xref: /linux/drivers/iommu/iova.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2009, Intel Corporation.
4  *
5  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
6  */
7 
8 #include <linux/iova.h>
9 #include <linux/kmemleak.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/smp.h>
13 #include <linux/bitops.h>
14 #include <linux/cpu.h>
15 #include <linux/workqueue.h>
16 
17 /* The anchor node sits above the top of the usable address space */
18 #define IOVA_ANCHOR	~0UL
19 
20 #define IOVA_RANGE_CACHE_MAX_SIZE 6	/* log of max cached IOVA range size (in pages) */
21 
22 static bool iova_rcache_insert(struct iova_domain *iovad,
23 			       unsigned long pfn,
24 			       unsigned long size);
25 static unsigned long iova_rcache_get(struct iova_domain *iovad,
26 				     unsigned long size,
27 				     unsigned long limit_pfn);
28 static void free_iova_rcaches(struct iova_domain *iovad);
29 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad);
30 static void free_global_cached_iovas(struct iova_domain *iovad);
31 
32 static struct iova *to_iova(struct rb_node *node)
33 {
34 	return rb_entry(node, struct iova, node);
35 }
36 
37 void
38 init_iova_domain(struct iova_domain *iovad, unsigned long granule,
39 	unsigned long start_pfn)
40 {
41 	/*
42 	 * IOVA granularity will normally be equal to the smallest
43 	 * supported IOMMU page size; both *must* be capable of
44 	 * representing individual CPU pages exactly.
45 	 */
46 	BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule));
47 
48 	spin_lock_init(&iovad->iova_rbtree_lock);
49 	iovad->rbroot = RB_ROOT;
50 	iovad->cached_node = &iovad->anchor.node;
51 	iovad->cached32_node = &iovad->anchor.node;
52 	iovad->granule = granule;
53 	iovad->start_pfn = start_pfn;
54 	iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad));
55 	iovad->max32_alloc_size = iovad->dma_32bit_pfn;
56 	iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR;
57 	rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node);
58 	rb_insert_color(&iovad->anchor.node, &iovad->rbroot);
59 }
60 EXPORT_SYMBOL_GPL(init_iova_domain);
61 
62 static struct rb_node *
63 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn)
64 {
65 	if (limit_pfn <= iovad->dma_32bit_pfn)
66 		return iovad->cached32_node;
67 
68 	return iovad->cached_node;
69 }
70 
71 static void
72 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new)
73 {
74 	if (new->pfn_hi < iovad->dma_32bit_pfn)
75 		iovad->cached32_node = &new->node;
76 	else
77 		iovad->cached_node = &new->node;
78 }
79 
80 static void
81 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free)
82 {
83 	struct iova *cached_iova;
84 
85 	cached_iova = to_iova(iovad->cached32_node);
86 	if (free == cached_iova ||
87 	    (free->pfn_hi < iovad->dma_32bit_pfn &&
88 	     free->pfn_lo >= cached_iova->pfn_lo))
89 		iovad->cached32_node = rb_next(&free->node);
90 
91 	if (free->pfn_lo < iovad->dma_32bit_pfn)
92 		iovad->max32_alloc_size = iovad->dma_32bit_pfn;
93 
94 	cached_iova = to_iova(iovad->cached_node);
95 	if (free->pfn_lo >= cached_iova->pfn_lo)
96 		iovad->cached_node = rb_next(&free->node);
97 }
98 
99 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn)
100 {
101 	struct rb_node *node, *next;
102 	/*
103 	 * Ideally what we'd like to judge here is whether limit_pfn is close
104 	 * enough to the highest-allocated IOVA that starting the allocation
105 	 * walk from the anchor node will be quicker than this initial work to
106 	 * find an exact starting point (especially if that ends up being the
107 	 * anchor node anyway). This is an incredibly crude approximation which
108 	 * only really helps the most likely case, but is at least trivially easy.
