1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/amba/bus.h> 10 #include <linux/device.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/host1x_context_bus.h> 20 #include <linux/iommu.h> 21 #include <linux/idr.h> 22 #include <linux/err.h> 23 #include <linux/pci.h> 24 #include <linux/pci-ats.h> 25 #include <linux/bitops.h> 26 #include <linux/platform_device.h> 27 #include <linux/property.h> 28 #include <linux/fsl/mc.h> 29 #include <linux/module.h> 30 #include <linux/cc_platform.h> 31 #include <linux/cdx/cdx_bus.h> 32 #include <trace/events/iommu.h> 33 #include <linux/sched/mm.h> 34 #include <linux/msi.h> 35 36 #include "dma-iommu.h" 37 #include "iommu-priv.h" 38 39 static struct kset *iommu_group_kset; 40 static DEFINE_IDA(iommu_group_ida); 41 static DEFINE_IDA(iommu_global_pasid_ida); 42 43 static unsigned int iommu_def_domain_type __read_mostly; 44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 45 static u32 iommu_cmd_line __read_mostly; 46 47 struct iommu_group { 48 struct kobject kobj; 49 struct kobject *devices_kobj; 50 struct list_head devices; 51 struct xarray pasid_array; 52 struct mutex mutex; 53 void *iommu_data; 54 void (*iommu_data_release)(void *iommu_data); 55 char *name; 56 int id; 57 struct iommu_domain *default_domain; 58 struct iommu_domain *blocking_domain; 59 struct iommu_domain *domain; 60 struct list_head entry; 61 unsigned int owner_cnt; 62 void *owner; 63 }; 64 65 struct group_device { 66 struct list_head list; 67 struct device *dev; 68 char *name; 69 }; 70 71 /* Iterate over each struct group_device in a struct iommu_group */ 72 #define for_each_group_device(group, pos) \ 73 list_for_each_entry(pos, &(group)->devices, list) 74 75 struct iommu_group_attribute { 76 struct attribute attr; 77 ssize_t (*show)(struct iommu_group *group, char *buf); 78 ssize_t (*store)(struct iommu_group *group, 79 const char *buf, size_t count); 80 }; 81 82 static const char * const iommu_group_resv_type_string[] = { 83 [IOMMU_RESV_DIRECT] = "direct", 84 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 85 [IOMMU_RESV_RESERVED] = "reserved", 86 [IOMMU_RESV_MSI] = "msi", 87 [IOMMU_RESV_SW_MSI] = "msi", 88 }; 89 90 #define IOMMU_CMD_LINE_DMA_API BIT(0) 91 #define IOMMU_CMD_LINE_STRICT BIT(1) 92 93 static int iommu_bus_notifier(struct notifier_block *nb, 94 unsigned long action, void *data); 95 static void iommu_release_device(struct device *dev); 96 static struct iommu_domain * 97 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type); 98 static int __iommu_attach_device(struct iommu_domain *domain, 99 struct device *dev); 100 static int __iommu_attach_group(struct iommu_domain *domain, 101 struct iommu_group *group); 102 103 enum { 104 IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0, 105 }; 106 107 static int __iommu_device_set_domain(struct iommu_group *group, 108 struct device *dev, 109 struct iommu_domain *new_domain, 110 unsigned int flags); 111 static int __iommu_group_set_domain_internal(struct iommu_group *group, 112 struct iommu_domain *new_domain, 113 unsigned int flags); 114 static int __iommu_group_set_domain(struct iommu_group *group, 115 struct iommu_domain *new_domain) 116 { 117 return __iommu_group_set_domain_internal(group, new_domain, 0); 118 } 119 static void __iommu_group_set_domain_nofail(struct iommu_group *group, 120 struct iommu_domain *new_domain) 121 { 122 WARN_ON(__iommu_group_set_domain_internal( 123 group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED)); 124 } 125 126 static int iommu_setup_default_domain(struct iommu_group *group, 127 int target_type); 128 static int iommu_create_device_direct_mappings(struct iommu_domain *domain, 129 struct device *dev); 130 static ssize_t iommu_group_store_type(struct iommu_group *group, 131 const char *buf, size_t count); 132 static struct group_device *iommu_group_alloc_device(struct iommu_group *group, 133 struct device *dev); 134 static void __iommu_group_free_device(struct iommu_group *group, 135 struct group_device *grp_dev); 136 137 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 138 struct iommu_group_attribute iommu_group_attr_##_name = \ 139 __ATTR(_name, _mode, _show, _store) 140 141 #define to_iommu_group_attr(_attr) \ 142 container_of(_attr, struct iommu_group_attribute, attr) 143 #define to_iommu_group(_kobj) \ 144 container_of(_kobj, struct iommu_group, kobj) 145 146 static LIST_HEAD(iommu_device_list); 147 static DEFINE_SPINLOCK(iommu_device_lock); 148 149 static const struct bus_type * const iommu_buses[] = { 150 &platform_bus_type, 151 #ifdef CONFIG_PCI 152 &pci_bus_type, 153 #endif 154 #ifdef CONFIG_ARM_AMBA 155 &amba_bustype, 156 #endif 157 #ifdef CONFIG_FSL_MC_BUS 158 &fsl_mc_bus_type, 159 #endif 160 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS 161 &host1x_context_device_bus_type, 162 #endif 163 #ifdef CONFIG_CDX_BUS 164 &cdx_bus_type, 165 #endif 166 }; 167 168 /* 169 * Use a function instead of an array here because the domain-type is a 170 * bit-field, so an array would waste memory. 171 */ 172 static const char *iommu_domain_type_str(unsigned int t) 173 { 174 switch (t) { 175 case IOMMU_DOMAIN_BLOCKED: 176 return "Blocked"; 177 case IOMMU_DOMAIN_IDENTITY: 178 return "Passthrough"; 179 case IOMMU_DOMAIN_UNMANAGED: 180 return "Unmanaged"; 181 case IOMMU_DOMAIN_DMA: 182 case IOMMU_DOMAIN_DMA_FQ: 183 return "Translated"; 184 case IOMMU_DOMAIN_PLATFORM: 185 return "Platform"; 186 default: 187 return "Unknown"; 188 } 189 } 190 191 static int __init iommu_subsys_init(void) 192 { 193 struct notifier_block *nb; 194 195 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 196 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 197 iommu_set_default_passthrough(false); 198 else 199 iommu_set_default_translated(false); 200 201 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 202 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 203 iommu_set_default_translated(false); 204 } 205 } 206 207 if (!iommu_default_passthrough() && !iommu_dma_strict) 208 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 209 210 pr_info("Default domain type: %s%s\n", 211 iommu_domain_type_str(iommu_def_domain_type), 212 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 213 " (set via kernel command line)" : ""); 214 215 if (!iommu_default_passthrough()) 216 pr_info("DMA domain TLB invalidation policy: %s mode%s\n", 217 iommu_dma_strict ? "strict" : "lazy", 218 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 219 " (set via kernel command line)" : ""); 220 221 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL); 222 if (!nb) 223 return -ENOMEM; 224 225 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { 226 nb[i].notifier_call = iommu_bus_notifier; 227 bus_register_notifier(iommu_buses[i], &nb[i]); 228 } 229 230 return 0; 231 } 232 subsys_initcall(iommu_subsys_init); 233 234 static int remove_iommu_group(struct device *dev, void *data) 235 { 236 if (dev->iommu && dev->iommu->iommu_dev == data) 237 iommu_release_device(dev); 238 239 return 0; 240 } 241 242 /** 243 * iommu_device_register() - Register an IOMMU hardware instance 244 * @iommu: IOMMU handle for the instance 245 * @ops: IOMMU ops to associate with the instance 246 * @hwdev: (optional) actual instance device, used for fwnode lookup 247 * 248 * Return: 0 on success, or an error. 249 */ 250 int iommu_device_register(struct iommu_device *iommu, 251 const struct iommu_ops *ops, struct device *hwdev) 252 { 253 int err = 0; 254 255 /* We need to be able to take module references appropriately */ 256 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 257 return -EINVAL; 258 259 iommu->ops = ops; 260 if (hwdev) 261 iommu->fwnode = dev_fwnode(hwdev); 262 263 spin_lock(&iommu_device_lock); 264 list_add_tail(&iommu->list, &iommu_device_list); 265 spin_unlock(&iommu_device_lock); 266 267 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) 268 err = bus_iommu_probe(iommu_buses[i]); 269 if (err) 270 iommu_device_unregister(iommu); 271 return err; 272 } 273 EXPORT_SYMBOL_GPL(iommu_device_register); 274 275 void iommu_device_unregister(struct iommu_device *iommu) 276 { 277 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) 278 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group); 279 280 spin_lock(&iommu_device_lock); 281 list_del(&iommu->list); 282 spin_unlock(&iommu_device_lock); 283 284 /* Pairs with the alloc in generic_single_device_group() */ 285 iommu_group_put(iommu->singleton_group); 286 iommu->singleton_group = NULL; 287 } 288 EXPORT_SYMBOL_GPL(iommu_device_unregister); 289 290 #if IS_ENABLED(CONFIG_IOMMUFD_TEST) 291 void iommu_device_unregister_bus(struct iommu_device *iommu, 292 const struct bus_type *bus, 293 struct notifier_block *nb) 294 { 295 bus_unregister_notifier(bus, nb); 296 iommu_device_unregister(iommu); 297 } 298 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus); 299 300 /* 301 * Register an iommu driver against a single bus. This is only used by iommufd 302 * selftest to create a mock iommu driver. The caller must provide 303 * some memory to hold a notifier_block. 304 */ 305 int iommu_device_register_bus(struct iommu_device *iommu, 306 const struct iommu_ops *ops, 307 const struct bus_type *bus, 308 struct notifier_block *nb) 309 { 310 int err; 311 312 iommu->ops = ops; 313 nb->notifier_call = iommu_bus_notifier; 314 err = bus_register_notifier(bus, nb); 315 if (err) 316 return err; 317 318 spin_lock(&iommu_device_lock); 319 list_add_tail(&iommu->list, &iommu_device_list); 320 spin_unlock(&iommu_device_lock); 321 322 err = bus_iommu_probe(bus); 323 if (err) { 324 iommu_device_unregister_bus(iommu, bus, nb); 325 return err; 326 } 327 return 0; 328 } 329 EXPORT_SYMBOL_GPL(iommu_device_register_bus); 330 #endif 331 332 static struct dev_iommu *dev_iommu_get(struct device *dev) 333 { 334 struct dev_iommu *param = dev->iommu; 335 336 lockdep_assert_held(&iommu_probe_device_lock); 337 338 if (param) 339 return param; 340 341 param = kzalloc(sizeof(*param), GFP_KERNEL); 342 if (!param) 343 return NULL; 344 345 mutex_init(¶m->lock); 346 dev->iommu = param; 347 return param; 348 } 349 350 static void dev_iommu_free(struct device *dev) 351 { 352 struct dev_iommu *param = dev->iommu; 353 354 dev->iommu = NULL; 355 if (param->fwspec) { 356 fwnode_handle_put(param->fwspec->iommu_fwnode); 357 kfree(param->fwspec); 358 } 359 kfree(param); 360 } 361 362 /* 363 * Internal equivalent of device_iommu_mapped() for when we care that a device 364 * actually has API ops, and don't want false positives from VFIO-only groups. 