1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2009, Intel Corporation. 4 * 5 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 6 */ 7 8 #include <linux/iova.h> 9 #include <linux/module.h> 10 #include <linux/slab.h> 11 #include <linux/smp.h> 12 #include <linux/bitops.h> 13 #include <linux/cpu.h> 14 #include <linux/workqueue.h> 15 16 /* The anchor node sits above the top of the usable address space */ 17 #define IOVA_ANCHOR ~0UL 18 19 #define IOVA_RANGE_CACHE_MAX_SIZE 6 /* log of max cached IOVA range size (in pages) */ 20 21 static bool iova_rcache_insert(struct iova_domain *iovad, 22 unsigned long pfn, 23 unsigned long size); 24 static unsigned long iova_rcache_get(struct iova_domain *iovad, 25 unsigned long size, 26 unsigned long limit_pfn); 27 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad); 28 static void free_iova_rcaches(struct iova_domain *iovad); 29 30 unsigned long iova_rcache_range(void) 31 { 32 return PAGE_SIZE << (IOVA_RANGE_CACHE_MAX_SIZE - 1); 33 } 34 35 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node) 36 { 37 struct iova_domain *iovad; 38 39 iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead); 40 41 free_cpu_cached_iovas(cpu, iovad); 42 return 0; 43 } 44 45 static void free_global_cached_iovas(struct iova_domain *iovad); 46 47 static struct iova *to_iova(struct rb_node *node) 48 { 49 return rb_entry(node, struct iova, node); 50 } 51 52 void 53 init_iova_domain(struct iova_domain *iovad, unsigned long granule, 54 unsigned long start_pfn) 55 { 56 /* 57 * IOVA granularity will normally be equal to the smallest 58 * supported IOMMU page size; both *must* be capable of 59 * representing individual CPU pages exactly. 60 */ 61 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule)); 62 63 spin_lock_init(&iovad->iova_rbtree_lock); 64 iovad->rbroot = RB_ROOT; 65 iovad->cached_node = &iovad->anchor.node; 66 iovad->cached32_node = &iovad->anchor.node; 67 iovad->granule = granule; 68 iovad->start_pfn = start_pfn; 69 iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad)); 70 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 71 iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR; 72 rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node); 73 rb_insert_color(&iovad->anchor.node, &iovad->rbroot); 74 } 75 EXPORT_SYMBOL_GPL(init_iova_domain); 76 77 static struct rb_node * 78 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn) 79 { 80 if (limit_pfn <= iovad->dma_32bit_pfn) 81 return iovad->cached32_node; 82 83 return iovad->cached_node; 84 } 85 86 static void 87 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new) 88 { 89 if (new->pfn_hi < iovad->dma_32bit_pfn) 90 iovad->cached32_node = &new->node; 91 else 92 iovad->cached_node = &new->node; 93 } 94 95 static void 96 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) 97 { 98 struct iova *cached_iova; 99 100 cached_iova = to_iova(iovad->cached32_node); 101 if (free == cached_iova || 102 (free->pfn_hi < iovad->dma_32bit_pfn && 103 free->pfn_lo >= cached_iova->pfn_lo)) 104 iovad->cached32_node = rb_next(&free->node); 105 106 if (free->pfn_lo < iovad->dma_32bit_pfn) 107 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 108 109 cached_iova = to_iova(iovad->cached_node); 110 if (free->pfn_lo >= cached_iova->pfn_lo) 111 iovad->cached_node = rb_next(&free->node); 112 } 113 114 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn) 115 { 116 struct rb_node *node, *next; 117 /* 118 * Ideally what we'd like to judge here is whether limit_pfn is close 119 * enough to the highest-allocated IOVA that starting the allocation 120 * walk from the anchor node will be quicker than this initial work to 121 * find an exact starting point (especially if that ends up being the 122 * anchor node anyway). This is an incredibly crude approximation which 123 * only really helps the most likely case, but is at least trivially easy. 124 */ 125 if (limit_pfn > iovad->dma_32bit_pfn) 126 return &iovad->anchor.node; 127 128 node = iovad->rbroot.rb_node; 129 while (to_iova(node)->pfn_hi < limit_pfn) 130 node = node->rb_right; 131 132 search_left: 133 while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn) 134 node = node->rb_left; 135 136 if (!node->rb_left) 137 return node; 138 139 next = node->rb_left; 140 while (next->rb_right) { 141 next = next->rb_right; 142 if (to_iova(next)->pfn_lo >= limit_pfn) { 143 node = next; 144 goto search_left; 145 } 146 } 147 148 return node; 149 } 150 151 /* Insert the iova into domain rbtree by holding writer lock */ 152 static void 153 iova_insert_rbtree(struct rb_root *root, struct iova *iova, 154 struct rb_node *start) 155 { 156 struct rb_node **new, *parent = NULL; 157 158 new = (start) ? &start : &(root->rb_node); 159 /* Figure out where to put new node */ 160 while (*new) { 161 struct iova *this = to_iova(*new); 162 163 parent = *new; 164 165 if (iova->pfn_lo < this->pfn_lo) 166 new = &((*new)->rb_left); 167 else if (iova->pfn_lo > this->pfn_lo) 168 new = &((*new)->rb_right); 169 else { 170 WARN_ON(1); /* this should not happen */ 171 return; 172 } 173 } 174 /* Add new node and rebalance tree. */ 175 rb_link_node(&iova->node, parent, new); 176 rb_insert_color(&iova->node, root); 177 } 178 179 static int __alloc_and_insert_iova_range(struct iova_domain *iovad, 180 unsigned long size, unsigned long limit_pfn, 181 struct iova *new, bool size_aligned) 182 { 183 struct rb_node *curr, *prev; 184 struct iova *curr_iova; 185 unsigned long flags; 186 unsigned long new_pfn, retry_pfn; 187 unsigned long align_mask = ~0UL; 188 unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn; 189 190 if (size_aligned) 191 align_mask <<= fls_long(size - 1); 192 193 /* Walk the tree backwards */ 194 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 195 if (limit_pfn <= iovad->dma_32bit_pfn && 196 size >= iovad->max32_alloc_size) 197 goto iova32_full; 198 199 curr = __get_cached_rbnode(iovad, limit_pfn); 200 curr_iova = to_iova(curr); 201 retry_pfn = curr_iova->pfn_hi; 202 203 retry: 204 do { 205 high_pfn = min(high_pfn, curr_iova->pfn_lo); 206 new_pfn = (high_pfn - size) & align_mask; 207 prev = curr; 208 curr = rb_prev(curr); 209 curr_iova = to_iova(curr); 210 } while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn); 211 212 if (high_pfn < size || new_pfn < low_pfn) { 213 if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) { 214 high_pfn = limit_pfn; 215 low_pfn = retry_pfn + 1; 216 curr = iova_find_limit(iovad, limit_pfn); 217 curr_iova = to_iova(curr); 218 goto retry; 219 } 220 iovad->max32_alloc_size = size; 221 goto iova32_full; 222 } 223 224 /* pfn_lo will point to size aligned address if size_aligned is set */ 225 new->pfn_lo = new_pfn; 226 new->pfn_hi = new->pfn_lo + size - 1; 227 228 /* If we have 'prev', it's a valid place to start the insertion. */ 229 iova_insert_rbtree(&iovad->rbroot, new, prev); 230 __cached_rbnode_insert_update(iovad, new); 231 232 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 233 return 0; 234 235 iova32_full: 236 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 237 return -ENOMEM; 238 } 239 240 static struct kmem_cache *iova_cache; 241 static unsigned int iova_cache_users; 242 static DEFINE_MUTEX(iova_cache_mutex); 243 244 static struct iova *alloc_iova_mem(void) 245 { 246 return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN); 247 } 248 249 static void free_iova_mem(struct iova *iova) 250 { 251 if (iova->pfn_lo != IOVA_ANCHOR) 252 kmem_cache_free(iova_cache, iova); 253 } 254 255 int iova_cache_get(void) 256 { 257 mutex_lock(&iova_cache_mutex); 258 if (!iova_cache_users) { 259 int ret; 260 261 ret = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead", NULL, 262 iova_cpuhp_dead); 263 if (ret) { 264 mutex_unlock(&iova_cache_mutex); 265 pr_err("Couldn't register cpuhp handler\n"); 266 return ret; 267 } 268 269 iova_cache = kmem_cache_create( 270 "iommu_iova", sizeof(struct iova), 0, 271 SLAB_HWCACHE_ALIGN, NULL); 272 if (!iova_cache) { 273 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 274 mutex_unlock(&iova_cache_mutex); 