xref: /linux/drivers/iommu/ipmmu-vmsa.c (revision ab475966455ce285c2c9978a3e3bfe97d75ff8d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014-2020 Renesas Electronics Corporation
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/pci.h>
23 #include <linux/platform_device.h>
24 #include <linux/sizes.h>
25 #include <linux/slab.h>
26 #include <linux/sys_soc.h>
27 
28 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
29 #include <asm/dma-iommu.h>
30 #else
31 #define arm_iommu_create_mapping(...)	NULL
32 #define arm_iommu_attach_device(...)	-ENODEV
33 #define arm_iommu_release_mapping(...)	do {} while (0)
34 #endif
35 
36 #define IPMMU_CTX_MAX		16U
37 #define IPMMU_CTX_INVALID	-1
38 
39 #define IPMMU_UTLB_MAX		64U
40 
41 struct ipmmu_features {
42 	bool use_ns_alias_offset;
43 	bool has_cache_leaf_nodes;
44 	unsigned int number_of_contexts;
45 	unsigned int num_utlbs;
46 	bool setup_imbuscr;
47 	bool twobit_imttbcr_sl0;
48 	bool reserved_context;
49 	bool cache_snoop;
50 	unsigned int ctx_offset_base;
51 	unsigned int ctx_offset_stride;
52 	unsigned int utlb_offset_base;
53 };
54 
55 struct ipmmu_vmsa_device {
56 	struct device *dev;
57 	void __iomem *base;
58 	struct iommu_device iommu;
59 	struct ipmmu_vmsa_device *root;
60 	const struct ipmmu_features *features;
61 	unsigned int num_ctx;
62 	spinlock_t lock;			/* Protects ctx and domains[] */
63 	DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64 	struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65 	s8 utlb_ctx[IPMMU_UTLB_MAX];
66 
67 	struct dma_iommu_mapping *mapping;
68 };
69 
70 struct ipmmu_vmsa_domain {
71 	struct ipmmu_vmsa_device *mmu;
72 	struct iommu_domain io_domain;
73 
74 	struct io_pgtable_cfg cfg;
75 	struct io_pgtable_ops *iop;
76 
77 	unsigned int context_id;
78 	struct mutex mutex;			/* Protects mappings */
79 };
80 
81 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
82 {
83 	return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
84 }
85 
86 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
87 {
88 	return dev_iommu_priv_get(dev);
89 }
90 
91 #define TLB_LOOP_TIMEOUT		100	/* 100us */
92 
93 /* -----------------------------------------------------------------------------
94  * Registers Definition
95  */
96 
97 #define IM_NS_ALIAS_OFFSET		0x800
98 
99 /* MMU "context" registers */
100 #define IMCTR				0x0000		/* R-Car Gen2/3 */
101 #define IMCTR_INTEN			(1 << 2)	/* R-Car Gen2/3 */
102 #define IMCTR_FLUSH			(1 << 1)	/* R-Car Gen2/3 */
103 #define IMCTR_MMUEN			(1 << 0)	/* R-Car Gen2/3 */
104 
105 #define IMTTBCR				0x0008		/* R-Car Gen2/3 */
106 #define IMTTBCR_EAE			(1 << 31)	/* R-Car Gen2/3 */
107 #define IMTTBCR_SH0_INNER_SHAREABLE	(3 << 12)	/* R-Car Gen2 only */
108 #define IMTTBCR_ORGN0_WB_WA		(1 << 10)	/* R-Car Gen2 only */
109 #define IMTTBCR_IRGN0_WB_WA		(1 << 8)	/* R-Car Gen2 only */
110 #define IMTTBCR_SL0_TWOBIT_LVL_1	(2 << 6)	/* R-Car Gen3 only */
111 #define IMTTBCR_SL0_LVL_1		(1 << 4)	/* R-Car Gen2 only */
112 
113 #define IMBUSCR				0x000c		/* R-Car Gen2 only */
114 #define IMBUSCR_DVM			(1 << 2)	/* R-Car Gen2 only */
115 #define IMBUSCR_BUSSEL_MASK		(3 << 0)	/* R-Car Gen2 only */
116 
117 #define IMTTLBR0			0x0010		/* R-Car Gen2/3 */
118 #define IMTTUBR0			0x0014		/* R-Car Gen2/3 */
119 
120 #define IMSTR				0x0020		/* R-Car Gen2/3 */
121 #define IMSTR_MHIT			(1 << 4)	/* R-Car Gen2/3 */
122 #define IMSTR_ABORT			(1 << 2)	/* R-Car Gen2/3 */
123 #define IMSTR_PF			(1 << 1)	/* R-Car Gen2/3 */
124 #define IMSTR_TF			(1 << 0)	/* R-Car Gen2/3 */
125 
126 #define IMMAIR0				0x0028		/* R-Car Gen2/3 */
127 
128 #define IMELAR				0x0030		/* R-Car Gen2/3, IMEAR on R-Car Gen2 */
129 #define IMEUAR				0x0034		/* R-Car Gen3 only */
130 
131 /* uTLB registers */
132 #define IMUCTR(n)			((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
133 #define IMUCTR0(n)			(0x0300 + ((n) * 16))		/* R-Car Gen2/3 */
134 #define IMUCTR32(n)			(0x0600 + (((n) - 32) * 16))	/* R-Car Gen3 only */
135 #define IMUCTR_TTSEL_MMU(n)		((n) << 4)	/* R-Car Gen2/3 */
136 #define IMUCTR_FLUSH			(1 << 1)	/* R-Car Gen2/3 */
137 #define IMUCTR_MMUEN			(1 << 0)	/* R-Car Gen2/3 */
138 
139 #define IMUASID(n)			((n) < 32 ? IMUASID0(n) : IMUASID32(n))
