1 /* 2 * Copyright © 2006-2009, Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 18 */ 19 20 #include <linux/iova.h> 21 #include <linux/module.h> 22 #include <linux/slab.h> 23 #include <linux/smp.h> 24 #include <linux/bitops.h> 25 #include <linux/cpu.h> 26 27 static bool iova_rcache_insert(struct iova_domain *iovad, 28 unsigned long pfn, 29 unsigned long size); 30 static unsigned long iova_rcache_get(struct iova_domain *iovad, 31 unsigned long size, 32 unsigned long limit_pfn); 33 static void init_iova_rcaches(struct iova_domain *iovad); 34 static void free_iova_rcaches(struct iova_domain *iovad); 35 static void fq_destroy_all_entries(struct iova_domain *iovad); 36 static void fq_flush_timeout(unsigned long data); 37 38 void 39 init_iova_domain(struct iova_domain *iovad, unsigned long granule, 40 unsigned long start_pfn, unsigned long pfn_32bit) 41 { 42 /* 43 * IOVA granularity will normally be equal to the smallest 44 * supported IOMMU page size; both *must* be capable of 45 * representing individual CPU pages exactly. 46 */ 47 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule)); 48 49 spin_lock_init(&iovad->iova_rbtree_lock); 50 iovad->rbroot = RB_ROOT; 51 iovad->cached32_node = NULL; 52 iovad->granule = granule; 53 iovad->start_pfn = start_pfn; 54 iovad->dma_32bit_pfn = pfn_32bit + 1; 55 iovad->flush_cb = NULL; 56 iovad->fq = NULL; 57 init_iova_rcaches(iovad); 58 } 59 EXPORT_SYMBOL_GPL(init_iova_domain); 60 61 static void free_iova_flush_queue(struct iova_domain *iovad) 62 { 63 if (!iovad->fq) 64 return; 65 66 if (timer_pending(&iovad->fq_timer)) 67 del_timer(&iovad->fq_timer); 68 69 fq_destroy_all_entries(iovad); 70 71 free_percpu(iovad->fq); 72 73 iovad->fq = NULL; 74 iovad->flush_cb = NULL; 75 iovad->entry_dtor = NULL; 76 } 77 78 int init_iova_flush_queue(struct iova_domain *iovad, 79 iova_flush_cb flush_cb, iova_entry_dtor entry_dtor) 80 { 81 int cpu; 82 83 atomic64_set(&iovad->fq_flush_start_cnt, 0); 84 atomic64_set(&iovad->fq_flush_finish_cnt, 0); 85 86 iovad->fq = alloc_percpu(struct iova_fq); 87 if (!iovad->fq) 88 return -ENOMEM; 89 90 iovad->flush_cb = flush_cb; 91 iovad->entry_dtor = entry_dtor; 92 93 for_each_possible_cpu(cpu) { 94 struct iova_fq *fq; 95 96 fq = per_cpu_ptr(iovad->fq, cpu); 97 fq->head = 0; 98 fq->tail = 0; 99 100 spin_lock_init(&fq->lock); 101 } 102 103 setup_timer(&iovad->fq_timer, fq_flush_timeout, (unsigned long)iovad); 104 atomic_set(&iovad->fq_timer_on, 0); 105 106 return 0; 107 } 108 EXPORT_SYMBOL_GPL(init_iova_flush_queue); 109 110 static struct rb_node * 111 __get_cached_rbnode(struct iova_domain *iovad, unsigned long *limit_pfn) 112 { 113 if ((*limit_pfn > iovad->dma_32bit_pfn) || 114 (iovad->cached32_node == NULL)) 115 return rb_last(&iovad->rbroot); 116 else { 117 struct rb_node *prev_node = rb_prev(iovad->cached32_node); 118 struct iova *curr_iova = 119 rb_entry(iovad->cached32_node, struct iova, node); 120 *limit_pfn = curr_iova->pfn_lo; 121 return prev_node; 122 } 123 } 124 125 static void 126 __cached_rbnode_insert_update(struct iova_domain *iovad, 127 unsigned long limit_pfn, struct iova *new) 128 { 129 if (limit_pfn != iovad->dma_32bit_pfn) 130 return; 131 iovad->cached32_node = &new->node; 132 } 133 134 static void 135 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) 136 { 137 struct iova *cached_iova; 138 struct rb_node *curr; 139 140 if (!iovad->cached32_node) 141 return; 142 curr = iovad->cached32_node; 143 cached_iova = rb_entry(curr, struct iova, node); 144 145 if (free->pfn_lo >= cached_iova->pfn_lo) { 146 struct rb_node *node = rb_next(&free->node); 147 struct iova *iova = rb_entry(node, struct iova, node); 148 149 /* only cache if it's below 32bit