365 */ 366 static bool dev_has_iommu(struct device *dev) 367 { 368 return dev->iommu && dev->iommu->iommu_dev; 369 } 370 371 static u32 dev_iommu_get_max_pasids(struct device *dev) 372 { 373 u32 max_pasids = 0, bits = 0; 374 int ret; 375 376 if (dev_is_pci(dev)) { 377 ret = pci_max_pasids(to_pci_dev(dev)); 378 if (ret > 0) 379 max_pasids = ret; 380 } else { 381 ret = device_property_read_u32(dev, "pasid-num-bits", &bits); 382 if (!ret) 383 max_pasids = 1UL << bits; 384 } 385 386 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids); 387 } 388 389 void dev_iommu_priv_set(struct device *dev, void *priv) 390 { 391 /* FSL_PAMU does something weird */ 392 if (!IS_ENABLED(CONFIG_FSL_PAMU)) 393 lockdep_assert_held(&iommu_probe_device_lock); 394 dev->iommu->priv = priv; 395 } 396 EXPORT_SYMBOL_GPL(dev_iommu_priv_set); 397 398 /* 399 * Init the dev->iommu and dev->iommu_group in the struct device and get the 400 * driver probed 401 */ 402 static int iommu_init_device(struct device *dev, const struct iommu_ops *ops) 403 { 404 struct iommu_device *iommu_dev; 405 struct iommu_group *group; 406 int ret; 407 408 if (!dev_iommu_get(dev)) 409 return -ENOMEM; 410 411 if (!try_module_get(ops->owner)) { 412 ret = -EINVAL; 413 goto err_free; 414 } 415 416 iommu_dev = ops->probe_device(dev); 417 if (IS_ERR(iommu_dev)) { 418 ret = PTR_ERR(iommu_dev); 419 goto err_module_put; 420 } 421 dev->iommu->iommu_dev = iommu_dev; 422 423 ret = iommu_device_link(iommu_dev, dev); 424 if (ret) 425 goto err_release; 426 427 group = ops->device_group(dev); 428 if (WARN_ON_ONCE(group == NULL)) 429 group = ERR_PTR(-EINVAL); 430 if (IS_ERR(group)) { 431 ret = PTR_ERR(group); 432 goto err_unlink; 433 } 434 dev->iommu_group = group; 435 436 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev); 437 if (ops->is_attach_deferred) 438 dev->iommu->attach_deferred = ops->is_attach_deferred(dev); 439 return 0; 440 441 err_unlink: 442 iommu_device_unlink(iommu_dev, dev); 443 err_release: 444 if (ops->release_device) 445 ops->release_device(dev); 446 err_module_put: 447 module_put(ops->owner); 448 err_free: 449 dev->iommu->iommu_dev = NULL; 450 dev_iommu_free(dev); 451 return ret; 452 } 453 454 static void iommu_deinit_device(struct device *dev) 455 { 456 struct iommu_group *group = dev->iommu_group; 457 const struct iommu_ops *ops = dev_iommu_ops(dev); 458 459 lockdep_assert_held(&group->mutex); 460 461 iommu_device_unlink(dev->iommu->iommu_dev, dev); 462 463 /* 464 * release_device() must stop using any attached domain on the device. 465 * If there are still other devices in the group, they are not affected 466 * by this callback. 467 * 468 * If the iommu driver provides release_domain, the core code ensures 469 * that domain is attached prior to calling release_device. Drivers can 470 * use this to enforce a translation on the idle iommu. Typically, the 471 * global static blocked_domain is a good choice. 472 * 473 * Otherwise, the iommu driver must set the device to either an identity 474 * or a blocking translation in release_device() and stop using any 475 * domain pointer, as it is going to be freed. 476 * 477 * Regardless, if a delayed attach never occurred, then the release 478 * should still avoid touching any hardware configuration either. 479 */ 480 if (!dev->iommu->attach_deferred && ops->release_domain) 481 ops->release_domain->ops->attach_dev(ops->release_domain, dev); 482 483 if (ops->release_device) 484 ops->release_device(dev); 485 486 /* 487 * If this is the last driver to use the group then we must free the 488 * domains before we do the module_put(). 489 */ 490 if (list_empty(&group->devices)) { 491 if (group->default_domain) { 492 iommu_domain_free(group->default_domain); 493 group->default_domain = NULL; 494 } 495 if (group->blocking_domain) { 496 iommu_domain_free(group->blocking_domain); 497 group->blocking_domain = NULL; 498 } 499 group->domain = NULL; 500 } 501 502 /* Caller must put iommu_group */ 503 dev->iommu_group = NULL; 504 module_put(ops->owner); 505 dev_iommu_free(dev); 506 } 507 508 DEFINE_MUTEX(iommu_probe_device_lock); 509 510 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 511 { 512 const struct iommu_ops *ops; 513 struct iommu_fwspec *fwspec; 514 struct iommu_group *group; 515 struct group_device *gdev; 516 int ret; 517 518 /* 519 * For FDT-based systems and ACPI IORT/VIOT, drivers register IOMMU 520 * instances with non-NULL fwnodes, and client devices should have been 521 * identified with a fwspec by this point. Otherwise, we can currently 522 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can 523 * be present, and that any of their registered instances has suitable 524 * ops for probing, and thus cheekily co-opt the same mechanism. 525 */ 526 fwspec = dev_iommu_fwspec_get(dev); 527 if (fwspec && fwspec->ops) 528 ops = fwspec->ops; 529 else 530 ops = iommu_ops_from_fwnode(NULL); 531 532 if (!ops) 533 return -ENODEV; 534 /* 535 * Serialise to avoid races between IOMMU drivers registering in 536 * parallel and/or the "replay" calls from ACPI/OF code via client 537 * driver probe. Once the latter have been cleaned up we should 538 * probably be able to use device_lock() here to minimise the scope, 539 * but for now enforcing a simple global ordering is fine. 540 */ 541 lockdep_assert_held(&iommu_probe_device_lock); 542 543 /* Device is probed already if in a group */ 544 if (dev->iommu_group) 545 return 0; 546 547 ret = iommu_init_device(dev, ops); 548 if (ret) 549 return ret; 550 551 group = dev->iommu_group; 552 gdev = iommu_group_alloc_device(group, dev); 553 mutex_lock(&group->mutex); 554 if (IS_ERR(gdev)) { 555 ret = PTR_ERR(gdev); 556 goto err_put_group; 557 } 558 559 /* 560 * The gdev must be in the list before calling 561 * iommu_setup_default_domain() 562 */ 563 list_add_tail(&gdev->list, &group->devices); 564 WARN_ON(group->default_domain && !group->domain); 565 if (group->default_domain) 566 iommu_create_device_direct_mappings(group->default_domain, dev); 567 if (group->domain) { 568 ret = __iommu_device_set_domain(group, dev, group->domain, 0); 569 if (ret) 570 goto err_remove_gdev; 571 } else if (!group->default_domain && !group_list) { 572 ret = iommu_setup_default_domain(group, 0); 573 if (ret) 574 goto err_remove_gdev; 575 } else if (!group->default_domain) { 576 /* 577 * With a group_list argument we defer the default_domain setup 578 * to the caller by providing a de-duplicated list of groups 579 * that need further setup. 580 */ 581 if (list_empty(&group->entry)) 582 list_add_tail(&group->entry, group_list); 583 } 584 mutex_unlock(&group->mutex); 585 586 if (dev_is_pci(dev)) 587 iommu_dma_set_pci_32bit_workaround(dev); 588 589 return 0; 590 591 err_remove_gdev: 592 list_del(&gdev->list); 593 __iommu_group_free_device(group, gdev); 594 err_put_group: 595 iommu_deinit_device(dev); 596 mutex_unlock(&group->mutex); 597 iommu_group_put(group); 598 599 return ret; 600 } 601 602 int iommu_probe_device(struct device *dev) 603 { 604 const struct iommu_ops *ops; 605 int ret; 606 607 mutex_lock(&iommu_probe_device_lock); 608 ret = __iommu_probe_device(dev, NULL); 609 mutex_unlock(&iommu_probe_device_lock); 610 if (ret) 611 return ret; 612 613 ops = dev_iommu_ops(dev); 614 if (ops->probe_finalize) 615 ops->probe_finalize(dev); 616 617 return 0; 618 } 619 620 static void __iommu_group_free_device(struct iommu_group *group, 621 struct group_device *grp_dev) 622 { 623 struct device *dev = grp_dev->dev; 624 625 sysfs_remove_link(group->devices_kobj, grp_dev->name); 626 sysfs_remove_link(&dev->kobj, "iommu_group"); 627 628 trace_remove_device_from_group(group->id, dev); 629 630 /* 631 * If the group has become empty then ownership must have been 632 * released, and the current domain must be set back to NULL or 633 * the default domain. 634 */ 635 if (list_empty(&group->devices)) 636 WARN_ON(group->owner_cnt || 637 group->domain != group->default_domain); 638 639 kfree(grp_dev->name); 640 kfree(grp_dev); 641 } 642 643 /* Remove the iommu_group from the struct device. */ 644 static void __iommu_group_remove_device(struct device *dev) 645 { 646 struct iommu_group *group = dev->iommu_group; 647 struct group_device *device; 648 649 mutex_lock(&group->mutex); 650 for_each_group_device(group, device) { 651 if (device->dev != dev) 652 continue; 653 654 list_del(&device->list); 655 __iommu_group_free_device(group, device); 656 if (dev_has_iommu(dev)) 657 iommu_deinit_device(dev); 658 else 659 dev->iommu_group = NULL; 660 break; 661 } 662 mutex_unlock(&group->mutex); 663 664 /* 665 * Pairs with the get in iommu_init_device() or 666 * iommu_group_add_device() 667 */ 668 iommu_group_put(group); 669 } 670 671 static void iommu_release_device(struct device *dev) 672 { 673 struct iommu_group *group = dev->iommu_group; 674 675 if (group) 676 __iommu_group_remove_device(dev); 677 678 /* Free any fwspec if no iommu_driver was ever attached */ 679 if (dev->iommu) 680 dev_iommu_free(dev); 681 } 682 683 static int __init iommu_set_def_domain_type(char *str) 684 { 685 bool pt; 686 int ret; 687 688 ret = kstrtobool(str, &pt); 689 if (ret) 690 return ret; 691 692 if (pt) 693 iommu_set_default_passthrough(true); 694 else 695 iommu_set_default_translated(true); 696 697 return 0; 698 } 699 early_param("iommu.passthrough", iommu_set_def_domain_type); 700 701 static int __init iommu_dma_setup(char *str) 702 { 703 int ret = kstrtobool(str, &iommu_dma_strict); 704 705 if (!ret) 706 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 707 return ret; 708 } 709 early_param("iommu.strict", iommu_dma_setup); 710 711 void iommu_set_dma_strict(void) 712 { 713 iommu_dma_strict = true; 714 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 715 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 716 } 717 718 static ssize_t iommu_group_attr_show(struct kobject *kobj, 719 struct attribute *__attr, char *buf) 720 { 721 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 722 struct iommu_group *group = to_iommu_group(kobj); 723 ssize_t ret = -EIO; 724 725 if (attr->show) 726 ret = attr->show(group, buf); 727 return ret; 728 } 729 730 static ssize_t iommu_group_attr_store(struct kobject *kobj, 731 struct attribute *__attr, 732 const char *buf, size_t count) 733 { 734 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 735 struct iommu_group *group = to_iommu_group(kobj); 736 ssize_t ret = -EIO; 737 738 if (attr->store) 739 ret = attr->store(group, buf, count); 740 return ret; 741 } 742 743 static const struct sysfs_ops iommu_group_sysfs_ops = { 744 .show = iommu_group_attr_show, 745 .store = iommu_group_attr_store, 746 }; 747 748 static int iommu_group_create_file(struct iommu_group *group, 749 struct iommu_group_attribute *attr) 750 { 751 return sysfs_create_file(&group->kobj, &attr->attr); 752 } 753 754 static void iommu_group_remove_file(struct iommu_group *group, 755 struct iommu_group_attribute *attr) 756 { 757 sysfs_remove_file(&group->kobj, &attr->attr); 758 } 759 760 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 761 { 762 return sysfs_emit(buf, "%s\n", group->name); 763 } 764 765 /** 766 * iommu_insert_resv_region - Insert a new region in the 767 * list of reserved regions. 768 * @new: new region to insert 769 * @regions: list of regions 770 * 771 * Elements are sorted by start address and overlapping segments 772 * of the same type are merged. 