xref: /linux/drivers/iommu/iova.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /*
2  * Copyright © 2006-2009, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
18  */
19 
20 #include <linux/iova.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/smp.h>
24 #include <linux/bitops.h>
25 #include <linux/cpu.h>
26 
27 static bool iova_rcache_insert(struct iova_domain *iovad,
28 			       unsigned long pfn,
29 			       unsigned long size);
30 static unsigned long iova_rcache_get(struct iova_domain *iovad,
31 				     unsigned long size,
32 				     unsigned long limit_pfn);
33 static void init_iova_rcaches(struct iova_domain *iovad);
34 static void free_iova_rcaches(struct iova_domain *iovad);
35 static void fq_destroy_all_entries(struct iova_domain *iovad);
36 static void fq_flush_timeout(unsigned long data);
37 
38 void
39 init_iova_domain(struct iova_domain *iovad, unsigned long granule,
40 	unsigned long start_pfn, unsigned long pfn_32bit)
41 {
42 	/*
43 	 * IOVA granularity will normally be equal to the smallest
44 	 * supported IOMMU page size; both *must* be capable of
45 	 * representing individual CPU pages exactly.
46 	 */
47 	BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule));
48 
49 	spin_lock_init(&iovad->iova_rbtree_lock);
50 	iovad->rbroot = RB_ROOT;
51 	iovad->cached32_node = NULL;
52 	iovad->granule = granule;
53 	iovad->start_pfn = start_pfn;
54 	iovad->dma_32bit_pfn = pfn_32bit + 1;
55 	iovad->flush_cb = NULL;
56 	iovad->fq = NULL;
57 	init_iova_rcaches(iovad);
58 }
59 EXPORT_SYMBOL_GPL(init_iova_domain);
60 
61 static void free_iova_flush_queue(struct iova_domain *iovad)
62 {
63 	if (!iovad->fq)
64 		return;
65 
66 	if (timer_pending(&iovad->fq_timer))
67 		del_timer(&iovad->fq_timer);
68 
69 	fq_destroy_all_entries(iovad);
70 
71 	free_percpu(iovad->fq);
72 
73 	iovad->fq         = NULL;
74 	iovad->flush_cb   = NULL;
75 	iovad->entry_dtor = NULL;
76 }
77 
78 int init_iova_flush_queue(struct iova_domain *iovad,
79 			  iova_flush_cb flush_cb, iova_entry_dtor entry_dtor)
80 {
81 	int cpu;
82 
83 	atomic64_set(&iovad->fq_flush_start_cnt,  0);
84 	atomic64_set(&iovad->fq_flush_finish_cnt, 0);
85 
86 	iovad->fq = alloc_percpu(struct iova_fq);
87 	if (!iovad->fq)
88 		return -ENOMEM;
89 
90 	iovad->flush_cb   = flush_cb;
91 	iovad->entry_dtor = entry_dtor;
92 
93 	for_each_possible_cpu(cpu) {
94 		struct iova_fq *fq;
95 
96 		fq = per_cpu_ptr(iovad->fq, cpu);
97 		fq->head = 0;
98 		fq->tail = 0;
99 
100 		spin_lock_init(&fq->lock);
101 	}
102 
103 	setup_timer(&iovad->fq_timer, fq_flush_timeout, (unsigned long)iovad);
104 	atomic_set(&iovad->fq_timer_on, 0);
105 
106 	return 0;
107 }
108 EXPORT_SYMBOL_GPL(init_iova_flush_queue);
109 
110 static struct rb_node *
111 __get_cached_rbnode(struct iova_domain *iovad, unsigned long *limit_pfn)
112 {
113 	if ((*limit_pfn > iovad->dma_32bit_pfn) ||
114 		(iovad->cached32_node == NULL))
115 		return rb_last(&iovad->rbroot);
116 	else {
117 		struct rb_node *prev_node = rb_prev(iovad->cached32_node);
118 		struct iova *curr_iova =
119 			rb_entry(iovad->cached32_node, struct iova, node);
120 		*limit_pfn = curr_iova->pfn_lo;
121 		return prev_node;
122 	}
123 }
124 
125 static void
126 __cached_rbnode_insert_update(struct iova_domain *iovad,
127 	unsigned long limit_pfn, struct iova *new)
128 {
129 	if (limit_pfn != iovad->dma_32bit_pfn)
130 		return;
131 	iovad->cached32_node = &new->node;
132 }
133 
134 static void
135 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free)
136 {
137 	struct iova *cached_iova;
138 	struct rb_node *curr;
139 
140 	if (!iovad->cached32_node)
141 		return;
142 	curr = iovad->cached32_node;
