xref: /linux/drivers/iommu/iommufd/pages.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES.
3  *
4  * The iopt_pages is the center of the storage and motion of PFNs. Each
5  * iopt_pages represents a logical linear array of full PFNs. The array is 0
6  * based and has npages in it. Accessors use 'index' to refer to the entry in
7  * this logical array, regardless of its storage location.
8  *
9  * PFNs are stored in a tiered scheme:
10  *  1) iopt_pages::pinned_pfns xarray
11  *  2) An iommu_domain
12  *  3) The origin of the PFNs, i.e. the userspace pointer
13  *
14  * PFN have to be copied between all combinations of tiers, depending on the
15  * configuration.
16  *
17  * When a PFN is taken out of the userspace pointer it is pinned exactly once.
18  * The storage locations of the PFN's index are tracked in the two interval
19  * trees. If no interval includes the index then it is not pinned.
20  *
21  * If access_itree includes the PFN's index then an in-kernel access has
22  * requested the page. The PFN is stored in the xarray so other requestors can
23  * continue to find it.
24  *
25  * If the domains_itree includes the PFN's index then an iommu_domain is storing
26  * the PFN and it can be read back using iommu_iova_to_phys(). To avoid
27  * duplicating storage the xarray is not used if only iommu_domains are using
28  * the PFN's index.
29  *
30  * As a general principle this is designed so that destroy never fails. This
31  * means removing an iommu_domain or releasing a in-kernel access will not fail
32  * due to insufficient memory. In practice this means some cases have to hold
33  * PFNs in the xarray even though they are also being stored in an iommu_domain.
34  *
35  * While the iopt_pages can use an iommu_domain as storage, it does not have an
36  * IOVA itself. Instead the iopt_area represents a range of IOVA and uses the
37  * iopt_pages as the PFN provider. Multiple iopt_areas can share the iopt_pages
38  * and reference their own slice of the PFN array, with sub page granularity.
39  *
40  * In this file the term 'last' indicates an inclusive and closed interval, eg
41  * [0,0] refers to a single PFN. 'end' means an open range, eg [0,0) refers to
42  * no PFNs.
43  *
44  * Be cautious of overflow. An IOVA can go all the way up to U64_MAX, so
45  * last_iova + 1 can overflow. An iopt_pages index will always be much less than
46  * ULONG_MAX so last_index + 1 cannot overflow.
47  */
48 #include <linux/highmem.h>
49 #include <linux/iommu.h>
50 #include <linux/iommufd.h>
51 #include <linux/kthread.h>
52 #include <linux/overflow.h>
53 #include <linux/slab.h>
54 #include <linux/sched/mm.h>
55 
56 #include "double_span.h"
57 #include "io_pagetable.h"
58 
59 #ifndef CONFIG_IOMMUFD_TEST
60 #define TEMP_MEMORY_LIMIT 65536
61 #else
62 #define TEMP_MEMORY_LIMIT iommufd_test_memory_limit
63 #endif
64 #define BATCH_BACKUP_SIZE 32
65 
66 /*
67  * More memory makes pin_user_pages() and the batching more efficient, but as
68  * this is only a performance optimization don't try too hard to get it. A 64k
69  * allocation can hold about 26M of 4k pages and 13G of 2M pages in an
70  * pfn_batch. Various destroy paths cannot fail and provide a small amount of
71  * stack memory as a backup contingency. If backup_len is given this cannot
72  * fail.
73  */
74 static void *temp_kmalloc(size_t *size, void *backup, size_t backup_len)
75 {
76 	void *res;
77 
78 	if (WARN_ON(*size == 0))
79 		return NULL;
80 
81 	if (*size < backup_len)
82 		return backup;
83 
84 	if (!backup && iommufd_should_fail())
85 		return NULL;
86 
87 	*size = min_t(size_t, *size, TEMP_MEMORY_LIMIT);
88 	res = kmalloc(*size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
89 	if (res)
90 		return res;
91 	*size = PAGE_SIZE;
92 	if (backup_len) {
93 		res = kmalloc(*size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
94 		if (res)
95 			return res;
96 		*size = backup_len;
97 		return backup;
98 	}
99 	return kmalloc(*size, GFP_KERNEL);
100 }
101 
102 void interval_tree_double_span_iter_update(
103 	struct interval_tree_double_span_iter *iter)
104 {
105 	unsigned long last_hole = ULONG_MAX;
106 	unsigned int i;
107 
108 	for (i = 0; i != ARRAY_SIZE(iter->spans); i++) {
109 		if (interval_tree_span_iter_done(&iter->spans[i])) {
110 			iter->is_used = -1;
111 			return;
112 		}
113 
114 		if (iter->spans[i].is_hole) {
115 			last_hole = min(last_hole, iter->spans[i].last_hole);
116 			continue;
117 		}
118 
119 		iter->is_used = i + 1;
120 		iter->start_used = iter->spans[i].start_used;
121 		iter->last_used = min(iter->spans[i].last_used, last_hole);
122 		return;
123 	}
124 
125 	iter->is_used = 0;
126 	iter->start_hole = iter->spans[0].start_hole;
127 	iter->last_hole =
128 		min(iter->spans[0].last_hole, iter->spans[1].last_hole);
129 }
130 
131 void interval_tree_double_span_iter_first(
132 	struct interval_tree_double_span_iter *iter,
133 	struct rb_root_cached *itree1, struct rb_root_cached *itree2,
134 	unsigned long first_index, unsigned long last_index)
135 {
136 	unsigned int i;
137 
138 	iter->itrees[0] = itree1;
139 	iter->itrees[1] = itree2;
140 	for (i = 0; i != ARRAY_SIZE(iter->spans); i++)
141 		interval_tree_span_iter_first(&iter->spans[i], iter->itrees[i],
142 					      first_index, last_index);
143 	interval_tree_double_span_iter_update(iter);
144 }
145 
146 void interval_tree_double_span_iter_next(
147 	struct interval_tree_double_span_iter *iter)
148 {
149 	unsigned int i;
150 
151 	if (iter->is_used == -1 ||
152 	    iter->last_hole == iter->spans[0].last_index) {
153 		iter->is_used = -1;
154 		return;
155 	}
156 
157 	for (i = 0; i != ARRAY_SIZE(iter->spans); i++)
158 		interval_tree_span_iter_advance(
159 			&iter->spans[i], iter->itrees[i], iter->last_hole + 1);
160 	interval_tree_double_span_iter_update(iter);
161 }
162 
163 static void iopt_pages_add_npinned(struct iopt_pages *pages, size_t npages)
164 {
165 	int rc;
166 
167 	rc = check_add_overflow(pages->npinned, npages, &pages->npinned);
168 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
169 		WARN_ON(rc || pages->npinned > pages->npages);
170 }
171 
172 static void iopt_pages_sub_npinned(struct iopt_pages *pages, size_t npages)
173 {
174 	int rc;
175 
176 	rc = check_sub_overflow(pages->npinned, npages, &pages->npinned);
177 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
178 		WARN_ON(rc || pages->npinned > pages->npages);
179 }
180 
181 static void iopt_pages_err_unpin(struct iopt_pages *pages,
182 				 unsigned long start_index,
183 				 unsigned long last_index,
184 				 struct page **page_list)
185 {
186 	unsigned long npages = last_index - start_index + 1;
187 
188 	unpin_user_pages(page_list, npages);
189 	iopt_pages_sub_npinned(pages, npages);
190 }
191 
192 /*
193  * index is the number of PAGE_SIZE units from the start of the area's
194  * iopt_pages. If the iova is sub page-size then the area has an iova that
195  * covers a portion of the first and last pages in the range.
196  */
197 static unsigned long iopt_area_index_to_iova(struct iopt_area *area,
198 					     unsigned long index)
199 {
200 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
201 		WARN_ON(index < iopt_area_index(area) ||
202 			index > iopt_area_last_index(area));
203 	index -= iopt_area_index(area);
204 	if (index == 0)
205 		return iopt_area_iova(area);
206 	return iopt_area_iova(area) - area->page_offset + index * PAGE_SIZE;
207 }
208 
209 static unsigned long iopt_area_index_to_iova_last(struct iopt_area *area,
210 						  unsigned long index)
211 {
212 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
213 		WARN_ON(index < iopt_area_index(area) ||
214 			index > iopt_area_last_index(area));
215 	if (index == iopt_area_last_index(area))
216 		return iopt_area_last_iova(area);
217 	return iopt_area_iova(area) - area->page_offset +
218 	       (index - iopt_area_index(area) + 1) * PAGE_SIZE - 1;
219 }
220 
221 static void iommu_unmap_nofail(struct iommu_domain *domain, unsigned long iova,
222 			       size_t size)
223 {
224 	size_t ret;
225 
226 	ret = iommu_unmap(domain, iova, size);
227 	/*
228 	 * It is a logic error in this code or a driver bug if the IOMMU unmaps
229 	 * something other than exactly as requested. This implies that the
230 	 * iommu driver may not fail unmap for reasons beyond bad agruments.
231 	 * Particularly, the iommu driver may not do a memory allocation on the
232 	 * unmap path.
