1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * IOMMU API for Renesas VMSA-compatible IPMMU 4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> 5 * 6 * Copyright (C) 2014-2020 Renesas Electronics Corporation 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/delay.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/err.h> 13 #include <linux/export.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/iopoll.h> 18 #include <linux/io-pgtable.h> 19 #include <linux/iommu.h> 20 #include <linux/of.h> 21 #include <linux/of_platform.h> 22 #include <linux/pci.h> 23 #include <linux/platform_device.h> 24 #include <linux/sizes.h> 25 #include <linux/slab.h> 26 #include <linux/sys_soc.h> 27 28 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA) 29 #include <asm/dma-iommu.h> 30 #else 31 #define arm_iommu_create_mapping(...) NULL 32 #define arm_iommu_attach_device(...) -ENODEV 33 #define arm_iommu_release_mapping(...) do {} while (0) 34 #endif 35 36 #define IPMMU_CTX_MAX 16U 37 #define IPMMU_CTX_INVALID -1 38 39 #define IPMMU_UTLB_MAX 64U 40 41 struct ipmmu_features { 42 bool use_ns_alias_offset; 43 bool has_cache_leaf_nodes; 44 unsigned int number_of_contexts; 45 unsigned int num_utlbs; 46 bool setup_imbuscr; 47 bool twobit_imttbcr_sl0; 48 bool reserved_context; 49 bool cache_snoop; 50 unsigned int ctx_offset_base; 51 unsigned int ctx_offset_stride; 52 unsigned int utlb_offset_base; 53 }; 54 55 struct ipmmu_vmsa_device { 56 struct device *dev; 57 void __iomem *base; 58 struct iommu_device iommu; 59 struct ipmmu_vmsa_device *root; 60 const struct ipmmu_features *features; 61 unsigned int num_ctx; 62 spinlock_t lock; /* Protects ctx and domains[] */ 63 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX); 64 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX]; 65 s8 utlb_ctx[IPMMU_UTLB_MAX]; 66 67 struct iommu_group *group; 68 struct dma_iommu_mapping *mapping; 69 }; 70 71 struct ipmmu_vmsa_domain { 72 struct ipmmu_vmsa_device *mmu; 73 struct iommu_domain io_domain; 74 75 struct io_pgtable_cfg cfg; 76 struct io_pgtable_ops *iop; 77 78 unsigned int context_id; 79 struct mutex mutex; /* Protects mappings */ 80 }; 81 82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom) 83 { 84 return container_of(dom, struct ipmmu_vmsa_domain, io_domain); 85 } 86 87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev) 88 { 89 return dev_iommu_priv_get(dev); 90 } 91 92 #define TLB_LOOP_TIMEOUT 100 /* 100us */ 93 94 /* ----------------------------------------------------------------------------- 95 * Registers Definition 96 */ 97 98 #define IM_NS_ALIAS_OFFSET 0x800 99 100 /* MMU "context" registers */ 101 #define IMCTR 0x0000 /* R-Car Gen2/3 */ 102 #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */ 103 #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */ 104 #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */ 105 106 #define IMTTBCR 0x0008 /* R-Car Gen2/3 */ 107 #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */ 108 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */ 109 #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */ 110 #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */ 111 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */ 112 #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */ 113 114 #define IMBUSCR 0x000c /* R-Car Gen2 only */ 115 #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */ 116 #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */ 117 118 #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */ 119 #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */ 120 121 #define IMSTR 0x0020 /* R-Car Gen2/3 */ 122 #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */ 123 #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */ 124 #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */ 125 #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */ 126 127 #define IMMAIR0 0x0028 /* R-Car Gen2/3 */ 128 129 #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */ 130 #define IMEUAR 0x0034 /* R-Car Gen3 only */ 131 132 /* uTLB registers */ 133 