xref: /linux/drivers/iommu/ipmmu-vmsa.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * IPMMU VMSA
3  *
4  * Copyright (C) 2014 Renesas Electronics Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iommu.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
23 
24 #include <asm/dma-iommu.h>
25 #include <asm/pgalloc.h>
26 
27 #include "io-pgtable.h"
28 
29 struct ipmmu_vmsa_device {
30 	struct device *dev;
31 	void __iomem *base;
32 	struct list_head list;
33 
34 	unsigned int num_utlbs;
35 
36 	struct dma_iommu_mapping *mapping;
37 };
38 
39 struct ipmmu_vmsa_domain {
40 	struct ipmmu_vmsa_device *mmu;
41 	struct iommu_domain *io_domain;
42 
43 	struct io_pgtable_cfg cfg;
44 	struct io_pgtable_ops *iop;
45 
46 	unsigned int context_id;
47 	spinlock_t lock;			/* Protects mappings */
48 };
49 
50 struct ipmmu_vmsa_archdata {
51 	struct ipmmu_vmsa_device *mmu;
52 	unsigned int *utlbs;
53 	unsigned int num_utlbs;
54 };
55 
56 static DEFINE_SPINLOCK(ipmmu_devices_lock);
57 static LIST_HEAD(ipmmu_devices);
58 
59 #define TLB_LOOP_TIMEOUT		100	/* 100us */
60 
61 /* -----------------------------------------------------------------------------
62  * Registers Definition
63  */
64 
65 #define IM_NS_ALIAS_OFFSET		0x800
66 
67 #define IM_CTX_SIZE			0x40
68 
69 #define IMCTR				0x0000
70 #define IMCTR_TRE			(1 << 17)
71 #define IMCTR_AFE			(1 << 16)
72 #define IMCTR_RTSEL_MASK		(3 << 4)
73 #define IMCTR_RTSEL_SHIFT		4
74 #define IMCTR_TREN			(1 << 3)
75 #define IMCTR_INTEN			(1 << 2)
76 #define IMCTR_FLUSH			(1 << 1)
77 #define IMCTR_MMUEN			(1 << 0)
78 
79 #define IMCAAR				0x0004
80 
81 #define IMTTBCR				0x0008
82 #define IMTTBCR_EAE			(1 << 31)
83 #define IMTTBCR_PMB			(1 << 30)
84 #define IMTTBCR_SH1_NON_SHAREABLE	(0 << 28)
85 #define IMTTBCR_SH1_OUTER_SHAREABLE	(2 << 28)
86 #define IMTTBCR_SH1_INNER_SHAREABLE	(3 << 28)
87 #define IMTTBCR_SH1_MASK		(3 << 28)
88 #define IMTTBCR_ORGN1_NC		(0 << 26)
89 #define IMTTBCR_ORGN1_WB_WA		(1 << 26)
90 #define IMTTBCR_ORGN1_WT		(2 << 26)
91 #define IMTTBCR_ORGN1_WB		(3 << 26)
92 #define IMTTBCR_ORGN1_MASK		(3 << 26)
93 #define IMTTBCR_IRGN1_NC		(0 << 24)
94 #define IMTTBCR_IRGN1_WB_WA		(1 << 24)
95 #define IMTTBCR_IRGN1_WT		(2 << 24)
96 #define IMTTBCR_IRGN1_WB		(3 << 24)
97 #define IMTTBCR_IRGN1_MASK		(3 << 24)
98 #define IMTTBCR_TSZ1_MASK		(7 << 16)
99 #define IMTTBCR_TSZ1_SHIFT		16
100 #define IMTTBCR_SH0_NON_SHAREABLE	(0 << 12)
101 #define IMTTBCR_SH0_OUTER_SHAREABLE	(2 << 12)
102 #define IMTTBCR_SH0_INNER_SHAREABLE	(3 << 12)
103 #define IMTTBCR_SH0_MASK		(3 << 12)
104 #define IMTTBCR_ORGN0_NC		(0 << 10)
105 #define IMTTBCR_ORGN0_WB_WA		(1 << 10)
106 #define IMTTBCR_ORGN0_WT		(2 << 10)
107 #define IMTTBCR_ORGN0_WB		(3 << 10)
108 #define IMTTBCR_ORGN0_MASK		(3 << 10)
109 #define IMTTBCR_IRGN0_NC		(0 << 8)
110 #define IMTTBCR_IRGN0_WB_WA		(1 << 8)
111 #define IMTTBCR_IRGN0_WT		(2 << 8)
112 #define IMTTBCR_IRGN0_WB		(3 << 8)
113 #define IMTTBCR_IRGN0_MASK		(3 << 8)
114 #define IMTTBCR_SL0_LVL_2		(0 << 4)
115 #define IMTTBCR_SL0_LVL_1		(1 << 4)
116 #define IMTTBCR_TSZ0_MASK		(7 << 0)
117 #define IMTTBCR_TSZ0_SHIFT		O
118 
119 #define IMBUSCR				0x000c
120 #define IMBUSCR_DVM			(1 << 2)
121 #define IMBUSCR_BUSSEL_SYS		(0 << 0)
122 #define IMBUSCR_BUSSEL_CCI		(1 << 0)
123 #define IMBUSCR_BUSSEL_IMCAAR		(2 << 0)
