 	dma_addr_t iova;
525 	irqreturn_t ret = IRQ_NONE;
526 	int i, err;
527 
528 	err = pm_runtime_get_if_in_use(iommu->dev);
529 	if (WARN_ON_ONCE(err <= 0))
530 		return ret;
531 
532 	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
533 		goto out;
534 
535 	for (i = 0; i < iommu->num_mmu; i++) {
536 		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
537 		if (int_status == 0)
538 			continue;
539 
540 		ret = IRQ_HANDLED;
541 		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
542 
543 		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
544 			int flags;
545 
546 			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
547 			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
548 					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
549 
550 			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
551 				&iova,
552 				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
553 
554 			log_iova(iommu, i, iova);
555 
556 			/*
557 			 * Report page fault to any installed handlers.
558 			 * Ignore the return code, though, since we always zap cache
559 			 * and clear the page fault anyway.
560 			 */
561 			if (iommu->domain)
562 				report_iommu_fault(iommu->domain, iommu->dev, iova,
563 						   flags);
564 			else
565 				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
566 
567 			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
568 			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
569 		}
570 
571 		if (int_status & RK_MMU_IRQ_BUS_ERROR)
572 			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
573 
574 		if (int_status & ~RK_MMU_IRQ_MASK)
575 			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
576 				int_status);
577 
578 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
579 	}
580 
581 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
582 
583 out:
584 	pm_runtime_put(iommu->dev);
585 	return ret;
586 }
587 
588 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
589 					 dma_addr_t iova)
590 {
591 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
592 	unsigned long flags;
593 	phys_addr_t pt_phys, phys = 0;
594 	u32 dte, pte;
595 	u32 *page_table;
596 
597 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
598 
599 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
600 	if (!rk_dte_is_pt_valid(dte))
601 		goto out;
602 
603 	pt_phys = rk_dte_pt_address(dte);
604 	page_table = (u32 *)phys_to_virt(pt_phys);
605 	pte = page_table[rk_iova_pte_index(iova)];
606 	if (!rk_pte_is_page_valid(pte))
607 		goto out;
608 
609 	phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova);
610 out:
611 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
612 
613 	return phys;
614 }
615 
616 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
617 			      dma_addr_t iova, size_t size)
618 {
619 	struct list_head *pos;
620 	unsigned long flags;
621 
622 	/* shootdown these iova from all iommus using this domain */
623 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
624 	list_for_each(pos, &rk_domain->iommus) {
625 		struct rk_iommu *iommu;
626 		int ret;
627 
628 		iommu = list_entry(pos, struct rk_iommu, node);
629 
630 		/* Only zap TLBs of IOMMUs that are powered on. */
631 		ret = pm_runtime_get_if_in_use(iommu->dev);
632 		if (WARN_ON_ONCE(ret < 0))
633 			continue;
634 		if (ret) {
635 			WARN_ON(clk_bulk_enable(iommu->num_clocks,
636 						iommu->clocks));
637 			rk_iommu_zap_lines(iommu, iova, size);
638 			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
639 			pm_runtime_put(iommu->dev);
640 		}
641 	}
642 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
643 }
644 
645 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
646 					 dma_addr_t iova, size_t size)
647 {
648 	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
649 	if (size > SPAGE_SIZE)
650 		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
651 					SPAGE_SIZE);
652 }
653 
654 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
655 				  dma_addr_t iova)
656 {
657 	u32 *page_table, *dte_addr;
658 	u32 dte_index, dte;
659 	phys_addr_t pt_phys;
660 	dma_addr_t pt_dma;
661 
662 	assert_spin_locked(&rk_domain->dt_lock);
663 
664 	dte_index = rk_iova_dte_index(iova);
665 	dte_addr = &rk_domain->dt[dte_index];
666 	dte = *dte_addr;
667 	if (rk_dte_is_pt_valid(dte))
668 		goto done;
669 
670 	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
671 	if (!page_table)
672 		return ERR_PTR(-ENOMEM);