143 	cached_iova = rb_entry(curr, struct iova, node);
144 
145 	if (free->pfn_lo >= cached_iova->pfn_lo) {
146 		struct rb_node *node = rb_next(&free->node);
147 		struct iova *iova = rb_entry(node, struct iova, node);
148 
149 		/* only cache if it's below 32bit pfn */
150 		if (node && iova->pfn_lo < iovad->dma_32bit_pfn)
151 			iovad->cached32_node = node;
152 		else
153 			iovad->cached32_node = NULL;
154 	}
155 }
156 
157 /* Insert the iova into domain rbtree by holding writer lock */
158 static void
159 iova_insert_rbtree(struct rb_root *root, struct iova *iova,
160 		   struct rb_node *start)
161 {
162 	struct rb_node **new, *parent = NULL;
163 
164 	new = (start) ? &start : &(root->rb_node);
165 	/* Figure out where to put new node */
166 	while (*new) {
167 		struct iova *this = rb_entry(*new, struct iova, node);
168 
169 		parent = *new;
170 
171 		if (iova->pfn_lo < this->pfn_lo)
172 			new = &((*new)->rb_left);
173 		else if (iova->pfn_lo > this->pfn_lo)
174 			new = &((*new)->rb_right);
175 		else {
176 			WARN_ON(1); /* this should not happen */
177 			return;
178 		}
179 	}
180 	/* Add new node and rebalance tree. */
181 	rb_link_node(&iova->node, parent, new);
182 	rb_insert_color(&iova->node, root);
183 }
184 
185 /*
186  * Computes the padding size required, to make the start address
187  * naturally aligned on the power-of-two order of its size
188  */
189 static unsigned int
190 iova_get_pad_size(unsigned int size, unsigned int limit_pfn)
191 {
192 	return (limit_pfn - size) & (__roundup_pow_of_two(size) - 1);
193 }
194 
195 static int __alloc_and_insert_iova_range(struct iova_domain *iovad,
196 		unsigned long size, unsigned long limit_pfn,
197 			struct iova *new, bool size_aligned)
198 {
199 	struct rb_node *prev, *curr = NULL;
200 	unsigned long flags;
201 	unsigned long saved_pfn;
202 	unsigned int pad_size = 0;
203 
204 	/* Walk the tree backwards */
205 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
206 	saved_pfn = limit_pfn;
207 	curr = __get_cached_rbnode(iovad, &limit_pfn);
208 	prev = curr;
209 	while (curr) {
210 		struct iova *curr_iova = rb_entry(curr, struct iova, node);
211 
212 		if (limit_pfn <= curr_iova->pfn_lo) {
213 			goto move_left;
214 		} else if (limit_pfn > curr_iova->pfn_hi) {
215 			if (size_aligned)
216 				pad_size = iova_get_pad_size(size, limit_pfn);
217 			if ((curr_iova->pfn_hi + size + pad_size) < limit_pfn)
218 				break;	/* found a free slot */
219 		}
220 		limit_pfn = curr_iova->pfn_lo;
221 move_left:
222 		prev = curr;
223 		curr = rb_prev(curr);
224 	}
225 
226 	if (!curr) {
227 		if (size_aligned)
228 			pad_size = iova_get_pad_size(size, limit_pfn);
229 		if ((iovad->start_pfn + size + pad_size) > limit_pfn) {
230 			spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
231 			return -ENOMEM;
232 		}
233 	}
234 
235 	/* pfn_lo will point to size aligned address if size_aligned is set */
236 	new->pfn_lo = limit_pfn - (size + pad_size);
237 	new->pfn_hi = new->pfn_lo + size - 1;
238 
239 	/* If we have 'prev', it's a valid place to start the insertion. */
240 	iova_insert_rbtree(&iovad->rbroot, new, prev);
241 	__cached_rbnode_insert_update(iovad, saved_pfn, new);
242 
243 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
244 
245 
246 	return 0;
247 }
248 
249 static struct kmem_cache *iova_cache;
250 static unsigned int iova_cache_users;
251 static DEFINE_MUTEX(iova_cache_mutex);
252 
253 struct iova *alloc_iova_mem(void)
254 {
255 	return kmem_cache_alloc(iova_cache, GFP_ATOMIC);
256 }
257 EXPORT_SYMBOL(alloc_iova_mem);
258 
259 void free_iova_mem(struct iova *iova)
260 {
