1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2009, Intel Corporation. 4 * 5 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 6 */ 7 8 #include <linux/iova.h> 9 #include <linux/kmemleak.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/smp.h> 13 #include <linux/bitops.h> 14 #include <linux/cpu.h> 15 #include <linux/workqueue.h> 16 17 /* The anchor node sits above the top of the usable address space */ 18 #define IOVA_ANCHOR ~0UL 19 20 #define IOVA_RANGE_CACHE_MAX_SIZE 6 /* log of max cached IOVA range size (in pages) */ 21 22 static bool iova_rcache_insert(struct iova_domain *iovad, 23 unsigned long pfn, 24 unsigned long size); 25 static unsigned long iova_rcache_get(struct iova_domain *iovad, 26 unsigned long size, 27 unsigned long limit_pfn); 28 static void free_iova_rcaches(struct iova_domain *iovad); 29 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad); 30 static void free_global_cached_iovas(struct iova_domain *iovad); 31 32 static struct iova *to_iova(struct rb_node *node) 33 { 34 return rb_entry(node, struct iova, node); 35 } 36 37 void 38 init_iova_domain(struct iova_domain *iovad, unsigned long granule, 39 unsigned long start_pfn) 40 { 41 /* 42 * IOVA granularity will normally be equal to the smallest 43 * supported IOMMU page size; both *must* be capable of 44 * representing individual CPU pages exactly. 45 */ 46 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule)); 47 48 spin_lock_init(&iovad->iova_rbtree_lock); 49 iovad->rbroot = RB_ROOT; 50 iovad->cached_node = &iovad->anchor.node; 51 iovad->cached32_node = &iovad->anchor.node; 52 iovad->granule = granule; 53 iovad->start_pfn = start_pfn; 54 iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad)); 55 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 56 iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR; 57 rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node); 58 rb_insert_color(&iovad->anchor.node, &iovad->rbroot); 59 } 60 EXPORT_SYMBOL_GPL(init_iova_domain); 61 62 static struct rb_node * 63 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn) 64 { 65 if (limit_pfn <= iovad->dma_32bit_pfn) 66 return iovad->cached32_node; 67 68 return iovad->cached_node; 69 } 70 71 static void 72 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new) 73 { 74 if (new->pfn_hi < iovad->dma_32bit_pfn) 75 iovad->cached32_node = &new->node; 76 else 77 iovad->cached_node = &new->node; 78 } 79 80 static void 81 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) 82 { 83 struct iova *cached_iova; 84 85 cached_iova = to_iova(iovad->cached32_node); 86 if (free == cached_iova || 87 (free->pfn_hi < iovad->dma_32bit_pfn && 88 free->pfn_lo >= cached_iova->pfn_lo)) 89 iovad->cached32_node = rb_next(&free->node); 90 91 if (free->pfn_lo < iovad->dma_32bit_pfn) 92 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 93 94 cached_iova = to_iova(iovad->cached_node); 95 if (free->pfn_lo >= cached_iova->pfn_lo) 96 iovad->cached_node = rb_next(&free->node); 97 } 98 99 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn) 100 { 101 struct rb_node *node, *next; 102 /* 103 * Ideally what we'd like to judge here is whether limit_pfn is close 104 * enough to the highest-allocated IOVA that starting the allocation 105 * walk from the anchor node will be quicker than this initial work to 106 * find an exact starting point (especially if that ends up being the 107 * anchor node anyway). This is an incredibly crude approximation which 108 * only really helps the most likely case, but is at least trivially easy. 109 */ 110 if (limit_pfn > iovad->dma_32bit_pfn) 111 