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n)) 134 #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */ 135 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */ 136 #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */ 137 #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */ 138 #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */ 139 140 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n)) 141 #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */ 142 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */ 143 144 /* ----------------------------------------------------------------------------- 145 * Root device handling 146 */ 147 148 static struct platform_driver ipmmu_driver; 149 150 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu) 151 { 152 return mmu->root == mmu; 153 } 154 155 static int __ipmmu_check_device(struct device *dev, void *data) 156 { 157 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev); 158 struct ipmmu_vmsa_device **rootp = data; 159 160 if (ipmmu_is_root(mmu)) 161 *rootp = mmu; 162 163 return 0; 164 } 165 166 static struct ipmmu_vmsa_device *ipmmu_find_root(void) 167 { 168 struct ipmmu_vmsa_device *root = NULL; 169 170 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root, 171 __ipmmu_check_device) == 0 ? root : NULL; 172 } 173 174 /* ----------------------------------------------------------------------------- 175 * Read/Write Access 176 */ 177 178 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset) 179 { 180 return ioread32(mmu->base + offset); 181 } 182 183 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset, 184 u32 data) 185 { 186 iowrite32(data, mmu->base + offset); 187 } 188 189 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu, 190 unsigned int context_id, unsigned int reg) 191 { 192 unsigned int base = mmu->features->ctx_offset_base; 193 194 if (context_id > 7) 195 base += 0x800 - 8 * 0x40; 196 197 return base + context_id * mmu->features->ctx_offset_stride + reg; 198 } 199 200 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu, 201 unsigned int context_id, unsigned int reg) 202 { 203 return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg)); 204 } 205 206 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu, 207 unsigned int context_id, unsigned int reg, u32 data) 208 { 209 ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data); 210 } 211 212 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain, 213 unsigned int reg) 214 { 215 return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg); 216 } 217 218 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain, 219 unsigned int reg, u32 data) 220 { 221 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data); 222 } 223 224 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain, 225 unsigned int reg, u32 data) 226 { 227 if (domain->mmu != domain->mmu->root) 228 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data); 229 230 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data); 231 } 232 233 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg) 234 { 235 return mmu->features->utlb_offset_base + reg; 236 } 237 238 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu, 239 unsigned int utlb, u32 data) 240 { 241 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data); 242 } 243 244 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu, 245 unsigned int utlb, u32 data) 246 { 247 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data); 248 } 249 250 /* ----------------------------------------------------------------------------- 251 * TLB and microTLB Management 252 */ 253 254 /* Wait for any pending TLB invalidations to complete */ 255 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain) 256 { 257 u32 val; 258 259 if (read_poll_timeout_atomic(ipmmu_ctx_read_root, val, 260 !(val & IMCTR_FLUSH), 1, TLB_LOOP_TIMEOUT, 261 false, domain, IMCTR)) 262 dev_err_ratelimited(domain->mmu->dev, 263 "TLB sync timed out -- MMU may be deadlocked\n"); 264 } 265 266 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain) 267 { 268 u32 reg; 269 270 reg = ipmmu_ctx_read_root(domain, IMCTR); 271 reg |= IMCTR_FLUSH; 272 ipmmu_ctx_write_all(domain, IMCTR, reg); 273 274 ipmmu_tlb_sync(domain); 275 } 276 277 /* 278 * Enable MMU translation for the microTLB. 