261 	kmem_cache_free(iova_cache, iova);
262 }
263 EXPORT_SYMBOL(free_iova_mem);
264 
265 int iova_cache_get(void)
266 {
267 	mutex_lock(&iova_cache_mutex);
268 	if (!iova_cache_users) {
269 		iova_cache = kmem_cache_create(
270 			"iommu_iova", sizeof(struct iova), 0,
271 			SLAB_HWCACHE_ALIGN, NULL);
272 		if (!iova_cache) {
273 			mutex_unlock(&iova_cache_mutex);
274 			printk(KERN_ERR "Couldn't create iova cache\n");
275 			return -ENOMEM;
276 		}
277 	}
278 
279 	iova_cache_users++;
280 	mutex_unlock(&iova_cache_mutex);
281 
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(iova_cache_get);
285 
286 void iova_cache_put(void)
287 {
288 	mutex_lock(&iova_cache_mutex);
289 	if (WARN_ON(!iova_cache_users)) {
290 		mutex_unlock(&iova_cache_mutex);
291 		return;
292 	}
293 	iova_cache_users--;
294 	if (!iova_cache_users)
295 		kmem_cache_destroy(iova_cache);
296 	mutex_unlock(&iova_cache_mutex);
297 }
298 EXPORT_SYMBOL_GPL(iova_cache_put);
299 
300 /**
301  * alloc_iova - allocates an iova
302  * @iovad: - iova domain in question
303  * @size: - size of page frames to allocate
304  * @limit_pfn: - max limit address
305  * @size_aligned: - set if size_aligned address range is required
306  * This function allocates an iova in the range iovad->start_pfn to limit_pfn,
307  * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned
308  * flag is set then the allocated address iova->pfn_lo will be naturally
309  * aligned on roundup_power_of_two(size).
310  */
311 struct iova *
312 alloc_iova(struct iova_domain *iovad, unsigned long size,
313 	unsigned long limit_pfn,
314 	bool size_aligned)
315 {
316 	struct iova *new_iova;
317 	int ret;
318 
319 	new_iova = alloc_iova_mem();
320 	if (!new_iova)
321 		return NULL;
322 
323 	ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1,
324 			new_iova, size_aligned);
325 
326 	if (ret) {
327 		free_iova_mem(new_iova);
328 		return NULL;
329 	}
330 
331 	return new_iova;
332 }
333 EXPORT_SYMBOL_GPL(alloc_iova);
334 
335 static struct iova *
336 private_find_iova(struct iova_domain *iovad, unsigned long pfn)
337 {
338 	struct rb_node *node = iovad->rbroot.rb_node;
339 
340 	assert_spin_locked(&iovad->iova_rbtree_lock);
341 
342 	while (node) {
343 		struct iova *iova = rb_entry(node, struct iova, node);
344 
345 		/* If pfn falls within iova's range, return iova */
346 		if ((pfn >= iova->pfn_lo) && (pfn <= iova->pfn_hi)) {
347 			return iova;
348 		}
349 
350 		if (pfn < iova->pfn_lo)
351 			node = node->rb_left;
352 		else if (pfn > iova->pfn_lo)
353 			node = node->rb_right;
354 	}
355 
356 	return NULL;
357 }
358 
359 static void private_free_iova(struct iova_domain *iovad, struct iova *iova)
360 {
361 	assert_spin_locked(&iovad->iova_rbtree_lock);
362 	__cached_rbnode_delete_update(iovad, iova);
363 	rb_erase(&iova->node, &iovad->rbroot);
364 	free_iova_mem(iova);
365 }
366 
367 /**
368  * find_iova - finds an iova for a given pfn
369  * @iovad: - iova domain in question.
370  * @pfn: - page frame number
371  * This function finds and returns an iova belonging to the
372  * given doamin which matches the given pfn.
373  */
374 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn)
375 {
376 	unsigned long flags;
377 	struct iova *iova;
378 
379 	/* Take the lock so that no other thread is manipulating the rbtree */
380 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
381 	iova = private_find_iova(iovad, pfn);
382 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
383 	return iova;
384 }
385 EXPORT_SYMBOL_GPL(find_iova);
386 
387 /**
388  * __free_iova - frees the given iova
389  * @iovad: iova domain in question.
390  * @iova: iova in question.
