xref: /linux/drivers/iommu/rockchip-iommu.c (revision 77ec462536a13d4b428a1eead725c4818a49f0b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * IOMMU API for Rockchip
4  *
5  * Module Authors:	Simon Xue <xxm@rock-chips.com>
6  *			Daniel Kurtz <djkurtz@chromium.org>
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/iopoll.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/init.h>
23 #include <linux/of.h>
24 #include <linux/of_iommu.h>
25 #include <linux/of_platform.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 
31 /** MMU register offsets */
32 #define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
33 #define RK_MMU_STATUS		0x04
34 #define RK_MMU_COMMAND		0x08
35 #define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
36 #define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
37 #define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
38 #define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
39 #define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
40 #define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
41 #define RK_MMU_AUTO_GATING	0x24
42 
43 #define DTE_ADDR_DUMMY		0xCAFEBABE
44 
45 #define RK_MMU_POLL_PERIOD_US		100
46 #define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
47 #define RK_MMU_POLL_TIMEOUT_US		1000
48 
49 /* RK_MMU_STATUS fields */
50 #define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
51 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
52 #define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
53 #define RK_MMU_STATUS_IDLE                 BIT(3)
54 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
55 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
56 #define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
57 
58 /* RK_MMU_COMMAND command values */
59 #define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
60 #define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
61 #define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
62 #define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
63 #define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
64 #define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
65 #define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
66 
67 /* RK_MMU_INT_* register fields */
68 #define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
69 #define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
70 #define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
71 
72 #define NUM_DT_ENTRIES 1024
73 #define NUM_PT_ENTRIES 1024
74 
75 #define SPAGE_ORDER 12
76 #define SPAGE_SIZE (1 << SPAGE_ORDER)
77 
78  /*
79   * Support mapping any size that fits in one page table:
80   *   4 KiB to 4 MiB
81   */
82 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
83 
84 struct rk_iommu_domain {
85 	struct list_head iommus;
86 	u32 *dt; /* page directory table */
87 	dma_addr_t dt_dma;
88 	spinlock_t iommus_lock; /* lock for iommus list */
89 	spinlock_t dt_lock; /* lock for modifying page directory table */
90 
91 	struct iommu_domain domain;
92 };
93 
94 /* list of clocks required by IOMMU */
95 static const char * const rk_iommu_clocks[] = {
96 	"aclk", "iface",
97 };
98 
99 struct rk_iommu {
100 	struct device *dev;
101 	void __iomem **bases;
102 	int num_mmu;
103 	int num_irq;
104 	struct clk_bulk_data *clocks;
105 	int num_clocks;
106 	bool reset_disabled;
107 	struct iommu_device iommu;
108 	struct list_head node; /* entry in rk_iommu_domain.iommus */
109 	struct iommu_domain *domain; /* domain to which iommu is attached */
110 	struct iommu_group *group;
111 };
112 
113 struct rk_iommudata {
114 	struct device_link *link; /* runtime PM link from IOMMU to master */
115 	struct rk_iommu *iommu;
116 };
117 
118 static struct device *dma_dev;
119 
120 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
121 				  unsigned int count)
122 {
123 	size_t size = count * sizeof(u32); /* count of u32 entry */
124 
125 	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
126 }
127 
128 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
129 {
130 	return container_of(dom, struct rk_iommu_domain, domain);
131 }
132 
133 /*
134  * The Rockchip rk3288 iommu uses a 2-level page table.
135  * The first level is the "Directory Table" (DT).
136  * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
137  * to a "Page Table".
138  * The second level is the 1024 Page Tables (PT).
139  * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
140  * a 4 KB page of physical memory.
141  *
142  * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
143  * Each iommu device has a MMU_DTE_ADDR register that contains the physical
144  * address of the start of the DT page.