275 pr_err("Couldn't create iova cache\n"); 276 return -ENOMEM; 277 } 278 } 279 280 iova_cache_users++; 281 mutex_unlock(&iova_cache_mutex); 282 283 return 0; 284 } 285 EXPORT_SYMBOL_GPL(iova_cache_get); 286 287 void iova_cache_put(void) 288 { 289 mutex_lock(&iova_cache_mutex); 290 if (WARN_ON(!iova_cache_users)) { 291 mutex_unlock(&iova_cache_mutex); 292 return; 293 } 294 iova_cache_users--; 295 if (!iova_cache_users) { 296 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 297 kmem_cache_destroy(iova_cache); 298 } 299 mutex_unlock(&iova_cache_mutex); 300 } 301 EXPORT_SYMBOL_GPL(iova_cache_put); 302 303 /** 304 * alloc_iova - allocates an iova 305 * @iovad: - iova domain in question 306 * @size: - size of page frames to allocate 307 * @limit_pfn: - max limit address 308 * @size_aligned: - set if size_aligned address range is required 309 * This function allocates an iova in the range iovad->start_pfn to limit_pfn, 310 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned 311 * flag is set then the allocated address iova->pfn_lo will be naturally 312 * aligned on roundup_power_of_two(size). 313 */ 314 struct iova * 315 alloc_iova(struct iova_domain *iovad, unsigned long size, 316 unsigned long limit_pfn, 317 bool size_aligned) 318 { 319 struct iova *new_iova; 320 int ret; 321 322 new_iova = alloc_iova_mem(); 323 if (!new_iova) 324 return NULL; 325 326 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1, 327 new_iova, size_aligned); 328 329 if (ret) { 330 free_iova_mem(new_iova); 331 return NULL; 332 } 333 334 return new_iova; 335 } 336 EXPORT_SYMBOL_GPL(alloc_iova); 337 338 static struct iova * 339 private_find_iova(struct iova_domain *iovad, unsigned long pfn) 340 { 341 struct rb_node *node = iovad->rbroot.rb_node; 342 343 assert_spin_locked(&iovad->iova_rbtree_lock); 344 345 while (node) { 346 struct iova *iova = to_iova(node); 347 348 if (pfn < iova->pfn_lo) 349 node = node->rb_left; 350 else if (pfn > iova->pfn_hi) 351 node = node->rb_right; 352 else 353 return iova; /* pfn falls within iova's range */ 354 } 355 356 return NULL; 357 } 358 359 static void remove_iova(struct iova_domain *iovad, struct iova *iova) 360 { 361 assert_spin_locked(&iovad->iova_rbtree_lock); 362 __cached_rbnode_delete_update(iovad, iova); 363 rb_erase(&iova->node, &iovad->rbroot); 364 } 365 366 /** 367 * find_iova - finds an iova for a given pfn 368 * @iovad: - iova domain in question. 369 * @pfn: - page frame number 370 * This function finds and returns an iova belonging to the 371 * given domain which matches the given pfn. 372 */ 373 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) 374 { 375 unsigned long flags; 376 struct iova *iova; 377 378 /* Take the lock so that no other thread is manipulating the rbtree */ 379 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 380 iova = private_find_iova(iovad, pfn); 381 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 382 return iova; 383 } 384 EXPORT_SYMBOL_GPL(find_iova); 385 386 /** 387 * __free_iova - frees the given iova 388 * @iovad: iova domain in question. 389 * @iova: iova in question. 390 * Frees the given iova belonging to the giving domain 391 */ 392 void 393 __free_iova(struct iova_domain *iovad, struct iova *iova) 394 { 395 unsigned long flags; 396 397 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 398 remove_iova(iovad, iova); 399 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 400 free_iova_mem(iova); 401 } 402 EXPORT_SYMBOL_GPL(__free_iova); 403 404 /** 405 * free_iova - finds and frees the iova for a given pfn 406 * @iovad: - iova domain in question. 407 * @pfn: - pfn that is allocated previously 408 * This functions finds an iova for a given pfn and then 409 * frees the iova from that domain. 