391  * Frees the given iova belonging to the giving domain
392  */
393 void
394 __free_iova(struct iova_domain *iovad, struct iova *iova)
395 {
396 	unsigned long flags;
397 
398 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
399 	private_free_iova(iovad, iova);
400 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
401 }
402 EXPORT_SYMBOL_GPL(__free_iova);
403 
404 /**
405  * free_iova - finds and frees the iova for a given pfn
406  * @iovad: - iova domain in question.
407  * @pfn: - pfn that is allocated previously
408  * This functions finds an iova for a given pfn and then
409  * frees the iova from that domain.
410  */
411 void
412 free_iova(struct iova_domain *iovad, unsigned long pfn)
413 {
414 	struct iova *iova = find_iova(iovad, pfn);
415 
416 	if (iova)
417 		__free_iova(iovad, iova);
418 
419 }
420 EXPORT_SYMBOL_GPL(free_iova);
421 
422 /**
423  * alloc_iova_fast - allocates an iova from rcache
424  * @iovad: - iova domain in question
425  * @size: - size of page frames to allocate
426  * @limit_pfn: - max limit address
427  * This function tries to satisfy an iova allocation from the rcache,
428  * and falls back to regular allocation on failure.
429 */
430 unsigned long
431 alloc_iova_fast(struct iova_domain *iovad, unsigned long size,
432 		unsigned long limit_pfn)
433 {
434 	bool flushed_rcache = false;
435 	unsigned long iova_pfn;
436 	struct iova *new_iova;
437 
438 	iova_pfn = iova_rcache_get(iovad, size, limit_pfn);
439 	if (iova_pfn)
440 		return iova_pfn;
441 
442 retry:
443 	new_iova = alloc_iova(iovad, size, limit_pfn, true);
444 	if (!new_iova) {
445 		unsigned int cpu;
446 
447 		if (flushed_rcache)
448 			return 0;
449 
450 		/* Try replenishing IOVAs by flushing rcache. */
451 		flushed_rcache = true;
452 		for_each_online_cpu(cpu)
453 			free_cpu_cached_iovas(cpu, iovad);
454 		goto retry;
455 	}
456 
457 	return new_iova->pfn_lo;
458 }
459 EXPORT_SYMBOL_GPL(alloc_iova_fast);
460 
461 /**
462  * free_iova_fast - free iova pfn range into rcache
463  * @iovad: - iova domain in question.
464  * @pfn: - pfn that is allocated previously
465  * @size: - # of pages in range
466  * This functions frees an iova range by trying to put it into the rcache,
467  * falling back to regular iova deallocation via free_iova() if this fails.
468  */
469 void
470 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size)
471 {
472 	if (iova_rcache_insert(iovad, pfn, size))
473 		return;
474 
475 	free_iova(iovad, pfn);
476 }
477 EXPORT_SYMBOL_GPL(free_iova_fast);
478 
479 #define fq_ring_for_each(i, fq) \
480 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
481 
482 static inline bool fq_full(struct iova_fq *fq)
483 {
484 	assert_spin_locked(&fq->lock);
485 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
486 }
487 
488 static inline unsigned fq_ring_add(struct iova_fq *fq)
489 {
490 	unsigned idx = fq->tail;
491 
492 	assert_spin_locked(&fq->lock);
493 
494 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
495 
496 	return idx;
497 }
498 
499 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq)
500 {
501 	u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt);
502 	unsigned idx;
503 
504 	assert_spin_locked(&fq->lock);
505 
506 	fq_ring_for_each(idx, fq) {
507 
508 		if (fq->entries[idx].counter >= counter)
509 			break;
510 
511 		if (iovad->entry_dtor)
512 			iovad->entry_dtor(fq->entries[idx].data);
513 
514 		free_iova_fast(iovad,
515 			       fq->entries[idx].iova_pfn,
516 			       fq->entries[idx].pages);
517 
518 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
519 	}
520 }
521 
522 static void iova_domain_flush(struct iova_domain *iovad)
523 {
524 	atomic64_inc(&iovad->fq_flush_start_cnt);
525 	iovad->flush_cb(iovad);
526 	atomic64_inc(&iovad->fq_flush_finish_cnt);
527 }
528 
529 static void fq_destroy_all_entries(struct iova_domain *iovad)
530 {
531 	int cpu;
532 
533 	/*
534 	 * This code runs when the iova_domain is being detroyed, so don't
535 	 * bother to free iovas, just call the entry_dtor on all remaining
536 	 * entries.
