xref: /linux/drivers/iommu/iommu.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35 
36 #include "dma-iommu.h"
37 #include "iommu-priv.h"
38 
39 static struct kset *iommu_group_kset;
40 static DEFINE_IDA(iommu_group_ida);
41 static DEFINE_IDA(iommu_global_pasid_ida);
42 
43 static unsigned int iommu_def_domain_type __read_mostly;
44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
45 static u32 iommu_cmd_line __read_mostly;
46 
47 struct iommu_group {
48 	struct kobject kobj;
49 	struct kobject *devices_kobj;
50 	struct list_head devices;
51 	struct xarray pasid_array;
52 	struct mutex mutex;
53 	void *iommu_data;
54 	void (*iommu_data_release)(void *iommu_data);
55 	char *name;
56 	int id;
57 	struct iommu_domain *default_domain;
58 	struct iommu_domain *blocking_domain;
59 	struct iommu_domain *domain;
60 	struct list_head entry;
61 	unsigned int owner_cnt;
62 	void *owner;
63 };
64 
65 struct group_device {
66 	struct list_head list;
67 	struct device *dev;
68 	char *name;
69 };
70 
71 /* Iterate over each struct group_device in a struct iommu_group */
72 #define for_each_group_device(group, pos) \
73 	list_for_each_entry(pos, &(group)->devices, list)
74 
75 struct iommu_group_attribute {
76 	struct attribute attr;
77 	ssize_t (*show)(struct iommu_group *group, char *buf);
78 	ssize_t (*store)(struct iommu_group *group,
79 			 const char *buf, size_t count);
80 };
81 
82 static const char * const iommu_group_resv_type_string[] = {
83 	[IOMMU_RESV_DIRECT]			= "direct",
84 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
85 	[IOMMU_RESV_RESERVED]			= "reserved",
86 	[IOMMU_RESV_MSI]			= "msi",
87 	[IOMMU_RESV_SW_MSI]			= "msi",
88 };
89 
90 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
91 #define IOMMU_CMD_LINE_STRICT		BIT(1)
92 
93 static int iommu_bus_notifier(struct notifier_block *nb,
94 			      unsigned long action, void *data);
95 static void iommu_release_device(struct device *dev);
96 static struct iommu_domain *
97 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type);
98 static int __iommu_attach_device(struct iommu_domain *domain,
99 				 struct device *dev);
100 static int __iommu_attach_group(struct iommu_domain *domain,
101 				struct iommu_group *group);
102 
103 enum {
104 	IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
105 };
106 
107 static int __iommu_device_set_domain(struct iommu_group *group,
108 				     struct device *dev,
109 				     struct iommu_domain *new_domain,
110 				     unsigned int flags);
111 static int __iommu_group_set_domain_internal(struct iommu_group *group,
112 					     struct iommu_domain *new_domain,
113 					     unsigned int flags);
114 static int __iommu_group_set_domain(struct iommu_group *group,
115 				    struct iommu_domain *new_domain)
116 {
117 	return __iommu_group_set_domain_internal(group, new_domain, 0);
118 }
119 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
120 					    struct iommu_domain *new_domain)
121 {
122 	WARN_ON(__iommu_group_set_domain_internal(
123 		group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
124 }
125 
126 static int iommu_setup_default_domain(struct iommu_group *group,
127 				      int target_type);
128 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
129 					       struct device *dev);
130 static ssize_t iommu_group_store_type(struct iommu_group *group,
131 				      const char *buf, size_t count);
132 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
133 						     struct device *dev);
134 static void __iommu_group_free_device(struct iommu_group *group,
135 				      struct group_device *grp_dev);
136 
137 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
138 struct iommu_group_attribute iommu_group_attr_##_name =		\
139 	__ATTR(_name, _mode, _show, _store)
140 
141 #define to_iommu_group_attr(_attr)	\
142 	container_of(_attr, struct iommu_group_attribute, attr)
143 #define to_iommu_group(_kobj)		\
144 	container_of(_kobj, struct iommu_group, kobj)
145 
146 static LIST_HEAD(iommu_device_list);
147 static DEFINE_SPINLOCK(iommu_device_lock);
148 
149 static const struct bus_type * const iommu_buses[] = {
150 	&platform_bus_type,
151 #ifdef CONFIG_PCI
152 	&pci_bus_type,
153 #endif
154 #ifdef CONFIG_ARM_AMBA
155 	&amba_bustype,
156 #endif
157 #ifdef CONFIG_FSL_MC_BUS
158 	&fsl_mc_bus_type,
159 #endif
160 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
161 	&host1x_context_device_bus_type,
162 #endif
163 #ifdef CONFIG_CDX_BUS
164 	&cdx_bus_type,
165 #endif
166 };
167 
168 /*
169  * Use a function instead of an array here because the domain-type is a
170  * bit-field, so an array would waste memory.
171  */
172 static const char *iommu_domain_type_str(unsigned int t)
173 {
174 	switch (t) {
175 	case IOMMU_DOMAIN_BLOCKED:
176 		return "Blocked";
177 	case IOMMU_DOMAIN_IDENTITY:
178 		return "Passthrough";
179 	case IOMMU_DOMAIN_UNMANAGED:
180 		return "Unmanaged";
181 	case IOMMU_DOMAIN_DMA:
182 	case IOMMU_DOMAIN_DMA_FQ:
183 		return "Translated";
184 	case IOMMU_DOMAIN_PLATFORM:
185 		return "Platform";
186 	default:
187 		return "Unknown";
188 	}
189 }
190 
191 static int __init iommu_subsys_init(void)
192 {
193 	struct notifier_block *nb;
194 
195 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
196 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
197 			iommu_set_default_passthrough(false);
198 		else
199 			iommu_set_default_translated(false);
200 
201 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
202 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
203 			iommu_set_default_translated(false);
204 		}
205 	}
206 
207 	if (!iommu_default_passthrough() && !iommu_dma_strict)
208 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
209 
210 	pr_info("Default domain type: %s%s\n",
211 		iommu_domain_type_str(iommu_def_domain_type),
212 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
213 			" (set via kernel command line)" : "");
214 
215 	if (!iommu_default_passthrough())
216 		pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
217 			iommu_dma_strict ? "strict" : "lazy",
218 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
219 				" (set via kernel command line)" : "");
220 
221 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
222 	if (!nb)
223 		return -ENOMEM;
224 
225 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
226 		nb[i].notifier_call = iommu_bus_notifier;
227 		bus_register_notifier(iommu_buses[i], &nb[i]);
228 	}
229 
230 	return 0;
231 }
232 subsys_initcall(iommu_subsys_init);
233 
234 static int remove_iommu_group(struct device *dev, void *data)
235 {
236 	if (dev->iommu && dev->iommu->iommu_dev == data)
237 		iommu_release_device(dev);
238 
239 	return 0;
240 }
241 
242 /**
243  * iommu_device_register() - Register an IOMMU hardware instance
244  * @iommu: IOMMU handle for the instance
245  * @ops:   IOMMU ops to associate with the instance
246  * @hwdev: (optional) actual instance device, used for fwnode lookup
247  *
248  * Return: 0 on success, or an error.
249  */
250 int iommu_device_register(struct iommu_device *iommu,
251 			  const struct iommu_ops *ops, struct device *hwdev)
252 {
253 	int err = 0;
254 
255 	/* We need to be able to take module references appropriately */
256 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
257 		return -EINVAL;
258 
259 	iommu->ops = ops;
260 	if (hwdev)
261 		iommu->fwnode = dev_fwnode(hwdev);
262 
263 	spin_lock(&iommu_device_lock);
264 	list_add_tail(&iommu->list, &iommu_device_list);
265 	spin_unlock(&iommu_device_lock);
266 
267 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++)
268 		err = bus_iommu_probe(iommu_buses[i]);
269 	if (err)
270 		iommu_device_unregister(iommu);
271 	return err;
272 }
273 EXPORT_SYMBOL_GPL(iommu_device_register);
274 
275 void iommu_device_unregister(struct iommu_device *iommu)
276 {
277 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
278 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
279 
280 	spin_lock(&iommu_device_lock);
281 	list_del(&iommu->list);
282 	spin_unlock(&iommu_device_lock);
283 
284 	/* Pairs with the alloc in generic_single_device_group() */
285 	iommu_group_put(iommu->singleton_group);
286 	iommu->singleton_group = NULL;
287 }
288 EXPORT_SYMBOL_GPL(iommu_device_unregister);
289 
290 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
291 void iommu_device_unregister_bus(struct iommu_device *iommu,
292 				 const struct bus_type *bus,
293 				 struct notifier_block *nb)
294 {
295 	bus_unregister_notifier(bus, nb);
296 	iommu_device_unregister(iommu);
297 }
298 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
299 
300 /*
301  * Register an iommu driver against a single bus. This is only used by iommufd
302  * selftest to create a mock iommu driver. The caller must provide
303  * some memory to hold a notifier_block.
304  */
305 int iommu_device_register_bus(struct iommu_device *iommu,
306 			      const struct iommu_ops *ops,
307 			      const struct bus_type *bus,
308 			      struct notifier_block *nb)
309 {
310 	int err;
311 
312 	iommu->ops = ops;
313 	nb->notifier_call = iommu_bus_notifier;
314 	err = bus_register_notifier(bus, nb);
315 	if (err)
316 		return err;
317 
318 	spin_lock(&iommu_device_lock);
319 	list_add_tail(&iommu->list, &iommu_device_list);
320 	spin_unlock(&iommu_device_lock);
321 
322 	err = bus_iommu_probe(bus);
323 	if (err) {
324 		iommu_device_unregister_bus(iommu, bus, nb);
325 		return err;
326 	}
327 	return 0;
328 }
329 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
330 #endif
331 
332 static struct dev_iommu *dev_iommu_get(struct device *dev)
333 {
334 	struct dev_iommu *param = dev->iommu;
335 
336 	lockdep_assert_held(&iommu_probe_device_lock);
337 
338 	if (param)
339 		return param;
340 
341 	param = kzalloc(sizeof(*param), GFP_KERNEL);
342 	if (!param)
343 		return NULL;
344 
345 	mutex_init(&param->lock);
346 	dev->iommu = param;
347 	return param;
348 }
349 
350 static void dev_iommu_free(struct device *dev)
351 {
352 	struct dev_iommu *param = dev->iommu;
353 
354 	dev->iommu = NULL;
355 	if (param->fwspec) {
356 		fwnode_handle_put(param->fwspec->iommu_fwnode);
357 		kfree(param->fwspec);
358 	}
359 	kfree(param);
360 }
361 
362 /*
363  * Internal equivalent of device_iommu_mapped() for when we care that a device
364  * actually has API ops, and don't want false positives from VFIO-only groups.
365  */
366 static bool dev_has_iommu(struct device *dev)
367 {
368 	return dev->iommu && dev->iommu->iommu_dev;
369 }
370 
371 static u32 dev_iommu_get_max_pasids(struct device *dev)
372 {
373 	u32 max_pasids = 0, bits = 0;
374 	int ret;
375 
376 	if (dev_is_pci(dev)) {
377 		ret = pci_max_pasids(to_pci_dev(dev));
378 		if (ret > 0)
379 			max_pasids = ret;
380 	} else {
381 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
382 		if (!ret)
383 			max_pasids = 1UL << bits;
384 	}
385 
386 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
387 }
388 
389 void dev_iommu_priv_set(struct device *dev, void *priv)
390 {
391 	/* FSL_PAMU does something weird */
392 	if (!IS_ENABLED(CONFIG_FSL_PAMU))
393 		lockdep_assert_held(&iommu_probe_device_lock);
394 	dev->iommu->priv = priv;
395 }
396 EXPORT_SYMBOL_GPL(dev_iommu_priv_set);
397 
398 /*
399  * Init the dev->iommu and dev->iommu_group in the struct device and get the
400  * driver probed
401  */
402 static int iommu_init_device(struct device *dev, const struct iommu_ops *ops)
403 {
404 	struct iommu_device *iommu_dev;
405 	struct iommu_group *group;
406 	int ret;
407 
408 	if (!dev_iommu_get(dev))
409 		return -ENOMEM;
410 
411 	if (!try_module_get(ops->owner)) {
412 		ret = -EINVAL;
413 		goto err_free;
414 	}
415 
416 	iommu_dev = ops->probe_device(dev);
417 	if (IS_ERR(iommu_dev)) {
418 		ret = PTR_ERR(iommu_dev);
419 		goto err_module_put;
420 	}
421 	dev->iommu->iommu_dev = iommu_dev;
422 
423 	ret = iommu_device_link(iommu_dev, dev);
424 	if (ret)
425 		goto err_release;
426 
427 	group = ops->device_group(dev);
428 	if (WARN_ON_ONCE(group == NULL))
429 		group = ERR_PTR(-EINVAL);
430 	if (IS_ERR(group)) {
431 		ret = PTR_ERR(group);
432 		goto err_unlink;
433 	}
434 	dev->iommu_group = group;
435 
436 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
437 	if (ops->is_attach_deferred)
438 		dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
439 	return 0;
440 
441 err_unlink:
442 	iommu_device_unlink(iommu_dev, dev);
443 err_release:
444 	if (ops->release_device)
445 		ops->release_device(dev);
446 err_module_put:
447 	module_put(ops->owner);
448 err_free:
449 	dev->iommu->iommu_dev = NULL;
450 	dev_iommu_free(dev);
451 	return ret;
452 }
453 
454 static void iommu_deinit_device(struct device *dev)
455 {
456 	struct iommu_group *group = dev->iommu_group;
457 	const struct iommu_ops *ops = dev_iommu_ops(dev);
458 
459 	lockdep_assert_held(&group->mutex);
460 
461 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
462 
463 	/*
464 	 * release_device() must stop using any attached domain on the device.