279 */ 280 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain, 281 unsigned int utlb) 282 { 283 struct ipmmu_vmsa_device *mmu = domain->mmu; 284 285 /* 286 * TODO: Reference-count the microTLB as several bus masters can be 287 * connected to the same microTLB. 288 */ 289 290 /* TODO: What should we set the ASID to ? */ 291 ipmmu_imuasid_write(mmu, utlb, 0); 292 /* TODO: Do we need to flush the microTLB ? */ 293 ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) | 294 IMUCTR_FLUSH | IMUCTR_MMUEN); 295 mmu->utlb_ctx[utlb] = domain->context_id; 296 } 297 298 static void ipmmu_tlb_flush_all(void *cookie) 299 { 300 struct ipmmu_vmsa_domain *domain = cookie; 301 302 ipmmu_tlb_invalidate(domain); 303 } 304 305 static void ipmmu_tlb_flush(unsigned long iova, size_t size, 306 size_t granule, void *cookie) 307 { 308 ipmmu_tlb_flush_all(cookie); 309 } 310 311 static const struct iommu_flush_ops ipmmu_flush_ops = { 312 .tlb_flush_all = ipmmu_tlb_flush_all, 313 .tlb_flush_walk = ipmmu_tlb_flush, 314 }; 315 316 /* ----------------------------------------------------------------------------- 317 * Domain/Context Management 318 */ 319 320 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu, 321 struct ipmmu_vmsa_domain *domain) 322 { 323 unsigned long flags; 324 int ret; 325 326 spin_lock_irqsave(&mmu->lock, flags); 327 328 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx); 329 if (ret != mmu->num_ctx) { 330 mmu->domains[ret] = domain; 331 set_bit(ret, mmu->ctx); 332 } else 333 ret = -EBUSY; 334 335 spin_unlock_irqrestore(&mmu->lock, flags); 336 337 return ret; 338 } 339 340 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu, 341 unsigned int context_id) 342 { 343 unsigned long flags; 344 345 spin_lock_irqsave(&mmu->lock, flags); 346 347 clear_bit(context_id, mmu->ctx); 348 mmu->domains[context_id] = NULL; 349 350 spin_unlock_irqrestore(&mmu->lock, flags); 351 } 352 353 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain) 354 { 355 u64 ttbr; 356 u32 tmp; 357 358 /* TTBR0 */ 359 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr; 360 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr); 361 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32); 362 363 /* 364 * TTBCR 365 * We use long descriptors and allocate the whole 32-bit VA space to 366 * TTBR0. 367 */ 368 if (domain->mmu->features->twobit_imttbcr_sl0) 369 tmp = IMTTBCR_SL0_TWOBIT_LVL_1; 370 else 371 tmp = IMTTBCR_SL0_LVL_1; 372 373 if (domain->mmu->features->cache_snoop) 374 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA | 375 IMTTBCR_IRGN0_WB_WA; 376 377 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp); 378 379 /* MAIR0 */ 380 ipmmu_ctx_write_root(domain, IMMAIR0, 381 domain->cfg.arm_lpae_s1_cfg.mair); 382 383 /* IMBUSCR */ 384 if (domain->mmu->features->setup_imbuscr) 385 ipmmu_ctx_write_root(domain, IMBUSCR, 386 ipmmu_ctx_read_root(domain, IMBUSCR) & 387 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK)); 388 389 /* 390 * IMSTR 391 * Clear all interrupt flags. 392 */ 393 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR)); 394 395 /* 396 * IMCTR 397 * Enable the MMU and interrupt generation. The long-descriptor 398 * translation table format doesn't use TEX remapping. Don't enable AF 399 * software management as we have no use for it. Flush the TLB as 400 * required when modifying the context registers. 401 */ 402 ipmmu_ctx_write_all(domain, IMCTR, 403 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN); 404 } 405 406 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain) 407 { 408 int ret; 409 410 /* 411 * Allocate the page table operations. 