1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2009, Intel Corporation. 4 * 5 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 6 */ 7 8 #include <linux/iova.h> 9 #include <linux/module.h> 10 #include <linux/slab.h> 11 #include <linux/smp.h> 12 #include <linux/bitops.h> 13 #include <linux/cpu.h> 14 15 /* The anchor node sits above the top of the usable address space */ 16 #define IOVA_ANCHOR ~0UL 17 18 static bool iova_rcache_insert(struct iova_domain *iovad, 19 unsigned long pfn, 20 unsigned long size); 21 static unsigned long iova_rcache_get(struct iova_domain *iovad, 22 unsigned long size, 23 unsigned long limit_pfn); 24 static void init_iova_rcaches(struct iova_domain *iovad); 25 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad); 26 static void free_iova_rcaches(struct iova_domain *iovad); 27 static void fq_destroy_all_entries(struct iova_domain *iovad); 28 static void fq_flush_timeout(struct timer_list *t); 29 30 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node) 31 { 32 struct iova_domain *iovad; 33 34 iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead); 35 36 free_cpu_cached_iovas(cpu, iovad); 37 return 0; 38 } 39 40 static void free_global_cached_iovas(struct iova_domain *iovad); 41 42 static struct iova *to_iova(struct rb_node *node) 43 { 44 return rb_entry(node, struct iova, node); 45 } 46 47 void 48 init_iova_domain(struct iova_domain *iovad, unsigned long granule, 49 unsigned long start_pfn) 50 { 51 /* 52 * IOVA granularity will normally be equal to the smallest 53 * supported IOMMU page size; both *must* be capable of 54 * representing individual CPU pages exactly. 55 */ 56 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule)); 57 58 spin_lock_init(&iovad->iova_rbtree_lock); 59 iovad->rbroot = RB_ROOT; 60 iovad->cached_node = &iovad->anchor.node; 61 iovad->cached32_node = &iovad->anchor.node; 62 iovad->granule = granule; 63 iovad->start_pfn = start_pfn; 64 iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad)); 65 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 66 iovad->flush_cb = NULL; 67 iovad->fq = NULL; 68 iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR; 69 rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node); 70 rb_insert_color(&iovad->anchor.node, &iovad->rbroot); 71 cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, &iovad->cpuhp_dead); 72 init_iova_rcaches(iovad); 73 } 74 EXPORT_SYMBOL_GPL(init_iova_domain); 75 76 static bool has_iova_flush_queue(struct iova_domain *iovad) 77 { 78 return !!iovad->fq; 79 } 80 81 static void free_iova_flush_queue(struct iova_domain *iovad) 82 { 83 if (!has_iova_flush_queue(iovad)) 84 return; 85 86 if (timer_pending(&iovad->fq_timer)) 87 del_timer(&iovad->fq_timer); 88 89 fq_destroy_all_entries(iovad); 90 91 free_percpu(iovad->fq); 92 93 iovad->fq = NULL; 94 iovad->flush_cb = NULL; 95 iovad->entry_dtor = NULL; 96 } 97 98 int init_iova_flush_queue(struct iova_domain *iovad, 99 iova_flush_cb flush_cb, iova_entry_dtor entry_dtor) 100 { 101 struct iova_fq __percpu *queue; 102 int cpu; 103 104 atomic64_set(&iovad->fq_flush_start_cnt, 0); 105 atomic64_set(&iovad->fq_flush_finish_cnt, 0); 106 107 queue = alloc_percpu(struct iova_fq); 108 if (!queue) 109 return -ENOMEM; 110 111 iovad->flush_cb = flush_cb; 112 iovad->entry_dtor = entry_dtor; 113 114 for_each_possible_cpu(cpu) { 115 struct iova_fq *fq; 116 117 fq = per_cpu_ptr(queue, cpu); 118 fq->head = 0; 119 fq->tail = 0; 120 121 spin_lock_init(&fq->lock); 122 } 123 124 iovad->fq = queue; 125 126 timer_setup(&iovad->fq_timer, fq_flush_timeout, 0); 127 atomic_set(&iovad->fq_timer_on, 0); 128 129 return 0; 130 } 131 132 static struct rb_node * 133 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn) 134 { 135 if (limit_pfn <= iovad->dma_32bit_pfn) 136 return iovad->cached32_node; 137 