410 */ 411 void 412 free_iova(struct iova_domain *iovad, unsigned long pfn) 413 { 414 unsigned long flags; 415 struct iova *iova; 416 417 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 418 iova = private_find_iova(iovad, pfn); 419 if (!iova) { 420 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 421 return; 422 } 423 remove_iova(iovad, iova); 424 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 425 free_iova_mem(iova); 426 } 427 EXPORT_SYMBOL_GPL(free_iova); 428 429 /** 430 * alloc_iova_fast - allocates an iova from rcache 431 * @iovad: - iova domain in question 432 * @size: - size of page frames to allocate 433 * @limit_pfn: - max limit address 434 * @flush_rcache: - set to flush rcache on regular allocation failure 435 * This function tries to satisfy an iova allocation from the rcache, 436 * and falls back to regular allocation on failure. If regular allocation 437 * fails too and the flush_rcache flag is set then the rcache will be flushed. 438 */ 439 unsigned long 440 alloc_iova_fast(struct iova_domain *iovad, unsigned long size, 441 unsigned long limit_pfn, bool flush_rcache) 442 { 443 unsigned long iova_pfn; 444 struct iova *new_iova; 445 446 /* 447 * Freeing non-power-of-two-sized allocations back into the IOVA caches 448 * will come back to bite us badly, so we have to waste a bit of space 449 * rounding up anything cacheable to make sure that can't happen. The 450 * order of the unadjusted size will still match upon freeing. 451 */ 452 if (size < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 453 size = roundup_pow_of_two(size); 454 455 iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1); 456 if (iova_pfn) 457 return iova_pfn; 458 459 retry: 460 new_iova = alloc_iova(iovad, size, limit_pfn, true); 461 if (!new_iova) { 462 unsigned int cpu; 463 464 if (!flush_rcache) 465 return 0; 466 467 /* Try replenishing IOVAs by flushing rcache. */ 468 flush_rcache = false; 469 for_each_online_cpu(cpu) 470 free_cpu_cached_iovas(cpu, iovad); 471 free_global_cached_iovas(iovad); 472 goto retry; 473 } 474 475 return new_iova->pfn_lo; 476 } 477 EXPORT_SYMBOL_GPL(alloc_iova_fast); 478 479 /** 480 * free_iova_fast - free iova pfn range into rcache 481 * @iovad: - iova domain in question. 482 * @pfn: - pfn that is allocated previously 483 * @size: - # of pages in range 484 * This functions frees an iova range by trying to put it into the rcache, 485 * falling back to regular iova deallocation via free_iova() if this fails. 486 */ 487 void 488 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size) 489 { 490 if (iova_rcache_insert(iovad, pfn, size)) 491 return; 492 493 free_iova(iovad, pfn); 494 } 495 EXPORT_SYMBOL_GPL(free_iova_fast); 496 497 static void iova_domain_free_rcaches(struct iova_domain *iovad) 498 { 499 cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, 500 &iovad->cpuhp_dead); 501 free_iova_rcaches(iovad); 502 } 503 504 /** 505 * put_iova_domain - destroys the iova domain 506 * @iovad: - iova domain in question. 507 * All the iova's in that domain are destroyed. 508 */ 509 void put_iova_domain(struct iova_domain *iovad) 510 { 511 struct iova *iova, *tmp; 512 513 if (iovad->rcaches) 514 iova_domain_free_rcaches(iovad); 515 516 rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node) 517 free_iova_mem(iova); 518 } 519 EXPORT_SYMBOL_GPL(put_iova_domain); 520 521 static int 522 __is_range_overlap(struct rb_node *node, 523 unsigned long pfn_lo, unsigned long pfn_hi) 524 { 525 struct iova *iova = to_iova(node); 526 527 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) 528 return 1; 529 return 0; 530 } 531 532 static inline struct iova * 533 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi) 534 { 535 struct iova *iova; 536 537 iova = alloc_iova_mem(); 538 if (iova) { 539 iova->pfn_lo = pfn_lo; 540 iova->pfn_hi = pfn_hi; 541 } 542 543 return iova; 544 } 545 546 static struct iova * 547 __insert_new_range(struct iova_domain *iovad, 548 unsigned long pfn_lo, unsigned long pfn_hi) 549 { 550 struct iova *iova; 551 552 iova = alloc_and_init_iova(pfn_lo, pfn_hi); 553 if (iova) 554 iova_insert_rbtree(&iovad->rbroot, iova, NULL); 555 556 return iova; 557 } 558 559 static void 560 __adjust_overlap_range(struct iova *iova, 561 unsigned long *pfn_lo, unsigned long *pfn_hi) 562 { 563 if (*pfn_lo < iova->pfn_lo) 