673 
674 	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
675 	if (dma_mapping_error(dma_dev, pt_dma)) {
676 		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
677 		free_page((unsigned long)page_table);
678 		return ERR_PTR(-ENOMEM);
679 	}
680 
681 	dte = rk_mk_dte(pt_dma);
682 	*dte_addr = dte;
683 
684 	rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES);
685 	rk_table_flush(rk_domain,
686 		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
687 done:
688 	pt_phys = rk_dte_pt_address(dte);
689 	return (u32 *)phys_to_virt(pt_phys);
690 }
691 
692 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
693 				  u32 *pte_addr, dma_addr_t pte_dma,
694 				  size_t size)
695 {
696 	unsigned int pte_count;
697 	unsigned int pte_total = size / SPAGE_SIZE;
698 
699 	assert_spin_locked(&rk_domain->dt_lock);
700 
701 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
702 		u32 pte = pte_addr[pte_count];
703 		if (!rk_pte_is_page_valid(pte))
704 			break;
705 
706 		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
707 	}
708 
709 	rk_table_flush(rk_domain, pte_dma, pte_count);
710 
711 	return pte_count * SPAGE_SIZE;
712 }
713 
714 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
715 			     dma_addr_t pte_dma, dma_addr_t iova,
716 			     phys_addr_t paddr, size_t size, int prot)
717 {
718 	unsigned int pte_count;
719 	unsigned int pte_total = size / SPAGE_SIZE;
720 	phys_addr_t page_phys;
721 
722 	assert_spin_locked(&rk_domain->dt_lock);
723 
724 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
725 		u32 pte = pte_addr[pte_count];
726 
727 		if (rk_pte_is_page_valid(pte))
728 			goto unwind;
729 
730 		pte_addr[pte_count] = rk_mk_pte(paddr, prot);
731 
732 		paddr += SPAGE_SIZE;
733 	}
734 
735 	rk_table_flush(rk_domain, pte_dma, pte_total);
736 
737 	/*
738 	 * Zap the first and last iova to evict from iotlb any previously
739 	 * mapped cachelines holding stale values for its dte and pte.
740 	 * We only zap the first and last iova, since only they could have
741 	 * dte or pte shared with an existing mapping.
742 	 */
743 	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
744 
745 	return 0;
746 unwind:
747 	/* Unmap the range of iovas that we just mapped */
748 	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
749 			    pte_count * SPAGE_SIZE);
750 
751 	iova += pte_count * SPAGE_SIZE;
752 	page_phys = rk_pte_page_address(pte_addr[pte_count]);
753 	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
754 	       &iova, &page_phys, &paddr, prot);
755 
756 	return -EADDRINUSE;
757 }
758 
759 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
760 			phys_addr_t paddr, size_t size, int prot)
761 {
762 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
763 	unsigned long flags;
764 	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
765 	u32 *page_table, *pte_addr;
766 	u32 dte_index, pte_index;
767 	int ret;
768 
769 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
770 
771 	/*
772 	 * pgsize_bitmap specifies iova sizes that fit in one page table
773 	 * (1024 4-KiB pages = 4 MiB).
774 	 * So, size will always be 4096 <= size <= 4194304.
775 	 * Since iommu_map() guarantees that both iova and size will be
776 	 * aligned, we will always only be mapping from a single dte here.
777 	 */
778 	page_table = rk_dte_get_page_table(rk_domain, iova);
779 	if (IS_ERR(page_table)) {
780 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
781 		return PTR_ERR(page_table);
782 	}
783 
784 	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
785 	pte_index = rk_iova_pte_index(iova);
786 	pte_addr = &page_table[pte_index];
787 	pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32);
788 	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
789 				paddr, size, prot);
790 
791 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
792 
793 	return ret;
794 }
795 
796 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
797 			     size_t size, struct iommu_iotlb_gather *gather)
798 {
799 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
800 	unsigned long flags;
801 	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
802 	phys_addr_t pt_phys;
803 	u32 dte;
804 	u32 *pte_addr;
805 	size_t unmap_size;
806 
807 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
808 
809 	/*
810 	 * pgsize_bitmap specifies iova sizes that fit in one page table
811 	 * (1024 4-KiB pages = 4 MiB).