138 return iovad->cached_node; 139 } 140 141 static void 142 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new) 143 { 144 if (new->pfn_hi < iovad->dma_32bit_pfn) 145 iovad->cached32_node = &new->node; 146 else 147 iovad->cached_node = &new->node; 148 } 149 150 static void 151 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) 152 { 153 struct iova *cached_iova; 154 155 cached_iova = to_iova(iovad->cached32_node); 156 if (free == cached_iova || 157 (free->pfn_hi < iovad->dma_32bit_pfn && 158 free->pfn_lo >= cached_iova->pfn_lo)) { 159 iovad->cached32_node = rb_next(&free->node); 160 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 161 } 162 163 cached_iova = to_iova(iovad->cached_node); 164 if (free->pfn_lo >= cached_iova->pfn_lo) 165 iovad->cached_node = rb_next(&free->node); 166 } 167 168 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn) 169 { 170 struct rb_node *node, *next; 171 /* 172 * Ideally what we'd like to judge here is whether limit_pfn is close 173 * enough to the highest-allocated IOVA that starting the allocation 174 * walk from the anchor node will be quicker than this initial work to 175 * find an exact starting point (especially if that ends up being the 176 * anchor node anyway). This is an incredibly crude approximation which 177 * only really helps the most likely case, but is at least trivially easy. 178 */ 179 if (limit_pfn > iovad->dma_32bit_pfn) 180 return &iovad->anchor.node; 181 182 node = iovad->rbroot.rb_node; 183 while (to_iova(node)->pfn_hi < limit_pfn) 184 node = node->rb_right; 185 186 search_left: 187 while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn) 188 node = node->rb_left; 189 190 if (!node->rb_left) 191 return node; 192 193 next = node->rb_left; 194 while (next->rb_right) { 195 next = next->rb_right; 196 if (to_iova(next)->pfn_lo >= limit_pfn) { 197 node = next; 198 goto search_left; 199 } 200 } 201 202 return node; 203 } 204 205 /* Insert the iova into domain rbtree by holding writer lock */ 206 static void 207 iova_insert_rbtree(struct rb_root *root, struct iova *iova, 208 struct rb_node *start) 209 { 210 struct rb_node **new, *parent = NULL; 211 212 new = (start) ? &start : &(root->rb_node); 213 /* Figure out where to put new node */ 214 while (*new) { 215 struct iova *this = to_iova(*new); 216 217 parent = *new; 218 219 if (iova->pfn_lo < this->pfn_lo) 220 new = &((*new)->rb_left); 221 else if (iova->pfn_lo > this->pfn_lo) 222 new = &((*new)->rb_right); 223 else { 224 WARN_ON(1); /* this should not happen */ 225 return; 226 } 227 } 228 /* Add new node and rebalance tree. */ 229 rb_link_node(&iova->node, parent, new); 230 rb_insert_color(&iova->node, root); 231 } 232 233 static int __alloc_and_insert_iova_range(struct iova_domain *iovad, 234 unsigned long size, unsigned long limit_pfn, 235 struct iova *new, bool size_aligned) 236 { 237 struct rb_node *curr, *prev; 238 struct iova *curr_iova; 239 unsigned long flags; 240 unsigned long new_pfn, retry_pfn; 241 unsigned long align_mask = ~0UL; 242 unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn; 243 244 if (size_aligned) 245 align_mask <<= fls_long(size - 1); 246 247 /* Walk the tree backwards */ 248 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 249 if (limit_pfn <= iovad->dma_32bit_pfn && 250 size >= iovad->max32_alloc_size) 251 goto iova32_full; 252 253 curr = __get_cached_rbnode(iovad, limit_pfn); 254 curr_iova = to_iova(curr); 255 retry_pfn = curr_iova->pfn_hi + 1; 256 257 retry: 258 do { 259 high_pfn = min(high_pfn, curr_iova->pfn_lo); 260 new_pfn = (high_pfn - size) & align_mask; 261 prev = curr; 262 curr = rb_prev(curr); 263 curr_iova = to_iova(curr); 264 } while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn); 265 266 if (high_pfn < size || new_pfn < low_pfn) { 267 if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) { 