537 	 */
538 	if (!iovad->entry_dtor)
539 		return;
540 
541 	for_each_possible_cpu(cpu) {
542 		struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu);
543 		int idx;
544 
545 		fq_ring_for_each(idx, fq)
546 			iovad->entry_dtor(fq->entries[idx].data);
547 	}
548 }
549 
550 static void fq_flush_timeout(unsigned long data)
551 {
552 	struct iova_domain *iovad = (struct iova_domain *)data;
553 	int cpu;
554 
555 	atomic_set(&iovad->fq_timer_on, 0);
556 	iova_domain_flush(iovad);
557 
558 	for_each_possible_cpu(cpu) {
559 		unsigned long flags;
560 		struct iova_fq *fq;
561 
562 		fq = per_cpu_ptr(iovad->fq, cpu);
563 		spin_lock_irqsave(&fq->lock, flags);
564 		fq_ring_free(iovad, fq);
565 		spin_unlock_irqrestore(&fq->lock, flags);
566 	}
567 }
568 
569 void queue_iova(struct iova_domain *iovad,
570 		unsigned long pfn, unsigned long pages,
571 		unsigned long data)
572 {
573 	struct iova_fq *fq = get_cpu_ptr(iovad->fq);
574 	unsigned long flags;
575 	unsigned idx;
576 
577 	spin_lock_irqsave(&fq->lock, flags);
578 
579 	/*
580 	 * First remove all entries from the flush queue that have already been
581 	 * flushed out on another CPU. This makes the fq_full() check below less
582 	 * likely to be true.
583 	 */
584 	fq_ring_free(iovad, fq);
585 
586 	if (fq_full(fq)) {
587 		iova_domain_flush(iovad);
588 		fq_ring_free(iovad, fq);
589 	}
590 
591 	idx = fq_ring_add(fq);
592 
593 	fq->entries[idx].iova_pfn = pfn;
594 	fq->entries[idx].pages    = pages;
595 	fq->entries[idx].data     = data;
596 	fq->entries[idx].counter  = atomic64_read(&iovad->fq_flush_start_cnt);
597 
598 	spin_unlock_irqrestore(&fq->lock, flags);
599 
600 	if (atomic_cmpxchg(&iovad->fq_timer_on, 0, 1) == 0)
601 		mod_timer(&iovad->fq_timer,
602 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
603 
604 	put_cpu_ptr(iovad->fq);
605 }
606 EXPORT_SYMBOL_GPL(queue_iova);
607 
608 /**
609  * put_iova_domain - destroys the iova doamin
610  * @iovad: - iova domain in question.
611  * All the iova's in that domain are destroyed.
612  */
613 void put_iova_domain(struct iova_domain *iovad)
614 {
615 	struct rb_node *node;
616 	unsigned long flags;
617 
618 	free_iova_flush_queue(iovad);
619 	free_iova_rcaches(iovad);
620 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
621 	node = rb_first(&iovad->rbroot);
622 	while (node) {
623 		struct iova *iova = rb_entry(node, struct iova, node);
624 
625 		rb_erase(node, &iovad->rbroot);
626 		free_iova_mem(iova);
627 		node = rb_first(&iovad->rbroot);
628 	}
629 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
630 }
631 EXPORT_SYMBOL_GPL(put_iova_domain);
632 
633 static int
634 __is_range_overlap(struct rb_node *node,
635 	unsigned long pfn_lo, unsigned long pfn_hi)
636 {
637 	struct iova *iova = rb_entry(node, struct iova, node);
638 
639 	if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo))
640 		return 1;
641 	return 0;
642 }
643 
644 static inline struct iova *
645 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi)
646 {
647 	struct iova *iova;
648 
649 	iova = alloc_iova_mem();
650 	if (iova) {
651 		iova->pfn_lo = pfn_lo;
652 		iova->pfn_hi = pfn_hi;
653 	}
654 
655 	return iova;
656 }
657 
658 static struct iova *
659 __insert_new_range(struct iova_domain *iovad,
660 	unsigned long pfn_lo, unsigned long pfn_hi)
661 {
662 	struct iova *iova;
663 
664 	iova = alloc_and_init_iova(pfn_lo, pfn_hi);
665 	if (iova)
666 		iova_insert_rbtree(&iovad->rbroot, iova, NULL);
667 
668 	return iova;
669 }
670 
671 static void
672 __adjust_overlap_range(struct iova *iova,
673 	unsigned long *pfn_lo, unsigned long *pfn_hi)
674 {
675 	if (*pfn_lo < iova->pfn_lo)
676 		iova->pfn_lo = *pfn_lo;
677 	if (*pfn_hi > iova->pfn_hi)
678 		*pfn_lo = iova->pfn_hi + 1;
679 }
680 
681 /**
682  * reserve_iova - reserves an iova in the given range
683  * @iovad: - iova domain pointer
684  * @pfn_lo: - lower page frame address
685  * @pfn_hi:- higher pfn adderss
686  * This function allocates reserves the address range from pfn_lo to pfn_hi so
687  * that this address is not dished out as part of alloc_iova.