812 	 * So, size will always be 4096 <= size <= 4194304.
813 	 * Since iommu_unmap() guarantees that both iova and size will be
814 	 * aligned, we will always only be unmapping from a single dte here.
815 	 */
816 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
817 	/* Just return 0 if iova is unmapped */
818 	if (!rk_dte_is_pt_valid(dte)) {
819 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
820 		return 0;
821 	}
822 
823 	pt_phys = rk_dte_pt_address(dte);
824 	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
825 	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
826 	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
827 
828 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
829 
830 	/* Shootdown iotlb entries for iova range that was just unmapped */
831 	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
832 
833 	return unmap_size;
834 }
835 
836 static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
837 {
838 	struct rk_iommudata *data = dev->archdata.iommu;
839 
840 	return data ? data->iommu : NULL;
841 }
842 
843 /* Must be called with iommu powered on and attached */
844 static void rk_iommu_disable(struct rk_iommu *iommu)
845 {
846 	int i;
847 
848 	/* Ignore error while disabling, just keep going */
849 	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
850 	rk_iommu_enable_stall(iommu);
851 	rk_iommu_disable_paging(iommu);
852 	for (i = 0; i < iommu->num_mmu; i++) {
853 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
854 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
855 	}
856 	rk_iommu_disable_stall(iommu);
857 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
858 }
859 
860 /* Must be called with iommu powered on and attached */
861 static int rk_iommu_enable(struct rk_iommu *iommu)
862 {
863 	struct iommu_domain *domain = iommu->domain;
864 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
865 	int ret, i;
866 
867 	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
868 	if (ret)
869 		return ret;
870 
871 	ret = rk_iommu_enable_stall(iommu);
872 	if (ret)
873 		goto out_disable_clocks;
874 
875 	ret = rk_iommu_force_reset(iommu);
876 	if (ret)
877 		goto out_disable_stall;
878 
879 	for (i = 0; i < iommu->num_mmu; i++) {
880 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
881 			       rk_domain->dt_dma);
882 		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
883 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
884 	}
885 
886 	ret = rk_iommu_enable_paging(iommu);
887 
888 out_disable_stall:
889 	rk_iommu_disable_stall(iommu);
890 out_disable_clocks:
891 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
892 	return ret;
893 }
894 
895 static void rk_iommu_detach_device(struct iommu_domain *domain,
896 				   struct device *dev)
897 {
898 	struct rk_iommu *iommu;
899 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
900 	unsigned long flags;
901 	int ret;
902 
903 	/* Allow 'virtual devices' (eg drm) to detach from domain */
904 	iommu = rk_iommu_from_dev(dev);
905 	if (!iommu)
906 		return;
907 
908 	dev_dbg(dev, "Detaching from iommu domain\n");
909 
910 	/* iommu already detached */
911 	if (iommu->domain != domain)
912 		return;
913 
914 	iommu->domain = NULL;
915 
916 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
917 	list_del_init(&iommu->node);
918 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
919 
920 	ret = pm_runtime_get_if_in_use(iommu->dev);
921 	WARN_ON_ONCE(ret < 0);
922 	if (ret > 0) {
923 		rk_iommu_disable(iommu);
924 		pm_runtime_put(iommu->dev);
925 	}
926 }
927 
928 static int rk_iommu_attach_device(struct iommu_domain *domain,
929 		struct device *dev)
930 {
931 	struct rk_iommu *iommu;
932 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
933 	unsigned long flags;
934 	int ret;
935 
936 	/*
937 	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
938 	 * Such a device does not belong to an iommu group.