268 high_pfn = limit_pfn; 269 low_pfn = retry_pfn; 270 curr = iova_find_limit(iovad, limit_pfn); 271 curr_iova = to_iova(curr); 272 goto retry; 273 } 274 iovad->max32_alloc_size = size; 275 goto iova32_full; 276 } 277 278 /* pfn_lo will point to size aligned address if size_aligned is set */ 279 new->pfn_lo = new_pfn; 280 new->pfn_hi = new->pfn_lo + size - 1; 281 282 /* If we have 'prev', it's a valid place to start the insertion. */ 283 iova_insert_rbtree(&iovad->rbroot, new, prev); 284 __cached_rbnode_insert_update(iovad, new); 285 286 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 287 return 0; 288 289 iova32_full: 290 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 291 return -ENOMEM; 292 } 293 294 static struct kmem_cache *iova_cache; 295 static unsigned int iova_cache_users; 296 static DEFINE_MUTEX(iova_cache_mutex); 297 298 static struct iova *alloc_iova_mem(void) 299 { 300 return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN); 301 } 302 303 static void free_iova_mem(struct iova *iova) 304 { 305 if (iova->pfn_lo != IOVA_ANCHOR) 306 kmem_cache_free(iova_cache, iova); 307 } 308 309 int iova_cache_get(void) 310 { 311 mutex_lock(&iova_cache_mutex); 312 if (!iova_cache_users) { 313 int ret; 314 315 ret = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead", NULL, 316 iova_cpuhp_dead); 317 if (ret) { 318 mutex_unlock(&iova_cache_mutex); 319 pr_err("Couldn't register cpuhp handler\n"); 320 return ret; 321 } 322 323 iova_cache = kmem_cache_create( 324 "iommu_iova", sizeof(struct iova), 0, 325 SLAB_HWCACHE_ALIGN, NULL); 326 if (!iova_cache) { 327 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 328 mutex_unlock(&iova_cache_mutex); 329 pr_err("Couldn't create iova cache\n"); 330 return -ENOMEM; 331 } 332 } 333 334 iova_cache_users++; 335 mutex_unlock(&iova_cache_mutex); 336 337 return 0; 338 } 339 EXPORT_SYMBOL_GPL(iova_cache_get); 340 341 void iova_cache_put(void) 342 { 343 mutex_lock(&iova_cache_mutex); 344 if (WARN_ON(!iova_cache_users)) { 345 mutex_unlock(&iova_cache_mutex); 346 return; 347 } 348 iova_cache_users--; 349 if (!iova_cache_users) { 350 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 351 kmem_cache_destroy(iova_cache); 352 } 353 mutex_unlock(&iova_cache_mutex); 354 } 355 EXPORT_SYMBOL_GPL(iova_cache_put); 356 357 /** 358 * alloc_iova - allocates an iova 359 * @iovad: - iova domain in question 360 * @size: - size of page frames to allocate 361 * @limit_pfn: - max limit address 362 * @size_aligned: - set if size_aligned address range is required 363 * This function allocates an iova in the range iovad->start_pfn to limit_pfn, 364 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned 365 * flag is set then the allocated address iova->pfn_lo will be naturally 366 * aligned on roundup_power_of_two(size). 367 */ 368 struct iova * 369 alloc_iova(struct iova_domain *iovad, unsigned long size, 370 unsigned long limit_pfn, 371 bool size_aligned) 372 { 373 struct iova *new_iova; 374 int ret; 375 376 new_iova = alloc_iova_mem(); 377 if (!new_iova) 378 return NULL; 379 380 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1, 381 new_iova, size_aligned); 382 383 if (ret) { 384 free_iova_mem(new_iova); 385 return NULL; 386 } 387 388 return new_iova; 389 } 390 EXPORT_SYMBOL_GPL(alloc_iova); 391 392 static struct iova * 393 private_find_iova(struct iova_domain *iovad, unsigned long pfn) 394 { 395 struct rb_node *node = iovad->rbroot.rb_node; 396 397 assert_spin_locked(&iovad->iova_rbtree_lock); 398 399 while (node) { 400 struct iova *iova = to_iova(node); 401 402 if (pfn < iova->pfn_lo) 403 node = node->rb_left; 404 else if (pfn > iova->pfn_hi) 405 node = node->rb_right; 406 else 407 return iova; /* pfn falls within iova's range */ 408 } 409 410 return NULL; 411 } 412 413 static void remove_iova(struct iova_domain *iovad, struct iova *iova) 414 { 415 assert_spin_locked(&iovad->iova_rbtree_lock); 416 __cached_rbnode_delete_update(iovad, iova); 417 rb_erase(&iova->node, &iovad->rbroot); 418 } 419 420 /** 421 * find_iova - finds an iova for a given pfn 422 * @iovad: - iova domain in question. 