412 * 413 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory 414 * access, Long-descriptor format" that the NStable bit being set in a 415 * table descriptor will result in the NStable and NS bits of all child 416 * entries being ignored and considered as being set. The IPMMU seems 417 * not to comply with this, as it generates a secure access page fault 418 * if any of the NStable and NS bits isn't set when running in 419 * non-secure mode. 420 */ 421 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS; 422 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K; 423 domain->cfg.ias = 32; 424 domain->cfg.oas = 40; 425 domain->cfg.tlb = &ipmmu_flush_ops; 426 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32); 427 domain->io_domain.geometry.force_aperture = true; 428 /* 429 * TODO: Add support for coherent walk through CCI with DVM and remove 430 * cache handling. For now, delegate it to the io-pgtable code. 431 */ 432 domain->cfg.coherent_walk = false; 433 domain->cfg.iommu_dev = domain->mmu->root->dev; 434 435 /* 436 * Find an unused context. 437 */ 438 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain); 439 if (ret < 0) 440 return ret; 441 442 domain->context_id = ret; 443 444 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg, 445 domain); 446 if (!domain->iop) { 447 ipmmu_domain_free_context(domain->mmu->root, 448 domain->context_id); 449 return -EINVAL; 450 } 451 452 ipmmu_domain_setup_context(domain); 453 return 0; 454 } 455 456 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain) 457 { 458 if (!domain->mmu) 459 return; 460 461 /* 462 * Disable the context. Flush the TLB as required when modifying the 463 * context registers. 464 * 465 * TODO: Is TLB flush really needed ? 466 */ 467 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH); 468 ipmmu_tlb_sync(domain); 469 ipmmu_domain_free_context(domain->mmu->root, domain->context_id); 470 } 471 472 /* ----------------------------------------------------------------------------- 473 * Fault Handling 474 */ 475 476 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain) 477 { 478 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF; 479 struct ipmmu_vmsa_device *mmu = domain->mmu; 480 unsigned long iova; 481 u32 status; 482 483 status = ipmmu_ctx_read_root(domain, IMSTR); 484 if (!(status & err_mask)) 485 return IRQ_NONE; 486 487 iova = ipmmu_ctx_read_root(domain, IMELAR); 488 if (IS_ENABLED(CONFIG_64BIT)) 489 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32; 490 491 /* 492 * Clear the error status flags. Unlike traditional interrupt flag 493 * registers that must be cleared by writing 1, this status register 494 * seems to require 0. The error address register must be read before, 495 * otherwise its value will be 0. 496 */ 497 ipmmu_ctx_write_root(domain, IMSTR, 0); 498 499 /* Log fatal errors. */ 500 if (status & IMSTR_MHIT) 501 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n", 502 iova); 503 if (status & IMSTR_ABORT) 504 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n", 505 iova); 506 507 if (!(status & (IMSTR_PF | IMSTR_TF))) 508 return IRQ_NONE; 509 510 /* 511 * Try to handle page faults and translation faults. 512 * 513 * TODO: We need to look up the faulty device based on the I/O VA. Use 514 * the IOMMU device for now. 515 */ 516 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0)) 517 return IRQ_HANDLED; 518 519 dev_err_ratelimited(mmu->dev, 520 "Unhandled fault: status 0x%08x iova 0x%lx\n", 521 status, iova); 522 523 return IRQ_HANDLED; 524 } 525 526 static irqreturn_t ipmmu_irq(int irq, void *dev) 527 { 528 struct ipmmu_vmsa_device *mmu = dev; 529 irqreturn_t status = IRQ_NONE; 530 unsigned int i; 531 unsigned long flags; 532 533 spin_lock_irqsave(&mmu->lock, flags); 534 535 /* 536 * Check interrupts for all active contexts. 537 */ 538 for (i = 0; i < mmu->num_ctx; i++) { 539 if (!mmu->domains[i]) 540 continue; 541 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED) 542 status = IRQ_HANDLED; 543 } 544 545 spin_unlock_irqrestore(&mmu->lock, flags); 546 547 return status; 548 } 549 550 /* ----------------------------------------------------------------------------- 551 * IOMMU Operations 552 */ 553 554 static struct iommu_domain *ipmmu_domain_alloc(unsigned type) 555 { 556 struct ipmmu_vmsa_domain *domain; 557 558 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA) 559 return NULL; 560 561 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 562 if (!domain) 563 return NULL; 564 565 mutex_init(&domain->mutex); 566 567 return &domain->io_domain; 568 } 569 570 static void ipmmu_domain_free(struct iommu_domain *io_domain) 571 { 572 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 573 574 /* 575 * Free the domain resources. We assume that all devices have already 576 * been detached. 