124 #define IMBUSCR_BUSSEL_CCI_IMCAAR	(3 << 0)
125 #define IMBUSCR_BUSSEL_MASK		(3 << 0)
126 
127 #define IMTTLBR0			0x0010
128 #define IMTTUBR0			0x0014
129 #define IMTTLBR1			0x0018
130 #define IMTTUBR1			0x001c
131 
132 #define IMSTR				0x0020
133 #define IMSTR_ERRLVL_MASK		(3 << 12)
134 #define IMSTR_ERRLVL_SHIFT		12
135 #define IMSTR_ERRCODE_TLB_FORMAT	(1 << 8)
136 #define IMSTR_ERRCODE_ACCESS_PERM	(4 << 8)
137 #define IMSTR_ERRCODE_SECURE_ACCESS	(5 << 8)
138 #define IMSTR_ERRCODE_MASK		(7 << 8)
139 #define IMSTR_MHIT			(1 << 4)
140 #define IMSTR_ABORT			(1 << 2)
141 #define IMSTR_PF			(1 << 1)
142 #define IMSTR_TF			(1 << 0)
143 
144 #define IMMAIR0				0x0028
145 #define IMMAIR1				0x002c
146 #define IMMAIR_ATTR_MASK		0xff
147 #define IMMAIR_ATTR_DEVICE		0x04
148 #define IMMAIR_ATTR_NC			0x44
149 #define IMMAIR_ATTR_WBRWA		0xff
150 #define IMMAIR_ATTR_SHIFT(n)		((n) << 3)
151 #define IMMAIR_ATTR_IDX_NC		0
152 #define IMMAIR_ATTR_IDX_WBRWA		1
153 #define IMMAIR_ATTR_IDX_DEV		2
154 
155 #define IMEAR				0x0030
156 
157 #define IMPCTR				0x0200
158 #define IMPSTR				0x0208
159 #define IMPEAR				0x020c
160 #define IMPMBA(n)			(0x0280 + ((n) * 4))
161 #define IMPMBD(n)			(0x02c0 + ((n) * 4))
162 
163 #define IMUCTR(n)			(0x0300 + ((n) * 16))
164 #define IMUCTR_FIXADDEN			(1 << 31)
165 #define IMUCTR_FIXADD_MASK		(0xff << 16)
166 #define IMUCTR_FIXADD_SHIFT		16
167 #define IMUCTR_TTSEL_MMU(n)		((n) << 4)
168 #define IMUCTR_TTSEL_PMB		(8 << 4)
169 #define IMUCTR_TTSEL_MASK		(15 << 4)
170 #define IMUCTR_FLUSH			(1 << 1)
171 #define IMUCTR_MMUEN			(1 << 0)
172 
173 #define IMUASID(n)			(0x0308 + ((n) * 16))
174 #define IMUASID_ASID8_MASK		(0xff << 8)
175 #define IMUASID_ASID8_SHIFT		8
176 #define IMUASID_ASID0_MASK		(0xff << 0)
177 #define IMUASID_ASID0_SHIFT		0
178 
179 /* -----------------------------------------------------------------------------
180  * Read/Write Access
181  */
182 
183 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
184 {
185 	return ioread32(mmu->base + offset);
186 }
187 
188 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
189 			u32 data)
190 {
191 	iowrite32(data, mmu->base + offset);
192 }
193 
194 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
195 {
196 	return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
197 }
198 
199 static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
200 			    u32 data)
201 {
202 	ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
203 }
204 
205 /* -----------------------------------------------------------------------------
206  * TLB and microTLB Management
207  */
208 
209 /* Wait for any pending TLB invalidations to complete */
210 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
211 {
212 	unsigned int count = 0;
213 
214 	while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
215 		cpu_relax();
216 		if (++count == TLB_LOOP_TIMEOUT) {
217 			dev_err_ratelimited(domain->mmu->dev,
218 			"TLB sync timed out -- MMU may be deadlocked\n");
219 			return;
220 		}
221 		udelay(1);
222 	}
223 }
224 
225 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
226 {
227 	u32 reg;
228 
229 	reg = ipmmu_ctx_read(domain, IMCTR);
230 	reg |= IMCTR_FLUSH;
231 	ipmmu_ctx_write(domain, IMCTR, reg);
232 
233 	ipmmu_tlb_sync(domain);
234 }
235 
236 /*
237  * Enable MMU translation for the microTLB.