145  *
146  * The structure of the page table is as follows:
147  *
148  *                   DT
149  * MMU_DTE_ADDR -> +-----+
150  *                 |     |
151  *                 +-----+     PT
152  *                 | DTE | -> +-----+
153  *                 +-----+    |     |     Memory
154  *                 |     |    +-----+     Page
155  *                 |     |    | PTE | -> +-----+
156  *                 +-----+    +-----+    |     |
157  *                            |     |    |     |
158  *                            |     |    |     |
159  *                            +-----+    |     |
160  *                                       |     |
161  *                                       |     |
162  *                                       +-----+
163  */
164 
165 /*
166  * Each DTE has a PT address and a valid bit:
167  * +---------------------+-----------+-+
168  * | PT address          | Reserved  |V|
169  * +---------------------+-----------+-+
170  *  31:12 - PT address (PTs always starts on a 4 KB boundary)
171  *  11: 1 - Reserved
172  *      0 - 1 if PT @ PT address is valid
173  */
174 #define RK_DTE_PT_ADDRESS_MASK    0xfffff000
175 #define RK_DTE_PT_VALID           BIT(0)
176 
177 static inline phys_addr_t rk_dte_pt_address(u32 dte)
178 {
179 	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
180 }
181 
182 static inline bool rk_dte_is_pt_valid(u32 dte)
183 {
184 	return dte & RK_DTE_PT_VALID;
185 }
186 
187 static inline u32 rk_mk_dte(dma_addr_t pt_dma)
188 {
189 	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
190 }
191 
192 /*
193  * Each PTE has a Page address, some flags and a valid bit:
194  * +---------------------+---+-------+-+
195  * | Page address        |Rsv| Flags |V|
196  * +---------------------+---+-------+-+
197  *  31:12 - Page address (Pages always start on a 4 KB boundary)
198  *  11: 9 - Reserved
199  *   8: 1 - Flags
200  *      8 - Read allocate - allocate cache space on read misses
201  *      7 - Read cache - enable cache & prefetch of data
202  *      6 - Write buffer - enable delaying writes on their way to memory
203  *      5 - Write allocate - allocate cache space on write misses
204  *      4 - Write cache - different writes can be merged together
205  *      3 - Override cache attributes
206  *          if 1, bits 4-8 control cache attributes
207  *          if 0, the system bus defaults are used
208  *      2 - Writable
209  *      1 - Readable
210  *      0 - 1 if Page @ Page address is valid
211  */
212 #define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
213 #define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
214 #define RK_PTE_PAGE_WRITABLE      BIT(2)
215 #define RK_PTE_PAGE_READABLE      BIT(1)
216 #define RK_PTE_PAGE_VALID         BIT(0)
217 
218 static inline phys_addr_t rk_pte_page_address(u32 pte)
219 {
220 	return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK;
221 }
222 
223 static inline bool rk_pte_is_page_valid(u32 pte)
224 {
225 	return pte & RK_PTE_PAGE_VALID;
226 }
227 
228 /* TODO: set cache flags per prot IOMMU_CACHE */
229 static u32 rk_mk_pte(phys_addr_t page, int prot)
230 {
231 	u32 flags = 0;
232 	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
233 	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
234 	page &= RK_PTE_PAGE_ADDRESS_MASK;
235 	return page | flags | RK_PTE_PAGE_VALID;
236 }
237 
238 static u32 rk_mk_pte_invalid(u32 pte)
239 {
240 	return pte & ~RK_PTE_PAGE_VALID;
241 }
242 
243 /*
244  * rk3288 iova (IOMMU Virtual Address) format
245  *  31       22.21       12.11          0
246  * +-----------+-----------+-------------+
247  * | DTE index | PTE index | Page offset |
248  * +-----------+-----------+-------------+
249  *  31:22 - DTE index   - index of DTE in DT
250  *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
251  *  11: 0 - Page offset - offset into page @ PTE.page_address
252  */
253 #define RK_IOVA_DTE_MASK    0xffc00000
254 #define RK_IOVA_DTE_SHIFT   22
255 #define RK_IOVA_PTE_MASK    0x003ff000
256 #define RK_IOVA_PTE_SHIFT   12
257 #define RK_IOVA_PAGE_MASK   0x00000fff
258 #define RK_IOVA_PAGE_SHIFT  0
259 
260 static u32 rk_iova_dte_index(dma_addr_t iova)
261 {
262 	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
263 }
264 
265 static u32 rk_iova_pte_index(dma_addr_t iova)
266 {
267 	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
268 }
269 
270 static u32 rk_iova_page_offset(dma_addr_t iova)
271 {
272 	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
273 }
274 
275 static u32 rk_iommu_read(void __iomem *base, u32 offset)
276 {
277 	return readl(base + offset);
278 }
279 
280 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
281 {
282 	writel(value, base + offset);
283 }
284 
285 static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
286 {
287 	int i;
288 
289 	for (i = 0; i < iommu->num_mmu; i++)
290 		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
291 }
292 
293 static void rk_iommu_base_command(void __iomem *base, u32 command)
294 {
295 	writel(command, base + RK_MMU_COMMAND);
296 }
297 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
298 			       size_t size)
299 {
300 	int i;
301 	dma_addr_t iova_end = iova_start + size;
302 	/*
303 	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
304 	 * entire iotlb rather than iterate over individual iovas.