pfn */ 150 if (node && iova->pfn_lo < iovad->dma_32bit_pfn) 151 iovad->cached32_node = node; 152 else 153 iovad->cached32_node = NULL; 154 } 155 } 156 157 /* Insert the iova into domain rbtree by holding writer lock */ 158 static void 159 iova_insert_rbtree(struct rb_root *root, struct iova *iova, 160 struct rb_node *start) 161 { 162 struct rb_node **new, *parent = NULL; 163 164 new = (start) ? &start : &(root->rb_node); 165 /* Figure out where to put new node */ 166 while (*new) { 167 struct iova *this = rb_entry(*new, struct iova, node); 168 169 parent = *new; 170 171 if (iova->pfn_lo < this->pfn_lo) 172 new = &((*new)->rb_left); 173 else if (iova->pfn_lo > this->pfn_lo) 174 new = &((*new)->rb_right); 175 else { 176 WARN_ON(1); /* this should not happen */ 177 return; 178 } 179 } 180 /* Add new node and rebalance tree. */ 181 rb_link_node(&iova->node, parent, new); 182 rb_insert_color(&iova->node, root); 183 } 184 185 /* 186 * Computes the padding size required, to make the start address 187 * naturally aligned on the power-of-two order of its size 188 */ 189 static unsigned int 190 iova_get_pad_size(unsigned int size, unsigned int limit_pfn) 191 { 192 return (limit_pfn - size) & (__roundup_pow_of_two(size) - 1); 193 } 194 195 static int __alloc_and_insert_iova_range(struct iova_domain *iovad, 196 unsigned long size, unsigned long limit_pfn, 197 struct iova *new, bool size_aligned) 198 { 199 struct rb_node *prev, *curr = NULL; 200 unsigned long flags; 201 unsigned long saved_pfn; 202 unsigned int pad_size = 0; 203 204 /* Walk the tree backwards */ 205 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 206 saved_pfn = limit_pfn; 207 curr = __get_cached_rbnode(iovad, &limit_pfn); 208 prev = curr; 209 while (curr) { 210 struct iova *curr_iova = rb_entry(curr, struct iova, node); 211 212 if (limit_pfn <= curr_iova->pfn_lo) { 213 goto move_left; 214 } else if (limit_pfn > curr_iova->pfn_hi) { 215 if (size_aligned) 216 pad_size = iova_get_pad_size(size, limit_pfn); 217 if ((curr_iova->pfn_hi + size + pad_size) < limit_pfn) 218 break; /* found a free slot */ 219 } 220 limit_pfn = curr_iova->pfn_lo; 221 move_left: 222 prev = curr; 223 curr = rb_prev(curr); 224 } 225 226 if (!curr) { 227 if (size_aligned) 228 pad_size = iova_get_pad_size(size, limit_pfn); 229 if ((iovad->start_pfn + size + pad_size) > limit_pfn) { 230 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 231 return -ENOMEM; 232 } 233 } 234 235 /* pfn_lo will point to size aligned address if size_aligned is set */ 236 new->pfn_lo = limit_pfn - (size + pad_size); 237 new->pfn_hi = new->pfn_lo + size - 1; 238 239 /* If we have 'prev', it's a valid place to start the insertion. */ 240 iova_insert_rbtree(&iovad->rbroot, new, prev); 241 __cached_rbnode_insert_update(iovad, saved_pfn, new); 242 243 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 244 245 246 return 0; 247 } 248 249 static struct kmem_cache *iova_cache; 250 static unsigned int iova_cache_users; 251 static DEFINE_MUTEX(iova_cache_mutex); 252 253 struct iova *alloc_iova_mem(void) 254 { 255 return kmem_cache_alloc(iova_cache, GFP_ATOMIC); 256 } 257 EXPORT_SYMBOL(alloc_iova_mem); 258 259 void free_iova_mem(struct iova *iova) 260 { 261 kmem_cache_free(iova_cache, iova); 262 } 263 EXPORT_SYMBOL(free_iova_mem); 264 265 int iova_cache_get(void) 266 { 267 mutex_lock(&iova_cache_mutex); 268 if (!iova_cache_users) { 269 iova_cache = kmem_cache_create( 270 "iommu_iova", sizeof(struct iova), 0, 271 SLAB_HWCACHE_ALIGN, NULL); 272 if (!iova_cache) { 273 mutex_unlock(&iova_cache_mutex); 274 printk(KERN_ERR "Couldn't create iova cache\n"); 275 return -ENOMEM; 276 } 277 } 278 279 iova_cache_users++; 280 