773 */ 774 static int iommu_insert_resv_region(struct iommu_resv_region *new, 775 struct list_head *regions) 776 { 777 struct iommu_resv_region *iter, *tmp, *nr, *top; 778 LIST_HEAD(stack); 779 780 nr = iommu_alloc_resv_region(new->start, new->length, 781 new->prot, new->type, GFP_KERNEL); 782 if (!nr) 783 return -ENOMEM; 784 785 /* First add the new element based on start address sorting */ 786 list_for_each_entry(iter, regions, list) { 787 if (nr->start < iter->start || 788 (nr->start == iter->start && nr->type <= iter->type)) 789 break; 790 } 791 list_add_tail(&nr->list, &iter->list); 792 793 /* Merge overlapping segments of type nr->type in @regions, if any */ 794 list_for_each_entry_safe(iter, tmp, regions, list) { 795 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 796 797 /* no merge needed on elements of different types than @new */ 798 if (iter->type != new->type) { 799 list_move_tail(&iter->list, &stack); 800 continue; 801 } 802 803 /* look for the last stack element of same type as @iter */ 804 list_for_each_entry_reverse(top, &stack, list) 805 if (top->type == iter->type) 806 goto check_overlap; 807 808 list_move_tail(&iter->list, &stack); 809 continue; 810 811 check_overlap: 812 top_end = top->start + top->length - 1; 813 814 if (iter->start > top_end + 1) { 815 list_move_tail(&iter->list, &stack); 816 } else { 817 top->length = max(top_end, iter_end) - top->start + 1; 818 list_del(&iter->list); 819 kfree(iter); 820 } 821 } 822 list_splice(&stack, regions); 823 return 0; 824 } 825 826 static int 827 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 828 struct list_head *group_resv_regions) 829 { 830 struct iommu_resv_region *entry; 831 int ret = 0; 832 833 list_for_each_entry(entry, dev_resv_regions, list) { 834 ret = iommu_insert_resv_region(entry, group_resv_regions); 835 if (ret) 836 break; 837 } 838 return ret; 839 } 840 841 int iommu_get_group_resv_regions(struct iommu_group *group, 842 struct list_head *head) 843 { 844 struct group_device *device; 845 int ret = 0; 846 847 mutex_lock(&group->mutex); 848 for_each_group_device(group, device) { 849 struct list_head dev_resv_regions; 850 851 /* 852 * Non-API groups still expose reserved_regions in sysfs, 853 * so filter out calls that get here that way. 854 */ 855 if (!dev_has_iommu(device->dev)) 856 break; 857 858 INIT_LIST_HEAD(&dev_resv_regions); 859 iommu_get_resv_regions(device->dev, &dev_resv_regions); 860 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 861 iommu_put_resv_regions(device->dev, &dev_resv_regions); 862 if (ret) 863 break; 864 } 865 mutex_unlock(&group->mutex); 866 return ret; 867 } 868 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 869 870 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 871 char *buf) 872 { 873 struct iommu_resv_region *region, *next; 874 struct list_head group_resv_regions; 875 int offset = 0; 876 877 INIT_LIST_HEAD(&group_resv_regions); 878 iommu_get_group_resv_regions(group, &group_resv_regions); 879 880 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 881 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n", 882 (long long)region->start, 883 (long long)(region->start + 884 region->length - 1), 885 iommu_group_resv_type_string[region->type]); 886 kfree(region); 887 } 888 889 return offset; 890 } 891 892 static ssize_t iommu_group_show_type(struct iommu_group *group, 893 char *buf) 894 { 895 char *type = "unknown"; 896 897 mutex_lock(&group->mutex); 898 if (group->default_domain) { 899 switch (group->default_domain->type) { 900 case IOMMU_DOMAIN_BLOCKED: 901 type = "blocked"; 902 break; 903 case IOMMU_DOMAIN_IDENTITY: 904 type = "identity"; 905 break; 906 case IOMMU_DOMAIN_UNMANAGED: 907 type = "unmanaged"; 908 break; 909 case IOMMU_DOMAIN_DMA: 910 type = "DMA"; 911 break; 912 case IOMMU_DOMAIN_DMA_FQ: 913 type = "DMA-FQ"; 914 break; 915 } 916 } 917 mutex_unlock(&group->mutex); 918 919 return sysfs_emit(buf, "%s\n", type); 920 } 921 922 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 923 924 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 925 iommu_group_show_resv_regions, NULL); 926 927 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 928 iommu_group_store_type); 929 930 static void iommu_group_release(struct kobject *kobj) 931 { 932 struct iommu_group *group = to_iommu_group(kobj); 933 934 pr_debug("Releasing group %d\n", group->id); 935 936 if (group->iommu_data_release) 937 group->iommu_data_release(group->iommu_data); 938 939 ida_free(&iommu_group_ida, group->id); 940 941 /* Domains are free'd by iommu_deinit_device() */ 942 WARN_ON(group->default_domain); 943 WARN_ON(group->blocking_domain); 944 945 kfree(group->name); 946 kfree(group); 947 } 948 949 static const struct kobj_type iommu_group_ktype = { 950 .sysfs_ops = &iommu_group_sysfs_ops, 951 .release = iommu_group_release, 952 }; 953 954 /** 955 * iommu_group_alloc - Allocate a new group 956 * 957 * This function is called by an iommu driver to allocate a new iommu 958 * group. The iommu group represents the minimum granularity of the iommu. 959 * Upon successful return, the caller holds a reference to the supplied 960 * group in order to hold the group until devices are added. Use 961 * iommu_group_put() to release this extra reference count, allowing the 962 * group to be automatically reclaimed once it has no devices or external 963 * references. 964 */ 965 struct iommu_group *iommu_group_alloc(void) 966 { 967 struct iommu_group *group; 968 int ret; 969 970 group = kzalloc(sizeof(*group), GFP_KERNEL); 971 if (!group) 972 return ERR_PTR(-ENOMEM); 973 974 group->kobj.kset = iommu_group_kset; 975 mutex_init(&group->mutex); 976 INIT_LIST_HEAD(&group->devices); 977 INIT_LIST_HEAD(&group->entry); 978 xa_init(&group->pasid_array); 979 980 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL); 981 if (ret < 0) { 982 kfree(group); 983 return ERR_PTR(ret); 984 } 985 group->id = ret; 986 987 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 988 NULL, "%d", group->id); 989 if (ret) { 990 kobject_put(&group->kobj); 991 return ERR_PTR(ret); 992 } 993 994 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 995 if (!group->devices_kobj) { 996 kobject_put(&group->kobj); /* triggers .release & free */ 997 return ERR_PTR(-ENOMEM); 998 } 999 1000 /* 1001 * The devices_kobj holds a reference on the group kobject, so 1002 * as long as that exists so will the group. We can therefore 1003 * use the devices_kobj for reference counting. 1004 */ 1005 kobject_put(&group->kobj); 1006 1007 ret = iommu_group_create_file(group, 1008 &iommu_group_attr_reserved_regions); 1009 if (ret) { 1010 kobject_put(group->devices_kobj); 1011 return ERR_PTR(ret); 1012 } 1013 1014 ret = iommu_group_create_file(group, &iommu_group_attr_type); 1015 if (ret) { 1016 kobject_put(group->devices_kobj); 1017 return ERR_PTR(ret); 1018 } 1019 1020 pr_debug("Allocated group %d\n", group->id); 1021 1022 return group; 1023 } 1024 EXPORT_SYMBOL_GPL(iommu_group_alloc); 1025 1026 /** 1027 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 1028 * @group: the group 1029 * 1030 * iommu drivers can store data in the group for use when doing iommu 1031 * operations. This function provides a way to retrieve it. Caller 1032 * should hold a group reference. 1033 */ 1034 void *iommu_group_get_iommudata(struct iommu_group *group) 1035 { 1036 return group->iommu_data; 1037 } 1038 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 1039 1040 /** 1041 * iommu_group_set_iommudata - set iommu_data for a group 1042 * @group: the group 1043 * @iommu_data: new data 1044 * @release: release function for iommu_data 1045 * 1046 * iommu drivers can store data in the group for use when doing iommu 1047 * operations. This function provides a way to set the data after 1048 * the group has been allocated. Caller should hold a group reference. 1049 */ 1050 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 1051 void (*release)(void *iommu_data)) 1052 { 1053 group->iommu_data = iommu_data; 1054 group->iommu_data_release = release; 1055 } 1056 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 1057 1058 /** 1059 * iommu_group_set_name - set name for a group 1060 * @group: the group 1061 * @name: name 1062 * 1063 * Allow iommu driver to set a name for a group. When set it will 1064 * appear in a name attribute file under the group in sysfs. 1065 */ 1066 int iommu_group_set_name(struct iommu_group *group, const char *name) 1067 { 1068 int ret; 1069 1070 if (group->name) { 1071 iommu_group_remove_file(group, &iommu_group_attr_name); 1072 kfree(group->name); 1073 group->name = NULL; 1074 if (!name) 1075 return 0; 1076 } 1077 1078 group->name = kstrdup(name, GFP_KERNEL); 1079 if (!group->name) 1080 return -ENOMEM; 1081 1082 ret = iommu_group_create_file(group, &iommu_group_attr_name); 1083 if (ret) { 1084 kfree(group->name); 1085 group->name = NULL; 1086 return ret; 1087 } 1088 1089 return 0; 1090 } 1091 EXPORT_SYMBOL_GPL(iommu_group_set_name); 1092 1093 static int iommu_create_device_direct_mappings(struct iommu_domain *domain, 1094 struct device *dev) 1095 { 1096 struct iommu_resv_region *entry; 1097 struct list_head mappings; 1098 unsigned long pg_size; 1099 int ret = 0; 1100 1101 pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0; 1102 INIT_LIST_HEAD(&mappings); 1103 1104 if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size)) 1105 return -EINVAL; 1106 1107 iommu_get_resv_regions(dev, &mappings); 1108 1109 /* We need to consider overlapping regions for different devices */ 1110 list_for_each_entry(entry, &mappings, list) { 1111 dma_addr_t start, end, addr; 1112 size_t map_size = 0; 1113 1114 if (entry->type == IOMMU_RESV_DIRECT) 1115 dev->iommu->require_direct = 1; 1116 1117 if ((entry->type != IOMMU_RESV_DIRECT && 1118 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) || 1119 !iommu_is_dma_domain(domain)) 1120 continue; 1121 1122 start = ALIGN(entry->start, pg_size); 1123 end = ALIGN(entry->start + entry->length, pg_size); 1124 1125 for (addr = start; addr <= end; addr += pg_size) { 1126 phys_addr_t phys_addr; 1127 1128 if (addr == end) 1129 goto map_end; 1130 1131 phys_addr = iommu_iova_to_phys(domain, addr); 1132 if (!phys_addr) { 1133 map_size += pg_size; 1134 continue; 1135 } 1136 1137 map_end: 1138 if (map_size) { 1139 ret = iommu_map(domain, addr - map_size, 1140 addr - map_size, map_size, 1141 entry->prot, GFP_KERNEL); 1142 if (ret) 1143 goto out; 1144 map_size = 0; 1145 } 1146 } 1147 1148 } 1149 1150 if (!list_empty(&mappings) && iommu_is_dma_domain(domain)) 1151 iommu_flush_iotlb_all(domain); 1152 1153 out: 1154 iommu_put_resv_regions(dev, &mappings); 1155 1156 return ret; 1157 } 1158 1159 /* This is undone by __iommu_group_free_device() */ 1160 static struct group_device *iommu_group_alloc_device(struct iommu_group *group, 1161 struct device *dev) 1162 { 1163 int ret, i = 0; 1164 struct group_device *device; 1165 1166 device = kzalloc(sizeof(*device), GFP_KERNEL); 1167 if (!device) 1168 return ERR_PTR(-ENOMEM); 1169 1170 device->dev = dev; 1171 1172 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 1173 if (ret) 1174 goto err_free_device; 1175 1176 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 1177 rename: 1178 if (!device->name) { 1179 ret = -ENOMEM; 1180 goto err_remove_link; 1181 } 1182 1183 ret = sysfs_create_link_nowarn(group->devices_kobj, 1184 &dev->kobj, device->name); 1185 if (ret) { 1186 if (ret == -EEXIST && i >= 0) { 1187 /* 1188 * Account for the slim chance of collision 1189 * and append an instance to the name. 1190 */ 1191 kfree(device->name); 1192 device->name = kasprintf(GFP_KERNEL, "%s.