939 	 */
940 	iommu = rk_iommu_from_dev(dev);
941 	if (!iommu)
942 		return 0;
943 
944 	dev_dbg(dev, "Attaching to iommu domain\n");
945 
946 	/* iommu already attached */
947 	if (iommu->domain == domain)
948 		return 0;
949 
950 	if (iommu->domain)
951 		rk_iommu_detach_device(iommu->domain, dev);
952 
953 	iommu->domain = domain;
954 
955 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
956 	list_add_tail(&iommu->node, &rk_domain->iommus);
957 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
958 
959 	ret = pm_runtime_get_if_in_use(iommu->dev);
960 	if (!ret || WARN_ON_ONCE(ret < 0))
961 		return 0;
962 
963 	ret = rk_iommu_enable(iommu);
964 	if (ret)
965 		rk_iommu_detach_device(iommu->domain, dev);
966 
967 	pm_runtime_put(iommu->dev);
968 
969 	return ret;
970 }
971 
972 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
973 {
974 	struct rk_iommu_domain *rk_domain;
975 
976 	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
977 		return NULL;
978 
979 	if (!dma_dev)
980 		return NULL;
981 
982 	rk_domain = devm_kzalloc(dma_dev, sizeof(*rk_domain), GFP_KERNEL);
983 	if (!rk_domain)
984 		return NULL;
985 
986 	if (type == IOMMU_DOMAIN_DMA &&
987 	    iommu_get_dma_cookie(&rk_domain->domain))
988 		return NULL;
989 
990 	/*
991 	 * rk32xx iommus use a 2 level pagetable.
992 	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
993 	 * Allocate one 4 KiB page for each table.
994 	 */
995 	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
996 	if (!rk_domain->dt)
997 		goto err_put_cookie;
998 
999 	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1000 					   SPAGE_SIZE, DMA_TO_DEVICE);
1001 	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1002 		dev_err(dma_dev, "DMA map error for DT\n");
1003 		goto err_free_dt;
1004 	}
1005 
1006 	rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES);
1007 
1008 	spin_lock_init(&rk_domain->iommus_lock);
1009 	spin_lock_init(&rk_domain->dt_lock);
1010 	INIT_LIST_HEAD(&rk_domain->iommus);
1011 
1012 	rk_domain->domain.geometry.aperture_start = 0;
1013 	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1014 	rk_domain->domain.geometry.force_aperture = true;
1015 
1016 	return &rk_domain->domain;
1017 
1018 err_free_dt:
1019 	free_page((unsigned long)rk_domain->dt);
1020 err_put_cookie:
1021 	if (type == IOMMU_DOMAIN_DMA)
1022 		iommu_put_dma_cookie(&rk_domain->domain);
1023 
1024 	return NULL;
1025 }
1026 
1027 static void rk_iommu_domain_free(struct iommu_domain *domain)
1028 {
1029 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1030 	int i;
1031 
1032 	WARN_ON(!list_empty(&rk_domain->iommus));
1033 
1034 	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1035 		u32 dte = rk_domain->dt[i];
1036 		if (rk_dte_is_pt_valid(dte)) {
1037 			phys_addr_t pt_phys = rk_dte_pt_address(dte);
1038 			u32 *page_table = phys_to_virt(pt_phys);
1039 			dma_unmap_single(dma_dev, pt_phys,
1040 					 SPAGE_SIZE, DMA_TO_DEVICE);
1041 			free_page((unsigned long)page_table);
1042 		}
1043 	}
1044 
1045 	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1046 			 SPAGE_SIZE, DMA_TO_DEVICE);
1047 	free_page((unsigned long)rk_domain->dt);
1048 
1049 	if (domain->type == IOMMU_DOMAIN_DMA)
1050 		iommu_put_dma_cookie(&rk_domain->domain);
1051 }
1052 
1053 static int rk_iommu_add_device(struct device *dev)
1054 {
1055 	struct iommu_group *group;
1056 	struct rk_iommu *iommu;
1057 	struct rk_iommudata *data;
1058 
1059 	data = dev->archdata.iommu;
1060 	if (!data)
1061 		return -ENODEV;
1062 
1063 	iommu = rk_iommu_from_dev(dev);
