xref: /linux/drivers/iommu/ipmmu-vmsa.c (revision e6f2a617ac53bc0753b885ffb94379ff48b2e2df)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28 
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...)	NULL
34 #define arm_iommu_attach_device(...)	-ENODEV
35 #define arm_iommu_release_mapping(...)	do {} while (0)
36 #define arm_iommu_detach_device(...)	do {} while (0)
37 #endif
38 
39 #define IPMMU_CTX_MAX		8U
40 #define IPMMU_CTX_INVALID	-1
41 
42 #define IPMMU_UTLB_MAX		48U
43 
44 struct ipmmu_features {
45 	bool use_ns_alias_offset;
46 	bool has_cache_leaf_nodes;
47 	unsigned int number_of_contexts;
48 	unsigned int num_utlbs;
49 	bool setup_imbuscr;
50 	bool twobit_imttbcr_sl0;
51 	bool reserved_context;
52 	bool cache_snoop;
53 	unsigned int ctx_offset_base;
54 	unsigned int ctx_offset_stride;
55 	unsigned int utlb_offset_base;
56 };
57 
58 struct ipmmu_vmsa_device {
59 	struct device *dev;
60 	void __iomem *base;
61 	struct iommu_device iommu;
62 	struct ipmmu_vmsa_device *root;
63 	const struct ipmmu_features *features;
64 	unsigned int num_ctx;
65 	spinlock_t lock;			/* Protects ctx and domains[] */
66 	DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
67 	struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
68 	s8 utlb_ctx[IPMMU_UTLB_MAX];
69 
70 	struct iommu_group *group;
71 	struct dma_iommu_mapping *mapping;
72 };
73 
74 struct ipmmu_vmsa_domain {
75 	struct ipmmu_vmsa_device *mmu;
76 	struct iommu_domain io_domain;
77 
78 	struct io_pgtable_cfg cfg;
79 	struct io_pgtable_ops *iop;
80 
81 	unsigned int context_id;
82 	struct mutex mutex;			/* Protects mappings */
83 };
84 
85 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
86 {
87 	return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
88 }
89 
90 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
91 {
92 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
93 
94 	return fwspec ? fwspec->iommu_priv : NULL;
95 }
96 
97 #define TLB_LOOP_TIMEOUT		100	/* 100us */
98 
99 /* -----------------------------------------------------------------------------
100  * Registers Definition
101  */
102 
103 #define IM_NS_ALIAS_OFFSET		0x800
104 
105 /* MMU "context" registers */
106 #define IMCTR				0x0000		/* R-Car Gen2/3 */
107 #define IMCTR_INTEN			(1 << 2)	/* R-Car Gen2/3 */
108 #define IMCTR_FLUSH			(1 << 1)	/* R-Car Gen2/3 */
109 #define IMCTR_MMUEN			(1 << 0)	/* R-Car Gen2/3 */
110 
111 #define IMTTBCR				0x0008		/* R-Car Gen2/3 */
112 #define IMTTBCR_EAE			(1 << 31)	/* R-Car Gen2/3 */
113 #define IMTTBCR_SH0_INNER_SHAREABLE	(3 << 12)	/* R-Car Gen2 only */
114 #define IMTTBCR_ORGN0_WB_WA		(1 << 10)	/* R-Car Gen2 only */
115 #define IMTTBCR_IRGN0_WB_WA		(1 << 8)	/* R-Car Gen2 only */
116 #define IMTTBCR_SL0_TWOBIT_LVL_1	(2 << 6)	/* R-Car Gen3 only */
117 #define IMTTBCR_SL0_LVL_1		(1 << 4)	/* R-Car Gen2 only */
118 
119 #define IMBUSCR				0x000c		/* R-Car Gen2 only */
120 #define IMBUSCR_DVM			(1 << 2)	/* R-Car Gen2 only */
121 #define IMBUSCR_BUSSEL_MASK		(3 << 0)	/* R-Car Gen2 only */
122 
123 #define IMTTLBR0			0x0010		/* R-Car Gen2/3 */
124 #define IMTTUBR0			0x0014		/* R-Car Gen2/3 */
125 
126 #define IMSTR				0x0020		/* R-Car Gen2/3 */
127 #define IMSTR_MHIT			(1 << 4)	/* R-Car Gen2/3 */
128 #define IMSTR_ABORT			(1 << 2)	/* R-Car Gen2/3 */
129 #define IMSTR_PF			(1 << 1)	/* R-Car Gen2/3 */
130 #define IMSTR_TF			(1 << 0)	/* R-Car Gen2/3 */
131 
132 #define IMMAIR0				0x0028		/* R-Car Gen2/3 */
133 
134 #define IMELAR				0x0030		/* R-Car Gen2/3, IMEAR on R-Car Gen2 */
135 #define IMEUAR				0x0034		/* R-Car Gen3 only */
136 
137 /* uTLB registers */
138 #define IMUCTR(n)			((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
139 #define IMUCTR0(n)			(0x0300 + ((n) * 16))		/* R-Car Gen2/3 */
140 #define IMUCTR32(n)			(0x0600 + (((n) - 32) * 16))	/* R-Car Gen3 only */
141 #define IMUCTR_TTSEL_MMU(n)		((n) << 4)	/* R-Car Gen2/3 */
142 #define IMUCTR_FLUSH			(1 << 1)	/* R-Car Gen2/3 */
143 #define IMUCTR_MMUEN			(1 << 0)	/* R-Car Gen2/3 */
144 
145 #define IMUASID(n)			((n) < 32 ? IMUASID0(n) : IMUASID32(n))
146 #define IMUASID0(n)			(0x0308 + ((n) * 16))		/* R-Car Gen2/3 */
147 #define IMUASID32(n)			(0x0608 + (((n) - 32) * 16))	/* R-Car Gen3 only */
148 
149 /* -----------------------------------------------------------------------------
150  * Root device handling