423 * @pfn: - page frame number 424 * This function finds and returns an iova belonging to the 425 * given domain which matches the given pfn. 426 */ 427 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) 428 { 429 unsigned long flags; 430 struct iova *iova; 431 432 /* Take the lock so that no other thread is manipulating the rbtree */ 433 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 434 iova = private_find_iova(iovad, pfn); 435 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 436 return iova; 437 } 438 EXPORT_SYMBOL_GPL(find_iova); 439 440 /** 441 * __free_iova - frees the given iova 442 * @iovad: iova domain in question. 443 * @iova: iova in question. 444 * Frees the given iova belonging to the giving domain 445 */ 446 void 447 __free_iova(struct iova_domain *iovad, struct iova *iova) 448 { 449 unsigned long flags; 450 451 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 452 remove_iova(iovad, iova); 453 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 454 free_iova_mem(iova); 455 } 456 EXPORT_SYMBOL_GPL(__free_iova); 457 458 /** 459 * free_iova - finds and frees the iova for a given pfn 460 * @iovad: - iova domain in question. 461 * @pfn: - pfn that is allocated previously 462 * This functions finds an iova for a given pfn and then 463 * frees the iova from that domain. 464 */ 465 void 466 free_iova(struct iova_domain *iovad, unsigned long pfn) 467 { 468 unsigned long flags; 469 struct iova *iova; 470 471 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 472 iova = private_find_iova(iovad, pfn); 473 if (!iova) { 474 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 475 return; 476 } 477 remove_iova(iovad, iova); 478 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 479 free_iova_mem(iova); 480 } 481 EXPORT_SYMBOL_GPL(free_iova); 482 483 /** 484 * alloc_iova_fast - allocates an iova from rcache 485 * @iovad: - iova domain in question 486 * @size: - size of page frames to allocate 487 * @limit_pfn: - max limit address 488 * @flush_rcache: - set to flush rcache on regular allocation failure 489 * This function tries to satisfy an iova allocation from the rcache, 490 * and falls back to regular allocation on failure. If regular allocation 491 * fails too and the flush_rcache flag is set then the rcache will be flushed. 492 */ 493 unsigned long 494 alloc_iova_fast(struct iova_domain *iovad, unsigned long size, 495 unsigned long limit_pfn, bool flush_rcache) 496 { 497 unsigned long iova_pfn; 498 struct iova *new_iova; 499 500 iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1); 501 if (iova_pfn) 502 return iova_pfn; 503 504 retry: 505 new_iova = alloc_iova(iovad, size, limit_pfn, true); 506 if (!new_iova) { 507 unsigned int cpu; 508 509 if (!flush_rcache) 510 return 0; 511 512 /* Try replenishing IOVAs by flushing rcache. */ 513 flush_rcache = false; 514 for_each_online_cpu(cpu) 515 free_cpu_cached_iovas(cpu, iovad); 516 free_global_cached_iovas(iovad); 517 goto retry; 518 } 519 520 return new_iova->pfn_lo; 521 } 522 EXPORT_SYMBOL_GPL(alloc_iova_fast); 523 524 /** 525 * free_iova_fast - free iova pfn range into rcache 526 * @iovad: - iova domain in question. 527 * @pfn: - pfn that is allocated previously 528 * @size: - # of pages in range 529 * This functions frees an iova range by trying to put it into the rcache, 530 * falling back to regular iova deallocation via free_iova() if this fails. 