xref: /linux/drivers/iommu/ipmmu-vmsa.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  * IPMMU VMSA
3  *
4  * Copyright (C) 2014 Renesas Electronics Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iommu.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
23 
24 #include <asm/dma-iommu.h>
25 #include <asm/pgalloc.h>
26 
27 #include "io-pgtable.h"
28 
29 struct ipmmu_vmsa_device {
30 	struct device *dev;
31 	void __iomem *base;
32 	struct list_head list;
33 
34 	unsigned int num_utlbs;
35 
36 	struct dma_iommu_mapping *mapping;
37 };
38 
39 struct ipmmu_vmsa_domain {
40 	struct ipmmu_vmsa_device *mmu;
41 	struct iommu_domain io_domain;
42 
43 	struct io_pgtable_cfg cfg;
44 	struct io_pgtable_ops *iop;
45 
46 	unsigned int context_id;
47 	spinlock_t lock;			/* Protects mappings */
48 };
49 
50 struct ipmmu_vmsa_archdata {
51 	struct ipmmu_vmsa_device *mmu;
52 	unsigned int *utlbs;
53 	unsigned int num_utlbs;
54 };
55 
56 static DEFINE_SPINLOCK(ipmmu_devices_lock);
57 static LIST_HEAD(ipmmu_devices);
58 
59 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
60 {
61 	return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
62 }
63 
64 #define TLB_LOOP_TIMEOUT		100	/* 100us */
65 
66 /* -----------------------------------------------------------------------------
67  * Registers Definition
68  */
69 
70 #define IM_NS_ALIAS_OFFSET		0x800
71 
72 #define IM_CTX_SIZE			0x40
73 
74 #define IMCTR				0x0000
75 #define IMCTR_TRE			(1 << 17)
76 #define IMCTR_AFE			(1 << 16)
77 #define IMCTR_RTSEL_MASK		(3 << 4)
78 #define IMCTR_RTSEL_SHIFT		4
79 #define IMCTR_TREN			(1 << 3)
80 #define IMCTR_INTEN			(1 << 2)
81 #define IMCTR_FLUSH			(1 << 1)
82 #define IMCTR_MMUEN			(1 << 0)
83 
84 #define IMCAAR				0x0004
85 
86 #define IMTTBCR				0x0008
87 #define IMTTBCR_EAE			(1 << 31)
88 #define IMTTBCR_PMB			(1 << 30)
89 #define IMTTBCR_SH1_NON_SHAREABLE	(0 << 28)
90 #define IMTTBCR_SH1_OUTER_SHAREABLE	(2 << 28)
91 #define IMTTBCR_SH1_INNER_SHAREABLE	(3 << 28)
92 #define IMTTBCR_SH1_MASK		(3 << 28)
93 #define IMTTBCR_ORGN1_NC		(0 << 26)
94 #define IMTTBCR_ORGN1_WB_WA		(1 << 26)
95 #define IMTTBCR_ORGN1_WT		(2 << 26)
96 #define IMTTBCR_ORGN1_WB		(3 << 26)
97 #define IMTTBCR_ORGN1_MASK		(3 << 26)
98 #define IMTTBCR_IRGN1_NC		(0 << 24)
99 #define IMTTBCR_IRGN1_WB_WA		(1 << 24)
100 #define IMTTBCR_IRGN1_WT		(2 << 24)
101 #define IMTTBCR_IRGN1_WB		(3 << 24)
102 #define IMTTBCR_IRGN1_MASK		(3 << 24)
103 #define IMTTBCR_TSZ1_MASK		(7 << 16)
104 #define IMTTBCR_TSZ1_SHIFT		16
105 #define IMTTBCR_SH0_NON_SHAREABLE	(0 << 12)
106 #define IMTTBCR_SH0_OUTER_SHAREABLE	(2 << 12)
107 #define IMTTBCR_SH0_INNER_SHAREABLE	(3 << 12)
108 #define IMTTBCR_SH0_MASK		(3 << 12)
109 #define IMTTBCR_ORGN0_NC		(0 << 10)
110 #define IMTTBCR_ORGN0_WB_WA		(1 << 10)
111 #define IMTTBCR_ORGN0_WT		(2 << 10)
112 #define IMTTBCR_ORGN0_WB		(3 << 10)
113 #define IMTTBCR_ORGN0_MASK		(3 << 10)
114 #define IMTTBCR_IRGN0_NC		(0 << 8)
115 #define IMTTBCR_IRGN0_WB_WA		(1 << 8)
116 #define IMTTBCR_IRGN0_WT		(2 << 8)
117 #define IMTTBCR_IRGN0_WB		(3 << 8)
118 #define IMTTBCR_IRGN0_MASK		(3 << 8)
119 #define IMTTBCR_SL0_LVL_2		(0 << 4)
120 #define IMTTBCR_SL0_LVL_1		(1 << 4)
121 #define IMTTBCR_TSZ0_MASK		(7 << 0)
122 #define IMTTBCR_TSZ0_SHIFT		O
123 
124 #define IMBUSCR				0x000c
125 #define IMBUSCR_DVM			(1 << 2)
126 #define IMBUSCR_BUSSEL_SYS		(0 << 0)
127 #define IMBUSCR_BUSSEL_CCI		(1 << 0)