151  */
152 
153 static struct platform_driver ipmmu_driver;
154 
155 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
156 {
157 	return mmu->root == mmu;
158 }
159 
160 static int __ipmmu_check_device(struct device *dev, void *data)
161 {
162 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
163 	struct ipmmu_vmsa_device **rootp = data;
164 
165 	if (ipmmu_is_root(mmu))
166 		*rootp = mmu;
167 
168 	return 0;
169 }
170 
171 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
172 {
173 	struct ipmmu_vmsa_device *root = NULL;
174 
175 	return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
176 				      __ipmmu_check_device) == 0 ? root : NULL;
177 }
178 
179 /* -----------------------------------------------------------------------------
180  * Read/Write Access
181  */
182 
183 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
184 {
185 	return ioread32(mmu->base + offset);
186 }
187 
188 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
189 			u32 data)
190 {
191 	iowrite32(data, mmu->base + offset);
192 }
193 
194 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
195 				  unsigned int context_id, unsigned int reg)
196 {
197 	return mmu->features->ctx_offset_base +
198 	       context_id * mmu->features->ctx_offset_stride + reg;
199 }
200 
201 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
202 			  unsigned int context_id, unsigned int reg)
203 {
204 	return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
205 }
206 
207 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
208 			    unsigned int context_id, unsigned int reg, u32 data)
209 {
210 	ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
211 }
212 
213 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
214 			       unsigned int reg)
215 {
216 	return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
217 }
218 
219 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
220 				 unsigned int reg, u32 data)
221 {
222 	ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
223 }
224 
225 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
226 				unsigned int reg, u32 data)
227 {
228 	if (domain->mmu != domain->mmu->root)
229 		ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
230 
231 	ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
232 }
233 
234 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
235 {
236 	return mmu->features->utlb_offset_base + reg;
237 }
238 
239 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
240 				unsigned int utlb, u32 data)
241 {
242 	ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
243 }
244 
245 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
246 			       unsigned int utlb, u32 data)
247 {
248 	ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
249 }
250 
251 /* -----------------------------------------------------------------------------
252  * TLB and microTLB Management
253  */
254 
255 /* Wait for any pending TLB invalidations to complete */
256 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
257 {
258 	unsigned int count = 0;
259 
260 	while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
261 		cpu_relax();
262 		if (++count == TLB_LOOP_TIMEOUT) {
263 			dev_err_ratelimited(domain->mmu->dev,
264 			"TLB sync timed out -- MMU may be deadlocked\n");
265 			return;
266 		}
267 		udelay(1);
268 	}
269 }
270 
271 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
272 {
273 	u32 reg;
274 
275 	reg = ipmmu_ctx_read_root(domain, IMCTR);
276 	reg |= IMCTR_FLUSH;
277 	ipmmu_ctx_write_all(domain, IMCTR, reg);
278 
279 	ipmmu_tlb_sync(domain);
280 }
281 
282 /*
283  * Enable MMU translation for the microTLB.
284  */
285 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
286 			      unsigned int utlb)
287 {
288 	struct ipmmu_vmsa_device *mmu = domain->mmu;
289 
290 	/*
291 	 * TODO: Reference-count the microTLB as several bus masters can be
292 	 * connected to the same microTLB.
293 	 */
294 
295 	/* TODO: What should we set the ASID to ? */
296 	ipmmu_imuasid_write(mmu, utlb, 0);
297 	/* TODO: Do we need to flush the microTLB ? */
298 	ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
299 				      IMUCTR_FLUSH | IMUCTR_MMUEN);
300 	mmu->utlb_ctx[utlb] = domain->context_id;
301 }
302 
303 /*
304  * Disable MMU translation for the microTLB.