1064 
1065 	group = iommu_group_get_for_dev(dev);
1066 	if (IS_ERR(group))
1067 		return PTR_ERR(group);
1068 	iommu_group_put(group);
1069 
1070 	iommu_device_link(&iommu->iommu, dev);
1071 	data->link = device_link_add(dev, iommu->dev,
1072 				     DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1073 
1074 	return 0;
1075 }
1076 
1077 static void rk_iommu_remove_device(struct device *dev)
1078 {
1079 	struct rk_iommu *iommu;
1080 	struct rk_iommudata *data = dev->archdata.iommu;
1081 
1082 	iommu = rk_iommu_from_dev(dev);
1083 
1084 	device_link_del(data->link);
1085 	iommu_device_unlink(&iommu->iommu, dev);
1086 	iommu_group_remove_device(dev);
1087 }
1088 
1089 static struct iommu_group *rk_iommu_device_group(struct device *dev)
1090 {
1091 	struct rk_iommu *iommu;
1092 
1093 	iommu = rk_iommu_from_dev(dev);
1094 
1095 	return iommu_group_ref_get(iommu->group);
1096 }
1097 
1098 static int rk_iommu_of_xlate(struct device *dev,
1099 			     struct of_phandle_args *args)
1100 {
1101 	struct platform_device *iommu_dev;
1102 	struct rk_iommudata *data;
1103 
1104 	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1105 	if (!data)
1106 		return -ENOMEM;
1107 
1108 	iommu_dev = of_find_device_by_node(args->np);
1109 
1110 	data->iommu = platform_get_drvdata(iommu_dev);
1111 	dev->archdata.iommu = data;
1112 
1113 	platform_device_put(iommu_dev);
1114 
1115 	return 0;
1116 }
1117 
1118 static const struct iommu_ops rk_iommu_ops = {
1119 	.domain_alloc = rk_iommu_domain_alloc,
1120 	.domain_free = rk_iommu_domain_free,
1121 	.attach_dev = rk_iommu_attach_device,
1122 	.detach_dev = rk_iommu_detach_device,
1123 	.map = rk_iommu_map,
1124 	.unmap = rk_iommu_unmap,
1125 	.add_device = rk_iommu_add_device,
1126 	.remove_device = rk_iommu_remove_device,
1127 	.iova_to_phys = rk_iommu_iova_to_phys,
1128 	.device_group = rk_iommu_device_group,
1129 	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1130 	.of_xlate = rk_iommu_of_xlate,
1131 };
1132 
1133 static int rk_iommu_probe(struct platform_device *pdev)
1134 {
1135 	struct device *dev = &pdev->dev;
1136 	struct rk_iommu *iommu;
1137 	struct resource *res;
1138 	int num_res = pdev->num_resources;
1139 	int err, i, irq;
1140 
1141 	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1142 	if (!iommu)
1143 		return -ENOMEM;
1144 
1145 	platform_set_drvdata(pdev, iommu);
1146 	iommu->dev = dev;
1147 	iommu->num_mmu = 0;
1148 
1149 	iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1150 				    GFP_KERNEL);
1151 	if (!iommu->bases)
1152 		return -ENOMEM;
1153 
1154 	for (i = 0; i < num_res; i++) {
1155 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1156 		if (!res)
1157 			continue;
1158 		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1159 		if (IS_ERR(iommu->bases[i]))
1160 			continue;
1161 		iommu->num_mmu++;
1162 	}
1163 	if (iommu->num_mmu == 0)
1164 		return PTR_ERR(iommu->bases[0]);
1165 
1166 	iommu->reset_disabled = device_property_read_bool(dev,
1167 					"rockchip,disable-mmu-reset");
1168 
1169 	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1170 	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1171 				     sizeof(*iommu->clocks), GFP_KERNEL);
1172 	if (!iommu->clocks)
1173 		return -ENOMEM;
1174 
1175 	for (i = 0; i < iommu->num_clocks; ++i)
1176 		iommu->clocks[i].id = rk_iommu_clocks[i];
1177 
1178 	/*
1179 	 * iommu clocks should be present for all new devices and devicetrees
1180 	 * but there are older devicetrees without clocks out in the wild.
1181 	 * So clocks as optional for the time being.
