1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2009, Intel Corporation. 4 * 5 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 6 */ 7 8 #include <linux/iova.h> 9 #include <linux/module.h> 10 #include <linux/slab.h> 11 #include <linux/smp.h> 12 #include <linux/bitops.h> 13 #include <linux/cpu.h> 14 #include <linux/workqueue.h> 15 16 /* The anchor node sits above the top of the usable address space */ 17 #define IOVA_ANCHOR ~0UL 18 19 #define IOVA_RANGE_CACHE_MAX_SIZE 6 /* log of max cached IOVA range size (in pages) */ 20 21 static bool iova_rcache_insert(struct iova_domain *iovad, 22 unsigned long pfn, 23 unsigned long size); 24 static unsigned long iova_rcache_get(struct iova_domain *iovad, 25 unsigned long size, 26 unsigned long limit_pfn); 27 static void free_iova_rcaches(struct iova_domain *iovad); 28 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad); 29 static void free_global_cached_iovas(struct iova_domain *iovad); 30 31 static struct iova *to_iova(struct rb_node *node) 32 { 33 return rb_entry(node, struct iova, node); 34 } 35 36 void 37 init_iova_domain(struct iova_domain *iovad, unsigned long granule, 38 unsigned long start_pfn) 39 { 40 /* 41 * IOVA granularity will normally be equal to the smallest 42 * supported IOMMU page size; both *must* be capable of 43 * representing individual CPU pages exactly. 44 */ 45 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule)); 46 47 spin_lock_init(&iovad->iova_rbtree_lock); 48 iovad->rbroot = RB_ROOT; 49 iovad->cached_node = &iovad->anchor.node; 50 iovad->cached32_node = &iovad->anchor.node; 51 iovad->granule = granule; 52 iovad->start_pfn = start_pfn; 53 iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad)); 54 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 55 iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR; 56 rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node); 57 rb_insert_color(&iovad->anchor.node, &iovad->rbroot); 58 } 59 EXPORT_SYMBOL_GPL(init_iova_domain); 60 61 static struct rb_node * 62 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn) 63 { 64 if (limit_pfn <= iovad->dma_32bit_pfn) 65 return iovad->cached32_node; 66 67 return iovad->cached_node; 68 } 69 70 static void 71 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new) 72 { 73 if (new->pfn_hi < iovad->dma_32bit_pfn) 74 iovad->cached32_node = &new->node; 75 else 76 iovad->cached_node = &new->node; 77 } 78 79 static void 80 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) 81 { 82 struct iova *cached_iova; 83 84 cached_iova = to_iova(iovad->cached32_node); 85 if (free == cached_iova || 86 (free->pfn_hi < iovad->dma_32bit_pfn && 87 free->pfn_lo >= cached_iova->pfn_lo)) 88 iovad->cached32_node = rb_next(&free->node); 89 90 if (free->pfn_lo < iovad->dma_32bit_pfn) 91 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 92 93 cached_iova = to_iova(iovad->cached_node); 94 if (free->pfn_lo >= cached_iova->pfn_lo) 95 iovad->cached_node = rb_next(&free->node); 96 } 97 98 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn) 99 { 100 struct rb_node *node, *next; 101 /* 102 * Ideally what we'd like to judge here is whether limit_pfn is close 103 * enough to the highest-allocated IOVA that starting the allocation 104 * walk from the anchor node will be quicker than this initial work to 105 * find an exact starting point (especially if that ends up being the 106 * anchor node anyway). This is an incredibly crude approximation which 107 * only really helps the most likely case, but is at least trivially easy. 108 */ 109 if (limit_pfn > iovad->dma_32bit_pfn) 110 return &iovad->anchor.node; 111 112 node = iovad->rbroot.rb_node; 113 while (to_iova(node)->pfn_hi < limit_pfn) 114 node = node->rb_right; 115 116 search_left: 117 while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn) 118 node = node->rb_left; 119 120 if (!node->rb_left) 121 return node; 122 123 next = node->rb_left; 124 while (next->rb_right) { 125 next = next->rb_right; 126 if (to_iova(next)->pfn_lo >= limit_pfn) { 127 node = next; 128 goto search_left; 129 } 130 } 131 132 return node; 133 } 134 135 /* Insert the iova into domain rbtree by holding writer lock */ 136 static void 137 iova_insert_rbtree(struct rb_root *root, struct iova *iova, 138 struct rb_node *start) 139 { 140 struct rb_node **new, *parent = NULL; 141 142 new = (start) ? &start : &(root->rb_node); 143 /* Figure out where to put new node */ 144 while (*new) { 145 struct iova *this = to_iova(*new); 146 147 parent = *new; 148 149 if (iova->pfn_lo < this->pfn_lo) 150 new = &((*new)->rb_left); 151 else if (iova->pfn_lo > this->pfn_lo) 152 new = &((*new)->rb_right); 153 else { 154 WARN_ON(1); /* this should not happen */ 155 return; 156 } 157 } 158 /* Add new node and rebalance tree. */ 159 rb_link_node(&iova->node, parent, new); 160 rb_insert_color(&iova->node, root); 161 } 162 163 static int __alloc_and_insert_iova_range(struct iova_domain *iovad, 164 unsigned long size, unsigned long limit_pfn, 165 struct iova *new, bool size_aligned) 166 { 167 struct rb_node *curr, *prev; 168 struct iova *curr_iova; 169 unsigned long flags; 170 unsigned long new_pfn, retry_pfn; 171 unsigned long align_mask = ~0UL; 172 unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn; 173 174 if (size_aligned) 175 align_mask <<= fls_long(size - 1); 176 177 /* Walk the tree backwards */ 178 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 179 if (limit_pfn <= iovad->dma_32bit_pfn && 180 size >= iovad->max32_alloc_size) 181 goto iova32_full; 182 183 curr = __get_cached_rbnode(iovad, limit_pfn); 184 curr_iova = to_iova(curr); 185 retry_pfn = curr_iova->pfn_hi; 186 187 retry: 188 do { 189 high_pfn = min(high_pfn, curr_iova->pfn_lo); 190 new_pfn = (high_pfn - size) & align_mask; 191 prev = curr; 192 curr = rb_prev(curr); 193 curr_iova = to_iova(curr); 194 } while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn); 195 196 if (high_pfn < size || new_pfn < low_pfn) { 197 if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) { 198 high_pfn = limit_pfn; 199 low_pfn = retry_pfn + 1; 200 curr = iova_find_limit(iovad, limit_pfn); 201 curr_iova = to_iova(curr); 202 goto retry; 203 } 204 iovad->max32_alloc_size = size; 205 goto iova32_full; 206 } 207 208 /* pfn_lo will point to size aligned address if size_aligned is set */ 209 new->pfn_lo = new_pfn; 210 new->pfn_hi = new->pfn_lo + size - 1; 211 212 /* If we have 'prev', it's a valid place to start the insertion. */ 213 iova_insert_rbtree(&iovad->rbroot, new, prev); 214 __cached_rbnode_insert_update(iovad, new); 215 216 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 217 return 0; 218 219 iova32_full: 220 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 221 return -ENOMEM; 222 } 223 224 static struct kmem_cache *iova_cache; 225 static unsigned int iova_cache_users; 226 static DEFINE_MUTEX(iova_cache_mutex); 227 228 static struct iova *alloc_iova_mem(void) 229 { 230 return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN); 231 } 232 233 static void free_iova_mem(struct iova *iova) 234 { 235 if (iova->pfn_lo != IOVA_ANCHOR) 236 kmem_cache_free(iova_cache, iova); 237 } 238 239 /** 240 * alloc_iova - allocates an iova 241 * @iovad: - iova domain in question 242 * @size: - size of page frames to allocate 243 * @limit_pfn: - max limit address 244 * @size_aligned: - set if size_aligned address range is required 245 * This function allocates an iova in the range iovad->start_pfn to limit_pfn, 246 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned 247 * flag is set then the allocated address iova->pfn_lo will be naturally 248 * aligned on roundup_power_of_two(size). 