305  */
306 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
307 			       unsigned int utlb)
308 {
309 	struct ipmmu_vmsa_device *mmu = domain->mmu;
310 
311 	ipmmu_imuctr_write(mmu, utlb, 0);
312 	mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
313 }
314 
315 static void ipmmu_tlb_flush_all(void *cookie)
316 {
317 	struct ipmmu_vmsa_domain *domain = cookie;
318 
319 	ipmmu_tlb_invalidate(domain);
320 }
321 
322 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
323 				size_t granule, void *cookie)
324 {
325 	ipmmu_tlb_flush_all(cookie);
326 }
327 
328 static const struct iommu_flush_ops ipmmu_flush_ops = {
329 	.tlb_flush_all = ipmmu_tlb_flush_all,
330 	.tlb_flush_walk = ipmmu_tlb_flush,
331 	.tlb_flush_leaf = ipmmu_tlb_flush,
332 };
333 
334 /* -----------------------------------------------------------------------------
335  * Domain/Context Management
336  */
337 
338 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
339 					 struct ipmmu_vmsa_domain *domain)
340 {
341 	unsigned long flags;
342 	int ret;
343 
344 	spin_lock_irqsave(&mmu->lock, flags);
345 
346 	ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
347 	if (ret != mmu->num_ctx) {
348 		mmu->domains[ret] = domain;
349 		set_bit(ret, mmu->ctx);
350 	} else
351 		ret = -EBUSY;
352 
353 	spin_unlock_irqrestore(&mmu->lock, flags);
354 
355 	return ret;
356 }
357 
358 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
359 				      unsigned int context_id)
360 {
361 	unsigned long flags;
362 
363 	spin_lock_irqsave(&mmu->lock, flags);
364 
365 	clear_bit(context_id, mmu->ctx);
366 	mmu->domains[context_id] = NULL;
367 
368 	spin_unlock_irqrestore(&mmu->lock, flags);
369 }
370 
371 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
372 {
373 	u64 ttbr;
374 	u32 tmp;
375 
376 	/* TTBR0 */
377 	ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
378 	ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
379 	ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
380 
381 	/*
382 	 * TTBCR
383 	 * We use long descriptors and allocate the whole 32-bit VA space to
384 	 * TTBR0.
385 	 */
386 	if (domain->mmu->features->twobit_imttbcr_sl0)
387 		tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
388 	else
389 		tmp = IMTTBCR_SL0_LVL_1;
390 
391 	if (domain->mmu->features->cache_snoop)
392 		tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
393 		       IMTTBCR_IRGN0_WB_WA;
394 
395 	ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
396 
397 	/* MAIR0 */
398 	ipmmu_ctx_write_root(domain, IMMAIR0,
399 			     domain->cfg.arm_lpae_s1_cfg.mair);
400 
401 	/* IMBUSCR */
402 	if (domain->mmu->features->setup_imbuscr)
403 		ipmmu_ctx_write_root(domain, IMBUSCR,
404 				     ipmmu_ctx_read_root(domain, IMBUSCR) &
405 				     ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
406 
407 	/*
408 	 * IMSTR
409 	 * Clear all interrupt flags.
410 	 */
411 	ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
412 
413 	/*
414 	 * IMCTR
415 	 * Enable the MMU and interrupt generation. The long-descriptor
416 	 * translation table format doesn't use TEX remapping. Don't enable AF
417 	 * software management as we have no use for it. Flush the TLB as
418 	 * required when modifying the context registers.
419 	 */
420 	ipmmu_ctx_write_all(domain, IMCTR,
421 			    IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
422 }
423 
424 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
425 {
426 	int ret;
427 
428 	/*
429 	 * Allocate the page table operations.
430 	 *
431 	 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
432 	 * access, Long-descriptor format" that the NStable bit being set in a
433 	 * table descriptor will result in the NStable and NS bits of all child
434 	 * entries being ignored and considered as being set. The IPMMU seems
435 	 * not to comply with this, as it generates a secure access page fault
436 	 * if any of the NStable and NS bits isn't set when running in
437 	 * non-secure mode.
438 	 */
439 	domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
440 	domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
441 	domain->cfg.ias = 32;
442 	domain->cfg.oas = 40;
443 	domain->cfg.tlb = &ipmmu_flush_ops;
444 	domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
445 	domain->io_domain.geometry.force_aperture = true;
446 	/*
447 	 * TODO: Add support for coherent walk through CCI with DVM and remove
448 	 * cache handling. For now, delegate it to the io-pgtable code.
449 	 */
450 	domain->cfg.coherent_walk = false;
451 	domain->cfg.iommu_dev = domain->mmu->root->dev;
452 
453 	/*
454 	 * Find an unused context.