233 	 */
234 	WARN_ON(ret != size);
235 }
236 
237 static void iopt_area_unmap_domain_range(struct iopt_area *area,
238 					 struct iommu_domain *domain,
239 					 unsigned long start_index,
240 					 unsigned long last_index)
241 {
242 	unsigned long start_iova = iopt_area_index_to_iova(area, start_index);
243 
244 	iommu_unmap_nofail(domain, start_iova,
245 			   iopt_area_index_to_iova_last(area, last_index) -
246 				   start_iova + 1);
247 }
248 
249 static struct iopt_area *iopt_pages_find_domain_area(struct iopt_pages *pages,
250 						     unsigned long index)
251 {
252 	struct interval_tree_node *node;
253 
254 	node = interval_tree_iter_first(&pages->domains_itree, index, index);
255 	if (!node)
256 		return NULL;
257 	return container_of(node, struct iopt_area, pages_node);
258 }
259 
260 /*
261  * A simple datastructure to hold a vector of PFNs, optimized for contiguous
262  * PFNs. This is used as a temporary holding memory for shuttling pfns from one
263  * place to another. Generally everything is made more efficient if operations
264  * work on the largest possible grouping of pfns. eg fewer lock/unlock cycles,
265  * better cache locality, etc
266  */
267 struct pfn_batch {
268 	unsigned long *pfns;
269 	u32 *npfns;
270 	unsigned int array_size;
271 	unsigned int end;
272 	unsigned int total_pfns;
273 };
274 
275 static void batch_clear(struct pfn_batch *batch)
276 {
277 	batch->total_pfns = 0;
278 	batch->end = 0;
279 	batch->pfns[0] = 0;
280 	batch->npfns[0] = 0;
281 }
282 
283 /*
284  * Carry means we carry a portion of the final hugepage over to the front of the
285  * batch
286  */
287 static void batch_clear_carry(struct pfn_batch *batch, unsigned int keep_pfns)
288 {
289 	if (!keep_pfns)
290 		return batch_clear(batch);
291 
292 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
293 		WARN_ON(!batch->end ||
294 			batch->npfns[batch->end - 1] < keep_pfns);
295 
296 	batch->total_pfns = keep_pfns;
297 	batch->pfns[0] = batch->pfns[batch->end - 1] +
298 			 (batch->npfns[batch->end - 1] - keep_pfns);
299 	batch->npfns[0] = keep_pfns;
300 	batch->end = 1;
301 }
302 
303 static void batch_skip_carry(struct pfn_batch *batch, unsigned int skip_pfns)
304 {
305 	if (!batch->total_pfns)
306 		return;
307 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
308 		WARN_ON(batch->total_pfns != batch->npfns[0]);
309 	skip_pfns = min(batch->total_pfns, skip_pfns);
310 	batch->pfns[0] += skip_pfns;
311 	batch->npfns[0] -= skip_pfns;
312 	batch->total_pfns -= skip_pfns;
313 }
314 
315 static int __batch_init(struct pfn_batch *batch, size_t max_pages, void *backup,
316 			size_t backup_len)
317 {
318 	const size_t elmsz = sizeof(*batch->pfns) + sizeof(*batch->npfns);
319 	size_t size = max_pages * elmsz;
320 
321 	batch->pfns = temp_kmalloc(&size, backup, backup_len);
322 	if (!batch->pfns)
323 		return -ENOMEM;
324 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) && WARN_ON(size < elmsz))
325 		return -EINVAL;
326 	batch->array_size = size / elmsz;
327 	batch->npfns = (u32 *)(batch->pfns + batch->array_size);
328 	batch_clear(batch);
329 	return 0;
330 }
331 
332 static int batch_init(struct pfn_batch *batch, size_t max_pages)
333 {
334 	return __batch_init(batch, max_pages, NULL, 0);
335 }
336 
337 static void batch_init_backup(struct pfn_batch *batch, size_t max_pages,
338 			      void *backup, size_t backup_len)
339 {
340 	__batch_init(batch, max_pages, backup, backup_len);
341 }
342 
343 static void batch_destroy(struct pfn_batch *batch, void *backup)
344 {
345 	if (batch->pfns != backup)
346 		kfree(batch->pfns);
347 }
348 
349 /* true if the pfn was added, false otherwise */
350 static bool batch_add_pfn(struct pfn_batch *batch, unsigned long pfn)
351 {
352 	const unsigned int MAX_NPFNS = type_max(typeof(*batch->npfns));
353 
354 	if (batch->end &&
355 	    pfn == batch->pfns[batch->end - 1] + batch->npfns[batch->end - 1] &&
356 	    batch->npfns[batch->end - 1] != MAX_NPFNS) {
357 		batch->npfns[batch->end - 1]++;
358 		batch->total_pfns++;
359 		return true;
360 	}
361 	if (batch->end == batch->array_size)
362 		return false;
363 	batch->total_pfns++;
364 	batch->pfns[batch->end] = pfn;
365 	batch->npfns[batch->end] = 1;
366 	batch->end++;
367 	return true;
368 }
369 
370 /*
371  * Fill the batch with pfns from the domain. When the batch is full, or it
372  * reaches last_index, the function will return. The caller should use
373  * batch->total_pfns to determine the starting point for the next iteration.
374  */
375 static void batch_from_domain(struct pfn_batch *batch,
376 			      struct iommu_domain *domain,
377 			      struct iopt_area *area, unsigned long start_index,
378 			      unsigned long last_index)
379 {
380 	unsigned int page_offset = 0;
381 	unsigned long iova;
382 	phys_addr_t phys;
383 
384 	iova = iopt_area_index_to_iova(area, start_index);
385 	if (start_index == iopt_area_index(area))
386 		page_offset = area->page_offset;
387 	while (start_index <= last_index) {
388 		/*
389 		 * This is pretty slow, it would be nice to get the page size
390 		 * back from the driver, or have the driver directly fill the
391 		 * batch.
392 		 */
393 		phys = iommu_iova_to_phys(domain, iova) - page_offset;
394 		if (!batch_add_pfn(batch, PHYS_PFN(phys)))
395 			return;
396 		iova += PAGE_SIZE - page_offset;
397 		page_offset = 0;
398 		start_index++;
399 	}
400 }
401 
402 static struct page **raw_pages_from_domain(struct iommu_domain *domain,
403 					   struct iopt_area *area,
404 					   unsigned long start_index,
405 					   unsigned long last_index,
406 					   struct page **out_pages)
407 {
408 	unsigned int page_offset = 0;
409 	unsigned long iova;
410 	phys_addr_t phys;
411 
412 	iova = iopt_area_index_to_iova(area, start_index);
413 	if (start_index == iopt_area_index(area))
414 		page_offset = area->page_offset;
415 	while (start_index <= last_index) {
416 		phys = iommu_iova_to_phys(domain, iova) - page_offset;
417 		*(out_pages++) = pfn_to_page(PHYS_PFN(phys));
418 		iova += PAGE_SIZE - page_offset;
419 		page_offset = 0;
420 		start_index++;
421 	}
422 	return out_pages;
423 }
424 
425 /* Continues reading a domain until we reach a discontinuity in the pfns. */
426 static void batch_from_domain_continue(struct pfn_batch *batch,
427 				       struct iommu_domain *domain,
428 				       struct iopt_area *area,
429 				       unsigned long start_index,
430 				       unsigned long last_index)
431 {
432 	unsigned int array_size = batch->array_size;
433 
434 	batch->array_size = batch->end;
435 	batch_from_domain(batch, domain, area, start_index, last_index);
436 	batch->array_size = array_size;
437 }
438 
439 /*
440  * This is part of the VFIO compatibility support for VFIO_TYPE1_IOMMU. That
441  * mode permits splitting a mapped area up, and then one of the splits is
442  * unmapped. Doing this normally would cause us to violate our invariant of
443  * pairing map/unmap. Thus, to support old VFIO compatibility disable support
444  * for batching consecutive PFNs. All PFNs mapped into the iommu are done in
445  * PAGE_SIZE units, not larger or smaller.