465 	 * If there are still other devices in the group, they are not affected
466 	 * by this callback.
467 	 *
468 	 * If the iommu driver provides release_domain, the core code ensures
469 	 * that domain is attached prior to calling release_device. Drivers can
470 	 * use this to enforce a translation on the idle iommu. Typically, the
471 	 * global static blocked_domain is a good choice.
472 	 *
473 	 * Otherwise, the iommu driver must set the device to either an identity
474 	 * or a blocking translation in release_device() and stop using any
475 	 * domain pointer, as it is going to be freed.
476 	 *
477 	 * Regardless, if a delayed attach never occurred, then the release
478 	 * should still avoid touching any hardware configuration either.
479 	 */
480 	if (!dev->iommu->attach_deferred && ops->release_domain)
481 		ops->release_domain->ops->attach_dev(ops->release_domain, dev);
482 
483 	if (ops->release_device)
484 		ops->release_device(dev);
485 
486 	/*
487 	 * If this is the last driver to use the group then we must free the
488 	 * domains before we do the module_put().
489 	 */
490 	if (list_empty(&group->devices)) {
491 		if (group->default_domain) {
492 			iommu_domain_free(group->default_domain);
493 			group->default_domain = NULL;
494 		}
495 		if (group->blocking_domain) {
496 			iommu_domain_free(group->blocking_domain);
497 			group->blocking_domain = NULL;
498 		}
499 		group->domain = NULL;
500 	}
501 
502 	/* Caller must put iommu_group */
503 	dev->iommu_group = NULL;
504 	module_put(ops->owner);
505 	dev_iommu_free(dev);
506 }
507 
508 DEFINE_MUTEX(iommu_probe_device_lock);
509 
510 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
511 {
512 	const struct iommu_ops *ops;
513 	struct iommu_fwspec *fwspec;
514 	struct iommu_group *group;
515 	struct group_device *gdev;
516 	int ret;
517 
518 	/*
519 	 * For FDT-based systems and ACPI IORT/VIOT, drivers register IOMMU
520 	 * instances with non-NULL fwnodes, and client devices should have been
521 	 * identified with a fwspec by this point. Otherwise, we can currently
522 	 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can
523 	 * be present, and that any of their registered instances has suitable
524 	 * ops for probing, and thus cheekily co-opt the same mechanism.
525 	 */
526 	fwspec = dev_iommu_fwspec_get(dev);
527 	if (fwspec && fwspec->ops)
528 		ops = fwspec->ops;
529 	else
530 		ops = iommu_ops_from_fwnode(NULL);
531 
532 	if (!ops)
533 		return -ENODEV;
534 	/*
535 	 * Serialise to avoid races between IOMMU drivers registering in
536 	 * parallel and/or the "replay" calls from ACPI/OF code via client
537 	 * driver probe. Once the latter have been cleaned up we should
538 	 * probably be able to use device_lock() here to minimise the scope,
539 	 * but for now enforcing a simple global ordering is fine.
540 	 */
541 	lockdep_assert_held(&iommu_probe_device_lock);
542 
543 	/* Device is probed already if in a group */
544 	if (dev->iommu_group)
545 		return 0;
546 
547 	ret = iommu_init_device(dev, ops);
548 	if (ret)
549 		return ret;
550 
551 	group = dev->iommu_group;
552 	gdev = iommu_group_alloc_device(group, dev);
553 	mutex_lock(&group->mutex);
554 	if (IS_ERR(gdev)) {
555 		ret = PTR_ERR(gdev);
556 		goto err_put_group;
557 	}
558 
559 	/*
560 	 * The gdev must be in the list before calling
561 	 * iommu_setup_default_domain()
562 	 */
563 	list_add_tail(&gdev->list, &group->devices);
564 	WARN_ON(group->default_domain && !group->domain);
565 	if (group->default_domain)
566 		iommu_create_device_direct_mappings(group->default_domain, dev);
567 	if (group->domain) {
568 		ret = __iommu_device_set_domain(group, dev, group->domain, 0);
569 		if (ret)
570 			goto err_remove_gdev;
571 	} else if (!group->default_domain && !group_list) {
572 		ret = iommu_setup_default_domain(group, 0);
573 		if (ret)
574 			goto err_remove_gdev;
575 	} else if (!group->default_domain) {
576 		/*
577 		 * With a group_list argument we defer the default_domain setup
578 		 * to the caller by providing a de-duplicated list of groups
579 		 * that need further setup.
580 		 */
581 		if (list_empty(&group->entry))
582 			list_add_tail(&group->entry, group_list);
583 	}
584 	mutex_unlock(&group->mutex);
585 
586 	if (dev_is_pci(dev))
587 		iommu_dma_set_pci_32bit_workaround(dev);
588 
589 	return 0;
590 
591 err_remove_gdev:
592 	list_del(&gdev->list);
593 	__iommu_group_free_device(group, gdev);
594 err_put_group:
595 	iommu_deinit_device(dev);
596 	mutex_unlock(&group->mutex);
597 	iommu_group_put(group);
598 
599 	return ret;
600 }
601 
602 int iommu_probe_device(struct device *dev)
603 {
604 	const struct iommu_ops *ops;
605 	int ret;
606 
607 	mutex_lock(&iommu_probe_device_lock);
608 	ret = __iommu_probe_device(dev, NULL);
609 	mutex_unlock(&iommu_probe_device_lock);
610 	if (ret)
611 		return ret;
612 
613 	ops = dev_iommu_ops(dev);
614 	if (ops->probe_finalize)
615 		ops->probe_finalize(dev);
616 
617 	return 0;
618 }
619 
620 static void __iommu_group_free_device(struct iommu_group *group,
621 				      struct group_device *grp_dev)
622 {
623 	struct device *dev = grp_dev->dev;
624 
625 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
626 	sysfs_remove_link(&dev->kobj, "iommu_group");
627 
628 	trace_remove_device_from_group(group->id, dev);
629 
630 	/*
631 	 * If the group has become empty then ownership must have been
632 	 * released, and the current domain must be set back to NULL or
633 	 * the default domain.
634 	 */
635 	if (list_empty(&group->devices))
636 		WARN_ON(group->owner_cnt ||
637 			group->domain != group->default_domain);
638 
639 	kfree(grp_dev->name);
640 	kfree(grp_dev);
641 }
642 
643 /* Remove the iommu_group from the struct device. */
644 static void __iommu_group_remove_device(struct device *dev)
645 {
646 	struct iommu_group *group = dev->iommu_group;
647 	struct group_device *device;
648 
649 	mutex_lock(&group->mutex);
650 	for_each_group_device(group, device) {
651 		if (device->dev != dev)
652 			continue;
653 
654 		list_del(&device->list);
655 		__iommu_group_free_device(group, device);
656 		if (dev_has_iommu(dev))
657 			iommu_deinit_device(dev);
658 		else
659 			dev->iommu_group = NULL;
660 		break;
661 	}
662 	mutex_unlock(&group->mutex);
663 
664 	/*
665 	 * Pairs with the get in iommu_init_device() or
666 	 * iommu_group_add_device()
667 	 */
668 	iommu_group_put(group);
669 }
670 
671 static void iommu_release_device(struct device *dev)
672 {
673 	struct iommu_group *group = dev->iommu_group;
674 
675 	if (group)
676 		__iommu_group_remove_device(dev);
677 
678 	/* Free any fwspec if no iommu_driver was ever attached */
679 	if (dev->iommu)
680 		dev_iommu_free(dev);
681 }
682 
683 static int __init iommu_set_def_domain_type(char *str)
684 {
685 	bool pt;
686 	int ret;
687 
688 	ret = kstrtobool(str, &pt);
689 	if (ret)
690 		return ret;
691 
692 	if (pt)
693 		iommu_set_default_passthrough(true);
694 	else
695 		iommu_set_default_translated(true);
696 
697 	return 0;
698 }
699 early_param("iommu.passthrough", iommu_set_def_domain_type);
700 
701 static int __init iommu_dma_setup(char *str)
702 {
703 	int ret = kstrtobool(str, &iommu_dma_strict);
704 
705 	if (!ret)
706 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
707 	return ret;
708 }
709 early_param("iommu.strict", iommu_dma_setup);
710 
711 void iommu_set_dma_strict(void)
712 {
713 	iommu_dma_strict = true;
714 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
715 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
716 }
717 
718 static ssize_t iommu_group_attr_show(struct kobject *kobj,
719 				     struct attribute *__attr, char *buf)
720 {
721 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
722 	struct iommu_group *group = to_iommu_group(kobj);
723 	ssize_t ret = -EIO;
724 
725 	if (attr->show)
726 		ret = attr->show(group, buf);
727 	return ret;
728 }
729 
730 static ssize_t iommu_group_attr_store(struct kobject *kobj,
731 				      struct attribute *__attr,
732 				      const char *buf, size_t count)
733 {
734 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
735 	struct iommu_group *group = to_iommu_group(kobj);
736 	ssize_t ret = -EIO;
737 
738 	if (attr->store)
739 		ret = attr->store(group, buf, count);
740 	return ret;
741 }
742 
743 static const struct sysfs_ops iommu_group_sysfs_ops = {
744 	.show = iommu_group_attr_show,
745 	.store = iommu_group_attr_store,
746 };
747 
748 static int iommu_group_create_file(struct iommu_group *group,
749 				   struct iommu_group_attribute *attr)
750 {
751 	return sysfs_create_file(&group->kobj, &attr->attr);
752 }
753 
754 static void iommu_group_remove_file(struct iommu_group *group,
755 				    struct iommu_group_attribute *attr)
756 {
757 	sysfs_remove_file(&group->kobj, &attr->attr);
758 }
759 
760 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
761 {
762 	return sysfs_emit(buf, "%s\n", group->name);
763 }
764 
765 /**
766  * iommu_insert_resv_region - Insert a new region in the
767  * list of reserved regions.
768  * @new: new region to insert
769  * @regions: list of regions
770  *
771  * Elements are sorted by start address and overlapping segments
772  * of the same type are merged.
773  */
774 static int iommu_insert_resv_region(struct iommu_resv_region *new,
775 				    struct list_head *regions)
776 {
777 	struct iommu_resv_region *iter, *tmp, *nr, *top;
778 	LIST_HEAD(stack);
779 
780 	nr = iommu_alloc_resv_region(new->start, new->length,
781 				     new->prot, new->type, GFP_KERNEL);
782 	if (!nr)
783 		return -ENOMEM;
784 
785 	/* First add the new element based on start address sorting */
786 	list_for_each_entry(iter, regions, list) {
787 		if (nr->start < iter->start ||
788 		    (nr->start == iter->start && nr->type <= iter->type))
789 			break;
790 	}
791 	list_add_tail(&nr->list, &iter->list);
792 
793 	/* Merge overlapping segments of type nr->type in @regions, if any */
794 	list_for_each_entry_safe(iter, tmp, regions, list) {
795 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
796 
797 		/* no merge needed on elements of different types than @new */
798 		if (iter->type != new->type) {
799 			list_move_tail(&iter->list, &stack);
800 			continue;
801 		}
802 
803 		/* look for the last stack element of same type as @iter */
804 		list_for_each_entry_reverse(top, &stack, list)
805 			if (top->type == iter->type)
806 				goto check_overlap;
807 
808 		list_move_tail(&iter->list, &stack);
809 		continue;
810 
811 check_overlap:
812 		top_end = top->start + top->length - 1;
813 
814 		if (iter->start > top_end + 1) {
815 			list_move_tail(&iter->list, &stack);
816 		} else {
817 			top->length = max(top_end, iter_end) - top->start + 1;
818 			list_del(&iter->list);
819 			kfree(iter);
820 		}
821 	}
822 	list_splice(&stack, regions);
823 	return 0;
824 }
825 
826 static int
827 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
828 				 struct list_head *group_resv_regions)
829 {
830 	struct iommu_resv_region *entry;
831 	int ret = 0;
832 
833 	list_for_each_entry(entry, dev_resv_regions, list) {
834 		ret = iommu_insert_resv_region(entry, group_resv_regions);
835 		if (ret)
836 			break;
837 	}
838 	return ret;
839 }
840 
841 int iommu_get_group_resv_regions(struct iommu_group *group,
842 				 struct list_head *head)
843 {
844 	struct group_device *device;
845 	int ret = 0;
846 
847 	mutex_lock(&group->mutex);
848 	for_each_group_device(group, device) {
849 		struct list_head dev_resv_regions;
850 
851 		/*
852 		 * Non-API groups still expose reserved_regions in sysfs,
853 		 * so filter out calls that get here that way.
