xref: /linux/drivers/iommu/iova.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2009, Intel Corporation.
4  *
5  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
6  */
7 
8 #include <linux/iova.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/smp.h>
12 #include <linux/bitops.h>
13 #include <linux/cpu.h>
14 
15 /* The anchor node sits above the top of the usable address space */
16 #define IOVA_ANCHOR	~0UL
17 
18 static bool iova_rcache_insert(struct iova_domain *iovad,
19 			       unsigned long pfn,
20 			       unsigned long size);
21 static unsigned long iova_rcache_get(struct iova_domain *iovad,
22 				     unsigned long size,
23 				     unsigned long limit_pfn);
24 static void init_iova_rcaches(struct iova_domain *iovad);
25 static void free_iova_rcaches(struct iova_domain *iovad);
26 static void fq_destroy_all_entries(struct iova_domain *iovad);
27 static void fq_flush_timeout(struct timer_list *t);
28 
29 void
30 init_iova_domain(struct iova_domain *iovad, unsigned long granule,
31 	unsigned long start_pfn)
32 {
33 	/*
34 	 * IOVA granularity will normally be equal to the smallest
35 	 * supported IOMMU page size; both *must* be capable of
36 	 * representing individual CPU pages exactly.
37 	 */
38 	BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule));
39 
40 	spin_lock_init(&iovad->iova_rbtree_lock);
41 	iovad->rbroot = RB_ROOT;
42 	iovad->cached_node = &iovad->anchor.node;
43 	iovad->cached32_node = &iovad->anchor.node;
44 	iovad->granule = granule;
45 	iovad->start_pfn = start_pfn;
46 	iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad));
47 	iovad->max32_alloc_size = iovad->dma_32bit_pfn;
48 	iovad->flush_cb = NULL;
49 	iovad->fq = NULL;
50 	iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR;
51 	rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node);
52 	rb_insert_color(&iovad->anchor.node, &iovad->rbroot);
53 	init_iova_rcaches(iovad);
54 }
55 EXPORT_SYMBOL_GPL(init_iova_domain);
56 
57 bool has_iova_flush_queue(struct iova_domain *iovad)
58 {
59 	return !!iovad->fq;
60 }
61 
62 static void free_iova_flush_queue(struct iova_domain *iovad)
63 {
64 	if (!has_iova_flush_queue(iovad))
65 		return;
66 
67 	if (timer_pending(&iovad->fq_timer))
68 		del_timer(&iovad->fq_timer);
69 
70 	fq_destroy_all_entries(iovad);
71 
72 	free_percpu(iovad->fq);
73 
74 	iovad->fq         = NULL;
75 	iovad->flush_cb   = NULL;
76 	iovad->entry_dtor = NULL;
77 }
78 
79 int init_iova_flush_queue(struct iova_domain *iovad,
80 			  iova_flush_cb flush_cb, iova_entry_dtor entry_dtor)
81 {
82 	struct iova_fq __percpu *queue;
83 	int cpu;
84 
85 	atomic64_set(&iovad->fq_flush_start_cnt,  0);
86 	atomic64_set(&iovad->fq_flush_finish_cnt, 0);
87 
88 	queue = alloc_percpu(struct iova_fq);
89 	if (!queue)
90 		return -ENOMEM;
91 
92 	iovad->flush_cb   = flush_cb;
93 	iovad->entry_dtor = entry_dtor;
94 
95 	for_each_possible_cpu(cpu) {
96 		struct iova_fq *fq;
97 
98 		fq = per_cpu_ptr(queue, cpu);
99 		fq->head = 0;
100 		fq->tail = 0;
101 
102 		spin_lock_init(&fq->lock);
103 	}
104 
105 	smp_wmb();
106 
107 	iovad->fq = queue;
108 
109 	timer_setup(&iovad->fq_timer, fq_flush_timeout, 0);
110 	atomic_set(&iovad->fq_timer_on, 0);
111 
112 	return 0;
113 }
114 EXPORT_SYMBOL_GPL(init_iova_flush_queue);
115 
116 static struct rb_node *
117 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn)
118 {
119 	if (limit_pfn <= iovad->dma_32bit_pfn)
120 		return iovad->cached32_node;
121 
122 	return iovad->cached_node;
123 }
124 
125 static void
126 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new)