mutex_unlock(&iova_cache_mutex); 281 282 return 0; 283 } 284 EXPORT_SYMBOL_GPL(iova_cache_get); 285 286 void iova_cache_put(void) 287 { 288 mutex_lock(&iova_cache_mutex); 289 if (WARN_ON(!iova_cache_users)) { 290 mutex_unlock(&iova_cache_mutex); 291 return; 292 } 293 iova_cache_users--; 294 if (!iova_cache_users) 295 kmem_cache_destroy(iova_cache); 296 mutex_unlock(&iova_cache_mutex); 297 } 298 EXPORT_SYMBOL_GPL(iova_cache_put); 299 300 /** 301 * alloc_iova - allocates an iova 302 * @iovad: - iova domain in question 303 * @size: - size of page frames to allocate 304 * @limit_pfn: - max limit address 305 * @size_aligned: - set if size_aligned address range is required 306 * This function allocates an iova in the range iovad->start_pfn to limit_pfn, 307 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned 308 * flag is set then the allocated address iova->pfn_lo will be naturally 309 * aligned on roundup_power_of_two(size). 310 */ 311 struct iova * 312 alloc_iova(struct iova_domain *iovad, unsigned long size, 313 unsigned long limit_pfn, 314 bool size_aligned) 315 { 316 struct iova *new_iova; 317 int ret; 318 319 new_iova = alloc_iova_mem(); 320 if (!new_iova) 321 return NULL; 322 323 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1, 324 new_iova, size_aligned); 325 326 if (ret) { 327 free_iova_mem(new_iova); 328 return NULL; 329 } 330 331 return new_iova; 332 } 333 EXPORT_SYMBOL_GPL(alloc_iova); 334 335 static struct iova * 336 private_find_iova(struct iova_domain *iovad, unsigned long pfn) 337 { 338 struct rb_node *node = iovad->rbroot.rb_node; 339 340 assert_spin_locked(&iovad->iova_rbtree_lock); 341 342 while (node) { 343 struct iova *iova = rb_entry(node, struct iova, node); 344 345 /* If pfn falls within iova's range, return iova */ 346 if ((pfn >= iova->pfn_lo) && (pfn <= iova->pfn_hi)) { 347 return iova; 348 } 349 350 if (pfn < iova->pfn_lo) 351 node = node->rb_left; 352 else if (pfn > iova->pfn_lo) 353 node = node->rb_right; 354 } 355 356 return NULL; 357 } 358 359 static void private_free_iova(struct iova_domain *iovad, struct iova *iova) 360 { 361 assert_spin_locked(&iovad->iova_rbtree_lock); 362 __cached_rbnode_delete_update(iovad, iova); 363 rb_erase(&iova->node, &iovad->rbroot); 364 free_iova_mem(iova); 365 } 366 367 /** 368 * find_iova - finds an iova for a given pfn 369 * @iovad: - iova domain in question. 370 * @pfn: - page frame number 371 * This function finds and returns an iova belonging to the 372 * given doamin which matches the given pfn. 373 */ 374 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) 375 { 376 unsigned long flags; 377 struct iova *iova; 378 379 /* Take the lock so that no other thread is manipulating the rbtree */ 380 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 381 iova = private_find_iova(iovad, pfn); 382 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 383 return iova; 384 } 385 EXPORT_SYMBOL_GPL(find_iova); 386 387 /** 388 * __free_iova - frees the given iova 389 * @iovad: iova domain in question. 390 * @iova: iova in question. 391 * Frees the given iova belonging to the giving domain 392 */ 393 void 394 __free_iova(struct iova_domain *iovad, struct iova *iova) 395 { 396 unsigned long flags; 397 398 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 399 private_free_iova(iovad, iova); 400 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 401 } 402 EXPORT_SYMBOL_GPL(__free_iova); 403 404 /** 405 * free_iova - finds and frees the iova for a given pfn 406 * @iovad: - iova domain in question. 407 * @pfn: - pfn that is allocated previously 408 * This functions finds an iova for a given pfn and then 409 * frees the iova from that domain. 