854 		 */
855 		if (!dev_has_iommu(device->dev))
856 			break;
857 
858 		INIT_LIST_HEAD(&dev_resv_regions);
859 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
860 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
861 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
862 		if (ret)
863 			break;
864 	}
865 	mutex_unlock(&group->mutex);
866 	return ret;
867 }
868 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
869 
870 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
871 					     char *buf)
872 {
873 	struct iommu_resv_region *region, *next;
874 	struct list_head group_resv_regions;
875 	int offset = 0;
876 
877 	INIT_LIST_HEAD(&group_resv_regions);
878 	iommu_get_group_resv_regions(group, &group_resv_regions);
879 
880 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
881 		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
882 					(long long)region->start,
883 					(long long)(region->start +
884 						    region->length - 1),
885 					iommu_group_resv_type_string[region->type]);
886 		kfree(region);
887 	}
888 
889 	return offset;
890 }
891 
892 static ssize_t iommu_group_show_type(struct iommu_group *group,
893 				     char *buf)
894 {
895 	char *type = "unknown";
896 
897 	mutex_lock(&group->mutex);
898 	if (group->default_domain) {
899 		switch (group->default_domain->type) {
900 		case IOMMU_DOMAIN_BLOCKED:
901 			type = "blocked";
902 			break;
903 		case IOMMU_DOMAIN_IDENTITY:
904 			type = "identity";
905 			break;
906 		case IOMMU_DOMAIN_UNMANAGED:
907 			type = "unmanaged";
908 			break;
909 		case IOMMU_DOMAIN_DMA:
910 			type = "DMA";
911 			break;
912 		case IOMMU_DOMAIN_DMA_FQ:
913 			type = "DMA-FQ";
914 			break;
915 		}
916 	}
917 	mutex_unlock(&group->mutex);
918 
919 	return sysfs_emit(buf, "%s\n", type);
920 }
921 
922 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
923 
924 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
925 			iommu_group_show_resv_regions, NULL);
926 
927 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
928 			iommu_group_store_type);
929 
930 static void iommu_group_release(struct kobject *kobj)
931 {
932 	struct iommu_group *group = to_iommu_group(kobj);
933 
934 	pr_debug("Releasing group %d\n", group->id);
935 
936 	if (group->iommu_data_release)
937 		group->iommu_data_release(group->iommu_data);
938 
939 	ida_free(&iommu_group_ida, group->id);
940 
941 	/* Domains are free'd by iommu_deinit_device() */
942 	WARN_ON(group->default_domain);
943 	WARN_ON(group->blocking_domain);
944 
945 	kfree(group->name);
946 	kfree(group);
947 }
948 
949 static const struct kobj_type iommu_group_ktype = {
950 	.sysfs_ops = &iommu_group_sysfs_ops,
951 	.release = iommu_group_release,
952 };
953 
954 /**
955  * iommu_group_alloc - Allocate a new group
956  *
957  * This function is called by an iommu driver to allocate a new iommu
958  * group.  The iommu group represents the minimum granularity of the iommu.
959  * Upon successful return, the caller holds a reference to the supplied
960  * group in order to hold the group until devices are added.  Use
961  * iommu_group_put() to release this extra reference count, allowing the
962  * group to be automatically reclaimed once it has no devices or external
963  * references.
964  */
965 struct iommu_group *iommu_group_alloc(void)
966 {
967 	struct iommu_group *group;
968 	int ret;
969 
970 	group = kzalloc(sizeof(*group), GFP_KERNEL);
971 	if (!group)
972 		return ERR_PTR(-ENOMEM);
973 
974 	group->kobj.kset = iommu_group_kset;
975 	mutex_init(&group->mutex);
976 	INIT_LIST_HEAD(&group->devices);
977 	INIT_LIST_HEAD(&group->entry);
978 	xa_init(&group->pasid_array);
979 
980 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
981 	if (ret < 0) {
982 		kfree(group);
983 		return ERR_PTR(ret);
984 	}
985 	group->id = ret;
986 
987 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
988 				   NULL, "%d", group->id);
989 	if (ret) {
990 		kobject_put(&group->kobj);
991 		return ERR_PTR(ret);
992 	}
993 
994 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
995 	if (!group->devices_kobj) {
996 		kobject_put(&group->kobj); /* triggers .release & free */
997 		return ERR_PTR(-ENOMEM);
998 	}
999 
1000 	/*
1001 	 * The devices_kobj holds a reference on the group kobject, so
1002 	 * as long as that exists so will the group.  We can therefore
1003 	 * use the devices_kobj for reference counting.
1004 	 */
1005 	kobject_put(&group->kobj);
1006 
1007 	ret = iommu_group_create_file(group,
1008 				      &iommu_group_attr_reserved_regions);
1009 	if (ret) {
1010 		kobject_put(group->devices_kobj);
1011 		return ERR_PTR(ret);
1012 	}
1013 
1014 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
1015 	if (ret) {
1016 		kobject_put(group->devices_kobj);
1017 		return ERR_PTR(ret);
1018 	}
1019 
1020 	pr_debug("Allocated group %d\n", group->id);
1021 
1022 	return group;
1023 }
1024 EXPORT_SYMBOL_GPL(iommu_group_alloc);
1025 
1026 /**
1027  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
1028  * @group: the group
1029  *
1030  * iommu drivers can store data in the group for use when doing iommu
1031  * operations.  This function provides a way to retrieve it.  Caller
1032  * should hold a group reference.
1033  */
1034 void *iommu_group_get_iommudata(struct iommu_group *group)
1035 {
1036 	return group->iommu_data;
1037 }
1038 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1039 
1040 /**
1041  * iommu_group_set_iommudata - set iommu_data for a group
1042  * @group: the group
1043  * @iommu_data: new data
1044  * @release: release function for iommu_data
1045  *
1046  * iommu drivers can store data in the group for use when doing iommu
1047  * operations.  This function provides a way to set the data after
1048  * the group has been allocated.  Caller should hold a group reference.
1049  */
1050 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1051 			       void (*release)(void *iommu_data))
1052 {
1053 	group->iommu_data = iommu_data;
1054 	group->iommu_data_release = release;
1055 }
1056 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1057 
1058 /**
1059  * iommu_group_set_name - set name for a group
1060  * @group: the group
1061  * @name: name
1062  *
1063  * Allow iommu driver to set a name for a group.  When set it will
1064  * appear in a name attribute file under the group in sysfs.
1065  */
1066 int iommu_group_set_name(struct iommu_group *group, const char *name)
1067 {
1068 	int ret;
1069 
1070 	if (group->name) {
1071 		iommu_group_remove_file(group, &iommu_group_attr_name);
1072 		kfree(group->name);
1073 		group->name = NULL;
1074 		if (!name)
1075 			return 0;
1076 	}
1077 
1078 	group->name = kstrdup(name, GFP_KERNEL);
1079 	if (!group->name)
1080 		return -ENOMEM;
1081 
1082 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
1083 	if (ret) {
1084 		kfree(group->name);
1085 		group->name = NULL;
1086 		return ret;
1087 	}
1088 
1089 	return 0;
1090 }
1091 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1092 
1093 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1094 					       struct device *dev)
1095 {
1096 	struct iommu_resv_region *entry;
1097 	struct list_head mappings;
1098 	unsigned long pg_size;
1099 	int ret = 0;
1100 
1101 	pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1102 	INIT_LIST_HEAD(&mappings);
1103 
1104 	if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1105 		return -EINVAL;
1106 
1107 	iommu_get_resv_regions(dev, &mappings);
1108 
1109 	/* We need to consider overlapping regions for different devices */
1110 	list_for_each_entry(entry, &mappings, list) {
1111 		dma_addr_t start, end, addr;
1112 		size_t map_size = 0;
1113 
1114 		if (entry->type == IOMMU_RESV_DIRECT)
1115 			dev->iommu->require_direct = 1;
1116 
1117 		if ((entry->type != IOMMU_RESV_DIRECT &&
1118 		     entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1119 		    !iommu_is_dma_domain(domain))
1120 			continue;
1121 
1122 		start = ALIGN(entry->start, pg_size);
1123 		end   = ALIGN(entry->start + entry->length, pg_size);
1124 
1125 		for (addr = start; addr <= end; addr += pg_size) {
1126 			phys_addr_t phys_addr;
1127 
1128 			if (addr == end)
1129 				goto map_end;
1130 
1131 			phys_addr = iommu_iova_to_phys(domain, addr);
1132 			if (!phys_addr) {
1133 				map_size += pg_size;
1134 				continue;
1135 			}
1136 
1137 map_end:
1138 			if (map_size) {
1139 				ret = iommu_map(domain, addr - map_size,
1140 						addr - map_size, map_size,
1141 						entry->prot, GFP_KERNEL);
1142 				if (ret)
1143 					goto out;
1144 				map_size = 0;
1145 			}
1146 		}
1147 
1148 	}
1149 
1150 	if (!list_empty(&mappings) && iommu_is_dma_domain(domain))
1151 		iommu_flush_iotlb_all(domain);
1152 
1153 out:
1154 	iommu_put_resv_regions(dev, &mappings);
1155 
1156 	return ret;
1157 }
1158 
1159 /* This is undone by __iommu_group_free_device() */
1160 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1161 						     struct device *dev)
1162 {
1163 	int ret, i = 0;
1164 	struct group_device *device;
1165 
1166 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1167 	if (!device)
1168 		return ERR_PTR(-ENOMEM);
1169 
1170 	device->dev = dev;
1171 
1172 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1173 	if (ret)
1174 		goto err_free_device;
1175 
1176 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1177 rename:
1178 	if (!device->name) {
1179 		ret = -ENOMEM;
1180 		goto err_remove_link;
1181 	}
1182 
1183 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1184 				       &dev->kobj, device->name);
1185 	if (ret) {
1186 		if (ret == -EEXIST && i >= 0) {
1187 			/*
1188 			 * Account for the slim chance of collision
1189 			 * and append an instance to the name.
1190 			 */
1191 			kfree(device->name);
1192 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1193 						 kobject_name(&dev->kobj), i++);
1194 			goto rename;
1195 		}
1196 		goto err_free_name;
1197 	}
1198 
1199 	trace_add_device_to_group(group->id, dev);
1200 
1201 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1202 
1203 	return device;
1204 
1205 err_free_name:
1206 	kfree(device->name);
1207 err_remove_link:
1208 	sysfs_remove_link(&dev->kobj, "iommu_group");
1209 err_free_device:
1210 	kfree(device);
1211 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1212 	return ERR_PTR(ret);
1213 }
1214 
1215 /**
1216  * iommu_group_add_device - add a device to an iommu group
1217  * @group: the group into which to add the device (reference should be held)
1218  * @dev: the device
1219  *
1220  * This function is called by an iommu driver to add a device into a
1221  * group.  Adding a device increments the group reference count.
1222  */
1223 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1224 {
1225 	struct group_device *gdev;
1226 
1227 	gdev = iommu_group_alloc_device(group, dev);
1228 	if (IS_ERR(gdev))
1229 		return PTR_ERR(gdev);
1230 
1231 	iommu_group_ref_get(group);
1232 	dev->iommu_group = group;
1233 
1234 	mutex_lock(&group->mutex);
1235 	list_add_tail(&gdev->list, &group->devices);
1236 	mutex_unlock(&group->mutex);
1237 	return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1240 
1241 /**
1242  * iommu_group_remove_device - remove a device from it's current group
1243  * @dev: device to be removed
1244  *
1245  * This function is called by an iommu driver to remove the device from
1246  * it's current group.  This decrements the iommu group reference count.
1247  */
1248 void iommu_group_remove_device(struct device *dev)
1249 {
1250 	struct iommu_group *group = dev->iommu_group;
1251 
1252 	if (!group)
1253 		return;
1254 
1255 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1256 
1257 	__iommu_group_remove_device(dev);
1258 }
1259 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1260 
1261 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API)
1262 /**
1263  * iommu_group_mutex_assert - Check device group mutex lock
1264  * @dev: the device that has group param set
1265  *
1266  * This function is called by an iommu driver to check whether it holds
1267  * group mutex lock for the given device or not.
1268  *
1269  * Note that this function must be called after device group param is set.
1270  */
1271 void iommu_group_mutex_assert(struct device *dev)
1272 {
1273 	struct iommu_group *group = dev->iommu_group;
1274 
1275 	lockdep_assert_held(&group->mutex);
1276 }
1277 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert);
1278 #endif
1279 
1280 static struct device *iommu_group_first_dev(struct iommu_group *group)
1281 {
1282 	lockdep_assert_held(&group->mutex);
1283 	return list_first_entry(&group->devices, struct group_device, list)->dev;
1284 }
1285 
1286 /**
1287  * iommu_group_for_each_dev - iterate over each device in the group
1288  * @group: the group
1289  * @data: caller opaque data to be passed to callback function
1290  * @fn: caller supplied callback function
1291  *
1292  * This function is called by group users to iterate over group devices.
1293  * Callers should hold a reference count to the group during callback.
1294  * The group->mutex is held across callbacks, which will block calls to
1295  * iommu_group_add/remove_device.
1296  */
1297 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1298 			     int (*fn)(struct device *, void *))
1299 {
1300 	struct group_device *device;
1301 	int ret = 0;
1302 
1303 	mutex_lock(&group->mutex);
1304 	for_each_group_device(group, device) {
1305 		ret = fn(device->dev, data);
1306 		if (ret)
1307 			break;
1308 	}
1309 	mutex_unlock(&group->mutex);
1310 
1311 	return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1314 
1315 /**
1316  * iommu_group_get - Return the group for a device and increment reference
1317  * @dev: get the group that this device belongs to
1318  *
1319  * This function is called by iommu drivers and users to get the group
1320  * for the specified device.  If found, the group is returned and the group
1321  * reference in incremented, else NULL.