140 #define IMUASID0(n)			(0x0308 + ((n) * 16))		/* R-Car Gen2/3 */
141 #define IMUASID32(n)			(0x0608 + (((n) - 32) * 16))	/* R-Car Gen3 only */
142 
143 /* -----------------------------------------------------------------------------
144  * Root device handling
145  */
146 
147 static struct platform_driver ipmmu_driver;
148 
149 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
150 {
151 	return mmu->root == mmu;
152 }
153 
154 static int __ipmmu_check_device(struct device *dev, void *data)
155 {
156 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
157 	struct ipmmu_vmsa_device **rootp = data;
158 
159 	if (ipmmu_is_root(mmu))
160 		*rootp = mmu;
161 
162 	return 0;
163 }
164 
165 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
166 {
167 	struct ipmmu_vmsa_device *root = NULL;
168 
169 	return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
170 				      __ipmmu_check_device) == 0 ? root : NULL;
171 }
172 
173 /* -----------------------------------------------------------------------------
174  * Read/Write Access
175  */
176 
177 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
178 {
179 	return ioread32(mmu->base + offset);
180 }
181 
182 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
183 			u32 data)
184 {
185 	iowrite32(data, mmu->base + offset);
186 }
187 
188 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
189 				  unsigned int context_id, unsigned int reg)
190 {
191 	unsigned int base = mmu->features->ctx_offset_base;
192 
193 	if (context_id > 7)
194 		base += 0x800 - 8 * 0x40;
195 
196 	return base + context_id * mmu->features->ctx_offset_stride + reg;
197 }
198 
199 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
200 			  unsigned int context_id, unsigned int reg)
201 {
202 	return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
203 }
204 
205 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
206 			    unsigned int context_id, unsigned int reg, u32 data)
207 {
208 	ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
209 }
210 
211 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
212 			       unsigned int reg)
213 {
214 	return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
215 }
216 
217 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
218 				 unsigned int reg, u32 data)
219 {
220 	ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
221 }
222 
223 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
224 				unsigned int reg, u32 data)
225 {
226 	if (domain->mmu != domain->mmu->root)
227 		ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
228 
229 	ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
230 }
231 
232 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
233 {
234 	return mmu->features->utlb_offset_base + reg;
235 }
236 
237 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
238 				unsigned int utlb, u32 data)
239 {
240 	ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
241 }
242 
243 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
244 			       unsigned int utlb, u32 data)
245 {
246 	ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
247 }
248 
249 /* -----------------------------------------------------------------------------
250  * TLB and microTLB Management
251  */
252 
253 /* Wait for any pending TLB invalidations to complete */
254 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
255 {
256 	u32 val;
257 
258 	if (read_poll_timeout_atomic(ipmmu_ctx_read_root, val,
259 				     !(val & IMCTR_FLUSH), 1, TLB_LOOP_TIMEOUT,
260 				     false, domain, IMCTR))
261 		dev_err_ratelimited(domain->mmu->dev,
262 			"TLB sync timed out -- MMU may be deadlocked\n");
263 }
264 
265 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
266 {
267 	u32 reg;
268 
269 	reg = ipmmu_ctx_read_root(domain, IMCTR);
270 	reg |= IMCTR_FLUSH;
271 	ipmmu_ctx_write_all(domain, IMCTR, reg);
272 
273 	ipmmu_tlb_sync(domain);
274 }
275 
276 /*
277  * Enable MMU translation for the microTLB.
278  */
279 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
280 			      unsigned int utlb)
281 {
282 	struct ipmmu_vmsa_device *mmu = domain->mmu;
283 
284 	/*
285 	 * TODO: Reference-count the microTLB as several bus masters can be
286 	 * connected to the same microTLB.