455 	 */
456 	ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
457 	if (ret < 0)
458 		return ret;
459 
460 	domain->context_id = ret;
461 
462 	domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
463 					   domain);
464 	if (!domain->iop) {
465 		ipmmu_domain_free_context(domain->mmu->root,
466 					  domain->context_id);
467 		return -EINVAL;
468 	}
469 
470 	ipmmu_domain_setup_context(domain);
471 	return 0;
472 }
473 
474 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
475 {
476 	if (!domain->mmu)
477 		return;
478 
479 	/*
480 	 * Disable the context. Flush the TLB as required when modifying the
481 	 * context registers.
482 	 *
483 	 * TODO: Is TLB flush really needed ?
484 	 */
485 	ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
486 	ipmmu_tlb_sync(domain);
487 	ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
488 }
489 
490 /* -----------------------------------------------------------------------------
491  * Fault Handling
492  */
493 
494 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
495 {
496 	const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
497 	struct ipmmu_vmsa_device *mmu = domain->mmu;
498 	unsigned long iova;
499 	u32 status;
500 
501 	status = ipmmu_ctx_read_root(domain, IMSTR);
502 	if (!(status & err_mask))
503 		return IRQ_NONE;
504 
505 	iova = ipmmu_ctx_read_root(domain, IMELAR);
506 	if (IS_ENABLED(CONFIG_64BIT))
507 		iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
508 
509 	/*
510 	 * Clear the error status flags. Unlike traditional interrupt flag
511 	 * registers that must be cleared by writing 1, this status register
512 	 * seems to require 0. The error address register must be read before,
513 	 * otherwise its value will be 0.
514 	 */
515 	ipmmu_ctx_write_root(domain, IMSTR, 0);
516 
517 	/* Log fatal errors. */
518 	if (status & IMSTR_MHIT)
519 		dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
520 				    iova);
521 	if (status & IMSTR_ABORT)
522 		dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
523 				    iova);
524 
525 	if (!(status & (IMSTR_PF | IMSTR_TF)))
526 		return IRQ_NONE;
527 
528 	/*
529 	 * Try to handle page faults and translation faults.
530 	 *
531 	 * TODO: We need to look up the faulty device based on the I/O VA. Use
532 	 * the IOMMU device for now.
533 	 */
534 	if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
535 		return IRQ_HANDLED;
536 
537 	dev_err_ratelimited(mmu->dev,
538 			    "Unhandled fault: status 0x%08x iova 0x%lx\n",
539 			    status, iova);
540 
541 	return IRQ_HANDLED;
542 }
543 
544 static irqreturn_t ipmmu_irq(int irq, void *dev)
545 {
546 	struct ipmmu_vmsa_device *mmu = dev;
547 	irqreturn_t status = IRQ_NONE;
548 	unsigned int i;
549 	unsigned long flags;
550 
551 	spin_lock_irqsave(&mmu->lock, flags);
552 
553 	/*
554 	 * Check interrupts for all active contexts.
555 	 */
556 	for (i = 0; i < mmu->num_ctx; i++) {
557 		if (!mmu->domains[i])
558 			continue;
559 		if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
560 			status = IRQ_HANDLED;
561 	}
562 
563 	spin_unlock_irqrestore(&mmu->lock, flags);
564 
565 	return status;
566 }
567 
568 /* -----------------------------------------------------------------------------
569  * IOMMU Operations
570  */
571 
572 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
573 {
574 	struct ipmmu_vmsa_domain *domain;
575 
576 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
577 	if (!domain)
578 		return NULL;
579 
580 	mutex_init(&domain->mutex);
581 
582 	return &domain->io_domain;
583 }
584 
585 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
586 {
587 	struct iommu_domain *io_domain = NULL;
588 
589 	switch (type) {
590 	case IOMMU_DOMAIN_UNMANAGED:
591 		io_domain = __ipmmu_domain_alloc(type);
592 		break;
593 
594 	case IOMMU_DOMAIN_DMA:
595 		io_domain = __ipmmu_domain_alloc(type);
596 		if (io_domain && iommu_get_dma_cookie(io_domain)) {
597 			kfree(io_domain);
598 			io_domain = NULL;
599 		}
600 		break;
601 	}
602 
603 	return io_domain;
604 }
605 
606 static void ipmmu_domain_free(struct iommu_domain *io_domain)
607 {
608 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
609 
610 	/*
611 	 * Free the domain resources. We assume that all devices have already
612 	 * been detached.
