1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. 3 * 4 * The io_pagetable is the top of datastructure that maps IOVA's to PFNs. The 5 * PFNs can be placed into an iommu_domain, or returned to the caller as a page 6 * list for access by an in-kernel user. 7 * 8 * The datastructure uses the iopt_pages to optimize the storage of the PFNs 9 * between the domains and xarray. 10 */ 11 #include <linux/iommufd.h> 12 #include <linux/lockdep.h> 13 #include <linux/iommu.h> 14 #include <linux/sched/mm.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/errno.h> 18 19 #include "io_pagetable.h" 20 #include "double_span.h" 21 22 struct iopt_pages_list { 23 struct iopt_pages *pages; 24 struct iopt_area *area; 25 struct list_head next; 26 unsigned long start_byte; 27 unsigned long length; 28 }; 29 30 struct iopt_area *iopt_area_contig_init(struct iopt_area_contig_iter *iter, 31 struct io_pagetable *iopt, 32 unsigned long iova, 33 unsigned long last_iova) 34 { 35 lockdep_assert_held(&iopt->iova_rwsem); 36 37 iter->cur_iova = iova; 38 iter->last_iova = last_iova; 39 iter->area = iopt_area_iter_first(iopt, iova, iova); 40 if (!iter->area) 41 return NULL; 42 if (!iter->area->pages) { 43 iter->area = NULL; 44 return NULL; 45 } 46 return iter->area; 47 } 48 49 struct iopt_area *iopt_area_contig_next(struct iopt_area_contig_iter *iter) 50 { 51 unsigned long last_iova; 52 53 if (!iter->area) 54 return NULL; 55 last_iova = iopt_area_last_iova(iter->area); 56 if (iter->last_iova <= last_iova) 57 return NULL; 58 59 iter->cur_iova = last_iova + 1; 60 iter->area = iopt_area_iter_next(iter->area, iter->cur_iova, 61 iter->last_iova); 62 if (!iter->area) 63 return NULL; 64 if (iter->cur_iova != iopt_area_iova(iter->area) || 65 !iter->area->pages) { 66 iter->area = NULL; 67 return NULL; 68 } 69 return iter->area; 70 } 71 72 static bool __alloc_iova_check_hole(struct interval_tree_double_span_iter *span, 73 unsigned long length, 74 unsigned long iova_alignment, 75 unsigned long page_offset) 76 { 77 if (span->is_used || span->last_hole - span->start_hole < length - 1) 78 return false; 79 80 span->start_hole = ALIGN(span->start_hole, iova_alignment) | 81 page_offset; 82 if (span->start_hole > span->last_hole || 83 span->last_hole - span->start_hole < length - 1) 84 return false; 85 return true; 86 } 87 88 static bool __alloc_iova_check_used(struct interval_tree_span_iter *span, 89 unsigned long length, 90 unsigned long iova_alignment, 91 unsigned long page_offset) 92 { 93 if (span->is_hole || span->last_used - span->start_used < length - 1) 94 return false; 95 96 span->start_used = ALIGN(span->start_used, iova_alignment) | 97 page_offset; 98 if (span->start_used > span->last_used || 99 span->last_used - span->start_used < length - 1) 100 return false; 101 return true; 102 } 103 104 /* 105 * Automatically find a block of IOVA that is not being used and not reserved. 106 * Does not return a 0 IOVA even if it is valid. 107 */ 108 static int iopt_alloc_iova(struct io_pagetable *iopt, unsigned long *iova, 109 unsigned long uptr, unsigned long length) 110 { 111 unsigned long page_offset = uptr % PAGE_SIZE; 112 struct interval_tree_double_span_iter used_span; 113 struct interval_tree_span_iter allowed_span; 114 unsigned long iova_alignment; 115 116 lockdep_assert_held(&iopt->iova_rwsem); 117 118 /* Protect roundup_pow-of_two() from overflow */ 119 if (length == 0 || length >= ULONG_MAX / 2) 120 return -EOVERFLOW; 121 122 /* 123 * Keep alignment present in the uptr when building the IOVA, this 124 * increases the chance we can map a THP. 125 */ 126 if (!uptr) 127 iova_alignment = roundup_pow_of_two(length); 128 else 129 iova_alignment = min_t(unsigned long, 130 roundup_pow_of_two(length), 131 1UL << __ffs64(uptr)); 132 133 if (iova_alignment < iopt->iova_alignment) 134 return -EINVAL; 135 136 interval_tree_for_each_span(&allowed_span, &iopt->allowed_itree, 137 PAGE_SIZE, ULONG_MAX - PAGE_SIZE) { 138 if (RB_EMPTY_ROOT(&iopt->allowed_itree.rb_root)) { 139 allowed_span.start_used = PAGE_SIZE; 140 allowed_span.last_used = ULONG_MAX - PAGE_SIZE; 141 allowed_span.is_hole = false; 142 } 143 144 if (!__alloc_iova_check_used(&allowed_span, length, 145 iova_alignment, page_offset)) 146 continue; 147 148 interval_tree_for_each_double_span( 149 &used_span, &iopt->reserved_itree, &iopt->area_itree, 150 allowed_span.start_used, allowed_span.last_used) { 151 if (!