446  */
447 static int batch_iommu_map_small(struct iommu_domain *domain,
448 				 unsigned long iova, phys_addr_t paddr,
449 				 size_t size, int prot)
450 {
451 	unsigned long start_iova = iova;
452 	int rc;
453 
454 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
455 		WARN_ON(paddr % PAGE_SIZE || iova % PAGE_SIZE ||
456 			size % PAGE_SIZE);
457 
458 	while (size) {
459 		rc = iommu_map(domain, iova, paddr, PAGE_SIZE, prot,
460 			       GFP_KERNEL_ACCOUNT);
461 		if (rc)
462 			goto err_unmap;
463 		iova += PAGE_SIZE;
464 		paddr += PAGE_SIZE;
465 		size -= PAGE_SIZE;
466 	}
467 	return 0;
468 
469 err_unmap:
470 	if (start_iova != iova)
471 		iommu_unmap_nofail(domain, start_iova, iova - start_iova);
472 	return rc;
473 }
474 
475 static int batch_to_domain(struct pfn_batch *batch, struct iommu_domain *domain,
476 			   struct iopt_area *area, unsigned long start_index)
477 {
478 	bool disable_large_pages = area->iopt->disable_large_pages;
479 	unsigned long last_iova = iopt_area_last_iova(area);
480 	unsigned int page_offset = 0;
481 	unsigned long start_iova;
482 	unsigned long next_iova;
483 	unsigned int cur = 0;
484 	unsigned long iova;
485 	int rc;
486 
487 	/* The first index might be a partial page */
488 	if (start_index == iopt_area_index(area))
489 		page_offset = area->page_offset;
490 	next_iova = iova = start_iova =
491 		iopt_area_index_to_iova(area, start_index);
492 	while (cur < batch->end) {
493 		next_iova = min(last_iova + 1,
494 				next_iova + batch->npfns[cur] * PAGE_SIZE -
495 					page_offset);
496 		if (disable_large_pages)
497 			rc = batch_iommu_map_small(
498 				domain, iova,
499 				PFN_PHYS(batch->pfns[cur]) + page_offset,
500 				next_iova - iova, area->iommu_prot);
501 		else
502 			rc = iommu_map(domain, iova,
503 				       PFN_PHYS(batch->pfns[cur]) + page_offset,
504 				       next_iova - iova, area->iommu_prot,
505 				       GFP_KERNEL_ACCOUNT);
506 		if (rc)
507 			goto err_unmap;
508 		iova = next_iova;
509 		page_offset = 0;
510 		cur++;
511 	}
512 	return 0;
513 err_unmap:
514 	if (start_iova != iova)
515 		iommu_unmap_nofail(domain, start_iova, iova - start_iova);
516 	return rc;
517 }
518 
519 static void batch_from_xarray(struct pfn_batch *batch, struct xarray *xa,
520 			      unsigned long start_index,
521 			      unsigned long last_index)
522 {
523 	XA_STATE(xas, xa, start_index);
524 	void *entry;
525 
526 	rcu_read_lock();
527 	while (true) {
528 		entry = xas_next(&xas);
529 		if (xas_retry(&xas, entry))
530 			continue;
531 		WARN_ON(!xa_is_value(entry));
532 		if (!batch_add_pfn(batch, xa_to_value(entry)) ||
533 		    start_index == last_index)
534 			break;
535 		start_index++;
536 	}
537 	rcu_read_unlock();
538 }
539 
540 static void batch_from_xarray_clear(struct pfn_batch *batch, struct xarray *xa,
541 				    unsigned long start_index,
542 				    unsigned long last_index)
543 {
544 	XA_STATE(xas, xa, start_index);
545 	void *entry;
546 
547 	xas_lock(&xas);
548 	while (true) {
549 		entry = xas_next(&xas);
550 		if (xas_retry(&xas, entry))
551 			continue;
552 		WARN_ON(!xa_is_value(entry));
553 		if (!batch_add_pfn(batch, xa_to_value(entry)))
554 			break;
555 		xas_store(&xas, NULL);
556 		if (start_index == last_index)
557 			break;
558 		start_index++;
559 	}
560 	xas_unlock(&xas);
561 }
562 
563 static void clear_xarray(struct xarray *xa, unsigned long start_index,
564 			 unsigned long last_index)
565 {
566 	XA_STATE(xas, xa, start_index);
567 	void *entry;
568 
569 	xas_lock(&xas);
570 	xas_for_each(&xas, entry, last_index)
571 		xas_store(&xas, NULL);
572 	xas_unlock(&xas);
573 }
574 
575 static int pages_to_xarray(struct xarray *xa, unsigned long start_index,
576 			   unsigned long last_index, struct page **pages)
577 {
578 	struct page **end_pages = pages + (last_index - start_index) + 1;
579 	struct page **half_pages = pages + (end_pages - pages) / 2;
580 	XA_STATE(xas, xa, start_index);
581 
582 	do {
583 		void *old;
584 
585 		xas_lock(&xas);
586 		while (pages != end_pages) {
587 			/* xarray does not participate in fault injection */
588 			if (pages == half_pages && iommufd_should_fail()) {
589 				xas_set_err(&xas, -EINVAL);
590 				xas_unlock(&xas);
591 				/* aka xas_destroy() */
592 				xas_nomem(&xas, GFP_KERNEL);
593 				goto err_clear;
594 			}
595 
596 			old = xas_store(&xas, xa_mk_value(page_to_pfn(*pages)));
597 			if (xas_error(&xas))
598 				break;
599 			WARN_ON(old);
600 			pages++;
601 			xas_next(&xas);
602 		}
603 		xas_unlock(&xas);
604 	} while (xas_nomem(&xas, GFP_KERNEL));
605 
606 err_clear:
607 	if (xas_error(&xas)) {
608 		if (xas.xa_index != start_index)
609 			clear_xarray(xa, start_index, xas.xa_index - 1);
610 		return xas_error(&xas);
611 	}
612 	return 0;
613 }
614 
615 static void batch_from_pages(struct pfn_batch *batch, struct page **pages,
616 			     size_t npages)
617 {
618 	struct page **end = pages + npages;
619 
620 	for (; pages != end; pages++)
621 		if (!batch_add_pfn(batch, page_to_pfn(*pages)))
622 			break;
623 }
624 
625 static void batch_unpin(struct pfn_batch *batch, struct iopt_pages *pages,
626 			unsigned int first_page_off, size_t npages)
627 {
628 	unsigned int cur = 0;
629 
630 	while (first_page_off) {
631 		if (batch->npfns[cur] > first_page_off)
632 			break;
633 		first_page_off -= batch->npfns[cur];
634 		cur++;
635 	}
636 
637 	while (npages) {
638 		size_t to_unpin = min_t(size_t, npages,
639 					batch->npfns[cur] - first_page_off);
640 
641 		unpin_user_page_range_dirty_lock(
642 			pfn_to_page(batch->pfns[cur] + first_page_off),
643 			to_unpin, pages->writable);
644 		iopt_pages_sub_npinned(pages, to_unpin);
645 		cur++;
646 		first_page_off = 0;
647 		npages -= to_unpin;
648 	}
649 }
650 
651 static void copy_data_page(struct page *page, void *data, unsigned long offset,
652 			   size_t length, unsigned int flags)
653 {
654 	void *mem;
655 
656 	mem = kmap_local_page(page);
657 	if (flags & IOMMUFD_ACCESS_RW_WRITE) {
658 		memcpy(mem + offset, data, length);
659 		set_page_dirty_lock(page);
660 	} else {
661 		memcpy(data, mem + offset, length);
662 	}
663 	kunmap_local(mem);
664 }
665 
666 static unsigned long batch_rw(struct pfn_batch *batch, void *data,
667 			      unsigned long offset, unsigned long length,
668 			      unsigned int flags)
669 {
670 	unsigned long copied = 0;
671 	unsigned int npage = 0;
672 	unsigned int cur = 0;
673 
674 	while (cur < batch->end) {
675 		unsigned long bytes = min(length, PAGE_SIZE - offset);
676 
677 		copy_data_page(pfn_to_page(batch->pfns[cur] + npage), data,
678 			       offset, bytes, flags);
679 		offset = 0;
680 		length -= bytes;
681 		data += bytes;
682 		copied += bytes;
683 		npage++;
684 		if (npage == batch->npfns[cur]) {
685 			npage = 0;
686 			cur++;
687 		}
688 		if (!length)
689 			break;
690 	}
691 	return copied;
692 }
693 
694 /* pfn_reader_user is just the pin_user_pages() path */
695 struct pfn_reader_user {
696 	struct page **upages;
697 	size_t upages_len;
698 	unsigned long upages_start;
699 	unsigned long upages_end;
700 	unsigned int gup_flags;
701 	/*
702 	 * 1 means mmget() and mmap_read_lock(), 0 means only mmget(), -1 is
703 	 * neither
704 	 */
705 	int locked;
706 };
707 
708 static void pfn_reader_user_init(struct pfn_reader_user *user,
709 				 struct iopt_pages *pages)
710 {
711 	user->upages = NULL;
712 	user->upages_start = 0;
713 	user->upages_end = 0;
714 	user->locked = -1;
715 
716 	user->gup_flags = FOLL_LONGTERM;
717 	if (pages->writable)
718 		user->gup_flags |= FOLL_WRITE;
719 }
720 
721 static void pfn_reader_user_destroy(struct pfn_reader_user *user,
722 				    struct iopt_pages *pages)
723 {
724 	if (user->locked != -1) {
725 		if (user->locked)
726 			mmap_read_unlock(pages->source_mm);
727 		if (pages->source_mm != current->mm)
728 			mmput(pages->source_mm);
729 		user->locked = -1;
730 	}
731 
732 	kfree(user->upages);
733 	user->upages = NULL;
734 }
735 
736 static int pfn_reader_user_pin(struct pfn_reader_user *user,
737 			       struct iopt_pages *pages,
738 			       unsigned long start_index,
739 			       unsigned long last_index)
740 {
741 	bool remote_mm = pages->source_mm != current->mm;
742 	unsigned long npages;
743 	uintptr_t uptr;
744 	long rc;
745 
746 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
747 	    WARN_ON(last_index < start_index))
748 		return -EINVAL;
749 
750 	if (!user->upages) {
751 		/* All undone in pfn_reader_destroy() */
752 		user->upages_len =
753 			(last_index - start_index + 1) * sizeof(*user->upages);
754 		user->upages = temp_kmalloc(&user->upages_len, NULL, 0);
755 		if (!user->upages)
756 			return -ENOMEM;
757 	}
758 
759 	if (user->locked == -1) {
760 		/*
761 		 * The majority of usages will run the map task within the mm
762 		 * providing the pages, so we can optimize into
763 		 * get_user_pages_fast()
764 		 */
765 		if (remote_mm) {
766 			if (!mmget_not_zero(pages->source_mm))
767 				return -EFAULT;
768 		}
769 		user->locked = 0;
770 	}
771 
772 	npages = min_t(unsigned long, last_index - start_index + 1,
773 		       user->upages_len / sizeof(*user->upages));
774 
775 
776 	if (iommufd_should_fail())
777 		return -EFAULT;
778 
779 	uptr = (uintptr_t)(pages->uptr + start_index * PAGE_SIZE);
780 	if (!remote_mm)
781 		rc = pin_user_pages_fast(uptr, npages, user->gup_flags,
782 					 user->upages);
783 	else {
784 		if (!user->locked) {
785 			mmap_read_lock(pages->source_mm);
786 			user->locked = 1;
787 		}
788 		rc = pin_user_pages_remote(pages->source_mm, uptr, npages,
789 					   user->gup_flags, user->upages,