577 */ 578 ipmmu_domain_destroy_context(domain); 579 free_io_pgtable_ops(domain->iop); 580 kfree(domain); 581 } 582 583 static int ipmmu_attach_device(struct iommu_domain *io_domain, 584 struct device *dev) 585 { 586 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 587 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); 588 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 589 unsigned int i; 590 int ret = 0; 591 592 if (!mmu) { 593 dev_err(dev, "Cannot attach to IPMMU\n"); 594 return -ENXIO; 595 } 596 597 mutex_lock(&domain->mutex); 598 599 if (!domain->mmu) { 600 /* The domain hasn't been used yet, initialize it. */ 601 domain->mmu = mmu; 602 ret = ipmmu_domain_init_context(domain); 603 if (ret < 0) { 604 dev_err(dev, "Unable to initialize IPMMU context\n"); 605 domain->mmu = NULL; 606 } else { 607 dev_info(dev, "Using IPMMU context %u\n", 608 domain->context_id); 609 } 610 } else if (domain->mmu != mmu) { 611 /* 612 * Something is wrong, we can't attach two devices using 613 * different IOMMUs to the same domain. 614 */ 615 ret = -EINVAL; 616 } else 617 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id); 618 619 mutex_unlock(&domain->mutex); 620 621 if (ret < 0) 622 return ret; 623 624 for (i = 0; i < fwspec->num_ids; ++i) 625 ipmmu_utlb_enable(domain, fwspec->ids[i]); 626 627 return 0; 628 } 629 630 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova, 631 phys_addr_t paddr, size_t pgsize, size_t pgcount, 632 int prot, gfp_t gfp, size_t *mapped) 633 { 634 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 635 636 return domain->iop->map_pages(domain->iop, iova, paddr, pgsize, pgcount, 637 prot, gfp, mapped); 638 } 639 640 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova, 641 size_t pgsize, size_t pgcount, 642 struct iommu_iotlb_gather *gather) 643 { 644 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 645 646 return domain->iop->unmap_pages(domain->iop, iova, pgsize, pgcount, gather); 647 } 648 649 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain) 650 { 651 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 652 653 if (domain->mmu) 654 ipmmu_tlb_flush_all(domain); 655 } 656 657 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain, 658 struct iommu_iotlb_gather *gather) 659 { 660 ipmmu_flush_iotlb_all(io_domain); 661 } 662 663 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain, 664 dma_addr_t iova) 665 { 666 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 667 668 /* TODO: Is locking needed ? */ 669 670 return domain->iop->iova_to_phys(domain->iop, iova); 671 } 672 673 static int ipmmu_init_platform_device(struct device *dev, 674 struct of_phandle_args *args) 675 { 676 struct platform_device *ipmmu_pdev; 677 678 ipmmu_pdev = of_find_device_by_node(args->np); 679 if (!ipmmu_pdev) 680 return -ENODEV; 681 682 dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev)); 683 684 return 0; 685 } 686 687 static const struct soc_device_attribute soc_needs_opt_in[] = { 688 { .family = "R-Car Gen3", }, 689 { .family = "R-Car Gen4", }, 690 { .family = "RZ/G2", }, 691 { /* sentinel */ } 692 }; 693 694 static const struct soc_device_attribute soc_denylist[] = { 695 { .soc_id = "r8a774a1", }, 696 { .soc_id = "r8a7795", .revision = "ES2.*" }, 697 { .soc_id = "r8a7796", }, 698 { /* sentinel */ } 699 }; 700 701 static const char * const devices_allowlist[] = { 702 "ee100000.mmc", 703 "ee120000.mmc", 704 "ee140000.mmc", 705 "ee160000.mmc" 706 }; 707 708 static bool ipmmu_device_is_allowed(struct device *dev) 709 { 710 unsigned int i; 711 712 /* 713 * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices. 714 * For Other SoCs, this returns true anyway. 