xref: /linux/drivers/iommu/iommufd/pages.c (revision 3f58ff6b53c11773b1bd564082fae37d48e0cc40)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES.
3  *
4  * The iopt_pages is the center of the storage and motion of PFNs. Each
5  * iopt_pages represents a logical linear array of full PFNs. The array is 0
6  * based and has npages in it. Accessors use 'index' to refer to the entry in
7  * this logical array, regardless of its storage location.
8  *
9  * PFNs are stored in a tiered scheme:
10  *  1) iopt_pages::pinned_pfns xarray
11  *  2) An iommu_domain
12  *  3) The origin of the PFNs, i.e. the userspace pointer
13  *
14  * PFN have to be copied between all combinations of tiers, depending on the
15  * configuration.
16  *
17  * When a PFN is taken out of the userspace pointer it is pinned exactly once.
18  * The storage locations of the PFN's index are tracked in the two interval
19  * trees. If no interval includes the index then it is not pinned.
20  *
21  * If access_itree includes the PFN's index then an in-kernel access has
22  * requested the page. The PFN is stored in the xarray so other requestors can
23  * continue to find it.
24  *
25  * If the domains_itree includes the PFN's index then an iommu_domain is storing
26  * the PFN and it can be read back using iommu_iova_to_phys(). To avoid
27  * duplicating storage the xarray is not used if only iommu_domains are using
28  * the PFN's index.
29  *
30  * As a general principle this is designed so that destroy never fails. This
31  * means removing an iommu_domain or releasing a in-kernel access will not fail
32  * due to insufficient memory. In practice this means some cases have to hold
33  * PFNs in the xarray even though they are also being stored in an iommu_domain.
34  *
35  * While the iopt_pages can use an iommu_domain as storage, it does not have an
36  * IOVA itself. Instead the iopt_area represents a range of IOVA and uses the
37  * iopt_pages as the PFN provider. Multiple iopt_areas can share the iopt_pages
38  * and reference their own slice of the PFN array, with sub page granularity.
39  *
40  * In this file the term 'last' indicates an inclusive and closed interval, eg
41  * [0,0] refers to a single PFN. 'end' means an open range, eg [0,0) refers to
42  * no PFNs.
43  *
44  * Be cautious of overflow. An IOVA can go all the way up to U64_MAX, so
45  * last_iova + 1 can overflow. An iopt_pages index will always be much less than
46  * ULONG_MAX so last_index + 1 cannot overflow.
47  */
48 #include <linux/overflow.h>
49 #include <linux/slab.h>
50 #include <linux/iommu.h>
51 #include <linux/sched/mm.h>
52 #include <linux/highmem.h>
53 #include <linux/kthread.h>
54 #include <linux/iommufd.h>
55 
56 #include "io_pagetable.h"
57 #include "double_span.h"
58 
59 #ifndef CONFIG_IOMMUFD_TEST
60 #define TEMP_MEMORY_LIMIT 65536
61 #else
62 #define TEMP_MEMORY_LIMIT iommufd_test_memory_limit
63 #endif
64 #define BATCH_BACKUP_SIZE 32
65 
66 /*
67  * More memory makes pin_user_pages() and the batching more efficient, but as
68  * this is only a performance optimization don't try too hard to get it. A 64k
69  * allocation can hold about 26M of 4k pages and 13G of 2M pages in an
70  * pfn_batch. Various destroy paths cannot fail and provide a small amount of
71  * stack memory as a backup contingency. If backup_len is given this cannot
72  * fail.
73  */
74 static void *temp_kmalloc(size_t *size, void *backup, size_t backup_len)
75 {
76 	void *res;
77 
78 	if (WARN_ON(*size == 0))
79 		return NULL;
80 
81 	if (*size < backup_len)
82 		return backup;
83 
84 	if (!backup && iommufd_should_fail())
85 		return NULL;
86 
87 	*size = min_t(size_t, *size, TEMP_MEMORY_LIMIT);
88 	res = kmalloc(*size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
89 	if (res)
90 		return res;
91 	*size = PAGE_SIZE;
92 	if (backup_len) {
93 		res = kmalloc(*size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
94 		if (res)
95 			return res;
96 		*size = backup_len;
97 		return backup;
98 	}
99 	return kmalloc(*size, GFP_KERNEL);
100 }
101 
102 void interval_tree_double_span_iter_update(
103 	struct interval_tree_double_span_iter *iter)
104 {
105 	unsigned long last_hole = ULONG_MAX;
106 	unsigned int i;
107 
108 	for (i = 0; i != ARRAY_SIZE(iter->spans); i++) {
109 		if (interval_tree_span_iter_done(&iter->spans[i])) {
110 			iter->is_used = -1;
111 			return;
112 		}
113 
114 		if (iter->spans[i].is_hole) {
115 			last_hole = min(last_hole, iter->spans[i].last_hole);
116 			continue;
117 		}
118 
119 		iter->is_used = i + 1;
120 		iter->start_used = iter->spans[i].start_used;
121 		iter->last_used = min(iter->spans[i].last_used, last_hole);
122 		return;
123 	}
124 
125 	iter->is_used = 0;
126 	iter->start_hole = iter->spans[0].start_hole;
127 	iter->last_hole =
128 		min(iter->spans[0].last_hole, iter->spans[1].last_hole);
129 }
130 
131 void interval_tree_double_span_iter_first(
132 	struct interval_tree_double_span_iter *iter,
133 	struct rb_root_cached *itree1, struct rb_root_cached *itree2,
134 	unsigned long first_index, unsigned long last_index)
135 {
136 	unsigned int i;
137 
138 	iter->itrees[0] = itree1;
139 	iter->itrees[1] = itree2;
140 	for (i = 0; i != ARRAY_SIZE(iter->spans); i++)
141 		interval_tree_span_iter_first(&iter->spans[i], iter->itrees[i],
142 					      first_index, last_index);
143 	interval_tree_double_span_iter_update(iter);
144 }
145 
146 void interval_tree_double_span_iter_next(
147 	struct interval_tree_double_span_iter *iter)
148 {
149 	unsigned int i;
150 
151 	if (iter->is_used == -1 ||
152 	    iter->last_hole == iter->spans[0].last_index) {
153 		iter->is_used = -1;
154 		return;
155 	}
156 
157 	for (i = 0; i != ARRAY_SIZE(iter->spans); i++)
158 		interval_tree_span_iter_advance(
159 			&iter->spans[i], iter->itrees[i], iter->last_hole + 1);
160 	interval_tree_double_span_iter_update(iter);
161 }
162 
163 static void iopt_pages_add_npinned(struct iopt_pages *pages, size_t npages)
164 {
165 	int rc;
166 
167 	rc = check_add_overflow(pages->npinned, npages, &pages->npinned);
168 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
169 		WARN_ON(rc || pages->npinned > pages->npages);
170 }
171 
172 static void iopt_pages_sub_npinned(struct iopt_pages *pages, size_t npages)
173 {
174 	int rc;
175 
176 	rc = check_sub_overflow(pages->npinned, npages, &pages->npinned);
177 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
178 		WARN_ON(rc || pages->npinned > pages->npages);
179 }
180 
181 static void iopt_pages_err_unpin(struct iopt_pages *pages,
182 				 unsigned long start_index,
183 				 unsigned long last_index,
184 				 struct page **page_list)
185 {
186 	unsigned long npages = last_index - start_index + 1;
187 
188 	unpin_user_pages(page_list, npages);
189 	iopt_pages_sub_npinned(pages, npages);
190 }
191 
192 /*
193  * index is the number of PAGE_SIZE units from the start of the area's
194  * iopt_pages. If the iova is sub page-size then the area has an iova that
195  * covers a portion of the first and last pages in the range.
196  */
197 static unsigned long iopt_area_index_to_iova(struct iopt_area *area,
198 					     unsigned long index)
199 {
200 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
201 		WARN_ON(index < iopt_area_index(area) ||
202 			index > iopt_area_last_index(area));
203 	index -= iopt_area_index(area);
204 	if (index == 0)
205 		return iopt_area_iova(area);
206 	return iopt_area_iova(area) - area->page_offset + index * PAGE_SIZE;
207 }
208 
209 static unsigned long iopt_area_index_to_iova_last(struct iopt_area *area,
210 						  unsigned long index)
211 {
212 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
213 		WARN_ON(index < iopt_area_index(area) ||
214 			index > iopt_area_last_index(area));
215 	if (index == iopt_area_last_index(area))
216 		return iopt_area_last_iova(area);
217 	return iopt_area_iova(area) - area->page_offset +
218 	       (index - iopt_area_index(area) + 1) * PAGE_SIZE - 1;
219 }
220 
221 static void iommu_unmap_nofail(struct iommu_domain *domain, unsigned long iova,
222 			       size_t size)
223 {
224 	size_t ret;
225 
226 	ret = iommu_unmap(domain, iova, size);
227 	/*
228 	 * It is a logic error in this code or a driver bug if the IOMMU unmaps
229 	 * something other than exactly as requested. This implies that the
230 	 * iommu driver may not fail unmap for reasons beyond bad agruments.
231 	 * Particularly, the iommu driver may not do a memory allocation on the
232 	 * unmap path.