249 */ 250 struct iova * 251 alloc_iova(struct iova_domain *iovad, unsigned long size, 252 unsigned long limit_pfn, 253 bool size_aligned) 254 { 255 struct iova *new_iova; 256 int ret; 257 258 new_iova = alloc_iova_mem(); 259 if (!new_iova) 260 return NULL; 261 262 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1, 263 new_iova, size_aligned); 264 265 if (ret) { 266 free_iova_mem(new_iova); 267 return NULL; 268 } 269 270 return new_iova; 271 } 272 EXPORT_SYMBOL_GPL(alloc_iova); 273 274 static struct iova * 275 private_find_iova(struct iova_domain *iovad, unsigned long pfn) 276 { 277 struct rb_node *node = iovad->rbroot.rb_node; 278 279 assert_spin_locked(&iovad->iova_rbtree_lock); 280 281 while (node) { 282 struct iova *iova = to_iova(node); 283 284 if (pfn < iova->pfn_lo) 285 node = node->rb_left; 286 else if (pfn > iova->pfn_hi) 287 node = node->rb_right; 288 else 289 return iova; /* pfn falls within iova's range */ 290 } 291 292 return NULL; 293 } 294 295 static void remove_iova(struct iova_domain *iovad, struct iova *iova) 296 { 297 assert_spin_locked(&iovad->iova_rbtree_lock); 298 __cached_rbnode_delete_update(iovad, iova); 299 rb_erase(&iova->node, &iovad->rbroot); 300 } 301 302 /** 303 * find_iova - finds an iova for a given pfn 304 * @iovad: - iova domain in question. 305 * @pfn: - page frame number 306 * This function finds and returns an iova belonging to the 307 * given domain which matches the given pfn. 308 */ 309 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) 310 { 311 unsigned long flags; 312 struct iova *iova; 313 314 /* Take the lock so that no other thread is manipulating the rbtree */ 315 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 316 iova = private_find_iova(iovad, pfn); 317 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 318 return iova; 319 } 320 EXPORT_SYMBOL_GPL(find_iova); 321 322 /** 323 * __free_iova - frees the given iova 324 * @iovad: iova domain in question. 325 * @iova: iova in question. 326 * Frees the given iova belonging to the giving domain 327 */ 328 void 329 __free_iova(struct iova_domain *iovad, struct iova *iova) 330 { 331 unsigned long flags; 332 333 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 334 remove_iova(iovad, iova); 335 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 336 free_iova_mem(iova); 337 } 338 EXPORT_SYMBOL_GPL(__free_iova); 339 340 /** 341 * free_iova - finds and frees the iova for a given pfn 342 * @iovad: - iova domain in question. 343 * @pfn: - pfn that is allocated previously 344 * This functions finds an iova for a given pfn and then 345 * frees the iova from that domain. 