305 	 */
306 	for (i = 0; i < iommu->num_mmu; i++) {
307 		dma_addr_t iova;
308 
309 		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
310 			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
311 	}
312 }
313 
314 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
315 {
316 	bool active = true;
317 	int i;
318 
319 	for (i = 0; i < iommu->num_mmu; i++)
320 		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
321 					   RK_MMU_STATUS_STALL_ACTIVE);
322 
323 	return active;
324 }
325 
326 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
327 {
328 	bool enable = true;
329 	int i;
330 
331 	for (i = 0; i < iommu->num_mmu; i++)
332 		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
333 					   RK_MMU_STATUS_PAGING_ENABLED);
334 
335 	return enable;
336 }
337 
338 static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
339 {
340 	bool done = true;
341 	int i;
342 
343 	for (i = 0; i < iommu->num_mmu; i++)
344 		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
345 
346 	return done;
347 }
348 
349 static int rk_iommu_enable_stall(struct rk_iommu *iommu)
350 {
351 	int ret, i;
352 	bool val;
353 
354 	if (rk_iommu_is_stall_active(iommu))
355 		return 0;
356 
357 	/* Stall can only be enabled if paging is enabled */
358 	if (!rk_iommu_is_paging_enabled(iommu))
359 		return 0;
360 
361 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
362 
363 	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
364 				 val, RK_MMU_POLL_PERIOD_US,
365 				 RK_MMU_POLL_TIMEOUT_US);
366 	if (ret)
367 		for (i = 0; i < iommu->num_mmu; i++)
368 			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
369 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
370 
371 	return ret;
372 }
373 
374 static int rk_iommu_disable_stall(struct rk_iommu *iommu)
375 {
376 	int ret, i;
377 	bool val;
378 
379 	if (!rk_iommu_is_stall_active(iommu))
380 		return 0;
381 
382 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
383 
384 	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
385 				 !val, RK_MMU_POLL_PERIOD_US,
386 				 RK_MMU_POLL_TIMEOUT_US);
387 	if (ret)
388 		for (i = 0; i < iommu->num_mmu; i++)
389 			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
390 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
391 
392 	return ret;
393 }
394 
395 static int rk_iommu_enable_paging(struct rk_iommu *iommu)
396 {
397 	int ret, i;
398 	bool val;
399 
400 	if (rk_iommu_is_paging_enabled(iommu))
401 		return 0;
402 
403 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
404 
405 	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
406 				 val, RK_MMU_POLL_PERIOD_US,
407 				 RK_MMU_POLL_TIMEOUT_US);
408 	if (ret)
409 		for (i = 0; i < iommu->num_mmu; i++)
410 			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
411 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
412 
413 	return ret;
414 }
415 
416 static int rk_iommu_disable_paging(struct rk_iommu *iommu)
417 {
418 	int ret, i;
419 	bool val;
420 
421 	if (!rk_iommu_is_paging_enabled(iommu))
422 		return 0;
423 
424 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
425 
426 	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
427 				 !val, RK_MMU_POLL_PERIOD_US,
428 				 RK_MMU_POLL_TIMEOUT_US);
429 	if (ret)
430 		for (i = 0; i < iommu->num_mmu; i++)
431 			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
432 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
433 
434 	return ret;
435 }
436 
437 static int rk_iommu_force_reset(struct rk_iommu *iommu)
438 {
439 	int ret, i;
440 	u32 dte_addr;
441 	bool val;
442 
443 	if (iommu->reset_disabled)
444 		return 0;
445 
446 	/*
447 	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
448 	 * and verifying that upper 5 nybbles are read back.
449 	 */
450 	for (i = 0; i < iommu->num_mmu; i++) {
451 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY);
452 
453 		dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR);
454 		if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) {
455 			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
456 			return -EFAULT;
457 		}
458 	}
459 
460 	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
461 
462 	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
463 				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
464 				 RK_MMU_POLL_TIMEOUT_US);
465 	if (ret) {
466 		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
467 		return ret;
468 	}
469 
470 	return 0;
471 }
472 
473 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
474 {
475 	void __iomem *base = iommu->bases[index];
476 	u32 dte_index, pte_index, page_offset;
477 	u32 mmu_dte_addr;
478 	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
479 	u32 *dte_addr;
480 	u32 dte;
481 	phys_addr_t pte_addr_phys = 0;
482 	u32 *pte_addr = NULL;
483 	u32 pte = 0;
484 	phys_addr_t page_addr_phys = 0;
485 	u32 page_flags = 0;
486 
487 	dte_index = rk_iova_dte_index(iova);
488 	pte_index = rk_iova_pte_index(iova);
489 	page_offset = rk_iova_page_offset(iova);
490 
491 	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
492 	mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr;
493 
494 	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
495 	dte_addr = phys_to_virt(dte_addr_phys);
496 	dte = *dte_addr;
497 
498 	if (!rk_dte_is_pt_valid(dte))
499 		goto print_it;
500 
501 	pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4);
502 	pte_addr = phys_to_virt(pte_addr_phys);
503 	pte = *pte_addr;
504 
505 	if (!rk_pte_is_page_valid(pte))
506 		goto print_it;
507 
508 	page_addr_phys = rk_pte_page_address(pte) + page_offset;
509 	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
510 
511 print_it:
512 	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
513 		&iova, dte_index, pte_index, page_offset);
514 	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
515 		&mmu_dte_addr_phys, &dte_addr_phys, dte,
516 		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
517 		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
518 }
519 
520 static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
521 {
522 	struct rk_iommu *iommu = dev_id;
523 	u32 status;
524 	u32 int_status;
525 	dma_addr_t iova;
526 	irqreturn_t ret = IRQ_NONE;
527 	int i, err;
528 
529 	err = pm_runtime_get_if_in_use(iommu->dev);
530 	if (!err || WARN_ON_ONCE(err < 0))
531 		return ret;
532 
533 	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
534 		goto out;
535 
536 	for (i = 0; i < iommu->num_mmu; i++) {
537 		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
538 		if (int_status == 0)
539 			continue;
540 
541 		ret = IRQ_HANDLED;
542 		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
543 
544 		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
545 			int flags;
546 
547 			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
548 			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
549 					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
550 
551 			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
552 				&iova,
553 				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
554 
555 			log_iova(iommu, i, iova);
556 
557 			/*
558 			 * Report page fault to any installed handlers.