233 	 */
234 	WARN_ON(ret != size);
235 }
236 
237 static void iopt_area_unmap_domain_range(struct iopt_area *area,
238 					 struct iommu_domain *domain,
239 					 unsigned long start_index,
240 					 unsigned long last_index)
241 {
242 	unsigned long start_iova = iopt_area_index_to_iova(area, start_index);
243 
244 	iommu_unmap_nofail(domain, start_iova,
245 			   iopt_area_index_to_iova_last(area, last_index) -
246 				   start_iova + 1);
247 }
248 
249 static struct iopt_area *iopt_pages_find_domain_area(struct iopt_pages *pages,
250 						     unsigned long index)
251 {
252 	struct interval_tree_node *node;
253 
254 	node = interval_tree_iter_first(&pages->domains_itree, index, index);
255 	if (!node)
256 		return NULL;
257 	return container_of(node, struct iopt_area, pages_node);
258 }
259 
260 /*
261  * A simple datastructure to hold a vector of PFNs, optimized for contiguous
262  * PFNs. This is used as a temporary holding memory for shuttling pfns from one
263  * place to another. Generally everything is made more efficient if operations
264  * work on the largest possible grouping of pfns. eg fewer lock/unlock cycles,
265  * better cache locality, etc
266  */
267 struct pfn_batch {
268 	unsigned long *pfns;
269 	u32 *npfns;
270 	unsigned int array_size;
271 	unsigned int end;
272 	unsigned int total_pfns;
273 };
274 
275 static void batch_clear(struct pfn_batch *batch)
276 {
277 	batch->total_pfns = 0;
278 	batch->end = 0;
279 	batch->pfns[0] = 0;
280 	batch->npfns[0] = 0;
281 }
282 
283 /*
284  * Carry means we carry a portion of the final hugepage over to the front of the
285  * batch
286  */
287 static void batch_clear_carry(struct pfn_batch *batch, unsigned int keep_pfns)
288 {
289 	if (!keep_pfns)
290 		return batch_clear(batch);
291 
292 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
293 		WARN_ON(!batch->end ||
294 			batch->npfns[batch->end - 1] < keep_pfns);
295 
296 	batch->total_pfns = keep_pfns;
297 	batch->npfns[0] = keep_pfns;
298 	batch->pfns[0] = batch->pfns[batch->end - 1] +
299 			 (batch->npfns[batch->end - 1] - keep_pfns);
300 	batch->end = 0;
301 }
302 
303 static void batch_skip_carry(struct pfn_batch *batch, unsigned int skip_pfns)
304 {
305 	if (!batch->total_pfns)
306 		return;
307 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
308 		WARN_ON(batch->total_pfns != batch->npfns[0]);
309 	skip_pfns = min(batch->total_pfns, skip_pfns);
310 	batch->pfns[0] += skip_pfns;
311 	batch->npfns[0] -= skip_pfns;
312 	batch->total_pfns -= skip_pfns;
313 }
314 
315 static int __batch_init(struct pfn_batch *batch, size_t max_pages, void *backup,
316 			size_t backup_len)
317 {
318 	const size_t elmsz = sizeof(*batch->pfns) + sizeof(*batch->npfns);
319 	size_t size = max_pages * elmsz;
320 
321 	batch->pfns = temp_kmalloc(&size, backup, backup_len);
322 	if (!batch->pfns)
323 		return -ENOMEM;
324 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) && WARN_ON(size < elmsz))
325 		return -EINVAL;
326 	batch->array_size = size / elmsz;
327 	batch->npfns = (u32 *)(batch->pfns + batch->array_size);
328 	batch_clear(batch);
329 	return 0;
330 }
331 
332 static int batch_init(struct pfn_batch *batch, size_t max_pages)
333 {
334 	return __batch_init(batch, max_pages, NULL, 0);
335 }
336 
337 static void batch_init_backup(struct pfn_batch *batch, size_t max_pages,
338 			      void *backup, size_t backup_len)
339 {
340 	__batch_init(batch, max_pages, backup, backup_len);
341 }
342 
343 static void batch_destroy(struct pfn_batch *batch, void *backup)
344 {
345 	if (batch->pfns != backup)
346 		kfree(batch->pfns);
347 }
348 
349 /* true if the pfn was added, false otherwise */
350 static bool batch_add_pfn(struct pfn_batch *batch, unsigned long pfn)
351 {
352 	const unsigned int MAX_NPFNS = type_max(typeof(*batch->npfns));
353 
354 	if (batch->end &&
355 	    pfn == batch->pfns[batch->end - 1] + batch->npfns[batch->end - 1] &&
356 	    batch->npfns[batch->end - 1] != MAX_NPFNS) {
357 		batch->npfns[batch->end - 1]++;
358 		batch->total_pfns++;
359 		return true;
360 	}
361 	if (batch->end == batch->array_size)
362 		return false;
363 	batch->total_pfns++;
364 	batch->pfns[batch->end] = pfn;
365 	batch->npfns[batch->end] = 1;
366 	batch->end++;
367 	return true;
368 }
369 
370 /*
371  * Fill the batch with pfns from the domain. When the batch is full, or it
372  * reaches last_index, the function will return. The caller should use
373  * batch->total_pfns to determine the starting point for the next iteration.
374  */
375 static void batch_from_domain(struct pfn_batch *batch,
376 			      struct iommu_domain *domain,
377 			      struct iopt_area *area, unsigned long start_index,
378 			      unsigned long last_index)
379 {
380 	unsigned int page_offset = 0;
381 	unsigned long iova;
382 	phys_addr_t phys;
383 
384 	iova = iopt_area_index_to_iova(area, start_index);
385 	if (start_index == iopt_area_index(area))
386 		page_offset = area->page_offset;
387 	while (start_index <= last_index) {
388 		/*
389 		 * This is pretty slow, it would be nice to get the page size
390 		 * back from the driver, or have the driver directly fill the
391 		 * batch.
392 		 */
393 		phys = iommu_iova_to_phys(domain, iova) - page_offset;
394 		if (!batch_add_pfn(batch, PHYS_PFN(phys)))
395 			return;
396 		iova += PAGE_SIZE - page_offset;
397 		page_offset = 0;
398 		start_index++;
399 	}
400 }
401 
402 static struct page **raw_pages_from_domain(struct iommu_domain *domain,
403 					   struct iopt_area *area,
404 					   unsigned long start_index,
405 					   unsigned long last_index,
406 					   struct page **out_pages)
407 {
408 	unsigned int page_offset = 0;
409 	unsigned long iova;
410 	phys_addr_t phys;
411 
412 	iova = iopt_area_index_to_iova(area, start_index);
413 	if (start_index == iopt_area_index(area))
414 		page_offset = area->page_offset;
415 	while (start_index <= last_index) {
416 		phys = iommu_iova_to_phys(domain, iova) - page_offset;
417 		*(out_pages++) = pfn_to_page(PHYS_PFN(phys));
418 		iova += PAGE_SIZE - page_offset;
419 		page_offset = 0;
420 		start_index++;
421 	}
422 	return out_pages;
423 }
424 
425 /* Continues reading a domain until we reach a discontinuity in the pfns. */
426 static void batch_from_domain_continue(struct pfn_batch *batch,
427 				       struct iommu_domain *domain,
428 				       struct iopt_area *area,
429 				       unsigned long start_index,
430 				       unsigned long last_index)
431 {
432 	unsigned int array_size = batch->array_size;
433 
434 	batch->array_size = batch->end;
435 	batch_from_domain(batch, domain, area, start_index, last_index);
436 	batch->array_size = array_size;
437 }
438 
439 /*
440  * This is part of the VFIO compatibility support for VFIO_TYPE1_IOMMU. That
441  * mode permits splitting a mapped area up, and then one of the splits is
442  * unmapped. Doing this normally would cause us to violate our invariant of
443  * pairing map/unmap. Thus, to support old VFIO compatibility disable support
444  * for batching consecutive PFNs. All PFNs mapped into the iommu are done in
445  * PAGE_SIZE units, not larger or smaller.