531 */ 532 void 533 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size) 534 { 535 if (iova_rcache_insert(iovad, pfn, size)) 536 return; 537 538 free_iova(iovad, pfn); 539 } 540 EXPORT_SYMBOL_GPL(free_iova_fast); 541 542 #define fq_ring_for_each(i, fq) \ 543 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 544 545 static inline bool fq_full(struct iova_fq *fq) 546 { 547 assert_spin_locked(&fq->lock); 548 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 549 } 550 551 static inline unsigned fq_ring_add(struct iova_fq *fq) 552 { 553 unsigned idx = fq->tail; 554 555 assert_spin_locked(&fq->lock); 556 557 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 558 559 return idx; 560 } 561 562 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq) 563 { 564 u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt); 565 unsigned idx; 566 567 assert_spin_locked(&fq->lock); 568 569 fq_ring_for_each(idx, fq) { 570 571 if (fq->entries[idx].counter >= counter) 572 break; 573 574 if (iovad->entry_dtor) 575 iovad->entry_dtor(fq->entries[idx].data); 576 577 free_iova_fast(iovad, 578 fq->entries[idx].iova_pfn, 579 fq->entries[idx].pages); 580 581 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 582 } 583 } 584 585 static void iova_domain_flush(struct iova_domain *iovad) 586 { 587 atomic64_inc(&iovad->fq_flush_start_cnt); 588 iovad->flush_cb(iovad); 589 atomic64_inc(&iovad->fq_flush_finish_cnt); 590 } 591 592 static void fq_destroy_all_entries(struct iova_domain *iovad) 593 { 594 int cpu; 595 596 /* 597 * This code runs when the iova_domain is being detroyed, so don't 598 * bother to free iovas, just call the entry_dtor on all remaining 599 * entries. 600 */ 601 if (!iovad->entry_dtor) 602 return; 603 604 for_each_possible_cpu(cpu) { 605 struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu); 606 int idx; 607 608 fq_ring_for_each(idx, fq) 609 iovad->entry_dtor(fq->entries[idx].data); 610 } 611 } 612 613 static void fq_flush_timeout(struct timer_list *t) 614 { 615 struct iova_domain *iovad = from_timer(iovad, t, fq_timer); 616 int cpu; 617 618 atomic_set(&iovad->fq_timer_on, 0); 619 iova_domain_flush(iovad); 620 621 for_each_possible_cpu(cpu) { 622 unsigned long flags; 623 struct iova_fq *fq; 624 625 fq = per_cpu_ptr(iovad->fq, cpu); 626 spin_lock_irqsave(&fq->lock, flags); 627 fq_ring_free(iovad, fq); 628 spin_unlock_irqrestore(&fq->lock, flags); 629 } 630 } 631 632 void queue_iova(struct iova_domain *iovad, 633 unsigned long pfn, unsigned long pages, 634 unsigned long data) 635 { 636 struct iova_fq *fq; 637 unsigned long flags; 638 unsigned idx; 639 640 /* 641 * Order against the IOMMU driver's pagetable update from unmapping 642 * @pte, to guarantee that iova_domain_flush() observes that if called 643 * from a different CPU before we release the lock below. Full barrier 644 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 645 * written fq state here. 646 */ 647 smp_mb(); 648 649 fq = raw_cpu_ptr(iovad->fq); 650 spin_lock_irqsave(&fq->lock, flags); 651 652 /* 653 * First remove all entries from the flush queue that have already been 654 * flushed out on another CPU. This makes the fq_full() check below less 655 * likely to be true. 656 */ 657 fq_ring_free(iovad, fq); 658 659 if (fq_full(fq)) { 660 iova_domain_flush(iovad); 661 fq_ring_free(iovad, fq); 662 } 663 664 idx = fq_ring_add(fq); 665 666 fq->entries[idx].iova_pfn = pfn; 667 fq->entries[idx].pages = pages; 668 fq->entries[idx].data = data; 669 fq->entries[idx].counter = atomic64_read(&iovad->fq_flush_start_cnt); 670 671 spin_unlock_irqrestore(&fq->lock, flags); 672 673 /* Avoid false sharing as much as possible. */ 674 if (!atomic_read(&iovad->fq_timer_on) && 675 !atomic_xchg(&iovad->fq_timer_on, 1)) 676 mod_timer(&iovad->fq_timer, 677 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 678 } 679 680 /** 681 * put_iova_domain - destroys the iova domain 682 * @iovad: - iova domain in question. 