109 	 */
110 	if (limit_pfn > iovad->dma_32bit_pfn)
111 		return &iovad->anchor.node;
112 
113 	node = iovad->rbroot.rb_node;
114 	while (to_iova(node)->pfn_hi < limit_pfn)
115 		node = node->rb_right;
116 
117 search_left:
118 	while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn)
119 		node = node->rb_left;
120 
121 	if (!node->rb_left)
122 		return node;
123 
124 	next = node->rb_left;
125 	while (next->rb_right) {
126 		next = next->rb_right;
127 		if (to_iova(next)->pfn_lo >= limit_pfn) {
128 			node = next;
129 			goto search_left;
130 		}
131 	}
132 
133 	return node;
134 }
135 
136 /* Insert the iova into domain rbtree by holding writer lock */
137 static void
138 iova_insert_rbtree(struct rb_root *root, struct iova *iova,
139 		   struct rb_node *start)
140 {
141 	struct rb_node **new, *parent = NULL;
142 
143 	new = (start) ? &start : &(root->rb_node);
144 	/* Figure out where to put new node */
145 	while (*new) {
146 		struct iova *this = to_iova(*new);
147 
148 		parent = *new;
149 
150 		if (iova->pfn_lo < this->pfn_lo)
151 			new = &((*new)->rb_left);
152 		else if (iova->pfn_lo > this->pfn_lo)
153 			new = &((*new)->rb_right);
154 		else {
155 			WARN_ON(1); /* this should not happen */
156 			return;
157 		}
158 	}
159 	/* Add new node and rebalance tree. */
160 	rb_link_node(&iova->node, parent, new);
161 	rb_insert_color(&iova->node, root);
162 }
163 
164 static int __alloc_and_insert_iova_range(struct iova_domain *iovad,
165 		unsigned long size, unsigned long limit_pfn,
166 			struct iova *new, bool size_aligned)
167 {
168 	struct rb_node *curr, *prev;
169 	struct iova *curr_iova;
170 	unsigned long flags;
171 	unsigned long new_pfn, retry_pfn;
172 	unsigned long align_mask = ~0UL;
173 	unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn;
174 
175 	if (size_aligned)
176 		align_mask <<= fls_long(size - 1);
177 
178 	/* Walk the tree backwards */
179 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
180 	if (limit_pfn <= iovad->dma_32bit_pfn &&
181 			size >= iovad->max32_alloc_size)
182 		goto iova32_full;
183 
184 	curr = __get_cached_rbnode(iovad, limit_pfn);
185 	curr_iova = to_iova(curr);
186 	retry_pfn = curr_iova->pfn_hi;
187 
188 retry:
189 	do {
190 		high_pfn = min(high_pfn, curr_iova->pfn_lo);
191 		new_pfn = (high_pfn - size) & align_mask;
192 		prev = curr;
193 		curr = rb_prev(curr);
194 		curr_iova = to_iova(curr);
195 	} while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn);
196 
197 	if (high_pfn < size || new_pfn < low_pfn) {
198 		if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) {
199 			high_pfn = limit_pfn;
200 			low_pfn = retry_pfn + 1;
201 			curr = iova_find_limit(iovad, limit_pfn);
202 			curr_iova = to_iova(curr);
203 			goto retry;
204 		}
205 		iovad->max32_alloc_size = size;
206 		goto iova32_full;
207 	}
208 
209 	/* pfn_lo will point to size aligned address if size_aligned is set */
210 	new->pfn_lo = new_pfn;
211 	new->pfn_hi = new->pfn_lo + size - 1;
212 
213 	/* If we have 'prev', it's a valid place to start the insertion. */
214 	iova_insert_rbtree(&iovad->rbroot, new, prev);
215 	__cached_rbnode_insert_update(iovad, new);
216 
217 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
218 	return 0;
219 
220 iova32_full:
221 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
222 	return -ENOMEM;
223 }
224 
225 static struct kmem_cache *iova_cache;
226 static unsigned int iova_cache_users;
227 static DEFINE_MUTEX(iova_cache_mutex);
228 
229 static struct iova *alloc_iova_mem(void)
230 {
231 	return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN);
232 }
233 
234 static void free_iova_mem(struct iova *iova)
235 {
236 	if (iova->pfn_lo != IOVA_ANCHOR)
237 		kmem_cache_free(iova_cache, iova);
238 }
239 
240 /**
241  * alloc_iova - allocates an iova
242  * @iovad: - iova domain in question
243  * @size: - size of page frames to allocate
244  * @limit_pfn: - max limit address
245  * @size_aligned: - set if size_aligned address range is required
246  * This function allocates an iova in the range iovad->start_pfn to limit_pfn,
247  * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned
248  * flag is set then the allocated address iova->pfn_lo will be naturally
249  * aligned on roundup_power_of_two(size).