127 {
128 	if (new->pfn_hi < iovad->dma_32bit_pfn)
129 		iovad->cached32_node = &new->node;
130 	else
131 		iovad->cached_node = &new->node;
132 }
133 
134 static void
135 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free)
136 {
137 	struct iova *cached_iova;
138 
139 	cached_iova = rb_entry(iovad->cached32_node, struct iova, node);
140 	if (free == cached_iova ||
141 	    (free->pfn_hi < iovad->dma_32bit_pfn &&
142 	     free->pfn_lo >= cached_iova->pfn_lo)) {
143 		iovad->cached32_node = rb_next(&free->node);
144 		iovad->max32_alloc_size = iovad->dma_32bit_pfn;
145 	}
146 
147 	cached_iova = rb_entry(iovad->cached_node, struct iova, node);
148 	if (free->pfn_lo >= cached_iova->pfn_lo)
149 		iovad->cached_node = rb_next(&free->node);
150 }
151 
152 /* Insert the iova into domain rbtree by holding writer lock */
153 static void
154 iova_insert_rbtree(struct rb_root *root, struct iova *iova,
155 		   struct rb_node *start)
156 {
157 	struct rb_node **new, *parent = NULL;
158 
159 	new = (start) ? &start : &(root->rb_node);
160 	/* Figure out where to put new node */
161 	while (*new) {
162 		struct iova *this = rb_entry(*new, struct iova, node);
163 
164 		parent = *new;
165 
166 		if (iova->pfn_lo < this->pfn_lo)
167 			new = &((*new)->rb_left);
168 		else if (iova->pfn_lo > this->pfn_lo)
169 			new = &((*new)->rb_right);
170 		else {
171 			WARN_ON(1); /* this should not happen */
172 			return;
173 		}
174 	}
175 	/* Add new node and rebalance tree. */
176 	rb_link_node(&iova->node, parent, new);
177 	rb_insert_color(&iova->node, root);
178 }
179 
180 static int __alloc_and_insert_iova_range(struct iova_domain *iovad,
181 		unsigned long size, unsigned long limit_pfn,
182 			struct iova *new, bool size_aligned)
183 {
184 	struct rb_node *curr, *prev;
185 	struct iova *curr_iova;
186 	unsigned long flags;
187 	unsigned long new_pfn;
188 	unsigned long align_mask = ~0UL;
189 
190 	if (size_aligned)
191 		align_mask <<= fls_long(size - 1);
192 
193 	/* Walk the tree backwards */
194 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
195 	if (limit_pfn <= iovad->dma_32bit_pfn &&
196 			size >= iovad->max32_alloc_size)
197 		goto iova32_full;
198 
199 	curr = __get_cached_rbnode(iovad, limit_pfn);
200 	curr_iova = rb_entry(curr, struct iova, node);
201 	do {
202 		limit_pfn = min(limit_pfn, curr_iova->pfn_lo);
203 		new_pfn = (limit_pfn - size) & align_mask;
204 		prev = curr;
205 		curr = rb_prev(curr);
206 		curr_iova = rb_entry(curr, struct iova, node);
207 	} while (curr && new_pfn <= curr_iova->pfn_hi);
208 
209 	if (limit_pfn < size || new_pfn < iovad->start_pfn) {
210 		iovad->max32_alloc_size = size;
211 		goto iova32_full;
212 	}
213 
214 	/* pfn_lo will point to size aligned address if size_aligned is set */
215 	new->pfn_lo = new_pfn;
216 	new->pfn_hi = new->pfn_lo + size - 1;
217 
218 	/* If we have 'prev', it's a valid place to start the insertion. */
219 	iova_insert_rbtree(&iovad->rbroot, new, prev);
220 	__cached_rbnode_insert_update(iovad, new);
221 
222 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
223 	return 0;
224 
225 iova32_full:
226 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
227 	return -ENOMEM;
228 }
229 
230 static struct kmem_cache *iova_cache;
231 static unsigned int iova_cache_users;
232 static DEFINE_MUTEX(iova_cache_mutex);
233 
234 struct iova *alloc_iova_mem(void)
235 {
236 	return kmem_cache_alloc(iova_cache, GFP_ATOMIC);
237 }
238 EXPORT_SYMBOL(alloc_iova_mem);
239 
240 void free_iova_mem(struct iova *iova)
241 {
242 	if (iova->pfn_lo != IOVA_ANCHOR)