128 #define IMBUSCR_BUSSEL_IMCAAR		(2 << 0)
129 #define IMBUSCR_BUSSEL_CCI_IMCAAR	(3 << 0)
130 #define IMBUSCR_BUSSEL_MASK		(3 << 0)
131 
132 #define IMTTLBR0			0x0010
133 #define IMTTUBR0			0x0014
134 #define IMTTLBR1			0x0018
135 #define IMTTUBR1			0x001c
136 
137 #define IMSTR				0x0020
138 #define IMSTR_ERRLVL_MASK		(3 << 12)
139 #define IMSTR_ERRLVL_SHIFT		12
140 #define IMSTR_ERRCODE_TLB_FORMAT	(1 << 8)
141 #define IMSTR_ERRCODE_ACCESS_PERM	(4 << 8)
142 #define IMSTR_ERRCODE_SECURE_ACCESS	(5 << 8)
143 #define IMSTR_ERRCODE_MASK		(7 << 8)
144 #define IMSTR_MHIT			(1 << 4)
145 #define IMSTR_ABORT			(1 << 2)
146 #define IMSTR_PF			(1 << 1)
147 #define IMSTR_TF			(1 << 0)
148 
149 #define IMMAIR0				0x0028
150 #define IMMAIR1				0x002c
151 #define IMMAIR_ATTR_MASK		0xff
152 #define IMMAIR_ATTR_DEVICE		0x04
153 #define IMMAIR_ATTR_NC			0x44
154 #define IMMAIR_ATTR_WBRWA		0xff
155 #define IMMAIR_ATTR_SHIFT(n)		((n) << 3)
156 #define IMMAIR_ATTR_IDX_NC		0
157 #define IMMAIR_ATTR_IDX_WBRWA		1
158 #define IMMAIR_ATTR_IDX_DEV		2
159 
160 #define IMEAR				0x0030
161 
162 #define IMPCTR				0x0200
163 #define IMPSTR				0x0208
164 #define IMPEAR				0x020c
165 #define IMPMBA(n)			(0x0280 + ((n) * 4))
166 #define IMPMBD(n)			(0x02c0 + ((n) * 4))
167 
168 #define IMUCTR(n)			(0x0300 + ((n) * 16))
169 #define IMUCTR_FIXADDEN			(1 << 31)
170 #define IMUCTR_FIXADD_MASK		(0xff << 16)
171 #define IMUCTR_FIXADD_SHIFT		16
172 #define IMUCTR_TTSEL_MMU(n)		((n) << 4)
173 #define IMUCTR_TTSEL_PMB		(8 << 4)
174 #define IMUCTR_TTSEL_MASK		(15 << 4)
175 #define IMUCTR_FLUSH			(1 << 1)
176 #define IMUCTR_MMUEN			(1 << 0)
177 
178 #define IMUASID(n)			(0x0308 + ((n) * 16))
179 #define IMUASID_ASID8_MASK		(0xff << 8)
180 #define IMUASID_ASID8_SHIFT		8
181 #define IMUASID_ASID0_MASK		(0xff << 0)
182 #define IMUASID_ASID0_SHIFT		0
183 
184 /* -----------------------------------------------------------------------------
185  * Read/Write Access
186  */
187 
188 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
189 {
190 	return ioread32(mmu->base + offset);
191 }
192 
193 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
194 			u32 data)
195 {
196 	iowrite32(data, mmu->base + offset);
197 }
198 
199 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
200 {
201 	return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
202 }
203 
204 static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
205 			    u32 data)
206 {
207 	ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
208 }
209 
210 /* -----------------------------------------------------------------------------
211  * TLB and microTLB Management
212  */
213 
214 /* Wait for any pending TLB invalidations to complete */
215 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
216 {
217 	unsigned int count = 0;
218 
219 	while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
220 		cpu_relax();
221 		if (++count == TLB_LOOP_TIMEOUT) {
222 			dev_err_ratelimited(domain->mmu->dev,
223 			"TLB sync timed out -- MMU may be deadlocked\n");
224 			return;
225 		}
226 		udelay(1);
227 	}
228 }
229 
230 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
231 {
232 	u32 reg;
233 
234 	reg = ipmmu_ctx_read(domain, IMCTR);
235 	reg |= IMCTR_FLUSH;
236 	ipmmu_ctx_write(domain, IMCTR, reg);
237 
238 	ipmmu_tlb_sync(domain);
239 }
240 
241 /*
242  * Enable MMU translation for the microTLB.