446  */
447 static int batch_iommu_map_small(struct iommu_domain *domain,
448 				 unsigned long iova, phys_addr_t paddr,
449 				 size_t size, int prot)
450 {
451 	unsigned long start_iova = iova;
452 	int rc;
453 
454 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST))
455 		WARN_ON(paddr % PAGE_SIZE || iova % PAGE_SIZE ||
456 			size % PAGE_SIZE);
457 
458 	while (size) {
459 		rc = iommu_map(domain, iova, paddr, PAGE_SIZE, prot);
460 		if (rc)
461 			goto err_unmap;
462 		iova += PAGE_SIZE;
463 		paddr += PAGE_SIZE;
464 		size -= PAGE_SIZE;
465 	}
466 	return 0;
467 
468 err_unmap:
469 	if (start_iova != iova)
470 		iommu_unmap_nofail(domain, start_iova, iova - start_iova);
471 	return rc;
472 }
473 
474 static int batch_to_domain(struct pfn_batch *batch, struct iommu_domain *domain,
475 			   struct iopt_area *area, unsigned long start_index)
476 {
477 	bool disable_large_pages = area->iopt->disable_large_pages;
478 	unsigned long last_iova = iopt_area_last_iova(area);
479 	unsigned int page_offset = 0;
480 	unsigned long start_iova;
481 	unsigned long next_iova;
482 	unsigned int cur = 0;
483 	unsigned long iova;
484 	int rc;
485 
486 	/* The first index might be a partial page */
487 	if (start_index == iopt_area_index(area))
488 		page_offset = area->page_offset;
489 	next_iova = iova = start_iova =
490 		iopt_area_index_to_iova(area, start_index);
491 	while (cur < batch->end) {
492 		next_iova = min(last_iova + 1,
493 				next_iova + batch->npfns[cur] * PAGE_SIZE -
494 					page_offset);
495 		if (disable_large_pages)
496 			rc = batch_iommu_map_small(
497 				domain, iova,
498 				PFN_PHYS(batch->pfns[cur]) + page_offset,
499 				next_iova - iova, area->iommu_prot);
500 		else
501 			rc = iommu_map(domain, iova,
502 				       PFN_PHYS(batch->pfns[cur]) + page_offset,
503 				       next_iova - iova, area->iommu_prot);
504 		if (rc)
505 			goto err_unmap;
506 		iova = next_iova;
507 		page_offset = 0;
508 		cur++;
509 	}
510 	return 0;
511 err_unmap:
512 	if (start_iova != iova)
513 		iommu_unmap_nofail(domain, start_iova, iova - start_iova);
514 	return rc;
515 }
516 
517 static void batch_from_xarray(struct pfn_batch *batch, struct xarray *xa,
518 			      unsigned long start_index,
519 			      unsigned long last_index)
520 {
521 	XA_STATE(xas, xa, start_index);
522 	void *entry;
523 
524 	rcu_read_lock();
525 	while (true) {
526 		entry = xas_next(&xas);
527 		if (xas_retry(&xas, entry))
528 			continue;
529 		WARN_ON(!xa_is_value(entry));
530 		if (!batch_add_pfn(batch, xa_to_value(entry)) ||
531 		    start_index == last_index)
532 			break;
533 		start_index++;
534 	}
535 	rcu_read_unlock();
536 }
537 
538 static void batch_from_xarray_clear(struct pfn_batch *batch, struct xarray *xa,
539 				    unsigned long start_index,
540 				    unsigned long last_index)
541 {
542 	XA_STATE(xas, xa, start_index);
543 	void *entry;
544 
545 	xas_lock(&xas);
546 	while (true) {
547 		entry = xas_next(&xas);
548 		if (xas_retry(&xas, entry))
549 			continue;
550 		WARN_ON(!xa_is_value(entry));
551 		if (!batch_add_pfn(batch, xa_to_value(entry)))
552 			break;
553 		xas_store(&xas, NULL);
554 		if (start_index == last_index)
555 			break;
556 		start_index++;
557 	}
558 	xas_unlock(&xas);
559 }
560 
561 static void clear_xarray(struct xarray *xa, unsigned long start_index,
562 			 unsigned long last_index)
563 {
564 	XA_STATE(xas, xa, start_index);
565 	void *entry;
566 
567 	xas_lock(&xas);
568 	xas_for_each(&xas, entry, last_index)
569 		xas_store(&xas, NULL);
570 	xas_unlock(&xas);
571 }
572 
573 static int pages_to_xarray(struct xarray *xa, unsigned long start_index,
574 			   unsigned long last_index, struct page **pages)
575 {
576 	struct page **end_pages = pages + (last_index - start_index) + 1;
577 	struct page **half_pages = pages + (end_pages - pages) / 2;
578 	XA_STATE(xas, xa, start_index);
579 
580 	do {
581 		void *old;
582 
583 		xas_lock(&xas);
584 		while (pages != end_pages) {
585 			/* xarray does not participate in fault injection */
586 			if (pages == half_pages && iommufd_should_fail()) {
587 				xas_set_err(&xas, -EINVAL);
588 				xas_unlock(&xas);
589 				/* aka xas_destroy() */
590 				xas_nomem(&xas, GFP_KERNEL);
591 				goto err_clear;
592 			}
593 
594 			old = xas_store(&xas, xa_mk_value(page_to_pfn(*pages)));
595 			if (xas_error(&xas))
596 				break;
597 			WARN_ON(old);
598 			pages++;
599 			xas_next(&xas);
600 		}
601 		xas_unlock(&xas);
602 	} while (xas_nomem(&xas, GFP_KERNEL));
603 
604 err_clear:
605 	if (xas_error(&xas)) {
606 		if (xas.xa_index != start_index)
607 			clear_xarray(xa, start_index, xas.xa_index - 1);
608 		return xas_error(&xas);
609 	}
610 	return 0;
611 }
612 
613 static void batch_from_pages(struct pfn_batch *batch, struct page **pages,
614 			     size_t npages)
615 {
616 	struct page **end = pages + npages;
617 
618 	for (; pages != end; pages++)
619 		if (!batch_add_pfn(batch, page_to_pfn(*pages)))
620 			break;
621 }
622 
623 static void batch_unpin(struct pfn_batch *batch, struct iopt_pages *pages,
624 			unsigned int first_page_off, size_t npages)
625 {
626 	unsigned int cur = 0;
627 
628 	while (first_page_off) {
629 		if (batch->npfns[cur] > first_page_off)
630 			break;
631 		first_page_off -= batch->npfns[cur];
632 		cur++;
633 	}
634 
635 	while (npages) {
636 		size_t to_unpin = min_t(size_t, npages,
637 					batch->npfns[cur] - first_page_off);
638 
639 		unpin_user_page_range_dirty_lock(
640 			pfn_to_page(batch->pfns[cur] + first_page_off),
641 			to_unpin, pages->writable);
642 		iopt_pages_sub_npinned(pages, to_unpin);
643 		cur++;
644 		first_page_off = 0;
645 		npages -= to_unpin;
646 	}
647 }
648 
649 static void copy_data_page(struct page *page, void *data, unsigned long offset,
650 			   size_t length, unsigned int flags)
651 {
652 	void *mem;
653 
654 	mem = kmap_local_page(page);
655 	if (flags & IOMMUFD_ACCESS_RW_WRITE) {
656 		memcpy(mem + offset, data, length);
657 		set_page_dirty_lock(page);
658 	} else {
659 		memcpy(data, mem + offset, length);
660 	}
661 	kunmap_local(mem);
662 }
663 
664 static unsigned long batch_rw(struct pfn_batch *batch, void *data,
665 			      unsigned long offset, unsigned long length,
666 			      unsigned int flags)
667 {
668 	unsigned long copied = 0;
669 	unsigned int npage = 0;
670 	unsigned int cur = 0;
671 
672 	while (cur < batch->end) {
673 		unsigned long bytes = min(length, PAGE_SIZE - offset);
674 
675 		copy_data_page(pfn_to_page(batch->pfns[cur] + npage), data,
676 			       offset, bytes, flags);
677 		offset = 0;
678 		length -= bytes;
679 		data += bytes;
680 		copied += bytes;
681 		npage++;
682 		if (npage == batch->npfns[cur]) {
683 			npage = 0;
684 			cur++;
685 		}
686 		if (!length)
687 			break;
688 	}
689 	return copied;
690 }
691 
692 /* pfn_reader_user is just the pin_user_pages() path */
693 struct pfn_reader_user {
694 	struct page **upages;
695 	size_t upages_len;
696 	unsigned long upages_start;
697 	unsigned long upages_end;
698 	unsigned int gup_flags;
699 	/*
700 	 * 1 means mmget() and mmap_read_lock(), 0 means only mmget(), -1 is
701 	 * neither
702 	 */
703 	int locked;
704 };
705 
706 static void pfn_reader_user_init(struct pfn_reader_user *user,
707 				 struct iopt_pages *pages)
708 {
709 	user->upages = NULL;
710 	user->upages_start = 0;
711 	user->upages_end = 0;
712 	user->locked = -1;
713 
714 	user->gup_flags = FOLL_LONGTERM;
715 	if (pages->writable)
716 		user->gup_flags |= FOLL_WRITE;
717 }
718 
719 static void pfn_reader_user_destroy(struct pfn_reader_user *user,
720 				    struct iopt_pages *pages)
721 {
722 	if (user->locked != -1) {
723 		if (user->locked)
724 			mmap_read_unlock(pages->source_mm);
725 		if (pages->source_mm != current->mm)
726 			mmput(pages->source_mm);
727 		user->locked = -1;
728 	}
729 
730 	kfree(user->upages);
731 	user->upages = NULL;
732 }
733 
734 static int pfn_reader_user_pin(struct pfn_reader_user *user,
735 			       struct iopt_pages *pages,
736 			       unsigned long start_index,