715 */ 716 if (!soc_device_match(soc_needs_opt_in)) 717 return true; 718 719 /* Check whether this SoC can use the IPMMU correctly or not */ 720 if (soc_device_match(soc_denylist)) 721 return false; 722 723 /* Check whether this device is a PCI device */ 724 if (dev_is_pci(dev)) 725 return true; 726 727 /* Check whether this device can work with the IPMMU */ 728 for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) { 729 if (!strcmp(dev_name(dev), devices_allowlist[i])) 730 return true; 731 } 732 733 /* Otherwise, do not allow use of IPMMU */ 734 return false; 735 } 736 737 static int ipmmu_of_xlate(struct device *dev, 738 struct of_phandle_args *spec) 739 { 740 if (!ipmmu_device_is_allowed(dev)) 741 return -ENODEV; 742 743 iommu_fwspec_add_ids(dev, spec->args, 1); 744 745 /* Initialize once - xlate() will call multiple times */ 746 if (to_ipmmu(dev)) 747 return 0; 748 749 return ipmmu_init_platform_device(dev, spec); 750 } 751 752 static int ipmmu_init_arm_mapping(struct device *dev) 753 { 754 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); 755 int ret; 756 757 /* 758 * Create the ARM mapping, used by the ARM DMA mapping core to allocate 759 * VAs. This will allocate a corresponding IOMMU domain. 760 * 761 * TODO: 762 * - Create one mapping per context (TLB). 763 * - Make the mapping size configurable ? We currently use a 2GB mapping 764 * at a 1GB offset to ensure that NULL VAs will fault. 765 */ 766 if (!mmu->mapping) { 767 struct dma_iommu_mapping *mapping; 768 769 mapping = arm_iommu_create_mapping(&platform_bus_type, 770 SZ_1G, SZ_2G); 771 if (IS_ERR(mapping)) { 772 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n"); 773 ret = PTR_ERR(mapping); 774 goto error; 775 } 776 777 mmu->mapping = mapping; 778 } 779 780 /* Attach the ARM VA mapping to the device. */ 781 ret = arm_iommu_attach_device(dev, mmu->mapping); 782 if (ret < 0) { 783 dev_err(dev, "Failed to attach device to VA mapping\n"); 784 goto error; 785 } 786 787 return 0; 788 789 error: 790 if (mmu->mapping) 791 arm_iommu_release_mapping(mmu->mapping); 792 793 return ret; 794 } 795 796 static struct iommu_device *ipmmu_probe_device(struct device *dev) 797 { 798 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); 799 800 /* 801 * Only let through devices that have been verified in xlate() 802 */ 803 if (!mmu) 804 return ERR_PTR(-ENODEV); 805 806 return &mmu->iommu; 807 } 808 809 static void ipmmu_probe_finalize(struct device *dev) 810 { 811 int ret = 0; 812 813 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) 814 ret = ipmmu_init_arm_mapping(dev); 815 816 if (ret) 817 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n"); 818 } 819 820 static void ipmmu_release_device(struct device *dev) 821 { 822 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 823 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); 824 unsigned int i; 825 826 for (i = 0; i < fwspec->num_ids; ++i) { 827 unsigned int utlb = fwspec->ids[i]; 828 829 ipmmu_imuctr_write(mmu, utlb, 0); 830 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID; 831 } 832 833 arm_iommu_release_mapping(mmu->mapping); 834 } 835 836 static struct iommu_group *ipmmu_find_group(struct device *dev) 837 { 838 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); 839 struct iommu_group *group; 840 841 if (mmu->group) 842 return iommu_group_ref_get(mmu->group); 843 844 group = iommu_group_alloc(); 845 if (!IS_ERR(group)) 846 mmu->group = group; 847 848 return group; 849 } 850 851 static const struct iommu_ops ipmmu_ops = { 852 .domain_alloc = ipmmu_domain_alloc, 853 .probe_device = ipmmu_probe_device, 854 .release_device = ipmmu_release_device, 855 .probe_finalize = ipmmu_probe_finalize, 856 .