243 		kmem_cache_free(iova_cache, iova);
244 }
245 EXPORT_SYMBOL(free_iova_mem);
246 
247 int iova_cache_get(void)
248 {
249 	mutex_lock(&iova_cache_mutex);
250 	if (!iova_cache_users) {
251 		iova_cache = kmem_cache_create(
252 			"iommu_iova", sizeof(struct iova), 0,
253 			SLAB_HWCACHE_ALIGN, NULL);
254 		if (!iova_cache) {
255 			mutex_unlock(&iova_cache_mutex);
256 			printk(KERN_ERR "Couldn't create iova cache\n");
257 			return -ENOMEM;
258 		}
259 	}
260 
261 	iova_cache_users++;
262 	mutex_unlock(&iova_cache_mutex);
263 
264 	return 0;
265 }
266 EXPORT_SYMBOL_GPL(iova_cache_get);
267 
268 void iova_cache_put(void)
269 {
270 	mutex_lock(&iova_cache_mutex);
271 	if (WARN_ON(!iova_cache_users)) {
272 		mutex_unlock(&iova_cache_mutex);
273 		return;
274 	}
275 	iova_cache_users--;
276 	if (!iova_cache_users)
277 		kmem_cache_destroy(iova_cache);
278 	mutex_unlock(&iova_cache_mutex);
279 }
280 EXPORT_SYMBOL_GPL(iova_cache_put);
281 
282 /**
283  * alloc_iova - allocates an iova
284  * @iovad: - iova domain in question
285  * @size: - size of page frames to allocate
286  * @limit_pfn: - max limit address
287  * @size_aligned: - set if size_aligned address range is required
288  * This function allocates an iova in the range iovad->start_pfn to limit_pfn,
289  * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned
290  * flag is set then the allocated address iova->pfn_lo will be naturally
291  * aligned on roundup_power_of_two(size).
292  */
293 struct iova *
294 alloc_iova(struct iova_domain *iovad, unsigned long size,
295 	unsigned long limit_pfn,
296 	bool size_aligned)
297 {
298 	struct iova *new_iova;
299 	int ret;
300 
301 	new_iova = alloc_iova_mem();
302 	if (!new_iova)
303 		return NULL;
304 
305 	ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1,
306 			new_iova, size_aligned);
307 
308 	if (ret) {
309 		free_iova_mem(new_iova);
310 		return NULL;
311 	}
312 
313 	return new_iova;
314 }
315 EXPORT_SYMBOL_GPL(alloc_iova);
316 
317 static struct iova *
318 private_find_iova(struct iova_domain *iovad, unsigned long pfn)
319 {
320 	struct rb_node *node = iovad->rbroot.rb_node;
321 
322 	assert_spin_locked(&iovad->iova_rbtree_lock);
323 
324 	while (node) {
325 		struct iova *iova = rb_entry(node, struct iova, node);
326 
327 		if (pfn < iova->pfn_lo)
328 			node = node->rb_left;
329 		else if (pfn > iova->pfn_hi)
330 			node = node->rb_right;
331 		else
332 			return iova;	/* pfn falls within iova's range */
333 	}
334 
335 	return NULL;
336 }
337 
338 static void private_free_iova(struct iova_domain *iovad, struct iova *iova)
339 {
340 	assert_spin_locked(&iovad->iova_rbtree_lock);
341 	__cached_rbnode_delete_update(iovad, iova);
342 	rb_erase(&iova->node, &iovad->rbroot);
343 	free_iova_mem(iova);
344 }
345 
346 /**
347  * find_iova - finds an iova for a given pfn
348  * @iovad: - iova domain in question.
349  * @pfn: - page frame number
350  * This function finds and returns an iova belonging to the
351  * given doamin which matches the given pfn.
352  */
353 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn)
354 {
355 	unsigned long flags;
356 	struct iova *iova;
357 
358 	/* Take the lock so that no other thread is manipulating the rbtree */
359 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
360 	iova = private_find_iova(iovad, pfn);
361 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
362 	return iova;
363 }
364 EXPORT_SYMBOL_GPL(find_iova);
365 
366 /**
367  * __free_iova - frees the given iova
368  * @iovad: iova domain in question.
369  * @iova: iova in question.