250  */
251 struct iova *
252 alloc_iova(struct iova_domain *iovad, unsigned long size,
253 	unsigned long limit_pfn,
254 	bool size_aligned)
255 {
256 	struct iova *new_iova;
257 	int ret;
258 
259 	new_iova = alloc_iova_mem();
260 	if (!new_iova)
261 		return NULL;
262 
263 	ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1,
264 			new_iova, size_aligned);
265 
266 	if (ret) {
267 		free_iova_mem(new_iova);
268 		return NULL;
269 	}
270 
271 	return new_iova;
272 }
273 EXPORT_SYMBOL_GPL(alloc_iova);
274 
275 static struct iova *
276 private_find_iova(struct iova_domain *iovad, unsigned long pfn)
277 {
278 	struct rb_node *node = iovad->rbroot.rb_node;
279 
280 	assert_spin_locked(&iovad->iova_rbtree_lock);
281 
282 	while (node) {
283 		struct iova *iova = to_iova(node);
284 
285 		if (pfn < iova->pfn_lo)
286 			node = node->rb_left;
287 		else if (pfn > iova->pfn_hi)
288 			node = node->rb_right;
289 		else
290 			return iova;	/* pfn falls within iova's range */
291 	}
292 
293 	return NULL;
294 }
295 
296 static void remove_iova(struct iova_domain *iovad, struct iova *iova)
297 {
298 	assert_spin_locked(&iovad->iova_rbtree_lock);
299 	__cached_rbnode_delete_update(iovad, iova);
300 	rb_erase(&iova->node, &iovad->rbroot);
301 }
302 
303 /**
304  * find_iova - finds an iova for a given pfn
305  * @iovad: - iova domain in question.
306  * @pfn: - page frame number
307  * This function finds and returns an iova belonging to the
308  * given domain which matches the given pfn.
309  */
310 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn)
311 {
312 	unsigned long flags;
313 	struct iova *iova;
314 
315 	/* Take the lock so that no other thread is manipulating the rbtree */
316 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
317 	iova = private_find_iova(iovad, pfn);
318 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
319 	return iova;
320 }
321 EXPORT_SYMBOL_GPL(find_iova);
322 
323 /**
324  * __free_iova - frees the given iova
325  * @iovad: iova domain in question.
326  * @iova: iova in question.
327  * Frees the given iova belonging to the giving domain
328  */
329 void
330 __free_iova(struct iova_domain *iovad, struct iova *iova)
331 {
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
335 	remove_iova(iovad, iova);
336 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
337 	free_iova_mem(iova);
338 }
339 EXPORT_SYMBOL_GPL(__free_iova);
340 
341 /**
342  * free_iova - finds and frees the iova for a given pfn
343  * @iovad: - iova domain in question.
344  * @pfn: - pfn that is allocated previously
345  * This functions finds an iova for a given pfn and then
346  * frees the iova from that domain.
347  */
348 void
349 free_iova(struct iova_domain *iovad, unsigned long pfn)
350 {
351 	unsigned long flags;
352 	struct iova *iova;
353 
354 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
355 	iova = private_find_iova(iovad, pfn);
356 	if (!iova) {
357 		spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
358 		return;
359 	}
360 	remove_iova(iovad, iova);
361 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
362 	free_iova_mem(iova);
363 }
364 EXPORT_SYMBOL_GPL(free_iova);
365 
366 /**
367  * alloc_iova_fast - allocates an iova from rcache
368  * @iovad: - iova domain in question
369  * @size: - size of page frames to allocate
370  * @limit_pfn: - max limit address
371  * @flush_rcache: - set to flush rcache on regular allocation failure
372  * This function tries to satisfy an iova allocation from the rcache,
373  * and falls back to regular allocation on failure. If regular allocation
374  * fails too and the flush_rcache flag is set then the rcache will be flushed.