737 			       unsigned long last_index)
738 {
739 	bool remote_mm = pages->source_mm != current->mm;
740 	unsigned long npages;
741 	uintptr_t uptr;
742 	long rc;
743 
744 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
745 	    WARN_ON(last_index < start_index))
746 		return -EINVAL;
747 
748 	if (!user->upages) {
749 		/* All undone in pfn_reader_destroy() */
750 		user->upages_len =
751 			(last_index - start_index + 1) * sizeof(*user->upages);
752 		user->upages = temp_kmalloc(&user->upages_len, NULL, 0);
753 		if (!user->upages)
754 			return -ENOMEM;
755 	}
756 
757 	if (user->locked == -1) {
758 		/*
759 		 * The majority of usages will run the map task within the mm
760 		 * providing the pages, so we can optimize into
761 		 * get_user_pages_fast()
762 		 */
763 		if (remote_mm) {
764 			if (!mmget_not_zero(pages->source_mm))
765 				return -EFAULT;
766 		}
767 		user->locked = 0;
768 	}
769 
770 	npages = min_t(unsigned long, last_index - start_index + 1,
771 		       user->upages_len / sizeof(*user->upages));
772 
773 
774 	if (iommufd_should_fail())
775 		return -EFAULT;
776 
777 	uptr = (uintptr_t)(pages->uptr + start_index * PAGE_SIZE);
778 	if (!remote_mm)
779 		rc = pin_user_pages_fast(uptr, npages, user->gup_flags,
780 					 user->upages);
781 	else {
782 		if (!user->locked) {
783 			mmap_read_lock(pages->source_mm);
784 			user->locked = 1;
785 		}
786 		rc = pin_user_pages_remote(pages->source_mm, uptr, npages,
787 					   user->gup_flags, user->upages, NULL,
788 					   &user->locked);
789 	}
790 	if (rc <= 0) {
791 		if (WARN_ON(!rc))
792 			return -EFAULT;
793 		return rc;
794 	}
795 	iopt_pages_add_npinned(pages, rc);
796 	user->upages_start = start_index;
797 	user->upages_end = start_index + rc;
798 	return 0;
799 }
800 
801 /* This is the "modern" and faster accounting method used by io_uring */
802 static int incr_user_locked_vm(struct iopt_pages *pages, unsigned long npages)
803 {
804 	unsigned long lock_limit;
805 	unsigned long cur_pages;
806 	unsigned long new_pages;
807 
808 	lock_limit = task_rlimit(pages->source_task, RLIMIT_MEMLOCK) >>
809 		     PAGE_SHIFT;
810 	do {
811 		cur_pages = atomic_long_read(&pages->source_user->locked_vm);
812 		new_pages = cur_pages + npages;
813 		if (new_pages > lock_limit)
814 			return -ENOMEM;
815 	} while (atomic_long_cmpxchg(&pages->source_user->locked_vm, cur_pages,
816 				     new_pages) != cur_pages);
817 	return 0;
818 }
819 
820 static void decr_user_locked_vm(struct iopt_pages *pages, unsigned long npages)
821 {
822 	if (WARN_ON(atomic_long_read(&pages->source_user->locked_vm) < npages))
823 		return;
824 	atomic_long_sub(npages, &pages->source_user->locked_vm);
825 }
826 
827 /* This is the accounting method used for compatibility with VFIO */
828 static int update_mm_locked_vm(struct iopt_pages *pages, unsigned long npages,
829 			       bool inc, struct pfn_reader_user *user)
830 {
831 	bool do_put = false;
832 	int rc;
833 
834 	if (user && user->locked) {
835 		mmap_read_unlock(pages->source_mm);
836 		user->locked = 0;
837 		/* If we had the lock then we also have a get */
838 	} else if ((!user || !user->upages) &&
839 		   pages->source_mm != current->mm) {
840 		if (!mmget_not_zero(pages->source_mm))
841 			return -EINVAL;
842 		do_put = true;
843 	}
844 
845 	mmap_write_lock(pages->source_mm);
846 	rc = __account_locked_vm(pages->source_mm, npages, inc,
847 				 pages->source_task, false);
848 	mmap_write_unlock(pages->source_mm);
849 
850 	if (do_put)
851 		mmput(pages->source_mm);
852 	return rc;
853 }
854 
855 static int do_update_pinned(struct iopt_pages *pages, unsigned long npages,
856 			    bool inc, struct pfn_reader_user *user)
857 {
858 	int rc = 0;
859 
860 	switch (pages->account_mode) {
861 	case IOPT_PAGES_ACCOUNT_NONE:
862 		break;
863 	case IOPT_PAGES_ACCOUNT_USER:
864 		if (inc)
865 			rc = incr_user_locked_vm(pages, npages);
866 		else
867 			decr_user_locked_vm(pages, npages);
868 		break;
869 	case IOPT_PAGES_ACCOUNT_MM:
870 		rc = update_mm_locked_vm(pages, npages, inc, user);
871 		break;
872 	}
873 	if (rc)
874 		return rc;
875 
876 	pages->last_npinned = pages->npinned;
877 	if (inc)
878 		atomic64_add(npages, &pages->source_mm->pinned_vm);
879 	else
880 		atomic64_sub(npages, &pages->source_mm->pinned_vm);
881 	return 0;
882 }
883 
884 static void update_unpinned(struct iopt_pages *pages)
885 {
886 	if (WARN_ON(pages->npinned > pages->last_npinned))
887 		return;
888 	if (pages->npinned == pages->last_npinned)
889 		return;
890 	do_update_pinned(pages, pages->last_npinned - pages->npinned, false,
891 			 NULL);
892 }
893 
894 /*
895  * Changes in the number of pages pinned is done after the pages have been read
896  * and processed. If the user lacked the limit then the error unwind will unpin
897  * everything that was just pinned. This is because it is expensive to calculate
898  * how many pages we have already pinned within a range to generate an accurate
899  * prediction in advance of doing the work to actually pin them.
900  */
901 static int pfn_reader_user_update_pinned(struct pfn_reader_user *user,
902 					 struct iopt_pages *pages)
903 {
904 	unsigned long npages;
905 	bool inc;
906 
907 	lockdep_assert_held(&pages->mutex);
908 
909 	if (pages->npinned == pages->last_npinned)
910 		return 0;
911 
912 	if (pages->npinned < pages->last_npinned) {
913 		npages = pages->last_npinned - pages->npinned;
914 		inc = false;
915 	} else {
916 		if (iommufd_should_fail())
917 			return -ENOMEM;
918 		npages = pages->npinned - pages->last_npinned;
919 		inc = true;
920 	}
921 	return do_update_pinned(pages, npages, inc, user);
922 }
923 
924 /*
925  * PFNs are stored in three places, in order of preference:
926  * - The iopt_pages xarray. This is only populated if there is a
927  *   iopt_pages_access
928  * - The iommu_domain under an area
929  * - The original PFN source, ie pages->source_mm
930  *
931  * This iterator reads the pfns optimizing to load according to the
932  * above order.
933  */
934 struct pfn_reader {
935 	struct iopt_pages *pages;
936 	struct interval_tree_double_span_iter span;
937 	struct pfn_batch batch;
938 	unsigned long batch_start_index;
939 	unsigned long batch_end_index;
940 	unsigned long last_index;
941 
942 	struct pfn_reader_user user;
943 };
944 
945 static int pfn_reader_update_pinned(struct pfn_reader *pfns)
946 {
947 	return pfn_reader_user_update_pinned(&pfns->user, pfns->pages);
948 }
949 
950 /*
951  * The batch can contain a mixture of pages that are still in use and pages that
952  * need to be unpinned. Unpin only pages that are not held anywhere else.
953  */
954 static void pfn_reader_unpin(struct pfn_reader *pfns)
955 {
956 	unsigned long last = pfns->batch_end_index - 1;
957 	unsigned long start = pfns->batch_start_index;
958 	struct interval_tree_double_span_iter span;
959 	struct iopt_pages *pages = pfns->pages;
960 
961 	lockdep_assert_held(&pages->mutex);
962 
963 	interval_tree_for_each_double_span(&span, &pages->access_itree,
964 					   &pages->domains_itree, start, last) {
965 		if (span.is_used)
966 			continue;
967 
968 		batch_unpin(&pfns->batch, pages, span.start_hole - start,
969 			    span.last_hole - span.start_hole + 1);
970 	}
971 }
972 
973 /* Process a single span to load it from the proper storage */
974 static int pfn_reader_fill_span(struct pfn_reader *pfns)
975 {
976 	struct interval_tree_double_span_iter *span = &pfns->span;
977 	unsigned long start_index = pfns->batch_end_index;
978 	struct iopt_area *area;
979 	int rc;
980 
981 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
982 	    WARN_ON(span->last_used < start_index))
983 		return -EINVAL;
984 
985 	if (span->is_used == 1) {
986 		batch_from_xarray(&pfns->batch, &pfns->pages->pinned_pfns,
987 				  start_index, span->last_used);
988 		return 0;
989 	}
990 
991 	if (span->is_used == 2) {
992 		/*
993 		 * Pull as many pages from the first domain we find in the
994 		 * target span. If it is too small then we will be called again
995 		 * and we'll find another area.