370  * Frees the given iova belonging to the giving domain
371  */
372 void
373 __free_iova(struct iova_domain *iovad, struct iova *iova)
374 {
375 	unsigned long flags;
376 
377 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
378 	private_free_iova(iovad, iova);
379 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
380 }
381 EXPORT_SYMBOL_GPL(__free_iova);
382 
383 /**
384  * free_iova - finds and frees the iova for a given pfn
385  * @iovad: - iova domain in question.
386  * @pfn: - pfn that is allocated previously
387  * This functions finds an iova for a given pfn and then
388  * frees the iova from that domain.
389  */
390 void
391 free_iova(struct iova_domain *iovad, unsigned long pfn)
392 {
393 	struct iova *iova = find_iova(iovad, pfn);
394 
395 	if (iova)
396 		__free_iova(iovad, iova);
397 
398 }
399 EXPORT_SYMBOL_GPL(free_iova);
400 
401 /**
402  * alloc_iova_fast - allocates an iova from rcache
403  * @iovad: - iova domain in question
404  * @size: - size of page frames to allocate
405  * @limit_pfn: - max limit address
406  * @flush_rcache: - set to flush rcache on regular allocation failure
407  * This function tries to satisfy an iova allocation from the rcache,
408  * and falls back to regular allocation on failure. If regular allocation
409  * fails too and the flush_rcache flag is set then the rcache will be flushed.
410 */
411 unsigned long
412 alloc_iova_fast(struct iova_domain *iovad, unsigned long size,
413 		unsigned long limit_pfn, bool flush_rcache)
414 {
415 	unsigned long iova_pfn;
416 	struct iova *new_iova;
417 
418 	iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1);
419 	if (iova_pfn)
420 		return iova_pfn;
421 
422 retry:
423 	new_iova = alloc_iova(iovad, size, limit_pfn, true);
424 	if (!new_iova) {
425 		unsigned int cpu;
426 
427 		if (!flush_rcache)
428 			return 0;
429 
430 		/* Try replenishing IOVAs by flushing rcache. */
431 		flush_rcache = false;
432 		for_each_online_cpu(cpu)
433 			free_cpu_cached_iovas(cpu, iovad);
434 		goto retry;
435 	}
436 
437 	return new_iova->pfn_lo;
438 }
439 EXPORT_SYMBOL_GPL(alloc_iova_fast);
440 
441 /**
442  * free_iova_fast - free iova pfn range into rcache
443  * @iovad: - iova domain in question.
444  * @pfn: - pfn that is allocated previously
445  * @size: - # of pages in range
446  * This functions frees an iova range by trying to put it into the rcache,
447  * falling back to regular iova deallocation via free_iova() if this fails.
448  */
449 void
450 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size)
451 {
452 	if (iova_rcache_insert(iovad, pfn, size))
453 		return;
454 
455 	free_iova(iovad, pfn);
456 }
457 EXPORT_SYMBOL_GPL(free_iova_fast);
458 
459 #define fq_ring_for_each(i, fq) \
460 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
461 
462 static inline bool fq_full(struct iova_fq *fq)
463 {
464 	assert_spin_locked(&fq->lock);
465 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
466 }
467 
468 static inline unsigned fq_ring_add(struct iova_fq *fq)
469 {
470 	unsigned idx = fq->tail;
471 
472 	assert_spin_locked(&fq->lock);
473 
474 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
475 
476 	return idx;
477 }
478 
479 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq)
480 {
481 	u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt);
482 	unsigned idx;
483 
484 	assert_spin_locked(&fq->lock);
485 
486 	fq_ring_for_each(idx, fq) {
487 
488 		if (fq->entries[idx].counter >= counter)
489 			break;
490 
491 		if (iovad->entry_dtor)
492 			iovad->entry_dtor(fq->entries[idx].data);
493 
494 		free_iova_fast(iovad,
495 			       fq->entries[idx].iova_pfn,
496 			       fq->entries[idx].pages);
497 
498 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
499 	}
500 }
501 
502 static void iova_domain_flush(struct iova_domain *iovad)
503 {
504 	atomic64_inc(&iovad->fq_flush_start_cnt);
505 	iovad->flush_cb(iovad);
506 	atomic64_inc(&iovad->fq_flush_finish_cnt);
507 }
508 
509 static void fq_destroy_all_entries(struct iova_domain *iovad)
510 {
511 	int cpu;
512 
513 	/*
514 	 * This code runs when the iova_domain is being detroyed, so don't
515 	 * bother to free iovas, just call the entry_dtor on all remaining
516 	 * entries.