1322  */
1323 struct iommu_group *iommu_group_get(struct device *dev)
1324 {
1325 	struct iommu_group *group = dev->iommu_group;
1326 
1327 	if (group)
1328 		kobject_get(group->devices_kobj);
1329 
1330 	return group;
1331 }
1332 EXPORT_SYMBOL_GPL(iommu_group_get);
1333 
1334 /**
1335  * iommu_group_ref_get - Increment reference on a group
1336  * @group: the group to use, must not be NULL
1337  *
1338  * This function is called by iommu drivers to take additional references on an
1339  * existing group.  Returns the given group for convenience.
1340  */
1341 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1342 {
1343 	kobject_get(group->devices_kobj);
1344 	return group;
1345 }
1346 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1347 
1348 /**
1349  * iommu_group_put - Decrement group reference
1350  * @group: the group to use
1351  *
1352  * This function is called by iommu drivers and users to release the
1353  * iommu group.  Once the reference count is zero, the group is released.
1354  */
1355 void iommu_group_put(struct iommu_group *group)
1356 {
1357 	if (group)
1358 		kobject_put(group->devices_kobj);
1359 }
1360 EXPORT_SYMBOL_GPL(iommu_group_put);
1361 
1362 /**
1363  * iommu_group_id - Return ID for a group
1364  * @group: the group to ID
1365  *
1366  * Return the unique ID for the group matching the sysfs group number.
1367  */
1368 int iommu_group_id(struct iommu_group *group)
1369 {
1370 	return group->id;
1371 }
1372 EXPORT_SYMBOL_GPL(iommu_group_id);
1373 
1374 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1375 					       unsigned long *devfns);
1376 
1377 /*
1378  * To consider a PCI device isolated, we require ACS to support Source
1379  * Validation, Request Redirection, Completer Redirection, and Upstream
1380  * Forwarding.  This effectively means that devices cannot spoof their
1381  * requester ID, requests and completions cannot be redirected, and all
1382  * transactions are forwarded upstream, even as it passes through a
1383  * bridge where the target device is downstream.
1384  */
1385 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1386 
1387 /*
1388  * For multifunction devices which are not isolated from each other, find
1389  * all the other non-isolated functions and look for existing groups.  For
1390  * each function, we also need to look for aliases to or from other devices
1391  * that may already have a group.
1392  */
1393 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1394 							unsigned long *devfns)
1395 {
1396 	struct pci_dev *tmp = NULL;
1397 	struct iommu_group *group;
1398 
1399 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1400 		return NULL;
1401 
1402 	for_each_pci_dev(tmp) {
1403 		if (tmp == pdev || tmp->bus != pdev->bus ||
1404 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1405 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1406 			continue;
1407 
1408 		group = get_pci_alias_group(tmp, devfns);
1409 		if (group) {
1410 			pci_dev_put(tmp);
1411 			return group;
1412 		}
1413 	}
1414 
1415 	return NULL;
1416 }
1417 
1418 /*
1419  * Look for aliases to or from the given device for existing groups. DMA
1420  * aliases are only supported on the same bus, therefore the search
1421  * space is quite small (especially since we're really only looking at pcie
1422  * device, and therefore only expect multiple slots on the root complex or
1423  * downstream switch ports).  It's conceivable though that a pair of
1424  * multifunction devices could have aliases between them that would cause a
1425  * loop.  To prevent this, we use a bitmap to track where we've been.
1426  */
1427 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1428 					       unsigned long *devfns)
1429 {
1430 	struct pci_dev *tmp = NULL;
1431 	struct iommu_group *group;
1432 
1433 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1434 		return NULL;
1435 
1436 	group = iommu_group_get(&pdev->dev);
1437 	if (group)
1438 		return group;
1439 
1440 	for_each_pci_dev(tmp) {
1441 		if (tmp == pdev || tmp->bus != pdev->bus)
1442 			continue;
1443 
1444 		/* We alias them or they alias us */
1445 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1446 			group = get_pci_alias_group(tmp, devfns);
1447 			if (group) {
1448 				pci_dev_put(tmp);
1449 				return group;
1450 			}
1451 
1452 			group = get_pci_function_alias_group(tmp, devfns);
1453 			if (group) {
1454 				pci_dev_put(tmp);
1455 				return group;
1456 			}
1457 		}
1458 	}
1459 
1460 	return NULL;
1461 }
1462 
1463 struct group_for_pci_data {
1464 	struct pci_dev *pdev;
1465 	struct iommu_group *group;
1466 };
1467 
1468 /*
1469  * DMA alias iterator callback, return the last seen device.  Stop and return
1470  * the IOMMU group if we find one along the way.
1471  */
1472 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1473 {
1474 	struct group_for_pci_data *data = opaque;
1475 
1476 	data->pdev = pdev;
1477 	data->group = iommu_group_get(&pdev->dev);
1478 
1479 	return data->group != NULL;
1480 }
1481 
1482 /*
1483  * Generic device_group call-back function. It just allocates one
1484  * iommu-group per device.
1485  */
1486 struct iommu_group *generic_device_group(struct device *dev)
1487 {
1488 	return iommu_group_alloc();
1489 }
1490 EXPORT_SYMBOL_GPL(generic_device_group);
1491 
1492 /*
1493  * Generic device_group call-back function. It just allocates one
1494  * iommu-group per iommu driver instance shared by every device
1495  * probed by that iommu driver.
1496  */
1497 struct iommu_group *generic_single_device_group(struct device *dev)
1498 {
1499 	struct iommu_device *iommu = dev->iommu->iommu_dev;
1500 
1501 	if (!iommu->singleton_group) {
1502 		struct iommu_group *group;
1503 
1504 		group = iommu_group_alloc();
1505 		if (IS_ERR(group))
1506 			return group;
1507 		iommu->singleton_group = group;
1508 	}
1509 	return iommu_group_ref_get(iommu->singleton_group);
1510 }
1511 EXPORT_SYMBOL_GPL(generic_single_device_group);
1512 
1513 /*
1514  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1515  * to find or create an IOMMU group for a device.
1516  */
1517 struct iommu_group *pci_device_group(struct device *dev)
1518 {
1519 	struct pci_dev *pdev = to_pci_dev(dev);
1520 	struct group_for_pci_data data;
1521 	struct pci_bus *bus;
1522 	struct iommu_group *group = NULL;
1523 	u64 devfns[4] = { 0 };
1524 
1525 	if (WARN_ON(!dev_is_pci(dev)))
1526 		return ERR_PTR(-EINVAL);
1527 
1528 	/*
1529 	 * Find the upstream DMA alias for the device.  A device must not
1530 	 * be aliased due to topology in order to have its own IOMMU group.
1531 	 * If we find an alias along the way that already belongs to a
1532 	 * group, use it.
1533 	 */
1534 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1535 		return data.group;
1536 
1537 	pdev = data.pdev;
1538 
1539 	/*
1540 	 * Continue upstream from the point of minimum IOMMU granularity
1541 	 * due to aliases to the point where devices are protected from
1542 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1543 	 * group, use it.
1544 	 */
1545 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1546 		if (!bus->self)
1547 			continue;
1548 
1549 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1550 			break;
1551 
1552 		pdev = bus->self;
1553 
1554 		group = iommu_group_get(&pdev->dev);
1555 		if (group)
1556 			return group;
1557 	}
1558 
1559 	/*
1560 	 * Look for existing groups on device aliases.  If we alias another
1561 	 * device or another device aliases us, use the same group.
1562 	 */
1563 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1564 	if (group)
1565 		return group;
1566 
1567 	/*
1568 	 * Look for existing groups on non-isolated functions on the same
1569 	 * slot and aliases of those funcions, if any.  No need to clear
1570 	 * the search bitmap, the tested devfns are still valid.
1571 	 */
1572 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1573 	if (group)
1574 		return group;
1575 
1576 	/* No shared group found, allocate new */
1577 	return iommu_group_alloc();
1578 }
1579 EXPORT_SYMBOL_GPL(pci_device_group);
1580 
1581 /* Get the IOMMU group for device on fsl-mc bus */
1582 struct iommu_group *fsl_mc_device_group(struct device *dev)
1583 {
1584 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1585 	struct iommu_group *group;
1586 
1587 	group = iommu_group_get(cont_dev);
1588 	if (!group)
1589 		group = iommu_group_alloc();
1590 	return group;
1591 }
1592 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1593 
1594 static struct iommu_domain *
1595 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1596 {
1597 	if (group->default_domain && group->default_domain->type == req_type)
1598 		return group->default_domain;
1599 	return __iommu_group_domain_alloc(group, req_type);
1600 }
1601 
1602 /*
1603  * req_type of 0 means "auto" which means to select a domain based on
1604  * iommu_def_domain_type or what the driver actually supports.
1605  */
1606 static struct iommu_domain *
1607 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1608 {
1609 	const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group));
1610 	struct iommu_domain *dom;
1611 
1612 	lockdep_assert_held(&group->mutex);
1613 
1614 	/*
1615 	 * Allow legacy drivers to specify the domain that will be the default
1616 	 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM
1617 	 * domain. Do not use in new drivers.
1618 	 */
1619 	if (ops->default_domain) {
1620 		if (req_type != ops->default_domain->type)
1621 			return ERR_PTR(-EINVAL);
1622 		return ops->default_domain;
1623 	}
1624 
1625 	if (req_type)
1626 		return __iommu_group_alloc_default_domain(group, req_type);
1627 
1628 	/* The driver gave no guidance on what type to use, try the default */
1629 	dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type);
1630 	if (!IS_ERR(dom))
1631 		return dom;
1632 
1633 	/* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1634 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1635 		return ERR_PTR(-EINVAL);
1636 	dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA);
1637 	if (IS_ERR(dom))
1638 		return dom;
1639 
1640 	pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1641 		iommu_def_domain_type, group->name);
1642 	return dom;
1643 }
1644 
1645 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1646 {
1647 	return group->default_domain;
1648 }
1649 
1650 static int probe_iommu_group(struct device *dev, void *data)
1651 {
1652 	struct list_head *group_list = data;
1653 	int ret;
1654 
1655 	mutex_lock(&iommu_probe_device_lock);
1656 	ret = __iommu_probe_device(dev, group_list);
1657 	mutex_unlock(&iommu_probe_device_lock);
1658 	if (ret == -ENODEV)
1659 		ret = 0;
1660 
1661 	return ret;
1662 }
1663 
1664 static int iommu_bus_notifier(struct notifier_block *nb,
1665 			      unsigned long action, void *data)
1666 {
1667 	struct device *dev = data;
1668 
1669 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1670 		int ret;
1671 
1672 		ret = iommu_probe_device(dev);
1673 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1674 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1675 		iommu_release_device(dev);
1676 		return NOTIFY_OK;
1677 	}
1678 
1679 	return 0;
1680 }
1681 
1682 /*
1683  * Combine the driver's chosen def_domain_type across all the devices in a
1684  * group. Drivers must give a consistent result.
1685  */
1686 static int iommu_get_def_domain_type(struct iommu_group *group,
1687 				     struct device *dev, int cur_type)
1688 {
1689 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1690 	int type;
1691 
1692 	if (ops->default_domain) {
1693 		/*
1694 		 * Drivers that declare a global static default_domain will
1695 		 * always choose that.
1696 		 */
1697 		type = ops->default_domain->type;
1698 	} else {
1699 		if (ops->def_domain_type)
1700 			type = ops->def_domain_type(dev);
1701 		else
1702 			return cur_type;
1703 	}
1704 	if (!type || cur_type == type)
1705 		return cur_type;
1706 	if (!cur_type)
1707 		return type;
1708 
1709 	dev_err_ratelimited(
1710 		dev,
1711 		"IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n",
1712 		iommu_domain_type_str(cur_type), iommu_domain_type_str(type),
1713 		group->id);
1714 
1715 	/*
1716 	 * Try to recover, drivers are allowed to force IDENITY or DMA, IDENTITY
1717 	 * takes precedence.
1718 	 */
1719 	if (type == IOMMU_DOMAIN_IDENTITY)
1720 		return type;
1721 	return cur_type;
1722 }
1723 
1724 /*
1725  * A target_type of 0 will select the best domain type. 0 can be returned in
1726  * this case meaning the global default should be used.
1727  */
1728 static int iommu_get_default_domain_type(struct iommu_group *group,
1729 					 int target_type)
1730 {
1731 	struct device *untrusted = NULL;
1732 	struct group_device *gdev;
1733 	int driver_type = 0;
1734 
1735 	lockdep_assert_held(&group->mutex);
1736 
1737 	/*
1738 	 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an
1739 	 * identity_domain and it will automatically become their default
1740 	 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain.
1741 	 * Override the selection to IDENTITY.
1742 	 */
1743 	if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
1744 		static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) &&
1745 				IS_ENABLED(CONFIG_IOMMU_DMA)));
1746 		driver_type = IOMMU_DOMAIN_IDENTITY;
1747 	}
1748 
1749 	for_each_group_device(group, gdev) {
1750 		driver_type = iommu_get_def_domain_type(group, gdev->dev,
1751 							driver_type);
1752 
1753 		if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) {
1754 			/*
1755 			 * No ARM32 using systems will set untrusted, it cannot
1756 			 * work.