410 */ 411 void 412 free_iova(struct iova_domain *iovad, unsigned long pfn) 413 { 414 struct iova *iova = find_iova(iovad, pfn); 415 416 if (iova) 417 __free_iova(iovad, iova); 418 419 } 420 EXPORT_SYMBOL_GPL(free_iova); 421 422 /** 423 * alloc_iova_fast - allocates an iova from rcache 424 * @iovad: - iova domain in question 425 * @size: - size of page frames to allocate 426 * @limit_pfn: - max limit address 427 * This function tries to satisfy an iova allocation from the rcache, 428 * and falls back to regular allocation on failure. 429 */ 430 unsigned long 431 alloc_iova_fast(struct iova_domain *iovad, unsigned long size, 432 unsigned long limit_pfn) 433 { 434 bool flushed_rcache = false; 435 unsigned long iova_pfn; 436 struct iova *new_iova; 437 438 iova_pfn = iova_rcache_get(iovad, size, limit_pfn); 439 if (iova_pfn) 440 return iova_pfn; 441 442 retry: 443 new_iova = alloc_iova(iovad, size, limit_pfn, true); 444 if (!new_iova) { 445 unsigned int cpu; 446 447 if (flushed_rcache) 448 return 0; 449 450 /* Try replenishing IOVAs by flushing rcache. */ 451 flushed_rcache = true; 452 for_each_online_cpu(cpu) 453 free_cpu_cached_iovas(cpu, iovad); 454 goto retry; 455 } 456 457 return new_iova->pfn_lo; 458 } 459 EXPORT_SYMBOL_GPL(alloc_iova_fast); 460 461 /** 462 * free_iova_fast - free iova pfn range into rcache 463 * @iovad: - iova domain in question. 464 * @pfn: - pfn that is allocated previously 465 * @size: - # of pages in range 466 * This functions frees an iova range by trying to put it into the rcache, 467 * falling back to regular iova deallocation via free_iova() if this fails. 468 */ 469 void 470 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size) 471 { 472 if (iova_rcache_insert(iovad, pfn, size)) 473 return; 474 475 free_iova(iovad, pfn); 476 } 477 EXPORT_SYMBOL_GPL(free_iova_fast); 478 479 #define fq_ring_for_each(i, fq) \ 480 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 481 482 static inline bool fq_full(struct iova_fq *fq) 483 { 484 assert_spin_locked(&fq->lock); 485 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 486 } 487 488 static inline unsigned fq_ring_add(struct iova_fq *fq) 489 { 490 unsigned idx = fq->tail; 491 492 assert_spin_locked(&fq->lock); 493 494 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 495 496 return idx; 497 } 498 499 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq) 500 { 501 u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt); 502 unsigned idx; 503 504 assert_spin_locked(&fq->lock); 505 506 fq_ring_for_each(idx, fq) { 507 508 if (fq->entries[idx].counter >= counter) 509 break; 510 511 if (iovad->entry_dtor) 512 iovad->entry_dtor(fq->entries[idx].data); 513 514 free_iova_fast(iovad, 515 fq->entries[idx].iova_pfn, 516 fq->entries[idx].pages); 517 518 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 519 } 520 } 521 522 static void iova_domain_flush(struct iova_domain *iovad) 523 { 524 atomic64_inc(&iovad->fq_flush_start_cnt); 525 iovad->flush_cb(iovad); 526 atomic64_inc(&iovad->fq_flush_finish_cnt); 527 } 528 529 static void fq_destroy_all_entries(struct iova_domain *iovad) 530 { 531 int cpu; 532 533 /* 534 * This code runs when the iova_domain is being detroyed, so don't 535 * bother to free iovas, just call the entry_dtor on all remaining 536 * entries. 