559 			 * Ignore the return code, though, since we always zap cache
560 			 * and clear the page fault anyway.
561 			 */
562 			if (iommu->domain)
563 				report_iommu_fault(iommu->domain, iommu->dev, iova,
564 						   flags);
565 			else
566 				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
567 
568 			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
569 			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
570 		}
571 
572 		if (int_status & RK_MMU_IRQ_BUS_ERROR)
573 			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
574 
575 		if (int_status & ~RK_MMU_IRQ_MASK)
576 			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
577 				int_status);
578 
579 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
580 	}
581 
582 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
583 
584 out:
585 	pm_runtime_put(iommu->dev);
586 	return ret;
587 }
588 
589 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
590 					 dma_addr_t iova)
591 {
592 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
593 	unsigned long flags;
594 	phys_addr_t pt_phys, phys = 0;
595 	u32 dte, pte;
596 	u32 *page_table;
597 
598 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
599 
600 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
601 	if (!rk_dte_is_pt_valid(dte))
602 		goto out;
603 
604 	pt_phys = rk_dte_pt_address(dte);
605 	page_table = (u32 *)phys_to_virt(pt_phys);
606 	pte = page_table[rk_iova_pte_index(iova)];
607 	if (!rk_pte_is_page_valid(pte))
608 		goto out;
609 
610 	phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova);
611 out:
612 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
613 
614 	return phys;
615 }
616 
617 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
618 			      dma_addr_t iova, size_t size)
619 {
620 	struct list_head *pos;
621 	unsigned long flags;
622 
623 	/* shootdown these iova from all iommus using this domain */
624 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
625 	list_for_each(pos, &rk_domain->iommus) {
626 		struct rk_iommu *iommu;
627 		int ret;
628 
629 		iommu = list_entry(pos, struct rk_iommu, node);
630 
631 		/* Only zap TLBs of IOMMUs that are powered on. */
632 		ret = pm_runtime_get_if_in_use(iommu->dev);
633 		if (WARN_ON_ONCE(ret < 0))
634 			continue;
635 		if (ret) {
636 			WARN_ON(clk_bulk_enable(iommu->num_clocks,
637 						iommu->clocks));
638 			rk_iommu_zap_lines(iommu, iova, size);
639 			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
640 			pm_runtime_put(iommu->dev);
641 		}
642 	}
643 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
644 }
645 
646 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
647 					 dma_addr_t iova, size_t size)
648 {
649 	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
650 	if (size > SPAGE_SIZE)
651 		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
652 					SPAGE_SIZE);
653 }
654 
655 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
656 				  dma_addr_t iova)
657 {
658 	u32 *page_table, *dte_addr;
659 	u32 dte_index, dte;
660 	phys_addr_t pt_phys;
661 	dma_addr_t pt_dma;
662 
663 	assert_spin_locked(&rk_domain->dt_lock);
664 
665 	dte_index = rk_iova_dte_index(iova);
666 	dte_addr = &rk_domain->dt[dte_index];
667 	dte = *dte_addr;
668 	if (rk_dte_is_pt_valid(dte))
669 		goto done;
670 
671 	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
672 	if (!page_table)
673 		return ERR_PTR(-ENOMEM);
674 
675 	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
676 	if (dma_mapping_error(dma_dev, pt_dma)) {
677 		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
678 		free_page((unsigned long)page_table);
679 		return ERR_PTR(-ENOMEM);
680 	}
681 
682 	dte = rk_mk_dte(pt_dma);
683 	*dte_addr = dte;
684 
685 	rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES);
686 	rk_table_flush(rk_domain,
687 		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
688 done:
689 	pt_phys = rk_dte_pt_address(dte);
690 	return (u32 *)phys_to_virt(pt_phys);
691 }
692 
693 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