375 */
376 unsigned long
377 alloc_iova_fast(struct iova_domain *iovad, unsigned long size,
378 		unsigned long limit_pfn, bool flush_rcache)
379 {
380 	unsigned long iova_pfn;
381 	struct iova *new_iova;
382 
383 	/*
384 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
385 	 * will come back to bite us badly, so we have to waste a bit of space
386 	 * rounding up anything cacheable to make sure that can't happen. The
387 	 * order of the unadjusted size will still match upon freeing.
388 	 */
389 	if (size < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
390 		size = roundup_pow_of_two(size);
391 
392 	iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1);
393 	if (iova_pfn)
394 		return iova_pfn;
395 
396 retry:
397 	new_iova = alloc_iova(iovad, size, limit_pfn, true);
398 	if (!new_iova) {
399 		unsigned int cpu;
400 
401 		if (!flush_rcache)
402 			return 0;
403 
404 		/* Try replenishing IOVAs by flushing rcache. */
405 		flush_rcache = false;
406 		for_each_online_cpu(cpu)
407 			free_cpu_cached_iovas(cpu, iovad);
408 		free_global_cached_iovas(iovad);
409 		goto retry;
410 	}
411 
412 	return new_iova->pfn_lo;
413 }
414 EXPORT_SYMBOL_GPL(alloc_iova_fast);
415 
416 /**
417  * free_iova_fast - free iova pfn range into rcache
418  * @iovad: - iova domain in question.
419  * @pfn: - pfn that is allocated previously
420  * @size: - # of pages in range
421  * This functions frees an iova range by trying to put it into the rcache,
422  * falling back to regular iova deallocation via free_iova() if this fails.
423  */
424 void
425 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size)
426 {
427 	if (iova_rcache_insert(iovad, pfn, size))
428 		return;
429 
430 	free_iova(iovad, pfn);
431 }
432 EXPORT_SYMBOL_GPL(free_iova_fast);
433 
434 static void iova_domain_free_rcaches(struct iova_domain *iovad)
435 {
436 	cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD,
437 					    &iovad->cpuhp_dead);
438 	free_iova_rcaches(iovad);
439 }
440 
441 /**
442  * put_iova_domain - destroys the iova domain
443  * @iovad: - iova domain in question.
444  * All the iova's in that domain are destroyed.
445  */
446 void put_iova_domain(struct iova_domain *iovad)
447 {
448 	struct iova *iova, *tmp;
449 
450 	if (iovad->rcaches)
451 		iova_domain_free_rcaches(iovad);
452 
453 	rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node)
454 		free_iova_mem(iova);
455 }
456 EXPORT_SYMBOL_GPL(put_iova_domain);
457 
458 static int
459 __is_range_overlap(struct rb_node *node,
460 	unsigned long pfn_lo, unsigned long pfn_hi)
461 {
462 	struct iova *iova = to_iova(node);
463 
464 	if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo))
465 		return 1;
466 	return 0;
467 }
468 
469 static inline struct iova *
470 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi)
471 {
472 	struct iova *iova;
473 
474 	iova = alloc_iova_mem();
475 	if (iova) {
476 		iova->pfn_lo = pfn_lo;
477 		iova->pfn_hi = pfn_hi;
478 	}
479 
480 	return iova;
481 }
482 
483 static struct iova *
484 __insert_new_range(struct iova_domain *iovad,
485 	unsigned long pfn_lo, unsigned long pfn_hi)
486 {
487 	struct iova *iova;
488 
489 	iova = alloc_and_init_iova(pfn_lo, pfn_hi);
490 	if (iova)
491 		iova_insert_rbtree(&iovad->rbroot, iova, NULL);
492 
493 	return iova;
494 }
495 
496 static void
497 __adjust_overlap_range(struct iova *iova,
498 	unsigned long *pfn_lo, unsigned long *pfn_hi)
499 {
500 	if (*pfn_lo < iova->pfn_lo)
501 		iova->pfn_lo = *pfn_lo;
502 	if (*pfn_hi > iova->pfn_hi)
503 		*pfn_lo = iova->pfn_hi + 1;
504 }
505 
506 /**
507  * reserve_iova - reserves an iova in the given range
508  * @iovad: - iova domain pointer
509  * @pfn_lo: - lower page frame address
510  * @pfn_hi:- higher pfn address
511  * This function allocates reserves the address range from pfn_lo to pfn_hi so
512  * that this address is not dished out as part of alloc_iova.