537 */ 538 if (!iovad->entry_dtor) 539 return; 540 541 for_each_possible_cpu(cpu) { 542 struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu); 543 int idx; 544 545 fq_ring_for_each(idx, fq) 546 iovad->entry_dtor(fq->entries[idx].data); 547 } 548 } 549 550 static void fq_flush_timeout(unsigned long data) 551 { 552 struct iova_domain *iovad = (struct iova_domain *)data; 553 int cpu; 554 555 atomic_set(&iovad->fq_timer_on, 0); 556 iova_domain_flush(iovad); 557 558 for_each_possible_cpu(cpu) { 559 unsigned long flags; 560 struct iova_fq *fq; 561 562 fq = per_cpu_ptr(iovad->fq, cpu); 563 spin_lock_irqsave(&fq->lock, flags); 564 fq_ring_free(iovad, fq); 565 spin_unlock_irqrestore(&fq->lock, flags); 566 } 567 } 568 569 void queue_iova(struct iova_domain *iovad, 570 unsigned long pfn, unsigned long pages, 571 unsigned long data) 572 { 573 struct iova_fq *fq = get_cpu_ptr(iovad->fq); 574 unsigned long flags; 575 unsigned idx; 576 577 spin_lock_irqsave(&fq->lock, flags); 578 579 /* 580 * First remove all entries from the flush queue that have already been 581 * flushed out on another CPU. This makes the fq_full() check below less 582 * likely to be true. 583 */ 584 fq_ring_free(iovad, fq); 585 586 if (fq_full(fq)) { 587 iova_domain_flush(iovad); 588 fq_ring_free(iovad, fq); 589 } 590 591 idx = fq_ring_add(fq); 592 593 fq->entries[idx].iova_pfn = pfn; 594 fq->entries[idx].pages = pages; 595 fq->entries[idx].data = data; 596 fq->entries[idx].counter = atomic64_read(&iovad->fq_flush_start_cnt); 597 598 spin_unlock_irqrestore(&fq->lock, flags); 599 600 if (atomic_cmpxchg(&iovad->fq_timer_on, 0, 1) == 0) 601 mod_timer(&iovad->fq_timer, 602 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 603 604 put_cpu_ptr(iovad->fq); 605 } 606 EXPORT_SYMBOL_GPL(queue_iova); 607 608 /** 609 * put_iova_domain - destroys the iova doamin 610 * @iovad: - iova domain in question. 611 * All the iova's in that domain are destroyed. 612 */ 613 void put_iova_domain(struct iova_domain *iovad) 614 { 615 struct rb_node *node; 616 unsigned long flags; 617 618 free_iova_flush_queue(iovad); 619 free_iova_rcaches(iovad); 620 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 621 node = rb_first(&iovad->rbroot); 622 while (node) { 623 struct iova *iova = rb_entry(node, struct iova, node); 624 625 rb_erase(node, &iovad->rbroot); 626 free_iova_mem(iova); 627 node = rb_first(&iovad->rbroot); 628 } 629 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 630 } 631 EXPORT_SYMBOL_GPL(put_iova_domain); 632 633 static int 634 __is_range_overlap(struct rb_node *node, 635 unsigned long pfn_lo, unsigned long pfn_hi) 636 { 637 struct iova *iova = rb_entry(node, struct iova, node); 638 639 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) 640 return 1; 641 return 0; 642 } 643 644 static inline struct iova * 645 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi) 646 { 647 struct iova *iova; 648 649 iova = alloc_iova_mem(); 650 if (iova) { 651 iova->pfn_lo = pfn_lo; 652 iova->pfn_hi = pfn_hi; 653 } 654 655 return iova; 656 } 657 658 static struct iova * 659 __insert_new_range(struct iova_domain *iovad, 660 unsigned long pfn_lo, unsigned long pfn_hi) 661 { 662 struct iova *iova; 663 664 iova = alloc_and_init_iova(pfn_lo, pfn_hi); 665 if (iova) 666 iova_insert_rbtree(&iovad->rbroot, iova, NULL); 667 668 return iova; 669 } 670 671 static void 672 __adjust_overlap_range(struct iova *iova, 673 unsigned long *pfn_lo, unsigned long *pfn_hi) 674 { 675 if (*pfn_lo < iova->pfn_lo) 676 iova->pfn_lo = *pfn_lo; 677 if (*pfn_hi > iova->pfn_hi) 678 *pfn_lo = iova->pfn_hi + 1; 679 } 680 681 /** 682 * reserve_iova - reserves an iova in the given range 683 * @iovad: - iova domain pointer 684 * @pfn_lo: - lower page frame address 685 * @pfn_hi:- higher pfn adderss 686 * This function allocates reserves the address range from pfn_lo to pfn_hi so 687 * that this address is not dished out as part of alloc_iova. 688 */ 689 struct iova * 690 reserve_iova(struct iova_domain *iovad, 691 unsigned long pfn_lo, unsigned long pfn_hi) 692 { 693 struct rb_node *node; 694 unsigned long flags; 695 