694 				  u32 *pte_addr, dma_addr_t pte_dma,
695 				  size_t size)
696 {
697 	unsigned int pte_count;
698 	unsigned int pte_total = size / SPAGE_SIZE;
699 
700 	assert_spin_locked(&rk_domain->dt_lock);
701 
702 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
703 		u32 pte = pte_addr[pte_count];
704 		if (!rk_pte_is_page_valid(pte))
705 			break;
706 
707 		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
708 	}
709 
710 	rk_table_flush(rk_domain, pte_dma, pte_count);
711 
712 	return pte_count * SPAGE_SIZE;
713 }
714 
715 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
716 			     dma_addr_t pte_dma, dma_addr_t iova,
717 			     phys_addr_t paddr, size_t size, int prot)
718 {
719 	unsigned int pte_count;
720 	unsigned int pte_total = size / SPAGE_SIZE;
721 	phys_addr_t page_phys;
722 
723 	assert_spin_locked(&rk_domain->dt_lock);
724 
725 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
726 		u32 pte = pte_addr[pte_count];
727 
728 		if (rk_pte_is_page_valid(pte))
729 			goto unwind;
730 
731 		pte_addr[pte_count] = rk_mk_pte(paddr, prot);
732 
733 		paddr += SPAGE_SIZE;
734 	}
735 
736 	rk_table_flush(rk_domain, pte_dma, pte_total);
737 
738 	/*
739 	 * Zap the first and last iova to evict from iotlb any previously
740 	 * mapped cachelines holding stale values for its dte and pte.
741 	 * We only zap the first and last iova, since only they could have
742 	 * dte or pte shared with an existing mapping.
743 	 */
744 	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
745 
746 	return 0;
747 unwind:
748 	/* Unmap the range of iovas that we just mapped */
749 	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
750 			    pte_count * SPAGE_SIZE);
751 
752 	iova += pte_count * SPAGE_SIZE;
753 	page_phys = rk_pte_page_address(pte_addr[pte_count]);
754 	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
755 	       &iova, &page_phys, &paddr, prot);
756 
757 	return -EADDRINUSE;
758 }
759 
760 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
761 			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
762 {
763 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
764 	unsigned long flags;
765 	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
766 	u32 *page_table, *pte_addr;
767 	u32 dte_index, pte_index;
768 	int ret;
769 
770 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
771 
772 	/*
773 	 * pgsize_bitmap specifies iova sizes that fit in one page table
774 	 * (1024 4-KiB pages = 4 MiB).
775 	 * So, size will always be 4096 <= size <= 4194304.
776 	 * Since iommu_map() guarantees that both iova and size will be
777 	 * aligned, we will always only be mapping from a single dte here.
778 	 */
779 	page_table = rk_dte_get_page_table(rk_domain, iova);
780 	if (IS_ERR(page_table)) {
781 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
782 		return PTR_ERR(page_table);
783 	}
784 
785 	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
786 	pte_index = rk_iova_pte_index(iova);
787 	pte_addr = &page_table[pte_index];
788 	pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32);
789 	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
790 				paddr, size, prot);
791 
792 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
793 
794 	return ret;
795 }
796 
797 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
798 			     size_t size, struct iommu_iotlb_gather *gather)
799 {
800 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
801 	unsigned long flags;
802 	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
803 	phys_addr_t pt_phys;
804 	u32 dte;
805 	u32 *pte_addr;
806 	size_t unmap_size;
807 
808 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
809 
810 	/*
811 	 * pgsize_bitmap specifies iova sizes that fit in one page table
812 	 * (1024 4-KiB pages = 4 MiB).
813 	 * So, size will always be 4096 <= size <= 4194304.
814 	 * Since iommu_unmap() guarantees that both iova and size will be
815 	 * aligned, we will always only be unmapping from a single dte here.