790 					   &user->locked);
791 	}
792 	if (rc <= 0) {
793 		if (WARN_ON(!rc))
794 			return -EFAULT;
795 		return rc;
796 	}
797 	iopt_pages_add_npinned(pages, rc);
798 	user->upages_start = start_index;
799 	user->upages_end = start_index + rc;
800 	return 0;
801 }
802 
803 /* This is the "modern" and faster accounting method used by io_uring */
804 static int incr_user_locked_vm(struct iopt_pages *pages, unsigned long npages)
805 {
806 	unsigned long lock_limit;
807 	unsigned long cur_pages;
808 	unsigned long new_pages;
809 
810 	lock_limit = task_rlimit(pages->source_task, RLIMIT_MEMLOCK) >>
811 		     PAGE_SHIFT;
812 
813 	cur_pages = atomic_long_read(&pages->source_user->locked_vm);
814 	do {
815 		new_pages = cur_pages + npages;
816 		if (new_pages > lock_limit)
817 			return -ENOMEM;
818 	} while (!atomic_long_try_cmpxchg(&pages->source_user->locked_vm,
819 					  &cur_pages, new_pages));
820 	return 0;
821 }
822 
823 static void decr_user_locked_vm(struct iopt_pages *pages, unsigned long npages)
824 {
825 	if (WARN_ON(atomic_long_read(&pages->source_user->locked_vm) < npages))
826 		return;
827 	atomic_long_sub(npages, &pages->source_user->locked_vm);
828 }
829 
830 /* This is the accounting method used for compatibility with VFIO */
831 static int update_mm_locked_vm(struct iopt_pages *pages, unsigned long npages,
832 			       bool inc, struct pfn_reader_user *user)
833 {
834 	bool do_put = false;
835 	int rc;
836 
837 	if (user && user->locked) {
838 		mmap_read_unlock(pages->source_mm);
839 		user->locked = 0;
840 		/* If we had the lock then we also have a get */
841 	} else if ((!user || !user->upages) &&
842 		   pages->source_mm != current->mm) {
843 		if (!mmget_not_zero(pages->source_mm))
844 			return -EINVAL;
845 		do_put = true;
846 	}
847 
848 	mmap_write_lock(pages->source_mm);
849 	rc = __account_locked_vm(pages->source_mm, npages, inc,
850 				 pages->source_task, false);
851 	mmap_write_unlock(pages->source_mm);
852 
853 	if (do_put)
854 		mmput(pages->source_mm);
855 	return rc;
856 }
857 
858 static int do_update_pinned(struct iopt_pages *pages, unsigned long npages,
859 			    bool inc, struct pfn_reader_user *user)
860 {
861 	int rc = 0;
862 
863 	switch (pages->account_mode) {
864 	case IOPT_PAGES_ACCOUNT_NONE:
865 		break;
866 	case IOPT_PAGES_ACCOUNT_USER:
867 		if (inc)
868 			rc = incr_user_locked_vm(pages, npages);
869 		else
870 			decr_user_locked_vm(pages, npages);
871 		break;
872 	case IOPT_PAGES_ACCOUNT_MM:
873 		rc = update_mm_locked_vm(pages, npages, inc, user);
874 		break;
875 	}
876 	if (rc)
877 		return rc;
878 
879 	pages->last_npinned = pages->npinned;
880 	if (inc)
881 		atomic64_add(npages, &pages->source_mm->pinned_vm);
882 	else
883 		atomic64_sub(npages, &pages->source_mm->pinned_vm);
884 	return 0;
885 }
886 
887 static void update_unpinned(struct iopt_pages *pages)
888 {
889 	if (WARN_ON(pages->npinned > pages->last_npinned))
890 		return;
891 	if (pages->npinned == pages->last_npinned)
892 		return;
893 	do_update_pinned(pages, pages->last_npinned - pages->npinned, false,
894 			 NULL);
895 }
896 
897 /*
898  * Changes in the number of pages pinned is done after the pages have been read
899  * and processed. If the user lacked the limit then the error unwind will unpin
900  * everything that was just pinned. This is because it is expensive to calculate
901  * how many pages we have already pinned within a range to generate an accurate
902  * prediction in advance of doing the work to actually pin them.
903  */
904 static int pfn_reader_user_update_pinned(struct pfn_reader_user *user,
905 					 struct iopt_pages *pages)
906 {
907 	unsigned long npages;
908 	bool inc;
909 
910 	lockdep_assert_held(&pages->mutex);
911 
912 	if (pages->npinned == pages->last_npinned)
913 		return 0;
914 
915 	if (pages->npinned < pages->last_npinned) {
916 		npages = pages->last_npinned - pages->npinned;
917 		inc = false;
918 	} else {
919 		if (iommufd_should_fail())
920 			return -ENOMEM;
921 		npages = pages->npinned - pages->last_npinned;
922 		inc = true;
923 	}
924 	return do_update_pinned(pages, npages, inc, user);
925 }
926 
927 /*
928  * PFNs are stored in three places, in order of preference:
929  * - The iopt_pages xarray. This is only populated if there is a
930  *   iopt_pages_access
931  * - The iommu_domain under an area
932  * - The original PFN source, ie pages->source_mm
933  *
934  * This iterator reads the pfns optimizing to load according to the
935  * above order.
936  */
937 struct pfn_reader {
938 	struct iopt_pages *pages;
939 	struct interval_tree_double_span_iter span;
940 	struct pfn_batch batch;
941 	unsigned long batch_start_index;
942 	unsigned long batch_end_index;
943 	unsigned long last_index;
944 
945 	struct pfn_reader_user user;
946 };
947 
948 static int pfn_reader_update_pinned(struct pfn_reader *pfns)
949 {
950 	return pfn_reader_user_update_pinned(&pfns->user, pfns->pages);
951 }
952 
953 /*
954  * The batch can contain a mixture of pages that are still in use and pages that
955  * need to be unpinned. Unpin only pages that are not held anywhere else.
956  */
957 static void pfn_reader_unpin(struct pfn_reader *pfns)
958 {
959 	unsigned long last = pfns->batch_end_index - 1;
960 	unsigned long start = pfns->batch_start_index;
961 	struct interval_tree_double_span_iter span;
962 	struct iopt_pages *pages = pfns->pages;
963 
964 	lockdep_assert_held(&pages->mutex);
965 
966 	interval_tree_for_each_double_span(&span, &pages->access_itree,
967 					   &pages->domains_itree, start, last) {
968 		if (span.is_used)
969 			continue;
970 
971 		batch_unpin(&pfns->batch, pages, span.start_hole - start,
972 			    span.last_hole - span.start_hole + 1);
973 	}
974 }
975 
976 /* Process a single span to load it from the proper storage */
977 static int pfn_reader_fill_span(struct pfn_reader *pfns)
978 {
979 	struct interval_tree_double_span_iter *span = &pfns->span;
980 	unsigned long start_index = pfns->batch_end_index;
981 	struct iopt_area *area;
982 	int rc;
983 
984 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
985 	    WARN_ON(span->last_used < start_index))
986 		return -EINVAL;
987 
988 	if (span->is_used == 1) {
989 		batch_from_xarray(&pfns->batch, &pfns->pages->pinned_pfns,
990 				  start_index, span->last_used);
991 		return 0;
992 	}
993 
994 	if (span->is_used == 2) {
995 		/*
996 		 * Pull as many pages from the first domain we find in the
997 		 * target span. If it is too small then we will be called again
998 		 * and we'll find another area.
999 		 */
1000 		area = iopt_pages_find_domain_area(pfns->pages, start_index);
1001 		if (WARN_ON(!area))
1002 			return -EINVAL;
1003 
1004 		/* The storage_domain cannot change without the pages mutex */
1005 		batch_from_domain(
1006 			&pfns->batch, area->storage_domain, area, start_index,
1007 			min(iopt_area_last_index(area), span->last_used));
1008 		return 0;
1009 	}
1010 
1011 	if (start_index >= pfns->user.upages_end) {
1012 		rc = pfn_reader_user_pin(&pfns->user, pfns->pages, start_index,
1013 					 span->last_hole);
1014 		if (rc)
1015 			return rc;
1016 	}
1017 
1018 	batch_from_pages(&pfns->batch,
1019 			 pfns->user.upages +
1020 				 (start_index - pfns->user.upages_start),
1021 			 pfns->user.upages_end - start_index);
1022 	return 0;
1023 }
1024 
1025 static bool pfn_reader_done(struct pfn_reader *pfns)
1026 {
1027 	return pfns->batch_start_index == pfns->last_index + 1;
1028 }
1029 
1030 static int pfn_reader_next(struct pfn_reader *pfns)
1031 {
1032 	int rc;
1033 
1034 	batch_clear(&pfns->batch);
1035 	pfns->batch_start_index = pfns->batch_end_index;
1036 
1037 	while (pfns->batch_end_index != pfns->last_index + 1) {
1038 		unsigned int npfns = pfns->batch.total_pfns;
1039 
1040 		if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
1041 		    WARN_ON(interval_tree_double_span_iter_done(&pfns->span)))
1042 			return -EINVAL;
1043 
1044 		rc = pfn_reader_fill_span(pfns);
1045 		if (rc)
1046 			return rc;
1047 
1048 		if (WARN_ON(!pfns->batch.total_pfns))
1049 			return -EINVAL;
1050 
1051 		pfns->batch_end_index =
1052 			pfns->batch_start_index + pfns->batch.total_pfns;
1053 		if (pfns->batch_end_index == pfns->span.last_used + 1)
1054 			interval_tree_double_span_iter_next(&pfns->span);
1055 
1056 		/* Batch is full */
1057 		if (npfns == pfns->batch.total_pfns)
1058 			return 0;
1059 	}
1060 	return 0;
1061 }
1062 
1063 static int pfn_reader_init(struct pfn_reader *pfns, struct iopt_pages *pages,
1064 			   unsigned long start_index, unsigned long last_index)
1065 {
1066 	int rc;
1067 
1068 	lockdep_assert_held(&pages->mutex);
1069 
1070 	pfns->pages = pages;
1071 	pfns->batch_start_index = start_index;
1072 	pfns->batch_end_index = start_index;
1073 	pfns->last_index = last_index;
1074 	pfn_reader_user_init(&pfns->user, pages);
1075 	rc = batch_init(&pfns->batch, last_index - start_index + 1);
1076 	if (rc)
1077 		return rc;
1078 	interval_tree_double_span_iter_first(&pfns->span, &pages->access_itree,
1079 					     &pages->domains_itree, start_index,
1080 					     last_index);
1081 	return 0;
1082 }
1083 
1084 /*
1085  * There are many assertions regarding the state of pages->npinned vs
1086  * pages->last_pinned, for instance something like unmapping a domain must only
1087  * decrement the npinned, and pfn_reader_destroy() must be called only after all
1088  * the pins are updated. This is fine for success flows, but error flows
1089  * sometimes need to release the pins held inside the pfn_reader before going on
1090  * to complete unmapping and releasing pins held in domains.