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA) 857 ? generic_device_group : ipmmu_find_group, 858 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K, 859 .of_xlate = ipmmu_of_xlate, 860 .default_domain_ops = &(const struct iommu_domain_ops) { 861 .attach_dev = ipmmu_attach_device, 862 .map_pages = ipmmu_map, 863 .unmap_pages = ipmmu_unmap, 864 .flush_iotlb_all = ipmmu_flush_iotlb_all, 865 .iotlb_sync = ipmmu_iotlb_sync, 866 .iova_to_phys = ipmmu_iova_to_phys, 867 .free = ipmmu_domain_free, 868 } 869 }; 870 871 /* ----------------------------------------------------------------------------- 872 * Probe/remove and init 873 */ 874 875 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu) 876 { 877 unsigned int i; 878 879 /* Disable all contexts. */ 880 for (i = 0; i < mmu->num_ctx; ++i) 881 ipmmu_ctx_write(mmu, i, IMCTR, 0); 882 } 883 884 static const struct ipmmu_features ipmmu_features_default = { 885 .use_ns_alias_offset = true, 886 .has_cache_leaf_nodes = false, 887 .number_of_contexts = 1, /* software only tested with one context */ 888 .num_utlbs = 32, 889 .setup_imbuscr = true, 890 .twobit_imttbcr_sl0 = false, 891 .reserved_context = false, 892 .cache_snoop = true, 893 .ctx_offset_base = 0, 894 .ctx_offset_stride = 0x40, 895 .utlb_offset_base = 0, 896 }; 897 898 static const struct ipmmu_features ipmmu_features_rcar_gen3 = { 899 .use_ns_alias_offset = false, 900 .has_cache_leaf_nodes = true, 901 .number_of_contexts = 8, 902 .num_utlbs = 48, 903 .setup_imbuscr = false, 904 .twobit_imttbcr_sl0 = true, 905 .reserved_context = true, 906 .cache_snoop = false, 907 .ctx_offset_base = 0, 908 .ctx_offset_stride = 0x40, 909 .utlb_offset_base = 0, 910 }; 911 912 static const struct ipmmu_features ipmmu_features_rcar_gen4 = { 913 .use_ns_alias_offset = false, 914 .has_cache_leaf_nodes = true, 915 .number_of_contexts = 16, 916 .num_utlbs = 64, 917 .setup_imbuscr = false, 918 .twobit_imttbcr_sl0 = true, 919 .reserved_context = true, 920 .cache_snoop = false, 921 .ctx_offset_base = 0x10000, 922 .ctx_offset_stride = 0x1040, 923 .utlb_offset_base = 0x3000, 924 }; 925 926 static const struct of_device_id ipmmu_of_ids[] = { 927 { 928 .compatible = "renesas,ipmmu-vmsa", 929 .data = &ipmmu_features_default, 930 }, { 931 .compatible = "renesas,ipmmu-r8a774a1", 932 .data = &ipmmu_features_rcar_gen3, 933 }, { 934 .compatible = "renesas,ipmmu-r8a774b1", 935 .data = &ipmmu_features_rcar_gen3, 936 }, { 937 .compatible = "renesas,ipmmu-r8a774c0", 938 .data = &ipmmu_features_rcar_gen3, 939 }, { 940 .compatible = "renesas,ipmmu-r8a774e1", 941 .data = &ipmmu_features_rcar_gen3, 942 }, { 943 .compatible = "renesas,ipmmu-r8a7795", 944 .data = &ipmmu_features_rcar_gen3, 945 }, { 946 .compatible = "renesas,ipmmu-r8a7796", 947 .data = &ipmmu_features_rcar_gen3, 948 }, { 949 .compatible = "renesas,ipmmu-r8a77961", 950 .data = &ipmmu_features_rcar_gen3, 951 }, { 952 .compatible = "renesas,ipmmu-r8a77965", 953 .data = &ipmmu_features_rcar_gen3, 954 }, { 955 .compatible = "renesas,ipmmu-r8a77970", 956 .data = &ipmmu_features_rcar_gen3, 957 }, { 958 .compatible = "renesas,ipmmu-r8a77980", 959 .data = &ipmmu_features_rcar_gen3, 960 }, { 961 .compatible = "renesas,ipmmu-r8a77990", 962 .data = &ipmmu_features_rcar_gen3, 963 }, { 964 .compatible = "renesas,ipmmu-r8a77995", 965 .data = &ipmmu_features_rcar_gen3, 966 }, { 967 .compatible = "renesas,ipmmu-r8a779a0", 968 .data = &ipmmu_features_rcar_gen4, 969 }, { 970 .compatible = "renesas,rcar-gen4-ipmmu-vmsa", 971 .data = &ipmmu_features_rcar_gen4, 972 }, { 973 /* Terminator */ 974 }, 975 }; 976 977 static int ipmmu_probe(struct platform_device *pdev) 978 { 979 struct ipmmu_vmsa_device *mmu; 980 struct resource *res; 981 int irq; 982 int ret; 983 984 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL); 985 if (!mmu) { 986 dev_err(&pdev->dev, "cannot allocate device data\n"); 987 return -ENOMEM; 988 } 989 990 mmu->dev = &pdev->dev; 991 spin_lock_init(&mmu->lock); 992 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX); 993 mmu->features = of_device_get_match_data(&pdev->dev); 994 memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs); 995 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); 996 if (ret) 997 return ret; 998 999 /* Map I/O memory and request IRQ. */ 1000 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1001 mmu->base = devm_ioremap_resource(&pdev->dev, res); 1002 if (IS_ERR(mmu->base)) 1003 return PTR_ERR(mmu->base); 1004 1005 /* 1006 * The IPMMU has two register banks, for secure and non-secure modes. 