816 	 */
817 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
818 	/* Just return 0 if iova is unmapped */
819 	if (!rk_dte_is_pt_valid(dte)) {
820 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
821 		return 0;
822 	}
823 
824 	pt_phys = rk_dte_pt_address(dte);
825 	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
826 	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
827 	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
828 
829 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
830 
831 	/* Shootdown iotlb entries for iova range that was just unmapped */
832 	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
833 
834 	return unmap_size;
835 }
836 
837 static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
838 {
839 	struct rk_iommudata *data = dev_iommu_priv_get(dev);
840 
841 	return data ? data->iommu : NULL;
842 }
843 
844 /* Must be called with iommu powered on and attached */
845 static void rk_iommu_disable(struct rk_iommu *iommu)
846 {
847 	int i;
848 
849 	/* Ignore error while disabling, just keep going */
850 	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
851 	rk_iommu_enable_stall(iommu);
852 	rk_iommu_disable_paging(iommu);
853 	for (i = 0; i < iommu->num_mmu; i++) {
854 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
855 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
856 	}
857 	rk_iommu_disable_stall(iommu);
858 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
859 }
860 
861 /* Must be called with iommu powered on and attached */
862 static int rk_iommu_enable(struct rk_iommu *iommu)
863 {
864 	struct iommu_domain *domain = iommu->domain;
865 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
866 	int ret, i;
867 
868 	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
869 	if (ret)
870 		return ret;
871 
872 	ret = rk_iommu_enable_stall(iommu);
873 	if (ret)
874 		goto out_disable_clocks;
875 
876 	ret = rk_iommu_force_reset(iommu);
877 	if (ret)
878 		goto out_disable_stall;
879 
880 	for (i = 0; i < iommu->num_mmu; i++) {
881 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
882 			       rk_domain->dt_dma);
883 		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
884 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
885 	}
886 
887 	ret = rk_iommu_enable_paging(iommu);
888 
889 out_disable_stall:
890 	rk_iommu_disable_stall(iommu);
891 out_disable_clocks:
892 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
893 	return ret;
894 }
895 
896 static void rk_iommu_detach_device(struct iommu_domain *domain,
897 				   struct device *dev)
898 {
899 	struct rk_iommu *iommu;
900 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
901 	unsigned long flags;
902 	int ret;
903 
904 	/* Allow 'virtual devices' (eg drm) to detach from domain */
905 	iommu = rk_iommu_from_dev(dev);
906 	if (!iommu)
907 		return;
908 
909 	dev_dbg(dev, "Detaching from iommu domain\n");
910 
911 	/* iommu already detached */
912 	if (iommu->domain != domain)
913 		return;
914 
915 	iommu->domain = NULL;
916 
917 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
918 	list_del_init(&iommu->node);
919 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
920 
921 	ret = pm_runtime_get_if_in_use(iommu->dev);
922 	WARN_ON_ONCE(ret < 0);
923 	if (ret > 0) {
924 		rk_iommu_disable(iommu);
925 		pm_runtime_put(iommu->dev);
926 	}
927 }
928 
929 static int rk_iommu_attach_device(struct iommu_domain *domain,
930 		struct device *dev)
931 {
932 	struct rk_iommu *iommu;
933 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
934 	unsigned long flags;
935 	int ret;
936 
937 	/*
938 	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
939 	 * Such a device does not belong to an iommu group.
940 	 */
941 	iommu = rk_iommu_from_dev(dev);
942 	if (!iommu)
943 		return 0;
944 
945 	dev_dbg(dev, "Attaching to iommu domain\n");
946 
947 	/* iommu already attached */
948 	if (iommu->domain == domain)
949 		return 0;
950 
951 	if (iommu->domain)
952 		rk_iommu_detach_device(iommu->domain, dev);
953 
954 	iommu->domain = domain;
955 
956 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
957 	list_add_tail(&iommu->node, &rk_domain->iommus);
958 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
959 
960 	ret = pm_runtime_get_if_in_use(iommu->dev);
961 	if (!ret || WARN_ON_ONCE(ret < 0))
962 		return 0;
963 
964 	ret = rk_iommu_enable(iommu);
965 	if (ret)
966 		rk_iommu_detach_device(iommu->domain, dev);
967 
968 	pm_runtime_put(iommu->dev);
969 
970 	return ret;
971 }
972 
973 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
974 {
975 	struct rk_iommu_domain *rk_domain;
976 
977 	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
978 		return NULL;
979 
980 	if (!dma_dev)
981 		return NULL;
982 
983 	rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
984 	if (!rk_domain)
985 		return NULL;
986 
987 	if (type == IOMMU_DOMAIN_DMA &&
988 	    iommu_get_dma_cookie(&rk_domain->domain))
989 		goto err_free_domain;
990 
991 	/*
992 	 * rk32xx iommus use a 2 level pagetable.
993 	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
994 	 * Allocate one 4 KiB page for each table.