1757 			 */
1758 			if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)))
1759 				return -1;
1760 			untrusted = gdev->dev;
1761 		}
1762 	}
1763 
1764 	/*
1765 	 * If the common dma ops are not selected in kconfig then we cannot use
1766 	 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been
1767 	 * selected.
1768 	 */
1769 	if (!IS_ENABLED(CONFIG_IOMMU_DMA)) {
1770 		if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA))
1771 			return -1;
1772 		if (!driver_type)
1773 			driver_type = IOMMU_DOMAIN_IDENTITY;
1774 	}
1775 
1776 	if (untrusted) {
1777 		if (driver_type && driver_type != IOMMU_DOMAIN_DMA) {
1778 			dev_err_ratelimited(
1779 				untrusted,
1780 				"Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n",
1781 				group->id, iommu_domain_type_str(driver_type));
1782 			return -1;
1783 		}
1784 		driver_type = IOMMU_DOMAIN_DMA;
1785 	}
1786 
1787 	if (target_type) {
1788 		if (driver_type && target_type != driver_type)
1789 			return -1;
1790 		return target_type;
1791 	}
1792 	return driver_type;
1793 }
1794 
1795 static void iommu_group_do_probe_finalize(struct device *dev)
1796 {
1797 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1798 
1799 	if (ops->probe_finalize)
1800 		ops->probe_finalize(dev);
1801 }
1802 
1803 int bus_iommu_probe(const struct bus_type *bus)
1804 {
1805 	struct iommu_group *group, *next;
1806 	LIST_HEAD(group_list);
1807 	int ret;
1808 
1809 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1810 	if (ret)
1811 		return ret;
1812 
1813 	list_for_each_entry_safe(group, next, &group_list, entry) {
1814 		struct group_device *gdev;
1815 
1816 		mutex_lock(&group->mutex);
1817 
1818 		/* Remove item from the list */
1819 		list_del_init(&group->entry);
1820 
1821 		/*
1822 		 * We go to the trouble of deferred default domain creation so
1823 		 * that the cross-group default domain type and the setup of the
1824 		 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1825 		 */
1826 		ret = iommu_setup_default_domain(group, 0);
1827 		if (ret) {
1828 			mutex_unlock(&group->mutex);
1829 			return ret;
1830 		}
1831 		mutex_unlock(&group->mutex);
1832 
1833 		/*
1834 		 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1835 		 * of some IOMMU drivers calls arm_iommu_attach_device() which
1836 		 * in-turn might call back into IOMMU core code, where it tries
1837 		 * to take group->mutex, resulting in a deadlock.
1838 		 */
1839 		for_each_group_device(group, gdev)
1840 			iommu_group_do_probe_finalize(gdev->dev);
1841 	}
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  * iommu_present() - make platform-specific assumptions about an IOMMU
1848  * @bus: bus to check
1849  *
1850  * Do not use this function. You want device_iommu_mapped() instead.
1851  *
1852  * Return: true if some IOMMU is present and aware of devices on the given bus;
1853  * in general it may not be the only IOMMU, and it may not have anything to do
1854  * with whatever device you are ultimately interested in.
1855  */
1856 bool iommu_present(const struct bus_type *bus)
1857 {
1858 	bool ret = false;
1859 
1860 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
1861 		if (iommu_buses[i] == bus) {
1862 			spin_lock(&iommu_device_lock);
1863 			ret = !list_empty(&iommu_device_list);
1864 			spin_unlock(&iommu_device_lock);
1865 		}
1866 	}
1867 	return ret;
1868 }
1869 EXPORT_SYMBOL_GPL(iommu_present);
1870 
1871 /**
1872  * device_iommu_capable() - check for a general IOMMU capability
1873  * @dev: device to which the capability would be relevant, if available
1874  * @cap: IOMMU capability
1875  *
1876  * Return: true if an IOMMU is present and supports the given capability
1877  * for the given device, otherwise false.
1878  */
1879 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1880 {
1881 	const struct iommu_ops *ops;
1882 
1883 	if (!dev_has_iommu(dev))
1884 		return false;
1885 
1886 	ops = dev_iommu_ops(dev);
1887 	if (!ops->capable)
1888 		return false;
1889 
1890 	return ops->capable(dev, cap);
1891 }
1892 EXPORT_SYMBOL_GPL(device_iommu_capable);
1893 
1894 /**
1895  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1896  *       for a group
1897  * @group: Group to query
1898  *
1899  * IOMMU groups should not have differing values of
1900  * msi_device_has_isolated_msi() for devices in a group. However nothing
1901  * directly prevents this, so ensure mistakes don't result in isolation failures
1902  * by checking that all the devices are the same.
1903  */
1904 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1905 {
1906 	struct group_device *group_dev;
1907 	bool ret = true;
1908 
1909 	mutex_lock(&group->mutex);
1910 	for_each_group_device(group, group_dev)
1911 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1912 	mutex_unlock(&group->mutex);
1913 	return ret;
1914 }
1915 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1916 
1917 /**
1918  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1919  * @domain: iommu domain
1920  * @handler: fault handler
1921  * @token: user data, will be passed back to the fault handler
1922  *
1923  * This function should be used by IOMMU users which want to be notified
1924  * whenever an IOMMU fault happens.
1925  *
1926  * The fault handler itself should return 0 on success, and an appropriate
1927  * error code otherwise.
1928  */
1929 void iommu_set_fault_handler(struct iommu_domain *domain,
1930 					iommu_fault_handler_t handler,
1931 					void *token)
1932 {
1933 	BUG_ON(!domain);
1934 
1935 	domain->handler = handler;
1936 	domain->handler_token = token;
1937 }
1938 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1939 
1940 static struct iommu_domain *__iommu_domain_alloc(const struct iommu_ops *ops,
1941 						 struct device *dev,
1942 						 unsigned int type)
1943 {
1944 	struct iommu_domain *domain;
1945 	unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS;
1946 
1947 	if (alloc_type == IOMMU_DOMAIN_IDENTITY && ops->identity_domain)
1948 		return ops->identity_domain;
1949 	else if (alloc_type == IOMMU_DOMAIN_BLOCKED && ops->blocked_domain)
1950 		return ops->blocked_domain;
1951 	else if (type & __IOMMU_DOMAIN_PAGING && ops->domain_alloc_paging)
1952 		domain = ops->domain_alloc_paging(dev);
1953 	else if (ops->domain_alloc)
1954 		domain = ops->domain_alloc(alloc_type);
1955 	else
1956 		return ERR_PTR(-EOPNOTSUPP);
1957 
1958 	/*
1959 	 * Many domain_alloc ops now return ERR_PTR, make things easier for the
1960 	 * driver by accepting ERR_PTR from all domain_alloc ops instead of
1961 	 * having two rules.
1962 	 */
1963 	if (IS_ERR(domain))
1964 		return domain;
1965 	if (!domain)
1966 		return ERR_PTR(-ENOMEM);
1967 
1968 	domain->type = type;
1969 	domain->owner = ops;
1970 	/*
1971 	 * If not already set, assume all sizes by default; the driver
1972 	 * may override this later
1973 	 */
1974 	if (!domain->pgsize_bitmap)
1975 		domain->pgsize_bitmap = ops->pgsize_bitmap;
1976 
1977 	if (!domain->ops)
1978 		domain->ops = ops->default_domain_ops;
1979 
1980 	if (iommu_is_dma_domain(domain)) {
1981 		int rc;
1982 
1983 		rc = iommu_get_dma_cookie(domain);
1984 		if (rc) {
1985 			iommu_domain_free(domain);
1986 			return ERR_PTR(rc);
1987 		}
1988 	}
1989 	return domain;
1990 }
1991 
1992 static struct iommu_domain *
1993 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type)
1994 {
1995 	struct device *dev = iommu_group_first_dev(group);
1996 
1997 	return __iommu_domain_alloc(dev_iommu_ops(dev), dev, type);
1998 }
1999 
2000 static int __iommu_domain_alloc_dev(struct device *dev, void *data)
2001 {
2002 	const struct iommu_ops **ops = data;
2003 
2004 	if (!dev_has_iommu(dev))
2005 		return 0;
2006 
2007 	if (WARN_ONCE(*ops && *ops != dev_iommu_ops(dev),
2008 		      "Multiple IOMMU drivers present for bus %s, which the public IOMMU API can't fully support yet. You will still need to disable one or more for this to work, sorry!\n",
2009 		      dev_bus_name(dev)))
2010 		return -EBUSY;
2011 
2012 	*ops = dev_iommu_ops(dev);
2013 	return 0;
2014 }
2015 
2016 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus)
2017 {
2018 	const struct iommu_ops *ops = NULL;
2019 	int err = bus_for_each_dev(bus, NULL, &ops, __iommu_domain_alloc_dev);
2020 	struct iommu_domain *domain;
2021 
2022 	if (err || !ops)
2023 		return NULL;
2024 
2025 	domain = __iommu_domain_alloc(ops, NULL, IOMMU_DOMAIN_UNMANAGED);
2026 	if (IS_ERR(domain))
2027 		return NULL;
2028 	return domain;
2029 }
2030 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
2031 
2032 void iommu_domain_free(struct iommu_domain *domain)
2033 {
2034 	if (domain->type == IOMMU_DOMAIN_SVA)
2035 		mmdrop(domain->mm);
2036 	iommu_put_dma_cookie(domain);
2037 	if (domain->ops->free)
2038 		domain->ops->free(domain);
2039 }
2040 EXPORT_SYMBOL_GPL(iommu_domain_free);
2041 
2042 /*
2043  * Put the group's domain back to the appropriate core-owned domain - either the
2044  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2045  */
2046 static void __iommu_group_set_core_domain(struct iommu_group *group)
2047 {
2048 	struct iommu_domain *new_domain;
2049 
2050 	if (group->owner)
2051 		new_domain = group->blocking_domain;
2052 	else
2053 		new_domain = group->default_domain;
2054 
2055 	__iommu_group_set_domain_nofail(group, new_domain);
2056 }
2057 
2058 static int __iommu_attach_device(struct iommu_domain *domain,
2059 				 struct device *dev)
2060 {
2061 	int ret;
2062 
2063 	if (unlikely(domain->ops->attach_dev == NULL))
2064 		return -ENODEV;
2065 
2066 	ret = domain->ops->attach_dev(domain, dev);
2067 	if (ret)
2068 		return ret;
2069 	dev->iommu->attach_deferred = 0;
2070 	trace_attach_device_to_domain(dev);
2071 	return 0;
2072 }
2073 
2074 /**
2075  * iommu_attach_device - Attach an IOMMU domain to a device
2076  * @domain: IOMMU domain to attach
2077  * @dev: Device that will be attached
2078  *
2079  * Returns 0 on success and error code on failure
2080  *
2081  * Note that EINVAL can be treated as a soft failure, indicating
2082  * that certain configuration of the domain is incompatible with
2083  * the device. In this case attaching a different domain to the
2084  * device may succeed.
2085  */
2086 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2087 {
2088 	/* Caller must be a probed driver on dev */
2089 	struct iommu_group *group = dev->iommu_group;
2090 	int ret;
2091 
2092 	if (!group)
2093 		return -ENODEV;
2094 
2095 	/*
2096 	 * Lock the group to make sure the device-count doesn't
2097 	 * change while we are attaching
2098 	 */
2099 	mutex_lock(&group->mutex);
2100 	ret = -EINVAL;
2101 	if (list_count_nodes(&group->devices) != 1)
2102 		goto out_unlock;
2103 
2104 	ret = __iommu_attach_group(domain, group);
2105 
2106 out_unlock:
2107 	mutex_unlock(&group->mutex);
2108 	return ret;
2109 }
2110 EXPORT_SYMBOL_GPL(iommu_attach_device);
2111 
2112 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2113 {
2114 	if (dev->iommu && dev->iommu->attach_deferred)
2115 		return __iommu_attach_device(domain, dev);
2116 
2117 	return 0;
2118 }
2119 
2120 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2121 {
2122 	/* Caller must be a probed driver on dev */
2123 	struct iommu_group *group = dev->iommu_group;
2124 
2125 	if (!group)
2126 		return;
2127 
2128 	mutex_lock(&group->mutex);
2129 	if (WARN_ON(domain != group->domain) ||
2130 	    WARN_ON(list_count_nodes(&group->devices) != 1))
2131 		goto out_unlock;
2132 	__iommu_group_set_core_domain(group);
2133 
2134 out_unlock:
2135 	mutex_unlock(&group->mutex);
2136 }
2137 EXPORT_SYMBOL_GPL(iommu_detach_device);
2138 
2139 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2140 {
2141 	/* Caller must be a probed driver on dev */
2142 	struct iommu_group *group = dev->iommu_group;
2143 
2144 	if (!group)
2145 		return NULL;
2146 
2147 	return group->domain;
2148 }
2149 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2150 
2151 /*
2152  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2153  * guarantees that the group and its default domain are valid and correct.