613 	 */
614 	iommu_put_dma_cookie(io_domain);
615 	ipmmu_domain_destroy_context(domain);
616 	free_io_pgtable_ops(domain->iop);
617 	kfree(domain);
618 }
619 
620 static int ipmmu_attach_device(struct iommu_domain *io_domain,
621 			       struct device *dev)
622 {
623 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
624 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
625 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
626 	unsigned int i;
627 	int ret = 0;
628 
629 	if (!mmu) {
630 		dev_err(dev, "Cannot attach to IPMMU\n");
631 		return -ENXIO;
632 	}
633 
634 	mutex_lock(&domain->mutex);
635 
636 	if (!domain->mmu) {
637 		/* The domain hasn't been used yet, initialize it. */
638 		domain->mmu = mmu;
639 		ret = ipmmu_domain_init_context(domain);
640 		if (ret < 0) {
641 			dev_err(dev, "Unable to initialize IPMMU context\n");
642 			domain->mmu = NULL;
643 		} else {
644 			dev_info(dev, "Using IPMMU context %u\n",
645 				 domain->context_id);
646 		}
647 	} else if (domain->mmu != mmu) {
648 		/*
649 		 * Something is wrong, we can't attach two devices using
650 		 * different IOMMUs to the same domain.
651 		 */
652 		dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
653 			dev_name(mmu->dev), dev_name(domain->mmu->dev));
654 		ret = -EINVAL;
655 	} else
656 		dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
657 
658 	mutex_unlock(&domain->mutex);
659 
660 	if (ret < 0)
661 		return ret;
662 
663 	for (i = 0; i < fwspec->num_ids; ++i)
664 		ipmmu_utlb_enable(domain, fwspec->ids[i]);
665 
666 	return 0;
667 }
668 
669 static void ipmmu_detach_device(struct iommu_domain *io_domain,
670 				struct device *dev)
671 {
672 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
673 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
674 	unsigned int i;
675 
676 	for (i = 0; i < fwspec->num_ids; ++i)
677 		ipmmu_utlb_disable(domain, fwspec->ids[i]);
678 
679 	/*
680 	 * TODO: Optimize by disabling the context when no device is attached.
681 	 */
682 }
683 
684 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
685 		     phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
686 {
687 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
688 
689 	if (!domain)
690 		return -ENODEV;
691 
692 	return domain->iop->map(domain->iop, iova, paddr, size, prot);
693 }
694 
695 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
696 			  size_t size, struct iommu_iotlb_gather *gather)
697 {
698 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
699 
700 	return domain->iop->unmap(domain->iop, iova, size, gather);
701 }
702 
703 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
704 {
705 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
706 
707 	if (domain->mmu)
708 		ipmmu_tlb_flush_all(domain);
709 }
710 
711 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
712 			     struct iommu_iotlb_gather *gather)
713 {
714 	ipmmu_flush_iotlb_all(io_domain);
715 }
716 
717 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
718 				      dma_addr_t iova)
719 {
720 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
721 
722 	/* TODO: Is locking needed ? */
723 
724 	return domain->iop->iova_to_phys(domain->iop, iova);
725 }
726 
727 static int ipmmu_init_platform_device(struct device *dev,
728 				      struct of_phandle_args *args)
729 {
730 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
731 	struct platform_device *ipmmu_pdev;
732 
733 	ipmmu_pdev = of_find_device_by_node(args->np);
734 	if (!ipmmu_pdev)
735 		return -ENODEV;
736 
737 	fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
738 
739 	return 0;
740 }
741 
742 static const struct soc_device_attribute soc_rcar_gen3[] = {
743 	{ .soc_id = "r8a774a1", },
744 	{ .soc_id = "r8a774b1", },
745 	{ .soc_id = "r8a774c0", },
746 	{ .soc_id = "r8a7795", },
747 	{ .soc_id = "r8a7796", },
748 	{ .soc_id = "r8a77965", },
749 	{ .soc_id = "r8a77970", },
750 	{ .soc_id = "r8a77990", },
751 	{ .soc_id = "r8a77995", },
752 	{ /* sentinel */ }
753 };
754 
755 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
756 	{ .soc_id = "r8a774b1", },
757 	{ .soc_id = "r8a774c0", },
758 	{ .soc_id = "r8a7795", .revision = "ES3.*" },
759 	{ .soc_id = "r8a77965", },
760 	{ .soc_id = "r8a77990", },
761 	{ .soc_id = "r8a77995", },
762 	{ /* sentinel */ }
763 };
764 
765 static const char * const rcar_gen3_slave_whitelist[] = {
766 };
767 
768 static bool ipmmu_slave_whitelist(struct device *dev)
769 {
770 	unsigned int i;
771 
772 	/*
773 	 * For R-Car Gen3 use a white list to opt-in slave devices.
774 	 * For Other SoCs, this returns true anyway.