995 	 */
996 	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
997 	if (!rk_domain->dt)
998 		goto err_put_cookie;
999 
1000 	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1001 					   SPAGE_SIZE, DMA_TO_DEVICE);
1002 	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1003 		dev_err(dma_dev, "DMA map error for DT\n");
1004 		goto err_free_dt;
1005 	}
1006 
1007 	rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES);
1008 
1009 	spin_lock_init(&rk_domain->iommus_lock);
1010 	spin_lock_init(&rk_domain->dt_lock);
1011 	INIT_LIST_HEAD(&rk_domain->iommus);
1012 
1013 	rk_domain->domain.geometry.aperture_start = 0;
1014 	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1015 	rk_domain->domain.geometry.force_aperture = true;
1016 
1017 	return &rk_domain->domain;
1018 
1019 err_free_dt:
1020 	free_page((unsigned long)rk_domain->dt);
1021 err_put_cookie:
1022 	if (type == IOMMU_DOMAIN_DMA)
1023 		iommu_put_dma_cookie(&rk_domain->domain);
1024 err_free_domain:
1025 	kfree(rk_domain);
1026 
1027 	return NULL;
1028 }
1029 
1030 static void rk_iommu_domain_free(struct iommu_domain *domain)
1031 {
1032 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1033 	int i;
1034 
1035 	WARN_ON(!list_empty(&rk_domain->iommus));
1036 
1037 	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1038 		u32 dte = rk_domain->dt[i];
1039 		if (rk_dte_is_pt_valid(dte)) {
1040 			phys_addr_t pt_phys = rk_dte_pt_address(dte);
1041 			u32 *page_table = phys_to_virt(pt_phys);
1042 			dma_unmap_single(dma_dev, pt_phys,
1043 					 SPAGE_SIZE, DMA_TO_DEVICE);
1044 			free_page((unsigned long)page_table);
1045 		}
1046 	}
1047 
1048 	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1049 			 SPAGE_SIZE, DMA_TO_DEVICE);
1050 	free_page((unsigned long)rk_domain->dt);
1051 
1052 	if (domain->type == IOMMU_DOMAIN_DMA)
1053 		iommu_put_dma_cookie(&rk_domain->domain);
1054 	kfree(rk_domain);
1055 }
1056 
1057 static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1058 {
1059 	struct rk_iommudata *data;
1060 	struct rk_iommu *iommu;
1061 
1062 	data = dev_iommu_priv_get(dev);
1063 	if (!data)
1064 		return ERR_PTR(-ENODEV);
1065 
1066 	iommu = rk_iommu_from_dev(dev);
1067 
1068 	data->link = device_link_add(dev, iommu->dev,
1069 				     DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1070 
1071 	return &iommu->iommu;
1072 }
1073 
1074 static void rk_iommu_release_device(struct device *dev)
1075 {
1076 	struct rk_iommudata *data = dev_iommu_priv_get(dev);
1077 
1078 	device_link_del(data->link);
1079 }
1080 
1081 static struct iommu_group *rk_iommu_device_group(struct device *dev)
1082 {
1083 	struct rk_iommu *iommu;
1084 
1085 	iommu = rk_iommu_from_dev(dev);
1086 
1087 	return iommu_group_ref_get(iommu->group);
1088 }
1089 
1090 static int rk_iommu_of_xlate(struct device *dev,
1091 			     struct of_phandle_args *args)
1092 {
1093 	struct platform_device *iommu_dev;
1094 	struct rk_iommudata *data;
1095 
1096 	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1097 	if (!data)
1098 		return -ENOMEM;
1099 
1100 	iommu_dev = of_find_device_by_node(args->np);
1101 
1102 	data->iommu = platform_get_drvdata(iommu_dev);
1103 	dev_iommu_priv_set(dev, data);
1104 
1105 	platform_device_put(iommu_dev);
1106 
1107 	return 0;
1108 }
1109 
1110 static const struct iommu_ops rk_iommu_ops = {
1111 	.domain_alloc = rk_iommu_domain_alloc,
1112 	.domain_free = rk_iommu_domain_free,
1113 	.attach_dev = rk_iommu_attach_device,
1114 	.detach_dev = rk_iommu_detach_device,
1115 	.map = rk_iommu_map,
1116 	.unmap = rk_iommu_unmap,
1117 	.probe_device = rk_iommu_probe_device,
1118 	.release_device = rk_iommu_release_device,
1119 	.iova_to_phys = rk_iommu_iova_to_phys,
1120 	.device_group = rk_iommu_device_group,
1121 	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1122 	.of_xlate = rk_iommu_of_xlate,
1123 };
1124 
1125 static int rk_iommu_probe(struct platform_device *pdev)
1126 {
1127 	struct device *dev = &pdev->dev;
1128 	struct rk_iommu *iommu;
1129 	struct resource *res;
1130 	int num_res = pdev->num_resources;
1131 	int err, i;
1132 
1133 	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1134 	if (!iommu)
1135 		return -ENOMEM;
1136 
1137 	platform_set_drvdata(pdev, iommu);
1138 	iommu->dev = dev;
1139 	iommu->num_mmu = 0;
1140 
1141 	iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1142 				    GFP_KERNEL);
1143 	if (!iommu->bases)
1144 		return -ENOMEM;
1145 
1146 	for (i = 0; i < num_res; i++) {
1147 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1148 		if (!res)
1149 			continue;
1150 		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1151 		if (IS_ERR(iommu->bases[i]))
1152 			continue;
1153 		iommu->num_mmu++;
1154 	}
1155 	if (iommu->num_mmu == 0)
1156 		return PTR_ERR(iommu->bases[0]);
1157 
1158 	iommu->num_irq = platform_irq_count(pdev);
1159 	if (iommu->num_irq < 0)
1160 		return iommu->num_irq;
1161 
1162 	iommu->reset_disabled = device_property_read_bool(dev,
1163 					"rockchip,disable-mmu-reset");
1164 
1165 	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1166 	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1167 				     sizeof(*iommu->clocks), GFP_KERNEL);
1168 	if (!iommu->clocks)
1169 		return -ENOMEM;
1170 
1171 	for (i = 0; i < iommu->num_clocks; ++i)
1172 		iommu->clocks[i].id = rk_iommu_clocks[i];
1173 
1174 	/*
1175 	 * iommu clocks should be present for all new devices and devicetrees
1176 	 * but there are older devicetrees without clocks out in the wild.