238  */
239 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
240 			      unsigned int utlb)
241 {
242 	struct ipmmu_vmsa_device *mmu = domain->mmu;
243 
244 	/*
245 	 * TODO: Reference-count the microTLB as several bus masters can be
246 	 * connected to the same microTLB.
247 	 */
248 
249 	/* TODO: What should we set the ASID to ? */
250 	ipmmu_write(mmu, IMUASID(utlb), 0);
251 	/* TODO: Do we need to flush the microTLB ? */
252 	ipmmu_write(mmu, IMUCTR(utlb),
253 		    IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
254 		    IMUCTR_MMUEN);
255 }
256 
257 /*
258  * Disable MMU translation for the microTLB.
259  */
260 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
261 			       unsigned int utlb)
262 {
263 	struct ipmmu_vmsa_device *mmu = domain->mmu;
264 
265 	ipmmu_write(mmu, IMUCTR(utlb), 0);
266 }
267 
268 static void ipmmu_tlb_flush_all(void *cookie)
269 {
270 	struct ipmmu_vmsa_domain *domain = cookie;
271 
272 	ipmmu_tlb_invalidate(domain);
273 }
274 
275 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size, bool leaf,
276 				void *cookie)
277 {
278 	/* The hardware doesn't support selective TLB flush. */
279 }
280 
281 static void ipmmu_flush_pgtable(void *ptr, size_t size, void *cookie)
282 {
283 	unsigned long offset = (unsigned long)ptr & ~PAGE_MASK;
284 	struct ipmmu_vmsa_domain *domain = cookie;
285 
286 	/*
287 	 * TODO: Add support for coherent walk through CCI with DVM and remove
288 	 * cache handling.
289 	 */
290 	dma_map_page(domain->mmu->dev, virt_to_page(ptr), offset, size,
291 		     DMA_TO_DEVICE);
292 }
293 
294 static struct iommu_gather_ops ipmmu_gather_ops = {
295 	.tlb_flush_all = ipmmu_tlb_flush_all,
296 	.tlb_add_flush = ipmmu_tlb_add_flush,
297 	.tlb_sync = ipmmu_tlb_flush_all,
298 	.flush_pgtable = ipmmu_flush_pgtable,
299 };
300 
301 /* -----------------------------------------------------------------------------
302  * Domain/Context Management
303  */
304 
305 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
306 {
307 	phys_addr_t ttbr;
308 
309 	/*
310 	 * Allocate the page table operations.
311 	 *
312 	 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
313 	 * access, Long-descriptor format" that the NStable bit being set in a
314 	 * table descriptor will result in the NStable and NS bits of all child
315 	 * entries being ignored and considered as being set. The IPMMU seems
316 	 * not to comply with this, as it generates a secure access page fault
317 	 * if any of the NStable and NS bits isn't set when running in
318 	 * non-secure mode.
319 	 */
320 	domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
321 	domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
322 	domain->cfg.ias = 32;
323 	domain->cfg.oas = 40;
324 	domain->cfg.tlb = &ipmmu_gather_ops;
325 
326 	domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
327 					   domain);
328 	if (!domain->iop)
329 		return -EINVAL;
330 
331 	/*
332 	 * TODO: When adding support for multiple contexts, find an unused
333 	 * context.