1091  */
1092 static void pfn_reader_release_pins(struct pfn_reader *pfns)
1093 {
1094 	struct iopt_pages *pages = pfns->pages;
1095 
1096 	if (pfns->user.upages_end > pfns->batch_end_index) {
1097 		size_t npages = pfns->user.upages_end - pfns->batch_end_index;
1098 
1099 		/* Any pages not transferred to the batch are just unpinned */
1100 		unpin_user_pages(pfns->user.upages + (pfns->batch_end_index -
1101 						      pfns->user.upages_start),
1102 				 npages);
1103 		iopt_pages_sub_npinned(pages, npages);
1104 		pfns->user.upages_end = pfns->batch_end_index;
1105 	}
1106 	if (pfns->batch_start_index != pfns->batch_end_index) {
1107 		pfn_reader_unpin(pfns);
1108 		pfns->batch_start_index = pfns->batch_end_index;
1109 	}
1110 }
1111 
1112 static void pfn_reader_destroy(struct pfn_reader *pfns)
1113 {
1114 	struct iopt_pages *pages = pfns->pages;
1115 
1116 	pfn_reader_release_pins(pfns);
1117 	pfn_reader_user_destroy(&pfns->user, pfns->pages);
1118 	batch_destroy(&pfns->batch, NULL);
1119 	WARN_ON(pages->last_npinned != pages->npinned);
1120 }
1121 
1122 static int pfn_reader_first(struct pfn_reader *pfns, struct iopt_pages *pages,
1123 			    unsigned long start_index, unsigned long last_index)
1124 {
1125 	int rc;
1126 
1127 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
1128 	    WARN_ON(last_index < start_index))
1129 		return -EINVAL;
1130 
1131 	rc = pfn_reader_init(pfns, pages, start_index, last_index);
1132 	if (rc)
1133 		return rc;
1134 	rc = pfn_reader_next(pfns);
1135 	if (rc) {
1136 		pfn_reader_destroy(pfns);
1137 		return rc;
1138 	}
1139 	return 0;
1140 }
1141 
1142 struct iopt_pages *iopt_alloc_pages(void __user *uptr, unsigned long length,
1143 				    bool writable)
1144 {
1145 	struct iopt_pages *pages;
1146 	unsigned long end;
1147 
1148 	/*
1149 	 * The iommu API uses size_t as the length, and protect the DIV_ROUND_UP
1150 	 * below from overflow
1151 	 */
1152 	if (length > SIZE_MAX - PAGE_SIZE || length == 0)
1153 		return ERR_PTR(-EINVAL);
1154 
1155 	if (check_add_overflow((unsigned long)uptr, length, &end))
1156 		return ERR_PTR(-EOVERFLOW);
1157 
1158 	pages = kzalloc(sizeof(*pages), GFP_KERNEL_ACCOUNT);
1159 	if (!pages)
1160 		return ERR_PTR(-ENOMEM);
1161 
1162 	kref_init(&pages->kref);
1163 	xa_init_flags(&pages->pinned_pfns, XA_FLAGS_ACCOUNT);
1164 	mutex_init(&pages->mutex);
1165 	pages->source_mm = current->mm;
1166 	mmgrab(pages->source_mm);
1167 	pages->uptr = (void __user *)ALIGN_DOWN((uintptr_t)uptr, PAGE_SIZE);
1168 	pages->npages = DIV_ROUND_UP(length + (uptr - pages->uptr), PAGE_SIZE);
1169 	pages->access_itree = RB_ROOT_CACHED;
1170 	pages->domains_itree = RB_ROOT_CACHED;
1171 	pages->writable = writable;
1172 	if (capable(CAP_IPC_LOCK))
1173 		pages->account_mode = IOPT_PAGES_ACCOUNT_NONE;
1174 	else
1175 		pages->account_mode = IOPT_PAGES_ACCOUNT_USER;
1176 	pages->source_task = current->group_leader;
1177 	get_task_struct(current->group_leader);
1178 	pages->source_user = get_uid(current_user());
1179 	return pages;
1180 }
1181 
1182 void iopt_release_pages(struct kref *kref)
1183 {
1184 	struct iopt_pages *pages = container_of(kref, struct iopt_pages, kref);
1185 
1186 	WARN_ON(!RB_EMPTY_ROOT(&pages->access_itree.rb_root));
1187 	WARN_ON(!RB_EMPTY_ROOT(&pages->domains_itree.rb_root));
1188 	WARN_ON(pages->npinned);
1189 	WARN_ON(!xa_empty(&pages->pinned_pfns));
1190 	mmdrop(pages->source_mm);
1191 	mutex_destroy(&pages->mutex);
1192 	put_task_struct(pages->source_task);
1193 	free_uid(pages->source_user);
1194 	kfree(pages);
1195 }
1196 
1197 static void
1198 iopt_area_unpin_domain(struct pfn_batch *batch, struct iopt_area *area,
1199 		       struct iopt_pages *pages, struct iommu_domain *domain,
1200 		       unsigned long start_index, unsigned long last_index,
1201 		       unsigned long *unmapped_end_index,
1202 		       unsigned long real_last_index)
1203 {
1204 	while (start_index <= last_index) {
1205 		unsigned long batch_last_index;
1206 
1207 		if (*unmapped_end_index <= last_index) {
1208 			unsigned long start =
1209 				max(start_index, *unmapped_end_index);
1210 
1211 			if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
1212 			    batch->total_pfns)
1213 				WARN_ON(*unmapped_end_index -
1214 						batch->total_pfns !=
1215 					start_index);
1216 			batch_from_domain(batch, domain, area, start,
1217 					  last_index);
1218 			batch_last_index = start_index + batch->total_pfns - 1;
1219 		} else {
1220 			batch_last_index = last_index;
1221 		}
1222 
1223 		if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
1224 			WARN_ON(batch_last_index > real_last_index);
1225 
1226 		/*
1227 		 * unmaps must always 'cut' at a place where the pfns are not
1228 		 * contiguous to pair with the maps that always install
1229 		 * contiguous pages. Thus, if we have to stop unpinning in the
1230 		 * middle of the domains we need to keep reading pfns until we
1231 		 * find a cut point to do the unmap. The pfns we read are
1232 		 * carried over and either skipped or integrated into the next
1233 		 * batch.
1234 		 */
1235 		if (batch_last_index == last_index &&
1236 		    last_index != real_last_index)
1237 			batch_from_domain_continue(batch, domain, area,
1238 						   last_index + 1,
1239 						   real_last_index);
1240 
1241 		if (*unmapped_end_index <= batch_last_index) {
1242 			iopt_area_unmap_domain_range(
1243 				area, domain, *unmapped_end_index,
1244 				start_index + batch->total_pfns - 1);
1245 			*unmapped_end_index = start_index + batch->total_pfns;
1246 		}
1247 
1248 		/* unpin must follow unmap */
1249 		batch_unpin(batch, pages, 0,
1250 			    batch_last_index - start_index + 1);
1251 		start_index = batch_last_index + 1;
1252 
1253 		batch_clear_carry(batch,
1254 				  *unmapped_end_index - batch_last_index - 1);
1255 	}
1256 }
1257 
1258 static void __iopt_area_unfill_domain(struct iopt_area *area,
1259 				      struct iopt_pages *pages,
1260 				      struct iommu_domain *domain,
1261 				      unsigned long last_index)
1262 {
1263 	struct interval_tree_double_span_iter span;
1264 	unsigned long start_index = iopt_area_index(area);
1265 	unsigned long unmapped_end_index = start_index;
1266 	u64 backup[BATCH_BACKUP_SIZE];
1267 	struct pfn_batch batch;
1268 
1269 	lockdep_assert_held(&pages->mutex);
1270 
1271 	/*
1272 	 * For security we must not unpin something that is still DMA mapped,
1273 	 * so this must unmap any IOVA before we go ahead and unpin the pages.