return &iovad->anchor.node; 112 113 node = iovad->rbroot.rb_node; 114 while (to_iova(node)->pfn_hi < limit_pfn) 115 node = node->rb_right; 116 117 search_left: 118 while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn) 119 node = node->rb_left; 120 121 if (!node->rb_left) 122 return node; 123 124 next = node->rb_left; 125 while (next->rb_right) { 126 next = next->rb_right; 127 if (to_iova(next)->pfn_lo >= limit_pfn) { 128 node = next; 129 goto search_left; 130 } 131 } 132 133 return node; 134 } 135 136 /* Insert the iova into domain rbtree by holding writer lock */ 137 static void 138 iova_insert_rbtree(struct rb_root *root, struct iova *iova, 139 struct rb_node *start) 140 { 141 struct rb_node **new, *parent = NULL; 142 143 new = (start) ? &start : &(root->rb_node); 144 /* Figure out where to put new node */ 145 while (*new) { 146 struct iova *this = to_iova(*new); 147 148 parent = *new; 149 150 if (iova->pfn_lo < this->pfn_lo) 151 new = &((*new)->rb_left); 152 else if (iova->pfn_lo > this->pfn_lo) 153 new = &((*new)->rb_right); 154 else { 155 WARN_ON(1); /* this should not happen */ 156 return; 157 } 158 } 159 /* Add new node and rebalance tree. */ 160 rb_link_node(&iova->node, parent, new); 161 rb_insert_color(&iova->node, root); 162 } 163 164 static int __alloc_and_insert_iova_range(struct iova_domain *iovad, 165 unsigned long size, unsigned long limit_pfn, 166 struct iova *new, bool size_aligned) 167 { 168 struct rb_node *curr, *prev; 169 struct iova *curr_iova; 170 unsigned long flags; 171 unsigned long new_pfn, retry_pfn; 172 unsigned long align_mask = ~0UL; 173 unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn; 174 175 if (size_aligned) 176 align_mask <<= fls_long(size - 1); 177 178 /* Walk the tree backwards */ 179 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 180 if (limit_pfn <= iovad->dma_32bit_pfn && 181 size >= iovad->max32_alloc_size) 182 goto iova32_full; 183 184 curr = __get_cached_rbnode(iovad, limit_pfn); 185 curr_iova = to_iova(curr); 186 retry_pfn = curr_iova->pfn_hi; 187 188 retry: 189 do { 190 high_pfn = min(high_pfn, curr_iova->pfn_lo); 191 new_pfn = (high_pfn - size) & align_mask; 192 prev = curr; 193 curr = rb_prev(curr); 194 curr_iova = to_iova(curr); 195 } while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn); 196 197 if (high_pfn < size || new_pfn < low_pfn) { 198 if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) { 199 high_pfn = limit_pfn; 200 low_pfn = retry_pfn + 1; 201 curr = iova_find_limit(iovad, limit_pfn); 202 curr_iova = to_iova(curr); 203 goto retry; 204 } 205 iovad->max32_alloc_size = size; 206 goto iova32_full; 207 } 208 209 /* pfn_lo will point to size aligned address if size_aligned is set */ 210 new->pfn_lo = new_pfn; 211 new->pfn_hi = new->pfn_lo + size - 1; 212 213 /* If we have 'prev', it's a valid place to start the insertion. */ 214 iova_insert_rbtree(&iovad->rbroot, new, prev); 215 __cached_rbnode_insert_update(iovad, new); 216 217 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 218 return 0; 219 220 iova32_full: 221 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 222 return -ENOMEM; 223 } 224 225 static struct kmem_cache *iova_cache; 226 static unsigned int iova_cache_users; 227 static DEFINE_MUTEX(iova_cache_mutex); 228 229 static struct iova *alloc_iova_mem(void) 230 { 231 return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN); 232 } 233 234 static void free_iova_mem(struct iova *iova) 235 { 236 if (iova->pfn_lo != IOVA_ANCHOR) 237 kmem_cache_free(iova_cache, iova); 238 } 239 240 /** 241 * alloc_iova - allocates an iova 242 * @iovad: - iova domain in question 243 * @size: - size of page frames to allocate 244 * @limit_pfn: - max limit address 245 * @size_aligned: - set if size_aligned address range is required 246 * This function allocates an iova in the range iovad->start_pfn to limit_pfn, 247 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned 248 * flag is set then the allocated address iova->pfn_lo will be naturally 249 * aligned on roundup_power_of_two(size). 