2154  */
2155 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2156 {
2157 	return dev->iommu_group->default_domain;
2158 }
2159 
2160 static int __iommu_attach_group(struct iommu_domain *domain,
2161 				struct iommu_group *group)
2162 {
2163 	struct device *dev;
2164 
2165 	if (group->domain && group->domain != group->default_domain &&
2166 	    group->domain != group->blocking_domain)
2167 		return -EBUSY;
2168 
2169 	dev = iommu_group_first_dev(group);
2170 	if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner)
2171 		return -EINVAL;
2172 
2173 	return __iommu_group_set_domain(group, domain);
2174 }
2175 
2176 /**
2177  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2178  * @domain: IOMMU domain to attach
2179  * @group: IOMMU group that will be attached
2180  *
2181  * Returns 0 on success and error code on failure
2182  *
2183  * Note that EINVAL can be treated as a soft failure, indicating
2184  * that certain configuration of the domain is incompatible with
2185  * the group. In this case attaching a different domain to the
2186  * group may succeed.
2187  */
2188 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2189 {
2190 	int ret;
2191 
2192 	mutex_lock(&group->mutex);
2193 	ret = __iommu_attach_group(domain, group);
2194 	mutex_unlock(&group->mutex);
2195 
2196 	return ret;
2197 }
2198 EXPORT_SYMBOL_GPL(iommu_attach_group);
2199 
2200 /**
2201  * iommu_group_replace_domain - replace the domain that a group is attached to
2202  * @new_domain: new IOMMU domain to replace with
2203  * @group: IOMMU group that will be attached to the new domain
2204  *
2205  * This API allows the group to switch domains without being forced to go to
2206  * the blocking domain in-between.
2207  *
2208  * If the currently attached domain is a core domain (e.g. a default_domain),
2209  * it will act just like the iommu_attach_group().
2210  */
2211 int iommu_group_replace_domain(struct iommu_group *group,
2212 			       struct iommu_domain *new_domain)
2213 {
2214 	int ret;
2215 
2216 	if (!new_domain)
2217 		return -EINVAL;
2218 
2219 	mutex_lock(&group->mutex);
2220 	ret = __iommu_group_set_domain(group, new_domain);
2221 	mutex_unlock(&group->mutex);
2222 	return ret;
2223 }
2224 EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL);
2225 
2226 static int __iommu_device_set_domain(struct iommu_group *group,
2227 				     struct device *dev,
2228 				     struct iommu_domain *new_domain,
2229 				     unsigned int flags)
2230 {
2231 	int ret;
2232 
2233 	/*
2234 	 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2235 	 * the blocking domain to be attached as it does not contain the
2236 	 * required 1:1 mapping. This test effectively excludes the device
2237 	 * being used with iommu_group_claim_dma_owner() which will block
2238 	 * vfio and iommufd as well.
2239 	 */
2240 	if (dev->iommu->require_direct &&
2241 	    (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2242 	     new_domain == group->blocking_domain)) {
2243 		dev_warn(dev,
2244 			 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2245 		return -EINVAL;
2246 	}
2247 
2248 	if (dev->iommu->attach_deferred) {
2249 		if (new_domain == group->default_domain)
2250 			return 0;
2251 		dev->iommu->attach_deferred = 0;
2252 	}
2253 
2254 	ret = __iommu_attach_device(new_domain, dev);
2255 	if (ret) {
2256 		/*
2257 		 * If we have a blocking domain then try to attach that in hopes
2258 		 * of avoiding a UAF. Modern drivers should implement blocking
2259 		 * domains as global statics that cannot fail.
2260 		 */
2261 		if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2262 		    group->blocking_domain &&
2263 		    group->blocking_domain != new_domain)
2264 			__iommu_attach_device(group->blocking_domain, dev);
2265 		return ret;
2266 	}
2267 	return 0;
2268 }
2269 
2270 /*
2271  * If 0 is returned the group's domain is new_domain. If an error is returned
2272  * then the group's domain will be set back to the existing domain unless
2273  * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2274  * domains is left inconsistent. This is a driver bug to fail attach with a
2275  * previously good domain. We try to avoid a kernel UAF because of this.
2276  *
2277  * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2278  * API works on domains and devices.  Bridge that gap by iterating over the
2279  * devices in a group.  Ideally we'd have a single device which represents the
2280  * requestor ID of the group, but we also allow IOMMU drivers to create policy
2281  * defined minimum sets, where the physical hardware may be able to distiguish
2282  * members, but we wish to group them at a higher level (ex. untrusted
2283  * multi-function PCI devices).  Thus we attach each device.
2284  */
2285 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2286 					     struct iommu_domain *new_domain,
2287 					     unsigned int flags)
2288 {
2289 	struct group_device *last_gdev;
2290 	struct group_device *gdev;
2291 	int result;
2292 	int ret;
2293 
2294 	lockdep_assert_held(&group->mutex);
2295 
2296 	if (group->domain == new_domain)
2297 		return 0;
2298 
2299 	if (WARN_ON(!new_domain))
2300 		return -EINVAL;
2301 
2302 	/*
2303 	 * Changing the domain is done by calling attach_dev() on the new
2304 	 * domain. This switch does not have to be atomic and DMA can be
2305 	 * discarded during the transition. DMA must only be able to access
2306 	 * either new_domain or group->domain, never something else.
2307 	 */
2308 	result = 0;
2309 	for_each_group_device(group, gdev) {
2310 		ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2311 						flags);
2312 		if (ret) {
2313 			result = ret;
2314 			/*
2315 			 * Keep trying the other devices in the group. If a
2316 			 * driver fails attach to an otherwise good domain, and
2317 			 * does not support blocking domains, it should at least
2318 			 * drop its reference on the current domain so we don't
2319 			 * UAF.
2320 			 */
2321 			if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2322 				continue;
2323 			goto err_revert;
2324 		}
2325 	}
2326 	group->domain = new_domain;
2327 	return result;
2328 
2329 err_revert:
2330 	/*
2331 	 * This is called in error unwind paths. A well behaved driver should
2332 	 * always allow us to attach to a domain that was already attached.
2333 	 */
2334 	last_gdev = gdev;
2335 	for_each_group_device(group, gdev) {
2336 		/*
2337 		 * A NULL domain can happen only for first probe, in which case
2338 		 * we leave group->domain as NULL and let release clean
2339 		 * everything up.
2340 		 */
2341 		if (group->domain)
2342 			WARN_ON(__iommu_device_set_domain(
2343 				group, gdev->dev, group->domain,
2344 				IOMMU_SET_DOMAIN_MUST_SUCCEED));
2345 		if (gdev == last_gdev)
2346 			break;
2347 	}
2348 	return ret;
2349 }
2350 
2351 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2352 {
2353 	mutex_lock(&group->mutex);
2354 	__iommu_group_set_core_domain(group);
2355 	mutex_unlock(&group->mutex);
2356 }
2357 EXPORT_SYMBOL_GPL(iommu_detach_group);
2358 
2359 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2360 {
2361 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2362 		return iova;
2363 
2364 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2365 		return 0;
2366 
2367 	return domain->ops->iova_to_phys(domain, iova);
2368 }
2369 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2370 
2371 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2372 			   phys_addr_t paddr, size_t size, size_t *count)
2373 {
2374 	unsigned int pgsize_idx, pgsize_idx_next;
2375 	unsigned long pgsizes;
2376 	size_t offset, pgsize, pgsize_next;
2377 	unsigned long addr_merge = paddr | iova;
2378 
2379 	/* Page sizes supported by the hardware and small enough for @size */
2380 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2381 
2382 	/* Constrain the page sizes further based on the maximum alignment */
2383 	if (likely(addr_merge))
2384 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2385 
2386 	/* Make sure we have at least one suitable page size */
2387 	BUG_ON(!pgsizes);
2388 
2389 	/* Pick the biggest page size remaining */
2390 	pgsize_idx = __fls(pgsizes);
2391 	pgsize = BIT(pgsize_idx);
2392 	if (!count)
2393 		return pgsize;
2394 
2395 	/* Find the next biggest support page size, if it exists */
2396 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2397 	if (!pgsizes)
2398 		goto out_set_count;
2399 
2400 	pgsize_idx_next = __ffs(pgsizes);
2401 	pgsize_next = BIT(pgsize_idx_next);
2402 
2403 	/*
2404 	 * There's no point trying a bigger page size unless the virtual
2405 	 * and physical addresses are similarly offset within the larger page.
2406 	 */
2407 	if ((iova ^ paddr) & (pgsize_next - 1))
2408 		goto out_set_count;
2409 
2410 	/* Calculate the offset to the next page size alignment boundary */
2411 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2412 
2413 	/*
2414 	 * If size is big enough to accommodate the larger page, reduce
2415 	 * the number of smaller pages.
2416 	 */
2417 	if (offset + pgsize_next <= size)
2418 		size = offset;
2419 
2420 out_set_count:
2421 	*count = size >> pgsize_idx;
2422 	return pgsize;
2423 }
2424 
2425 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2426 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2427 {
2428 	const struct iommu_domain_ops *ops = domain->ops;
2429 	unsigned long orig_iova = iova;
2430 	unsigned int min_pagesz;
2431 	size_t orig_size = size;
2432 	phys_addr_t orig_paddr = paddr;
2433 	int ret = 0;
2434 
2435 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2436 		return -EINVAL;
2437 
2438 	if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL))
2439 		return -ENODEV;
2440 
2441 	/* find out the minimum page size supported */
2442 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2443 
2444 	/*
2445 	 * both the virtual address and the physical one, as well as
2446 	 * the size of the mapping, must be aligned (at least) to the
2447 	 * size of the smallest page supported by the hardware
2448 	 */
2449 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2450 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2451 		       iova, &paddr, size, min_pagesz);
2452 		return -EINVAL;
2453 	}
2454 
2455 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2456 
2457 	while (size) {
2458 		size_t pgsize, count, mapped = 0;
2459 
2460 		pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2461 
2462 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2463 			 iova, &paddr, pgsize, count);
2464 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2465 				     gfp, &mapped);
2466 		/*
2467 		 * Some pages may have been mapped, even if an error occurred,
2468 		 * so we should account for those so they can be unmapped.
2469 		 */
2470 		size -= mapped;
2471 
2472 		if (ret)
2473 			break;
2474 
2475 		iova += mapped;
2476 		paddr += mapped;
2477 	}
2478 
2479 	/* unroll mapping in case something went wrong */
2480 	if (ret)
2481 		iommu_unmap(domain, orig_iova, orig_size - size);
2482 	else
2483 		trace_map(orig_iova, orig_paddr, orig_size);
2484 
2485 	return ret;
2486 }
2487 
2488 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2489 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2490 {
2491 	const struct iommu_domain_ops *ops = domain->ops;
2492 	int ret;
2493 
2494 	might_sleep_if(gfpflags_allow_blocking(gfp));
2495 
2496 	/* Discourage passing strange GFP flags */
2497 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2498 				__GFP_HIGHMEM)))
2499 		return -EINVAL;
2500 
2501 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2502 	if (ret == 0 && ops->iotlb_sync_map) {
2503 		ret = ops->iotlb_sync_map(domain, iova, size);
2504 		if (ret)
2505 			goto out_err;
2506 	}
2507 
2508 	return ret;
2509 
2510 out_err:
2511 	/* undo mappings already done */
2512 	iommu_unmap(domain, iova, size);
2513 
2514 	return ret;
2515 }
2516 EXPORT_SYMBOL_GPL(iommu_map);
2517 
2518 static size_t __iommu_unmap(struct iommu_domain *domain,
2519 			    unsigned long iova, size_t size,
2520 			    struct iommu_iotlb_gather *iotlb_gather)
2521 {
2522 	const struct iommu_domain_ops *ops = domain->ops;
2523 	size_t unmapped_page, unmapped = 0;
2524 	unsigned long orig_iova = iova;
2525 	unsigned int min_pagesz;
2526 
2527 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2528 		return 0;
2529 
2530 	if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL))
2531 		return 0;
2532 
2533 	/* find out the minimum page size supported */
2534 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2535 
2536 	/*
2537 	 * The virtual address, as well as the size of the mapping, must be
2538 	 * aligned (at least) to the size of the smallest page supported
2539 	 * by the hardware
2540 	 */
2541 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2542 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2543 		       iova, size, min_pagesz);
2544 		return 0;
2545 	}
2546 
2547 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2548 
2549 	/*
2550 	 * Keep iterating until we either unmap 'size' bytes (or more)
2551 	 * or we hit an area that isn't mapped.