__alloc_iova_check_hole(&used_span, length, 152 iova_alignment, 153 page_offset)) 154 continue; 155 156 *iova = used_span.start_hole; 157 return 0; 158 } 159 } 160 return -ENOSPC; 161 } 162 163 static int iopt_check_iova(struct io_pagetable *iopt, unsigned long iova, 164 unsigned long length) 165 { 166 unsigned long last; 167 168 lockdep_assert_held(&iopt->iova_rwsem); 169 170 if ((iova & (iopt->iova_alignment - 1))) 171 return -EINVAL; 172 173 if (check_add_overflow(iova, length - 1, &last)) 174 return -EOVERFLOW; 175 176 /* No reserved IOVA intersects the range */ 177 if (iopt_reserved_iter_first(iopt, iova, last)) 178 return -EINVAL; 179 180 /* Check that there is not already a mapping in the range */ 181 if (iopt_area_iter_first(iopt, iova, last)) 182 return -EEXIST; 183 return 0; 184 } 185 186 /* 187 * The area takes a slice of the pages from start_bytes to start_byte + length 188 */ 189 static int iopt_insert_area(struct io_pagetable *iopt, struct iopt_area *area, 190 struct iopt_pages *pages, unsigned long iova, 191 unsigned long start_byte, unsigned long length, 192 int iommu_prot) 193 { 194 lockdep_assert_held_write(&iopt->iova_rwsem); 195 196 if ((iommu_prot & IOMMU_WRITE) && !pages->writable) 197 return -EPERM; 198 199 area->iommu_prot = iommu_prot; 200 area->page_offset = start_byte % PAGE_SIZE; 201 if (area->page_offset & (iopt->iova_alignment - 1)) 202 return -EINVAL; 203 204 area->node.start = iova; 205 if (check_add_overflow(iova, length - 1, &area->node.last)) 206 return -EOVERFLOW; 207 208 area->pages_node.start = start_byte / PAGE_SIZE; 209 if (check_add_overflow(start_byte, length - 1, &area->pages_node.last)) 210 return -EOVERFLOW; 211 area->pages_node.last = area->pages_node.last / PAGE_SIZE; 212 if (WARN_ON(area->pages_node.last >= pages->npages)) 213 return -EOVERFLOW; 214 215 /* 216 * The area is inserted with a NULL pages indicating it is not fully 217 * initialized yet. 218 */ 219 area->iopt = iopt; 220 interval_tree_insert(&area->node, &iopt->area_itree); 221 return 0; 222 } 223 224 static int iopt_alloc_area_pages(struct io_pagetable *iopt, 225 struct list_head *pages_list, 226 unsigned long length, unsigned long *dst_iova, 227 int iommu_prot, unsigned int flags) 228 { 229 struct iopt_pages_list *elm; 230 unsigned long iova; 231 int rc = 0; 232 233 list_for_each_entry(elm, pages_list, next) { 234 elm->area = kzalloc(sizeof(*elm->area), GFP_KERNEL_ACCOUNT); 235 if (!elm->area) 236 return -ENOMEM; 237 } 238 239 down_write(&iopt->iova_rwsem); 240 if ((length & (iopt->iova_alignment - 1)) || !length) { 241 rc = -EINVAL; 242 goto out_unlock; 243 } 244 245 if (flags & IOPT_ALLOC_IOVA) { 246 /* Use the first entry to guess the ideal IOVA alignment */ 247 elm = list_first_entry(pages_list, struct iopt_pages_list, 248 next); 249 rc = iopt_alloc_iova( 250 iopt, dst_iova, 251 (uintptr_t)elm->pages->uptr + elm->start_byte, length); 252 if (rc) 253 goto out_unlock; 254 if (IS_ENABLED(CONFIG_IOMMUFD_TEST) && 255 WARN_ON(iopt_check_iova(iopt, *dst_iova, length))) { 256 rc = -EINVAL; 257 goto out_unlock; 258 } 259 } else { 260 rc = iopt_check_iova(iopt, *dst_iova, length); 261 if (rc) 262 goto out_unlock; 263 } 264 265 /* 266 * Areas are created with a NULL pages so that the IOVA space is 267 * reserved and we can unlock the iova_rwsem. 268 */ 269 iova = *dst_iova; 270 list_for_each_entry(elm, pages_list, next) { 271 rc = iopt_insert_area(iopt, elm->area, elm->pages, iova, 272 elm->start_byte, elm->length, iommu_prot); 273 if (rc) 274 goto out_unlock; 275 iova += elm->length; 276 } 277 278 out_unlock: 279 up_write(&iopt->iova_rwsem); 280 return rc; 281 } 282 283 static void iopt_abort_area(struct iopt_area *area) 284 { 285 if (IS_ENABLED(CONFIG_IOMMUFD_TEST)) 286 WARN_ON(area->pages); 287 if (area->iopt) { 288 down_write(&area->iopt->iova_rwsem); 289 interval_tree_remove(&area->node, &area->iopt->area_itree); 290 up_write(&area->iopt->iova_rwsem); 291 } 292 kfree(area); 293 } 294 295 void iopt_free_pages_list(struct list_head *pages_list) 296 { 297 struct iopt_pages_list *elm; 298 299 while ((elm = list_first_entry_or_null(pages_list, 300 struct iopt_pages_list, next))) { 301 if (elm->area) 302 iopt_abort_area(elm->area); 303 if (elm->pages) 304 iopt_put_pages(elm->pages); 305 list_del(&elm->next); 306 kfree(elm); 307 } 308 } 309 310 static int iopt_fill_domains_pages(struct list_head *pages_list) 311 { 312 struct iopt_pages_list *undo_elm; 313 struct iopt_pages_list *elm; 314 int rc; 315 316 list_for_each_entry(elm, pages_list, next) { 317 rc = iopt_area_fill_domains(elm->area, elm->pages); 318 if (rc) 319 goto err_undo; 320 } 321 return 0; 322 323 err_undo: 324 list_for_each_entry(undo_elm, pages_list, next) { 325 if (undo_elm == elm) 326 break; 327 iopt_area_unfill_domains(undo_elm->area, undo_elm->pages); 328 } 329 return rc; 330 } 331 332 int iopt_map_pages(struct io_pagetable *iopt, struct list_head *pages_list, 333 unsigned long length, unsigned long *dst_iova, 334 int iommu_prot, unsigned int flags) 335 { 336 struct iopt_pages_list *elm; 337 int rc; 338 339 rc = iopt_alloc_area_pages(iopt, pages_list, length, dst_iova, 340 iommu_prot, flags); 341 if (rc) 342 return rc; 343 344 down_read(&iopt->domains_rwsem); 345 rc = iopt_fill_domains_pages(pages_list); 346 if (rc) 347 goto out_unlock_domains; 348 349 down_write(&iopt->iova_rwsem); 350 list_for_each_entry(elm, pages_list, next) { 351 /* 352 * area->pages must be set inside the domains_rwsem to ensure 353 * any newly added domains will get filled. Moves the reference 354 * in from the list. 355 */ 356 elm->area->pages = elm->pages; 357 elm->pages = NULL; 358 elm->area = NULL; 359 } 360 up_write(&iopt->iova_rwsem); 361 out_unlock_domains: 362 up_read(&iopt->domains_rwsem); 363 return rc; 364 } 365 366 /** 367 * iopt_map_user_pages() - Map a user VA to an iova in the io page table 368 * @ictx: iommufd_ctx the iopt is part of 369 * @iopt: io_pagetable to act on 370 * @iova: If IOPT_ALLOC_IOVA is set this is unused on input and contains 371 * the chosen iova on output. Otherwise is the iova to map to on input 372 * @uptr: User VA to map 373 * @length: Number of bytes to map 374 * @iommu_prot: Combination of IOMMU_READ/WRITE/etc bits for the mapping 375 * @flags: IOPT_ALLOC_IOVA or zero 376 * 377 * iova, uptr, and length must be aligned to iova_alignment. For domain backed 378 * page tables this will pin the pages and load them into the domain at iova. 379 * For non-domain page tables this will only setup a lazy reference and the 380 * caller must use iopt_access_pages() to touch them. 381 * 382 * iopt_unmap_iova() must be called to undo this before the io_pagetable can be 383 * destroyed. 384 */ 385 int iopt_map_user_pages(struct iommufd_ctx *ictx, struct io_pagetable *iopt, 386 unsigned long *iova, void __user *uptr, 387 unsigned long length, int iommu_prot, 388 unsigned int flags) 389 { 390 struct iopt_pages_list elm = {}; 391 LIST_HEAD(pages_list); 392 int rc; 393 394 elm.pages = iopt_alloc_pages(uptr, length, iommu_prot & IOMMU_WRITE); 395 if (IS_ERR(elm.pages)) 396 return PTR_ERR(elm.pages); 397 if (ictx->account_mode == IOPT_PAGES_ACCOUNT_MM && 398 elm.pages->account_mode == IOPT_PAGES_ACCOUNT_USER) 399 elm.pages->account_mode = IOPT_PAGES_ACCOUNT_MM; 400 elm.start_byte = uptr - elm.pages->uptr; 401 elm.length = length; 402 list_add(&elm.next, &pages_list); 403 404 rc = iopt_map_pages(iopt, &pages_list, length, iova, iommu_prot, flags); 405 if (rc) { 406 if (elm.area) 407 iopt_abort_area(elm.area); 408 if (elm.pages) 409 iopt_put_pages(elm.pages); 410 return rc; 411 } 412 return 0; 413 } 414 415 int iopt_get_pages(struct io_pagetable *iopt, unsigned long iova, 416 unsigned long length, struct list_head *pages_list) 417 { 418 struct iopt_area_contig_iter iter; 419 unsigned long last_iova; 420 struct iopt_area *area; 421 int rc; 422 423 if (!length) 424 return -EINVAL; 425 if (check_add_overflow(iova, length - 1, &last_iova)) 426 return -EOVERFLOW; 427 428 down_read(&iopt->iova_rwsem); 429 iopt_for_each_contig_area(&iter, area, iopt, iova, last_iova) { 430 struct iopt_pages_list *elm; 431 unsigned long last = min(last_iova, iopt_area_last_iova(area)); 432 433 elm = kzalloc(sizeof(*elm), GFP_KERNEL_ACCOUNT); 434 if (!elm) { 435 rc = -ENOMEM; 436 goto err_free; 437 } 438 elm->start_byte = iopt_area_start_byte(area, iter.cur_iova); 439 elm->pages = area->pages; 440 elm->length = (last - iter.cur_iova) + 1; 441 kref_get(&elm->pages->kref); 442 list_add_tail(&elm->next, pages_list); 443 } 444 if (!iopt_area_contig_done(&iter)) { 445 rc = -ENOENT; 446 goto err_free; 447 } 448 up_read(&iopt->iova_rwsem); 449 return 0; 450 err_free: 451 up_read(&iopt->iova_rwsem); 452 iopt_free_pages_list(pages_list); 453 return rc; 454 } 455 456 static int