250 */ 251 struct iova * 252 alloc_iova(struct iova_domain *iovad, unsigned long size, 253 unsigned long limit_pfn, 254 bool size_aligned) 255 { 256 struct iova *new_iova; 257 int ret; 258 259 new_iova = alloc_iova_mem(); 260 if (!new_iova) 261 return NULL; 262 263 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1, 264 new_iova, size_aligned); 265 266 if (ret) { 267 free_iova_mem(new_iova); 268 return NULL; 269 } 270 271 return new_iova; 272 } 273 EXPORT_SYMBOL_GPL(alloc_iova); 274 275 static struct iova * 276 private_find_iova(struct iova_domain *iovad, unsigned long pfn) 277 { 278 struct rb_node *node = iovad->rbroot.rb_node; 279 280 assert_spin_locked(&iovad->iova_rbtree_lock); 281 282 while (node) { 283 struct iova *iova = to_iova(node); 284 285 if (pfn < iova->pfn_lo) 286 node = node->rb_left; 287 else if (pfn > iova->pfn_hi) 288 node = node->rb_right; 289 else 290 return iova; /* pfn falls within iova's range */ 291 } 292 293 return NULL; 294 } 295 296 static void remove_iova(struct iova_domain *iovad, struct iova *iova) 297 { 298 assert_spin_locked(&iovad->iova_rbtree_lock); 299 __cached_rbnode_delete_update(iovad, iova); 300 rb_erase(&iova->node, &iovad->rbroot); 301 } 302 303 /** 304 * find_iova - finds an iova for a given pfn 305 * @iovad: - iova domain in question. 306 * @pfn: - page frame number 307 * This function finds and returns an iova belonging to the 308 * given domain which matches the given pfn. 309 */ 310 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) 311 { 312 unsigned long flags; 313 struct iova *iova; 314 315 /* Take the lock so that no other thread is manipulating the rbtree */ 316 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 317 iova = private_find_iova(iovad, pfn); 318 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 319 return iova; 320 } 321 EXPORT_SYMBOL_GPL(find_iova); 322 323 /** 324 * __free_iova - frees the given iova 325 * @iovad: iova domain in question. 326 * @iova: iova in question. 327 * Frees the given iova belonging to the giving domain 328 */ 329 void 330 __free_iova(struct iova_domain *iovad, struct iova *iova) 331 { 332 unsigned long flags; 333 334 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 335 remove_iova(iovad, iova); 336 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 337 free_iova_mem(iova); 338 } 339 EXPORT_SYMBOL_GPL(__free_iova); 340 341 /** 342 * free_iova - finds and frees the iova for a given pfn 343 * @iovad: - iova domain in question. 344 * @pfn: - pfn that is allocated previously 345 * This functions finds an iova for a given pfn and then 346 * frees the iova from that domain. 347 */ 348 void 349 free_iova(struct iova_domain *iovad, unsigned long pfn) 350 { 351 unsigned long flags; 352 struct iova *iova; 353 354 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 355 iova = private_find_iova(iovad, pfn); 356 if (!iova) { 357 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 358 return; 359 } 360 remove_iova(iovad, iova); 361 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 362 free_iova_mem(iova); 363 } 364 EXPORT_SYMBOL_GPL(free_iova); 365 366 /** 367 * alloc_iova_fast - allocates an iova from rcache 368 * @iovad: - iova domain in question 369 * @size: - size of page frames to allocate 370 * @limit_pfn: - max limit address 371 * @flush_rcache: - set to flush rcache on regular allocation failure 372 * This function tries to satisfy an iova allocation from the rcache, 373 * and falls back to regular allocation on failure. If regular allocation 374 * fails too and the flush_rcache flag is set then the rcache will be flushed. 