1182 	 */
1183 	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1184 	if (err == -ENOENT)
1185 		iommu->num_clocks = 0;
1186 	else if (err)
1187 		return err;
1188 
1189 	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1190 	if (err)
1191 		return err;
1192 
1193 	iommu->group = iommu_group_alloc();
1194 	if (IS_ERR(iommu->group)) {
1195 		err = PTR_ERR(iommu->group);
1196 		goto err_unprepare_clocks;
1197 	}
1198 
1199 	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1200 	if (err)
1201 		goto err_put_group;
1202 
1203 	iommu_device_set_ops(&iommu->iommu, &rk_iommu_ops);
1204 	iommu_device_set_fwnode(&iommu->iommu, &dev->of_node->fwnode);
1205 
1206 	err = iommu_device_register(&iommu->iommu);
1207 	if (err)
1208 		goto err_remove_sysfs;
1209 
1210 	/*
1211 	 * Use the first registered IOMMU device for domain to use with DMA
1212 	 * API, since a domain might not physically correspond to a single
1213 	 * IOMMU device..
1214 	 */
1215 	if (!dma_dev)
1216 		dma_dev = &pdev->dev;
1217 
1218 	bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
1219 
1220 	pm_runtime_enable(dev);
1221 
1222 	i = 0;
1223 	while ((irq = platform_get_irq(pdev, i++)) != -ENXIO) {
1224 		if (irq < 0)
1225 			return irq;
1226 
1227 		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1228 				       IRQF_SHARED, dev_name(dev), iommu);
1229 		if (err) {
1230 			pm_runtime_disable(dev);
1231 			goto err_remove_sysfs;
1232 		}
1233 	}
1234 
1235 	return 0;
1236 err_remove_sysfs:
1237 	iommu_device_sysfs_remove(&iommu->iommu);
1238 err_put_group:
1239 	iommu_group_put(iommu->group);
1240 err_unprepare_clocks:
1241 	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1242 	return err;
1243 }
1244 
1245 static void rk_iommu_shutdown(struct platform_device *pdev)
1246 {
1247 	struct rk_iommu *iommu = platform_get_drvdata(pdev);
1248 	int i = 0, irq;
1249 
1250 	while ((irq = platform_get_irq(pdev, i++)) != -ENXIO)
1251 		devm_free_irq(iommu->dev, irq, iommu);
1252 
1253 	pm_runtime_force_suspend(&pdev->dev);
1254 }
1255 
1256 static int __maybe_unused rk_iommu_suspend(struct device *dev)
1257 {
1258 	struct rk_iommu *iommu = dev_get_drvdata(dev);
1259 
1260 	if (!iommu->domain)
1261 		return 0;
1262 
1263 	rk_iommu_disable(iommu);
1264 	return 0;
1265 }
1266 
1267 static int __maybe_unused rk_iommu_resume(struct device *dev)
1268 {
1269 	struct rk_iommu *iommu = dev_get_drvdata(dev);
1270 
1271 	if (!iommu->domain)
1272 		return 0;
1273 
1274 	return rk_iommu_enable(iommu);
1275 }
1276 
1277 static const struct dev_pm_ops rk_iommu_pm_ops = {
1278 	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1279 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1280 				pm_runtime_force_resume)
1281 };
1282 
1283 static const struct of_device_id rk_iommu_dt_ids[] = {
1284 	{ .compatible = "rockchip,iommu" },
1285 	{ /* sentinel */ }
1286 };
1287 
1288 static struct platform_driver rk_iommu_driver = {
1289 	.probe = rk_iommu_probe,
1290 	.shutdown = rk_iommu_shutdown,
1291 	.driver = {
1292 		   .name = "rk_iommu",
1293 		   .of_match_table = rk_iommu_dt_ids,
1294 		   .pm = &rk_iommu_pm_ops,
1295 		   .suppress_bind_attrs = true,
1296 	},
1297 };
1298 
1299 static int __init rk_iommu_init(void)
1300 {
1301 	return platform_driver_register(&rk_iommu_driver);
1302 }
1303 subsys_initcall(rk_iommu_init);
1304