iopt_unmap_iova_range(struct io_pagetable *iopt, unsigned long start, 457 unsigned long last, unsigned long *unmapped) 458 { 459 struct iopt_area *area; 460 unsigned long unmapped_bytes = 0; 461 int rc = -ENOENT; 462 463 /* 464 * The domains_rwsem must be held in read mode any time any area->pages 465 * is NULL. This prevents domain attach/detatch from running 466 * concurrently with cleaning up the area. 467 */ 468 again: 469 down_read(&iopt->domains_rwsem); 470 down_write(&iopt->iova_rwsem); 471 while ((area = iopt_area_iter_first(iopt, start, last))) { 472 unsigned long area_last = iopt_area_last_iova(area); 473 unsigned long area_first = iopt_area_iova(area); 474 struct iopt_pages *pages; 475 476 /* Userspace should not race map/unmap's of the same area */ 477 if (!area->pages) { 478 rc = -EBUSY; 479 goto out_unlock_iova; 480 } 481 482 if (area_first < start || area_last > last) { 483 rc = -ENOENT; 484 goto out_unlock_iova; 485 } 486 487 /* 488 * num_accesses writers must hold the iova_rwsem too, so we can 489 * safely read it under the write side of the iovam_rwsem 490 * without the pages->mutex. 491 */ 492 if (area->num_accesses) { 493 start = area_first; 494 area->prevent_access = true; 495 up_write(&iopt->iova_rwsem); 496 up_read(&iopt->domains_rwsem); 497 iommufd_access_notify_unmap(iopt, area_first, 498 iopt_area_length(area)); 499 if (WARN_ON(READ_ONCE(area->num_accesses))) 500 return -EDEADLOCK; 501 goto again; 502 } 503 504 pages = area->pages; 505 area->pages = NULL; 506 up_write(&iopt->iova_rwsem); 507 508 iopt_area_unfill_domains(area, pages); 509 iopt_abort_area(area); 510 iopt_put_pages(pages); 511 512 unmapped_bytes += area_last - area_first + 1; 513 514 down_write(&iopt->iova_rwsem); 515 } 516 if (unmapped_bytes) 517 rc = 0; 518 519 out_unlock_iova: 520 up_write(&iopt->iova_rwsem); 521 up_read(&iopt->domains_rwsem); 522 if (unmapped) 523 *unmapped = unmapped_bytes; 524 return rc; 525 } 526 527 /** 528 * iopt_unmap_iova() - Remove a range of iova 529 * @iopt: io_pagetable to act on 530 * @iova: Starting iova to unmap 531 * @length: Number of bytes to unmap 532 * @unmapped: Return number of bytes unmapped 533 * 534 * The requested range must be a superset of existing ranges. 535 * Splitting/truncating IOVA mappings is not allowed. 536 */ 537 int iopt_unmap_iova(struct io_pagetable *iopt, unsigned long iova, 538 unsigned long length, unsigned long *unmapped) 539 { 540 unsigned long iova_last; 541 542 if (!length) 543 return -EINVAL; 544 545 if (check_add_overflow(iova, length - 1, &iova_last)) 546 return -EOVERFLOW; 547 548 return iopt_unmap_iova_range(iopt, iova, iova_last, unmapped); 549 } 550 551 int iopt_unmap_all(struct io_pagetable *iopt, unsigned long *unmapped) 552 { 553 int rc; 554 555 rc = iopt_unmap_iova_range(iopt, 0, ULONG_MAX, unmapped); 556 /* If the IOVAs are empty then unmap all succeeds */ 557 if (rc == -ENOENT) 558 return 0; 559 return rc; 560 } 561 562 /* The caller must always free all the nodes in the allowed_iova rb_root. */ 563 int iopt_set_allow_iova(struct io_pagetable *iopt, 564 struct rb_root_cached *allowed_iova) 565 { 566 struct iopt_allowed *allowed; 567 568 down_write(&iopt->iova_rwsem); 569 swap(*allowed_iova, iopt->allowed_itree); 570 571 for (allowed = iopt_allowed_iter_first(iopt, 0, ULONG_MAX); allowed; 572 allowed = iopt_allowed_iter_next(allowed, 0, ULONG_MAX)) { 573 if (iopt_reserved_iter_first(iopt, allowed->node.start, 574 allowed->node.last)) { 575 swap(*allowed_iova, iopt->allowed_itree); 576 up_write(&iopt->iova_rwsem); 577 return -EADDRINUSE; 578 } 579 } 580 up_write(&iopt->iova_rwsem); 581 return 0; 582 } 583 584 int iopt_reserve_iova(struct io_pagetable *iopt, unsigned long start, 585 unsigned long last, void *owner) 586 { 587 struct iopt_reserved *reserved; 588 589 lockdep_assert_held_write(&iopt->iova_rwsem); 590 591 if (iopt_area_iter_first(iopt, start, last) || 592 iopt_allowed_iter_first(iopt, start, last)) 593 return -EADDRINUSE; 594 595 reserved = kzalloc(sizeof(*reserved), GFP_KERNEL_ACCOUNT); 596 if (!reserved) 597 return -ENOMEM; 598 reserved->node.start = start; 599 reserved->node.last = last; 600 reserved->owner = owner; 601 interval_tree_insert(&reserved->node, &iopt->reserved_itree); 602 return 0; 603 } 604 605 static void __iopt_remove_reserved_iova(struct io_pagetable *iopt, void *owner) 606 { 607 struct iopt_reserved *reserved, *next; 