375 */ 376 unsigned long 377 alloc_iova_fast(struct iova_domain *iovad, unsigned long size, 378 unsigned long limit_pfn, bool flush_rcache) 379 { 380 unsigned long iova_pfn; 381 struct iova *new_iova; 382 383 /* 384 * Freeing non-power-of-two-sized allocations back into the IOVA caches 385 * will come back to bite us badly, so we have to waste a bit of space 386 * rounding up anything cacheable to make sure that can't happen. The 387 * order of the unadjusted size will still match upon freeing. 388 */ 389 if (size < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 390 size = roundup_pow_of_two(size); 391 392 iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1); 393 if (iova_pfn) 394 return iova_pfn; 395 396 retry: 397 new_iova = alloc_iova(iovad, size, limit_pfn, true); 398 if (!new_iova) { 399 unsigned int cpu; 400 401 if (!flush_rcache) 402 return 0; 403 404 /* Try replenishing IOVAs by flushing rcache. */ 405 flush_rcache = false; 406 for_each_online_cpu(cpu) 407 free_cpu_cached_iovas(cpu, iovad); 408 free_global_cached_iovas(iovad); 409 goto retry; 410 } 411 412 return new_iova->pfn_lo; 413 } 414 EXPORT_SYMBOL_GPL(alloc_iova_fast); 415 416 /** 417 * free_iova_fast - free iova pfn range into rcache 418 * @iovad: - iova domain in question. 419 * @pfn: - pfn that is allocated previously 420 * @size: - # of pages in range 421 * This functions frees an iova range by trying to put it into the rcache, 422 * falling back to regular iova deallocation via free_iova() if this fails. 423 */ 424 void 425 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size) 426 { 427 if (iova_rcache_insert(iovad, pfn, size)) 428 return; 429 430 free_iova(iovad, pfn); 431 } 432 EXPORT_SYMBOL_GPL(free_iova_fast); 433 434 static void iova_domain_free_rcaches(struct iova_domain *iovad) 435 { 436 cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, 437 &iovad->cpuhp_dead); 438 free_iova_rcaches(iovad); 439 } 440 441 /** 442 * put_iova_domain - destroys the iova domain 443 * @iovad: - iova domain in question. 444 * All the iova's in that domain are destroyed. 445 */ 446 void put_iova_domain(struct iova_domain *iovad) 447 { 448 struct iova *iova, *tmp; 449 450 if (iovad->rcaches) 451 iova_domain_free_rcaches(iovad); 452 453 rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node) 454 free_iova_mem(iova); 455 } 456 EXPORT_SYMBOL_GPL(put_iova_domain); 457 458 static int 459 __is_range_overlap(struct rb_node *node, 460 unsigned long pfn_lo, unsigned long pfn_hi) 461 { 462 struct iova *iova = to_iova(node); 463 464 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) 465 return 1; 466 return 0; 467 } 468 469 static inline struct iova * 470 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi) 471 { 472 struct iova *iova; 473 474 iova = alloc_iova_mem(); 475 if (iova) { 476 iova->pfn_lo = pfn_lo; 477 iova->pfn_hi = pfn_hi; 478 } 479 480 return iova; 481 } 482 483 static struct iova * 484 __insert_new_range(struct iova_domain *iovad, 485 unsigned long pfn_lo, unsigned long pfn_hi) 486 { 487 struct iova *iova; 488 489 iova = alloc_and_init_iova(pfn_lo, pfn_hi); 490 if (iova) 491 iova_insert_rbtree(&iovad->rbroot, iova, NULL); 