2552 	 */
2553 	while (unmapped < size) {
2554 		size_t pgsize, count;
2555 
2556 		pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count);
2557 		unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather);
2558 		if (!unmapped_page)
2559 			break;
2560 
2561 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2562 			 iova, unmapped_page);
2563 
2564 		iova += unmapped_page;
2565 		unmapped += unmapped_page;
2566 	}
2567 
2568 	trace_unmap(orig_iova, size, unmapped);
2569 	return unmapped;
2570 }
2571 
2572 size_t iommu_unmap(struct iommu_domain *domain,
2573 		   unsigned long iova, size_t size)
2574 {
2575 	struct iommu_iotlb_gather iotlb_gather;
2576 	size_t ret;
2577 
2578 	iommu_iotlb_gather_init(&iotlb_gather);
2579 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2580 	iommu_iotlb_sync(domain, &iotlb_gather);
2581 
2582 	return ret;
2583 }
2584 EXPORT_SYMBOL_GPL(iommu_unmap);
2585 
2586 size_t iommu_unmap_fast(struct iommu_domain *domain,
2587 			unsigned long iova, size_t size,
2588 			struct iommu_iotlb_gather *iotlb_gather)
2589 {
2590 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2591 }
2592 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2593 
2594 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2595 		     struct scatterlist *sg, unsigned int nents, int prot,
2596 		     gfp_t gfp)
2597 {
2598 	const struct iommu_domain_ops *ops = domain->ops;
2599 	size_t len = 0, mapped = 0;
2600 	phys_addr_t start;
2601 	unsigned int i = 0;
2602 	int ret;
2603 
2604 	might_sleep_if(gfpflags_allow_blocking(gfp));
2605 
2606 	/* Discourage passing strange GFP flags */
2607 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2608 				__GFP_HIGHMEM)))
2609 		return -EINVAL;
2610 
2611 	while (i <= nents) {
2612 		phys_addr_t s_phys = sg_phys(sg);
2613 
2614 		if (len && s_phys != start + len) {
2615 			ret = __iommu_map(domain, iova + mapped, start,
2616 					len, prot, gfp);
2617 
2618 			if (ret)
2619 				goto out_err;
2620 
2621 			mapped += len;
2622 			len = 0;
2623 		}
2624 
2625 		if (sg_dma_is_bus_address(sg))
2626 			goto next;
2627 
2628 		if (len) {
2629 			len += sg->length;
2630 		} else {
2631 			len = sg->length;
2632 			start = s_phys;
2633 		}
2634 
2635 next:
2636 		if (++i < nents)
2637 			sg = sg_next(sg);
2638 	}
2639 
2640 	if (ops->iotlb_sync_map) {
2641 		ret = ops->iotlb_sync_map(domain, iova, mapped);
2642 		if (ret)
2643 			goto out_err;
2644 	}
2645 	return mapped;
2646 
2647 out_err:
2648 	/* undo mappings already done */
2649 	iommu_unmap(domain, iova, mapped);
2650 
2651 	return ret;
2652 }
2653 EXPORT_SYMBOL_GPL(iommu_map_sg);
2654 
2655 /**
2656  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2657  * @domain: the iommu domain where the fault has happened
2658  * @dev: the device where the fault has happened
2659  * @iova: the faulting address
2660  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2661  *
2662  * This function should be called by the low-level IOMMU implementations
2663  * whenever IOMMU faults happen, to allow high-level users, that are
2664  * interested in such events, to know about them.
2665  *
2666  * This event may be useful for several possible use cases:
2667  * - mere logging of the event
2668  * - dynamic TLB/PTE loading
2669  * - if restarting of the faulting device is required
2670  *
2671  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2672  * PTE/TLB loading will one day be supported, implementations will be able
2673  * to tell whether it succeeded or not according to this return value).
2674  *
2675  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2676  * (though fault handlers can also return -ENOSYS, in case they want to
2677  * elicit the default behavior of the IOMMU drivers).
2678  */
2679 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2680 		       unsigned long iova, int flags)
2681 {
2682 	int ret = -ENOSYS;
2683 
2684 	/*
2685 	 * if upper layers showed interest and installed a fault handler,
2686 	 * invoke it.
2687 	 */
2688 	if (domain->handler)
2689 		ret = domain->handler(domain, dev, iova, flags,
2690 						domain->handler_token);
2691 
2692 	trace_io_page_fault(dev, iova, flags);
2693 	return ret;
2694 }
2695 EXPORT_SYMBOL_GPL(report_iommu_fault);
2696 
2697 static int __init iommu_init(void)
2698 {
2699 	iommu_group_kset = kset_create_and_add("iommu_groups",
2700 					       NULL, kernel_kobj);
2701 	BUG_ON(!iommu_group_kset);
2702 
2703 	iommu_debugfs_setup();
2704 
2705 	return 0;
2706 }
2707 core_initcall(iommu_init);
2708 
2709 int iommu_enable_nesting(struct iommu_domain *domain)
2710 {
2711 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2712 		return -EINVAL;
2713 	if (!domain->ops->enable_nesting)
2714 		return -EINVAL;
2715 	return domain->ops->enable_nesting(domain);
2716 }
2717 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2718 
2719 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2720 		unsigned long quirk)
2721 {
2722 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2723 		return -EINVAL;
2724 	if (!domain->ops->set_pgtable_quirks)
2725 		return -EINVAL;
2726 	return domain->ops->set_pgtable_quirks(domain, quirk);
2727 }
2728 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2729 
2730 /**
2731  * iommu_get_resv_regions - get reserved regions
2732  * @dev: device for which to get reserved regions
2733  * @list: reserved region list for device
2734  *
2735  * This returns a list of reserved IOVA regions specific to this device.
2736  * A domain user should not map IOVA in these ranges.
2737  */
2738 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2739 {
2740 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2741 
2742 	if (ops->get_resv_regions)
2743 		ops->get_resv_regions(dev, list);
2744 }
2745 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2746 
2747 /**
2748  * iommu_put_resv_regions - release reserved regions
2749  * @dev: device for which to free reserved regions
2750  * @list: reserved region list for device
2751  *
2752  * This releases a reserved region list acquired by iommu_get_resv_regions().
2753  */
2754 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2755 {
2756 	struct iommu_resv_region *entry, *next;
2757 
2758 	list_for_each_entry_safe(entry, next, list, list) {
2759 		if (entry->free)
2760 			entry->free(dev, entry);
2761 		else
2762 			kfree(entry);
2763 	}
2764 }
2765 EXPORT_SYMBOL(iommu_put_resv_regions);
2766 
2767 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2768 						  size_t length, int prot,
2769 						  enum iommu_resv_type type,
2770 						  gfp_t gfp)
2771 {
2772 	struct iommu_resv_region *region;
2773 
2774 	region = kzalloc(sizeof(*region), gfp);
2775 	if (!region)
2776 		return NULL;
2777 
2778 	INIT_LIST_HEAD(&region->list);
2779 	region->start = start;
2780 	region->length = length;
2781 	region->prot = prot;
2782 	region->type = type;
2783 	return region;
2784 }
2785 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2786 
2787 void iommu_set_default_passthrough(bool cmd_line)
2788 {
2789 	if (cmd_line)
2790 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2791 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2792 }
2793 
2794 void iommu_set_default_translated(bool cmd_line)
2795 {
2796 	if (cmd_line)
2797 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2798 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2799 }
2800 
2801 bool iommu_default_passthrough(void)
2802 {
2803 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2804 }
2805 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2806 
2807 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode)
2808 {
2809 	const struct iommu_ops *ops = NULL;
2810 	struct iommu_device *iommu;
2811 
2812 	spin_lock(&iommu_device_lock);
2813 	list_for_each_entry(iommu, &iommu_device_list, list)
2814 		if (iommu->fwnode == fwnode) {
2815 			ops = iommu->ops;
2816 			break;
2817 		}
2818 	spin_unlock(&iommu_device_lock);
2819 	return ops;
2820 }
2821 
2822 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2823 		      const struct iommu_ops *ops)
2824 {
2825 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2826 
2827 	if (fwspec)
2828 		return ops == fwspec->ops ? 0 : -EINVAL;
2829 
2830 	if (!dev_iommu_get(dev))
2831 		return -ENOMEM;
2832 
2833 	/* Preallocate for the overwhelmingly common case of 1 ID */
2834 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2835 	if (!fwspec)
2836 		return -ENOMEM;
2837 
2838 	of_node_get(to_of_node(iommu_fwnode));
2839 	fwspec->iommu_fwnode = iommu_fwnode;
2840 	fwspec->ops = ops;
2841 	dev_iommu_fwspec_set(dev, fwspec);
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2845 
2846 void iommu_fwspec_free(struct device *dev)
2847 {
2848 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2849 
2850 	if (fwspec) {
2851 		fwnode_handle_put(fwspec->iommu_fwnode);
2852 		kfree(fwspec);
2853 		dev_iommu_fwspec_set(dev, NULL);
2854 	}
2855 }
2856 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2857 
2858 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids)
2859 {
2860 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2861 	int i, new_num;
2862 
2863 	if (!fwspec)
2864 		return -EINVAL;
2865 
2866 	new_num = fwspec->num_ids + num_ids;
2867 	if (new_num > 1) {
2868 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2869 				  GFP_KERNEL);
2870 		if (!fwspec)
2871 			return -ENOMEM;
2872 
2873 		dev_iommu_fwspec_set(dev, fwspec);
2874 	}
2875 
2876 	for (i = 0; i < num_ids; i++)
2877 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2878 
2879 	fwspec->num_ids = new_num;
2880 	return 0;
2881 }
2882 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2883 
2884 /*
2885  * Per device IOMMU features.
2886  */
2887 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2888 {
2889 	if (dev_has_iommu(dev)) {
2890 		const struct iommu_ops *ops = dev_iommu_ops(dev);
2891 
2892 		if (ops->dev_enable_feat)
2893 			return ops->dev_enable_feat(dev, feat);
2894 	}
2895 
2896 	return -ENODEV;
2897 }
2898 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2899 
2900 /*
2901  * The device drivers should do the necessary cleanups before calling this.
2902  */
2903 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2904 {
2905 	if (dev_has_iommu(dev)) {
2906 		const struct iommu_ops *ops = dev_iommu_ops(dev);
2907 
2908 		if (ops->dev_disable_feat)
2909 			return ops->dev_disable_feat(dev, feat);
2910 	}
2911 
2912 	return -EBUSY;
2913 }
2914 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2915 
2916 /**
2917  * iommu_setup_default_domain - Set the default_domain for the group
2918  * @group: Group to change
2919  * @target_type: Domain type to set as the default_domain
2920  *
2921  * Allocate a default domain and set it as the current domain on the group. If
2922  * the group already has a default domain it will be changed to the target_type.
2923  * When target_type is 0 the default domain is selected based on driver and
2924  * system preferences.
2925  */
2926 static int iommu_setup_default_domain(struct iommu_group *group,
2927 				      int target_type)
2928 {
2929 	struct iommu_domain *old_dom = group->default_domain;
2930 	struct group_device *gdev;
2931 	struct iommu_domain *dom;
2932 	bool direct_failed;
2933 	int req_type;
2934 	int ret;
2935 
2936 	lockdep_assert_held(&group->mutex);
2937 
2938 	req_type = iommu_get_default_domain_type(group, target_type);
2939 	if (req_type < 0)
2940 		return -EINVAL;
2941 
2942 	dom = iommu_group_alloc_default_domain(group, req_type);
2943 	if (IS_ERR(dom))
2944 		return PTR_ERR(dom);
2945 
2946 	if (group->default_domain == dom)
2947 		return 0;
2948 
2949 	/*
2950 	 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2951 	 * mapped before their device is attached, in order to guarantee
2952 	 * continuity with any FW activity
2953 	 */
2954 	direct_failed = false;
2955 	for_each_group_device(group, gdev) {
2956 		if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2957 			direct_failed = true;
2958 			dev_warn_once(
2959 				gdev->dev->iommu->iommu_dev->dev,
2960 				"IOMMU driver was not able to establish FW requested direct mapping.");
2961 		}
2962 	}
2963 
2964 	/* We must set default_domain early for __iommu_device_set_domain */
2965 	group->default_domain = dom;
2966 	if (!group->domain) {
2967 		/*
2968 		 * Drivers are not allowed to fail the first domain attach.
2969 		 * The only way to recover from this is to fail attaching the
2970 		 * iommu driver and call ops->release_device. Put the domain
2971 		 * in group->default_domain so it is freed after.
2972 		 */
2973 		ret = __iommu_group_set_domain_internal(
2974 			group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
2975 		if (WARN_ON(ret))
2976 			goto out_free_old;
2977 	} else {
2978 		ret = __iommu_group_set_domain(group, dom);
2979 		if (ret)
2980 			goto err_restore_def_domain;
2981 	}
2982 
2983 	/*
2984 	 * Drivers are supposed to allow mappings to be installed in a domain
2985 	 * before device attachment, but some don't. Hack around this defect by
2986 	 * trying again after attaching. If this happens it means the device
2987 	 * will not continuously have the IOMMU_RESV_DIRECT map.
2988 	 */
2989 	if (direct_failed) {
2990 		for_each_group_device(group, gdev) {
2991 			ret = iommu_create_device_direct_mappings(dom, gdev->dev);
2992 			if (ret)
2993 				goto err_restore_domain;
2994 		}
2995 	}
2996 
2997 out_free_old:
2998 	if (old_dom)
2999 		iommu_domain_free(old_dom);
3000 	return ret;
3001 
3002 err_restore_domain:
3003 	if (old_dom)
3004 		__iommu_group_set_domain_internal(
3005 			group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3006 err_restore_def_domain:
3007 	if (old_dom) {
3008 		iommu_domain_free(dom);
3009 		group->default_domain = old_dom;
3010 	}
3011 	return ret;
3012 }
3013 
3014 /*
3015  * Changing the default domain through sysfs requires the users to unbind the
3016  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3017  * transition. Return failure if this isn't met.
3018  *
3019  * We need to consider the race between this and the device release path.
3020  * group->mutex is used here to guarantee that the device release path
3021  * will not be entered at the same time.