1177 	 * So clocks as optional for the time being.
1178 	 */
1179 	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1180 	if (err == -ENOENT)
1181 		iommu->num_clocks = 0;
1182 	else if (err)
1183 		return err;
1184 
1185 	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1186 	if (err)
1187 		return err;
1188 
1189 	iommu->group = iommu_group_alloc();
1190 	if (IS_ERR(iommu->group)) {
1191 		err = PTR_ERR(iommu->group);
1192 		goto err_unprepare_clocks;
1193 	}
1194 
1195 	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1196 	if (err)
1197 		goto err_put_group;
1198 
1199 	iommu_device_set_ops(&iommu->iommu, &rk_iommu_ops);
1200 	iommu_device_set_fwnode(&iommu->iommu, &dev->of_node->fwnode);
1201 
1202 	err = iommu_device_register(&iommu->iommu);
1203 	if (err)
1204 		goto err_remove_sysfs;
1205 
1206 	/*
1207 	 * Use the first registered IOMMU device for domain to use with DMA
1208 	 * API, since a domain might not physically correspond to a single
1209 	 * IOMMU device..
1210 	 */
1211 	if (!dma_dev)
1212 		dma_dev = &pdev->dev;
1213 
1214 	bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
1215 
1216 	pm_runtime_enable(dev);
1217 
1218 	for (i = 0; i < iommu->num_irq; i++) {
1219 		int irq = platform_get_irq(pdev, i);
1220 
1221 		if (irq < 0)
1222 			return irq;
1223 
1224 		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1225 				       IRQF_SHARED, dev_name(dev), iommu);
1226 		if (err) {
1227 			pm_runtime_disable(dev);
1228 			goto err_remove_sysfs;
1229 		}
1230 	}
1231 
1232 	return 0;
1233 err_remove_sysfs:
1234 	iommu_device_sysfs_remove(&iommu->iommu);
1235 err_put_group:
1236 	iommu_group_put(iommu->group);
1237 err_unprepare_clocks:
1238 	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1239 	return err;
1240 }
1241 
1242 static void rk_iommu_shutdown(struct platform_device *pdev)
1243 {
1244 	struct rk_iommu *iommu = platform_get_drvdata(pdev);
1245 	int i;
1246 
1247 	for (i = 0; i < iommu->num_irq; i++) {
1248 		int irq = platform_get_irq(pdev, i);
1249 
1250 		devm_free_irq(iommu->dev, irq, iommu);
1251 	}
1252 
1253 	pm_runtime_force_suspend(&pdev->dev);
1254 }
1255 
1256 static int __maybe_unused rk_iommu_suspend(struct device *dev)
1257 {
1258 	struct rk_iommu *iommu = dev_get_drvdata(dev);
1259 
1260 	if (!iommu->domain)
1261 		return 0;
1262 
1263 	rk_iommu_disable(iommu);
1264 	return 0;
1265 }
1266 
1267 static int __maybe_unused rk_iommu_resume(struct device *dev)
1268 {
1269 	struct rk_iommu *iommu = dev_get_drvdata(dev);
1270 
1271 	if (!iommu->domain)
1272 		return 0;
1273 
1274 	return rk_iommu_enable(iommu);
1275 }
1276 
1277 static const struct dev_pm_ops rk_iommu_pm_ops = {
1278 	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1279 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1280 				pm_runtime_force_resume)
1281 };
1282 
1283 static const struct of_device_id rk_iommu_dt_ids[] = {
1284 	{ .compatible = "rockchip,iommu" },
1285 	{ /* sentinel */ }
1286 };
1287 
1288 static struct platform_driver rk_iommu_driver = {
1289 	.probe = rk_iommu_probe,
1290 	.shutdown = rk_iommu_shutdown,
1291 	.driver = {
1292 		   .name = "rk_iommu",
1293 		   .of_match_table = rk_iommu_dt_ids,
1294 		   .pm = &rk_iommu_pm_ops,
1295 		   .suppress_bind_attrs = true,
1296 	},
1297 };
1298 
1299 static int __init rk_iommu_init(void)
1300 {
1301 	return platform_driver_register(&rk_iommu_driver);
1302 }
1303 subsys_initcall(rk_iommu_init);
1304