492 493 return iova; 494 } 495 496 static void 497 __adjust_overlap_range(struct iova *iova, 498 unsigned long *pfn_lo, unsigned long *pfn_hi) 499 { 500 if (*pfn_lo < iova->pfn_lo) 501 iova->pfn_lo = *pfn_lo; 502 if (*pfn_hi > iova->pfn_hi) 503 *pfn_lo = iova->pfn_hi + 1; 504 } 505 506 /** 507 * reserve_iova - reserves an iova in the given range 508 * @iovad: - iova domain pointer 509 * @pfn_lo: - lower page frame address 510 * @pfn_hi:- higher pfn address 511 * This function allocates reserves the address range from pfn_lo to pfn_hi so 512 * that this address is not dished out as part of alloc_iova. 513 */ 514 struct iova * 515 reserve_iova(struct iova_domain *iovad, 516 unsigned long pfn_lo, unsigned long pfn_hi) 517 { 518 struct rb_node *node; 519 unsigned long flags; 520 struct iova *iova; 521 unsigned int overlap = 0; 522 523 /* Don't allow nonsensical pfns */ 524 if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad)))) 525 return NULL; 526 527 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 528 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { 529 if (__is_range_overlap(node, pfn_lo, pfn_hi)) { 530 iova = to_iova(node); 531 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); 532 if ((pfn_lo >= iova->pfn_lo) && 533 (pfn_hi <= iova->pfn_hi)) 534 goto finish; 535 overlap = 1; 536 537 } else if (overlap) 538 break; 539 } 540 541 /* We are here either because this is the first reserver node 542 * or need to insert remaining non overlap addr range 543 */ 544 iova = __insert_new_range(iovad, pfn_lo, pfn_hi); 545 finish: 546 547 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 548 return iova; 549 } 550 EXPORT_SYMBOL_GPL(reserve_iova); 551 552 /* 553 * Magazine caches for IOVA ranges. For an introduction to magazines, 554 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab 555 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams. 556 * For simplicity, we use a static magazine size and don't implement the 557 * dynamic size tuning described in the paper. 558 */ 559 560 /* 561 * As kmalloc's buffer size is fixed to power of 2, 127 is chosen to 562 * assure size of 'iova_magazine' to be 1024 bytes, so that no memory 563 * will be wasted. Since only full magazines are inserted into the depot, 564 * we don't need to waste PFN capacity on a separate list head either. 565 */ 566 #define IOVA_MAG_SIZE 127 567 568 #define IOVA_DEPOT_DELAY msecs_to_jiffies(100) 569 570 struct iova_magazine { 571 union { 572 unsigned long size; 573 struct iova_magazine *next; 574 }; 575 unsigned long pfns[IOVA_MAG_SIZE]; 576 }; 577 static_assert(!(sizeof(struct iova_magazine) & (sizeof(struct iova_magazine) - 1))); 578 579 struct iova_cpu_rcache { 580 spinlock_t lock; 581 struct iova_magazine *loaded; 582 struct iova_magazine *prev; 583 }; 584 585 struct iova_rcache { 586 spinlock_t lock; 587 unsigned int depot_size; 588 struct iova_magazine *depot; 589 struct iova_cpu_rcache __percpu *cpu_rcaches; 590 struct iova_domain *iovad; 591 struct delayed_work work; 592 }; 593 594 static struct kmem_cache *iova_magazine_cache; 595 596 unsigned long iova_rcache_range(void) 597 { 598 return PAGE_SIZE << (IOVA_RANGE_CACHE_MAX_SIZE - 1); 599 } 600 601 static struct iova_magazine *iova_magazine_alloc(gfp_t flags) 602 { 603 struct iova_magazine *mag; 604 605 mag = kmem_cache_alloc(iova_magazine_cache, flags); 606 if (mag) 607 mag->size = 0; 608 609 return mag; 610 } 611 612 static void iova_magazine_free(struct iova_magazine *mag) 613 { 614 kmem_cache_free(iova_magazine_cache, mag); 615 } 616 617 static void 618 