243  */
244 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
245 			      unsigned int utlb)
246 {
247 	struct ipmmu_vmsa_device *mmu = domain->mmu;
248 
249 	/*
250 	 * TODO: Reference-count the microTLB as several bus masters can be
251 	 * connected to the same microTLB.
252 	 */
253 
254 	/* TODO: What should we set the ASID to ? */
255 	ipmmu_write(mmu, IMUASID(utlb), 0);
256 	/* TODO: Do we need to flush the microTLB ? */
257 	ipmmu_write(mmu, IMUCTR(utlb),
258 		    IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
259 		    IMUCTR_MMUEN);
260 }
261 
262 /*
263  * Disable MMU translation for the microTLB.
264  */
265 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
266 			       unsigned int utlb)
267 {
268 	struct ipmmu_vmsa_device *mmu = domain->mmu;
269 
270 	ipmmu_write(mmu, IMUCTR(utlb), 0);
271 }
272 
273 static void ipmmu_tlb_flush_all(void *cookie)
274 {
275 	struct ipmmu_vmsa_domain *domain = cookie;
276 
277 	ipmmu_tlb_invalidate(domain);
278 }
279 
280 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size, bool leaf,
281 				void *cookie)
282 {
283 	/* The hardware doesn't support selective TLB flush. */
284 }
285 
286 static void ipmmu_flush_pgtable(void *ptr, size_t size, void *cookie)
287 {
288 	unsigned long offset = (unsigned long)ptr & ~PAGE_MASK;
289 	struct ipmmu_vmsa_domain *domain = cookie;
290 
291 	/*
292 	 * TODO: Add support for coherent walk through CCI with DVM and remove
293 	 * cache handling.
294 	 */
295 	dma_map_page(domain->mmu->dev, virt_to_page(ptr), offset, size,
296 		     DMA_TO_DEVICE);
297 }
298 
299 static struct iommu_gather_ops ipmmu_gather_ops = {
300 	.tlb_flush_all = ipmmu_tlb_flush_all,
301 	.tlb_add_flush = ipmmu_tlb_add_flush,
302 	.tlb_sync = ipmmu_tlb_flush_all,
303 	.flush_pgtable = ipmmu_flush_pgtable,
304 };
305 
306 /* -----------------------------------------------------------------------------
307  * Domain/Context Management
308  */
309 
310 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
311 {
312 	phys_addr_t ttbr;
313 
314 	/*
315 	 * Allocate the page table operations.
316 	 *
317 	 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
318 	 * access, Long-descriptor format" that the NStable bit being set in a
319 	 * table descriptor will result in the NStable and NS bits of all child
320 	 * entries being ignored and considered as being set. The IPMMU seems
321 	 * not to comply with this, as it generates a secure access page fault
322 	 * if any of the NStable and NS bits isn't set when running in
323 	 * non-secure mode.
324 	 */
325 	domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
326 	domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
327 	domain->cfg.ias = 32;
328 	domain->cfg.oas = 40;
329 	domain->cfg.tlb = &ipmmu_gather_ops;
330 
331 	domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
332 					   domain);
333 	if (!domain->iop)
334 		return -EINVAL;
335 
336 	/*
337 	 * TODO: When adding support for multiple contexts, find an unused
338 	 * context.