334 	 */
335 	domain->context_id = 0;
336 
337 	/* TTBR0 */
338 	ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
339 	ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
340 	ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
341 
342 	/*
343 	 * TTBCR
344 	 * We use long descriptors with inner-shareable WBWA tables and allocate
345 	 * the whole 32-bit VA space to TTBR0.
346 	 */
347 	ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
348 			IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
349 			IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
350 
351 	/* MAIR0 */
352 	ipmmu_ctx_write(domain, IMMAIR0, domain->cfg.arm_lpae_s1_cfg.mair[0]);
353 
354 	/* IMBUSCR */
355 	ipmmu_ctx_write(domain, IMBUSCR,
356 			ipmmu_ctx_read(domain, IMBUSCR) &
357 			~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
358 
359 	/*
360 	 * IMSTR
361 	 * Clear all interrupt flags.
362 	 */
363 	ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
364 
365 	/*
366 	 * IMCTR
367 	 * Enable the MMU and interrupt generation. The long-descriptor
368 	 * translation table format doesn't use TEX remapping. Don't enable AF
369 	 * software management as we have no use for it. Flush the TLB as
370 	 * required when modifying the context registers.
371 	 */
372 	ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
373 
374 	return 0;
375 }
376 
377 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
378 {
379 	/*
380 	 * Disable the context. Flush the TLB as required when modifying the
381 	 * context registers.
382 	 *
383 	 * TODO: Is TLB flush really needed ?
384 	 */
385 	ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
386 	ipmmu_tlb_sync(domain);
387 }
388 
389 /* -----------------------------------------------------------------------------
390  * Fault Handling
391  */
392 
393 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
394 {
395 	const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
396 	struct ipmmu_vmsa_device *mmu = domain->mmu;
397 	u32 status;
398 	u32 iova;
399 
400 	status = ipmmu_ctx_read(domain, IMSTR);
401 	if (!(status & err_mask))
402 		return IRQ_NONE;
403 
404 	iova = ipmmu_ctx_read(domain, IMEAR);
405 
406 	/*
407 	 * Clear the error status flags. Unlike traditional interrupt flag
408 	 * registers that must be cleared by writing 1, this status register
409 	 * seems to require 0. The error address register must be read before,
410 	 * otherwise its value will be 0.
411 	 */
412 	ipmmu_ctx_write(domain, IMSTR, 0);
413 
414 	/* Log fatal errors. */
415 	if (status & IMSTR_MHIT)
416 		dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
417 				    iova);
418 	if (status & IMSTR_ABORT)
419 		dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
420 				    iova);
421 
422 	if (!(status & (IMSTR_PF | IMSTR_TF)))
423 		return IRQ_NONE;
424 
425 	/*
426 	 * Try to handle page faults and translation faults.
427 	 *
428 	 * TODO: We need to look up the faulty device based on the I/O VA. Use
429 	 * the IOMMU device for now.
430 	 */
431 	if (!report_iommu_fault(domain->io_domain, mmu->dev, iova, 0))
432 		return IRQ_HANDLED;
433 
434 	dev_err_ratelimited(mmu->dev,
435 			    "Unhandled fault: status 0x%08x iova 0x%08x\n",
436 			    status, iova);
437 
438 	return IRQ_HANDLED;
439 }
440 
441 static irqreturn_t ipmmu_irq(int irq, void *dev)
442 {
443 	struct ipmmu_vmsa_device *mmu = dev;
444 	struct iommu_domain *io_domain;
445 	struct ipmmu_vmsa_domain *domain;
446 
447 	if (!mmu->mapping)
448 		return IRQ_NONE;
449 
450 	io_domain = mmu->mapping->domain;
451 	domain = io_domain->priv;
452 
453 	return ipmmu_domain_irq(domain);
454 }
455 
456 /* -----------------------------------------------------------------------------
457  * IOMMU Operations
458  */
459 
460 static int ipmmu_domain_init(struct iommu_domain *io_domain)
461 {
462 	struct ipmmu_vmsa_domain *domain;
463 
464 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
465 	if (!domain)
466 		return -ENOMEM;
467 
468 	spin_lock_init(&domain->lock);
469 
470 	io_domain->priv = domain;
471 	domain->io_domain = io_domain;
472 
473 	return 0;
474 }
475 
476 static void ipmmu_domain_destroy(struct iommu_domain *io_domain)
477 {
478 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
479 
480 	/*
481 	 * Free the domain resources. We assume that all devices have already
482 	 * been detached.