775 	 */
776 	if (!soc_device_match(soc_rcar_gen3))
777 		return true;
778 
779 	/* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
780 	if (!soc_device_match(soc_rcar_gen3_whitelist))
781 		return false;
782 
783 	/* Check whether this slave device can work with the IPMMU */
784 	for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
785 		if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
786 			return true;
787 	}
788 
789 	/* Otherwise, do not allow use of IPMMU */
790 	return false;
791 }
792 
793 static int ipmmu_of_xlate(struct device *dev,
794 			  struct of_phandle_args *spec)
795 {
796 	if (!ipmmu_slave_whitelist(dev))
797 		return -ENODEV;
798 
799 	iommu_fwspec_add_ids(dev, spec->args, 1);
800 
801 	/* Initialize once - xlate() will call multiple times */
802 	if (to_ipmmu(dev))
803 		return 0;
804 
805 	return ipmmu_init_platform_device(dev, spec);
806 }
807 
808 static int ipmmu_init_arm_mapping(struct device *dev)
809 {
810 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
811 	struct iommu_group *group;
812 	int ret;
813 
814 	/* Create a device group and add the device to it. */
815 	group = iommu_group_alloc();
816 	if (IS_ERR(group)) {
817 		dev_err(dev, "Failed to allocate IOMMU group\n");
818 		return PTR_ERR(group);
819 	}
820 
821 	ret = iommu_group_add_device(group, dev);
822 	iommu_group_put(group);
823 
824 	if (ret < 0) {
825 		dev_err(dev, "Failed to add device to IPMMU group\n");
826 		return ret;
827 	}
828 
829 	/*
830 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
831 	 * VAs. This will allocate a corresponding IOMMU domain.
832 	 *
833 	 * TODO:
834 	 * - Create one mapping per context (TLB).
835 	 * - Make the mapping size configurable ? We currently use a 2GB mapping
836 	 *   at a 1GB offset to ensure that NULL VAs will fault.
837 	 */
838 	if (!mmu->mapping) {
839 		struct dma_iommu_mapping *mapping;
840 
841 		mapping = arm_iommu_create_mapping(&platform_bus_type,
842 						   SZ_1G, SZ_2G);
843 		if (IS_ERR(mapping)) {
844 			dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
845 			ret = PTR_ERR(mapping);
846 			goto error;
847 		}
848 
849 		mmu->mapping = mapping;
850 	}
851 
852 	/* Attach the ARM VA mapping to the device. */
853 	ret = arm_iommu_attach_device(dev, mmu->mapping);
854 	if (ret < 0) {
855 		dev_err(dev, "Failed to attach device to VA mapping\n");
856 		goto error;
857 	}
858 
859 	return 0;
860 
861 error:
862 	iommu_group_remove_device(dev);
863 	if (mmu->mapping)
864 		arm_iommu_release_mapping(mmu->mapping);
865 
866 	return ret;
867 }
868 
869 static int ipmmu_add_device(struct device *dev)
870 {
871 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
872 	struct iommu_group *group;
873 	int ret;
874 
875 	/*
876 	 * Only let through devices that have been verified in xlate()
877 	 */
878 	if (!mmu)
879 		return -ENODEV;
880 
881 	if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
882 		ret = ipmmu_init_arm_mapping(dev);
883 		if (ret)
884 			return ret;
885 	} else {
886 		group = iommu_group_get_for_dev(dev);
887 		if (IS_ERR(group))
888 			return PTR_ERR(group);
889 
890 		iommu_group_put(group);
891 	}
892 
893 	iommu_device_link(&mmu->iommu, dev);
894 	return 0;
895 }
896 
897 static void ipmmu_remove_device(struct device *dev)
898 {
899 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
900 
901 	iommu_device_unlink(&mmu->iommu, dev);
902 	arm_iommu_detach_device(dev);
903 	iommu_group_remove_device(dev);
904 }
905 
906 static struct iommu_group *ipmmu_find_group(struct device *dev)
907 {
908 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
909 	struct iommu_group *group;
910 
911 	if (mmu->group)
912 		return iommu_group_ref_get(mmu->group);
913 
914 	group = iommu_group_alloc();
915 	if (!IS_ERR(group))
916 		mmu->group = group;
917 
918 	return group;
919 }
920 
921 static const struct iommu_ops ipmmu_ops = {
922 	.domain_alloc = ipmmu_domain_alloc,
923 	.domain_free = ipmmu_domain_free,
924 	.attach_dev = ipmmu_attach_device,
925 	.detach_dev = ipmmu_detach_device,
926 	.map = ipmmu_map,
927 	.unmap = ipmmu_unmap,
928 	.flush_iotlb_all = ipmmu_flush_iotlb_all,
929 	.iotlb_sync = ipmmu_iotlb_sync,
930 	.iova_to_phys = ipmmu_iova_to_phys,
931 	.add_device = ipmmu_add_device,
932 	.remove_device = ipmmu_remove_device,
933 	.device_group = ipmmu_find_group,
934 	.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
935 	.of_xlate = ipmmu_of_xlate,