346 */ 347 void 348 free_iova(struct iova_domain *iovad, unsigned long pfn) 349 { 350 unsigned long flags; 351 struct iova *iova; 352 353 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 354 iova = private_find_iova(iovad, pfn); 355 if (!iova) { 356 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 357 return; 358 } 359 remove_iova(iovad, iova); 360 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 361 free_iova_mem(iova); 362 } 363 EXPORT_SYMBOL_GPL(free_iova); 364 365 /** 366 * alloc_iova_fast - allocates an iova from rcache 367 * @iovad: - iova domain in question 368 * @size: - size of page frames to allocate 369 * @limit_pfn: - max limit address 370 * @flush_rcache: - set to flush rcache on regular allocation failure 371 * This function tries to satisfy an iova allocation from the rcache, 372 * and falls back to regular allocation on failure. If regular allocation 373 * fails too and the flush_rcache flag is set then the rcache will be flushed. 374 */ 375 unsigned long 376 alloc_iova_fast(struct iova_domain *iovad, unsigned long size, 377 unsigned long limit_pfn, bool flush_rcache) 378 { 379 unsigned long iova_pfn; 380 struct iova *new_iova; 381 382 /* 383 * Freeing non-power-of-two-sized allocations back into the IOVA caches 384 * will come back to bite us badly, so we have to waste a bit of space 385 * rounding up anything cacheable to make sure that can't happen. The 386 * order of the unadjusted size will still match upon freeing. 387 */ 388 if (size < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 389 size = roundup_pow_of_two(size); 390 391 iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1); 392 if (iova_pfn) 393 return iova_pfn; 394 395 retry: 396 new_iova = alloc_iova(iovad, size, limit_pfn, true); 397 if (!new_iova) { 398 unsigned int cpu; 399 400 if (!flush_rcache) 401 return 0; 402 403 /* Try replenishing IOVAs by flushing rcache. */ 404 flush_rcache = false; 405 for_each_online_cpu(cpu) 406 free_cpu_cached_iovas(cpu, iovad); 407 free_global_cached_iovas(iovad); 408 goto retry; 409 } 410 411 return new_iova->pfn_lo; 412 } 413 EXPORT_SYMBOL_GPL(alloc_iova_fast); 414 415 /** 416 * free_iova_fast - free iova pfn range into rcache 417 * @iovad: - iova domain in question. 418 * @pfn: - pfn that is allocated previously 419 * @size: - # of pages in range 420 * This functions frees an iova range by trying to put it into the rcache, 421 * falling back to regular iova deallocation via free_iova() if this fails. 422 */ 423 void 424 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size) 425 { 426 if (iova_rcache_insert(iovad, pfn, size)) 427 return; 428 429 free_iova(iovad, pfn); 430 } 431 EXPORT_SYMBOL_GPL(free_iova_fast); 432 433 static void iova_domain_free_rcaches(struct iova_domain *iovad) 434 { 435 cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, 436 &iovad->cpuhp_dead); 437 free_iova_rcaches(iovad); 438 } 439 440 /** 441 * put_iova_domain - destroys the iova domain 442 * @iovad: - iova domain in question. 443 * All the iova's in that domain are destroyed. 444 */ 445 void put_iova_domain(struct iova_domain *iovad) 446 { 447 struct iova *iova, *tmp; 448 449 if (iovad->rcaches) 450 iova_domain_free_rcaches(iovad); 451 452 rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node) 453 free_iova_mem(iova); 454 } 455 EXPORT_SYMBOL_GPL(put_iova_domain); 456 457 static int 458 __is_range_overlap(struct rb_node *node, 459 unsigned long pfn_lo, unsigned long pfn_hi) 460 { 461 struct iova *iova = to_iova(node); 462 463 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) 464 return 1; 465 return 0; 466 } 467 468 static inline struct iova * 469 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi) 470 { 471 struct iova *iova; 472 473 iova = alloc_iova_mem(); 474 if (iova) { 475 iova->pfn_lo = pfn_lo; 476 iova->pfn_hi = pfn_hi; 477 } 478 479 return iova; 480 } 481 482 static struct iova * 483 __insert_new_range(struct iova_domain *iovad, 484 unsigned long pfn_lo, unsigned long pfn_hi) 485 { 486 struct iova *iova; 487 488 iova = alloc_and_init_iova(pfn_lo, pfn_hi); 489 if (iova) 490 iova_insert_rbtree(&iovad->rbroot, iova, NULL); 491 492 return iova; 493 } 494 495 static void 496 __adjust_overlap_range(struct iova *iova, 497 unsigned long *pfn_lo, unsigned long *pfn_hi) 498 { 499 if (*pfn_lo < iova->pfn_lo) 500 iova->pfn_lo = *pfn_lo; 501 if (*pfn_hi > iova->pfn_hi) 502 *pfn_lo = iova->pfn_hi + 1; 503 } 504 505 /** 506 * reserve_iova - reserves an iova in the given range 507 * @iovad: - iova domain pointer 508 * @pfn_lo: - lower page frame address 509 * @pfn_hi:- higher pfn adderss 510 * This function allocates reserves the address range from pfn_lo to pfn_hi so 511 * that this address is not dished out as part of alloc_iova. 512 */ 513 struct iova * 514 reserve_iova(struct iova_domain *iovad, 515 unsigned long pfn_lo, unsigned long pfn_hi) 516 { 517 struct rb_node *node; 518 unsigned long flags; 519 struct iova *iova; 520 unsigned int overlap = 0; 521 522 /* Don't allow nonsensical pfns */ 523 if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad)))) 524 return NULL; 525 526 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 527 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { 528 if (__is_range_overlap(node, pfn_lo, pfn_hi)) { 529 iova = to_iova(node); 530 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); 531 if ((pfn_lo >= iova->pfn_lo) && 532 (pfn_hi <= iova->pfn_hi)) 533 goto finish; 534 overlap = 1; 535 536 } else if (overlap) 537 break; 538 } 539 540 /* We are here either because this is the first reserver node 541 * or need to insert remaining non overlap addr range 542 */ 543 iova = __insert_new_range(iovad, pfn_lo, pfn_hi); 544 finish: 545 546 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 547 return iova; 548 } 549 EXPORT_SYMBOL_GPL(reserve_iova); 550 551 /* 552 * Magazine caches for IOVA ranges. For an introduction to magazines, 553 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab 554 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams. 555 * For simplicity, we use a static magazine size and don't implement the 556 * dynamic size tuning described in the paper. 557 */ 558 559 /* 560 * As kmalloc's buffer size is fixed to power of 2, 127 is chosen to 561 * assure size of 'iova_magazine' to be 1024 bytes, so that no memory 562 * will be wasted. Since only full magazines are inserted into the depot, 563 * we don't need to waste PFN capacity on a separate list head either. 564 */ 565 #define IOVA_MAG_SIZE 127 566 567 #define IOVA_DEPOT_DELAY msecs_to_jiffies(100) 568 569 struct iova_magazine { 570 union { 571 unsigned long size; 572 struct iova_magazine *next; 573 }; 574 unsigned long pfns[IOVA_MAG_SIZE]; 575 }; 576 static_assert(!(sizeof(struct iova_magazine) & (sizeof(struct iova_magazine) - 1))); 577 578 struct iova_cpu_rcache { 579 spinlock_t lock; 580 struct iova_magazine *loaded; 581 struct iova_magazine *prev; 582 }; 583 584 struct iova_rcache { 585 spinlock_t lock; 586 unsigned int depot_size; 587 struct iova_magazine *depot; 588 struct iova_cpu_rcache __percpu *cpu_rcaches; 589 struct iova_domain *iovad; 590 struct delayed_work work; 591 }; 592 593 static struct kmem_cache *iova_magazine_cache; 594 595 unsigned long iova_rcache_range(void) 596 { 597 return PAGE_SIZE << (IOVA_RANGE_CACHE_MAX_SIZE - 1); 598 } 599 600 static struct iova_magazine *iova_magazine_alloc(gfp_t flags) 601 { 602 struct iova_magazine *mag; 603 604 mag = kmem_cache_alloc(iova_magazine_cache, flags); 605 if (mag) 606 mag->size = 0; 607 608 return mag; 609 } 610 611 static void iova_magazine_free(struct