683 * All the iova's in that domain are destroyed. 684 */ 685 void put_iova_domain(struct iova_domain *iovad) 686 { 687 struct iova *iova, *tmp; 688 689 cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, 690 &iovad->cpuhp_dead); 691 692 free_iova_flush_queue(iovad); 693 free_iova_rcaches(iovad); 694 rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node) 695 free_iova_mem(iova); 696 } 697 EXPORT_SYMBOL_GPL(put_iova_domain); 698 699 static int 700 __is_range_overlap(struct rb_node *node, 701 unsigned long pfn_lo, unsigned long pfn_hi) 702 { 703 struct iova *iova = to_iova(node); 704 705 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) 706 return 1; 707 return 0; 708 } 709 710 static inline struct iova * 711 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi) 712 { 713 struct iova *iova; 714 715 iova = alloc_iova_mem(); 716 if (iova) { 717 iova->pfn_lo = pfn_lo; 718 iova->pfn_hi = pfn_hi; 719 } 720 721 return iova; 722 } 723 724 static struct iova * 725 __insert_new_range(struct iova_domain *iovad, 726 unsigned long pfn_lo, unsigned long pfn_hi) 727 { 728 struct iova *iova; 729 730 iova = alloc_and_init_iova(pfn_lo, pfn_hi); 731 if (iova) 732 iova_insert_rbtree(&iovad->rbroot, iova, NULL); 733 734 return iova; 735 } 736 737 static void 738 __adjust_overlap_range(struct iova *iova, 739 unsigned long *pfn_lo, unsigned long *pfn_hi) 740 { 741 if (*pfn_lo < iova->pfn_lo) 742 iova->pfn_lo = *pfn_lo; 743 if (*pfn_hi > iova->pfn_hi) 744 *pfn_lo = iova->pfn_hi + 1; 745 } 746 747 /** 748 * reserve_iova - reserves an iova in the given range 749 * @iovad: - iova domain pointer 750 * @pfn_lo: - lower page frame address 751 * @pfn_hi:- higher pfn adderss 752 * This function allocates reserves the address range from pfn_lo to pfn_hi so 753 * that this address is not dished out as part of alloc_iova. 754 */ 755 struct iova * 756 reserve_iova(struct iova_domain *iovad, 757 unsigned long pfn_lo, unsigned long pfn_hi) 758 { 759 struct rb_node *node; 760 unsigned long flags; 761 struct iova *iova; 762 unsigned int overlap = 0; 763 764 /* Don't allow nonsensical pfns */ 765 if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad)))) 766 return NULL; 767 768 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 769 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { 770 if (__is_range_overlap(node, pfn_lo, pfn_hi)) { 771 iova = to_iova(node); 772 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); 773 if ((pfn_lo >= iova->pfn_lo) && 774 (pfn_hi <= iova->pfn_hi)) 775 goto finish; 776 overlap = 1; 777 778 } else if (overlap) 779 break; 780 } 781 782 /* We are here either because this is the first reserver node 783 * or need to insert remaining non overlap addr range 784 */ 785 iova = __insert_new_range(iovad, pfn_lo, pfn_hi); 786 finish: 787 788 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 789 return iova; 790 } 791 EXPORT_SYMBOL_GPL(reserve_iova); 792 793 /* 794 * Magazine caches for IOVA ranges. For an introduction to magazines, 795 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab 796 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams. 797 * For simplicity, we use a static magazine size and don't implement the 798 * dynamic size tuning described in the paper. 