688  */
689 struct iova *
690 reserve_iova(struct iova_domain *iovad,
691 	unsigned long pfn_lo, unsigned long pfn_hi)
692 {
693 	struct rb_node *node;
694 	unsigned long flags;
695 	struct iova *iova;
696 	unsigned int overlap = 0;
697 
698 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
699 	for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) {
700 		if (__is_range_overlap(node, pfn_lo, pfn_hi)) {
701 			iova = rb_entry(node, struct iova, node);
702 			__adjust_overlap_range(iova, &pfn_lo, &pfn_hi);
703 			if ((pfn_lo >= iova->pfn_lo) &&
704 				(pfn_hi <= iova->pfn_hi))
705 				goto finish;
706 			overlap = 1;
707 
708 		} else if (overlap)
709 				break;
710 	}
711 
712 	/* We are here either because this is the first reserver node
713 	 * or need to insert remaining non overlap addr range
714 	 */
715 	iova = __insert_new_range(iovad, pfn_lo, pfn_hi);
716 finish:
717 
718 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
719 	return iova;
720 }
721 EXPORT_SYMBOL_GPL(reserve_iova);
722 
723 /**
724  * copy_reserved_iova - copies the reserved between domains
725  * @from: - source doamin from where to copy
726  * @to: - destination domin where to copy
727  * This function copies reserved iova's from one doamin to
728  * other.
729  */
730 void
731 copy_reserved_iova(struct iova_domain *from, struct iova_domain *to)
732 {
733 	unsigned long flags;
734 	struct rb_node *node;
735 
736 	spin_lock_irqsave(&from->iova_rbtree_lock, flags);
737 	for (node = rb_first(&from->rbroot); node; node = rb_next(node)) {
738 		struct iova *iova = rb_entry(node, struct iova, node);
739 		struct iova *new_iova;
740 
741 		new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi);
742 		if (!new_iova)
743 			printk(KERN_ERR "Reserve iova range %lx@%lx failed\n",
744 				iova->pfn_lo, iova->pfn_lo);
745 	}
746 	spin_unlock_irqrestore(&from->iova_rbtree_lock, flags);
747 }
748 EXPORT_SYMBOL_GPL(copy_reserved_iova);
749 
750 struct iova *
751 split_and_remove_iova(struct iova_domain *iovad, struct iova *iova,
752 		      unsigned long pfn_lo, unsigned long pfn_hi)
753 {
754 	unsigned long flags;
755 	struct iova *prev = NULL, *next = NULL;
756 
757 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
758 	if (iova->pfn_lo < pfn_lo) {
759 		prev = alloc_and_init_iova(iova->pfn_lo, pfn_lo - 1);
760 		if (prev == NULL)
761 			goto error;
762 	}
763 	if (iova->pfn_hi > pfn_hi) {
764 		next = alloc_and_init_iova(pfn_hi + 1, iova->pfn_hi);
765 		if (next == NULL)
766 			goto error;
767 	}
768 
769 	__cached_rbnode_delete_update(iovad, iova);
770 	rb_erase(&iova->node, &iovad->rbroot);
771 
772 	if (prev) {
773 		iova_insert_rbtree(&iovad->rbroot, prev, NULL);
774 		iova->pfn_lo = pfn_lo;
775 	}
776 	if (next) {
777 		iova_insert_rbtree(&iovad->rbroot, next, NULL);
778 		iova->pfn_hi = pfn_hi;
779 	}
780 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
781 
782 	return iova;
783 
784 error:
785 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
786 	if (prev)
787 		free_iova_mem(prev);
788 	return NULL;
789 }
790 
791 /*
792  * Magazine caches for IOVA ranges.  For an introduction to magazines,
793  * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab
794  * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams.
795  * For simplicity, we use a static magazine size and don't implement the
796  * dynamic size tuning described in the paper.