483 	 */
484 	ipmmu_domain_destroy_context(domain);
485 	free_io_pgtable_ops(domain->iop);
486 	kfree(domain);
487 }
488 
489 static int ipmmu_attach_device(struct iommu_domain *io_domain,
490 			       struct device *dev)
491 {
492 	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
493 	struct ipmmu_vmsa_device *mmu = archdata->mmu;
494 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
495 	unsigned long flags;
496 	unsigned int i;
497 	int ret = 0;
498 
499 	if (!mmu) {
500 		dev_err(dev, "Cannot attach to IPMMU\n");
501 		return -ENXIO;
502 	}
503 
504 	spin_lock_irqsave(&domain->lock, flags);
505 
506 	if (!domain->mmu) {
507 		/* The domain hasn't been used yet, initialize it. */
508 		domain->mmu = mmu;
509 		ret = ipmmu_domain_init_context(domain);
510 	} else if (domain->mmu != mmu) {
511 		/*
512 		 * Something is wrong, we can't attach two devices using
513 		 * different IOMMUs to the same domain.
514 		 */
515 		dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
516 			dev_name(mmu->dev), dev_name(domain->mmu->dev));
517 		ret = -EINVAL;
518 	}
519 
520 	spin_unlock_irqrestore(&domain->lock, flags);
521 
522 	if (ret < 0)
523 		return ret;
524 
525 	for (i = 0; i < archdata->num_utlbs; ++i)
526 		ipmmu_utlb_enable(domain, archdata->utlbs[i]);
527 
528 	return 0;
529 }
530 
531 static void ipmmu_detach_device(struct iommu_domain *io_domain,
532 				struct device *dev)
533 {
534 	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
535 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
536 	unsigned int i;
537 
538 	for (i = 0; i < archdata->num_utlbs; ++i)
539 		ipmmu_utlb_disable(domain, archdata->utlbs[i]);
540 
541 	/*
542 	 * TODO: Optimize by disabling the context when no device is attached.
543 	 */
544 }
545 
546 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
547 		     phys_addr_t paddr, size_t size, int prot)
548 {
549 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
550 
551 	if (!domain)
552 		return -ENODEV;
553 
554 	return domain->iop->map(domain->iop, iova, paddr, size, prot);
555 }
556 
557 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
558 			  size_t size)
559 {
560 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
561 
562 	return domain->iop->unmap(domain->iop, iova, size);
563 }
564 
565 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
566 				      dma_addr_t iova)
567 {
568 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
569 
570 	/* TODO: Is locking needed ? */
571 
572 	return domain->iop->iova_to_phys(domain->iop, iova);
573 }
574 
575 static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev,
576 			    unsigned int *utlbs, unsigned int num_utlbs)
577 {
578 	unsigned int i;
579 
580 	for (i = 0; i < num_utlbs; ++i) {
581 		struct of_phandle_args args;
582 		int ret;
583 
584 		ret = of_parse_phandle_with_args(dev->of_node, "iommus",
585 						 "#iommu-cells", i, &args);
586 		if (ret < 0)
587 			return ret;
588 
589 		of_node_put(args.np);
590 
591 		if (args.np != mmu->dev->of_node || args.args_count != 1)
592 			return -EINVAL;
593 
594 		utlbs[i] = args.args[0];
595 	}
596 
597 	return 0;
598 }
599 
600 static int ipmmu_add_device(struct device *dev)
601 {
602 	struct ipmmu_vmsa_archdata *archdata;
603 	struct ipmmu_vmsa_device *mmu;
604 	struct iommu_group *group = NULL;
605 	unsigned int *utlbs;
606 	unsigned int i;
607 	int num_utlbs;
608 	int ret = -ENODEV;
609 
610 	if (dev->archdata.iommu) {
611 		dev_warn(dev, "IOMMU driver already assigned to device %s\n",
612 			 dev_name(dev));
613 		return -EINVAL;
614 	}
615 
616 	/* Find the master corresponding to the device. */
617 
618 	num_utlbs = of_count_phandle_with_args(dev->of_node, "iommus",
619 					       "#iommu-cells");
620 	if (num_utlbs < 0)
621 		return -ENODEV;
622 
623 	utlbs = kcalloc(num_utlbs, sizeof(*utlbs), GFP_KERNEL);
624 	if (!utlbs)
625 		return -ENOMEM;
626 
627 	spin_lock(&ipmmu_devices_lock);
628 
629 	list_for_each_entry(mmu, &ipmmu_devices, list) {
630 		ret = ipmmu_find_utlbs(mmu, dev, utlbs, num_utlbs);
631 		if (!ret) {
632 			/*
633 			 * TODO Take a reference to the MMU to protect
634 			 * against device removal.