996 		 */
997 		area = iopt_pages_find_domain_area(pfns->pages, start_index);
998 		if (WARN_ON(!area))
999 			return -EINVAL;
1000 
1001 		/* The storage_domain cannot change without the pages mutex */
1002 		batch_from_domain(
1003 			&pfns->batch, area->storage_domain, area, start_index,
1004 			min(iopt_area_last_index(area), span->last_used));
1005 		return 0;
1006 	}
1007 
1008 	if (start_index >= pfns->user.upages_end) {
1009 		rc = pfn_reader_user_pin(&pfns->user, pfns->pages, start_index,
1010 					 span->last_hole);
1011 		if (rc)
1012 			return rc;
1013 	}
1014 
1015 	batch_from_pages(&pfns->batch,
1016 			 pfns->user.upages +
1017 				 (start_index - pfns->user.upages_start),
1018 			 pfns->user.upages_end - start_index);
1019 	return 0;
1020 }
1021 
1022 static bool pfn_reader_done(struct pfn_reader *pfns)
1023 {
1024 	return pfns->batch_start_index == pfns->last_index + 1;
1025 }
1026 
1027 static int pfn_reader_next(struct pfn_reader *pfns)
1028 {
1029 	int rc;
1030 
1031 	batch_clear(&pfns->batch);
1032 	pfns->batch_start_index = pfns->batch_end_index;
1033 
1034 	while (pfns->batch_end_index != pfns->last_index + 1) {
1035 		unsigned int npfns = pfns->batch.total_pfns;
1036 
1037 		if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
1038 		    WARN_ON(interval_tree_double_span_iter_done(&pfns->span)))
1039 			return -EINVAL;
1040 
1041 		rc = pfn_reader_fill_span(pfns);
1042 		if (rc)
1043 			return rc;
1044 
1045 		if (WARN_ON(!pfns->batch.total_pfns))
1046 			return -EINVAL;
1047 
1048 		pfns->batch_end_index =
1049 			pfns->batch_start_index + pfns->batch.total_pfns;
1050 		if (pfns->batch_end_index == pfns->span.last_used + 1)
1051 			interval_tree_double_span_iter_next(&pfns->span);
1052 
1053 		/* Batch is full */
1054 		if (npfns == pfns->batch.total_pfns)
1055 			return 0;
1056 	}
1057 	return 0;
1058 }
1059 
1060 static int pfn_reader_init(struct pfn_reader *pfns, struct iopt_pages *pages,
1061 			   unsigned long start_index, unsigned long last_index)
1062 {
1063 	int rc;
1064 
1065 	lockdep_assert_held(&pages->mutex);
1066 
1067 	pfns->pages = pages;
1068 	pfns->batch_start_index = start_index;
1069 	pfns->batch_end_index = start_index;
1070 	pfns->last_index = last_index;
1071 	pfn_reader_user_init(&pfns->user, pages);
1072 	rc = batch_init(&pfns->batch, last_index - start_index + 1);
1073 	if (rc)
1074 		return rc;
1075 	interval_tree_double_span_iter_first(&pfns->span, &pages->access_itree,
1076 					     &pages->domains_itree, start_index,
1077 					     last_index);
1078 	return 0;
1079 }
1080 
1081 /*
1082  * There are many assertions regarding the state of pages->npinned vs
1083  * pages->last_pinned, for instance something like unmapping a domain must only
1084  * decrement the npinned, and pfn_reader_destroy() must be called only after all
1085  * the pins are updated. This is fine for success flows, but error flows
1086  * sometimes need to release the pins held inside the pfn_reader before going on
1087  * to complete unmapping and releasing pins held in domains.
1088  */
1089 static void pfn_reader_release_pins(struct pfn_reader *pfns)
1090 {
1091 	struct iopt_pages *pages = pfns->pages;
1092 
1093 	if (pfns->user.upages_end > pfns->batch_end_index) {
1094 		size_t npages = pfns->user.upages_end - pfns->batch_end_index;
1095 
1096 		/* Any pages not transferred to the batch are just unpinned */
1097 		unpin_user_pages(pfns->user.upages + (pfns->batch_end_index -
1098 						      pfns->user.upages_start),
1099 				 npages);
1100 		iopt_pages_sub_npinned(pages, npages);
1101 		pfns->user.upages_end = pfns->batch_end_index;
1102 	}
1103 	if (pfns->batch_start_index != pfns->batch_end_index) {
1104 		pfn_reader_unpin(pfns);
1105 		pfns->batch_start_index = pfns->batch_end_index;
1106 	}
1107 }
1108 
1109 static void pfn_reader_destroy(struct pfn_reader *pfns)
1110 {
1111 	struct iopt_pages *pages = pfns->pages;
1112 
1113 	pfn_reader_release_pins(pfns);
1114 	pfn_reader_user_destroy(&pfns->user, pfns->pages);
1115 	batch_destroy(&pfns->batch, NULL);
1116 	WARN_ON(pages->last_npinned != pages->npinned);
1117 }
1118 
1119 static int pfn_reader_first(struct pfn_reader *pfns, struct iopt_pages *pages,
1120 			    unsigned long start_index, unsigned long last_index)
1121 {
1122 	int rc;
1123 
1124 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
1125 	    WARN_ON(last_index < start_index))
1126 		return -EINVAL;
1127 
1128 	rc = pfn_reader_init(pfns, pages, start_index, last_index);
1129 	if (rc)
1130 		return rc;
1131 	rc = pfn_reader_next(pfns);
1132 	if (rc) {
1133 		pfn_reader_destroy(pfns);
1134 		return rc;
1135 	}
1136 	return 0;
1137 }
1138 
1139 struct iopt_pages *iopt_alloc_pages(void __user *uptr, unsigned long length,
1140 				    bool writable)
1141 {
1142 	struct iopt_pages *pages;
1143 
1144 	/*
1145 	 * The iommu API uses size_t as the length, and protect the DIV_ROUND_UP
1146 	 * below from overflow
1147 	 */
1148 	if (length > SIZE_MAX - PAGE_SIZE || length == 0)
1149 		return ERR_PTR(-EINVAL);
1150 
1151 	pages = kzalloc(sizeof(*pages), GFP_KERNEL_ACCOUNT);
1152 	if (!pages)
1153 		return ERR_PTR(-ENOMEM);
1154 
1155 	kref_init(&pages->kref);
1156 	xa_init_flags(&pages->pinned_pfns, XA_FLAGS_ACCOUNT);
1157 	mutex_init(&pages->mutex);
1158 	pages->source_mm = current->mm;
1159 	mmgrab(pages->source_mm);
1160 	pages->uptr = (void __user *)ALIGN_DOWN((uintptr_t)uptr, PAGE_SIZE);
1161 	pages->npages = DIV_ROUND_UP(length + (uptr - pages->uptr), PAGE_SIZE);
1162 	pages->access_itree = RB_ROOT_CACHED;
1163 	pages->domains_itree = RB_ROOT_CACHED;
1164 	pages->writable = writable;
1165 	if (capable(CAP_IPC_LOCK))
1166 		pages->account_mode = IOPT_PAGES_ACCOUNT_NONE;
1167 	else
1168 		pages->account_mode = IOPT_PAGES_ACCOUNT_USER;
1169 	pages->source_task = current->group_leader;
1170 	get_task_struct(current->group_leader);
1171 	pages->source_user = get_uid(current_user());
1172 	return pages;
1173 }
1174 
1175 void iopt_release_pages(struct kref *kref)
1176 {
1177 	struct iopt_pages *pages = container_of(kref, struct iopt_pages, kref);
1178 
1179 	WARN_ON(!RB_EMPTY_ROOT(&pages->access_itree.rb_root));
1180 	WARN_ON(!RB_EMPTY_ROOT(&pages->domains_itree.rb_root));
1181 	WARN_ON(pages->npinned);
1182 	WARN_ON(!xa_empty(&pages->pinned_pfns));
1183 	mmdrop(pages->source_mm);
1184 	mutex_destroy(&pages->mutex);
1185 	put_task_struct(pages->source_task);
1186 	free_uid(pages->source_user);
1187 	kfree(pages);
1188 }
1189 
1190 static void
1191 iopt_area_unpin_domain(struct pfn_batch *batch, struct iopt_area *area,
1192 		       struct iopt_pages *pages, struct iommu_domain *domain,
1193 		       unsigned long start_index, unsigned long last_index,
1194 		       unsigned long *unmapped_end_index,
1195 		       unsigned long real_last_index)
1196 {
1197 	while (start_index <= last_index) {
1198 		unsigned long batch_last_index;
1199 
1200 		if (*unmapped_end_index <= last_index) {
1201 			unsigned long start =
1202 				max(start_index, *unmapped_end_index);
1203 
1204 			batch_from_domain(batch, domain, area, start,
1205 					  last_index);
1206 			batch_last_index = start + batch->total_pfns - 1;
1207 		} else {
1208 			batch_last_index = last_index;
1209 		}
1210 
1211 		/*
1212 		 * unmaps must always 'cut' at a place where the pfns are not
1213 		 * contiguous to pair with the maps that always install
1214 		 * contiguous pages. Thus, if we have to stop unpinning in the
1215 		 * middle of the domains we need to keep reading pfns until we
1216 		 * find a cut point to do the unmap. The pfns we read are
1217 		 * carried over and either skipped or integrated into the next
1218 		 * batch.
1219 		 */
1220 		if (batch_last_index == last_index &&
1221 		    last_index != real_last_index)
1222 			batch_from_domain_continue(batch, domain, area,
1223 						   last_index + 1,
1224 						   real_last_index);
1225 
1226 		if (*unmapped_end_index <= batch_last_index) {
1227 			iopt_area_unmap_domain_range(
1228 				area, domain, *unmapped_end_index,
1229 				start_index + batch->total_pfns - 1);
1230 			*unmapped_end_index = start_index + batch->total_pfns;
1231 		}
1232 
1233 		/* unpin must follow unmap */
1234 		batch_unpin(batch, pages, 0,
1235 			    batch_last_index - start_index + 1);
1236 		start_index = batch_last_index + 1;
1237 
1238 		batch_clear_carry(batch,
1239 				  *unmapped_end_index - batch_last_index - 1);
1240 	}
1241 }
1242 
1243 static void __iopt_area_unfill_domain(struct iopt_area *area,
1244 				      struct iopt_pages *pages,
1245 				      struct iommu_domain *domain,
1246 				      unsigned long last_index)
1247 {
1248 	struct interval_tree_double_span_iter span;
1249 	unsigned long start_index = iopt_area_index(area);
1250 	unsigned long unmapped_end_index = start_index;
1251 	u64 backup[BATCH_BACKUP_SIZE];
1252 	struct pfn_batch batch;
1253 
1254 	lockdep_assert_held(&pages->mutex);
1255 
1256 	/*
1257 	 * For security we must not unpin something that is still DMA mapped,
1258 	 * so this must unmap any IOVA before we go ahead and unpin the pages.
1259 	 * This creates a complexity where we need to skip over unpinning pages
1260 	 * held in the xarray, but continue to unmap from the domain.