287 	 */
288 
289 	/* TODO: What should we set the ASID to ? */
290 	ipmmu_imuasid_write(mmu, utlb, 0);
291 	/* TODO: Do we need to flush the microTLB ? */
292 	ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
293 				      IMUCTR_FLUSH | IMUCTR_MMUEN);
294 	mmu->utlb_ctx[utlb] = domain->context_id;
295 }
296 
297 /*
298  * Disable MMU translation for the microTLB.
299  */
300 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
301 			       unsigned int utlb)
302 {
303 	struct ipmmu_vmsa_device *mmu = domain->mmu;
304 
305 	ipmmu_imuctr_write(mmu, utlb, 0);
306 	mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
307 }
308 
309 static void ipmmu_tlb_flush_all(void *cookie)
310 {
311 	struct ipmmu_vmsa_domain *domain = cookie;
312 
313 	ipmmu_tlb_invalidate(domain);
314 }
315 
316 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
317 				size_t granule, void *cookie)
318 {
319 	ipmmu_tlb_flush_all(cookie);
320 }
321 
322 static const struct iommu_flush_ops ipmmu_flush_ops = {
323 	.tlb_flush_all = ipmmu_tlb_flush_all,
324 	.tlb_flush_walk = ipmmu_tlb_flush,
325 };
326 
327 /* -----------------------------------------------------------------------------
328  * Domain/Context Management
329  */
330 
331 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
332 					 struct ipmmu_vmsa_domain *domain)
333 {
334 	unsigned long flags;
335 	int ret;
336 
337 	spin_lock_irqsave(&mmu->lock, flags);
338 
339 	ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
340 	if (ret != mmu->num_ctx) {
341 		mmu->domains[ret] = domain;
342 		set_bit(ret, mmu->ctx);
343 	} else
344 		ret = -EBUSY;
345 
346 	spin_unlock_irqrestore(&mmu->lock, flags);
347 
348 	return ret;
349 }
350 
351 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
352 				      unsigned int context_id)
353 {
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&mmu->lock, flags);
357 
358 	clear_bit(context_id, mmu->ctx);
359 	mmu->domains[context_id] = NULL;
360 
361 	spin_unlock_irqrestore(&mmu->lock, flags);
362 }
363 
364 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
365 {
366 	u64 ttbr;
367 	u32 tmp;
368 
369 	/* TTBR0 */
370 	ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
371 	ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
372 	ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
373 
374 	/*
375 	 * TTBCR
376 	 * We use long descriptors and allocate the whole 32-bit VA space to
377 	 * TTBR0.
378 	 */
379 	if (domain->mmu->features->twobit_imttbcr_sl0)
380 		tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
381 	else
382 		tmp = IMTTBCR_SL0_LVL_1;
383 
384 	if (domain->mmu->features->cache_snoop)
385 		tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
386 		       IMTTBCR_IRGN0_WB_WA;
387 
388 	ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
389 
390 	/* MAIR0 */
391 	ipmmu_ctx_write_root(domain, IMMAIR0,
392 			     domain->cfg.arm_lpae_s1_cfg.mair);
393 
394 	/* IMBUSCR */
395 	if (domain->mmu->features->setup_imbuscr)
396 		ipmmu_ctx_write_root(domain, IMBUSCR,
397 				     ipmmu_ctx_read_root(domain, IMBUSCR) &
398 				     ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
399 
400 	/*
401 	 * IMSTR
402 	 * Clear all interrupt flags.
403 	 */
404 	ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
405 
406 	/*
407 	 * IMCTR
408 	 * Enable the MMU and interrupt generation. The long-descriptor
409 	 * translation table format doesn't use TEX remapping. Don't enable AF
410 	 * software management as we have no use for it. Flush the TLB as
411 	 * required when modifying the context registers.
412 	 */
413 	ipmmu_ctx_write_all(domain, IMCTR,
414 			    IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
415 }
416 
417 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
418 {
419 	int ret;
420 
421 	/*
422 	 * Allocate the page table operations.
423 	 *
424 	 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
425 	 * access, Long-descriptor format" that the NStable bit being set in a
426 	 * table descriptor will result in the NStable and NS bits of all child
427 	 * entries being ignored and considered as being set. The IPMMU seems
428 	 * not to comply with this, as it generates a secure access page fault
429 	 * if any of the NStable and NS bits isn't set when running in
430 	 * non-secure mode.
431 	 */
432 	domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
433 	domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
434 	domain->cfg.ias = 32;
435 	domain->cfg.oas = 40;
436 	domain->cfg.tlb = &ipmmu_flush_ops;
437 	domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
438 	domain->io_domain.geometry.force_aperture = true;
439 	/*
440 	 * TODO: Add support for coherent walk through CCI with DVM and remove
441 	 * cache handling. For now, delegate it to the io-pgtable code.