%d", 1193 kobject_name(&dev->kobj), i++); 1194 goto rename; 1195 } 1196 goto err_free_name; 1197 } 1198 1199 trace_add_device_to_group(group->id, dev); 1200 1201 dev_info(dev, "Adding to iommu group %d\n", group->id); 1202 1203 return device; 1204 1205 err_free_name: 1206 kfree(device->name); 1207 err_remove_link: 1208 sysfs_remove_link(&dev->kobj, "iommu_group"); 1209 err_free_device: 1210 kfree(device); 1211 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 1212 return ERR_PTR(ret); 1213 } 1214 1215 /** 1216 * iommu_group_add_device - add a device to an iommu group 1217 * @group: the group into which to add the device (reference should be held) 1218 * @dev: the device 1219 * 1220 * This function is called by an iommu driver to add a device into a 1221 * group. Adding a device increments the group reference count. 1222 */ 1223 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 1224 { 1225 struct group_device *gdev; 1226 1227 gdev = iommu_group_alloc_device(group, dev); 1228 if (IS_ERR(gdev)) 1229 return PTR_ERR(gdev); 1230 1231 iommu_group_ref_get(group); 1232 dev->iommu_group = group; 1233 1234 mutex_lock(&group->mutex); 1235 list_add_tail(&gdev->list, &group->devices); 1236 mutex_unlock(&group->mutex); 1237 return 0; 1238 } 1239 EXPORT_SYMBOL_GPL(iommu_group_add_device); 1240 1241 /** 1242 * iommu_group_remove_device - remove a device from it's current group 1243 * @dev: device to be removed 1244 * 1245 * This function is called by an iommu driver to remove the device from 1246 * it's current group. This decrements the iommu group reference count. 1247 */ 1248 void iommu_group_remove_device(struct device *dev) 1249 { 1250 struct iommu_group *group = dev->iommu_group; 1251 1252 if (!group) 1253 return; 1254 1255 dev_info(dev, "Removing from iommu group %d\n", group->id); 1256 1257 __iommu_group_remove_device(dev); 1258 } 1259 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 1260 1261 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API) 1262 /** 1263 * iommu_group_mutex_assert - Check device group mutex lock 1264 * @dev: the device that has group param set 1265 * 1266 * This function is called by an iommu driver to check whether it holds 1267 * group mutex lock for the given device or not. 1268 * 1269 * Note that this function must be called after device group param is set. 1270 */ 1271 void iommu_group_mutex_assert(struct device *dev) 1272 { 1273 struct iommu_group *group = dev->iommu_group; 1274 1275 lockdep_assert_held(&group->mutex); 1276 } 1277 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert); 1278 #endif 1279 1280 static struct device *iommu_group_first_dev(struct iommu_group *group) 1281 { 1282 lockdep_assert_held(&group->mutex); 1283 return list_first_entry(&group->devices, struct group_device, list)->dev; 1284 } 1285 1286 /** 1287 * iommu_group_for_each_dev - iterate over each device in the group 1288 * @group: the group 1289 * @data: caller opaque data to be passed to callback function 1290 * @fn: caller supplied callback function 1291 * 1292 * This function is called by group users to iterate over group devices. 1293 * Callers should hold a reference count to the group during callback. 1294 * The group->mutex is held across callbacks, which will block calls to 1295 * iommu_group_add/remove_device. 1296 */ 1297 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1298 int (*fn)(struct device *, void *)) 1299 { 1300 struct group_device *device; 1301 int ret = 0; 1302 1303 mutex_lock(&group->mutex); 1304 for_each_group_device(group, device) { 1305 ret = fn(device->dev, data); 1306 if (ret) 1307 break; 1308 } 1309 mutex_unlock(&group->mutex); 1310 1311 return ret; 1312 } 1313 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1314 1315 /** 1316 * iommu_group_get - Return the group for a device and increment reference 1317 * @dev: get the group that this device belongs to 1318 * 1319 * This function is called by iommu drivers and users to get the group 1320 * for the specified device. If found, the group is returned and the group 1321 * reference in incremented, else NULL. 1322 */ 1323 struct iommu_group *iommu_group_get(struct device *dev) 1324 { 1325 struct iommu_group *group = dev->iommu_group; 1326 1327 if (group) 1328 kobject_get(group->devices_kobj); 1329 1330 return group; 1331 } 1332 EXPORT_SYMBOL_GPL(iommu_group_get); 1333 1334 /** 1335 * iommu_group_ref_get - Increment reference on a group 1336 * @group: the group to use, must not be NULL 1337 * 1338 * This function is called by iommu drivers to take additional references on an 1339 * existing group. Returns the given group for convenience. 1340 */ 1341 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1342 { 1343 kobject_get(group->devices_kobj); 1344 return group; 1345 } 1346 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1347 1348 /** 1349 * iommu_group_put - Decrement group reference 1350 * @group: the group to use 1351 * 1352 * This function is called by iommu drivers and users to release the 1353 * iommu group. Once the reference count is zero, the group is released. 1354 */ 1355 void iommu_group_put(struct iommu_group *group) 1356 { 1357 if (group) 1358 kobject_put(group->devices_kobj); 1359 } 1360 EXPORT_SYMBOL_GPL(iommu_group_put); 1361 1362 /** 1363 * iommu_group_id - Return ID for a group 1364 * @group: the group to ID 1365 * 1366 * Return the unique ID for the group matching the sysfs group number. 1367 */ 1368 int iommu_group_id(struct iommu_group *group) 1369 { 1370 return group->id; 1371 } 1372 EXPORT_SYMBOL_GPL(iommu_group_id); 1373 1374 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1375 unsigned long *devfns); 1376 1377 /* 1378 * To consider a PCI device isolated, we require ACS to support Source 1379 * Validation, Request Redirection, Completer Redirection, and Upstream 1380 * Forwarding. This effectively means that devices cannot spoof their 1381 * requester ID, requests and completions cannot be redirected, and all 1382 * transactions are forwarded upstream, even as it passes through a 1383 * bridge where the target device is downstream. 1384 */ 1385 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1386 1387 /* 1388 * For multifunction devices which are not isolated from each other, find 1389 * all the other non-isolated functions and look for existing groups. For 1390 * each function, we also need to look for aliases to or from other devices 1391 * that may already have a group. 1392 */ 1393 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1394 unsigned long *devfns) 1395 { 1396 struct pci_dev *tmp = NULL; 1397 struct iommu_group *group; 1398 1399 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1400 return NULL; 1401 1402 for_each_pci_dev(tmp) { 1403 if (tmp == pdev || tmp->bus != pdev->bus || 1404 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1405 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1406 continue; 1407 1408 group = get_pci_alias_group(tmp, devfns); 1409 if (group) { 1410 pci_dev_put(tmp); 1411 return group; 1412 } 1413 } 1414 1415 return NULL; 1416 } 1417 1418 /* 1419 * Look for aliases to or from the given device for existing groups. DMA 1420 * aliases are only supported on the same bus, therefore the search 1421 * space is quite small (especially since we're really only looking at pcie 1422 * device, and therefore only expect multiple slots on the root complex or 1423 * downstream switch ports). It's conceivable though that a pair of 1424 * multifunction devices could have aliases between them that would cause a 1425 * loop. To prevent this, we use a bitmap to track where we've been. 1426 */ 1427 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1428 unsigned long *devfns) 1429 { 1430 struct pci_dev *tmp = NULL; 1431 struct iommu_group *group; 1432 1433 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1434 return NULL; 1435 1436 group = iommu_group_get(&pdev->dev); 1437 if (group) 1438 return group; 1439 1440 for_each_pci_dev(tmp) { 1441 if (tmp == pdev || tmp->bus != pdev->bus) 1442 continue; 1443 1444 /* We alias them or they alias us */ 1445 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1446 group = get_pci_alias_group(tmp, devfns); 1447 if (group) { 1448 pci_dev_put(tmp); 1449 return group; 1450 } 1451 1452 group = get_pci_function_alias_group(tmp, devfns); 1453 if (group) { 1454 pci_dev_put(tmp); 1455 return group; 1456 } 1457 } 1458 } 1459 1460 return NULL; 1461 } 1462 1463 struct group_for_pci_data { 1464 struct pci_dev *pdev; 1465 struct iommu_group *group; 1466 }; 1467 1468 /* 1469 * DMA alias iterator callback, return the last seen device. Stop and return 1470 * the IOMMU group if we find one along the way. 1471 */ 1472 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1473 { 1474 struct group_for_pci_data *data = opaque; 1475 1476 data->pdev = pdev; 1477 data->group = iommu_group_get(&pdev->dev); 1478 1479 return data->group != NULL; 1480 } 1481 1482 /* 1483 * Generic device_group call-back function. It just allocates one 1484 * iommu-group per device. 1485 */ 1486 struct iommu_group *generic_device_group(struct device *dev) 1487 { 1488 return iommu_group_alloc(); 1489 } 1490 EXPORT_SYMBOL_GPL(generic_device_group); 1491 1492 /* 1493 * Generic device_group call-back function. It just allocates one 1494 * iommu-group per iommu driver instance shared by every device 1495 * probed by that iommu driver. 1496 */ 1497 struct iommu_group *generic_single_device_group(struct device *dev) 1498 { 1499 struct iommu_device *iommu = dev->iommu->iommu_dev; 1500 1501 if (!iommu->singleton_group) { 1502 struct iommu_group *group; 1503 1504 group = iommu_group_alloc(); 1505 if (IS_ERR(group)) 1506 return group; 1507 iommu->singleton_group = group; 1508 } 1509 return iommu_group_ref_get(iommu->singleton_group); 1510 } 1511 EXPORT_SYMBOL_GPL(generic_single_device_group); 1512 1513 /* 1514 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1515 * to find or create an IOMMU group for a device. 1516 */ 1517 struct iommu_group *pci_device_group(struct device *dev) 1518 { 1519 struct pci_dev *pdev = to_pci_dev(dev); 1520 struct group_for_pci_data data; 1521 struct pci_bus *bus; 1522 struct iommu_group *group = NULL; 1523 u64 devfns[4] = { 0 }; 1524 1525 if (WARN_ON(!dev_is_pci(dev))) 1526 return ERR_PTR(-EINVAL); 1527 1528 /* 1529 * Find the upstream DMA alias for the device. A device must not 1530 * be aliased due to topology in order to have its own IOMMU group. 1531 * If we find an alias along the way that already belongs to a 1532 * group, use it. 1533 */ 1534 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1535 return data.group; 1536 1537 pdev = data.pdev; 1538 1539 /* 1540 * Continue upstream from the point of minimum IOMMU granularity 1541 * due to aliases to the point where devices are protected from 1542 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1543 * group, use it. 1544 */ 1545 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1546 if (!bus->self) 1547 continue; 1548 1549 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1550 break; 1551 1552 pdev = bus->self; 1553 1554 group = iommu_group_get(&pdev->dev); 1555 if (group) 1556 return group; 1557 } 1558 1559 /* 1560 * Look for existing groups on device aliases. If we alias another 1561 * device or another device aliases us, use the same group. 