1261 	 *
1262 	 * The domain unmap cannot stop in the middle of a contiguous range of
1263 	 * PFNs. To solve this problem the unpinning step will read ahead to the
1264 	 * end of any contiguous span, unmap that whole span, and then only
1265 	 * unpin the leading part that does not have any accesses. The residual
1266 	 * PFNs that were unmapped but not unpinned are called a "carry" in the
1267 	 * batch as they are moved to the front of the PFN list and continue on
1268 	 * to the next iteration(s).
1269 	 */
1270 	batch_init_backup(&batch, last_index + 1, backup, sizeof(backup));
1271 	interval_tree_for_each_double_span(&span, &pages->domains_itree,
1272 					   &pages->access_itree, start_index,
1273 					   last_index) {
1274 		if (span.is_used) {
1275 			batch_skip_carry(&batch,
1276 					 span.last_used - span.start_used + 1);
1277 			continue;
1278 		}
1279 		iopt_area_unpin_domain(&batch, area, pages, domain,
1280 				       span.start_hole, span.last_hole,
1281 				       &unmapped_end_index, last_index);
1282 	}
1283 	/*
1284 	 * If the range ends in a access then we do the residual unmap without
1285 	 * any unpins.
1286 	 */
1287 	if (unmapped_end_index != last_index + 1)
1288 		iopt_area_unmap_domain_range(area, domain, unmapped_end_index,
1289 					     last_index);
1290 	WARN_ON(batch.total_pfns);
1291 	batch_destroy(&batch, backup);
1292 	update_unpinned(pages);
1293 }
1294 
1295 static void iopt_area_unfill_partial_domain(struct iopt_area *area,
1296 					    struct iopt_pages *pages,
1297 					    struct iommu_domain *domain,
1298 					    unsigned long end_index)
1299 {
1300 	if (end_index != iopt_area_index(area))
1301 		__iopt_area_unfill_domain(area, pages, domain, end_index - 1);
1302 }
1303 
1304 /**
1305  * iopt_area_unmap_domain() - Unmap without unpinning PFNs in a domain
1306  * @area: The IOVA range to unmap
1307  * @domain: The domain to unmap
1308  *
1309  * The caller must know that unpinning is not required, usually because there
1310  * are other domains in the iopt.
1311  */
1312 void iopt_area_unmap_domain(struct iopt_area *area, struct iommu_domain *domain)
1313 {
1314 	iommu_unmap_nofail(domain, iopt_area_iova(area),
1315 			   iopt_area_length(area));
1316 }
1317 
1318 /**
1319  * iopt_area_unfill_domain() - Unmap and unpin PFNs in a domain
1320  * @area: IOVA area to use
1321  * @pages: page supplier for the area (area->pages is NULL)
1322  * @domain: Domain to unmap from
1323  *
1324  * The domain should be removed from the domains_itree before calling. The
1325  * domain will always be unmapped, but the PFNs may not be unpinned if there are
1326  * still accesses.
1327  */
1328 void iopt_area_unfill_domain(struct iopt_area *area, struct iopt_pages *pages,
1329 			     struct iommu_domain *domain)
1330 {
1331 	__iopt_area_unfill_domain(area, pages, domain,
1332 				  iopt_area_last_index(area));
1333 }
1334 
1335 /**
1336  * iopt_area_fill_domain() - Map PFNs from the area into a domain
1337  * @area: IOVA area to use
1338  * @domain: Domain to load PFNs into
1339  *
1340  * Read the pfns from the area's underlying iopt_pages and map them into the
1341  * given domain. Called when attaching a new domain to an io_pagetable.
1342  */
1343 int iopt_area_fill_domain(struct iopt_area *area, struct iommu_domain *domain)
1344 {
1345 	unsigned long done_end_index;
1346 	struct pfn_reader pfns;
1347 	int rc;
1348 
1349 	lockdep_assert_held(&area->pages->mutex);
1350 
1351 	rc = pfn_reader_first(&pfns, area->pages, iopt_area_index(area),
1352 			      iopt_area_last_index(area));
1353 	if (rc)
1354 		return rc;
1355 
1356 	while (!pfn_reader_done(&pfns)) {
1357 		done_end_index = pfns.batch_start_index;
1358 		rc = batch_to_domain(&pfns.batch, domain, area,
1359 				     pfns.batch_start_index);
1360 		if (rc)
1361 			goto out_unmap;
1362 		done_end_index = pfns.batch_end_index;
1363 
1364 		rc = pfn_reader_next(&pfns);
1365 		if (rc)
1366 			goto out_unmap;
1367 	}
1368 
1369 	rc = pfn_reader_update_pinned(&pfns);
1370 	if (rc)
1371 		goto out_unmap;
1372 	goto out_destroy;
1373 
1374 out_unmap:
1375 	pfn_reader_release_pins(&pfns);
1376 	iopt_area_unfill_partial_domain(area, area->pages, domain,
1377 					done_end_index);
1378 out_destroy:
1379 	pfn_reader_destroy(&pfns);
1380 	return rc;
1381 }
1382 
1383 /**
1384  * iopt_area_fill_domains() - Install PFNs into the area's domains
1385  * @area: The area to act on
1386  * @pages: The pages associated with the area (area->pages is NULL)
1387  *
1388  * Called during area creation. The area is freshly created and not inserted in
1389  * the domains_itree yet. PFNs are read and loaded into every domain held in the
1390  * area's io_pagetable and the area is installed in the domains_itree.
1391  *
1392  * On failure all domains are left unchanged.
1393  */
1394 int iopt_area_fill_domains(struct iopt_area *area, struct iopt_pages *pages)
1395 {
1396 	unsigned long done_first_end_index;
1397 	unsigned long done_all_end_index;
1398 	struct iommu_domain *domain;
1399 	unsigned long unmap_index;
1400 	struct pfn_reader pfns;
1401 	unsigned long index;
1402 	int rc;
1403 
1404 	lockdep_assert_held(&area->iopt->domains_rwsem);
1405 
1406 	if (xa_empty(&area->iopt->domains))
1407 		return 0;
1408 
1409 	mutex_lock(&pages->mutex);
1410 	rc = pfn_reader_first(&pfns, pages, iopt_area_index(area),
1411 			      iopt_area_last_index(area));
1412 	if (rc)
1413 		goto out_unlock;
1414 
1415 	while (!pfn_reader_done(&pfns)) {
1416 		done_first_end_index = pfns.batch_end_index;
1417 		done_all_end_index = pfns.batch_start_index;
1418 		xa_for_each(&area->iopt->domains, index, domain) {
1419 			rc = batch_to_domain(&pfns.batch, domain, area,
1420 					     pfns.batch_start_index);
1421 			if (rc)
1422 				goto out_unmap;
1423 		}
1424 		done_all_end_index = done_first_end_index;
1425 
1426 		rc = pfn_reader_next(&pfns);
1427 		if (rc)
1428 			goto out_unmap;
1429 	}
1430 	rc = pfn_reader_update_pinned(&pfns);
1431 	if (rc)
1432 		goto out_unmap;
1433 
1434 	area->storage_domain = xa_load(&area->iopt->domains, 0);
1435 	interval_tree_insert(&area->pages_node, &pages->domains_itree);
1436 	goto out_destroy;
1437 
1438 out_unmap:
1439 	pfn_reader_release_pins(&pfns);
1440 	xa_for_each(&area->iopt->domains, unmap_index, domain) {
1441 		unsigned long end_index;
1442 
1443 		if (unmap_index < index)
1444 			end_index = done_first_end_index;
1445 		else
1446 			end_index = done_all_end_index;
1447 
1448 		/*
1449 		 * The area is not yet part of the domains_itree so we have to
1450 		 * manage the unpinning specially. The last domain does the
1451 		 * unpin, every other domain is just unmapped.
1452 		 */
1453 		if (unmap_index != area->iopt->next_domain_id - 1) {
1454 			if (end_index != iopt_area_index(area))
1455 				iopt_area_unmap_domain_range(
1456 					area, domain, iopt_area_index(area),
1457 					end_index - 1);
1458 		} else {
1459 			iopt_area_unfill_partial_domain(area, pages, domain,
1460 							end_index);
1461 		}
1462 	}
1463 out_destroy:
1464 	pfn_reader_destroy(&pfns);
1465 out_unlock:
1466 	mutex_unlock(&pages->mutex);
1467 	return rc;
1468 }
1469 
1470 /**
1471  * iopt_area_unfill_domains() - unmap PFNs from the area's domains
1472  * @area: The area to act on
1473  * @pages: The pages associated with the area (area->pages is NULL)
1474  *
1475  * Called during area destruction. This unmaps the iova's covered by all the
1476  * area's domains and releases the PFNs.