iova_magazine *mag) 612 { 613 kmem_cache_free(iova_magazine_cache, mag); 614 } 615 616 static void 617 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad) 618 { 619 unsigned long flags; 620 int i; 621 622 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 623 624 for (i = 0 ; i < mag->size; ++i) { 625 struct iova *iova = private_find_iova(iovad, mag->pfns[i]); 626 627 if (WARN_ON(!iova)) 628 continue; 629 630 remove_iova(iovad, iova); 631 free_iova_mem(iova); 632 } 633 634 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 635 636 mag->size = 0; 637 } 638 639 static bool iova_magazine_full(struct iova_magazine *mag) 640 { 641 return mag->size == IOVA_MAG_SIZE; 642 } 643 644 static bool iova_magazine_empty(struct iova_magazine *mag) 645 { 646 return mag->size == 0; 647 } 648 649 static unsigned long iova_magazine_pop(struct iova_magazine *mag, 650 unsigned long limit_pfn) 651 { 652 int i; 653 unsigned long pfn; 654 655 /* Only fall back to the rbtree if we have no suitable pfns at all */ 656 for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--) 657 if (i == 0) 658 return 0; 659 660 /* Swap it to pop it */ 661 pfn = mag->pfns[i]; 662 mag->pfns[i] = mag->pfns[--mag->size]; 663 664 return pfn; 665 } 666 667 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn) 668 { 669 mag->pfns[mag->size++] = pfn; 670 } 671 672 static struct iova_magazine *iova_depot_pop(struct iova_rcache *rcache) 673 { 674 struct iova_magazine *mag = rcache->depot; 675 676 rcache->depot = mag->next; 677 mag->size = IOVA_MAG_SIZE; 678 rcache->depot_size--; 679 return mag; 680 } 681 682 static void iova_depot_push(struct iova_rcache *rcache, struct iova_magazine *mag) 683 { 684 mag->next = rcache->depot; 685 rcache->depot = mag; 686 rcache->depot_size++; 687 } 688 689 static void iova_depot_work_func(struct work_struct *work) 690 { 691 struct iova_rcache *rcache = container_of(work, typeof(*rcache), work.work); 692 struct iova_magazine *mag = NULL; 693 unsigned long flags; 694 695 spin_lock_irqsave(&rcache->lock, flags); 696 if (rcache->depot_size > num_online_cpus()) 697 mag = iova_depot_pop(rcache); 698 spin_unlock_irqrestore(&rcache->lock, flags); 699 700 if (mag) { 701 iova_magazine_free_pfns(mag, rcache->iovad); 702 iova_magazine_free(mag); 703 schedule_delayed_work(&rcache->work, IOVA_DEPOT_DELAY); 704 } 705 } 706 707 int iova_domain_init_rcaches(struct iova_domain *iovad) 708 { 709 unsigned int cpu; 710 int i, ret; 711 712 iovad->rcaches = kcalloc(IOVA_RANGE_CACHE_MAX_SIZE, 713 sizeof(struct iova_rcache), 714 GFP_KERNEL); 715 if (!iovad->rcaches) 716 return -ENOMEM; 717 718 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 719 struct iova_cpu_rcache *cpu_rcache; 720 struct iova_rcache *rcache; 721 722 rcache = &iovad->rcaches[i]; 723 spin_lock_init(&rcache->lock); 724 rcache->iovad = iovad; 725 INIT_DELAYED_WORK(&rcache->work, iova_depot_work_func); 726 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), 727 cache_line_size()); 728 if (!rcache->cpu_rcaches) { 729 ret = -ENOMEM; 730 goto out_err; 731 } 732 for_each_possible_cpu(cpu) { 733 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 734 735 spin_lock_init(&cpu_rcache->lock); 736 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL); 737 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL); 738 if (!cpu_rcache->loaded || !cpu_rcache->prev) { 739 ret = -ENOMEM; 740 goto out_err; 741 } 742 } 743 } 744 745 ret = cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, 746 &iovad->cpuhp_dead); 747 if (ret) 748 goto out_err; 749 return 0; 750 751 out_err: 752 free_iova_rcaches(iovad); 753 return ret; 754 } 755 EXPORT_SYMBOL_GPL(iova_domain_init_rcaches); 756 757 /* 758 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and 759 * return true on success. Can fail if rcache is full and we can't free 760 * space, and free_iova() (our only caller) will then return the IOVA 761 * range to the rbtree instead. 