struct iova *iova; 696 unsigned int overlap = 0; 697 698 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 699 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { 700 if (__is_range_overlap(node, pfn_lo, pfn_hi)) { 701 iova = rb_entry(node, struct iova, node); 702 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); 703 if ((pfn_lo >= iova->pfn_lo) && 704 (pfn_hi <= iova->pfn_hi)) 705 goto finish; 706 overlap = 1; 707 708 } else if (overlap) 709 break; 710 } 711 712 /* We are here either because this is the first reserver node 713 * or need to insert remaining non overlap addr range 714 */ 715 iova = __insert_new_range(iovad, pfn_lo, pfn_hi); 716 finish: 717 718 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 719 return iova; 720 } 721 EXPORT_SYMBOL_GPL(reserve_iova); 722 723 /** 724 * copy_reserved_iova - copies the reserved between domains 725 * @from: - source doamin from where to copy 726 * @to: - destination domin where to copy 727 * This function copies reserved iova's from one doamin to 728 * other. 729 */ 730 void 731 copy_reserved_iova(struct iova_domain *from, struct iova_domain *to) 732 { 733 unsigned long flags; 734 struct rb_node *node; 735 736 spin_lock_irqsave(&from->iova_rbtree_lock, flags); 737 for (node = rb_first(&from->rbroot); node; node = rb_next(node)) { 738 struct iova *iova = rb_entry(node, struct iova, node); 739 struct iova *new_iova; 740 741 new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi); 742 if (!new_iova) 743 printk(KERN_ERR "Reserve iova range %lx@%lx failed\n", 744 iova->pfn_lo, iova->pfn_lo); 745 } 746 spin_unlock_irqrestore(&from->iova_rbtree_lock, flags); 747 } 748 EXPORT_SYMBOL_GPL(copy_reserved_iova); 749 750 struct iova * 751 split_and_remove_iova(struct iova_domain *iovad, struct iova *iova, 752 unsigned long pfn_lo, unsigned long pfn_hi) 753 { 754 unsigned long flags; 755 struct iova *prev = NULL, *next = NULL; 756 757 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 758 if (iova->pfn_lo < pfn_lo) { 759 prev = alloc_and_init_iova(iova->pfn_lo, pfn_lo - 1); 760 if (prev == NULL) 761 goto error; 762 } 763 if (iova->pfn_hi > pfn_hi) { 764 next = alloc_and_init_iova(pfn_hi + 1, iova->pfn_hi); 765 if (next == NULL) 766 goto error; 767 } 768 769 __cached_rbnode_delete_update(iovad, iova); 770 rb_erase(&iova->node, &iovad->rbroot); 771 772 if (prev) { 773 iova_insert_rbtree(&iovad->rbroot, prev, NULL); 774 iova->pfn_lo = pfn_lo; 775 } 776 if (next) { 777 iova_insert_rbtree(&iovad->rbroot, next, NULL); 778 iova->pfn_hi = pfn_hi; 779 } 780 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 781 782 return iova; 783 784 error: 785 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 786 if (prev) 787 free_iova_mem(prev); 788 return NULL; 789 } 790 791 /* 792 * Magazine caches for IOVA ranges. For an introduction to magazines, 793 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab 794 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams. 795 * For simplicity, we use a static magazine size and don't implement the 796 * dynamic size tuning described in the paper. 797 */ 798 799 #define IOVA_MAG_SIZE 128 800 801 struct iova_magazine { 802 unsigned long size; 803 unsigned long pfns[IOVA_MAG_SIZE]; 804 }; 805 806 struct iova_cpu_rcache { 807 spinlock_t lock; 808 struct iova_magazine *loaded; 809 struct iova_magazine *prev; 810 }; 811 812 static struct iova_magazine *iova_magazine_alloc(gfp_t flags) 813 { 814 return kzalloc(sizeof(struct iova_magazine), flags); 815 } 816 817 static void iova_magazine_free(struct iova_magazine *mag) 818 { 819 kfree(mag); 820 } 821 822 static void 823 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad) 824 { 825 