517 	 */
518 	if (!iovad->entry_dtor)
519 		return;
520 
521 	for_each_possible_cpu(cpu) {
522 		struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu);
523 		int idx;
524 
525 		fq_ring_for_each(idx, fq)
526 			iovad->entry_dtor(fq->entries[idx].data);
527 	}
528 }
529 
530 static void fq_flush_timeout(struct timer_list *t)
531 {
532 	struct iova_domain *iovad = from_timer(iovad, t, fq_timer);
533 	int cpu;
534 
535 	atomic_set(&iovad->fq_timer_on, 0);
536 	iova_domain_flush(iovad);
537 
538 	for_each_possible_cpu(cpu) {
539 		unsigned long flags;
540 		struct iova_fq *fq;
541 
542 		fq = per_cpu_ptr(iovad->fq, cpu);
543 		spin_lock_irqsave(&fq->lock, flags);
544 		fq_ring_free(iovad, fq);
545 		spin_unlock_irqrestore(&fq->lock, flags);
546 	}
547 }
548 
549 void queue_iova(struct iova_domain *iovad,
550 		unsigned long pfn, unsigned long pages,
551 		unsigned long data)
552 {
553 	struct iova_fq *fq = raw_cpu_ptr(iovad->fq);
554 	unsigned long flags;
555 	unsigned idx;
556 
557 	spin_lock_irqsave(&fq->lock, flags);
558 
559 	/*
560 	 * First remove all entries from the flush queue that have already been
561 	 * flushed out on another CPU. This makes the fq_full() check below less
562 	 * likely to be true.
563 	 */
564 	fq_ring_free(iovad, fq);
565 
566 	if (fq_full(fq)) {
567 		iova_domain_flush(iovad);
568 		fq_ring_free(iovad, fq);
569 	}
570 
571 	idx = fq_ring_add(fq);
572 
573 	fq->entries[idx].iova_pfn = pfn;
574 	fq->entries[idx].pages    = pages;
575 	fq->entries[idx].data     = data;
576 	fq->entries[idx].counter  = atomic64_read(&iovad->fq_flush_start_cnt);
577 
578 	spin_unlock_irqrestore(&fq->lock, flags);
579 
580 	if (atomic_cmpxchg(&iovad->fq_timer_on, 0, 1) == 0)
581 		mod_timer(&iovad->fq_timer,
582 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
583 }
584 EXPORT_SYMBOL_GPL(queue_iova);
585 
586 /**
587  * put_iova_domain - destroys the iova doamin
588  * @iovad: - iova domain in question.
589  * All the iova's in that domain are destroyed.
590  */
591 void put_iova_domain(struct iova_domain *iovad)
592 {
593 	struct iova *iova, *tmp;
594 
595 	free_iova_flush_queue(iovad);
596 	free_iova_rcaches(iovad);
597 	rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node)
598 		free_iova_mem(iova);
599 }
600 EXPORT_SYMBOL_GPL(put_iova_domain);
601 
602 static int
603 __is_range_overlap(struct rb_node *node,
604 	unsigned long pfn_lo, unsigned long pfn_hi)
605 {
606 	struct iova *iova = rb_entry(node, struct iova, node);
607 
608 	if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo))
609 		return 1;
610 	return 0;
611 }
612 
613 static inline struct iova *
614 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi)
615 {
616 	struct iova *iova;
617 
618 	iova = alloc_iova_mem();
619 	if (iova) {
620 		iova->pfn_lo = pfn_lo;
621 		iova->pfn_hi = pfn_hi;
622 	}
623 
624 	return iova;
625 }
626 
627 static struct iova *
628 __insert_new_range(struct iova_domain *iovad,
629 	unsigned long pfn_lo, unsigned long pfn_hi)
630 {
631 	struct iova *iova;
632 
633 	iova = alloc_and_init_iova(pfn_lo, pfn_hi);
634 	if (iova)
635 		iova_insert_rbtree(&iovad->rbroot, iova, NULL);
636 
637 	return iova;
638 }
639 
640 static void
641 __adjust_overlap_range(struct iova *iova,
642 	unsigned long *pfn_lo, unsigned long *pfn_hi)
643 {
644 	if (*pfn_lo < iova->pfn_lo)
645 		iova->pfn_lo = *pfn_lo;
646 	if (*pfn_hi > iova->pfn_hi)
647 		*pfn_lo = iova->pfn_hi + 1;
648 }
649 
650 /**
651  * reserve_iova - reserves an iova in the given range
652  * @iovad: - iova domain pointer
653  * @pfn_lo: - lower page frame address
654  * @pfn_hi:- higher pfn adderss
655  * This function allocates reserves the address range from pfn_lo to pfn_hi so
656  * that this address is not dished out as part of alloc_iova.