608 609 lockdep_assert_held_write(&iopt->iova_rwsem); 610 611 for (reserved = iopt_reserved_iter_first(iopt, 0, ULONG_MAX); reserved; 612 reserved = next) { 613 next = iopt_reserved_iter_next(reserved, 0, ULONG_MAX); 614 615 if (reserved->owner == owner) { 616 interval_tree_remove(&reserved->node, 617 &iopt->reserved_itree); 618 kfree(reserved); 619 } 620 } 621 } 622 623 void iopt_remove_reserved_iova(struct io_pagetable *iopt, void *owner) 624 { 625 down_write(&iopt->iova_rwsem); 626 __iopt_remove_reserved_iova(iopt, owner); 627 up_write(&iopt->iova_rwsem); 628 } 629 630 void iopt_init_table(struct io_pagetable *iopt) 631 { 632 init_rwsem(&iopt->iova_rwsem); 633 init_rwsem(&iopt->domains_rwsem); 634 iopt->area_itree = RB_ROOT_CACHED; 635 iopt->allowed_itree = RB_ROOT_CACHED; 636 iopt->reserved_itree = RB_ROOT_CACHED; 637 xa_init_flags(&iopt->domains, XA_FLAGS_ACCOUNT); 638 xa_init_flags(&iopt->access_list, XA_FLAGS_ALLOC); 639 640 /* 641 * iopt's start as SW tables that can use the entire size_t IOVA space 642 * due to the use of size_t in the APIs. They have no alignment 643 * restriction. 644 */ 645 iopt->iova_alignment = 1; 646 } 647 648 void iopt_destroy_table(struct io_pagetable *iopt) 649 { 650 struct interval_tree_node *node; 651 652 if (IS_ENABLED(CONFIG_IOMMUFD_TEST)) 653 iopt_remove_reserved_iova(iopt, NULL); 654 655 while ((node = interval_tree_iter_first(&iopt->allowed_itree, 0, 656 ULONG_MAX))) { 657 interval_tree_remove(node, &iopt->allowed_itree); 658 kfree(container_of(node, struct iopt_allowed, node)); 659 } 660 661 WARN_ON(!RB_EMPTY_ROOT(&iopt->reserved_itree.rb_root)); 662 WARN_ON(!xa_empty(&iopt->domains)); 663 WARN_ON(!xa_empty(&iopt->access_list)); 664 WARN_ON(!RB_EMPTY_ROOT(&iopt->area_itree.rb_root)); 665 } 666 667 /** 668 * iopt_unfill_domain() - Unfill a domain with PFNs 669 * @iopt: io_pagetable to act on 670 * @domain: domain to unfill 671 * 672 * This is used when removing a domain from the iopt. Every area in the iopt 673 * will be unmapped from the domain. The domain must already be removed from the 674 * domains xarray. 675 */ 676 static void iopt_unfill_domain(struct io_pagetable *iopt, 677 struct iommu_domain *domain) 678 { 679 struct iopt_area *area; 680 681 lockdep_assert_held(&iopt->iova_rwsem); 682 lockdep_assert_held_write(&iopt->domains_rwsem); 683 684 /* 685 * Some other domain is holding all the pfns still, rapidly unmap this 686 * domain. 687 */ 688 if (iopt->next_domain_id != 0) { 689 /* Pick an arbitrary remaining domain to act as storage */ 690 struct iommu_domain *storage_domain = 691 xa_load(&iopt->domains, 0); 692 693 for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; 694 area = iopt_area_iter_next(area, 0, ULONG_MAX)) { 695 struct iopt_pages *pages = area->pages; 696 697 if (!pages) 698 continue; 699 700 mutex_lock(&pages->mutex); 701 if (IS_ENABLED(CONFIG_IOMMUFD_TEST)) 702 WARN_ON(!area->storage_domain); 703 if (area->storage_domain == domain) 704 area->storage_domain = storage_domain; 705 mutex_unlock(&pages->mutex); 706 707 iopt_area_unmap_domain(area, domain); 708 } 709 return; 710 } 711 712 for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; 713 area = iopt_area_iter_next(area, 0, ULONG_MAX)) { 714 struct iopt_pages *pages = area->pages; 715 716 if (!pages) 717 continue; 718 719 mutex_lock(&pages->mutex); 720 interval_tree_remove(&area->pages_node, &pages->domains_itree); 721 WARN_ON(area->storage_domain != domain); 722 area->storage_domain = NULL; 723 iopt_area_unfill_domain(area, pages, domain); 724 mutex_unlock(&pages->mutex); 725 } 726 } 727 728 /** 729 * iopt_fill_domain() - Fill a domain with PFNs 730 * @iopt: io_pagetable to act on 731 * @domain: domain to fill 732 * 733 * Fill the domain with PFNs from every area in the iopt. On failure the domain 734 * is left unchanged. 