1562 */ 1563 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1564 if (group) 1565 return group; 1566 1567 /* 1568 * Look for existing groups on non-isolated functions on the same 1569 * slot and aliases of those funcions, if any. No need to clear 1570 * the search bitmap, the tested devfns are still valid. 1571 */ 1572 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1573 if (group) 1574 return group; 1575 1576 /* No shared group found, allocate new */ 1577 return iommu_group_alloc(); 1578 } 1579 EXPORT_SYMBOL_GPL(pci_device_group); 1580 1581 /* Get the IOMMU group for device on fsl-mc bus */ 1582 struct iommu_group *fsl_mc_device_group(struct device *dev) 1583 { 1584 struct device *cont_dev = fsl_mc_cont_dev(dev); 1585 struct iommu_group *group; 1586 1587 group = iommu_group_get(cont_dev); 1588 if (!group) 1589 group = iommu_group_alloc(); 1590 return group; 1591 } 1592 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1593 1594 static struct iommu_domain * 1595 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type) 1596 { 1597 if (group->default_domain && group->default_domain->type == req_type) 1598 return group->default_domain; 1599 return __iommu_group_domain_alloc(group, req_type); 1600 } 1601 1602 /* 1603 * req_type of 0 means "auto" which means to select a domain based on 1604 * iommu_def_domain_type or what the driver actually supports. 1605 */ 1606 static struct iommu_domain * 1607 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type) 1608 { 1609 const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group)); 1610 struct iommu_domain *dom; 1611 1612 lockdep_assert_held(&group->mutex); 1613 1614 /* 1615 * Allow legacy drivers to specify the domain that will be the default 1616 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM 1617 * domain. Do not use in new drivers. 1618 */ 1619 if (ops->default_domain) { 1620 if (req_type != ops->default_domain->type) 1621 return ERR_PTR(-EINVAL); 1622 return ops->default_domain; 1623 } 1624 1625 if (req_type) 1626 return __iommu_group_alloc_default_domain(group, req_type); 1627 1628 /* The driver gave no guidance on what type to use, try the default */ 1629 dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type); 1630 if (!IS_ERR(dom)) 1631 return dom; 1632 1633 /* Otherwise IDENTITY and DMA_FQ defaults will try DMA */ 1634 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA) 1635 return ERR_PTR(-EINVAL); 1636 dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA); 1637 if (IS_ERR(dom)) 1638 return dom; 1639 1640 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1641 iommu_def_domain_type, group->name); 1642 return dom; 1643 } 1644 1645 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1646 { 1647 return group->default_domain; 1648 } 1649 1650 static int probe_iommu_group(struct device *dev, void *data) 1651 { 1652 struct list_head *group_list = data; 1653 int ret; 1654 1655 mutex_lock(&iommu_probe_device_lock); 1656 ret = __iommu_probe_device(dev, group_list); 1657 mutex_unlock(&iommu_probe_device_lock); 1658 if (ret == -ENODEV) 1659 ret = 0; 1660 1661 return ret; 1662 } 1663 1664 static int iommu_bus_notifier(struct notifier_block *nb, 1665 unsigned long action, void *data) 1666 { 1667 struct device *dev = data; 1668 1669 if (action == BUS_NOTIFY_ADD_DEVICE) { 1670 int ret; 1671 1672 ret = iommu_probe_device(dev); 1673 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1674 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1675 iommu_release_device(dev); 1676 return NOTIFY_OK; 1677 } 1678 1679 return 0; 1680 } 1681 1682 /* 1683 * Combine the driver's chosen def_domain_type across all the devices in a 1684 * group. Drivers must give a consistent result. 1685 */ 1686 static int iommu_get_def_domain_type(struct iommu_group *group, 1687 struct device *dev, int cur_type) 1688 { 1689 const struct iommu_ops *ops = dev_iommu_ops(dev); 1690 int type; 1691 1692 if (ops->default_domain) { 1693 /* 1694 * Drivers that declare a global static default_domain will 1695 * always choose that. 1696 */ 1697 type = ops->default_domain->type; 1698 } else { 1699 if (ops->def_domain_type) 1700 type = ops->def_domain_type(dev); 1701 else 1702 return cur_type; 1703 } 1704 if (!type || cur_type == type) 1705 return cur_type; 1706 if (!cur_type) 1707 return type; 1708 1709 dev_err_ratelimited( 1710 dev, 1711 "IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n", 1712 iommu_domain_type_str(cur_type), iommu_domain_type_str(type), 1713 group->id); 1714 1715 /* 1716 * Try to recover, drivers are allowed to force IDENITY or DMA, IDENTITY 1717 * takes precedence. 1718 */ 1719 if (type == IOMMU_DOMAIN_IDENTITY) 1720 return type; 1721 return cur_type; 1722 } 1723 1724 /* 1725 * A target_type of 0 will select the best domain type. 0 can be returned in 1726 * this case meaning the global default should be used. 1727 */ 1728 static int iommu_get_default_domain_type(struct iommu_group *group, 1729 int target_type) 1730 { 1731 struct device *untrusted = NULL; 1732 struct group_device *gdev; 1733 int driver_type = 0; 1734 1735 lockdep_assert_held(&group->mutex); 1736 1737 /* 1738 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an 1739 * identity_domain and it will automatically become their default 1740 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain. 1741 * Override the selection to IDENTITY. 1742 */ 1743 if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) { 1744 static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) && 1745 IS_ENABLED(CONFIG_IOMMU_DMA))); 1746 driver_type = IOMMU_DOMAIN_IDENTITY; 1747 } 1748 1749 for_each_group_device(group, gdev) { 1750 driver_type = iommu_get_def_domain_type(group, gdev->dev, 1751 driver_type); 1752 1753 if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) { 1754 /* 1755 * No ARM32 using systems will set untrusted, it cannot 1756 * work. 1757 */ 1758 if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))) 1759 return -1; 1760 untrusted = gdev->dev; 1761 } 1762 } 1763 1764 /* 1765 * If the common dma ops are not selected in kconfig then we cannot use 1766 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been 1767 * selected. 1768 */ 1769 if (!IS_ENABLED(CONFIG_IOMMU_DMA)) { 1770 if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA)) 1771 return -1; 1772 if (!driver_type) 1773 driver_type = IOMMU_DOMAIN_IDENTITY; 1774 } 1775 1776 if (untrusted) { 1777 if (driver_type && driver_type != IOMMU_DOMAIN_DMA) { 1778 dev_err_ratelimited( 1779 untrusted, 1780 "Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n", 1781 group->id, iommu_domain_type_str(driver_type)); 1782 return -1; 1783 } 1784 driver_type = IOMMU_DOMAIN_DMA; 1785 } 1786 1787 if (target_type) { 1788 if (driver_type && target_type != driver_type) 1789 return -1; 1790 return target_type; 1791 } 1792 return driver_type; 1793 } 1794 1795 static void iommu_group_do_probe_finalize(struct device *dev) 1796 { 1797 const struct iommu_ops *ops = dev_iommu_ops(dev); 1798 1799 if (ops->probe_finalize) 1800 ops->probe_finalize(dev); 1801 } 1802 1803 int bus_iommu_probe(const struct bus_type *bus) 1804 { 1805 struct iommu_group *group, *next; 1806 LIST_HEAD(group_list); 1807 int ret; 1808 1809 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1810 if (ret) 1811 return ret; 1812 1813 list_for_each_entry_safe(group, next, &group_list, entry) { 1814 struct group_device *gdev; 1815 1816 mutex_lock(&group->mutex); 1817 1818 /* Remove item from the list */ 1819 list_del_init(&group->entry); 1820 1821 /* 1822 * We go to the trouble of deferred default domain creation so 1823 * that the cross-group default domain type and the setup of the 1824 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios. 1825 */ 1826 ret = iommu_setup_default_domain(group, 0); 1827 if (ret) { 1828 mutex_unlock(&group->mutex); 1829 return ret; 1830 } 1831 mutex_unlock(&group->mutex); 1832 1833 /* 1834 * FIXME: Mis-locked because the ops->probe_finalize() call-back 1835 * of some IOMMU drivers calls arm_iommu_attach_device() which 1836 * in-turn might call back into IOMMU core code, where it tries 1837 * to take group->mutex, resulting in a deadlock. 1838 */ 1839 for_each_group_device(group, gdev) 1840 iommu_group_do_probe_finalize(gdev->dev); 1841 } 1842 1843 return 0; 1844 } 1845 1846 /** 1847 * iommu_present() - make platform-specific assumptions about an IOMMU 1848 * @bus: bus to check 1849 * 1850 * Do not use this function. You want device_iommu_mapped() instead. 1851 * 1852 * Return: true if some IOMMU is present and aware of devices on the given bus; 1853 * in general it may not be the only IOMMU, and it may not have anything to do 1854 * with whatever device you are ultimately interested in. 1855 */ 1856 bool iommu_present(const struct bus_type *bus) 1857 { 1858 bool ret = false; 1859 1860 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { 1861 if (iommu_buses[i] == bus) { 1862 spin_lock(&iommu_device_lock); 1863 ret = !list_empty(&iommu_device_list); 1864 spin_unlock(&iommu_device_lock); 1865 } 1866 } 1867 return ret; 1868 } 1869 EXPORT_SYMBOL_GPL(iommu_present); 1870 1871 /** 1872 * device_iommu_capable() - check for a general IOMMU capability 1873 * @dev: device to which the capability would be relevant, if available 1874 * @cap: IOMMU capability 1875 * 1876 * Return: true if an IOMMU is present and supports the given capability 1877 * for the given device, otherwise false. 1878 */ 1879 bool device_iommu_capable(struct device *dev, enum iommu_cap cap) 1880 { 1881 const struct iommu_ops *ops; 1882 1883 if (!dev_has_iommu(dev)) 1884 return false; 1885 1886 ops = dev_iommu_ops(dev); 1887 if (!ops->capable) 1888 return false; 1889 1890 return ops->capable(dev, cap); 1891 } 1892 EXPORT_SYMBOL_GPL(device_iommu_capable); 1893 1894 /** 1895 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi() 1896 * for a group 1897 * @group: Group to query 1898 * 1899 * IOMMU groups should not have differing values of 1900 * msi_device_has_isolated_msi() for devices in a group. However nothing 1901 * directly prevents this, so ensure mistakes don't result in isolation failures 1902 * by checking that all the devices are the same. 1903 */ 1904 bool iommu_group_has_isolated_msi(struct iommu_group *group) 1905 { 1906 struct group_device *group_dev; 1907 bool ret = true; 1908 1909 mutex_lock(&group->mutex); 1910 for_each_group_device(group, group_dev) 1911 ret &= msi_device_has_isolated_msi(group_dev->dev); 1912 mutex_unlock(&group->mutex); 1913 return ret; 1914 } 1915 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi); 1916 1917 /** 1918 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1919 * @domain: iommu domain 1920 * @handler: fault handler 1921 * @token: user data, will be passed back to the fault handler 1922 * 1923 * This function should be used by IOMMU users which want to be notified 1924 * whenever an IOMMU fault happens. 1925 * 1926 * The fault handler itself should return 0 on success, and an appropriate 1927 * error code otherwise. 