339 	 */
340 	domain->context_id = 0;
341 
342 	/* TTBR0 */
343 	ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
344 	ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
345 	ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
346 
347 	/*
348 	 * TTBCR
349 	 * We use long descriptors with inner-shareable WBWA tables and allocate
350 	 * the whole 32-bit VA space to TTBR0.
351 	 */
352 	ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
353 			IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
354 			IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
355 
356 	/* MAIR0 */
357 	ipmmu_ctx_write(domain, IMMAIR0, domain->cfg.arm_lpae_s1_cfg.mair[0]);
358 
359 	/* IMBUSCR */
360 	ipmmu_ctx_write(domain, IMBUSCR,
361 			ipmmu_ctx_read(domain, IMBUSCR) &
362 			~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
363 
364 	/*
365 	 * IMSTR
366 	 * Clear all interrupt flags.
367 	 */
368 	ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
369 
370 	/*
371 	 * IMCTR
372 	 * Enable the MMU and interrupt generation. The long-descriptor
373 	 * translation table format doesn't use TEX remapping. Don't enable AF
374 	 * software management as we have no use for it. Flush the TLB as
375 	 * required when modifying the context registers.
376 	 */
377 	ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
378 
379 	return 0;
380 }
381 
382 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
383 {
384 	/*
385 	 * Disable the context. Flush the TLB as required when modifying the
386 	 * context registers.
387 	 *
388 	 * TODO: Is TLB flush really needed ?
389 	 */
390 	ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
391 	ipmmu_tlb_sync(domain);
392 }
393 
394 /* -----------------------------------------------------------------------------
395  * Fault Handling
396  */
397 
398 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
399 {
400 	const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
401 	struct ipmmu_vmsa_device *mmu = domain->mmu;
402 	u32 status;
403 	u32 iova;
404 
405 	status = ipmmu_ctx_read(domain, IMSTR);
406 	if (!(status & err_mask))
407 		return IRQ_NONE;
408 
409 	iova = ipmmu_ctx_read(domain, IMEAR);
410 
411 	/*
412 	 * Clear the error status flags. Unlike traditional interrupt flag
413 	 * registers that must be cleared by writing 1, this status register
414 	 * seems to require 0. The error address register must be read before,
415 	 * otherwise its value will be 0.
416 	 */
417 	ipmmu_ctx_write(domain, IMSTR, 0);
418 
419 	/* Log fatal errors. */
420 	if (status & IMSTR_MHIT)
421 		dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
422 				    iova);
423 	if (status & IMSTR_ABORT)
424 		dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
425 				    iova);
426 
427 	if (!(status & (IMSTR_PF | IMSTR_TF)))
428 		return IRQ_NONE;
429 
430 	/*
431 	 * Try to handle page faults and translation faults.
432 	 *
433 	 * TODO: We need to look up the faulty device based on the I/O VA. Use
434 	 * the IOMMU device for now.
435 	 */
436 	if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
437 		return IRQ_HANDLED;
438 
439 	dev_err_ratelimited(mmu->dev,
440 			    "Unhandled fault: status 0x%08x iova 0x%08x\n",
441 			    status, iova);
442 
443 	return IRQ_HANDLED;
444 }
445 
446 static irqreturn_t ipmmu_irq(int irq, void *dev)
447 {
448 	struct ipmmu_vmsa_device *mmu = dev;
449 	struct iommu_domain *io_domain;
450 	struct ipmmu_vmsa_domain *domain;
451 
452 	if (!mmu->mapping)
453 		return IRQ_NONE;
454 
455 	io_domain = mmu->mapping->domain;
456 	domain = to_vmsa_domain(io_domain);
457 
458 	return ipmmu_domain_irq(domain);
459 }
460 
461 /* -----------------------------------------------------------------------------
462  * IOMMU Operations
463  */
464 
465 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
466 {
467 	struct ipmmu_vmsa_domain *domain;
468 
469 	if (type != IOMMU_DOMAIN_UNMANAGED)
470 		return NULL;
471 
472 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
473 	if (!domain)
474 		return NULL;
475 
476 	spin_lock_init(&domain->lock);
477 
478 	return &domain->io_domain;
479 }
480 
481 static void ipmmu_domain_free(struct iommu_domain *io_domain)
482 {
483 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
484 
485 	/*
486 	 * Free the domain resources. We assume that all devices have already
487 	 * been detached.