442 	 */
443 	domain->cfg.coherent_walk = false;
444 	domain->cfg.iommu_dev = domain->mmu->root->dev;
445 
446 	/*
447 	 * Find an unused context.
448 	 */
449 	ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
450 	if (ret < 0)
451 		return ret;
452 
453 	domain->context_id = ret;
454 
455 	domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
456 					   domain);
457 	if (!domain->iop) {
458 		ipmmu_domain_free_context(domain->mmu->root,
459 					  domain->context_id);
460 		return -EINVAL;
461 	}
462 
463 	ipmmu_domain_setup_context(domain);
464 	return 0;
465 }
466 
467 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
468 {
469 	if (!domain->mmu)
470 		return;
471 
472 	/*
473 	 * Disable the context. Flush the TLB as required when modifying the
474 	 * context registers.
475 	 *
476 	 * TODO: Is TLB flush really needed ?
477 	 */
478 	ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
479 	ipmmu_tlb_sync(domain);
480 	ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
481 }
482 
483 /* -----------------------------------------------------------------------------
484  * Fault Handling
485  */
486 
487 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
488 {
489 	const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
490 	struct ipmmu_vmsa_device *mmu = domain->mmu;
491 	unsigned long iova;
492 	u32 status;
493 
494 	status = ipmmu_ctx_read_root(domain, IMSTR);
495 	if (!(status & err_mask))
496 		return IRQ_NONE;
497 
498 	iova = ipmmu_ctx_read_root(domain, IMELAR);
499 	if (IS_ENABLED(CONFIG_64BIT))
500 		iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
501 
502 	/*
503 	 * Clear the error status flags. Unlike traditional interrupt flag
504 	 * registers that must be cleared by writing 1, this status register
505 	 * seems to require 0. The error address register must be read before,
506 	 * otherwise its value will be 0.
507 	 */
508 	ipmmu_ctx_write_root(domain, IMSTR, 0);
509 
510 	/* Log fatal errors. */
511 	if (status & IMSTR_MHIT)
512 		dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
513 				    iova);
514 	if (status & IMSTR_ABORT)
515 		dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
516 				    iova);
517 
518 	if (!(status & (IMSTR_PF | IMSTR_TF)))
519 		return IRQ_NONE;
520 
521 	/*
522 	 * Try to handle page faults and translation faults.
523 	 *
524 	 * TODO: We need to look up the faulty device based on the I/O VA. Use
525 	 * the IOMMU device for now.
526 	 */
527 	if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
528 		return IRQ_HANDLED;
529 
530 	dev_err_ratelimited(mmu->dev,
531 			    "Unhandled fault: status 0x%08x iova 0x%lx\n",
532 			    status, iova);
533 
534 	return IRQ_HANDLED;
535 }
536 
537 static irqreturn_t ipmmu_irq(int irq, void *dev)
538 {
539 	struct ipmmu_vmsa_device *mmu = dev;
540 	irqreturn_t status = IRQ_NONE;
541 	unsigned int i;
542 	unsigned long flags;
543 
544 	spin_lock_irqsave(&mmu->lock, flags);
545 
546 	/*
547 	 * Check interrupts for all active contexts.
548 	 */
549 	for (i = 0; i < mmu->num_ctx; i++) {
550 		if (!mmu->domains[i])
551 			continue;
552 		if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
553 			status = IRQ_HANDLED;
554 	}
555 
556 	spin_unlock_irqrestore(&mmu->lock, flags);
557 
558 	return status;
559 }
560 
561 /* -----------------------------------------------------------------------------
562  * IOMMU Operations
563  */
564 
565 static struct iommu_domain *ipmmu_domain_alloc_paging(struct device *dev)
566 {
567 	struct ipmmu_vmsa_domain *domain;
568 
569 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
570 	if (!domain)
571 		return NULL;
572 
573 	mutex_init(&domain->mutex);
574 
575 	return &domain->io_domain;
576 }
577 
578 static void ipmmu_domain_free(struct iommu_domain *io_domain)
579 {
580 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
581 
582 	/*
583 	 * Free the domain resources. We assume that all devices have already
584 	 * been detached.
585 	 */
586 	ipmmu_domain_destroy_context(domain);
587 	free_io_pgtable_ops(domain->iop);
588 	kfree(domain);
589 }
590 
591 static int ipmmu_attach_device(struct iommu_domain *io_domain,
592 			       struct device *dev)
593 {
594 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
595 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
596 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
597 	unsigned int i;
598 	int ret = 0;
599 
600 	if (!mmu) {
601 		dev_err(dev, "Cannot attach to IPMMU\n");
602 		return -ENXIO;
603 	}
604 
605 	mutex_lock(&domain->mutex);
606 
607 	if (!domain->mmu) {
608 		/* The domain hasn't been used yet, initialize it. */
609 		domain->mmu = mmu;
610 		ret = ipmmu_domain_init_context(domain);
611 		if (ret < 0) {
612 			dev_err(dev, "Unable to initialize IPMMU context\n");
613 			domain->mmu = NULL;
614 		} else {
615 			dev_info(dev, "Using IPMMU context %u\n",
616 				 domain->context_id);
617 		}
618 	} else if (domain->mmu != mmu) {
619 		/*
620 		 * Something is wrong, we can't attach two devices using
621 		 * different IOMMUs to the same domain.