unsigned long flags; 826 int i; 827 828 if (!mag) 829 return; 830 831 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 832 833 for (i = 0 ; i < mag->size; ++i) { 834 struct iova *iova = private_find_iova(iovad, mag->pfns[i]); 835 836 BUG_ON(!iova); 837 private_free_iova(iovad, iova); 838 } 839 840 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 841 842 mag->size = 0; 843 } 844 845 static bool iova_magazine_full(struct iova_magazine *mag) 846 { 847 return (mag && mag->size == IOVA_MAG_SIZE); 848 } 849 850 static bool iova_magazine_empty(struct iova_magazine *mag) 851 { 852 return (!mag || mag->size == 0); 853 } 854 855 static unsigned long iova_magazine_pop(struct iova_magazine *mag, 856 unsigned long limit_pfn) 857 { 858 BUG_ON(iova_magazine_empty(mag)); 859 860 if (mag->pfns[mag->size - 1] >= limit_pfn) 861 return 0; 862 863 return mag->pfns[--mag->size]; 864 } 865 866 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn) 867 { 868 BUG_ON(iova_magazine_full(mag)); 869 870 mag->pfns[mag->size++] = pfn; 871 } 872 873 static void init_iova_rcaches(struct iova_domain *iovad) 874 { 875 struct iova_cpu_rcache *cpu_rcache; 876 struct iova_rcache *rcache; 877 unsigned int cpu; 878 int i; 879 880 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 881 rcache = &iovad->rcaches[i]; 882 spin_lock_init(&rcache->lock); 883 rcache->depot_size = 0; 884 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size()); 885 if (WARN_ON(!rcache->cpu_rcaches)) 886 continue; 887 for_each_possible_cpu(cpu) { 888 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 889 spin_lock_init(&cpu_rcache->lock); 890 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL); 891 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL); 892 } 893 } 894 } 895 896 /* 897 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and 898 * return true on success. Can fail if rcache is full and we can't free 899 * space, and free_iova() (our only caller) will then return the IOVA 900 * range to the rbtree instead. 901 */ 902 static bool __iova_rcache_insert(struct iova_domain *iovad, 903 struct iova_rcache *rcache, 904 unsigned long iova_pfn) 905 { 906 struct iova_magazine *mag_to_free = NULL; 907 struct iova_cpu_rcache *cpu_rcache; 908 bool can_insert = false; 909 unsigned long flags; 910 911 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 912 spin_lock_irqsave(&cpu_rcache->lock, flags); 913 914 if (!iova_magazine_full(cpu_rcache->loaded)) { 915 can_insert = true; 916 } else if (!iova_magazine_full(cpu_rcache->prev)) { 917 swap(cpu_rcache->prev, cpu_rcache->loaded); 918 can_insert = true; 919 } else { 920 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC); 921 922 if (new_mag) { 923 spin_lock(&rcache->lock); 924 if (rcache->depot_size < MAX_GLOBAL_MAGS) { 925 rcache->depot[rcache->depot_size++] = 926 cpu_rcache->loaded; 927 } else { 928 mag_to_free = cpu_rcache->loaded; 929 } 930 spin_unlock(&rcache->lock); 931 932 cpu_rcache->loaded = new_mag; 933 can_insert = true; 934 } 935 } 936 937 if (can_insert) 938 iova_magazine_push(cpu_rcache->loaded, iova_pfn); 939 940 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 941 942 if (mag_to_free) { 943 iova_magazine_free_pfns(mag_to_free, iovad); 944 iova_magazine_free(mag_to_free); 945 } 946 947 return can_insert; 948 } 949 950 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn, 951 unsigned long size) 952 { 953 unsigned int log_size = order_base_2(size); 954 955 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 956 return false; 957 958 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn); 959 } 960 961 /* 962 * Caller wants to allocate a new IOVA range from 'rcache'. If we can 963 * satisfy the request, return a matching non-NULL range and remove 964 * it from the 'rcache'. 