657  */
658 struct iova *
659 reserve_iova(struct iova_domain *iovad,
660 	unsigned long pfn_lo, unsigned long pfn_hi)
661 {
662 	struct rb_node *node;
663 	unsigned long flags;
664 	struct iova *iova;
665 	unsigned int overlap = 0;
666 
667 	/* Don't allow nonsensical pfns */
668 	if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad))))
669 		return NULL;
670 
671 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
672 	for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) {
673 		if (__is_range_overlap(node, pfn_lo, pfn_hi)) {
674 			iova = rb_entry(node, struct iova, node);
675 			__adjust_overlap_range(iova, &pfn_lo, &pfn_hi);
676 			if ((pfn_lo >= iova->pfn_lo) &&
677 				(pfn_hi <= iova->pfn_hi))
678 				goto finish;
679 			overlap = 1;
680 
681 		} else if (overlap)
682 				break;
683 	}
684 
685 	/* We are here either because this is the first reserver node
686 	 * or need to insert remaining non overlap addr range
687 	 */
688 	iova = __insert_new_range(iovad, pfn_lo, pfn_hi);
689 finish:
690 
691 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
692 	return iova;
693 }
694 EXPORT_SYMBOL_GPL(reserve_iova);
695 
696 /**
697  * copy_reserved_iova - copies the reserved between domains
698  * @from: - source doamin from where to copy
699  * @to: - destination domin where to copy
700  * This function copies reserved iova's from one doamin to
701  * other.
702  */
703 void
704 copy_reserved_iova(struct iova_domain *from, struct iova_domain *to)
705 {
706 	unsigned long flags;
707 	struct rb_node *node;
708 
709 	spin_lock_irqsave(&from->iova_rbtree_lock, flags);
710 	for (node = rb_first(&from->rbroot); node; node = rb_next(node)) {
711 		struct iova *iova = rb_entry(node, struct iova, node);
712 		struct iova *new_iova;
713 
714 		if (iova->pfn_lo == IOVA_ANCHOR)
715 			continue;
716 
717 		new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi);
718 		if (!new_iova)
719 			printk(KERN_ERR "Reserve iova range %lx@%lx failed\n",
720 				iova->pfn_lo, iova->pfn_lo);
721 	}
722 	spin_unlock_irqrestore(&from->iova_rbtree_lock, flags);
723 }
724 EXPORT_SYMBOL_GPL(copy_reserved_iova);
725 
726 struct iova *
727 split_and_remove_iova(struct iova_domain *iovad, struct iova *iova,
728 		      unsigned long pfn_lo, unsigned long pfn_hi)
729 {
730 	unsigned long flags;
731 	struct iova *prev = NULL, *next = NULL;
732 
733 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
734 	if (iova->pfn_lo < pfn_lo) {
735 		prev = alloc_and_init_iova(iova->pfn_lo, pfn_lo - 1);
736 		if (prev == NULL)
737 			goto error;
738 	}
739 	if (iova->pfn_hi > pfn_hi) {
740 		next = alloc_and_init_iova(pfn_hi + 1, iova->pfn_hi);
741 		if (next == NULL)
742 			goto error;
743 	}
744 
745 	__cached_rbnode_delete_update(iovad, iova);
746 	rb_erase(&iova->node, &iovad->rbroot);
747 
748 	if (prev) {
749 		iova_insert_rbtree(&iovad->rbroot, prev, NULL);
750 		iova->pfn_lo = pfn_lo;
751 	}
752 	if (next) {
753 		iova_insert_rbtree(&iovad->rbroot, next, NULL);
754 		iova->pfn_hi = pfn_hi;
755 	}
756 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
757 
758 	return iova;
759 
760 error:
761 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
762 	if (prev)
763 		free_iova_mem(prev);
764 	return NULL;
765 }
766 
767 /*
768  * Magazine caches for IOVA ranges.  For an introduction to magazines,
769  * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab
770  * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams.