762 */ 763 static bool __iova_rcache_insert(struct iova_domain *iovad, 764 struct iova_rcache *rcache, 765 unsigned long iova_pfn) 766 { 767 struct iova_cpu_rcache *cpu_rcache; 768 bool can_insert = false; 769 unsigned long flags; 770 771 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 772 spin_lock_irqsave(&cpu_rcache->lock, flags); 773 774 if (!iova_magazine_full(cpu_rcache->loaded)) { 775 can_insert = true; 776 } else if (!iova_magazine_full(cpu_rcache->prev)) { 777 swap(cpu_rcache->prev, cpu_rcache->loaded); 778 can_insert = true; 779 } else { 780 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC); 781 782 if (new_mag) { 783 spin_lock(&rcache->lock); 784 iova_depot_push(rcache, cpu_rcache->loaded); 785 spin_unlock(&rcache->lock); 786 schedule_delayed_work(&rcache->work, IOVA_DEPOT_DELAY); 787 788 cpu_rcache->loaded = new_mag; 789 can_insert = true; 790 } 791 } 792 793 if (can_insert) 794 iova_magazine_push(cpu_rcache->loaded, iova_pfn); 795 796 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 797 798 return can_insert; 799 } 800 801 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn, 802 unsigned long size) 803 { 804 unsigned int log_size = order_base_2(size); 805 806 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 807 return false; 808 809 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn); 810 } 811 812 /* 813 * Caller wants to allocate a new IOVA range from 'rcache'. If we can 814 * satisfy the request, return a matching non-NULL range and remove 815 * it from the 'rcache'. 816 */ 817 static unsigned long __iova_rcache_get(struct iova_rcache *rcache, 818 unsigned long limit_pfn) 819 { 820 struct iova_cpu_rcache *cpu_rcache; 821 unsigned long iova_pfn = 0; 822 bool has_pfn = false; 823 unsigned long flags; 824 825 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 826 spin_lock_irqsave(&cpu_rcache->lock, flags); 827 828 if (!iova_magazine_empty(cpu_rcache->loaded)) { 829 has_pfn = true; 830 } else if (!iova_magazine_empty(cpu_rcache->prev)) { 831 swap(cpu_rcache->prev, cpu_rcache->loaded); 832 has_pfn = true; 833 } else { 834 spin_lock(&rcache->lock); 835 if (rcache->depot) { 836 iova_magazine_free(cpu_rcache->loaded); 837 cpu_rcache->loaded = iova_depot_pop(rcache); 838 has_pfn = true; 839 } 840 spin_unlock(&rcache->lock); 841 } 842 843 if (has_pfn) 844 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn); 845 846 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 847 848 return iova_pfn; 849 } 850 851 /* 852 * Try to satisfy IOVA allocation range from rcache. Fail if requested 853 * size is too big or the DMA limit we are given isn't satisfied by the 854 * top element in the magazine. 855 */ 856 static unsigned long iova_rcache_get(struct iova_domain *iovad, 857 unsigned long size, 858 unsigned long limit_pfn) 859 { 860 unsigned int log_size = order_base_2(size); 861 862 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 863 return 0; 864 865 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size); 866 } 867 868 /* 869 * free rcache data structures. 