797  */
798 
799 #define IOVA_MAG_SIZE 128
800 
801 struct iova_magazine {
802 	unsigned long size;
803 	unsigned long pfns[IOVA_MAG_SIZE];
804 };
805 
806 struct iova_cpu_rcache {
807 	spinlock_t lock;
808 	struct iova_magazine *loaded;
809 	struct iova_magazine *prev;
810 };
811 
812 static struct iova_magazine *iova_magazine_alloc(gfp_t flags)
813 {
814 	return kzalloc(sizeof(struct iova_magazine), flags);
815 }
816 
817 static void iova_magazine_free(struct iova_magazine *mag)
818 {
819 	kfree(mag);
820 }
821 
822 static void
823 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad)
824 {
825 	unsigned long flags;
826 	int i;
827 
828 	if (!mag)
829 		return;
830 
831 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
832 
833 	for (i = 0 ; i < mag->size; ++i) {
834 		struct iova *iova = private_find_iova(iovad, mag->pfns[i]);
835 
836 		BUG_ON(!iova);
837 		private_free_iova(iovad, iova);
838 	}
839 
840 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
841 
842 	mag->size = 0;
843 }
844 
845 static bool iova_magazine_full(struct iova_magazine *mag)
846 {
847 	return (mag && mag->size == IOVA_MAG_SIZE);
848 }
849 
850 static bool iova_magazine_empty(struct iova_magazine *mag)
851 {
852 	return (!mag || mag->size == 0);
853 }
854 
855 static unsigned long iova_magazine_pop(struct iova_magazine *mag,
856 				       unsigned long limit_pfn)
857 {
858 	BUG_ON(iova_magazine_empty(mag));
859 
860 	if (mag->pfns[mag->size - 1] >= limit_pfn)
861 		return 0;
862 
863 	return mag->pfns[--mag->size];
864 }
865 
866 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn)
867 {
868 	BUG_ON(iova_magazine_full(mag));
869 
870 	mag->pfns[mag->size++] = pfn;
871 }
872 
873 static void init_iova_rcaches(struct iova_domain *iovad)
874 {
875 	struct iova_cpu_rcache *cpu_rcache;
876 	struct iova_rcache *rcache;
877 	unsigned int cpu;
878 	int i;
879 
880 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
881 		rcache = &iovad->rcaches[i];
882 		spin_lock_init(&rcache->lock);
883 		rcache->depot_size = 0;
884 		rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size());
885 		if (WARN_ON(!rcache->cpu_rcaches))
886 			continue;
887 		for_each_possible_cpu(cpu) {
888 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
889 			spin_lock_init(&cpu_rcache->lock);
890 			cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL);
891 			cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL);
892 		}
893 	}
894 }
895 
896 /*
897  * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and
898  * return true on success.  Can fail if rcache is full and we can't free
899  * space, and free_iova() (our only caller) will then return the IOVA
900  * range to the rbtree instead.
901  */
902 static bool __iova_rcache_insert(struct iova_domain *iovad,
903 				 struct iova_rcache *rcache,
904 				 unsigned long iova_pfn)
905 {
906 	struct iova_magazine *mag_to_free = NULL;
907 	struct iova_cpu_rcache *cpu_rcache;
908 	bool can_insert = false;
909 	unsigned long flags;
910 
911 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
912 	spin_lock_irqsave(&cpu_rcache->lock, flags);
913 
914 	if (!iova_magazine_full(cpu_rcache->loaded)) {
915 		can_insert = true;
916 	} else if (!iova_magazine_full(cpu_rcache->prev)) {
917 		swap(cpu_rcache->prev, cpu_rcache->loaded);
918 		can_insert = true;
919 	} else {
920 		struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC);
921 
922 		if (new_mag) {
923 			spin_lock(&rcache->lock);
924 			if (rcache->depot_size < MAX_GLOBAL_MAGS) {
925 				rcache->depot[rcache->depot_size++] =
926 						cpu_rcache->loaded;
927 			} else {
928 				mag_to_free = cpu_rcache->loaded;
929 			}
930 			spin_unlock(&rcache->lock);
931 
932 			cpu_rcache->loaded = new_mag;
933 			can_insert = true;
934 		}
935 	}
936 
937 	if (can_insert)
938 		iova_magazine_push(cpu_rcache->loaded, iova_pfn);
939 
940 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
941 
942 	if (mag_to_free) {
943 		iova_magazine_free_pfns(mag_to_free, iovad);
944 		iova_magazine_free(mag_to_free);
945 	}
946 
947 	return can_insert;
948 }
949 
950 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn,
951 			       unsigned long size)
952 {
953 	unsigned int log_size = order_base_2(size);
954 
955 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
956 		return false;
957 
958 	return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn);
959 }
960 
961 /*
962  * Caller wants to allocate a new IOVA range from 'rcache'.  If we can
963  * satisfy the request, return a matching non-NULL range and remove
964  * it from the 'rcache'.