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad) 619 { 620 unsigned long flags; 621 int i; 622 623 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 624 625 for (i = 0 ; i < mag->size; ++i) { 626 struct iova *iova = private_find_iova(iovad, mag->pfns[i]); 627 628 if (WARN_ON(!iova)) 629 continue; 630 631 remove_iova(iovad, iova); 632 free_iova_mem(iova); 633 } 634 635 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 636 637 mag->size = 0; 638 } 639 640 static bool iova_magazine_full(struct iova_magazine *mag) 641 { 642 return mag->size == IOVA_MAG_SIZE; 643 } 644 645 static bool iova_magazine_empty(struct iova_magazine *mag) 646 { 647 return mag->size == 0; 648 } 649 650 static unsigned long iova_magazine_pop(struct iova_magazine *mag, 651 unsigned long limit_pfn) 652 { 653 int i; 654 unsigned long pfn; 655 656 /* Only fall back to the rbtree if we have no suitable pfns at all */ 657 for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--) 658 if (i == 0) 659 return 0; 660 661 /* Swap it to pop it */ 662 pfn = mag->pfns[i]; 663 mag->pfns[i] = mag->pfns[--mag->size]; 664 665 return pfn; 666 } 667 668 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn) 669 { 670 mag->pfns[mag->size++] = pfn; 671 } 672 673 static struct iova_magazine *iova_depot_pop(struct iova_rcache *rcache) 674 { 675 struct iova_magazine *mag = rcache->depot; 676 677 /* 678 * As the mag->next pointer is moved to rcache->depot and reset via 679 * the mag->size assignment, mark it as a transient false positive. 680 */ 681 kmemleak_transient_leak(mag->next); 682 rcache->depot = mag->next; 683 mag->size = IOVA_MAG_SIZE; 684 rcache->depot_size--; 685 return mag; 686 } 687 688 static void iova_depot_push(struct iova_rcache *rcache, struct iova_magazine *mag) 689 { 690 mag->next = rcache->depot; 691 rcache->depot = mag; 692 rcache->depot_size++; 693 } 694 695 static void iova_depot_work_func(struct work_struct *work) 696 { 697 struct iova_rcache *rcache = container_of(work, typeof(*rcache), work.work); 698 struct iova_magazine *mag = NULL; 699 unsigned long flags; 700 701 spin_lock_irqsave(&rcache->lock, flags); 702 if (rcache->depot_size > num_online_cpus()) 703 mag = iova_depot_pop(rcache); 704 spin_unlock_irqrestore(&rcache->lock, flags); 705 706 if (mag) { 707 iova_magazine_free_pfns(mag, rcache->iovad); 708 iova_magazine_free(mag); 709 schedule_delayed_work(&rcache->work, IOVA_DEPOT_DELAY); 710 } 711 } 712 713 int iova_domain_init_rcaches(struct iova_domain *iovad) 714 { 715 unsigned int cpu; 716 int i, ret; 717 718 iovad->rcaches = kcalloc(IOVA_RANGE_CACHE_MAX_SIZE, 719 sizeof(struct iova_rcache), 720 GFP_KERNEL); 721 if (!iovad->rcaches) 722 return -ENOMEM; 723 724 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 725 struct iova_cpu_rcache *cpu_rcache; 726 struct iova_rcache *rcache; 727 728 rcache = &iovad->rcaches[i]; 729 spin_lock_init(&rcache->lock); 730 rcache->iovad = iovad; 731 INIT_DELAYED_WORK(&rcache->work, iova_depot_work_func); 732 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), 733 cache_line_size()); 734 if (!rcache->cpu_rcaches) { 735 ret = -ENOMEM; 736 goto out_err; 737 } 738 for_each_possible_cpu(cpu) { 739 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 740 741 spin_lock_init(&cpu_rcache->lock); 742 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL); 743 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL); 744 if (!cpu_rcache->loaded || !cpu_rcache->prev) { 745 ret = -ENOMEM; 746 goto out_err; 747 } 748 } 749 } 750 751 ret = cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, 752 &iovad->cpuhp_dead); 753 if (ret) 754 goto out_err; 755 return 0; 756 757 out_err: 758 free_iova_rcaches(iovad); 759 return ret; 760 } 761 EXPORT_SYMBOL_GPL(iova_domain_init_rcaches); 762 763 /* 764 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and 765 * return true on success. Can fail if rcache is full and we can't free 766 * space, and free_iova() (our only caller) will then return the IOVA 767 * range to the rbtree instead. 