513  */
514 struct iova *
515 reserve_iova(struct iova_domain *iovad,
516 	unsigned long pfn_lo, unsigned long pfn_hi)
517 {
518 	struct rb_node *node;
519 	unsigned long flags;
520 	struct iova *iova;
521 	unsigned int overlap = 0;
522 
523 	/* Don't allow nonsensical pfns */
524 	if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad))))
525 		return NULL;
526 
527 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
528 	for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) {
529 		if (__is_range_overlap(node, pfn_lo, pfn_hi)) {
530 			iova = to_iova(node);
531 			__adjust_overlap_range(iova, &pfn_lo, &pfn_hi);
532 			if ((pfn_lo >= iova->pfn_lo) &&
533 				(pfn_hi <= iova->pfn_hi))
534 				goto finish;
535 			overlap = 1;
536 
537 		} else if (overlap)
538 				break;
539 	}
540 
541 	/* We are here either because this is the first reserver node
542 	 * or need to insert remaining non overlap addr range
543 	 */
544 	iova = __insert_new_range(iovad, pfn_lo, pfn_hi);
545 finish:
546 
547 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
548 	return iova;
549 }
550 EXPORT_SYMBOL_GPL(reserve_iova);
551 
552 /*
553  * Magazine caches for IOVA ranges.  For an introduction to magazines,
554  * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab
555  * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams.
556  * For simplicity, we use a static magazine size and don't implement the
557  * dynamic size tuning described in the paper.
558  */
559 
560 /*
561  * As kmalloc's buffer size is fixed to power of 2, 127 is chosen to
562  * assure size of 'iova_magazine' to be 1024 bytes, so that no memory
563  * will be wasted. Since only full magazines are inserted into the depot,
564  * we don't need to waste PFN capacity on a separate list head either.
565  */
566 #define IOVA_MAG_SIZE 127
567 
568 #define IOVA_DEPOT_DELAY msecs_to_jiffies(100)
569 
570 struct iova_magazine {
571 	union {
572 		unsigned long size;
573 		struct iova_magazine *next;
574 	};
575 	unsigned long pfns[IOVA_MAG_SIZE];
576 };
577 static_assert(!(sizeof(struct iova_magazine) & (sizeof(struct iova_magazine) - 1)));
578 
579 struct iova_cpu_rcache {
580 	spinlock_t lock;
581 	struct iova_magazine *loaded;
582 	struct iova_magazine *prev;
583 };
584 
585 struct iova_rcache {
586 	spinlock_t lock;
587 	unsigned int depot_size;
588 	struct iova_magazine *depot;
589 	struct iova_cpu_rcache __percpu *cpu_rcaches;
590 	struct iova_domain *iovad;
591 	struct delayed_work work;
592 };
593 
594 static struct kmem_cache *iova_magazine_cache;
595 
596 unsigned long iova_rcache_range(void)
597 {
598 	return PAGE_SIZE << (IOVA_RANGE_CACHE_MAX_SIZE - 1);
599 }
600 
601 static struct iova_magazine *iova_magazine_alloc(gfp_t flags)
602 {
603 	struct iova_magazine *mag;
604 
605 	mag = kmem_cache_alloc(iova_magazine_cache, flags);
606 	if (mag)
607 		mag->size = 0;
608 
609 	return mag;
610 }
611 
612 static void iova_magazine_free(struct iova_magazine *mag)
613 {
614 	kmem_cache_free(iova_magazine_cache, mag);
615 }
616 
617 static void
618 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad)
619 {
620 	unsigned long flags;
621 	int i;
622 
623 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
624 
625 	for (i = 0 ; i < mag->size; ++i) {
626 		struct iova *iova = private_find_iova(iovad, mag->pfns[i]);
627 
628 		if (WARN_ON(!iova))
629 			continue;
630 
631 		remove_iova(iovad, iova);
632 		free_iova_mem(iova);
633 	}
634 
635 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
636 
637 	mag->size = 0;
638 }
639 
640 static bool iova_magazine_full(struct iova_magazine *mag)
641 {
642 	return mag->size == IOVA_MAG_SIZE;