488 	 */
489 	ipmmu_domain_destroy_context(domain);
490 	free_io_pgtable_ops(domain->iop);
491 	kfree(domain);
492 }
493 
494 static int ipmmu_attach_device(struct iommu_domain *io_domain,
495 			       struct device *dev)
496 {
497 	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
498 	struct ipmmu_vmsa_device *mmu = archdata->mmu;
499 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
500 	unsigned long flags;
501 	unsigned int i;
502 	int ret = 0;
503 
504 	if (!mmu) {
505 		dev_err(dev, "Cannot attach to IPMMU\n");
506 		return -ENXIO;
507 	}
508 
509 	spin_lock_irqsave(&domain->lock, flags);
510 
511 	if (!domain->mmu) {
512 		/* The domain hasn't been used yet, initialize it. */
513 		domain->mmu = mmu;
514 		ret = ipmmu_domain_init_context(domain);
515 	} else if (domain->mmu != mmu) {
516 		/*
517 		 * Something is wrong, we can't attach two devices using
518 		 * different IOMMUs to the same domain.
519 		 */
520 		dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
521 			dev_name(mmu->dev), dev_name(domain->mmu->dev));
522 		ret = -EINVAL;
523 	}
524 
525 	spin_unlock_irqrestore(&domain->lock, flags);
526 
527 	if (ret < 0)
528 		return ret;
529 
530 	for (i = 0; i < archdata->num_utlbs; ++i)
531 		ipmmu_utlb_enable(domain, archdata->utlbs[i]);
532 
533 	return 0;
534 }
535 
536 static void ipmmu_detach_device(struct iommu_domain *io_domain,
537 				struct device *dev)
538 {
539 	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
540 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
541 	unsigned int i;
542 
543 	for (i = 0; i < archdata->num_utlbs; ++i)
544 		ipmmu_utlb_disable(domain, archdata->utlbs[i]);
545 
546 	/*
547 	 * TODO: Optimize by disabling the context when no device is attached.
548 	 */
549 }
550 
551 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
552 		     phys_addr_t paddr, size_t size, int prot)
553 {
554 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
555 
556 	if (!domain)
557 		return -ENODEV;
558 
559 	return domain->iop->map(domain->iop, iova, paddr, size, prot);
560 }
561 
562 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
563 			  size_t size)
564 {
565 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
566 
567 	return domain->iop->unmap(domain->iop, iova, size);
568 }
569 
570 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
571 				      dma_addr_t iova)
572 {
573 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
574 
575 	/* TODO: Is locking needed ? */
576 
577 	return domain->iop->iova_to_phys(domain->iop, iova);
578 }
579 
580 static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev,
581 			    unsigned int *utlbs, unsigned int num_utlbs)
582 {
583 	unsigned int i;
584 
585 	for (i = 0; i < num_utlbs; ++i) {
586 		struct of_phandle_args args;
587 		int ret;
588 
589 		ret = of_parse_phandle_with_args(dev->of_node, "iommus",
590 						 "#iommu-cells", i, &args);
591 		if (ret < 0)
592 			return ret;
593 
594 		of_node_put(args.np);
595 
596 		if (args.np != mmu->dev->of_node || args.args_count != 1)
597 			return -EINVAL;
598 
599 		utlbs[i] = args.args[0];
600 	}
601 
602 	return 0;
603 }
604 
605 static int ipmmu_add_device(struct device *dev)
606 {
607 	struct ipmmu_vmsa_archdata *archdata;
608 	struct ipmmu_vmsa_device *mmu;
609 	struct iommu_group *group = NULL;
610 	unsigned int *utlbs;
611 	unsigned int i;
612 	int num_utlbs;
613 	int ret = -ENODEV;
614 
615 	if (dev->archdata.iommu) {
616 		dev_warn(dev, "IOMMU driver already assigned to device %s\n",
617 			 dev_name(dev));
618 		return -EINVAL;
619 	}
620 
621 	/* Find the master corresponding to the device. */
622 
623 	num_utlbs = of_count_phandle_with_args(dev->of_node, "iommus",
624 					       "#iommu-cells");
625 	if (num_utlbs < 0)
626 		return -ENODEV;
627 
628 	utlbs = kcalloc(num_utlbs, sizeof(*utlbs), GFP_KERNEL);
629 	if (!utlbs)
630 		return -ENOMEM;
631 
632 	spin_lock(&ipmmu_devices_lock);
633 
634 	list_for_each_entry(mmu, &ipmmu_devices, list) {
635 		ret = ipmmu_find_utlbs(mmu, dev, utlbs, num_utlbs);
636 		if (!ret) {
637 			/*
638 			 * TODO Take a reference to the MMU to protect
639 			 * against device removal.