768 */ 769 static bool __iova_rcache_insert(struct iova_domain *iovad, 770 struct iova_rcache *rcache, 771 unsigned long iova_pfn) 772 { 773 struct iova_cpu_rcache *cpu_rcache; 774 bool can_insert = false; 775 unsigned long flags; 776 777 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 778 spin_lock_irqsave(&cpu_rcache->lock, flags); 779 780 if (!iova_magazine_full(cpu_rcache->loaded)) { 781 can_insert = true; 782 } else if (!iova_magazine_full(cpu_rcache->prev)) { 783 swap(cpu_rcache->prev, cpu_rcache->loaded); 784 can_insert = true; 785 } else { 786 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC); 787 788 if (new_mag) { 789 spin_lock(&rcache->lock); 790 iova_depot_push(rcache, cpu_rcache->loaded); 791 spin_unlock(&rcache->lock); 792 schedule_delayed_work(&rcache->work, IOVA_DEPOT_DELAY); 793 794 cpu_rcache->loaded = new_mag; 795 can_insert = true; 796 } 797 } 798 799 if (can_insert) 800 iova_magazine_push(cpu_rcache->loaded, iova_pfn); 801 802 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 803 804 return can_insert; 805 } 806 807 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn, 808 unsigned long size) 809 { 810 unsigned int log_size = order_base_2(size); 811 812 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 813 return false; 814 815 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn); 816 } 817 818 /* 819 * Caller wants to allocate a new IOVA range from 'rcache'. If we can 820 * satisfy the request, return a matching non-NULL range and remove 821 * it from the 'rcache'. 822 */ 823 static unsigned long __iova_rcache_get(struct iova_rcache *rcache, 824 unsigned long limit_pfn) 825 { 826 struct iova_cpu_rcache *cpu_rcache; 827 unsigned long iova_pfn = 0; 828 bool has_pfn = false; 829 unsigned long flags; 830 831 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 832 spin_lock_irqsave(&cpu_rcache->lock, flags); 833 834 if (!iova_magazine_empty(cpu_rcache->loaded)) { 835 has_pfn = true; 836 } else if (!iova_magazine_empty(cpu_rcache->prev)) { 837 swap(cpu_rcache->prev, cpu_rcache->loaded); 838 has_pfn = true; 839 } else { 840 spin_lock(&rcache->lock); 841 if (rcache->depot) { 842 iova_magazine_free(cpu_rcache->loaded); 843 cpu_rcache->loaded = iova_depot_pop(rcache); 844 has_pfn = true; 845 } 846 spin_unlock(&rcache->lock); 847 } 848 849 if (has_pfn) 850 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn); 851 852 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 853 854 return iova_pfn; 855 } 856 857 /* 858 * Try to satisfy IOVA allocation range from rcache. Fail if requested 859 * size is too big or the DMA limit we are given isn't satisfied by the 860 * top element in the magazine. 861 */ 862 static unsigned long iova_rcache_get(struct iova_domain *iovad, 863 unsigned long size, 864 unsigned long limit_pfn) 865 { 866 unsigned int log_size = order_base_2(size); 867 868 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 869 return 0; 870 871 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size); 872 } 873 874 /* 875 * free rcache data structures. 