1007 * The bank mapped at the beginning of the IPMMU address space 1008 * corresponds to the running mode of the CPU. When running in secure 1009 * mode the non-secure register bank is also available at an offset. 1010 * 1011 * Secure mode operation isn't clearly documented and is thus currently 1012 * not implemented in the driver. Furthermore, preliminary tests of 1013 * non-secure operation with the main register bank were not successful. 1014 * Offset the registers base unconditionally to point to the non-secure 1015 * alias space for now. 1016 */ 1017 if (mmu->features->use_ns_alias_offset) 1018 mmu->base += IM_NS_ALIAS_OFFSET; 1019 1020 mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts); 1021 1022 /* 1023 * Determine if this IPMMU instance is a root device by checking for 1024 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property. 1025 */ 1026 if (!mmu->features->has_cache_leaf_nodes || 1027 !of_property_present(pdev->dev.of_node, "renesas,ipmmu-main")) 1028 mmu->root = mmu; 1029 else 1030 mmu->root = ipmmu_find_root(); 1031 1032 /* 1033 * Wait until the root device has been registered for sure. 1034 */ 1035 if (!mmu->root) 1036 return -EPROBE_DEFER; 1037 1038 /* Root devices have mandatory IRQs */ 1039 if (ipmmu_is_root(mmu)) { 1040 irq = platform_get_irq(pdev, 0); 1041 if (irq < 0) 1042 return irq; 1043 1044 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0, 1045 dev_name(&pdev->dev), mmu); 1046 if (ret < 0) { 1047 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq); 1048 return ret; 1049 } 1050 1051 ipmmu_device_reset(mmu); 1052 1053 if (mmu->features->reserved_context) { 1054 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n"); 1055 set_bit(0, mmu->ctx); 1056 } 1057 } 1058 1059 /* 1060 * Register the IPMMU to the IOMMU subsystem in the following cases: 1061 * - R-Car Gen2 IPMMU (all devices registered) 1062 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device) 1063 */ 1064 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) { 1065 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL, 1066 dev_name(&pdev->dev)); 1067 if (ret) 1068 return ret; 1069 1070 ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev); 1071 if (ret) 1072 return ret; 1073 } 1074 1075 /* 1076 * We can't create the ARM mapping here as it requires the bus to have 1077 * an IOMMU, which only happens when bus_set_iommu() is called in 1078 * ipmmu_init() after the probe function returns. 1079 */ 1080 1081 platform_set_drvdata(pdev, mmu); 1082 1083 return 0; 1084 } 1085 1086 static void ipmmu_remove(struct platform_device *pdev) 1087 { 1088 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev); 1089 1090 iommu_device_sysfs_remove(&mmu->iommu); 1091 iommu_device_unregister(&mmu->iommu); 1092 1093 arm_iommu_release_mapping(mmu->mapping); 1094 1095 ipmmu_device_reset(mmu); 1096 } 1097 1098 #ifdef CONFIG_PM_SLEEP 1099 static int ipmmu_resume_noirq(struct device *dev) 1100 { 1101 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev); 1102 unsigned int i; 1103 1104 /* Reset root MMU and restore contexts */ 1105 if (ipmmu_is_root(mmu)) { 1106 ipmmu_device_reset(mmu); 1107 1108 for (i = 0; i < mmu->num_ctx; i++) { 1109 if (!mmu->domains[i]) 1110 continue; 1111 1112 ipmmu_domain_setup_context(mmu->domains[i]); 1113 } 1114 } 1115 1116 /* Re-enable active micro-TLBs */ 1117 for (i = 0; i < mmu->features->num_utlbs; i++) { 1118 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID) 1119 continue; 1120 1121 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i); 1122 } 1123 1124 return 0; 1125 } 1126 1127 static const struct dev_pm_ops ipmmu_pm = { 1128 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq) 1129 }; 1130 #define DEV_PM_OPS &ipmmu_pm 1131 #else 1132 #define DEV_PM_OPS NULL 1133 #endif /* CONFIG_PM_SLEEP */ 1134 1135 static struct platform_driver ipmmu_driver = { 1136 .driver = { 1137 .name = "ipmmu-vmsa", 1138 .of_match_table = of_match_ptr(ipmmu_of_ids), 1139 .pm = DEV_PM_OPS, 1140 }, 1141 .probe = ipmmu_probe, 1142 .remove_new = ipmmu_remove, 1143 }; 1144 builtin_platform_driver(ipmmu_driver); 1145