640 			 */
641 			break;
642 		}
643 	}
644 
645 	spin_unlock(&ipmmu_devices_lock);
646 
647 	if (ret < 0)
648 		return -ENODEV;
649 
650 	for (i = 0; i < num_utlbs; ++i) {
651 		if (utlbs[i] >= mmu->num_utlbs) {
652 			ret = -EINVAL;
653 			goto error;
654 		}
655 	}
656 
657 	/* Create a device group and add the device to it. */
658 	group = iommu_group_alloc();
659 	if (IS_ERR(group)) {
660 		dev_err(dev, "Failed to allocate IOMMU group\n");
661 		ret = PTR_ERR(group);
662 		goto error;
663 	}
664 
665 	ret = iommu_group_add_device(group, dev);
666 	iommu_group_put(group);
667 
668 	if (ret < 0) {
669 		dev_err(dev, "Failed to add device to IPMMU group\n");
670 		group = NULL;
671 		goto error;
672 	}
673 
674 	archdata = kzalloc(sizeof(*archdata), GFP_KERNEL);
675 	if (!archdata) {
676 		ret = -ENOMEM;
677 		goto error;
678 	}
679 
680 	archdata->mmu = mmu;
681 	archdata->utlbs = utlbs;
682 	archdata->num_utlbs = num_utlbs;
683 	dev->archdata.iommu = archdata;
684 
685 	/*
686 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
687 	 * VAs. This will allocate a corresponding IOMMU domain.
688 	 *
689 	 * TODO:
690 	 * - Create one mapping per context (TLB).
691 	 * - Make the mapping size configurable ? We currently use a 2GB mapping
692 	 *   at a 1GB offset to ensure that NULL VAs will fault.
693 	 */
694 	if (!mmu->mapping) {
695 		struct dma_iommu_mapping *mapping;
696 
697 		mapping = arm_iommu_create_mapping(&platform_bus_type,
698 						   SZ_1G, SZ_2G);
699 		if (IS_ERR(mapping)) {
700 			dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
701 			ret = PTR_ERR(mapping);
702 			goto error;
703 		}
704 
705 		mmu->mapping = mapping;
706 	}
707 
708 	/* Attach the ARM VA mapping to the device. */
709 	ret = arm_iommu_attach_device(dev, mmu->mapping);
710 	if (ret < 0) {
711 		dev_err(dev, "Failed to attach device to VA mapping\n");
712 		goto error;
713 	}
714 
715 	return 0;
716 
717 error:
718 	arm_iommu_release_mapping(mmu->mapping);
719 
720 	kfree(dev->archdata.iommu);
721 	kfree(utlbs);
722 
723 	dev->archdata.iommu = NULL;
724 
725 	if (!IS_ERR_OR_NULL(group))
726 		iommu_group_remove_device(dev);
727 
728 	return ret;
729 }
730 
731 static void ipmmu_remove_device(struct device *dev)
732 {
733 	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
734 
735 	arm_iommu_detach_device(dev);
736 	iommu_group_remove_device(dev);
737 
738 	kfree(archdata->utlbs);
739 	kfree(archdata);
740 
741 	dev->archdata.iommu = NULL;
742 }
743 
744 static const struct iommu_ops ipmmu_ops = {
745 	.domain_alloc = ipmmu_domain_alloc,
746 	.domain_free = ipmmu_domain_free,
747 	.attach_dev = ipmmu_attach_device,
748 	.detach_dev = ipmmu_detach_device,
749 	.map = ipmmu_map,
750 	.unmap = ipmmu_unmap,
751 	.map_sg = default_iommu_map_sg,
752 	.iova_to_phys = ipmmu_iova_to_phys,
753 	.add_device = ipmmu_add_device,
754 	.remove_device = ipmmu_remove_device,
755 	.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
756 };
757 
758 /* -----------------------------------------------------------------------------
759  * Probe/remove and init
760  */
761 
762 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
763 {
764 	unsigned int i;
765 
766 	/* Disable all contexts. */
767 	for (i = 0; i < 4; ++i)
768 		ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
769 }
770 
771 static int ipmmu_probe(struct platform_device *pdev)
772 {
773 	struct ipmmu_vmsa_device *mmu;
774 	struct resource *res;
775 	int irq;
776 	int ret;
777 
778 	if (!IS_ENABLED(CONFIG_OF) && !pdev->dev.platform_data) {
779 		dev_err(&pdev->dev, "missing platform data\n");
780 		return -EINVAL;
781 	}
782 
783 	mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
784 	if (!mmu) {
785 		dev_err(&pdev->dev, "cannot allocate device data\n");
786 		return -ENOMEM;
787 	}
788 
789 	mmu->dev = &pdev->dev;
790 	mmu->num_utlbs = 32;
791 
792 	/* Map I/O memory and request IRQ. */
793 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
794 	mmu->base = devm_ioremap_resource(&pdev->dev, res);
795 	if (IS_ERR(mmu->base))
796 		return PTR_ERR(mmu->base);
797 
798 	/*
799 	 * The IPMMU has two register banks, for secure and non-secure modes.