564 iova->pfn_lo = *pfn_lo; 565 if (*pfn_hi > iova->pfn_hi) 566 *pfn_lo = iova->pfn_hi + 1; 567 } 568 569 /** 570 * reserve_iova - reserves an iova in the given range 571 * @iovad: - iova domain pointer 572 * @pfn_lo: - lower page frame address 573 * @pfn_hi:- higher pfn adderss 574 * This function allocates reserves the address range from pfn_lo to pfn_hi so 575 * that this address is not dished out as part of alloc_iova. 576 */ 577 struct iova * 578 reserve_iova(struct iova_domain *iovad, 579 unsigned long pfn_lo, unsigned long pfn_hi) 580 { 581 struct rb_node *node; 582 unsigned long flags; 583 struct iova *iova; 584 unsigned int overlap = 0; 585 586 /* Don't allow nonsensical pfns */ 587 if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad)))) 588 return NULL; 589 590 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 591 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { 592 if (__is_range_overlap(node, pfn_lo, pfn_hi)) { 593 iova = to_iova(node); 594 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); 595 if ((pfn_lo >= iova->pfn_lo) && 596 (pfn_hi <= iova->pfn_hi)) 597 goto finish; 598 overlap = 1; 599 600 } else if (overlap) 601 break; 602 } 603 604 /* We are here either because this is the first reserver node 605 * or need to insert remaining non overlap addr range 606 */ 607 iova = __insert_new_range(iovad, pfn_lo, pfn_hi); 608 finish: 609 610 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 611 return iova; 612 } 613 EXPORT_SYMBOL_GPL(reserve_iova); 614 615 /* 616 * Magazine caches for IOVA ranges. For an introduction to magazines, 617 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab 618 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams. 619 * For simplicity, we use a static magazine size and don't implement the 620 * dynamic size tuning described in the paper. 621 */ 622 623 /* 624 * As kmalloc's buffer size is fixed to power of 2, 127 is chosen to 625 * assure size of 'iova_magazine' to be 1024 bytes, so that no memory 626 * will be wasted. Since only full magazines are inserted into the depot, 627 * we don't need to waste PFN capacity on a separate list head either. 628 */ 629 #define IOVA_MAG_SIZE 127 630 631 #define IOVA_DEPOT_DELAY msecs_to_jiffies(100) 632 633 struct iova_magazine { 634 union { 635 unsigned long size; 636 struct iova_magazine *next; 637 }; 638 unsigned long pfns[IOVA_MAG_SIZE]; 639 }; 640 static_assert(!(sizeof(struct iova_magazine) & (sizeof(struct iova_magazine) - 1))); 641 642 struct iova_cpu_rcache { 643 spinlock_t lock; 644 struct iova_magazine *loaded; 645 struct iova_magazine *prev; 646 }; 647 648 struct iova_rcache { 649 spinlock_t lock; 650 unsigned int depot_size; 651 struct iova_magazine *depot; 652 struct iova_cpu_rcache __percpu *cpu_rcaches; 653 struct iova_domain *iovad; 654 struct delayed_work work; 655 }; 656 657 static struct iova_magazine *iova_magazine_alloc(gfp_t flags) 658 { 659 struct iova_magazine *mag; 660 661 mag = kmalloc(sizeof(*mag), flags); 662 if (mag) 663 mag->size = 0; 664 665 return mag; 666 } 667 668 static void iova_magazine_free(struct iova_magazine *mag) 669 { 670 kfree(mag); 671 } 672 673 static void 674 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad) 675 { 676 unsigned long flags; 677 int i; 678 679 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 680 681 for (i = 0 ; i < mag->size; ++i) { 682 struct iova *iova = private_find_iova(iovad, mag->pfns[i]); 683 684 if (WARN_ON(!iova)) 685 continue; 686 687 remove_iova(iovad, iova); 688 free_iova_mem(iova); 689 } 690 691 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 692 693 mag->size = 0; 694 } 695 696 static bool iova_magazine_full(struct iova_magazine *mag) 697 { 698 return mag->size == IOVA_MAG_SIZE; 699 } 700 701 static bool iova_magazine_empty(struct iova_magazine *mag) 702 { 703 return mag->size == 0; 704 } 705 706 static unsigned long iova_magazine_pop(struct iova_magazine *mag, 707 unsigned long limit_pfn) 708 { 709 int i; 710 unsigned long pfn; 711 712 /* Only fall back