870 */ 871 static void free_iova_rcaches(struct iova_domain *iovad) 872 { 873 struct iova_rcache *rcache; 874 struct iova_cpu_rcache *cpu_rcache; 875 unsigned int cpu; 876 877 for (int i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 878 rcache = &iovad->rcaches[i]; 879 if (!rcache->cpu_rcaches) 880 break; 881 for_each_possible_cpu(cpu) { 882 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 883 iova_magazine_free(cpu_rcache->loaded); 884 iova_magazine_free(cpu_rcache->prev); 885 } 886 free_percpu(rcache->cpu_rcaches); 887 cancel_delayed_work_sync(&rcache->work); 888 while (rcache->depot) 889 iova_magazine_free(iova_depot_pop(rcache)); 890 } 891 892 kfree(iovad->rcaches); 893 iovad->rcaches = NULL; 894 } 895 896 /* 897 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged) 898 */ 899 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad) 900 { 901 struct iova_cpu_rcache *cpu_rcache; 902 struct iova_rcache *rcache; 903 unsigned long flags; 904 int i; 905 906 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 907 rcache = &iovad->rcaches[i]; 908 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 909 spin_lock_irqsave(&cpu_rcache->lock, flags); 910 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 911 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 912 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 913 } 914 } 915 916 /* 917 * free all the IOVA ranges of global cache 918 */ 919 static void free_global_cached_iovas(struct iova_domain *iovad) 920 { 921 struct iova_rcache *rcache; 922 unsigned long flags; 923 924 for (int i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 925 rcache = &iovad->rcaches[i]; 926 spin_lock_irqsave(&rcache->lock, flags); 927 while (rcache->depot) { 928 struct iova_magazine *mag = iova_depot_pop(rcache); 929 930 iova_magazine_free_pfns(mag, iovad); 931 iova_magazine_free(mag); 932 } 933 spin_unlock_irqrestore(&rcache->lock, flags); 934 } 935 } 936 937 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node) 938 { 939 struct iova_domain *iovad; 940 941 iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead); 942 943 free_cpu_cached_iovas(cpu, iovad); 944 return 0; 945 } 946 947 int iova_cache_get(void) 948 { 949 int err = -ENOMEM; 950 951 mutex_lock(&iova_cache_mutex); 952 if (!iova_cache_users) { 953 iova_cache = kmem_cache_create("iommu_iova", sizeof(struct iova), 0, 954 SLAB_HWCACHE_ALIGN, NULL); 955 if (!iova_cache) 956 goto out_err; 957 958 iova_magazine_cache = kmem_cache_create("iommu_iova_magazine", 959 sizeof(struct iova_magazine), 960 0, SLAB_HWCACHE_ALIGN, NULL); 961 if (!iova_magazine_cache) 962 goto out_err; 963 964 err = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead", 965 NULL, iova_cpuhp_dead); 966 if (err) { 967 pr_err("IOVA: Couldn't register cpuhp handler: %pe\n", ERR_PTR(err)); 968 goto out_err; 969 } 970 } 971 972 iova_cache_users++; 973 mutex_unlock(&iova_cache_mutex); 974 975 return 0; 976 977 out_err: 978 kmem_cache_destroy(iova_cache); 979 kmem_cache_destroy(iova_magazine_cache); 980 mutex_unlock(&iova_cache_mutex); 981 return err; 982 } 983 EXPORT_SYMBOL_GPL(iova_cache_get); 984 985 void iova_cache_put(void) 986 { 987 mutex_lock(&iova_cache_mutex); 988 if (WARN_ON(!iova_cache_users)) { 989 mutex_unlock(&iova_cache_mutex); 990 return; 991 } 992 iova_cache_users--; 993 if (!iova_cache_users) { 994 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 995 kmem_cache_destroy(iova_cache); 996 kmem_cache_destroy(iova_magazine_cache); 997 } 998 mutex_unlock(&iova_cache_mutex); 999 } 1000 EXPORT_SYMBOL_GPL(iova_cache_put); 1001 1002 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>"); 1003 MODULE_DESCRIPTION("IOMMU I/O Virtual Address management"); 1004 MODULE_LICENSE("GPL"); 1005