965 */ 966 static unsigned long __iova_rcache_get(struct iova_rcache *rcache, 967 unsigned long limit_pfn) 968 { 969 struct iova_cpu_rcache *cpu_rcache; 970 unsigned long iova_pfn = 0; 971 bool has_pfn = false; 972 unsigned long flags; 973 974 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 975 spin_lock_irqsave(&cpu_rcache->lock, flags); 976 977 if (!iova_magazine_empty(cpu_rcache->loaded)) { 978 has_pfn = true; 979 } else if (!iova_magazine_empty(cpu_rcache->prev)) { 980 swap(cpu_rcache->prev, cpu_rcache->loaded); 981 has_pfn = true; 982 } else { 983 spin_lock(&rcache->lock); 984 if (rcache->depot_size > 0) { 985 iova_magazine_free(cpu_rcache->loaded); 986 cpu_rcache->loaded = rcache->depot[--rcache->depot_size]; 987 has_pfn = true; 988 } 989 spin_unlock(&rcache->lock); 990 } 991 992 if (has_pfn) 993 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn); 994 995 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 996 997 return iova_pfn; 998 } 999 1000 /* 1001 * Try to satisfy IOVA allocation range from rcache. Fail if requested 1002 * size is too big or the DMA limit we are given isn't satisfied by the 1003 * top element in the magazine. 1004 */ 1005 static unsigned long iova_rcache_get(struct iova_domain *iovad, 1006 unsigned long size, 1007 unsigned long limit_pfn) 1008 { 1009 unsigned int log_size = order_base_2(size); 1010 1011 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 1012 return 0; 1013 1014 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn); 1015 } 1016 1017 /* 1018 * Free a cpu's rcache. 1019 */ 1020 static void free_cpu_iova_rcache(unsigned int cpu, struct iova_domain *iovad, 1021 struct iova_rcache *rcache) 1022 { 1023 struct iova_cpu_rcache *cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1024 unsigned long flags; 1025 1026 spin_lock_irqsave(&cpu_rcache->lock, flags); 1027 1028 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 1029 iova_magazine_free(cpu_rcache->loaded); 1030 1031 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 1032 iova_magazine_free(cpu_rcache->prev); 1033 1034 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 1035 } 1036 1037 /* 1038 * free rcache data structures. 1039 */ 1040 static void free_iova_rcaches(struct iova_domain *iovad) 1041 { 1042 struct iova_rcache *rcache; 1043 unsigned long flags; 1044 unsigned int cpu; 1045 int i, j; 1046 1047 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1048 rcache = &iovad->rcaches[i]; 1049 for_each_possible_cpu(cpu) 1050 free_cpu_iova_rcache(cpu, iovad, rcache); 1051 spin_lock_irqsave(&rcache->lock, flags); 1052 free_percpu(rcache->cpu_rcaches); 1053 for (j = 0; j < rcache->depot_size; ++j) { 1054 iova_magazine_free_pfns(rcache->depot[j], iovad); 1055 iova_magazine_free(rcache->depot[j]); 1056 } 1057 spin_unlock_irqrestore(&rcache->lock, flags); 1058 } 1059 } 1060 1061 /* 1062 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged) 1063 */ 1064 void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad) 1065 { 1066 struct iova_cpu_rcache *cpu_rcache; 1067 struct iova_rcache *rcache; 1068 unsigned long flags; 1069 int i; 1070 1071 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1072 rcache = &iovad->rcaches[i]; 1073 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1074 spin_lock_irqsave(&cpu_rcache->lock, flags); 1075 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 1076 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 1077 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 1078 } 1079 } 1080 1081 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>"); 1082 MODULE_LICENSE("GPL"); 1083