936 };
937 
938 /* -----------------------------------------------------------------------------
939  * Probe/remove and init
940  */
941 
942 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
943 {
944 	unsigned int i;
945 
946 	/* Disable all contexts. */
947 	for (i = 0; i < mmu->num_ctx; ++i)
948 		ipmmu_ctx_write(mmu, i, IMCTR, 0);
949 }
950 
951 static const struct ipmmu_features ipmmu_features_default = {
952 	.use_ns_alias_offset = true,
953 	.has_cache_leaf_nodes = false,
954 	.number_of_contexts = 1, /* software only tested with one context */
955 	.num_utlbs = 32,
956 	.setup_imbuscr = true,
957 	.twobit_imttbcr_sl0 = false,
958 	.reserved_context = false,
959 	.cache_snoop = true,
960 	.ctx_offset_base = 0,
961 	.ctx_offset_stride = 0x40,
962 	.utlb_offset_base = 0,
963 };
964 
965 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
966 	.use_ns_alias_offset = false,
967 	.has_cache_leaf_nodes = true,
968 	.number_of_contexts = 8,
969 	.num_utlbs = 48,
970 	.setup_imbuscr = false,
971 	.twobit_imttbcr_sl0 = true,
972 	.reserved_context = true,
973 	.cache_snoop = false,
974 	.ctx_offset_base = 0,
975 	.ctx_offset_stride = 0x40,
976 	.utlb_offset_base = 0,
977 };
978 
979 static const struct of_device_id ipmmu_of_ids[] = {
980 	{
981 		.compatible = "renesas,ipmmu-vmsa",
982 		.data = &ipmmu_features_default,
983 	}, {
984 		.compatible = "renesas,ipmmu-r8a774a1",
985 		.data = &ipmmu_features_rcar_gen3,
986 	}, {
987 		.compatible = "renesas,ipmmu-r8a774b1",
988 		.data = &ipmmu_features_rcar_gen3,
989 	}, {
990 		.compatible = "renesas,ipmmu-r8a774c0",
991 		.data = &ipmmu_features_rcar_gen3,
992 	}, {
993 		.compatible = "renesas,ipmmu-r8a7795",
994 		.data = &ipmmu_features_rcar_gen3,
995 	}, {
996 		.compatible = "renesas,ipmmu-r8a7796",
997 		.data = &ipmmu_features_rcar_gen3,
998 	}, {
999 		.compatible = "renesas,ipmmu-r8a77965",
1000 		.data = &ipmmu_features_rcar_gen3,
1001 	}, {
1002 		.compatible = "renesas,ipmmu-r8a77970",
1003 		.data = &ipmmu_features_rcar_gen3,
1004 	}, {
1005 		.compatible = "renesas,ipmmu-r8a77990",
1006 		.data = &ipmmu_features_rcar_gen3,
1007 	}, {
1008 		.compatible = "renesas,ipmmu-r8a77995",
1009 		.data = &ipmmu_features_rcar_gen3,
1010 	}, {
1011 		/* Terminator */
1012 	},
1013 };
1014 
1015 static int ipmmu_probe(struct platform_device *pdev)
1016 {
1017 	struct ipmmu_vmsa_device *mmu;
1018 	struct resource *res;
1019 	int irq;
1020 	int ret;
1021 
1022 	mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1023 	if (!mmu) {
1024 		dev_err(&pdev->dev, "cannot allocate device data\n");
1025 		return -ENOMEM;
1026 	}
1027 
1028 	mmu->dev = &pdev->dev;
1029 	spin_lock_init(&mmu->lock);
1030 	bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1031 	mmu->features = of_device_get_match_data(&pdev->dev);
1032 	memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1033 	dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1034 
1035 	/* Map I/O memory and request IRQ. */
1036 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1037 	mmu->base = devm_ioremap_resource(&pdev->dev, res);
1038 	if (IS_ERR(mmu->base))
1039 		return PTR_ERR(mmu->base);
1040 
1041 	/*
1042 	 * The IPMMU has two register banks, for secure and non-secure modes.
1043 	 * The bank mapped at the beginning of the IPMMU address space
1044 	 * corresponds to the running mode of the CPU. When running in secure
1045 	 * mode the non-secure register bank is also available at an offset.
1046 	 *
1047 	 * Secure mode operation isn't clearly documented and is thus currently
1048 	 * not implemented in the driver. Furthermore, preliminary tests of
1049 	 * non-secure operation with the main register bank were not successful.
1050 	 * Offset the registers base unconditionally to point to the non-secure
1051 	 * alias space for now.
1052 	 */
1053 	if (mmu->features->use_ns_alias_offset)
1054 		mmu->base += IM_NS_ALIAS_OFFSET;
1055 
1056 	mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1057 
1058 	/*
1059 	 * Determine if this IPMMU instance is a root device by checking for
1060 	 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1061 	 */
1062 	if (!mmu->features->has_cache_leaf_nodes ||
1063 	    !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1064 		mmu->root = mmu;
1065 	else
1066 		mmu->root = ipmmu_find_root();
1067 
1068 	/*
1069 	 * Wait until the root device has been registered for sure.