1477  */
1478 void iopt_area_unfill_domains(struct iopt_area *area, struct iopt_pages *pages)
1479 {
1480 	struct io_pagetable *iopt = area->iopt;
1481 	struct iommu_domain *domain;
1482 	unsigned long index;
1483 
1484 	lockdep_assert_held(&iopt->domains_rwsem);
1485 
1486 	mutex_lock(&pages->mutex);
1487 	if (!area->storage_domain)
1488 		goto out_unlock;
1489 
1490 	xa_for_each(&iopt->domains, index, domain)
1491 		if (domain != area->storage_domain)
1492 			iopt_area_unmap_domain_range(
1493 				area, domain, iopt_area_index(area),
1494 				iopt_area_last_index(area));
1495 
1496 	interval_tree_remove(&area->pages_node, &pages->domains_itree);
1497 	iopt_area_unfill_domain(area, pages, area->storage_domain);
1498 	area->storage_domain = NULL;
1499 out_unlock:
1500 	mutex_unlock(&pages->mutex);
1501 }
1502 
1503 static void iopt_pages_unpin_xarray(struct pfn_batch *batch,
1504 				    struct iopt_pages *pages,
1505 				    unsigned long start_index,
1506 				    unsigned long end_index)
1507 {
1508 	while (start_index <= end_index) {
1509 		batch_from_xarray_clear(batch, &pages->pinned_pfns, start_index,
1510 					end_index);
1511 		batch_unpin(batch, pages, 0, batch->total_pfns);
1512 		start_index += batch->total_pfns;
1513 		batch_clear(batch);
1514 	}
1515 }
1516 
1517 /**
1518  * iopt_pages_unfill_xarray() - Update the xarry after removing an access
1519  * @pages: The pages to act on
1520  * @start_index: Starting PFN index
1521  * @last_index: Last PFN index
1522  *
1523  * Called when an iopt_pages_access is removed, removes pages from the itree.
1524  * The access should already be removed from the access_itree.
1525  */
1526 void iopt_pages_unfill_xarray(struct iopt_pages *pages,
1527 			      unsigned long start_index,
1528 			      unsigned long last_index)
1529 {
1530 	struct interval_tree_double_span_iter span;
1531 	u64 backup[BATCH_BACKUP_SIZE];
1532 	struct pfn_batch batch;
1533 	bool batch_inited = false;
1534 
1535 	lockdep_assert_held(&pages->mutex);
1536 
1537 	interval_tree_for_each_double_span(&span, &pages->access_itree,
1538 					   &pages->domains_itree, start_index,
1539 					   last_index) {
1540 		if (!span.is_used) {
1541 			if (!batch_inited) {
1542 				batch_init_backup(&batch,
1543 						  last_index - start_index + 1,
1544 						  backup, sizeof(backup));
1545 				batch_inited = true;
1546 			}
1547 			iopt_pages_unpin_xarray(&batch, pages, span.start_hole,
1548 						span.last_hole);
1549 		} else if (span.is_used == 2) {
1550 			/* Covered by a domain */
1551 			clear_xarray(&pages->pinned_pfns, span.start_used,
1552 				     span.last_used);
1553 		}
1554 		/* Otherwise covered by an existing access */
1555 	}
1556 	if (batch_inited)
1557 		batch_destroy(&batch, backup);
1558 	update_unpinned(pages);
1559 }
1560 
1561 /**
1562  * iopt_pages_fill_from_xarray() - Fast path for reading PFNs
1563  * @pages: The pages to act on
1564  * @start_index: The first page index in the range
1565  * @last_index: The last page index in the range
1566  * @out_pages: The output array to return the pages
1567  *
1568  * This can be called if the caller is holding a refcount on an
1569  * iopt_pages_access that is known to have already been filled. It quickly reads
1570  * the pages directly from the xarray.
1571  *
1572  * This is part of the SW iommu interface to read pages for in-kernel use.
1573  */
1574 void iopt_pages_fill_from_xarray(struct iopt_pages *pages,
1575 				 unsigned long start_index,
1576 				 unsigned long last_index,
1577 				 struct page **out_pages)
1578 {
1579 	XA_STATE(xas, &pages->pinned_pfns, start_index);
1580 	void *entry;
1581 
1582 	rcu_read_lock();
1583 	while (start_index <= last_index) {
1584 		entry = xas_next(&xas);
1585 		if (xas_retry(&xas, entry))
1586 			continue;
1587 		WARN_ON(!xa_is_value(entry));
1588 		*(out_pages++) = pfn_to_page(xa_to_value(entry));
1589 		start_index++;
1590 	}
1591 	rcu_read_unlock();
1592 }
1593 
1594 static int iopt_pages_fill_from_domain(struct iopt_pages *pages,
1595 				       unsigned long start_index,
1596 				       unsigned long last_index,
1597 				       struct page **out_pages)
1598 {
1599 	while (start_index != last_index + 1) {
1600 		unsigned long domain_last;
1601 		struct iopt_area *area;
1602 
1603 		area = iopt_pages_find_domain_area(pages, start_index);
1604 		if (WARN_ON(!area))
1605 			return -EINVAL;
1606 
1607 		domain_last = min(iopt_area_last_index(area), last_index);
1608 		out_pages = raw_pages_from_domain(area->storage_domain, area,
1609 						  start_index, domain_last,
1610 						  out_pages);
1611 		start_index = domain_last + 1;
1612 	}
1613 	return 0;
1614 }
1615 
1616 static int iopt_pages_fill_from_mm(struct iopt_pages *pages,
1617 				   struct pfn_reader_user *user,
1618 				   unsigned long start_index,
1619 				   unsigned long last_index,
1620 				   struct page **out_pages)
1621 {
1622 	unsigned long cur_index = start_index;
1623 	int rc;
1624 
1625 	while (cur_index != last_index + 1) {
1626 		user->upages = out_pages + (cur_index - start_index);
1627 		rc = pfn_reader_user_pin(user, pages, cur_index, last_index);
1628 		if (rc)
1629 			goto out_unpin;
1630 		cur_index = user->upages_end;
1631 	}
1632 	return 0;
1633 
1634 out_unpin:
1635 	if (start_index != cur_index)
1636 		iopt_pages_err_unpin(pages, start_index, cur_index - 1,
1637 				     out_pages);
1638 	return rc;
1639 }
1640 
1641 /**
1642  * iopt_pages_fill_xarray() - Read PFNs
1643  * @pages: The pages to act on
1644  * @start_index: The first page index in the range
1645  * @last_index: The last page index in the range
1646  * @out_pages: The output array to return the pages, may be NULL
1647  *
1648  * This populates the xarray and returns the pages in out_pages. As the slow
1649  * path this is able to copy pages from other storage tiers into the xarray.
1650  *
1651  * On failure the xarray is left unchanged.
1652  *
1653  * This is part of the SW iommu interface to read pages for in-kernel use.
1654  */
1655 int iopt_pages_fill_xarray(struct iopt_pages *pages, unsigned long start_index,
1656 			   unsigned long last_index, struct page **out_pages)
1657 {
1658 	struct interval_tree_double_span_iter span;
1659 	unsigned long xa_end = start_index;
1660 	struct pfn_reader_user user;
1661 	int rc;
1662 
1663 	lockdep_assert_held(&pages->mutex);
1664 
1665 	pfn_reader_user_init(&user, pages);
1666 	user.upages_len = (last_index - start_index + 1) * sizeof(*out_pages);
1667 	interval_tree_for_each_double_span(&span, &pages->access_itree,
1668 					   &pages->domains_itree, start_index,
1669 					   last_index) {
1670 		struct page **cur_pages;
1671 
1672 		if (span.is_used == 1) {
1673 			cur_pages = out_pages + (span.start_used - start_index);
1674 			iopt_pages_fill_from_xarray(pages, span.start_used,
1675 						    span.last_used, cur_pages);
1676 			continue;
1677 		}
1678 
1679 		if (span.is_used == 2) {
1680 			cur_pages = out_pages + (span.start_used - start_index);
1681 			iopt_pages_fill_from_domain(pages, span.start_used,
1682 						    span.last_used, cur_pages);
1683 			rc = pages_to_xarray(&pages->pinned_pfns,
1684 					     span.start_used, span.last_used,
1685 					     cur_pages);
1686 			if (rc)
1687 				goto out_clean_xa;
1688 			xa_end = span.last_used + 1;
1689 			continue;
1690 		}
1691 
1692 		/* hole */
1693 		cur_pages = out_pages + (span.start_hole - start_index);
1694 		rc = iopt_pages_fill_from_mm(pages, &user, span.start_hole,
1695 					     span.last_hole, cur_pages);
1696 		if (rc)
1697 			goto out_clean_xa;
1698 		rc = pages_to_xarray(&pages->pinned_pfns, span.start_hole,
1699 				     span.last_hole, cur_pages);
1700 		if (rc) {
1701 			iopt_pages_err_unpin(pages, span.start_hole,
1702 					     span.last_hole, cur_pages);
1703 			goto out_clean_xa;
1704 		}
1705 		xa_end = span.last_hole + 1;
1706 	}
1707 	rc = pfn_reader_user_update_pinned(&user, pages);
1708 	if (rc)
1709 		goto out_clean_xa;
1710 	user.upages = NULL;
1711 	pfn_reader_user_destroy(&user, pages);
1712 	return 0;
1713 
1714 out_clean_xa:
1715 	if (start_index != xa_end)
1716 		iopt_pages_unfill_xarray(pages, start_index, xa_end - 1);
1717 	user.upages = NULL;
1718 	pfn_reader_user_destroy(&user, pages);
1719 	return rc;
1720 }
1721 
1722 /*
1723  * This uses the pfn_reader instead of taking a shortcut by using the mm. It can
1724  * do every scenario and is fully consistent with what an iommu_domain would
1725  * see.