735 */ 736 static int iopt_fill_domain(struct io_pagetable *iopt, 737 struct iommu_domain *domain) 738 { 739 struct iopt_area *end_area; 740 struct iopt_area *area; 741 int rc; 742 743 lockdep_assert_held(&iopt->iova_rwsem); 744 lockdep_assert_held_write(&iopt->domains_rwsem); 745 746 for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; 747 area = iopt_area_iter_next(area, 0, ULONG_MAX)) { 748 struct iopt_pages *pages = area->pages; 749 750 if (!pages) 751 continue; 752 753 mutex_lock(&pages->mutex); 754 rc = iopt_area_fill_domain(area, domain); 755 if (rc) { 756 mutex_unlock(&pages->mutex); 757 goto out_unfill; 758 } 759 if (!area->storage_domain) { 760 WARN_ON(iopt->next_domain_id != 0); 761 area->storage_domain = domain; 762 interval_tree_insert(&area->pages_node, 763 &pages->domains_itree); 764 } 765 mutex_unlock(&pages->mutex); 766 } 767 return 0; 768 769 out_unfill: 770 end_area = area; 771 for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; 772 area = iopt_area_iter_next(area, 0, ULONG_MAX)) { 773 struct iopt_pages *pages = area->pages; 774 775 if (area == end_area) 776 break; 777 if (!pages) 778 continue; 779 mutex_lock(&pages->mutex); 780 if (iopt->next_domain_id == 0) { 781 interval_tree_remove(&area->pages_node, 782 &pages->domains_itree); 783 area->storage_domain = NULL; 784 } 785 iopt_area_unfill_domain(area, pages, domain); 786 mutex_unlock(&pages->mutex); 787 } 788 return rc; 789 } 790 791 /* All existing area's conform to an increased page size */ 792 static int iopt_check_iova_alignment(struct io_pagetable *iopt, 793 unsigned long new_iova_alignment) 794 { 795 unsigned long align_mask = new_iova_alignment - 1; 796 struct iopt_area *area; 797 798 lockdep_assert_held(&iopt->iova_rwsem); 799 lockdep_assert_held(&iopt->domains_rwsem); 800 801 for (area = iopt_area_iter_first(iopt, 0, ULONG_MAX); area; 802 area = iopt_area_iter_next(area, 0, ULONG_MAX)) 803 if ((iopt_area_iova(area) & align_mask) || 804 (iopt_area_length(area) & align_mask) || 805 (area->page_offset & align_mask)) 806 return -EADDRINUSE; 807 808 if (IS_ENABLED(CONFIG_IOMMUFD_TEST)) { 809 struct iommufd_access *access; 810 unsigned long index; 811 812 xa_for_each(&iopt->access_list, index, access) 813 if (WARN_ON(access->iova_alignment > 814 new_iova_alignment)) 815 return -EADDRINUSE; 816 } 817 return 0; 818 } 819 820 int iopt_table_add_domain(struct io_pagetable *iopt, 821 struct iommu_domain *domain) 822 { 823 const struct iommu_domain_geometry *geometry = &domain->geometry; 824 struct iommu_domain *iter_domain; 825 unsigned int new_iova_alignment; 826 unsigned long index; 827 int rc; 828 829 down_write(&iopt->domains_rwsem); 830 down_write(&iopt->iova_rwsem); 831 832 xa_for_each(&iopt->domains, index, iter_domain) { 833 if (WARN_ON(iter_domain == domain)) { 834 rc = -EEXIST; 835 goto out_unlock; 836 } 837 } 838 839 /* 840 * The io page size drives the iova_alignment. Internally the iopt_pages 841 * works in PAGE_SIZE units and we adjust when mapping sub-PAGE_SIZE 842 * objects into the iommu_domain. 843 * 844 * A iommu_domain must always be able to accept PAGE_SIZE to be 845 * compatible as we can't guarantee higher contiguity. 846 */ 847 new_iova_alignment = max_t(unsigned long, 848 1UL << __ffs(domain->pgsize_bitmap), 849 iopt->iova_alignment); 850 if (new_iova_alignment > PAGE_SIZE) { 851 rc = -EINVAL; 852 goto out_unlock; 853 } 854 if (new_iova_alignment != iopt->iova_alignment) { 855 rc = iopt_check_iova_alignment(iopt, new_iova_alignment); 856 if (rc) 857 goto out_unlock; 858 } 859 860 /* No area exists that is outside the allowed domain aperture */ 861 if (geometry->aperture_start != 0) { 862 rc = iopt_reserve_iova(iopt, 0, geometry->aperture_start - 1, 863 domain); 864 if (rc) 865 goto out_reserved; 866 } 867 if (geometry->aperture_end != ULONG_MAX) { 868 rc = iopt_reserve_iova(iopt, geometry->aperture_end + 1, 869 ULONG_MAX, domain); 870 if (rc) 871 goto out_reserved; 872 } 873 874 rc = xa_reserve(&iopt->domains, iopt->next_domain_id, GFP_KERNEL); 875 if (rc) 876 goto out_reserved; 877 878 rc = iopt_fill_domain(iopt, domain); 879 if (rc) 880 goto out_release; 881 882 iopt->iova_alignment = new_iova_alignment; 883 xa_store(&iopt->domains, iopt->next_domain_id, domain, GFP_KERNEL); 884 iopt->next_domain_id++; 885 up_write(&iopt->iova_rwsem); 886 up_write(&iopt->domains_rwsem); 887 return 0; 888 out_release: 889 xa_release(&iopt->domains, iopt->next_domain_id); 890 out_reserved: 891 __iopt_remove_reserved_iova(iopt, domain); 892 out_unlock: 893 up_write(&iopt->iova_rwsem); 894 up_write(&iopt->domains_rwsem); 895 return rc; 896 } 897 898 static int iopt_calculate_iova_alignment(struct io_pagetable *iopt) 899 { 900 unsigned long new_iova_alignment; 901 struct iommufd_access *access; 902 struct iommu_domain *domain; 903 unsigned long index; 904 905 lockdep_assert_held_write(&iopt->iova_rwsem); 906 lockdep_assert_held(&iopt->domains_rwsem); 907 908 /* See batch_iommu_map_small() */ 