1928 */ 1929 void iommu_set_fault_handler(struct iommu_domain *domain, 1930 iommu_fault_handler_t handler, 1931 void *token) 1932 { 1933 BUG_ON(!domain); 1934 1935 domain->handler = handler; 1936 domain->handler_token = token; 1937 } 1938 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1939 1940 static struct iommu_domain *__iommu_domain_alloc(const struct iommu_ops *ops, 1941 struct device *dev, 1942 unsigned int type) 1943 { 1944 struct iommu_domain *domain; 1945 unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS; 1946 1947 if (alloc_type == IOMMU_DOMAIN_IDENTITY && ops->identity_domain) 1948 return ops->identity_domain; 1949 else if (alloc_type == IOMMU_DOMAIN_BLOCKED && ops->blocked_domain) 1950 return ops->blocked_domain; 1951 else if (type & __IOMMU_DOMAIN_PAGING && ops->domain_alloc_paging) 1952 domain = ops->domain_alloc_paging(dev); 1953 else if (ops->domain_alloc) 1954 domain = ops->domain_alloc(alloc_type); 1955 else 1956 return ERR_PTR(-EOPNOTSUPP); 1957 1958 /* 1959 * Many domain_alloc ops now return ERR_PTR, make things easier for the 1960 * driver by accepting ERR_PTR from all domain_alloc ops instead of 1961 * having two rules. 1962 */ 1963 if (IS_ERR(domain)) 1964 return domain; 1965 if (!domain) 1966 return ERR_PTR(-ENOMEM); 1967 1968 domain->type = type; 1969 domain->owner = ops; 1970 /* 1971 * If not already set, assume all sizes by default; the driver 1972 * may override this later 1973 */ 1974 if (!domain->pgsize_bitmap) 1975 domain->pgsize_bitmap = ops->pgsize_bitmap; 1976 1977 if (!domain->ops) 1978 domain->ops = ops->default_domain_ops; 1979 1980 if (iommu_is_dma_domain(domain)) { 1981 int rc; 1982 1983 rc = iommu_get_dma_cookie(domain); 1984 if (rc) { 1985 iommu_domain_free(domain); 1986 return ERR_PTR(rc); 1987 } 1988 } 1989 return domain; 1990 } 1991 1992 static struct iommu_domain * 1993 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type) 1994 { 1995 struct device *dev = iommu_group_first_dev(group); 1996 1997 return __iommu_domain_alloc(dev_iommu_ops(dev), dev, type); 1998 } 1999 2000 static int __iommu_domain_alloc_dev(struct device *dev, void *data) 2001 { 2002 const struct iommu_ops **ops = data; 2003 2004 if (!dev_has_iommu(dev)) 2005 return 0; 2006 2007 if (WARN_ONCE(*ops && *ops != dev_iommu_ops(dev), 2008 "Multiple IOMMU drivers present for bus %s, which the public IOMMU API can't fully support yet. You will still need to disable one or more for this to work, sorry!\n", 2009 dev_bus_name(dev))) 2010 return -EBUSY; 2011 2012 *ops = dev_iommu_ops(dev); 2013 return 0; 2014 } 2015 2016 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus) 2017 { 2018 const struct iommu_ops *ops = NULL; 2019 int err = bus_for_each_dev(bus, NULL, &ops, __iommu_domain_alloc_dev); 2020 struct iommu_domain *domain; 2021 2022 if (err || !ops) 2023 return NULL; 2024 2025 domain = __iommu_domain_alloc(ops, NULL, IOMMU_DOMAIN_UNMANAGED); 2026 if (IS_ERR(domain)) 2027 return NULL; 2028 return domain; 2029 } 2030 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 2031 2032 void iommu_domain_free(struct iommu_domain *domain) 2033 { 2034 if (domain->type == IOMMU_DOMAIN_SVA) 2035 mmdrop(domain->mm); 2036 iommu_put_dma_cookie(domain); 2037 if (domain->ops->free) 2038 domain->ops->free(domain); 2039 } 2040 EXPORT_SYMBOL_GPL(iommu_domain_free); 2041 2042 /* 2043 * Put the group's domain back to the appropriate core-owned domain - either the 2044 * standard kernel-mode DMA configuration or an all-DMA-blocked domain. 2045 */ 2046 static void __iommu_group_set_core_domain(struct iommu_group *group) 2047 { 2048 struct iommu_domain *new_domain; 2049 2050 if (group->owner) 2051 new_domain = group->blocking_domain; 2052 else 2053 new_domain = group->default_domain; 2054 2055 __iommu_group_set_domain_nofail(group, new_domain); 2056 } 2057 2058 static int __iommu_attach_device(struct iommu_domain *domain, 2059 struct device *dev) 2060 { 2061 int ret; 2062 2063 if (unlikely(domain->ops->attach_dev == NULL)) 2064 return -ENODEV; 2065 2066 ret = domain->ops->attach_dev(domain, dev); 2067 if (ret) 2068 return ret; 2069 dev->iommu->attach_deferred = 0; 2070 trace_attach_device_to_domain(dev); 2071 return 0; 2072 } 2073 2074 /** 2075 * iommu_attach_device - Attach an IOMMU domain to a device 2076 * @domain: IOMMU domain to attach 2077 * @dev: Device that will be attached 2078 * 2079 * Returns 0 on success and error code on failure 2080 * 2081 * Note that EINVAL can be treated as a soft failure, indicating 2082 * that certain configuration of the domain is incompatible with 2083 * the device. In this case attaching a different domain to the 2084 * device may succeed. 2085 */ 2086 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 2087 { 2088 /* Caller must be a probed driver on dev */ 2089 struct iommu_group *group = dev->iommu_group; 2090 int ret; 2091 2092 if (!group) 2093 return -ENODEV; 2094 2095 /* 2096 * Lock the group to make sure the device-count doesn't 2097 * change while we are attaching 2098 */ 2099 mutex_lock(&group->mutex); 2100 ret = -EINVAL; 2101 if (list_count_nodes(&group->devices) != 1) 2102 goto out_unlock; 2103 2104 ret = __iommu_attach_group(domain, group); 2105 2106 out_unlock: 2107 mutex_unlock(&group->mutex); 2108 return ret; 2109 } 2110 EXPORT_SYMBOL_GPL(iommu_attach_device); 2111 2112 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2113 { 2114 if (dev->iommu && dev->iommu->attach_deferred) 2115 return __iommu_attach_device(domain, dev); 2116 2117 return 0; 2118 } 2119 2120 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2121 { 2122 /* Caller must be a probed driver on dev */ 2123 struct iommu_group *group = dev->iommu_group; 2124 2125 if (!group) 2126 return; 2127 2128 mutex_lock(&group->mutex); 2129 if (WARN_ON(domain != group->domain) || 2130 WARN_ON(list_count_nodes(&group->devices) != 1)) 2131 goto out_unlock; 2132 __iommu_group_set_core_domain(group); 2133 2134 out_unlock: 2135 mutex_unlock(&group->mutex); 2136 } 2137 EXPORT_SYMBOL_GPL(iommu_detach_device); 2138 2139 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2140 { 2141 /* Caller must be a probed driver on dev */ 2142 struct iommu_group *group = dev->iommu_group; 2143 2144 if (!group) 2145 return NULL; 2146 2147 return group->domain; 2148 } 2149 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2150 2151 /* 2152 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2153 * guarantees that the group and its default domain are valid and correct. 2154 */ 2155 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2156 { 2157 return dev->iommu_group->default_domain; 2158 } 2159 2160 static int __iommu_attach_group(struct iommu_domain *domain, 2161 struct iommu_group *group) 2162 { 2163 struct device *dev; 2164 2165 if (group->domain && group->domain != group->default_domain && 2166 group->domain != group->blocking_domain) 2167 return -EBUSY; 2168 2169 dev = iommu_group_first_dev(group); 2170 if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner) 2171 return -EINVAL; 2172 2173 return __iommu_group_set_domain(group, domain); 2174 } 2175 2176 /** 2177 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group 2178 * @domain: IOMMU domain to attach 2179 * @group: IOMMU group that will be attached 2180 * 2181 * Returns 0 on success and error code on failure 2182 * 2183 * Note that EINVAL can be treated as a soft failure, indicating 2184 * that certain configuration of the domain is incompatible with 2185 * the group. In this case attaching a different domain to the 2186 * group may succeed. 2187 */ 2188 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2189 { 2190 int ret; 2191 2192 mutex_lock(&group->mutex); 2193 ret = __iommu_attach_group(domain, group); 2194 mutex_unlock(&group->mutex); 2195 2196 return ret; 2197 } 2198 EXPORT_SYMBOL_GPL(iommu_attach_group); 2199 2200 /** 2201 * iommu_group_replace_domain - replace the domain that a group is attached to 2202 * @new_domain: new IOMMU domain to replace with 2203 * @group: IOMMU group that will be attached to the new domain 2204 * 2205 * This API allows the group to switch domains without being forced to go to 2206 * the blocking domain in-between. 2207 * 2208 * If the currently attached domain is a core domain (e.g. a default_domain), 2209 * it will act just like the iommu_attach_group(). 2210 */ 2211 int iommu_group_replace_domain(struct iommu_group *group, 2212 struct iommu_domain *new_domain) 2213 { 2214 int ret; 2215 2216 if (!new_domain) 2217 return -EINVAL; 2218 2219 mutex_lock(&group->mutex); 2220 ret = __iommu_group_set_domain(group, new_domain); 2221 mutex_unlock(&group->mutex); 2222 return ret; 2223 } 2224 EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL); 2225 2226 static int __iommu_device_set_domain(struct iommu_group *group, 2227 struct device *dev, 2228 struct iommu_domain *new_domain, 2229 unsigned int flags) 2230 { 2231 int ret; 2232 2233 /* 2234 * If the device requires IOMMU_RESV_DIRECT then we cannot allow 2235 * the blocking domain to be attached as it does not contain the 2236 * required 1:1 mapping. This test effectively excludes the device 2237 * being used with iommu_group_claim_dma_owner() which will block 2238 * vfio and iommufd as well. 2239 */ 2240 if (dev->iommu->require_direct && 2241 (new_domain->type == IOMMU_DOMAIN_BLOCKED || 2242 new_domain == group->blocking_domain)) { 2243 dev_warn(dev, 2244 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n"); 2245 return -EINVAL; 2246 } 2247 2248 if (dev->iommu->attach_deferred) { 2249 if (new_domain == group->default_domain) 2250 return 0; 2251 dev->iommu->attach_deferred = 0; 2252 } 2253 2254 ret = __iommu_attach_device(new_domain, dev); 2255 if (ret) { 2256 /* 2257 * If we have a blocking domain then try to attach that in hopes 2258 * of avoiding a UAF. Modern drivers should implement blocking 2259 * domains as global statics that cannot fail. 2260 */ 2261 if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) && 2262 group->blocking_domain && 2263 group->blocking_domain != new_domain) 2264 __iommu_attach_device(group->blocking_domain, dev); 2265 return ret; 2266 } 2267 return 0; 2268 } 2269 2270 /* 2271 * If 0 is returned the group's domain is new_domain. If an error is returned 2272 * then the group's domain will be set back to the existing domain unless 2273 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's 2274 * domains is left inconsistent. This is a driver bug to fail attach with a 2275 * previously good domain. We try to avoid a kernel UAF because of this. 2276 * 2277 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU 2278 * API works on domains and devices. Bridge that gap by iterating over the 2279 * devices in a group. Ideally we'd have a single device which represents the 2280 * requestor ID of the group, but we also allow IOMMU drivers to create policy 2281 * defined minimum sets, where the physical hardware may be able to distiguish 2282 * members, but we wish to group them at a higher level (ex. untrusted 2283 * multi-function PCI devices). Thus we attach each device. 