635 			 */
636 			break;
637 		}
638 	}
639 
640 	spin_unlock(&ipmmu_devices_lock);
641 
642 	if (ret < 0)
643 		return -ENODEV;
644 
645 	for (i = 0; i < num_utlbs; ++i) {
646 		if (utlbs[i] >= mmu->num_utlbs) {
647 			ret = -EINVAL;
648 			goto error;
649 		}
650 	}
651 
652 	/* Create a device group and add the device to it. */
653 	group = iommu_group_alloc();
654 	if (IS_ERR(group)) {
655 		dev_err(dev, "Failed to allocate IOMMU group\n");
656 		ret = PTR_ERR(group);
657 		goto error;
658 	}
659 
660 	ret = iommu_group_add_device(group, dev);
661 	iommu_group_put(group);
662 
663 	if (ret < 0) {
664 		dev_err(dev, "Failed to add device to IPMMU group\n");
665 		group = NULL;
666 		goto error;
667 	}
668 
669 	archdata = kzalloc(sizeof(*archdata), GFP_KERNEL);
670 	if (!archdata) {
671 		ret = -ENOMEM;
672 		goto error;
673 	}
674 
675 	archdata->mmu = mmu;
676 	archdata->utlbs = utlbs;
677 	archdata->num_utlbs = num_utlbs;
678 	dev->archdata.iommu = archdata;
679 
680 	/*
681 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
682 	 * VAs. This will allocate a corresponding IOMMU domain.
683 	 *
684 	 * TODO:
685 	 * - Create one mapping per context (TLB).
686 	 * - Make the mapping size configurable ? We currently use a 2GB mapping
687 	 *   at a 1GB offset to ensure that NULL VAs will fault.
688 	 */
689 	if (!mmu->mapping) {
690 		struct dma_iommu_mapping *mapping;
691 
692 		mapping = arm_iommu_create_mapping(&platform_bus_type,
693 						   SZ_1G, SZ_2G);
694 		if (IS_ERR(mapping)) {
695 			dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
696 			ret = PTR_ERR(mapping);
697 			goto error;
698 		}
699 
700 		mmu->mapping = mapping;
701 	}
702 
703 	/* Attach the ARM VA mapping to the device. */
704 	ret = arm_iommu_attach_device(dev, mmu->mapping);
705 	if (ret < 0) {
706 		dev_err(dev, "Failed to attach device to VA mapping\n");
707 		goto error;
708 	}
709 
710 	return 0;
711 
712 error:
713 	arm_iommu_release_mapping(mmu->mapping);
714 
715 	kfree(dev->archdata.iommu);
716 	kfree(utlbs);
717 
718 	dev->archdata.iommu = NULL;
719 
720 	if (!IS_ERR_OR_NULL(group))
721 		iommu_group_remove_device(dev);
722 
723 	return ret;
724 }
725 
726 static void ipmmu_remove_device(struct device *dev)
727 {
728 	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
729 
730 	arm_iommu_detach_device(dev);
731 	iommu_group_remove_device(dev);
732 
733 	kfree(archdata->utlbs);
734 	kfree(archdata);
735 
736 	dev->archdata.iommu = NULL;
737 }
738 
739 static const struct iommu_ops ipmmu_ops = {
740 	.domain_init = ipmmu_domain_init,
741 	.domain_destroy = ipmmu_domain_destroy,
742 	.attach_dev = ipmmu_attach_device,
743 	.detach_dev = ipmmu_detach_device,
744 	.map = ipmmu_map,
745 	.unmap = ipmmu_unmap,
746 	.map_sg = default_iommu_map_sg,
747 	.iova_to_phys = ipmmu_iova_to_phys,
748 	.add_device = ipmmu_add_device,
749 	.remove_device = ipmmu_remove_device,
750 	.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
751 };
752 
753 /* -----------------------------------------------------------------------------
754  * Probe/remove and init
755  */
756 
757 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
758 {
759 	unsigned int i;
760 
761 	/* Disable all contexts. */
762 	for (i = 0; i < 4; ++i)
763 		ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
764 }
765 
766 static int ipmmu_probe(struct platform_device *pdev)
767 {
768 	struct ipmmu_vmsa_device *mmu;
769 	struct resource *res;
770 	int irq;
771 	int ret;
772 
773 	if (!IS_ENABLED(CONFIG_OF) && !pdev->dev.platform_data) {
774 		dev_err(&pdev->dev, "missing platform data\n");
775 		return -EINVAL;
776 	}
777 
778 	mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
779 	if (!mmu) {
780 		dev_err(&pdev->dev, "cannot allocate device data\n");
781 		return -ENOMEM;
782 	}
783 
784 	mmu->dev = &pdev->dev;
785 	mmu->num_utlbs = 32;
786 
787 	/* Map I/O memory and request IRQ. */
788 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
789 	mmu->base = devm_ioremap_resource(&pdev->dev, res);
790 	if (IS_ERR(mmu->base))
791 		return PTR_ERR(mmu->base);
792 
793 	/*
794 	 * The IPMMU has two register banks, for secure and non-secure modes.