622 		 */
623 		ret = -EINVAL;
624 	} else
625 		dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
626 
627 	mutex_unlock(&domain->mutex);
628 
629 	if (ret < 0)
630 		return ret;
631 
632 	for (i = 0; i < fwspec->num_ids; ++i)
633 		ipmmu_utlb_enable(domain, fwspec->ids[i]);
634 
635 	return 0;
636 }
637 
638 static int ipmmu_iommu_identity_attach(struct iommu_domain *identity_domain,
639 				       struct device *dev)
640 {
641 	struct iommu_domain *io_domain = iommu_get_domain_for_dev(dev);
642 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
643 	struct ipmmu_vmsa_domain *domain;
644 	unsigned int i;
645 
646 	if (io_domain == identity_domain || !io_domain)
647 		return 0;
648 
649 	domain = to_vmsa_domain(io_domain);
650 	for (i = 0; i < fwspec->num_ids; ++i)
651 		ipmmu_utlb_disable(domain, fwspec->ids[i]);
652 
653 	/*
654 	 * TODO: Optimize by disabling the context when no device is attached.
655 	 */
656 	return 0;
657 }
658 
659 static struct iommu_domain_ops ipmmu_iommu_identity_ops = {
660 	.attach_dev = ipmmu_iommu_identity_attach,
661 };
662 
663 static struct iommu_domain ipmmu_iommu_identity_domain = {
664 	.type = IOMMU_DOMAIN_IDENTITY,
665 	.ops = &ipmmu_iommu_identity_ops,
666 };
667 
668 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
669 		     phys_addr_t paddr, size_t pgsize, size_t pgcount,
670 		     int prot, gfp_t gfp, size_t *mapped)
671 {
672 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
673 
674 	return domain->iop->map_pages(domain->iop, iova, paddr, pgsize, pgcount,
675 				      prot, gfp, mapped);
676 }
677 
678 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
679 			  size_t pgsize, size_t pgcount,
680 			  struct iommu_iotlb_gather *gather)
681 {
682 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
683 
684 	return domain->iop->unmap_pages(domain->iop, iova, pgsize, pgcount, gather);
685 }
686 
687 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
688 {
689 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
690 
691 	if (domain->mmu)
692 		ipmmu_tlb_flush_all(domain);
693 }
694 
695 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
696 			     struct iommu_iotlb_gather *gather)
697 {
698 	ipmmu_flush_iotlb_all(io_domain);
699 }
700 
701 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
702 				      dma_addr_t iova)
703 {
704 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
705 
706 	/* TODO: Is locking needed ? */
707 
708 	return domain->iop->iova_to_phys(domain->iop, iova);
709 }
710 
711 static int ipmmu_init_platform_device(struct device *dev,
712 				      struct of_phandle_args *args)
713 {
714 	struct platform_device *ipmmu_pdev;
715 
716 	ipmmu_pdev = of_find_device_by_node(args->np);
717 	if (!ipmmu_pdev)
718 		return -ENODEV;
719 
720 	dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
721 
722 	return 0;
723 }
724 
725 static const struct soc_device_attribute soc_needs_opt_in[] = {
726 	{ .family = "R-Car Gen3", },
727 	{ .family = "R-Car Gen4", },
728 	{ .family = "RZ/G2", },
729 	{ /* sentinel */ }
730 };
731 
732 static const struct soc_device_attribute soc_denylist[] = {
733 	{ .soc_id = "r8a774a1", },
734 	{ .soc_id = "r8a7795", .revision = "ES2.*" },
735 	{ .soc_id = "r8a7796", },
736 	{ /* sentinel */ }
737 };
738 
739 static const char * const devices_allowlist[] = {
740 	"ee100000.mmc",
741 	"ee120000.mmc",
742 	"ee140000.mmc",
743 	"ee160000.mmc"
744 };
745 
746 static bool ipmmu_device_is_allowed(struct device *dev)
747 {
748 	unsigned int i;
749 
750 	/*
751 	 * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices.
752 	 * For Other SoCs, this returns true anyway.