771  * For simplicity, we use a static magazine size and don't implement the
772  * dynamic size tuning described in the paper.
773  */
774 
775 #define IOVA_MAG_SIZE 128
776 
777 struct iova_magazine {
778 	unsigned long size;
779 	unsigned long pfns[IOVA_MAG_SIZE];
780 };
781 
782 struct iova_cpu_rcache {
783 	spinlock_t lock;
784 	struct iova_magazine *loaded;
785 	struct iova_magazine *prev;
786 };
787 
788 static struct iova_magazine *iova_magazine_alloc(gfp_t flags)
789 {
790 	return kzalloc(sizeof(struct iova_magazine), flags);
791 }
792 
793 static void iova_magazine_free(struct iova_magazine *mag)
794 {
795 	kfree(mag);
796 }
797 
798 static void
799 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad)
800 {
801 	unsigned long flags;
802 	int i;
803 
804 	if (!mag)
805 		return;
806 
807 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
808 
809 	for (i = 0 ; i < mag->size; ++i) {
810 		struct iova *iova = private_find_iova(iovad, mag->pfns[i]);
811 
812 		BUG_ON(!iova);
813 		private_free_iova(iovad, iova);
814 	}
815 
816 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
817 
818 	mag->size = 0;
819 }
820 
821 static bool iova_magazine_full(struct iova_magazine *mag)
822 {
823 	return (mag && mag->size == IOVA_MAG_SIZE);
824 }
825 
826 static bool iova_magazine_empty(struct iova_magazine *mag)
827 {
828 	return (!mag || mag->size == 0);
829 }
830 
831 static unsigned long iova_magazine_pop(struct iova_magazine *mag,
832 				       unsigned long limit_pfn)
833 {
834 	int i;
835 	unsigned long pfn;
836 
837 	BUG_ON(iova_magazine_empty(mag));
838 
839 	/* Only fall back to the rbtree if we have no suitable pfns at all */
840 	for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--)
841 		if (i == 0)
842 			return 0;
843 
844 	/* Swap it to pop it */
845 	pfn = mag->pfns[i];
846 	mag->pfns[i] = mag->pfns[--mag->size];
847 
848 	return pfn;
849 }
850 
851 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn)
852 {
853 	BUG_ON(iova_magazine_full(mag));
854 
855 	mag->pfns[mag->size++] = pfn;
856 }
857 
858 static void init_iova_rcaches(struct iova_domain *iovad)
859 {
860 	struct iova_cpu_rcache *cpu_rcache;
861 	struct iova_rcache *rcache;
862 	unsigned int cpu;
863 	int i;
864 
865 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
866 		rcache = &iovad->rcaches[i];
867 		spin_lock_init(&rcache->lock);
868 		rcache->depot_size = 0;
869 		rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size());
870 		if (WARN_ON(!rcache->cpu_rcaches))
871 			continue;
872 		for_each_possible_cpu(cpu) {
873 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
874 			spin_lock_init(&cpu_rcache->lock);
875 			cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL);
876 			cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL);
877 		}
878 	}
879 }
880 
881 /*
882  * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and
883  * return true on success.  Can fail if rcache is full and we can't free
884  * space, and free_iova() (our only caller) will then return the IOVA
885  * range to the rbtree instead.