799 */ 800 801 #define IOVA_MAG_SIZE 128 802 803 struct iova_magazine { 804 unsigned long size; 805 unsigned long pfns[IOVA_MAG_SIZE]; 806 }; 807 808 struct iova_cpu_rcache { 809 spinlock_t lock; 810 struct iova_magazine *loaded; 811 struct iova_magazine *prev; 812 }; 813 814 static struct iova_magazine *iova_magazine_alloc(gfp_t flags) 815 { 816 return kzalloc(sizeof(struct iova_magazine), flags); 817 } 818 819 static void iova_magazine_free(struct iova_magazine *mag) 820 { 821 kfree(mag); 822 } 823 824 static void 825 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad) 826 { 827 unsigned long flags; 828 int i; 829 830 if (!mag) 831 return; 832 833 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 834 835 for (i = 0 ; i < mag->size; ++i) { 836 struct iova *iova = private_find_iova(iovad, mag->pfns[i]); 837 838 if (WARN_ON(!iova)) 839 continue; 840 841 remove_iova(iovad, iova); 842 free_iova_mem(iova); 843 } 844 845 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 846 847 mag->size = 0; 848 } 849 850 static bool iova_magazine_full(struct iova_magazine *mag) 851 { 852 return (mag && mag->size == IOVA_MAG_SIZE); 853 } 854 855 static bool iova_magazine_empty(struct iova_magazine *mag) 856 { 857 return (!mag || mag->size == 0); 858 } 859 860 static unsigned long iova_magazine_pop(struct iova_magazine *mag, 861 unsigned long limit_pfn) 862 { 863 int i; 864 unsigned long pfn; 865 866 BUG_ON(iova_magazine_empty(mag)); 867 868 /* Only fall back to the rbtree if we have no suitable pfns at all */ 869 for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--) 870 if (i == 0) 871 return 0; 872 873 /* Swap it to pop it */ 874 pfn = mag->pfns[i]; 875 mag->pfns[i] = mag->pfns[--mag->size]; 876 877 return pfn; 878 } 879 880 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn) 881 { 882 BUG_ON(iova_magazine_full(mag)); 883 884 mag->pfns[mag->size++] = pfn; 885 } 886 887 static void init_iova_rcaches(struct iova_domain *iovad) 888 { 889 struct iova_cpu_rcache *cpu_rcache; 890 struct iova_rcache *rcache; 891 unsigned int cpu; 892 int i; 893 894 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 895 rcache = &iovad->rcaches[i]; 896 spin_lock_init(&rcache->lock); 897 rcache->depot_size = 0; 898 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size()); 899 if (WARN_ON(!rcache->cpu_rcaches)) 900 continue; 901 for_each_possible_cpu(cpu) { 902 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 903 spin_lock_init(&cpu_rcache->lock); 904 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL); 905 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL); 906 } 907 } 908 } 909 910 /* 911 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and 912 * return true on success. Can fail if rcache is full and we can't free 913 * space, and free_iova() (our only caller) will then return the IOVA 914 * range to the rbtree instead. 915 */ 916 static bool __iova_rcache_insert(struct iova_domain *iovad, 917 struct iova_rcache *rcache, 918 unsigned long iova_pfn) 919 { 920 struct iova_magazine *mag_to_free = NULL; 921 struct iova_cpu_rcache *cpu_rcache; 922 bool can_insert = false; 923 unsigned long flags; 924 925 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 926 spin_lock_irqsave(&cpu_rcache->lock, flags); 927 928 if (!iova_magazine_full(cpu_rcache->loaded)) { 929 can_insert = true; 930 } else if (!iova_magazine_full(cpu_rcache->prev)) { 931 swap(cpu_rcache->prev, cpu_rcache->loaded); 932 can_insert = true; 933 } else { 934 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC); 935 936 if (new_mag) { 937 spin_lock(&rcache->lock); 938 if (rcache->depot_size < MAX_GLOBAL_MAGS) { 939 rcache->depot[rcache->depot_size++] = 940 cpu_rcache->loaded; 941 } else { 942 mag_to_free = cpu_rcache->loaded; 943 } 944 spin_unlock(&rcache->lock); 945 946 cpu_rcache->loaded = new_mag; 947 can_insert = true; 948 } 949 } 950 951 if (can_insert) 952 iova_magazine_push(cpu_rcache->loaded, iova_pfn); 953 954 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 955 956 if (mag_to_free) { 957 iova_magazine_free_pfns(mag_to_free, iovad); 958 iova_magazine_free(mag_to_free); 959 } 960 961 return can_insert; 962 } 963 964 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn, 965 unsigned long size) 966 { 967 unsigned int log_size = order_base_2(size); 968 969 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 970 return false; 971 972 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn); 973 } 974 975 /* 976 * Caller wants to allocate a new IOVA range from 'rcache'. If we can 977 * satisfy the request, return a matching non-NULL range and remove 978 * it from the 'rcache'. 