909 if (iopt->disable_large_pages) 910 new_iova_alignment = PAGE_SIZE; 911 else 912 new_iova_alignment = 1; 913 914 xa_for_each(&iopt->domains, index, domain) 915 new_iova_alignment = max_t(unsigned long, 916 1UL << __ffs(domain->pgsize_bitmap), 917 new_iova_alignment); 918 xa_for_each(&iopt->access_list, index, access) 919 new_iova_alignment = max_t(unsigned long, 920 access->iova_alignment, 921 new_iova_alignment); 922 923 if (new_iova_alignment > iopt->iova_alignment) { 924 int rc; 925 926 rc = iopt_check_iova_alignment(iopt, new_iova_alignment); 927 if (rc) 928 return rc; 929 } 930 iopt->iova_alignment = new_iova_alignment; 931 return 0; 932 } 933 934 void iopt_table_remove_domain(struct io_pagetable *iopt, 935 struct iommu_domain *domain) 936 { 937 struct iommu_domain *iter_domain = NULL; 938 unsigned long index; 939 940 down_write(&iopt->domains_rwsem); 941 down_write(&iopt->iova_rwsem); 942 943 xa_for_each(&iopt->domains, index, iter_domain) 944 if (iter_domain == domain) 945 break; 946 if (WARN_ON(iter_domain != domain) || index >= iopt->next_domain_id) 947 goto out_unlock; 948 949 /* 950 * Compress the xarray to keep it linear by swapping the entry to erase 951 * with the tail entry and shrinking the tail. 952 */ 953 iopt->next_domain_id--; 954 iter_domain = xa_erase(&iopt->domains, iopt->next_domain_id); 955 if (index != iopt->next_domain_id) 956 xa_store(&iopt->domains, index, iter_domain, GFP_KERNEL); 957 958 iopt_unfill_domain(iopt, domain); 959 __iopt_remove_reserved_iova(iopt, domain); 960 961 WARN_ON(iopt_calculate_iova_alignment(iopt)); 962 out_unlock: 963 up_write(&iopt->iova_rwsem); 964 up_write(&iopt->domains_rwsem); 965 } 966 967 /** 968 * iopt_area_split - Split an area into two parts at iova 969 * @area: The area to split 970 * @iova: Becomes the last of a new area 971 * 972 * This splits an area into two. It is part of the VFIO compatibility to allow 973 * poking a hole in the mapping. The two areas continue to point at the same 974 * iopt_pages, just with different starting bytes. 975 */ 976 static int iopt_area_split(struct iopt_area *area, unsigned long iova) 977 { 978 unsigned long alignment = area->iopt->iova_alignment; 979 unsigned long last_iova = iopt_area_last_iova(area); 980 unsigned long start_iova = iopt_area_iova(area); 981 unsigned long new_start = iova + 1; 982 struct io_pagetable *iopt = area->iopt; 983 struct iopt_pages *pages = area->pages; 984 struct iopt_area *lhs; 985 struct iopt_area *rhs; 986 int rc; 987 988 lockdep_assert_held_write(&iopt->iova_rwsem); 989 990 if (iova == start_iova || iova == last_iova) 991 return 0; 992 993 if (!pages || area->prevent_access) 994 return -EBUSY; 995 996 if (new_start & (alignment - 1) || 997 iopt_area_start_byte(area, new_start) & (alignment - 1)) 998 return -EINVAL; 999 1000 lhs = kzalloc(sizeof(*area), GFP_KERNEL_ACCOUNT); 1001 if (!lhs) 1002 return -ENOMEM; 1003 1004 rhs = kzalloc(sizeof(*area), GFP_KERNEL_ACCOUNT); 1005 if (!rhs) { 1006 rc = -ENOMEM; 1007 goto err_free_lhs; 1008 } 1009 1010 mutex_lock(&pages->mutex); 1011 /* 1012 * Splitting is not permitted if an access exists, we don't track enough 1013 * information to split existing accesses. 1014 */ 1015 if (area->num_accesses) { 1016 rc = -EINVAL; 1017 goto err_unlock; 1018 } 1019 1020 /* 1021 * Splitting is not permitted if a domain could have been mapped with 1022 * huge pages. 1023 */ 1024 if (area->storage_domain && !iopt->disable_large_pages) { 1025 rc = -EINVAL; 1026 goto err_unlock; 1027 } 1028 1029 interval_tree_remove(&area->node, &iopt->area_itree); 1030 rc = iopt_insert_area(iopt, lhs, area->pages, start_iova, 1031 iopt_area_start_byte(area, start_iova), 1032 (new_start - 1) - start_iova + 1, 1033 area->iommu_prot); 1034 if (WARN_ON(rc)) 1035 goto err_insert; 1036 1037 rc = iopt_insert_area(iopt, rhs, area->pages, new_start, 1038 iopt_area_start_byte(area, new_start), 1039 last_iova - new_start + 1, area->iommu_prot); 1040 if (WARN_ON(rc)) 1041 goto err_remove_lhs; 1042 1043 lhs->storage_domain = area->storage_domain; 1044 lhs->pages = area->pages; 1045 rhs->storage_domain = area->storage_domain; 1046 rhs->pages = area->pages; 1047 kref_get(&rhs->pages->kref); 1048 kfree(area); 1049 mutex_unlock(&pages->mutex); 1050 1051 /* 1052 * No change to domains or accesses because the pages hasn't been 1053 * changed 1054 */ 1055 return 0; 1056 1057 