753 	 */
754 	if (!soc_device_match(soc_needs_opt_in))
755 		return true;
756 
757 	/* Check whether this SoC can use the IPMMU correctly or not */
758 	if (soc_device_match(soc_denylist))
759 		return false;
760 
761 	/* Check whether this device is a PCI device */
762 	if (dev_is_pci(dev))
763 		return true;
764 
765 	/* Check whether this device can work with the IPMMU */
766 	for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
767 		if (!strcmp(dev_name(dev), devices_allowlist[i]))
768 			return true;
769 	}
770 
771 	/* Otherwise, do not allow use of IPMMU */
772 	return false;
773 }
774 
775 static int ipmmu_of_xlate(struct device *dev,
776 			  struct of_phandle_args *spec)
777 {
778 	if (!ipmmu_device_is_allowed(dev))
779 		return -ENODEV;
780 
781 	iommu_fwspec_add_ids(dev, spec->args, 1);
782 
783 	/* Initialize once - xlate() will call multiple times */
784 	if (to_ipmmu(dev))
785 		return 0;
786 
787 	return ipmmu_init_platform_device(dev, spec);
788 }
789 
790 static int ipmmu_init_arm_mapping(struct device *dev)
791 {
792 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
793 	int ret;
794 
795 	/*
796 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
797 	 * VAs. This will allocate a corresponding IOMMU domain.
798 	 *
799 	 * TODO:
800 	 * - Create one mapping per context (TLB).
801 	 * - Make the mapping size configurable ? We currently use a 2GB mapping
802 	 *   at a 1GB offset to ensure that NULL VAs will fault.
803 	 */
804 	if (!mmu->mapping) {
805 		struct dma_iommu_mapping *mapping;
806 
807 		mapping = arm_iommu_create_mapping(&platform_bus_type,
808 						   SZ_1G, SZ_2G);
809 		if (IS_ERR(mapping)) {
810 			dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
811 			ret = PTR_ERR(mapping);
812 			goto error;
813 		}
814 
815 		mmu->mapping = mapping;
816 	}
817 
818 	/* Attach the ARM VA mapping to the device. */
819 	ret = arm_iommu_attach_device(dev, mmu->mapping);
820 	if (ret < 0) {
821 		dev_err(dev, "Failed to attach device to VA mapping\n");
822 		goto error;
823 	}
824 
825 	return 0;
826 
827 error:
828 	if (mmu->mapping)
829 		arm_iommu_release_mapping(mmu->mapping);
830 
831 	return ret;
832 }
833 
834 static struct iommu_device *ipmmu_probe_device(struct device *dev)
835 {
836 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
837 
838 	/*
839 	 * Only let through devices that have been verified in xlate()
840 	 */
841 	if (!mmu)
842 		return ERR_PTR(-ENODEV);
843 
844 	return &mmu->iommu;
845 }
846 
847 static void ipmmu_probe_finalize(struct device *dev)
848 {
849 	int ret = 0;
850 
851 	if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
852 		ret = ipmmu_init_arm_mapping(dev);
853 
854 	if (ret)
855 		dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
856 }
857 
858 static void ipmmu_release_device(struct device *dev)
859 {
860 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
861 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
862 	unsigned int i;
863 
864 	for (i = 0; i < fwspec->num_ids; ++i) {
865 		unsigned int utlb = fwspec->ids[i];
866 
867 		ipmmu_imuctr_write(mmu, utlb, 0);
868 		mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
869 	}
870 
871 	arm_iommu_release_mapping(mmu->mapping);
872 }
873 
874 static const struct iommu_ops ipmmu_ops = {
875 	.identity_domain = &ipmmu_iommu_identity_domain,
876 	.domain_alloc_paging = ipmmu_domain_alloc_paging,
877 	.probe_device = ipmmu_probe_device,
878 	.release_device = ipmmu_release_device,
879 	.probe_finalize = ipmmu_probe_finalize,
880 	/*
881 	 * FIXME: The device grouping is a fixed property of the hardware's
882 	 * ability to isolate and control DMA, it should not depend on kconfig.