2284 */ 2285 static int __iommu_group_set_domain_internal(struct iommu_group *group, 2286 struct iommu_domain *new_domain, 2287 unsigned int flags) 2288 { 2289 struct group_device *last_gdev; 2290 struct group_device *gdev; 2291 int result; 2292 int ret; 2293 2294 lockdep_assert_held(&group->mutex); 2295 2296 if (group->domain == new_domain) 2297 return 0; 2298 2299 if (WARN_ON(!new_domain)) 2300 return -EINVAL; 2301 2302 /* 2303 * Changing the domain is done by calling attach_dev() on the new 2304 * domain. This switch does not have to be atomic and DMA can be 2305 * discarded during the transition. DMA must only be able to access 2306 * either new_domain or group->domain, never something else. 2307 */ 2308 result = 0; 2309 for_each_group_device(group, gdev) { 2310 ret = __iommu_device_set_domain(group, gdev->dev, new_domain, 2311 flags); 2312 if (ret) { 2313 result = ret; 2314 /* 2315 * Keep trying the other devices in the group. If a 2316 * driver fails attach to an otherwise good domain, and 2317 * does not support blocking domains, it should at least 2318 * drop its reference on the current domain so we don't 2319 * UAF. 2320 */ 2321 if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) 2322 continue; 2323 goto err_revert; 2324 } 2325 } 2326 group->domain = new_domain; 2327 return result; 2328 2329 err_revert: 2330 /* 2331 * This is called in error unwind paths. A well behaved driver should 2332 * always allow us to attach to a domain that was already attached. 2333 */ 2334 last_gdev = gdev; 2335 for_each_group_device(group, gdev) { 2336 /* 2337 * A NULL domain can happen only for first probe, in which case 2338 * we leave group->domain as NULL and let release clean 2339 * everything up. 2340 */ 2341 if (group->domain) 2342 WARN_ON(__iommu_device_set_domain( 2343 group, gdev->dev, group->domain, 2344 IOMMU_SET_DOMAIN_MUST_SUCCEED)); 2345 if (gdev == last_gdev) 2346 break; 2347 } 2348 return ret; 2349 } 2350 2351 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2352 { 2353 mutex_lock(&group->mutex); 2354 __iommu_group_set_core_domain(group); 2355 mutex_unlock(&group->mutex); 2356 } 2357 EXPORT_SYMBOL_GPL(iommu_detach_group); 2358 2359 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2360 { 2361 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2362 return iova; 2363 2364 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2365 return 0; 2366 2367 return domain->ops->iova_to_phys(domain, iova); 2368 } 2369 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2370 2371 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2372 phys_addr_t paddr, size_t size, size_t *count) 2373 { 2374 unsigned int pgsize_idx, pgsize_idx_next; 2375 unsigned long pgsizes; 2376 size_t offset, pgsize, pgsize_next; 2377 unsigned long addr_merge = paddr | iova; 2378 2379 /* Page sizes supported by the hardware and small enough for @size */ 2380 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2381 2382 /* Constrain the page sizes further based on the maximum alignment */ 2383 if (likely(addr_merge)) 2384 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2385 2386 /* Make sure we have at least one suitable page size */ 2387 BUG_ON(!pgsizes); 2388 2389 /* Pick the biggest page size remaining */ 2390 pgsize_idx = __fls(pgsizes); 2391 pgsize = BIT(pgsize_idx); 2392 if (!count) 2393 return pgsize; 2394 2395 /* Find the next biggest support page size, if it exists */ 2396 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2397 if (!pgsizes) 2398 goto out_set_count; 2399 2400 pgsize_idx_next = __ffs(pgsizes); 2401 pgsize_next = BIT(pgsize_idx_next); 2402 2403 /* 2404 * There's no point trying a bigger page size unless the virtual 2405 * and physical addresses are similarly offset within the larger page. 2406 */ 2407 if ((iova ^ paddr) & (pgsize_next - 1)) 2408 goto out_set_count; 2409 2410 /* Calculate the offset to the next page size alignment boundary */ 2411 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2412 2413 /* 2414 * If size is big enough to accommodate the larger page, reduce 2415 * the number of smaller pages. 2416 */ 2417 if (offset + pgsize_next <= size) 2418 size = offset; 2419 2420 out_set_count: 2421 *count = size >> pgsize_idx; 2422 return pgsize; 2423 } 2424 2425 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2426 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2427 { 2428 const struct iommu_domain_ops *ops = domain->ops; 2429 unsigned long orig_iova = iova; 2430 unsigned int min_pagesz; 2431 size_t orig_size = size; 2432 phys_addr_t orig_paddr = paddr; 2433 int ret = 0; 2434 2435 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2436 return -EINVAL; 2437 2438 if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL)) 2439 return -ENODEV; 2440 2441 /* find out the minimum page size supported */ 2442 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2443 2444 /* 2445 * both the virtual address and the physical one, as well as 2446 * the size of the mapping, must be aligned (at least) to the 2447 * size of the smallest page supported by the hardware 2448 */ 2449 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2450 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2451 iova, &paddr, size, min_pagesz); 2452 return -EINVAL; 2453 } 2454 2455 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2456 2457 while (size) { 2458 size_t pgsize, count, mapped = 0; 2459 2460 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2461 2462 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2463 iova, &paddr, pgsize, count); 2464 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2465 gfp, &mapped); 2466 /* 2467 * Some pages may have been mapped, even if an error occurred, 2468 * so we should account for those so they can be unmapped. 2469 */ 2470 size -= mapped; 2471 2472 if (ret) 2473 break; 2474 2475 iova += mapped; 2476 paddr += mapped; 2477 } 2478 2479 /* unroll mapping in case something went wrong */ 2480 if (ret) 2481 iommu_unmap(domain, orig_iova, orig_size - size); 2482 else 2483 trace_map(orig_iova, orig_paddr, orig_size); 2484 2485 return ret; 2486 } 2487 2488 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2489 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2490 { 2491 const struct iommu_domain_ops *ops = domain->ops; 2492 int ret; 2493 2494 might_sleep_if(gfpflags_allow_blocking(gfp)); 2495 2496 /* Discourage passing strange GFP flags */ 2497 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2498 __GFP_HIGHMEM))) 2499 return -EINVAL; 2500 2501 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2502 if (ret == 0 && ops->iotlb_sync_map) { 2503 ret = ops->iotlb_sync_map(domain, iova, size); 2504 if (ret) 2505 goto out_err; 2506 } 2507 2508 return ret; 2509 2510 out_err: 2511 /* undo mappings already done */ 2512 iommu_unmap(domain, iova, size); 2513 2514 return ret; 2515 } 2516 EXPORT_SYMBOL_GPL(iommu_map); 2517 2518 static size_t __iommu_unmap(struct iommu_domain *domain, 2519 unsigned long iova, size_t size, 2520 struct iommu_iotlb_gather *iotlb_gather) 2521 { 2522 const struct iommu_domain_ops *ops = domain->ops; 2523 size_t unmapped_page, unmapped = 0; 2524 unsigned long orig_iova = iova; 2525 unsigned int min_pagesz; 2526 2527 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2528 return 0; 2529 2530 if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL)) 2531 return 0; 2532 2533 /* find out the minimum page size supported */ 2534 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2535 2536 /* 2537 * The virtual address, as well as the size of the mapping, must be 2538 * aligned (at least) to the size of the smallest page supported 2539 * by the hardware 2540 */ 2541 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2542 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2543 iova, size, min_pagesz); 2544 return 0; 2545 } 2546 2547 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2548 2549 /* 2550 * Keep iterating until we either unmap 'size' bytes (or more) 2551 * or we hit an area that isn't mapped. 2552 */ 2553 while (unmapped < size) { 2554 size_t pgsize, count; 2555 2556 pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count); 2557 unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather); 2558 if (!unmapped_page) 2559 break; 2560 2561 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2562 iova, unmapped_page); 2563 2564 iova += unmapped_page; 2565 unmapped += unmapped_page; 2566 } 2567 2568 trace_unmap(orig_iova, size, unmapped); 2569 return unmapped; 2570 } 2571 2572 size_t iommu_unmap(struct iommu_domain *domain, 2573 unsigned long iova, size_t size) 2574 { 2575 struct iommu_iotlb_gather iotlb_gather; 2576 size_t ret; 2577 2578 iommu_iotlb_gather_init(&iotlb_gather); 2579 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2580 iommu_iotlb_sync(domain, &iotlb_gather); 2581 2582 return ret; 2583 } 2584 EXPORT_SYMBOL_GPL(iommu_unmap); 2585 2586 size_t iommu_unmap_fast(struct iommu_domain *domain, 2587 unsigned long iova, size_t size, 2588 struct iommu_iotlb_gather *iotlb_gather) 2589 { 2590 return __iommu_unmap(domain, iova, size, iotlb_gather); 2591 } 2592 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2593 2594 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2595 struct scatterlist *sg, unsigned int nents, int prot, 2596 gfp_t gfp) 2597 { 2598 const struct iommu_domain_ops *ops = domain->ops; 2599 size_t len = 0, mapped = 0; 2600 phys_addr_t start; 2601 unsigned int i = 0; 2602 int ret; 2603 2604 might_sleep_if(gfpflags_allow_blocking(gfp)); 2605 2606 /* Discourage passing strange GFP flags */ 2607 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2608 __GFP_HIGHMEM))) 2609 return -EINVAL; 2610 2611 while (i <= nents) { 2612 phys_addr_t s_phys = sg_phys(sg); 2613 2614 if (len && s_phys != start + len) { 2615 ret = __iommu_map(domain, iova + mapped, start, 2616 len, prot, gfp); 2617 2618 if (ret) 2619 goto out_err; 2620 2621 mapped += len; 2622 len = 0; 2623 } 2624 2625 if (sg_dma_is_bus_address(sg)) 2626 goto next; 2627 2628 if (len) { 2629 len += sg->length; 2630 } else { 2631 len = sg->length; 2632 start = s_phys; 2633 } 2634 2635 next: 2636 if (++i < nents) 2637 sg = sg_next(sg); 2638 } 2639 2640 if (ops->iotlb_sync_map) { 2641 ret = ops->iotlb_sync_map(domain, iova, mapped); 2642 if (ret) 2643 goto out_err; 2644 } 2645 return mapped; 2646 2647 out_err: 2648 /* undo mappings already done */ 2649 iommu_unmap(domain, iova, mapped); 2650 2651 return ret; 2652 } 2653 EXPORT_SYMBOL_GPL(iommu_map_sg); 2654 2655 /** 2656 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2657 * @domain: the iommu domain where the fault has happened 2658 * @dev: the device where the fault has happened 2659 * @iova: the faulting address 2660 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2661 * 2662 * This function should be called by the low-level IOMMU implementations 2663 * whenever IOMMU faults happen, to allow high-level users, that are 2664 * interested in such events, to know about them. 2665 * 2666 * This event may be useful for several possible use cases: 2667 * - mere logging of the event 2668 * - dynamic TLB/PTE loading 2669 * - if restarting of the faulting device is required 2670 * 2671 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2672 * PTE/TLB loading will one day be supported, implementations will be able 2673 * to tell whether it succeeded or not according to this return value). 