1726  */
1727 static int iopt_pages_rw_slow(struct iopt_pages *pages,
1728 			      unsigned long start_index,
1729 			      unsigned long last_index, unsigned long offset,
1730 			      void *data, unsigned long length,
1731 			      unsigned int flags)
1732 {
1733 	struct pfn_reader pfns;
1734 	int rc;
1735 
1736 	mutex_lock(&pages->mutex);
1737 
1738 	rc = pfn_reader_first(&pfns, pages, start_index, last_index);
1739 	if (rc)
1740 		goto out_unlock;
1741 
1742 	while (!pfn_reader_done(&pfns)) {
1743 		unsigned long done;
1744 
1745 		done = batch_rw(&pfns.batch, data, offset, length, flags);
1746 		data += done;
1747 		length -= done;
1748 		offset = 0;
1749 		pfn_reader_unpin(&pfns);
1750 
1751 		rc = pfn_reader_next(&pfns);
1752 		if (rc)
1753 			goto out_destroy;
1754 	}
1755 	if (WARN_ON(length != 0))
1756 		rc = -EINVAL;
1757 out_destroy:
1758 	pfn_reader_destroy(&pfns);
1759 out_unlock:
1760 	mutex_unlock(&pages->mutex);
1761 	return rc;
1762 }
1763 
1764 /*
1765  * A medium speed path that still allows DMA inconsistencies, but doesn't do any
1766  * memory allocations or interval tree searches.
1767  */
1768 static int iopt_pages_rw_page(struct iopt_pages *pages, unsigned long index,
1769 			      unsigned long offset, void *data,
1770 			      unsigned long length, unsigned int flags)
1771 {
1772 	struct page *page = NULL;
1773 	int rc;
1774 
1775 	if (!mmget_not_zero(pages->source_mm))
1776 		return iopt_pages_rw_slow(pages, index, index, offset, data,
1777 					  length, flags);
1778 
1779 	if (iommufd_should_fail()) {
1780 		rc = -EINVAL;
1781 		goto out_mmput;
1782 	}
1783 
1784 	mmap_read_lock(pages->source_mm);
1785 	rc = pin_user_pages_remote(
1786 		pages->source_mm, (uintptr_t)(pages->uptr + index * PAGE_SIZE),
1787 		1, (flags & IOMMUFD_ACCESS_RW_WRITE) ? FOLL_WRITE : 0, &page,
1788 		NULL, NULL);
1789 	mmap_read_unlock(pages->source_mm);
1790 	if (rc != 1) {
1791 		if (WARN_ON(rc >= 0))
1792 			rc = -EINVAL;
1793 		goto out_mmput;
1794 	}
1795 	copy_data_page(page, data, offset, length, flags);
1796 	unpin_user_page(page);
1797 	rc = 0;
1798 
1799 out_mmput:
1800 	mmput(pages->source_mm);
1801 	return rc;
1802 }
1803 
1804 /**
1805  * iopt_pages_rw_access - Copy to/from a linear slice of the pages
1806  * @pages: pages to act on
1807  * @start_byte: First byte of pages to copy to/from
1808  * @data: Kernel buffer to get/put the data
1809  * @length: Number of bytes to copy
1810  * @flags: IOMMUFD_ACCESS_RW_* flags
1811  *
1812  * This will find each page in the range, kmap it and then memcpy to/from
1813  * the given kernel buffer.
1814  */
1815 int iopt_pages_rw_access(struct iopt_pages *pages, unsigned long start_byte,
1816 			 void *data, unsigned long length, unsigned int flags)
1817 {
1818 	unsigned long start_index = start_byte / PAGE_SIZE;
1819 	unsigned long last_index = (start_byte + length - 1) / PAGE_SIZE;
1820 	bool change_mm = current->mm != pages->source_mm;
1821 	int rc = 0;
1822 
1823 	if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
1824 	    (flags & __IOMMUFD_ACCESS_RW_SLOW_PATH))
1825 		change_mm = true;
1826 
1827 	if ((flags & IOMMUFD_ACCESS_RW_WRITE) && !pages->writable)
1828 		return -EPERM;
1829 
1830 	if (!(flags & IOMMUFD_ACCESS_RW_KTHREAD) && change_mm) {
1831 		if (start_index == last_index)
1832 			return iopt_pages_rw_page(pages, start_index,
1833 						  start_byte % PAGE_SIZE, data,
1834 						  length, flags);
1835 		return iopt_pages_rw_slow(pages, start_index, last_index,
1836 					  start_byte % PAGE_SIZE, data, length,
1837 					  flags);
1838 	}
1839 
1840 	/*
1841 	 * Try to copy using copy_to_user(). We do this as a fast path and
1842 	 * ignore any pinning inconsistencies, unlike a real DMA path.
1843 	 */
1844 	if (change_mm) {
1845 		if (!mmget_not_zero(pages->source_mm))
1846 			return iopt_pages_rw_slow(pages, start_index,
1847 						  last_index,
1848 						  start_byte % PAGE_SIZE, data,
1849 						  length, flags);
1850 		kthread_use_mm(pages->source_mm);
1851 	}
1852 
1853 	if (flags & IOMMUFD_ACCESS_RW_WRITE) {
1854 		if (copy_to_user(pages->uptr + start_byte, data, length))
1855 			rc = -EFAULT;
1856 	} else {
1857 		if (copy_from_user(data, pages->uptr + start_byte, length))
1858 			rc = -EFAULT;
1859 	}
1860 
1861 	if (change_mm) {
1862 		kthread_unuse_mm(pages->source_mm);
1863 		mmput(pages->source_mm);
1864 	}
1865 
1866 	return rc;
1867 }
1868 
1869 static struct iopt_pages_access *
1870 iopt_pages_get_exact_access(struct iopt_pages *pages, unsigned long index,
1871 			    unsigned long last)
1872 {
1873 	struct interval_tree_node *node;
1874 
1875 	lockdep_assert_held(&pages->mutex);
1876 
1877 	/* There can be overlapping ranges in this interval tree */
1878 	for (node = interval_tree_iter_first(&pages->access_itree, index, last);
1879 	     node; node = interval_tree_iter_next(node, index, last))
1880 		if (node->start == index && node->last == last)
1881 			return container_of(node, struct iopt_pages_access,
1882 					    node);
1883 	return NULL;
1884 }
1885 
1886 /**
1887  * iopt_area_add_access() - Record an in-knerel access for PFNs
1888  * @area: The source of PFNs
1889  * @start_index: First page index
1890  * @last_index: Inclusive last page index
1891  * @out_pages: Output list of struct page's representing the PFNs
1892  * @flags: IOMMUFD_ACCESS_RW_* flags
1893  *
1894  * Record that an in-kernel access will be accessing the pages, ensure they are
1895  * pinned, and return the PFNs as a simple list of 'struct page *'.
1896  *
1897  * This should be undone through a matching call to iopt_area_remove_access()
1898  */
1899 int iopt_area_add_access(struct iopt_area *area, unsigned long start_index,
1900 			  unsigned long last_index, struct page **out_pages,
1901 			  unsigned int flags)
1902 {
1903 	struct iopt_pages *pages = area->pages;
1904 	struct iopt_pages_access *access;
1905 	int rc;
1906 
1907 	if ((flags & IOMMUFD_ACCESS_RW_WRITE) && !pages->writable)
1908 		return -EPERM;
1909 
1910 	mutex_lock(&pages->mutex);
1911 	access = iopt_pages_get_exact_access(pages, start_index, last_index);
1912 	if (access) {
1913 		area->num_accesses++;
1914 		access->users++;
1915 		iopt_pages_fill_from_xarray(pages, start_index, last_index,
1916 					    out_pages);
1917 		mutex_unlock(&pages->mutex);
1918 		return 0;
1919 	}
1920 
1921 	access = kzalloc(sizeof(*access), GFP_KERNEL_ACCOUNT);
1922 	if (!access) {
1923 		rc = -ENOMEM;
1924 		goto err_unlock;
1925 	}
1926 
1927 	rc = iopt_pages_fill_xarray(pages, start_index, last_index, out_pages);
1928 	if (rc)
1929 		goto err_free;
1930 
1931 	access->node.start = start_index;
1932 	access->node.last = last_index;
1933 	access->users = 1;
1934 	area->num_accesses++;
1935 	interval_tree_insert(&access->node, &pages->access_itree);
1936 	mutex_unlock(&pages->mutex);
1937 	return 0;
1938 
1939 err_free:
1940 	kfree(access);
1941 err_unlock:
1942 	mutex_unlock(&pages->mutex);
1943 	return rc;
1944 }
1945 
1946 /**
1947  * iopt_area_remove_access() - Release an in-kernel access for PFNs
1948  * @area: The source of PFNs
1949  * @start_index: First page index
1950  * @last_index: Inclusive last page index
1951  *
1952  * Undo iopt_area_add_access() and unpin the pages if necessary. The caller
1953  * must stop using the PFNs before calling this.
1954  */
1955 void iopt_area_remove_access(struct iopt_area *area, unsigned long start_index,
1956 			     unsigned long last_index)
1957 {
1958 	struct iopt_pages *pages = area->pages;
1959 	struct iopt_pages_access *access;
1960 
1961 	mutex_lock(&pages->mutex);
1962 	access = iopt_pages_get_exact_access(pages, start_index, last_index);
1963 	if (WARN_ON(!access))
1964 		goto out_unlock;
1965 
1966 	WARN_ON(area->num_accesses == 0 || access->users == 0);
1967 	area->num_accesses--;
1968 	access->users--;
1969 	if (access->users)
1970 		goto out_unlock;
1971 
1972 	interval_tree_remove(&access->node, &pages->access_itree);
1973 	iopt_pages_unfill_xarray(pages, start_index, last_index);
1974 	kfree(access);
1975 out_unlock:
1976 	mutex_unlock(&pages->mutex);
1977 }
1978