876 */ 877 static void free_iova_rcaches(struct iova_domain *iovad) 878 { 879 struct iova_rcache *rcache; 880 struct iova_cpu_rcache *cpu_rcache; 881 unsigned int cpu; 882 883 for (int i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 884 rcache = &iovad->rcaches[i]; 885 if (!rcache->cpu_rcaches) 886 break; 887 for_each_possible_cpu(cpu) { 888 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 889 iova_magazine_free(cpu_rcache->loaded); 890 iova_magazine_free(cpu_rcache->prev); 891 } 892 free_percpu(rcache->cpu_rcaches); 893 cancel_delayed_work_sync(&rcache->work); 894 while (rcache->depot) 895 iova_magazine_free(iova_depot_pop(rcache)); 896 } 897 898 kfree(iovad->rcaches); 899 iovad->rcaches = NULL; 900 } 901 902 /* 903 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged) 904 */ 905 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad) 906 { 907 struct iova_cpu_rcache *cpu_rcache; 908 struct iova_rcache *rcache; 909 unsigned long flags; 910 int i; 911 912 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 913 rcache = &iovad->rcaches[i]; 914 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 915 spin_lock_irqsave(&cpu_rcache->lock, flags); 916 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 917 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 918 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 919 } 920 } 921 922 /* 923 * free all the IOVA ranges of global cache 924 */ 925 static void free_global_cached_iovas(struct iova_domain *iovad) 926 { 927 struct iova_rcache *rcache; 928 unsigned long flags; 929 930 for (int i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 931 rcache = &iovad->rcaches[i]; 932 spin_lock_irqsave(&rcache->lock, flags); 933 while (rcache->depot) { 934 struct iova_magazine *mag = iova_depot_pop(rcache); 935 936 iova_magazine_free_pfns(mag, iovad); 937 iova_magazine_free(mag); 938 } 939 spin_unlock_irqrestore(&rcache->lock, flags); 940 } 941 } 942 943 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node) 944 { 945 struct iova_domain *iovad; 946 947 iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead); 948 949 free_cpu_cached_iovas(cpu, iovad); 950 return 0; 951 } 952 953 int iova_cache_get(void) 954 { 955 int err = -ENOMEM; 956 957 mutex_lock(&iova_cache_mutex); 958 if (!iova_cache_users) { 959 iova_cache = kmem_cache_create("iommu_iova", sizeof(struct iova), 0, 960 SLAB_HWCACHE_ALIGN, NULL); 961 if (!iova_cache) 962 goto out_err; 963 964 iova_magazine_cache = kmem_cache_create("iommu_iova_magazine", 965 sizeof(struct iova_magazine), 966 0, SLAB_HWCACHE_ALIGN, NULL); 967 if (!iova_magazine_cache) 968 goto out_err; 969 970 err = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead", 971 NULL, iova_cpuhp_dead); 972 if (err) { 973 pr_err("IOVA: Couldn't register cpuhp handler: %pe\n", ERR_PTR(err)); 974 goto out_err; 975 } 976 } 977 978 iova_cache_users++; 979 mutex_unlock(&iova_cache_mutex); 980 981 return 0; 982 983 out_err: 984 kmem_cache_destroy(iova_cache); 985 kmem_cache_destroy(iova_magazine_cache); 986 mutex_unlock(&iova_cache_mutex); 987 return err; 988 } 989 EXPORT_SYMBOL_GPL(iova_cache_get); 990 991 void iova_cache_put(void) 992 { 993 mutex_lock(&iova_cache_mutex); 994 if (WARN_ON(!iova_cache_users)) { 995 mutex_unlock(&iova_cache_mutex); 996 return; 997 } 998 iova_cache_users--; 999 if (!iova_cache_users) { 1000 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 1001 kmem_cache_destroy(iova_cache); 1002 kmem_cache_destroy(iova_magazine_cache); 1003 } 1004 mutex_unlock(&iova_cache_mutex); 1005 } 1006 EXPORT_SYMBOL_GPL(iova_cache_put); 1007 1008 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>"); 1009 MODULE_DESCRIPTION("IOMMU I/O Virtual Address management"); 1010 MODULE_LICENSE("GPL"); 1011