1274 	 * This creates a complexity where we need to skip over unpinning pages
1275 	 * held in the xarray, but continue to unmap from the domain.
1276 	 *
1277 	 * The domain unmap cannot stop in the middle of a contiguous range of
1278 	 * PFNs. To solve this problem the unpinning step will read ahead to the
1279 	 * end of any contiguous span, unmap that whole span, and then only
1280 	 * unpin the leading part that does not have any accesses. The residual
1281 	 * PFNs that were unmapped but not unpinned are called a "carry" in the
1282 	 * batch as they are moved to the front of the PFN list and continue on
1283 	 * to the next iteration(s).
1284 	 */
1285 	batch_init_backup(&batch, last_index + 1, backup, sizeof(backup));
1286 	interval_tree_for_each_double_span(&span, &pages->domains_itree,
1287 					   &pages->access_itree, start_index,
1288 					   last_index) {
1289 		if (span.is_used) {
1290 			batch_skip_carry(&batch,
1291 					 span.last_used - span.start_used + 1);
1292 			continue;
1293 		}
1294 		iopt_area_unpin_domain(&batch, area, pages, domain,
1295 				       span.start_hole, span.last_hole,
1296 				       &unmapped_end_index, last_index);
1297 	}
1298 	/*
1299 	 * If the range ends in a access then we do the residual unmap without
1300 	 * any unpins.
1301 	 */
1302 	if (unmapped_end_index != last_index + 1)
1303 		iopt_area_unmap_domain_range(area, domain, unmapped_end_index,
1304 					     last_index);
1305 	WARN_ON(batch.total_pfns);
1306 	batch_destroy(&batch, backup);
1307 	update_unpinned(pages);
1308 }
1309 
1310 static void iopt_area_unfill_partial_domain(struct iopt_area *area,
1311 					    struct iopt_pages *pages,
1312 					    struct iommu_domain *domain,
1313 					    unsigned long end_index)
1314 {
1315 	if (end_index != iopt_area_index(area))
1316 		__iopt_area_unfill_domain(area, pages, domain, end_index - 1);
1317 }
1318 
1319 /**
1320  * iopt_area_unmap_domain() - Unmap without unpinning PFNs in a domain
1321  * @area: The IOVA range to unmap
1322  * @domain: The domain to unmap
1323  *
1324  * The caller must know that unpinning is not required, usually because there
1325  * are other domains in the iopt.
1326  */
1327 void iopt_area_unmap_domain(struct iopt_area *area, struct iommu_domain *domain)
1328 {
1329 	iommu_unmap_nofail(domain, iopt_area_iova(area),
1330 			   iopt_area_length(area));
1331 }
1332 
1333 /**
1334  * iopt_area_unfill_domain() - Unmap and unpin PFNs in a domain
1335  * @area: IOVA area to use
1336  * @pages: page supplier for the area (area->pages is NULL)
1337  * @domain: Domain to unmap from
1338  *
1339  * The domain should be removed from the domains_itree before calling. The
1340  * domain will always be unmapped, but the PFNs may not be unpinned if there are
1341  * still accesses.
1342  */
1343 void iopt_area_unfill_domain(struct iopt_area *area, struct iopt_pages *pages,
1344 			     struct iommu_domain *domain)
1345 {
1346 	__iopt_area_unfill_domain(area, pages, domain,
1347 				  iopt_area_last_index(area));
1348 }
1349 
1350 /**
1351  * iopt_area_fill_domain() - Map PFNs from the area into a domain
1352  * @area: IOVA area to use
1353  * @domain: Domain to load PFNs into
1354  *
1355  * Read the pfns from the area's underlying iopt_pages and map them into the
1356  * given domain. Called when attaching a new domain to an io_pagetable.
1357  */
1358 int iopt_area_fill_domain(struct iopt_area *area, struct iommu_domain *domain)
1359 {
1360 	unsigned long done_end_index;
1361 	struct pfn_reader pfns;
1362 	int rc;
1363 
1364 	lockdep_assert_held(&area->pages->mutex);
1365 
1366 	rc = pfn_reader_first(&pfns, area->pages, iopt_area_index(area),
1367 			      iopt_area_last_index(area));
1368 	if (rc)
1369 		return rc;
1370 
1371 	while (!pfn_reader_done(&pfns)) {
1372 		done_end_index = pfns.batch_start_index;
1373 		rc = batch_to_domain(&pfns.batch, domain, area,
1374 				     pfns.batch_start_index);
1375 		if (rc)
1376 			goto out_unmap;
1377 		done_end_index = pfns.batch_end_index;
1378 
1379 		rc = pfn_reader_next(&pfns);
1380 		if (rc)
1381 			goto out_unmap;
1382 	}
1383 
1384 	rc = pfn_reader_update_pinned(&pfns);
1385 	if (rc)
1386 		goto out_unmap;
1387 	goto out_destroy;
1388 
1389 out_unmap:
1390 	pfn_reader_release_pins(&pfns);
1391 	iopt_area_unfill_partial_domain(area, area->pages, domain,
1392 					done_end_index);
1393 out_destroy:
1394 	pfn_reader_destroy(&pfns);
1395 	return rc;
1396 }
1397 
1398 /**
1399  * iopt_area_fill_domains() - Install PFNs into the area's domains
1400  * @area: The area to act on
1401  * @pages: The pages associated with the area (area->pages is NULL)
1402  *
1403  * Called during area creation. The area is freshly created and not inserted in
1404  * the domains_itree yet. PFNs are read and loaded into every domain held in the
1405  * area's io_pagetable and the area is installed in the domains_itree.
1406  *
1407  * On failure all domains are left unchanged.
1408  */
1409 int iopt_area_fill_domains(struct iopt_area *area, struct iopt_pages *pages)
1410 {
1411 	unsigned long done_first_end_index;
1412 	unsigned long done_all_end_index;
1413 	struct iommu_domain *domain;
1414 	unsigned long unmap_index;
1415 	struct pfn_reader pfns;
1416 	unsigned long index;
1417 	int rc;
1418 
1419 	lockdep_assert_held(&area->iopt->domains_rwsem);
1420 
1421 	if (xa_empty(&area->iopt->domains))
1422 		return 0;
1423 
1424 	mutex_lock(&pages->mutex);
1425 	rc = pfn_reader_first(&pfns, pages, iopt_area_index(area),
1426 			      iopt_area_last_index(area));
1427 	if (rc)
1428 		goto out_unlock;
1429 
1430 	while (!pfn_reader_done(&pfns)) {
1431 		done_first_end_index = pfns.batch_end_index;
1432 		done_all_end_index = pfns.batch_start_index;
1433 		xa_for_each(&area->iopt->domains, index, domain) {
1434 			rc = batch_to_domain(&pfns.batch, domain, area,
1435 					     pfns.batch_start_index);
1436 			if (rc)
1437 				goto out_unmap;
1438 		}
1439 		done_all_end_index = done_first_end_index;
1440 
1441 		rc = pfn_reader_next(&pfns);
1442 		if (rc)
1443 			goto out_unmap;
1444 	}
1445 	rc = pfn_reader_update_pinned(&pfns);
1446 	if (rc)
1447 		goto out_unmap;
1448 
1449 	area->storage_domain = xa_load(&area->iopt->domains, 0);
1450 	interval_tree_insert(&area->pages_node, &pages->domains_itree);
1451 	goto out_destroy;
1452 
1453 out_unmap:
1454 	pfn_reader_release_pins(&pfns);
1455 	xa_for_each(&area->iopt->domains, unmap_index, domain) {
1456 		unsigned long end_index;
1457 
1458 		if (unmap_index < index)
1459 			end_index = done_first_end_index;
1460 		else
1461 			end_index = done_all_end_index;
1462 
1463 		/*
1464 		 * The area is not yet part of the domains_itree so we have to
1465 		 * manage the unpinning specially. The last domain does the
1466 		 * unpin, every other domain is just unmapped.
1467 		 */
1468 		if (unmap_index != area->iopt->next_domain_id - 1) {
1469 			if (end_index != iopt_area_index(area))
1470 				iopt_area_unmap_domain_range(
1471 					area, domain, iopt_area_index(area),
1472 					end_index - 1);
1473 		} else {
1474 			iopt_area_unfill_partial_domain(area, pages, domain,
1475 							end_index);
1476 		}
1477 	}
1478 out_destroy:
1479 	pfn_reader_destroy(&pfns);
1480 out_unlock:
1481 	mutex_unlock(&pages->mutex);
1482 	return rc;
1483 }
1484 
1485 /**
1486  * iopt_area_unfill_domains() - unmap PFNs from the area's domains
1487  * @area: The area to act on
1488  * @pages: The pages associated with the area (area->pages is NULL)
1489  *
1490  * Called during area destruction. This unmaps the iova's covered by all the
1491  * area's domains and releases the PFNs.