to the rbtree if we have no suitable pfns at all */ 713 for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--) 714 if (i == 0) 715 return 0; 716 717 /* Swap it to pop it */ 718 pfn = mag->pfns[i]; 719 mag->pfns[i] = mag->pfns[--mag->size]; 720 721 return pfn; 722 } 723 724 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn) 725 { 726 mag->pfns[mag->size++] = pfn; 727 } 728 729 static struct iova_magazine *iova_depot_pop(struct iova_rcache *rcache) 730 { 731 struct iova_magazine *mag = rcache->depot; 732 733 rcache->depot = mag->next; 734 mag->size = IOVA_MAG_SIZE; 735 rcache->depot_size--; 736 return mag; 737 } 738 739 static void iova_depot_push(struct iova_rcache *rcache, struct iova_magazine *mag) 740 { 741 mag->next = rcache->depot; 742 rcache->depot = mag; 743 rcache->depot_size++; 744 } 745 746 static void iova_depot_work_func(struct work_struct *work) 747 { 748 struct iova_rcache *rcache = container_of(work, typeof(*rcache), work.work); 749 struct iova_magazine *mag = NULL; 750 unsigned long flags; 751 752 spin_lock_irqsave(&rcache->lock, flags); 753 if (rcache->depot_size > num_online_cpus()) 754 mag = iova_depot_pop(rcache); 755 spin_unlock_irqrestore(&rcache->lock, flags); 756 757 if (mag) { 758 iova_magazine_free_pfns(mag, rcache->iovad); 759 iova_magazine_free(mag); 760 schedule_delayed_work(&rcache->work, IOVA_DEPOT_DELAY); 761 } 762 } 763 764 int iova_domain_init_rcaches(struct iova_domain *iovad) 765 { 766 unsigned int cpu; 767 int i, ret; 768 769 iovad->rcaches = kcalloc(IOVA_RANGE_CACHE_MAX_SIZE, 770 sizeof(struct iova_rcache), 771 GFP_KERNEL); 772 if (!iovad->rcaches) 773 return -ENOMEM; 774 775 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 776 struct iova_cpu_rcache *cpu_rcache; 777 struct iova_rcache *rcache; 778 779 rcache = &iovad->rcaches[i]; 780 spin_lock_init(&rcache->lock); 781 rcache->iovad = iovad; 782 INIT_DELAYED_WORK(&rcache->work, iova_depot_work_func); 783 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), 784 cache_line_size()); 785 if (!rcache->cpu_rcaches) { 786 ret = -ENOMEM; 787 goto out_err; 788 } 789 for_each_possible_cpu(cpu) { 790 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 791 792 spin_lock_init(&cpu_rcache->lock); 793 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL); 794 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL); 795 if (!cpu_rcache->loaded || !cpu_rcache->prev) { 796 ret = -ENOMEM; 797 goto out_err; 798 } 799 } 800 } 801 802 ret = cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, 803 &iovad->cpuhp_dead); 804 if (ret) 805 goto out_err; 806 return 0; 807 808 out_err: 809 free_iova_rcaches(iovad); 810 return ret; 811 } 812 EXPORT_SYMBOL_GPL(iova_domain_init_rcaches); 813 814 /* 815 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and 816 * return true on success. Can fail if rcache is full and we can't free 817 * space, and free_iova() (our only caller) will then return the IOVA 818 * range to the rbtree instead. 819 */ 820 static bool __iova_rcache_insert(struct iova_domain *iovad, 821 struct iova_rcache *rcache, 822 unsigned long iova_pfn) 823 { 824 struct iova_cpu_rcache *cpu_rcache; 825 bool can_insert = false; 826 unsigned long flags; 827 828 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 829 spin_lock_irqsave(&cpu_rcache->lock, flags); 830 831 if (!iova_magazine_full(cpu_rcache->loaded)) { 832 can_insert = true; 833 } else if (!iova_magazine_full(cpu_rcache->prev)) { 834 swap(cpu_rcache->prev, cpu_rcache->loaded); 835 can_insert = true; 836 } else { 837 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC); 838 839 if (new_mag) { 840 spin_lock(&rcache->lock); 841 iova_depot_push(rcache, cpu_rcache->loaded); 842 spin_unlock(&rcache->lock); 843 schedule_delayed_work(&rcache->work, IOVA_DEPOT_DELAY); 844 845 cpu_rcache->loaded = new_mag; 846 can_insert = true; 847 } 848 } 849 850 if (can_insert) 851 iova_magazine_push(cpu_rcache->loaded, iova_pfn); 852 853 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 854 855 return can_insert; 856 } 857 858 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn, 859 unsigned long size) 860 { 861 unsigned int log_size = order_base_2(size); 862 863 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 864 return false; 865 866 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn); 867 } 868 869 /* 870 * Caller wants to allocate a new IOVA range from 'rcache'. If we can 871 * satisfy the request, return a matching non-NULL range and remove 872 * it from the 'rcache'. 