979 */ 980 static unsigned long __iova_rcache_get(struct iova_rcache *rcache, 981 unsigned long limit_pfn) 982 { 983 struct iova_cpu_rcache *cpu_rcache; 984 unsigned long iova_pfn = 0; 985 bool has_pfn = false; 986 unsigned long flags; 987 988 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 989 spin_lock_irqsave(&cpu_rcache->lock, flags); 990 991 if (!iova_magazine_empty(cpu_rcache->loaded)) { 992 has_pfn = true; 993 } else if (!iova_magazine_empty(cpu_rcache->prev)) { 994 swap(cpu_rcache->prev, cpu_rcache->loaded); 995 has_pfn = true; 996 } else { 997 spin_lock(&rcache->lock); 998 if (rcache->depot_size > 0) { 999 iova_magazine_free(cpu_rcache->loaded); 1000 cpu_rcache->loaded = rcache->depot[--rcache->depot_size]; 1001 has_pfn = true; 1002 } 1003 spin_unlock(&rcache->lock); 1004 } 1005 1006 if (has_pfn) 1007 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn); 1008 1009 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 1010 1011 return iova_pfn; 1012 } 1013 1014 /* 1015 * Try to satisfy IOVA allocation range from rcache. Fail if requested 1016 * size is too big or the DMA limit we are given isn't satisfied by the 1017 * top element in the magazine. 1018 */ 1019 static unsigned long iova_rcache_get(struct iova_domain *iovad, 1020 unsigned long size, 1021 unsigned long limit_pfn) 1022 { 1023 unsigned int log_size = order_base_2(size); 1024 1025 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 1026 return 0; 1027 1028 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size); 1029 } 1030 1031 /* 1032 * free rcache data structures. 1033 */ 1034 static void free_iova_rcaches(struct iova_domain *iovad) 1035 { 1036 struct iova_rcache *rcache; 1037 struct iova_cpu_rcache *cpu_rcache; 1038 unsigned int cpu; 1039 int i, j; 1040 1041 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1042 rcache = &iovad->rcaches[i]; 1043 for_each_possible_cpu(cpu) { 1044 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1045 iova_magazine_free(cpu_rcache->loaded); 1046 iova_magazine_free(cpu_rcache->prev); 1047 } 1048 free_percpu(rcache->cpu_rcaches); 1049 for (j = 0; j < rcache->depot_size; ++j) 1050 iova_magazine_free(rcache->depot[j]); 1051 } 1052 } 1053 1054 /* 1055 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged) 1056 */ 1057 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad) 1058 { 1059 struct iova_cpu_rcache *cpu_rcache; 1060 struct iova_rcache *rcache; 1061 unsigned long flags; 1062 int i; 1063 1064 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1065 rcache = &iovad->rcaches[i]; 1066 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1067 spin_lock_irqsave(&cpu_rcache->lock, flags); 1068 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 1069 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 1070 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 1071 } 1072 } 1073 1074 /* 1075 * free all the IOVA ranges of global cache 1076 */ 1077 static void free_global_cached_iovas(struct iova_domain *iovad) 1078 { 1079 struct iova_rcache *rcache; 1080 unsigned long flags; 1081 int i, j; 1082 1083 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1084 rcache = &iovad->rcaches[i]; 1085 spin_lock_irqsave(&rcache->lock, flags); 1086 for (j = 0; j < rcache->depot_size; ++j) { 1087 iova_magazine_free_pfns(rcache->depot[j], iovad); 1088 iova_magazine_free(rcache->depot[j]); 1089 } 1090 rcache->depot_size = 0; 1091 spin_unlock_irqrestore(&rcache->lock, flags); 1092 } 1093 } 1094 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>"); 1095 MODULE_LICENSE("GPL"); 1096