643 }
644 
645 static bool iova_magazine_empty(struct iova_magazine *mag)
646 {
647 	return mag->size == 0;
648 }
649 
650 static unsigned long iova_magazine_pop(struct iova_magazine *mag,
651 				       unsigned long limit_pfn)
652 {
653 	int i;
654 	unsigned long pfn;
655 
656 	/* Only fall back to the rbtree if we have no suitable pfns at all */
657 	for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--)
658 		if (i == 0)
659 			return 0;
660 
661 	/* Swap it to pop it */
662 	pfn = mag->pfns[i];
663 	mag->pfns[i] = mag->pfns[--mag->size];
664 
665 	return pfn;
666 }
667 
668 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn)
669 {
670 	mag->pfns[mag->size++] = pfn;
671 }
672 
673 static struct iova_magazine *iova_depot_pop(struct iova_rcache *rcache)
674 {
675 	struct iova_magazine *mag = rcache->depot;
676 
677 	/*
678 	 * As the mag->next pointer is moved to rcache->depot and reset via
679 	 * the mag->size assignment, mark it as a transient false positive.
680 	 */
681 	kmemleak_transient_leak(mag->next);
682 	rcache->depot = mag->next;
683 	mag->size = IOVA_MAG_SIZE;
684 	rcache->depot_size--;
685 	return mag;
686 }
687 
688 static void iova_depot_push(struct iova_rcache *rcache, struct iova_magazine *mag)
689 {
690 	mag->next = rcache->depot;
691 	rcache->depot = mag;
692 	rcache->depot_size++;
693 }
694 
695 static void iova_depot_work_func(struct work_struct *work)
696 {
697 	struct iova_rcache *rcache = container_of(work, typeof(*rcache), work.work);
698 	struct iova_magazine *mag = NULL;
699 	unsigned long flags;
700 
701 	spin_lock_irqsave(&rcache->lock, flags);
702 	if (rcache->depot_size > num_online_cpus())
703 		mag = iova_depot_pop(rcache);
704 	spin_unlock_irqrestore(&rcache->lock, flags);
705 
706 	if (mag) {
707 		iova_magazine_free_pfns(mag, rcache->iovad);
708 		iova_magazine_free(mag);
709 		schedule_delayed_work(&rcache->work, IOVA_DEPOT_DELAY);
710 	}
711 }
712 
713 int iova_domain_init_rcaches(struct iova_domain *iovad)
714 {
715 	unsigned int cpu;
716 	int i, ret;
717 
718 	iovad->rcaches = kcalloc(IOVA_RANGE_CACHE_MAX_SIZE,
719 				 sizeof(struct iova_rcache),
720 				 GFP_KERNEL);
721 	if (!iovad->rcaches)
722 		return -ENOMEM;
723 
724 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
725 		struct iova_cpu_rcache *cpu_rcache;
726 		struct iova_rcache *rcache;
727 
728 		rcache = &iovad->rcaches[i];
729 		spin_lock_init(&rcache->lock);
730 		rcache->iovad = iovad;
731 		INIT_DELAYED_WORK(&rcache->work, iova_depot_work_func);
732 		rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache),
733 						     cache_line_size());
734 		if (!rcache->cpu_rcaches) {
735 			ret = -ENOMEM;
736 			goto out_err;
737 		}
738 		for_each_possible_cpu(cpu) {
739 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
740 
741 			spin_lock_init(&cpu_rcache->lock);
742 			cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL);
743 			cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL);
744 			if (!cpu_rcache->loaded || !cpu_rcache->prev) {
745 				ret = -ENOMEM;
746 				goto out_err;
747 			}
748 		}
749 	}
750 
751 	ret = cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD,
752 					       &iovad->cpuhp_dead);
753 	if (ret)
754 		goto out_err;
755 	return 0;
756 
757 out_err:
758 	free_iova_rcaches(iovad);
759 	return ret;
760 }
761 EXPORT_SYMBOL_GPL(iova_domain_init_rcaches);
762 
763 /*
764  * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and
765  * return true on success.  Can fail if rcache is full and we can't free
766  * space, and free_iova() (our only caller) will then return the IOVA
767  * range to the rbtree instead.