965  */
966 static unsigned long __iova_rcache_get(struct iova_rcache *rcache,
967 				       unsigned long limit_pfn)
968 {
969 	struct iova_cpu_rcache *cpu_rcache;
970 	unsigned long iova_pfn = 0;
971 	bool has_pfn = false;
972 	unsigned long flags;
973 
974 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
975 	spin_lock_irqsave(&cpu_rcache->lock, flags);
976 
977 	if (!iova_magazine_empty(cpu_rcache->loaded)) {
978 		has_pfn = true;
979 	} else if (!iova_magazine_empty(cpu_rcache->prev)) {
980 		swap(cpu_rcache->prev, cpu_rcache->loaded);
981 		has_pfn = true;
982 	} else {
983 		spin_lock(&rcache->lock);
984 		if (rcache->depot_size > 0) {
985 			iova_magazine_free(cpu_rcache->loaded);
986 			cpu_rcache->loaded = rcache->depot[--rcache->depot_size];
987 			has_pfn = true;
988 		}
989 		spin_unlock(&rcache->lock);
990 	}
991 
992 	if (has_pfn)
993 		iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn);
994 
995 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
996 
997 	return iova_pfn;
998 }
999 
1000 /*
1001  * Try to satisfy IOVA allocation range from rcache.  Fail if requested
1002  * size is too big or the DMA limit we are given isn't satisfied by the
1003  * top element in the magazine.
1004  */
1005 static unsigned long iova_rcache_get(struct iova_domain *iovad,
1006 				     unsigned long size,
1007 				     unsigned long limit_pfn)
1008 {
1009 	unsigned int log_size = order_base_2(size);
1010 
1011 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
1012 		return 0;
1013 
1014 	return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn);
1015 }
1016 
1017 /*
1018  * Free a cpu's rcache.
1019  */
1020 static void free_cpu_iova_rcache(unsigned int cpu, struct iova_domain *iovad,
1021 				 struct iova_rcache *rcache)
1022 {
1023 	struct iova_cpu_rcache *cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1024 	unsigned long flags;
1025 
1026 	spin_lock_irqsave(&cpu_rcache->lock, flags);
1027 
1028 	iova_magazine_free_pfns(cpu_rcache->loaded, iovad);
1029 	iova_magazine_free(cpu_rcache->loaded);
1030 
1031 	iova_magazine_free_pfns(cpu_rcache->prev, iovad);
1032 	iova_magazine_free(cpu_rcache->prev);
1033 
1034 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1035 }
1036 
1037 /*
1038  * free rcache data structures.
1039  */
1040 static void free_iova_rcaches(struct iova_domain *iovad)
1041 {
1042 	struct iova_rcache *rcache;
1043 	unsigned long flags;
1044 	unsigned int cpu;
1045 	int i, j;
1046 
1047 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1048 		rcache = &iovad->rcaches[i];
1049 		for_each_possible_cpu(cpu)
1050 			free_cpu_iova_rcache(cpu, iovad, rcache);
1051 		spin_lock_irqsave(&rcache->lock, flags);
1052 		free_percpu(rcache->cpu_rcaches);
1053 		for (j = 0; j < rcache->depot_size; ++j) {
1054 			iova_magazine_free_pfns(rcache->depot[j], iovad);
1055 			iova_magazine_free(rcache->depot[j]);
1056 		}
1057 		spin_unlock_irqrestore(&rcache->lock, flags);
1058 	}
1059 }
1060 
1061 /*
1062  * free all the IOVA ranges cached by a cpu (used when cpu is unplugged)
1063  */
1064 void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad)
1065 {
1066 	struct iova_cpu_rcache *cpu_rcache;
1067 	struct iova_rcache *rcache;
1068 	unsigned long flags;
1069 	int i;
1070 
1071 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1072 		rcache = &iovad->rcaches[i];
1073 		cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1074 		spin_lock_irqsave(&cpu_rcache->lock, flags);
1075 		iova_magazine_free_pfns(cpu_rcache->loaded, iovad);
1076 		iova_magazine_free_pfns(cpu_rcache->prev, iovad);
1077 		spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1078 	}
1079 }
1080 
1081 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>");
1082 MODULE_LICENSE("GPL");
1083