883 	 */
884 	.device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
885 			? generic_device_group : generic_single_device_group,
886 	.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
887 	.of_xlate = ipmmu_of_xlate,
888 	.default_domain_ops = &(const struct iommu_domain_ops) {
889 		.attach_dev	= ipmmu_attach_device,
890 		.map_pages	= ipmmu_map,
891 		.unmap_pages	= ipmmu_unmap,
892 		.flush_iotlb_all = ipmmu_flush_iotlb_all,
893 		.iotlb_sync	= ipmmu_iotlb_sync,
894 		.iova_to_phys	= ipmmu_iova_to_phys,
895 		.free		= ipmmu_domain_free,
896 	}
897 };
898 
899 /* -----------------------------------------------------------------------------
900  * Probe/remove and init
901  */
902 
903 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
904 {
905 	unsigned int i;
906 
907 	/* Disable all contexts. */
908 	for (i = 0; i < mmu->num_ctx; ++i)
909 		ipmmu_ctx_write(mmu, i, IMCTR, 0);
910 }
911 
912 static const struct ipmmu_features ipmmu_features_default = {
913 	.use_ns_alias_offset = true,
914 	.has_cache_leaf_nodes = false,
915 	.number_of_contexts = 1, /* software only tested with one context */
916 	.num_utlbs = 32,
917 	.setup_imbuscr = true,
918 	.twobit_imttbcr_sl0 = false,
919 	.reserved_context = false,
920 	.cache_snoop = true,
921 	.ctx_offset_base = 0,
922 	.ctx_offset_stride = 0x40,
923 	.utlb_offset_base = 0,
924 };
925 
926 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
927 	.use_ns_alias_offset = false,
928 	.has_cache_leaf_nodes = true,
929 	.number_of_contexts = 8,
930 	.num_utlbs = 48,
931 	.setup_imbuscr = false,
932 	.twobit_imttbcr_sl0 = true,
933 	.reserved_context = true,
934 	.cache_snoop = false,
935 	.ctx_offset_base = 0,
936 	.ctx_offset_stride = 0x40,
937 	.utlb_offset_base = 0,
938 };
939 
940 static const struct ipmmu_features ipmmu_features_rcar_gen4 = {
941 	.use_ns_alias_offset = false,
942 	.has_cache_leaf_nodes = true,
943 	.number_of_contexts = 16,
944 	.num_utlbs = 64,
945 	.setup_imbuscr = false,
946 	.twobit_imttbcr_sl0 = true,
947 	.reserved_context = true,
948 	.cache_snoop = false,
949 	.ctx_offset_base = 0x10000,
950 	.ctx_offset_stride = 0x1040,
951 	.utlb_offset_base = 0x3000,
952 };
953 
954 static const struct of_device_id ipmmu_of_ids[] = {
955 	{
956 		.compatible = "renesas,ipmmu-vmsa",
957 		.data = &ipmmu_features_default,
958 	}, {
959 		.compatible = "renesas,ipmmu-r8a774a1",
960 		.data = &ipmmu_features_rcar_gen3,
961 	}, {
962 		.compatible = "renesas,ipmmu-r8a774b1",
963 		.data = &ipmmu_features_rcar_gen3,
964 	}, {
965 		.compatible = "renesas,ipmmu-r8a774c0",
966 		.data = &ipmmu_features_rcar_gen3,
967 	}, {
968 		.compatible = "renesas,ipmmu-r8a774e1",
969 		.data = &ipmmu_features_rcar_gen3,
970 	}, {
971 		.compatible = "renesas,ipmmu-r8a7795",
972 		.data = &ipmmu_features_rcar_gen3,
973 	}, {
974 		.compatible = "renesas,ipmmu-r8a7796",
975 		.data = &ipmmu_features_rcar_gen3,
976 	}, {
977 		.compatible = "renesas,ipmmu-r8a77961",
978 		.data = &ipmmu_features_rcar_gen3,
979 	}, {
980 		.compatible = "renesas,ipmmu-r8a77965",
981 		.data = &ipmmu_features_rcar_gen3,
982 	}, {
983 		.compatible = "renesas,ipmmu-r8a77970",
984 		.data = &ipmmu_features_rcar_gen3,
985 	}, {
986 		.compatible = "renesas,ipmmu-r8a77980",
987 		.data = &ipmmu_features_rcar_gen3,
988 	}, {
989 		.compatible = "renesas,ipmmu-r8a77990",
990 		.data = &ipmmu_features_rcar_gen3,
991 	}, {
992 		.compatible = "renesas,ipmmu-r8a77995",
993 		.data = &ipmmu_features_rcar_gen3,
994 	}, {
995 		.compatible = "renesas,ipmmu-r8a779a0",
996 		.data = &ipmmu_features_rcar_gen4,
997 	}, {
998 		.compatible = "renesas,rcar-gen4-ipmmu-vmsa",
999 		.data = &ipmmu_features_rcar_gen4,
1000 	}, {
1001 		/* Terminator */
1002 	},
1003 };
1004 
1005 static int ipmmu_probe(struct platform_device *pdev)
1006 {
1007 	struct ipmmu_vmsa_device *mmu;
1008 	struct resource *res;
1009 	int irq;
1010 	int ret;
1011 
1012 	mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1013 	if (!mmu) {
1014 		dev_err(&pdev->dev, "cannot allocate device data\n");
1015 		return -ENOMEM;
1016 	}
1017 
1018 	mmu->dev = &pdev->dev;
1019 	spin_lock_init(&mmu->lock);
1020 	bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1021 	mmu->features = of_device_get_match_data(&pdev->dev);
1022 	memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1023 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1024 	if (ret)
1025 		return ret;
1026 
1027 	/* Map I/O memory and request IRQ. */
1028 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1029 	mmu->base = devm_ioremap_resource(&pdev->dev, res);
1030 	if (IS_ERR(mmu->base))
1031 		return PTR_ERR(mmu->base);
1032 
1033 	/*
1034 	 * The IPMMU has two register banks, for secure and non-secure modes.