768  */
769 static bool __iova_rcache_insert(struct iova_domain *iovad,
770 				 struct iova_rcache *rcache,
771 				 unsigned long iova_pfn)
772 {
773 	struct iova_cpu_rcache *cpu_rcache;
774 	bool can_insert = false;
775 	unsigned long flags;
776 
777 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
778 	spin_lock_irqsave(&cpu_rcache->lock, flags);
779 
780 	if (!iova_magazine_full(cpu_rcache->loaded)) {
781 		can_insert = true;
782 	} else if (!iova_magazine_full(cpu_rcache->prev)) {
783 		swap(cpu_rcache->prev, cpu_rcache->loaded);
784 		can_insert = true;
785 	} else {
786 		struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC);
787 
788 		if (new_mag) {
789 			spin_lock(&rcache->lock);
790 			iova_depot_push(rcache, cpu_rcache->loaded);
791 			spin_unlock(&rcache->lock);
792 			schedule_delayed_work(&rcache->work, IOVA_DEPOT_DELAY);
793 
794 			cpu_rcache->loaded = new_mag;
795 			can_insert = true;
796 		}
797 	}
798 
799 	if (can_insert)
800 		iova_magazine_push(cpu_rcache->loaded, iova_pfn);
801 
802 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
803 
804 	return can_insert;
805 }
806 
807 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn,
808 			       unsigned long size)
809 {
810 	unsigned int log_size = order_base_2(size);
811 
812 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
813 		return false;
814 
815 	return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn);
816 }
817 
818 /*
819  * Caller wants to allocate a new IOVA range from 'rcache'.  If we can
820  * satisfy the request, return a matching non-NULL range and remove
821  * it from the 'rcache'.
822  */
823 static unsigned long __iova_rcache_get(struct iova_rcache *rcache,
824 				       unsigned long limit_pfn)
825 {
826 	struct iova_cpu_rcache *cpu_rcache;
827 	unsigned long iova_pfn = 0;
828 	bool has_pfn = false;
829 	unsigned long flags;
830 
831 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
832 	spin_lock_irqsave(&cpu_rcache->lock, flags);
833 
834 	if (!iova_magazine_empty(cpu_rcache->loaded)) {
835 		has_pfn = true;
836 	} else if (!iova_magazine_empty(cpu_rcache->prev)) {
837 		swap(cpu_rcache->prev, cpu_rcache->loaded);
838 		has_pfn = true;
839 	} else {
840 		spin_lock(&rcache->lock);
841 		if (rcache->depot) {
842 			iova_magazine_free(cpu_rcache->loaded);
843 			cpu_rcache->loaded = iova_depot_pop(rcache);
844 			has_pfn = true;
845 		}
846 		spin_unlock(&rcache->lock);
847 	}
848 
849 	if (has_pfn)
850 		iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn);
851 
852 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
853 
854 	return iova_pfn;
855 }
856 
857 /*
858  * Try to satisfy IOVA allocation range from rcache.  Fail if requested
859  * size is too big or the DMA limit we are given isn't satisfied by the
860  * top element in the magazine.
861  */
862 static unsigned long iova_rcache_get(struct iova_domain *iovad,
863 				     unsigned long size,
864 				     unsigned long limit_pfn)
865 {
866 	unsigned int log_size = order_base_2(size);
867 
868 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
869 		return 0;
870 
871 	return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size);
872 }
873 
874 /*
875  * free rcache data structures.