795 	 * The bank mapped at the beginning of the IPMMU address space
796 	 * corresponds to the running mode of the CPU. When running in secure
797 	 * mode the non-secure register bank is also available at an offset.
798 	 *
799 	 * Secure mode operation isn't clearly documented and is thus currently
800 	 * not implemented in the driver. Furthermore, preliminary tests of
801 	 * non-secure operation with the main register bank were not successful.
802 	 * Offset the registers base unconditionally to point to the non-secure
803 	 * alias space for now.
804 	 */
805 	mmu->base += IM_NS_ALIAS_OFFSET;
806 
807 	irq = platform_get_irq(pdev, 0);
808 	if (irq < 0) {
809 		dev_err(&pdev->dev, "no IRQ found\n");
810 		return irq;
811 	}
812 
813 	ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
814 			       dev_name(&pdev->dev), mmu);
815 	if (ret < 0) {
816 		dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
817 		return ret;
818 	}
819 
820 	ipmmu_device_reset(mmu);
821 
822 	/*
823 	 * We can't create the ARM mapping here as it requires the bus to have
824 	 * an IOMMU, which only happens when bus_set_iommu() is called in
825 	 * ipmmu_init() after the probe function returns.
826 	 */
827 
828 	spin_lock(&ipmmu_devices_lock);
829 	list_add(&mmu->list, &ipmmu_devices);
830 	spin_unlock(&ipmmu_devices_lock);
831 
832 	platform_set_drvdata(pdev, mmu);
833 
834 	return 0;
835 }
836 
837 static int ipmmu_remove(struct platform_device *pdev)
838 {
839 	struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
840 
841 	spin_lock(&ipmmu_devices_lock);
842 	list_del(&mmu->list);
843 	spin_unlock(&ipmmu_devices_lock);
844 
845 	arm_iommu_release_mapping(mmu->mapping);
846 
847 	ipmmu_device_reset(mmu);
848 
849 	return 0;
850 }
851 
852 static const struct of_device_id ipmmu_of_ids[] = {
853 	{ .compatible = "renesas,ipmmu-vmsa", },
854 	{ }
855 };
856 
857 static struct platform_driver ipmmu_driver = {
858 	.driver = {
859 		.name = "ipmmu-vmsa",
860 		.of_match_table = of_match_ptr(ipmmu_of_ids),
861 	},
862 	.probe = ipmmu_probe,
863 	.remove	= ipmmu_remove,
864 };
865 
866 static int __init ipmmu_init(void)
867 {
868 	int ret;
869 
870 	ret = platform_driver_register(&ipmmu_driver);
871 	if (ret < 0)
872 		return ret;
873 
874 	if (!iommu_present(&platform_bus_type))
875 		bus_set_iommu(&platform_bus_type, &ipmmu_ops);
876 
877 	return 0;
878 }
879 
880 static void __exit ipmmu_exit(void)
881 {
882 	return platform_driver_unregister(&ipmmu_driver);
883 }
884 
885 subsys_initcall(ipmmu_init);
886 module_exit(ipmmu_exit);
887 
888 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
889 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
890 MODULE_LICENSE("GPL v2");
891