800 	 * The bank mapped at the beginning of the IPMMU address space
801 	 * corresponds to the running mode of the CPU. When running in secure
802 	 * mode the non-secure register bank is also available at an offset.
803 	 *
804 	 * Secure mode operation isn't clearly documented and is thus currently
805 	 * not implemented in the driver. Furthermore, preliminary tests of
806 	 * non-secure operation with the main register bank were not successful.
807 	 * Offset the registers base unconditionally to point to the non-secure
808 	 * alias space for now.
809 	 */
810 	mmu->base += IM_NS_ALIAS_OFFSET;
811 
812 	irq = platform_get_irq(pdev, 0);
813 	if (irq < 0) {
814 		dev_err(&pdev->dev, "no IRQ found\n");
815 		return irq;
816 	}
817 
818 	ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
819 			       dev_name(&pdev->dev), mmu);
820 	if (ret < 0) {
821 		dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
822 		return ret;
823 	}
824 
825 	ipmmu_device_reset(mmu);
826 
827 	/*
828 	 * We can't create the ARM mapping here as it requires the bus to have
829 	 * an IOMMU, which only happens when bus_set_iommu() is called in
830 	 * ipmmu_init() after the probe function returns.
831 	 */
832 
833 	spin_lock(&ipmmu_devices_lock);
834 	list_add(&mmu->list, &ipmmu_devices);
835 	spin_unlock(&ipmmu_devices_lock);
836 
837 	platform_set_drvdata(pdev, mmu);
838 
839 	return 0;
840 }
841 
842 static int ipmmu_remove(struct platform_device *pdev)
843 {
844 	struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
845 
846 	spin_lock(&ipmmu_devices_lock);
847 	list_del(&mmu->list);
848 	spin_unlock(&ipmmu_devices_lock);
849 
850 	arm_iommu_release_mapping(mmu->mapping);
851 
852 	ipmmu_device_reset(mmu);
853 
854 	return 0;
855 }
856 
857 static const struct of_device_id ipmmu_of_ids[] = {
858 	{ .compatible = "renesas,ipmmu-vmsa", },
859 	{ }
860 };
861 
862 static struct platform_driver ipmmu_driver = {
863 	.driver = {
864 		.name = "ipmmu-vmsa",
865 		.of_match_table = of_match_ptr(ipmmu_of_ids),
866 	},
867 	.probe = ipmmu_probe,
868 	.remove	= ipmmu_remove,
869 };
870 
871 static int __init ipmmu_init(void)
872 {
873 	int ret;
874 
875 	ret = platform_driver_register(&ipmmu_driver);
876 	if (ret < 0)
877 		return ret;
878 
879 	if (!iommu_present(&platform_bus_type))
880 		bus_set_iommu(&platform_bus_type, &ipmmu_ops);
881 
882 	return 0;
883 }
884 
885 static void __exit ipmmu_exit(void)
886 {
887 	return platform_driver_unregister(&ipmmu_driver);
888 }
889 
890 subsys_initcall(ipmmu_init);
891 module_exit(ipmmu_exit);
892 
893 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
894 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
895 MODULE_LICENSE("GPL v2");
896