873 */ 874 static unsigned long __iova_rcache_get(struct iova_rcache *rcache, 875 unsigned long limit_pfn) 876 { 877 struct iova_cpu_rcache *cpu_rcache; 878 unsigned long iova_pfn = 0; 879 bool has_pfn = false; 880 unsigned long flags; 881 882 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 883 spin_lock_irqsave(&cpu_rcache->lock, flags); 884 885 if (!iova_magazine_empty(cpu_rcache->loaded)) { 886 has_pfn = true; 887 } else if (!iova_magazine_empty(cpu_rcache->prev)) { 888 swap(cpu_rcache->prev, cpu_rcache->loaded); 889 has_pfn = true; 890 } else { 891 spin_lock(&rcache->lock); 892 if (rcache->depot) { 893 iova_magazine_free(cpu_rcache->loaded); 894 cpu_rcache->loaded = iova_depot_pop(rcache); 895 has_pfn = true; 896 } 897 spin_unlock(&rcache->lock); 898 } 899 900 if (has_pfn) 901 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn); 902 903 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 904 905 return iova_pfn; 906 } 907 908 /* 909 * Try to satisfy IOVA allocation range from rcache. Fail if requested 910 * size is too big or the DMA limit we are given isn't satisfied by the 911 * top element in the magazine. 912 */ 913 static unsigned long iova_rcache_get(struct iova_domain *iovad, 914 unsigned long size, 915 unsigned long limit_pfn) 916 { 917 unsigned int log_size = order_base_2(size); 918 919 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 920 return 0; 921 922 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size); 923 } 924 925 /* 926 * free rcache data structures. 927 */ 928 static void free_iova_rcaches(struct iova_domain *iovad) 929 { 930 struct iova_rcache *rcache; 931 struct iova_cpu_rcache *cpu_rcache; 932 unsigned int cpu; 933 934 for (int i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 935 rcache = &iovad->rcaches[i]; 936 if (!rcache->cpu_rcaches) 937 break; 938 for_each_possible_cpu(cpu) { 939 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 940 iova_magazine_free(cpu_rcache->loaded); 941 iova_magazine_free(cpu_rcache->prev); 942 } 943 free_percpu(rcache->cpu_rcaches); 944 cancel_delayed_work_sync(&rcache->work); 945 while (rcache->depot) 946 iova_magazine_free(iova_depot_pop(rcache)); 947 } 948 949 kfree(iovad->rcaches); 950 iovad->rcaches = NULL; 951 } 952 953 /* 954 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged) 955 */ 956 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad) 957 { 958 struct iova_cpu_rcache *cpu_rcache; 959 struct iova_rcache *rcache; 960 unsigned long flags; 961 int i; 962 963 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 964 rcache = &iovad->rcaches[i]; 965 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 966 spin_lock_irqsave(&cpu_rcache->lock, flags); 967 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 968 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 969 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 970 } 971 } 972 973 /* 974 * free all the IOVA ranges of global cache 975 */ 976 static void free_global_cached_iovas(struct iova_domain *iovad) 977 { 978 struct iova_rcache *rcache; 979 unsigned long flags; 980 981 for (int i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 982 rcache = &iovad->rcaches[i]; 983 spin_lock_irqsave(&rcache->lock, flags); 984 while (rcache->depot) { 985 struct iova_magazine *mag = iova_depot_pop(rcache); 986 987 iova_magazine_free_pfns(mag, iovad); 988 iova_magazine_free(mag); 989 } 990 spin_unlock_irqrestore(&rcache->lock, flags); 991 } 992 } 993 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>"); 994 MODULE_LICENSE("GPL"); 995