876  */
877 static void free_iova_rcaches(struct iova_domain *iovad)
878 {
879 	struct iova_rcache *rcache;
880 	struct iova_cpu_rcache *cpu_rcache;
881 	unsigned int cpu;
882 
883 	for (int i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
884 		rcache = &iovad->rcaches[i];
885 		if (!rcache->cpu_rcaches)
886 			break;
887 		for_each_possible_cpu(cpu) {
888 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
889 			iova_magazine_free(cpu_rcache->loaded);
890 			iova_magazine_free(cpu_rcache->prev);
891 		}
892 		free_percpu(rcache->cpu_rcaches);
893 		cancel_delayed_work_sync(&rcache->work);
894 		while (rcache->depot)
895 			iova_magazine_free(iova_depot_pop(rcache));
896 	}
897 
898 	kfree(iovad->rcaches);
899 	iovad->rcaches = NULL;
900 }
901 
902 /*
903  * free all the IOVA ranges cached by a cpu (used when cpu is unplugged)
904  */
905 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad)
906 {
907 	struct iova_cpu_rcache *cpu_rcache;
908 	struct iova_rcache *rcache;
909 	unsigned long flags;
910 	int i;
911 
912 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
913 		rcache = &iovad->rcaches[i];
914 		cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
915 		spin_lock_irqsave(&cpu_rcache->lock, flags);
916 		iova_magazine_free_pfns(cpu_rcache->loaded, iovad);
917 		iova_magazine_free_pfns(cpu_rcache->prev, iovad);
918 		spin_unlock_irqrestore(&cpu_rcache->lock, flags);
919 	}
920 }
921 
922 /*
923  * free all the IOVA ranges of global cache
924  */
925 static void free_global_cached_iovas(struct iova_domain *iovad)
926 {
927 	struct iova_rcache *rcache;
928 	unsigned long flags;
929 
930 	for (int i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
931 		rcache = &iovad->rcaches[i];
932 		spin_lock_irqsave(&rcache->lock, flags);
933 		while (rcache->depot) {
934 			struct iova_magazine *mag = iova_depot_pop(rcache);
935 
936 			iova_magazine_free_pfns(mag, iovad);
937 			iova_magazine_free(mag);
938 		}
939 		spin_unlock_irqrestore(&rcache->lock, flags);
940 	}
941 }
942 
943 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node)
944 {
945 	struct iova_domain *iovad;
946 
947 	iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead);
948 
949 	free_cpu_cached_iovas(cpu, iovad);
950 	return 0;
951 }
952 
953 int iova_cache_get(void)
954 {
955 	int err = -ENOMEM;
956 
957 	mutex_lock(&iova_cache_mutex);
958 	if (!iova_cache_users) {
959 		iova_cache = kmem_cache_create("iommu_iova", sizeof(struct iova), 0,
960 					       SLAB_HWCACHE_ALIGN, NULL);
961 		if (!iova_cache)
962 			goto out_err;
963 
964 		iova_magazine_cache = kmem_cache_create("iommu_iova_magazine",
965 							sizeof(struct iova_magazine),
966 							0, SLAB_HWCACHE_ALIGN, NULL);
967 		if (!iova_magazine_cache)
968 			goto out_err;
969 
970 		err = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead",
971 					      NULL, iova_cpuhp_dead);
972 		if (err) {
973 			pr_err("IOVA: Couldn't register cpuhp handler: %pe\n", ERR_PTR(err));
974 			goto out_err;
975 		}
976 	}
977 
978 	iova_cache_users++;
979 	mutex_unlock(&iova_cache_mutex);
980 
981 	return 0;
982 
983 out_err:
984 	kmem_cache_destroy(iova_cache);
985 	kmem_cache_destroy(iova_magazine_cache);
986 	mutex_unlock(&iova_cache_mutex);
987 	return err;
988 }
989 EXPORT_SYMBOL_GPL(iova_cache_get);
990 
991 void iova_cache_put(void)
992 {
993 	mutex_lock(&iova_cache_mutex);
994 	if (WARN_ON(!iova_cache_users)) {
995 		mutex_unlock(&iova_cache_mutex);
996 		return;
997 	}
998 	iova_cache_users--;
999 	if (!iova_cache_users) {
1000 		cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD);
1001 		kmem_cache_destroy(iova_cache);
1002 		kmem_cache_destroy(iova_magazine_cache);
1003 	}
1004 	mutex_unlock(&iova_cache_mutex);
1005 }
1006 EXPORT_SYMBOL_GPL(iova_cache_put);
1007 
1008 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>");
1009 MODULE_DESCRIPTION("IOMMU I/O Virtual Address management");
1010 MODULE_LICENSE("GPL");
1011