1070 	 */
1071 	if (!mmu->root)
1072 		return -EPROBE_DEFER;
1073 
1074 	/* Root devices have mandatory IRQs */
1075 	if (ipmmu_is_root(mmu)) {
1076 		irq = platform_get_irq(pdev, 0);
1077 		if (irq < 0)
1078 			return irq;
1079 
1080 		ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1081 				       dev_name(&pdev->dev), mmu);
1082 		if (ret < 0) {
1083 			dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1084 			return ret;
1085 		}
1086 
1087 		ipmmu_device_reset(mmu);
1088 
1089 		if (mmu->features->reserved_context) {
1090 			dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1091 			set_bit(0, mmu->ctx);
1092 		}
1093 	}
1094 
1095 	/*
1096 	 * Register the IPMMU to the IOMMU subsystem in the following cases:
1097 	 * - R-Car Gen2 IPMMU (all devices registered)
1098 	 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1099 	 */
1100 	if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1101 		ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1102 					     dev_name(&pdev->dev));
1103 		if (ret)
1104 			return ret;
1105 
1106 		iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1107 		iommu_device_set_fwnode(&mmu->iommu,
1108 					&pdev->dev.of_node->fwnode);
1109 
1110 		ret = iommu_device_register(&mmu->iommu);
1111 		if (ret)
1112 			return ret;
1113 
1114 #if defined(CONFIG_IOMMU_DMA)
1115 		if (!iommu_present(&platform_bus_type))
1116 			bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1117 #endif
1118 	}
1119 
1120 	/*
1121 	 * We can't create the ARM mapping here as it requires the bus to have
1122 	 * an IOMMU, which only happens when bus_set_iommu() is called in
1123 	 * ipmmu_init() after the probe function returns.
1124 	 */
1125 
1126 	platform_set_drvdata(pdev, mmu);
1127 
1128 	return 0;
1129 }
1130 
1131 static int ipmmu_remove(struct platform_device *pdev)
1132 {
1133 	struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1134 
1135 	iommu_device_sysfs_remove(&mmu->iommu);
1136 	iommu_device_unregister(&mmu->iommu);
1137 
1138 	arm_iommu_release_mapping(mmu->mapping);
1139 
1140 	ipmmu_device_reset(mmu);
1141 
1142 	return 0;
1143 }
1144 
1145 #ifdef CONFIG_PM_SLEEP
1146 static int ipmmu_resume_noirq(struct device *dev)
1147 {
1148 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1149 	unsigned int i;
1150 
1151 	/* Reset root MMU and restore contexts */
1152 	if (ipmmu_is_root(mmu)) {
1153 		ipmmu_device_reset(mmu);
1154 
1155 		for (i = 0; i < mmu->num_ctx; i++) {
1156 			if (!mmu->domains[i])
1157 				continue;
1158 
1159 			ipmmu_domain_setup_context(mmu->domains[i]);
1160 		}
1161 	}
1162 
1163 	/* Re-enable active micro-TLBs */
1164 	for (i = 0; i < mmu->features->num_utlbs; i++) {
1165 		if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1166 			continue;
1167 
1168 		ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static const struct dev_pm_ops ipmmu_pm  = {
1175 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1176 };
1177 #define DEV_PM_OPS	&ipmmu_pm
1178 #else
1179 #define DEV_PM_OPS	NULL
1180 #endif /* CONFIG_PM_SLEEP */
1181 
1182 static struct platform_driver ipmmu_driver = {
1183 	.driver = {
1184 		.name = "ipmmu-vmsa",
1185 		.of_match_table = of_match_ptr(ipmmu_of_ids),
1186 		.pm = DEV_PM_OPS,
1187 	},
1188 	.probe = ipmmu_probe,
1189 	.remove	= ipmmu_remove,
1190 };
1191 
1192 static int __init ipmmu_init(void)
1193 {
1194 	struct device_node *np;
1195 	static bool setup_done;
1196 	int ret;
1197 
1198 	if (setup_done)
1199 		return 0;
1200 
1201 	np = of_find_matching_node(NULL, ipmmu_of_ids);
1202 	if (!np)
1203 		return 0;
1204 
1205 	of_node_put(np);
1206 
1207 	ret = platform_driver_register(&ipmmu_driver);
1208 	if (ret < 0)
1209 		return ret;
1210 
1211 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1212 	if (!iommu_present(&platform_bus_type))
1213 		bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1214 #endif
1215 
1216 	setup_done = true;
1217 	return 0;
1218 }
1219 subsys_initcall(ipmmu_init);
1220