886  */
887 static bool __iova_rcache_insert(struct iova_domain *iovad,
888 				 struct iova_rcache *rcache,
889 				 unsigned long iova_pfn)
890 {
891 	struct iova_magazine *mag_to_free = NULL;
892 	struct iova_cpu_rcache *cpu_rcache;
893 	bool can_insert = false;
894 	unsigned long flags;
895 
896 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
897 	spin_lock_irqsave(&cpu_rcache->lock, flags);
898 
899 	if (!iova_magazine_full(cpu_rcache->loaded)) {
900 		can_insert = true;
901 	} else if (!iova_magazine_full(cpu_rcache->prev)) {
902 		swap(cpu_rcache->prev, cpu_rcache->loaded);
903 		can_insert = true;
904 	} else {
905 		struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC);
906 
907 		if (new_mag) {
908 			spin_lock(&rcache->lock);
909 			if (rcache->depot_size < MAX_GLOBAL_MAGS) {
910 				rcache->depot[rcache->depot_size++] =
911 						cpu_rcache->loaded;
912 			} else {
913 				mag_to_free = cpu_rcache->loaded;
914 			}
915 			spin_unlock(&rcache->lock);
916 
917 			cpu_rcache->loaded = new_mag;
918 			can_insert = true;
919 		}
920 	}
921 
922 	if (can_insert)
923 		iova_magazine_push(cpu_rcache->loaded, iova_pfn);
924 
925 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
926 
927 	if (mag_to_free) {
928 		iova_magazine_free_pfns(mag_to_free, iovad);
929 		iova_magazine_free(mag_to_free);
930 	}
931 
932 	return can_insert;
933 }
934 
935 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn,
936 			       unsigned long size)
937 {
938 	unsigned int log_size = order_base_2(size);
939 
940 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
941 		return false;
942 
943 	return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn);
944 }
945 
946 /*
947  * Caller wants to allocate a new IOVA range from 'rcache'.  If we can
948  * satisfy the request, return a matching non-NULL range and remove
949  * it from the 'rcache'.
950  */
951 static unsigned long __iova_rcache_get(struct iova_rcache *rcache,
952 				       unsigned long limit_pfn)
953 {
954 	struct iova_cpu_rcache *cpu_rcache;
955 	unsigned long iova_pfn = 0;
956 	bool has_pfn = false;
957 	unsigned long flags;
958 
959 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
960 	spin_lock_irqsave(&cpu_rcache->lock, flags);
961 
962 	if (!iova_magazine_empty(cpu_rcache->loaded)) {
963 		has_pfn = true;
964 	} else if (!iova_magazine_empty(cpu_rcache->prev)) {
965 		swap(cpu_rcache->prev, cpu_rcache->loaded);
966 		has_pfn = true;
967 	} else {
968 		spin_lock(&rcache->lock);
969 		if (rcache->depot_size > 0) {
970 			iova_magazine_free(cpu_rcache->loaded);
971 			cpu_rcache->loaded = rcache->depot[--rcache->depot_size];
972 			has_pfn = true;
973 		}
974 		spin_unlock(&rcache->lock);
975 	}
976 
977 	if (has_pfn)
978 		iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn);
979 
980 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
981 
982 	return iova_pfn;
983 }
984 
985 /*
986  * Try to satisfy IOVA allocation range from rcache.  Fail if requested
987  * size is too big or the DMA limit we are given isn't satisfied by the
988  * top element in the magazine.
989  */
990 static unsigned long iova_rcache_get(struct iova_domain *iovad,
991 				     unsigned long size,
992 				     unsigned long limit_pfn)
993 {
994 	unsigned int log_size = order_base_2(size);
995 
996 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
997 		return 0;
998 
999 	return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size);
1000 }
1001 
1002 /*
1003  * free rcache data structures.
1004  */
1005 static void free_iova_rcaches(struct iova_domain *iovad)
1006 {
1007 	struct iova_rcache *rcache;
1008 	struct iova_cpu_rcache *cpu_rcache;
1009 	unsigned int cpu;
1010 	int i, j;
1011 
1012 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1013 		rcache = &iovad->rcaches[i];
1014 		for_each_possible_cpu(cpu) {
1015 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1016 			iova_magazine_free(cpu_rcache->loaded);
1017 			iova_magazine_free(cpu_rcache->prev);
1018 		}
1019 		free_percpu(rcache->cpu_rcaches);
1020 		for (j = 0; j < rcache->depot_size; ++j)
1021 			iova_magazine_free(rcache->depot[j]);
1022 	}
1023 }
1024 
1025 /*
1026  * free all the IOVA ranges cached by a cpu (used when cpu is unplugged)
1027  */
1028 void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad)
1029 {
1030 	struct iova_cpu_rcache *cpu_rcache;
1031 	struct iova_rcache *rcache;
1032 	unsigned long flags;
1033 	int i;
1034 
1035 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1036 		rcache = &iovad->rcaches[i];
1037 		cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1038 		spin_lock_irqsave(&cpu_rcache->lock, flags);
1039 		iova_magazine_free_pfns(cpu_rcache->loaded, iovad);
1040 		iova_magazine_free_pfns(cpu_rcache->prev, iovad);
1041 		spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1042 	}
1043 }
1044 
1045 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>");
1046 MODULE_LICENSE("GPL");
1047