3022  */
3023 static ssize_t iommu_group_store_type(struct iommu_group *group,
3024 				      const char *buf, size_t count)
3025 {
3026 	struct group_device *gdev;
3027 	int ret, req_type;
3028 
3029 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3030 		return -EACCES;
3031 
3032 	if (WARN_ON(!group) || !group->default_domain)
3033 		return -EINVAL;
3034 
3035 	if (sysfs_streq(buf, "identity"))
3036 		req_type = IOMMU_DOMAIN_IDENTITY;
3037 	else if (sysfs_streq(buf, "DMA"))
3038 		req_type = IOMMU_DOMAIN_DMA;
3039 	else if (sysfs_streq(buf, "DMA-FQ"))
3040 		req_type = IOMMU_DOMAIN_DMA_FQ;
3041 	else if (sysfs_streq(buf, "auto"))
3042 		req_type = 0;
3043 	else
3044 		return -EINVAL;
3045 
3046 	mutex_lock(&group->mutex);
3047 	/* We can bring up a flush queue without tearing down the domain. */
3048 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3049 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
3050 		ret = iommu_dma_init_fq(group->default_domain);
3051 		if (ret)
3052 			goto out_unlock;
3053 
3054 		group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3055 		ret = count;
3056 		goto out_unlock;
3057 	}
3058 
3059 	/* Otherwise, ensure that device exists and no driver is bound. */
3060 	if (list_empty(&group->devices) || group->owner_cnt) {
3061 		ret = -EPERM;
3062 		goto out_unlock;
3063 	}
3064 
3065 	ret = iommu_setup_default_domain(group, req_type);
3066 	if (ret)
3067 		goto out_unlock;
3068 
3069 	/*
3070 	 * Release the mutex here because ops->probe_finalize() call-back of
3071 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3072 	 * in-turn might call back into IOMMU core code, where it tries to take
3073 	 * group->mutex, resulting in a deadlock.
3074 	 */
3075 	mutex_unlock(&group->mutex);
3076 
3077 	/* Make sure dma_ops is appropriatley set */
3078 	for_each_group_device(group, gdev)
3079 		iommu_group_do_probe_finalize(gdev->dev);
3080 	return count;
3081 
3082 out_unlock:
3083 	mutex_unlock(&group->mutex);
3084 	return ret ?: count;
3085 }
3086 
3087 /**
3088  * iommu_device_use_default_domain() - Device driver wants to handle device
3089  *                                     DMA through the kernel DMA API.
3090  * @dev: The device.
3091  *
3092  * The device driver about to bind @dev wants to do DMA through the kernel
3093  * DMA API. Return 0 if it is allowed, otherwise an error.
3094  */
3095 int iommu_device_use_default_domain(struct device *dev)
3096 {
3097 	/* Caller is the driver core during the pre-probe path */
3098 	struct iommu_group *group = dev->iommu_group;
3099 	int ret = 0;
3100 
3101 	if (!group)
3102 		return 0;
3103 
3104 	mutex_lock(&group->mutex);
3105 	if (group->owner_cnt) {
3106 		if (group->domain != group->default_domain || group->owner ||
3107 		    !xa_empty(&group->pasid_array)) {
3108 			ret = -EBUSY;
3109 			goto unlock_out;
3110 		}
3111 	}
3112 
3113 	group->owner_cnt++;
3114 
3115 unlock_out:
3116 	mutex_unlock(&group->mutex);
3117 	return ret;
3118 }
3119 
3120 /**
3121  * iommu_device_unuse_default_domain() - Device driver stops handling device
3122  *                                       DMA through the kernel DMA API.
3123  * @dev: The device.
3124  *
3125  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3126  * It must be called after iommu_device_use_default_domain().
3127  */
3128 void iommu_device_unuse_default_domain(struct device *dev)
3129 {
3130 	/* Caller is the driver core during the post-probe path */
3131 	struct iommu_group *group = dev->iommu_group;
3132 
3133 	if (!group)
3134 		return;
3135 
3136 	mutex_lock(&group->mutex);
3137 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3138 		group->owner_cnt--;
3139 
3140 	mutex_unlock(&group->mutex);
3141 }
3142 
3143 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3144 {
3145 	struct iommu_domain *domain;
3146 
3147 	if (group->blocking_domain)
3148 		return 0;
3149 
3150 	domain = __iommu_group_domain_alloc(group, IOMMU_DOMAIN_BLOCKED);
3151 	if (IS_ERR(domain)) {
3152 		/*
3153 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3154 		 * create an empty domain instead.
3155 		 */
3156 		domain = __iommu_group_domain_alloc(group,
3157 						    IOMMU_DOMAIN_UNMANAGED);
3158 		if (IS_ERR(domain))
3159 			return PTR_ERR(domain);
3160 	}
3161 	group->blocking_domain = domain;
3162 	return 0;
3163 }
3164 
3165 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3166 {
3167 	int ret;
3168 
3169 	if ((group->domain && group->domain != group->default_domain) ||
3170 	    !xa_empty(&group->pasid_array))
3171 		return -EBUSY;
3172 
3173 	ret = __iommu_group_alloc_blocking_domain(group);
3174 	if (ret)
3175 		return ret;
3176 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3177 	if (ret)
3178 		return ret;
3179 
3180 	group->owner = owner;
3181 	group->owner_cnt++;
3182 	return 0;
3183 }
3184 
3185 /**
3186  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3187  * @group: The group.
3188  * @owner: Caller specified pointer. Used for exclusive ownership.
3189  *
3190  * This is to support backward compatibility for vfio which manages the dma
3191  * ownership in iommu_group level. New invocations on this interface should be
3192  * prohibited. Only a single owner may exist for a group.
3193  */
3194 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3195 {
3196 	int ret = 0;
3197 
3198 	if (WARN_ON(!owner))
3199 		return -EINVAL;
3200 
3201 	mutex_lock(&group->mutex);
3202 	if (group->owner_cnt) {
3203 		ret = -EPERM;
3204 		goto unlock_out;
3205 	}
3206 
3207 	ret = __iommu_take_dma_ownership(group, owner);
3208 unlock_out:
3209 	mutex_unlock(&group->mutex);
3210 
3211 	return ret;
3212 }
3213 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3214 
3215 /**
3216  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3217  * @dev: The device.
3218  * @owner: Caller specified pointer. Used for exclusive ownership.
3219  *
3220  * Claim the DMA ownership of a device. Multiple devices in the same group may
3221  * concurrently claim ownership if they present the same owner value. Returns 0
3222  * on success and error code on failure
3223  */
3224 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3225 {
3226 	/* Caller must be a probed driver on dev */
3227 	struct iommu_group *group = dev->iommu_group;
3228 	int ret = 0;
3229 
3230 	if (WARN_ON(!owner))
3231 		return -EINVAL;
3232 
3233 	if (!group)
3234 		return -ENODEV;
3235 
3236 	mutex_lock(&group->mutex);
3237 	if (group->owner_cnt) {
3238 		if (group->owner != owner) {
3239 			ret = -EPERM;
3240 			goto unlock_out;
3241 		}
3242 		group->owner_cnt++;
3243 		goto unlock_out;
3244 	}
3245 
3246 	ret = __iommu_take_dma_ownership(group, owner);
3247 unlock_out:
3248 	mutex_unlock(&group->mutex);
3249 	return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3252 
3253 static void __iommu_release_dma_ownership(struct iommu_group *group)
3254 {
3255 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3256 		    !xa_empty(&group->pasid_array)))
3257 		return;
3258 
3259 	group->owner_cnt = 0;
3260 	group->owner = NULL;
3261 	__iommu_group_set_domain_nofail(group, group->default_domain);
3262 }
3263 
3264 /**
3265  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3266  * @group: The group
3267  *
3268  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3269  */
3270 void iommu_group_release_dma_owner(struct iommu_group *group)
3271 {
3272 	mutex_lock(&group->mutex);
3273 	__iommu_release_dma_ownership(group);
3274 	mutex_unlock(&group->mutex);
3275 }
3276 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3277 
3278 /**
3279  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3280  * @dev: The device.
3281  *
3282  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3283  */
3284 void iommu_device_release_dma_owner(struct device *dev)
3285 {
3286 	/* Caller must be a probed driver on dev */
3287 	struct iommu_group *group = dev->iommu_group;
3288 
3289 	mutex_lock(&group->mutex);
3290 	if (group->owner_cnt > 1)
3291 		group->owner_cnt--;
3292 	else
3293 		__iommu_release_dma_ownership(group);
3294 	mutex_unlock(&group->mutex);
3295 }
3296 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3297 
3298 /**
3299  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3300  * @group: The group.
3301  *
3302  * This provides status query on a given group. It is racy and only for
3303  * non-binding status reporting.
3304  */
3305 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3306 {
3307 	unsigned int user;
3308 
3309 	mutex_lock(&group->mutex);
3310 	user = group->owner_cnt;
3311 	mutex_unlock(&group->mutex);
3312 
3313 	return user;
3314 }
3315 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3316 
3317 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3318 				   struct iommu_group *group, ioasid_t pasid)
3319 {
3320 	struct group_device *device;
3321 	int ret = 0;
3322 
3323 	for_each_group_device(group, device) {
3324 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3325 		if (ret)
3326 			break;
3327 	}
3328 
3329 	return ret;
3330 }
3331 
3332 static void __iommu_remove_group_pasid(struct iommu_group *group,
3333 				       ioasid_t pasid)
3334 {
3335 	struct group_device *device;
3336 	const struct iommu_ops *ops;
3337 
3338 	for_each_group_device(group, device) {
3339 		ops = dev_iommu_ops(device->dev);
3340 		ops->remove_dev_pasid(device->dev, pasid);
3341 	}
3342 }
3343 
3344 /*
3345  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3346  * @domain: the iommu domain.
3347  * @dev: the attached device.
3348  * @pasid: the pasid of the device.
3349  *
3350  * Return: 0 on success, or an error.
3351  */
3352 int iommu_attach_device_pasid(struct iommu_domain *domain,
3353 			      struct device *dev, ioasid_t pasid)
3354 {
3355 	/* Caller must be a probed driver on dev */
3356 	struct iommu_group *group = dev->iommu_group;
3357 	void *curr;
3358 	int ret;
3359 
3360 	if (!domain->ops->set_dev_pasid)
3361 		return -EOPNOTSUPP;
3362 
3363 	if (!group)
3364 		return -ENODEV;
3365 
3366 	if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner)
3367 		return -EINVAL;
3368 
3369 	mutex_lock(&group->mutex);
3370 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3371 	if (curr) {
3372 		ret = xa_err(curr) ? : -EBUSY;
3373 		goto out_unlock;
3374 	}
3375 
3376 	ret = __iommu_set_group_pasid(domain, group, pasid);
3377 	if (ret) {
3378 		__iommu_remove_group_pasid(group, pasid);
3379 		xa_erase(&group->pasid_array, pasid);
3380 	}
3381 out_unlock:
3382 	mutex_unlock(&group->mutex);
3383 	return ret;
3384 }
3385 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3386 
3387 /*
3388  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3389  * @domain: the iommu domain.
3390  * @dev: the attached device.
3391  * @pasid: the pasid of the device.
3392  *
3393  * The @domain must have been attached to @pasid of the @dev with
3394  * iommu_attach_device_pasid().
3395  */
3396 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3397 			       ioasid_t pasid)
3398 {
3399 	/* Caller must be a probed driver on dev */
3400 	struct iommu_group *group = dev->iommu_group;
3401 
3402 	mutex_lock(&group->mutex);
3403 	__iommu_remove_group_pasid(group, pasid);
3404 	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3405 	mutex_unlock(&group->mutex);
3406 }
3407 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3408 
3409 /*
3410  * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3411  * @dev: the queried device
3412  * @pasid: the pasid of the device
3413  * @type: matched domain type, 0 for any match
3414  *
3415  * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3416  * domain attached to pasid of a device. Callers must hold a lock around this
3417  * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3418  * type is being manipulated. This API does not internally resolve races with
3419  * attach/detach.
3420  *
3421  * Return: attached domain on success, NULL otherwise.
3422  */
3423 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3424 						    ioasid_t pasid,
3425 						    unsigned int type)
3426 {
3427 	/* Caller must be a probed driver on dev */
3428 	struct iommu_group *group = dev->iommu_group;
3429 	struct iommu_domain *domain;
3430 
3431 	if (!group)
3432 		return NULL;
3433 
3434 	xa_lock(&group->pasid_array);
3435 	domain = xa_load(&group->pasid_array, pasid);
3436 	if (type && domain && domain->type != type)
3437 		domain = ERR_PTR(-EBUSY);
3438 	xa_unlock(&group->pasid_array);
3439 
3440 	return domain;
3441 }
3442 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3443 
3444 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3445 {
3446 	int ret;
3447 
3448 	/* max_pasids == 0 means that the device does not support PASID */
3449 	if (!dev->iommu->max_pasids)
3450 		return IOMMU_PASID_INVALID;
3451 
3452 	/*
3453 	 * max_pasids is set up by vendor driver based on number of PASID bits
3454 	 * supported but the IDA allocation is inclusive.
3455 	 */
3456 	ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3457 			      dev->iommu->max_pasids - 1, GFP_KERNEL);
3458 	return ret < 0 ? IOMMU_PASID_INVALID : ret;
3459 }
3460 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3461 
3462 void iommu_free_global_pasid(ioasid_t pasid)
3463 {
3464 	if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3465 		return;
3466 
3467 	ida_free(&iommu_global_pasid_ida, pasid);
3468 }
3469 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3470