1035 	 * The bank mapped at the beginning of the IPMMU address space
1036 	 * corresponds to the running mode of the CPU. When running in secure
1037 	 * mode the non-secure register bank is also available at an offset.
1038 	 *
1039 	 * Secure mode operation isn't clearly documented and is thus currently
1040 	 * not implemented in the driver. Furthermore, preliminary tests of
1041 	 * non-secure operation with the main register bank were not successful.
1042 	 * Offset the registers base unconditionally to point to the non-secure
1043 	 * alias space for now.
1044 	 */
1045 	if (mmu->features->use_ns_alias_offset)
1046 		mmu->base += IM_NS_ALIAS_OFFSET;
1047 
1048 	mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1049 
1050 	/*
1051 	 * Determine if this IPMMU instance is a root device by checking for
1052 	 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1053 	 */
1054 	if (!mmu->features->has_cache_leaf_nodes ||
1055 	    !of_property_present(pdev->dev.of_node, "renesas,ipmmu-main"))
1056 		mmu->root = mmu;
1057 	else
1058 		mmu->root = ipmmu_find_root();
1059 
1060 	/*
1061 	 * Wait until the root device has been registered for sure.
1062 	 */
1063 	if (!mmu->root)
1064 		return -EPROBE_DEFER;
1065 
1066 	/* Root devices have mandatory IRQs */
1067 	if (ipmmu_is_root(mmu)) {
1068 		irq = platform_get_irq(pdev, 0);
1069 		if (irq < 0)
1070 			return irq;
1071 
1072 		ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1073 				       dev_name(&pdev->dev), mmu);
1074 		if (ret < 0) {
1075 			dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1076 			return ret;
1077 		}
1078 
1079 		ipmmu_device_reset(mmu);
1080 
1081 		if (mmu->features->reserved_context) {
1082 			dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1083 			set_bit(0, mmu->ctx);
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * Register the IPMMU to the IOMMU subsystem in the following cases:
1089 	 * - R-Car Gen2 IPMMU (all devices registered)
1090 	 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1091 	 */
1092 	if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1093 		ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1094 					     dev_name(&pdev->dev));
1095 		if (ret)
1096 			return ret;
1097 
1098 		ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1099 		if (ret)
1100 			return ret;
1101 	}
1102 
1103 	/*
1104 	 * We can't create the ARM mapping here as it requires the bus to have
1105 	 * an IOMMU, which only happens when bus_set_iommu() is called in
1106 	 * ipmmu_init() after the probe function returns.
1107 	 */
1108 
1109 	platform_set_drvdata(pdev, mmu);
1110 
1111 	return 0;
1112 }
1113 
1114 static void ipmmu_remove(struct platform_device *pdev)
1115 {
1116 	struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1117 
1118 	iommu_device_sysfs_remove(&mmu->iommu);
1119 	iommu_device_unregister(&mmu->iommu);
1120 
1121 	arm_iommu_release_mapping(mmu->mapping);
1122 
1123 	ipmmu_device_reset(mmu);
1124 }
1125 
1126 #ifdef CONFIG_PM_SLEEP
1127 static int ipmmu_resume_noirq(struct device *dev)
1128 {
1129 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1130 	unsigned int i;
1131 
1132 	/* Reset root MMU and restore contexts */
1133 	if (ipmmu_is_root(mmu)) {
1134 		ipmmu_device_reset(mmu);
1135 
1136 		for (i = 0; i < mmu->num_ctx; i++) {
1137 			if (!mmu->domains[i])
1138 				continue;
1139 
1140 			ipmmu_domain_setup_context(mmu->domains[i]);
1141 		}
1142 	}
1143 
1144 	/* Re-enable active micro-TLBs */
1145 	for (i = 0; i < mmu->features->num_utlbs; i++) {
1146 		if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1147 			continue;
1148 
1149 		ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 static const struct dev_pm_ops ipmmu_pm  = {
1156 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1157 };
1158 #define DEV_PM_OPS	&ipmmu_pm
1159 #else
1160 #define DEV_PM_OPS	NULL
1161 #endif /* CONFIG_PM_SLEEP */
1162 
1163 static struct platform_driver ipmmu_driver = {
1164 	.driver = {
1165 		.name = "ipmmu-vmsa",
1166 		.of_match_table = of_match_ptr(ipmmu_of_ids),
1167 		.pm = DEV_PM_OPS,
1168 	},
1169 	.probe = ipmmu_probe,
1170 	.remove_new = ipmmu_remove,
1171 };
1172 builtin_platform_driver(ipmmu_driver);
1173