err_remove_lhs: 1058 interval_tree_remove(&lhs->node, &iopt->area_itree); 1059 err_insert: 1060 interval_tree_insert(&area->node, &iopt->area_itree); 1061 err_unlock: 1062 mutex_unlock(&pages->mutex); 1063 kfree(rhs); 1064 err_free_lhs: 1065 kfree(lhs); 1066 return rc; 1067 } 1068 1069 int iopt_cut_iova(struct io_pagetable *iopt, unsigned long *iovas, 1070 size_t num_iovas) 1071 { 1072 int rc = 0; 1073 int i; 1074 1075 down_write(&iopt->iova_rwsem); 1076 for (i = 0; i < num_iovas; i++) { 1077 struct iopt_area *area; 1078 1079 area = iopt_area_iter_first(iopt, iovas[i], iovas[i]); 1080 if (!area) 1081 continue; 1082 rc = iopt_area_split(area, iovas[i]); 1083 if (rc) 1084 break; 1085 } 1086 up_write(&iopt->iova_rwsem); 1087 return rc; 1088 } 1089 1090 void iopt_enable_large_pages(struct io_pagetable *iopt) 1091 { 1092 int rc; 1093 1094 down_write(&iopt->domains_rwsem); 1095 down_write(&iopt->iova_rwsem); 1096 WRITE_ONCE(iopt->disable_large_pages, false); 1097 rc = iopt_calculate_iova_alignment(iopt); 1098 WARN_ON(rc); 1099 up_write(&iopt->iova_rwsem); 1100 up_write(&iopt->domains_rwsem); 1101 } 1102 1103 int iopt_disable_large_pages(struct io_pagetable *iopt) 1104 { 1105 int rc = 0; 1106 1107 down_write(&iopt->domains_rwsem); 1108 down_write(&iopt->iova_rwsem); 1109 if (iopt->disable_large_pages) 1110 goto out_unlock; 1111 1112 /* Won't do it if domains already have pages mapped in them */ 1113 if (!xa_empty(&iopt->domains) && 1114 !RB_EMPTY_ROOT(&iopt->area_itree.rb_root)) { 1115 rc = -EINVAL; 1116 goto out_unlock; 1117 } 1118 1119 WRITE_ONCE(iopt->disable_large_pages, true); 1120 rc = iopt_calculate_iova_alignment(iopt); 1121 if (rc) 1122 WRITE_ONCE(iopt->disable_large_pages, false); 1123 out_unlock: 1124 up_write(&iopt->iova_rwsem); 1125 up_write(&iopt->domains_rwsem); 1126 return rc; 1127 } 1128 1129 int iopt_add_access(struct io_pagetable *iopt, struct iommufd_access *access) 1130 { 1131 int rc; 1132 1133 down_write(&iopt->domains_rwsem); 1134 down_write(&iopt->iova_rwsem); 1135 rc = xa_alloc(&iopt->access_list, &access->iopt_access_list_id, access, 1136 xa_limit_16b, GFP_KERNEL_ACCOUNT); 1137 if (rc) 1138 goto out_unlock; 1139 1140 rc = iopt_calculate_iova_alignment(iopt); 1141 if (rc) { 1142 xa_erase(&iopt->access_list, access->iopt_access_list_id); 1143 goto out_unlock; 1144 } 1145 1146 out_unlock: 1147 up_write(&iopt->iova_rwsem); 1148 up_write(&iopt->domains_rwsem); 1149 return rc; 1150 } 1151 1152 void iopt_remove_access(struct io_pagetable *iopt, 1153 struct iommufd_access *access) 1154 { 1155 down_write(&iopt->domains_rwsem); 1156 down_write(&iopt->iova_rwsem); 1157 WARN_ON(xa_erase(&iopt->access_list, access->iopt_access_list_id) != 1158 access); 1159 WARN_ON(iopt_calculate_iova_alignment(iopt)); 1160 up_write(&iopt->iova_rwsem); 1161 up_write(&iopt->domains_rwsem); 1162 } 1163 1164 /* Narrow the valid_iova_itree to include reserved ranges from a group. */ 1165 int iopt_table_enforce_group_resv_regions(struct io_pagetable *iopt, 1166 struct device *device, 1167 struct iommu_group *group, 1168 phys_addr_t *sw_msi_start) 1169 { 1170 struct iommu_resv_region *resv; 1171 struct iommu_resv_region *tmp; 1172 LIST_HEAD(group_resv_regions); 1173 unsigned int num_hw_msi = 0; 1174 unsigned int num_sw_msi = 0; 1175 int rc; 1176 1177 down_write(&iopt->iova_rwsem); 1178 rc = iommu_get_group_resv_regions(group, &group_resv_regions); 1179 if (rc) 1180 goto out_unlock; 1181 1182 list_for_each_entry(resv, &group_resv_regions, list) { 1183 if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE) 1184 continue; 1185 1186 if (sw_msi_start && resv->type == IOMMU_RESV_MSI) 1187 num_hw_msi++; 1188 if (sw_msi_start && resv->type == IOMMU_RESV_SW_MSI) { 1189 *sw_msi_start = resv->start; 1190 num_sw_msi++; 1191 } 1192 1193 rc = iopt_reserve_iova(iopt, resv->start, 1194 resv->length - 1 + resv->start, device); 1195 if (rc) 1196 goto out_reserved; 1197 } 1198 1199 /* Drivers must offer sane combinations of regions */ 1200 if (WARN_ON(num_sw_msi && num_hw_msi) || WARN_ON(num_sw_msi > 1)) { 1201 rc = -EINVAL; 1202 goto out_reserved; 1203 } 1204 1205 rc = 0; 1206 goto out_free_resv; 1207 1208 out_reserved: 1209 __iopt_remove_reserved_iova(iopt, device); 1210 out_free_resv: 1211 list_for_each_entry_safe(resv, tmp, &group_resv_regions, list) 1212 kfree(resv); 1213 out_unlock: 1214 up_write(&iopt->iova_rwsem); 1215 return rc; 1216 } 1217