1492  */
1493 void iopt_area_unfill_domains(struct iopt_area *area, struct iopt_pages *pages)
1494 {
1495 	struct io_pagetable *iopt = area->iopt;
1496 	struct iommu_domain *domain;
1497 	unsigned long index;
1498 
1499 	lockdep_assert_held(&iopt->domains_rwsem);
1500 
1501 	mutex_lock(&pages->mutex);
1502 	if (!area->storage_domain)
1503 		goto out_unlock;
1504 
1505 	xa_for_each(&iopt->domains, index, domain)
1506 		if (domain != area->storage_domain)
1507 			iopt_area_unmap_domain_range(
1508 				area, domain, iopt_area_index(area),
1509 				iopt_area_last_index(area));
1510 
1511 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
1512 		WARN_ON(RB_EMPTY_NODE(&area->pages_node.rb));
1513 	interval_tree_remove(&area->pages_node, &pages->domains_itree);
1514 	iopt_area_unfill_domain(area, pages, area->storage_domain);
1515 	area->storage_domain = NULL;
1516 out_unlock:
1517 	mutex_unlock(&pages->mutex);
1518 }
1519 
1520 static void iopt_pages_unpin_xarray(struct pfn_batch *batch,
1521 				    struct iopt_pages *pages,
1522 				    unsigned long start_index,
1523 				    unsigned long end_index)
1524 {
1525 	while (start_index <= end_index) {
1526 		batch_from_xarray_clear(batch, &pages->pinned_pfns, start_index,
1527 					end_index);
1528 		batch_unpin(batch, pages, 0, batch->total_pfns);
1529 		start_index += batch->total_pfns;
1530 		batch_clear(batch);
1531 	}
1532 }
1533 
1534 /**
1535  * iopt_pages_unfill_xarray() - Update the xarry after removing an access
1536  * @pages: The pages to act on
1537  * @start_index: Starting PFN index
1538  * @last_index: Last PFN index
1539  *
1540  * Called when an iopt_pages_access is removed, removes pages from the itree.
1541  * The access should already be removed from the access_itree.
1542  */
1543 void iopt_pages_unfill_xarray(struct iopt_pages *pages,
1544 			      unsigned long start_index,
1545 			      unsigned long last_index)
1546 {
1547 	struct interval_tree_double_span_iter span;
1548 	u64 backup[BATCH_BACKUP_SIZE];
1549 	struct pfn_batch batch;
1550 	bool batch_inited = false;
1551 
1552 	lockdep_assert_held(&pages->mutex);
1553 
1554 	interval_tree_for_each_double_span(&span, &pages->access_itree,
1555 					   &pages->domains_itree, start_index,
1556 					   last_index) {
1557 		if (!span.is_used) {
1558 			if (!batch_inited) {
1559 				batch_init_backup(&batch,
1560 						  last_index - start_index + 1,
1561 						  backup, sizeof(backup));
1562 				batch_inited = true;
1563 			}
1564 			iopt_pages_unpin_xarray(&batch, pages, span.start_hole,
1565 						span.last_hole);
1566 		} else if (span.is_used == 2) {
1567 			/* Covered by a domain */
1568 			clear_xarray(&pages->pinned_pfns, span.start_used,
1569 				     span.last_used);
1570 		}
1571 		/* Otherwise covered by an existing access */
1572 	}
1573 	if (batch_inited)
1574 		batch_destroy(&batch, backup);
1575 	update_unpinned(pages);
1576 }
1577 
1578 /**
1579  * iopt_pages_fill_from_xarray() - Fast path for reading PFNs
1580  * @pages: The pages to act on
1581  * @start_index: The first page index in the range
1582  * @last_index: The last page index in the range
1583  * @out_pages: The output array to return the pages
1584  *
1585  * This can be called if the caller is holding a refcount on an
1586  * iopt_pages_access that is known to have already been filled. It quickly reads
1587  * the pages directly from the xarray.
1588  *
1589  * This is part of the SW iommu interface to read pages for in-kernel use.
1590  */
1591 void iopt_pages_fill_from_xarray(struct iopt_pages *pages,
1592 				 unsigned long start_index,
1593 				 unsigned long last_index,
1594 				 struct page **out_pages)
1595 {
1596 	XA_STATE(xas, &pages->pinned_pfns, start_index);
1597 	void *entry;
1598 
1599 	rcu_read_lock();
1600 	while (start_index <= last_index) {
1601 		entry = xas_next(&xas);
1602 		if (xas_retry(&xas, entry))
1603 			continue;
1604 		WARN_ON(!xa_is_value(entry));
1605 		*(out_pages++) = pfn_to_page(xa_to_value(entry));
1606 		start_index++;
1607 	}
1608 	rcu_read_unlock();
1609 }
1610 
1611 static int iopt_pages_fill_from_domain(struct iopt_pages *pages,
1612 				       unsigned long start_index,
1613 				       unsigned long last_index,
1614 				       struct page **out_pages)
1615 {
1616 	while (start_index != last_index + 1) {
1617 		unsigned long domain_last;
1618 		struct iopt_area *area;
1619 
1620 		area = iopt_pages_find_domain_area(pages, start_index);
1621 		if (WARN_ON(!area))
1622 			return -EINVAL;
1623 
1624 		domain_last = min(iopt_area_last_index(area), last_index);
1625 		out_pages = raw_pages_from_domain(area->storage_domain, area,
1626 						  start_index, domain_last,
1627 						  out_pages);
1628 		start_index = domain_last + 1;
1629 	}
1630 	return 0;
1631 }
1632 
1633 static int iopt_pages_fill_from_mm(struct iopt_pages *pages,
1634 				   struct pfn_reader_user *user,
1635 				   unsigned long start_index,
1636 				   unsigned long last_index,
1637 				   struct page **out_pages)
1638 {
1639 	unsigned long cur_index = start_index;
1640 	int rc;
1641 
1642 	while (cur_index != last_index + 1) {
1643 		user->upages = out_pages + (cur_index - start_index);
1644 		rc = pfn_reader_user_pin(user, pages, cur_index, last_index);
1645 		if (rc)
1646 			goto out_unpin;
1647 		cur_index = user->upages_end;
1648 	}
1649 	return 0;
1650 
1651 out_unpin:
1652 	if (start_index != cur_index)
1653 		iopt_pages_err_unpin(pages, start_index, cur_index - 1,
1654 				     out_pages);
1655 	return rc;
1656 }
1657 
1658 /**
1659  * iopt_pages_fill_xarray() - Read PFNs
1660  * @pages: The pages to act on
1661  * @start_index: The first page index in the range
1662  * @last_index: The last page index in the range
1663  * @out_pages: The output array to return the pages, may be NULL
1664  *
1665  * This populates the xarray and returns the pages in out_pages. As the slow
1666  * path this is able to copy pages from other storage tiers into the xarray.
1667  *
1668  * On failure the xarray is left unchanged.
1669  *
1670  * This is part of the SW iommu interface to read pages for in-kernel use.
1671  */
1672 int iopt_pages_fill_xarray(struct iopt_pages *pages, unsigned long start_index,
1673 			   unsigned long last_index, struct page **out_pages)
1674 {
1675 	struct interval_tree_double_span_iter span;
1676 	unsigned long xa_end = start_index;
1677 	struct pfn_reader_user user;
1678 	int rc;
1679 
1680 	lockdep_assert_held(&pages->mutex);
1681 
1682 	pfn_reader_user_init(&user, pages);
1683 	user.upages_len = (last_index - start_index + 1) * sizeof(*out_pages);
1684 	interval_tree_for_each_double_span(&span, &pages->access_itree,
1685 					   &pages->domains_itree, start_index,
1686 					   last_index) {
1687 		struct page **cur_pages;
1688 
1689 		if (span.is_used == 1) {
1690 			cur_pages = out_pages + (span.start_used - start_index);
1691 			iopt_pages_fill_from_xarray(pages, span.start_used,
1692 						    span.last_used, cur_pages);
1693 			continue;
1694 		}
1695 
1696 		if (span.is_used == 2) {
1697 			cur_pages = out_pages + (span.start_used - start_index);
1698 			iopt_pages_fill_from_domain(pages, span.start_used,
1699 						    span.last_used, cur_pages);
1700 			rc = pages_to_xarray(&pages->pinned_pfns,
1701 					     span.start_used, span.last_used,
1702 					     cur_pages);
1703 			if (rc)
1704 				goto out_clean_xa;
1705 			xa_end = span.last_used + 1;
1706 			continue;
1707 		}
1708 
1709 		/* hole */
1710 		cur_pages = out_pages + (span.start_hole - start_index);
1711 		rc = iopt_pages_fill_from_mm(pages, &user, span.start_hole,
1712 					     span.last_hole, cur_pages);
1713 		if (rc)
1714 			goto out_clean_xa;
1715 		rc = pages_to_xarray(&pages->pinned_pfns, span.start_hole,
1716 				     span.last_hole, cur_pages);
1717 		if (rc) {
1718 			iopt_pages_err_unpin(pages, span.start_hole,
1719 					     span.last_hole, cur_pages);
1720 			goto out_clean_xa;
1721 		}
1722 		xa_end = span.last_hole + 1;
1723 	}
1724 	rc = pfn_reader_user_update_pinned(&user, pages);
1725 	if (rc)
1726 		goto out_clean_xa;
1727 	user.upages = NULL;
1728 	pfn_reader_user_destroy(&user, pages);
1729 	return 0;
1730 
1731 out_clean_xa:
1732 	if (start_index != xa_end)
1733 		iopt_pages_unfill_xarray(pages, start_index, xa_end - 1);
1734 	user.upages = NULL;
1735 	pfn_reader_user_destroy(&user, pages);
1736 	return rc;
1737 }
1738 
1739 /*
1740  * This uses the pfn_reader instead of taking a shortcut by using the mm. It can
1741  * do every scenario and is fully consistent with what an iommu_domain would
1742  * see.
1743  */
1744 static int iopt_pages_rw_slow(struct iopt_pages *pages,
1745 			      unsigned long start_index,
1746 			      unsigned long last_index, unsigned long offset,
1747 			      void *data, unsigned long length,
1748 			      unsigned int flags)
1749 {
1750 	struct pfn_reader pfns;
1751 	int rc;
1752 
1753 	mutex_lock(&pages->mutex);
1754 
1755 	rc = pfn_reader_first(&pfns, pages, start_index, last_index);
1756 	if (rc)
1757 		goto out_unlock;
1758 
1759 	while (!pfn_reader_done(&pfns)) {
1760 		unsigned long done;
1761 
1762 		done = batch_rw(&pfns.batch, data, offset, length, flags);
1763 		data += done;
1764 		length -= done;
1765 		offset = 0;
1766 		pfn_reader_unpin(&pfns);
1767 
1768 		rc = pfn_reader_next(&pfns);
1769 		if (rc)
1770 			goto out_destroy;
1771 	}
1772 	if (WARN_ON(length != 0))
1773 		rc = -EINVAL;
1774 out_destroy:
1775 	pfn_reader_destroy(&pfns);
1776 out_unlock:
1777 	mutex_unlock(&pages->mutex);
1778 	return rc;
1779 }
1780 
1781 /*
1782  * A medium speed path that still allows DMA inconsistencies, but doesn't do any
1783  * memory allocations or interval tree searches.
1784  */
1785 static int iopt_pages_rw_page(struct iopt_pages *pages, unsigned long index,
1786 			      unsigned long offset, void *data,
1787 			      unsigned long length, unsigned int flags)
1788 {
1789 	struct page *page = NULL;
1790 	int rc;
1791 
1792 	if (!mmget_not_zero(pages->source_mm))
1793 		return iopt_pages_rw_slow(pages, index, index, offset, data,
1794 					  length, flags);
1795 
1796 	if (iommufd_should_fail()) {
1797 		rc = -EINVAL;
1798 		goto out_mmput;
1799 	}
1800 
1801 	mmap_read_lock(pages->source_mm);
1802 	rc = pin_user_pages_remote(
1803 		pages->source_mm, (uintptr_t)(pages->uptr + index * PAGE_SIZE),
1804 		1, (flags & IOMMUFD_ACCESS_RW_WRITE) ? FOLL_WRITE : 0, &page,
1805 		NULL);
1806 	mmap_read_unlock(pages->source_mm);
1807 	if (rc != 1) {
1808 		if (WARN_ON(rc >= 0))
1809 			rc = -EINVAL;
1810 		goto out_mmput;
1811 	}
1812 	copy_data_page(page, data, offset, length, flags);
1813 	unpin_user_page(page);
1814 	rc = 0;
1815 
1816 out_mmput:
1817 	mmput(pages->source_mm);
1818 	return rc;
1819 }
1820 
1821 /**
1822  * iopt_pages_rw_access - Copy to/from a linear slice of the pages
1823  * @pages: pages to act on
1824  * @start_byte: First byte of pages to copy to/from
1825  * @data: Kernel buffer to get/put the data
1826  * @length: Number of bytes to copy
1827  * @flags: IOMMUFD_ACCESS_RW_* flags
1828  *
1829  * This will find each page in the range, kmap it and then memcpy to/from
1830  * the given kernel buffer.
1831  */
1832 int iopt_pages_rw_access(struct iopt_pages *pages, unsigned long start_byte,
1833 			 void *data, unsigned long length, unsigned int flags)
1834 {
1835 	unsigned long start_index = start_byte / PAGE_SIZE;
1836 	unsigned long last_index = (start_byte + length - 1) / PAGE_SIZE;
1837 	bool change_mm = current->mm != pages->source_mm;
1838 	int rc = 0;
1839 
1840 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
1841 	    (flags & __IOMMUFD_ACCESS_RW_SLOW_PATH))
1842 		change_mm = true;
1843 
1844 	if ((flags & IOMMUFD_ACCESS_RW_WRITE) && !pages->writable)
1845 		return -EPERM;
1846 
1847 	if (!(flags & IOMMUFD_ACCESS_RW_KTHREAD) && change_mm) {
1848 		if (start_index == last_index)
1849 			return iopt_pages_rw_page(pages, start_index,
1850 						  start_byte % PAGE_SIZE, data,
1851 						  length, flags);
1852 		return iopt_pages_rw_slow(pages, start_index, last_index,
1853 					  start_byte % PAGE_SIZE, data, length,
1854 					  flags);
1855 	}
1856 
1857 	/*
1858 	 * Try to copy using copy_to_user(). We do this as a fast path and
1859 	 * ignore any pinning inconsistencies, unlike a real DMA path.
1860 	 */
1861 	if (change_mm) {
1862 		if (!mmget_not_zero(pages->source_mm))
1863 			return iopt_pages_rw_slow(pages, start_index,
1864 						  last_index,
1865 						  start_byte % PAGE_SIZE, data,
1866 						  length, flags);
1867 		kthread_use_mm(pages->source_mm);
1868 	}
1869 
1870 	if (flags & IOMMUFD_ACCESS_RW_WRITE) {
1871 		if (copy_to_user(pages->uptr + start_byte, data, length))
1872 			rc = -EFAULT;
1873 	} else {
1874 		if (copy_from_user(data, pages->uptr + start_byte, length))
1875 			rc = -EFAULT;
1876 	}
1877 
1878 	if (change_mm) {
1879 		kthread_unuse_mm(pages->source_mm);
1880 		mmput(pages->source_mm);
1881 	}
1882 
1883 	return rc;
1884 }
1885 
1886 static struct iopt_pages_access *
1887 iopt_pages_get_exact_access(struct iopt_pages *pages, unsigned long index,
1888 			    unsigned long last)
1889 {
1890 	struct interval_tree_node *node;
1891 
1892 	lockdep_assert_held(&pages->mutex);
1893 
1894 	/* There can be overlapping ranges in this interval tree */
1895 	for (node = interval_tree_iter_first(&pages->access_itree, index, last);
1896 	     node; node = interval_tree_iter_next(node, index, last))
1897 		if (node->start == index && node->last == last)
1898 			return container_of(node, struct iopt_pages_access,
1899 					    node);
1900 	return NULL;
1901 }
1902 
1903 /**
1904  * iopt_area_add_access() - Record an in-knerel access for PFNs
1905  * @area: The source of PFNs
1906  * @start_index: First page index
1907  * @last_index: Inclusive last page index
1908  * @out_pages: Output list of struct page's representing the PFNs
1909  * @flags: IOMMUFD_ACCESS_RW_* flags
1910  *
1911  * Record that an in-kernel access will be accessing the pages, ensure they are
1912  * pinned, and return the PFNs as a simple list of 'struct page *'.
1913  *
1914  * This should be undone through a matching call to iopt_area_remove_access()
1915  */
1916 int iopt_area_add_access(struct iopt_area *area, unsigned long start_index,
1917 			  unsigned long last_index, struct page **out_pages,
1918 			  unsigned int flags)
1919 {
1920 	struct iopt_pages *pages = area->pages;
1921 	struct iopt_pages_access *access;
1922 	int rc;
1923 
1924 	if ((flags & IOMMUFD_ACCESS_RW_WRITE) && !pages->writable)
1925 		return -EPERM;
1926 
1927 	mutex_lock(&pages->mutex);
1928 	access = iopt_pages_get_exact_access(pages, start_index, last_index);
1929 	if (access) {
1930 		area->num_accesses++;
1931 		access->users++;
1932 		iopt_pages_fill_from_xarray(pages, start_index, last_index,
1933 					    out_pages);
1934 		mutex_unlock(&pages->mutex);
1935 		return 0;
1936 	}
1937 
1938 	access = kzalloc(sizeof(*access), GFP_KERNEL_ACCOUNT);
1939 	if (!access) {
1940 		rc = -ENOMEM;
1941 		goto err_unlock;
1942 	}
1943 
1944 	rc = iopt_pages_fill_xarray(pages, start_index, last_index, out_pages);
1945 	if (rc)
1946 		goto err_free;
1947 
1948 	access->node.start = start_index;
1949 	access->node.last = last_index;
1950 	access->users = 1;
1951 	area->num_accesses++;
1952 	interval_tree_insert(&access->node, &pages->access_itree);
1953 	mutex_unlock(&pages->mutex);
1954 	return 0;
1955 
1956 err_free:
1957 	kfree(access);
1958 err_unlock:
1959 	mutex_unlock(&pages->mutex);
1960 	return rc;
1961 }
1962 
1963 /**
1964  * iopt_area_remove_access() - Release an in-kernel access for PFNs
1965  * @area: The source of PFNs
1966  * @start_index: First page index
1967  * @last_index: Inclusive last page index
1968  *
1969  * Undo iopt_area_add_access() and unpin the pages if necessary. The caller
1970  * must stop using the PFNs before calling this.
1971  */
1972 void iopt_area_remove_access(struct iopt_area *area, unsigned long start_index,
1973 			     unsigned long last_index)
1974 {
1975 	struct iopt_pages *pages = area->pages;
1976 	struct iopt_pages_access *access;
1977 
1978 	mutex_lock(&pages->mutex);
1979 	access = iopt_pages_get_exact_access(pages, start_index, last_index);
1980 	if (WARN_ON(!access))
1981 		goto out_unlock;
1982 
1983 	WARN_ON(area->num_accesses == 0 || access->users == 0);
1984 	area->num_accesses--;
1985 	access->users--;
1986 	if (access->users)
1987 		goto out_unlock;
1988 
1989 	interval_tree_remove(&access->node, &pages->access_itree);
1990 	iopt_pages_unfill_xarray(pages, start_index, last_index);
1991 	kfree(access);
1992 out_unlock:
1993 	mutex_unlock(&pages->mutex);
1994 }
1995