2674 * 2675 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2676 * (though fault handlers can also return -ENOSYS, in case they want to 2677 * elicit the default behavior of the IOMMU drivers). 2678 */ 2679 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2680 unsigned long iova, int flags) 2681 { 2682 int ret = -ENOSYS; 2683 2684 /* 2685 * if upper layers showed interest and installed a fault handler, 2686 * invoke it. 2687 */ 2688 if (domain->handler) 2689 ret = domain->handler(domain, dev, iova, flags, 2690 domain->handler_token); 2691 2692 trace_io_page_fault(dev, iova, flags); 2693 return ret; 2694 } 2695 EXPORT_SYMBOL_GPL(report_iommu_fault); 2696 2697 static int __init iommu_init(void) 2698 { 2699 iommu_group_kset = kset_create_and_add("iommu_groups", 2700 NULL, kernel_kobj); 2701 BUG_ON(!iommu_group_kset); 2702 2703 iommu_debugfs_setup(); 2704 2705 return 0; 2706 } 2707 core_initcall(iommu_init); 2708 2709 int iommu_enable_nesting(struct iommu_domain *domain) 2710 { 2711 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2712 return -EINVAL; 2713 if (!domain->ops->enable_nesting) 2714 return -EINVAL; 2715 return domain->ops->enable_nesting(domain); 2716 } 2717 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2718 2719 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2720 unsigned long quirk) 2721 { 2722 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2723 return -EINVAL; 2724 if (!domain->ops->set_pgtable_quirks) 2725 return -EINVAL; 2726 return domain->ops->set_pgtable_quirks(domain, quirk); 2727 } 2728 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2729 2730 /** 2731 * iommu_get_resv_regions - get reserved regions 2732 * @dev: device for which to get reserved regions 2733 * @list: reserved region list for device 2734 * 2735 * This returns a list of reserved IOVA regions specific to this device. 2736 * A domain user should not map IOVA in these ranges. 2737 */ 2738 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2739 { 2740 const struct iommu_ops *ops = dev_iommu_ops(dev); 2741 2742 if (ops->get_resv_regions) 2743 ops->get_resv_regions(dev, list); 2744 } 2745 EXPORT_SYMBOL_GPL(iommu_get_resv_regions); 2746 2747 /** 2748 * iommu_put_resv_regions - release reserved regions 2749 * @dev: device for which to free reserved regions 2750 * @list: reserved region list for device 2751 * 2752 * This releases a reserved region list acquired by iommu_get_resv_regions(). 2753 */ 2754 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2755 { 2756 struct iommu_resv_region *entry, *next; 2757 2758 list_for_each_entry_safe(entry, next, list, list) { 2759 if (entry->free) 2760 entry->free(dev, entry); 2761 else 2762 kfree(entry); 2763 } 2764 } 2765 EXPORT_SYMBOL(iommu_put_resv_regions); 2766 2767 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2768 size_t length, int prot, 2769 enum iommu_resv_type type, 2770 gfp_t gfp) 2771 { 2772 struct iommu_resv_region *region; 2773 2774 region = kzalloc(sizeof(*region), gfp); 2775 if (!region) 2776 return NULL; 2777 2778 INIT_LIST_HEAD(®ion->list); 2779 region->start = start; 2780 region->length = length; 2781 region->prot = prot; 2782 region->type = type; 2783 return region; 2784 } 2785 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2786 2787 void iommu_set_default_passthrough(bool cmd_line) 2788 { 2789 if (cmd_line) 2790 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2791 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2792 } 2793 2794 void iommu_set_default_translated(bool cmd_line) 2795 { 2796 if (cmd_line) 2797 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2798 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2799 } 2800 2801 bool iommu_default_passthrough(void) 2802 { 2803 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2804 } 2805 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2806 2807 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode) 2808 { 2809 const struct iommu_ops *ops = NULL; 2810 struct iommu_device *iommu; 2811 2812 spin_lock(&iommu_device_lock); 2813 list_for_each_entry(iommu, &iommu_device_list, list) 2814 if (iommu->fwnode == fwnode) { 2815 ops = iommu->ops; 2816 break; 2817 } 2818 spin_unlock(&iommu_device_lock); 2819 return ops; 2820 } 2821 2822 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2823 const struct iommu_ops *ops) 2824 { 2825 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2826 2827 if (fwspec) 2828 return ops == fwspec->ops ? 0 : -EINVAL; 2829 2830 if (!dev_iommu_get(dev)) 2831 return -ENOMEM; 2832 2833 /* Preallocate for the overwhelmingly common case of 1 ID */ 2834 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2835 if (!fwspec) 2836 return -ENOMEM; 2837 2838 of_node_get(to_of_node(iommu_fwnode)); 2839 fwspec->iommu_fwnode = iommu_fwnode; 2840 fwspec->ops = ops; 2841 dev_iommu_fwspec_set(dev, fwspec); 2842 return 0; 2843 } 2844 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2845 2846 void iommu_fwspec_free(struct device *dev) 2847 { 2848 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2849 2850 if (fwspec) { 2851 fwnode_handle_put(fwspec->iommu_fwnode); 2852 kfree(fwspec); 2853 dev_iommu_fwspec_set(dev, NULL); 2854 } 2855 } 2856 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2857 2858 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids) 2859 { 2860 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2861 int i, new_num; 2862 2863 if (!fwspec) 2864 return -EINVAL; 2865 2866 new_num = fwspec->num_ids + num_ids; 2867 if (new_num > 1) { 2868 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2869 GFP_KERNEL); 2870 if (!fwspec) 2871 return -ENOMEM; 2872 2873 dev_iommu_fwspec_set(dev, fwspec); 2874 } 2875 2876 for (i = 0; i < num_ids; i++) 2877 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2878 2879 fwspec->num_ids = new_num; 2880 return 0; 2881 } 2882 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2883 2884 /* 2885 * Per device IOMMU features. 2886 */ 2887 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2888 { 2889 if (dev_has_iommu(dev)) { 2890 const struct iommu_ops *ops = dev_iommu_ops(dev); 2891 2892 if (ops->dev_enable_feat) 2893 return ops->dev_enable_feat(dev, feat); 2894 } 2895 2896 return -ENODEV; 2897 } 2898 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2899 2900 /* 2901 * The device drivers should do the necessary cleanups before calling this. 2902 */ 2903 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2904 { 2905 if (dev_has_iommu(dev)) { 2906 const struct iommu_ops *ops = dev_iommu_ops(dev); 2907 2908 if (ops->dev_disable_feat) 2909 return ops->dev_disable_feat(dev, feat); 2910 } 2911 2912 return -EBUSY; 2913 } 2914 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2915 2916 /** 2917 * iommu_setup_default_domain - Set the default_domain for the group 2918 * @group: Group to change 2919 * @target_type: Domain type to set as the default_domain 2920 * 2921 * Allocate a default domain and set it as the current domain on the group. If 2922 * the group already has a default domain it will be changed to the target_type. 2923 * When target_type is 0 the default domain is selected based on driver and 2924 * system preferences. 2925 */ 2926 static int iommu_setup_default_domain(struct iommu_group *group, 2927 int target_type) 2928 { 2929 struct iommu_domain *old_dom = group->default_domain; 2930 struct group_device *gdev; 2931 struct iommu_domain *dom; 2932 bool direct_failed; 2933 int req_type; 2934 int ret; 2935 2936 lockdep_assert_held(&group->mutex); 2937 2938 req_type = iommu_get_default_domain_type(group, target_type); 2939 if (req_type < 0) 2940 return -EINVAL; 2941 2942 dom = iommu_group_alloc_default_domain(group, req_type); 2943 if (IS_ERR(dom)) 2944 return PTR_ERR(dom); 2945 2946 if (group->default_domain == dom) 2947 return 0; 2948 2949 /* 2950 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be 2951 * mapped before their device is attached, in order to guarantee 2952 * continuity with any FW activity 2953 */ 2954 direct_failed = false; 2955 for_each_group_device(group, gdev) { 2956 if (iommu_create_device_direct_mappings(dom, gdev->dev)) { 2957 direct_failed = true; 2958 dev_warn_once( 2959 gdev->dev->iommu->iommu_dev->dev, 2960 "IOMMU driver was not able to establish FW requested direct mapping."); 2961 } 2962 } 2963 2964 /* We must set default_domain early for __iommu_device_set_domain */ 2965 group->default_domain = dom; 2966 if (!group->domain) { 2967 /* 2968 * Drivers are not allowed to fail the first domain attach. 2969 * The only way to recover from this is to fail attaching the 2970 * iommu driver and call ops->release_device. Put the domain 2971 * in group->default_domain so it is freed after. 2972 */ 2973 ret = __iommu_group_set_domain_internal( 2974 group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED); 2975 if (WARN_ON(ret)) 2976 goto out_free_old; 2977 } else { 2978 ret = __iommu_group_set_domain(group, dom); 2979 if (ret) 2980 goto err_restore_def_domain; 2981 } 2982 2983 /* 2984 * Drivers are supposed to allow mappings to be installed in a domain 2985 * before device attachment, but some don't. Hack around this defect by 2986 * trying again after attaching. If this happens it means the device 2987 * will not continuously have the IOMMU_RESV_DIRECT map. 2988 */ 2989 if (direct_failed) { 2990 for_each_group_device(group, gdev) { 2991 ret = iommu_create_device_direct_mappings(dom, gdev->dev); 2992 if (ret) 2993 goto err_restore_domain; 2994 } 2995 } 2996 2997 out_free_old: 2998 if (old_dom) 2999 iommu_domain_free(old_dom); 3000 return ret; 3001 3002 err_restore_domain: 3003 if (old_dom) 3004 __iommu_group_set_domain_internal( 3005 group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED); 3006 err_restore_def_domain: 3007 if (old_dom) { 3008 iommu_domain_free(dom); 3009 group->default_domain = old_dom; 3010 } 3011 return ret; 3012 } 3013 3014 /* 3015 * Changing the default domain through sysfs requires the users to unbind the 3016 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 3017 * transition. Return failure if this isn't met. 3018 * 3019 * We need to consider the race between this and the device release path. 3020 * group->mutex is used here to guarantee that the device release path 3021 * will not be entered at the same time. 3022 */ 3023 static ssize_t iommu_group_store_type(struct iommu_group *group, 3024 const char *buf, size_t count) 3025 { 3026 struct group_device *gdev; 3027 int ret, req_type; 3028 3029 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 3030 return -EACCES; 3031 3032 if (WARN_ON(!group) || !group->default_domain) 3033 return -EINVAL; 3034 3035 if (sysfs_streq(buf, "identity")) 3036 req_type = IOMMU_DOMAIN_IDENTITY; 3037 else if (sysfs_streq(buf, "DMA")) 3038 req_type = IOMMU_DOMAIN_DMA; 3039 else if (sysfs_streq(buf, "DMA-FQ")) 3040 req_type = IOMMU_DOMAIN_DMA_FQ; 3041 else if (sysfs_streq(buf, "auto")) 3042 req_type = 0; 3043 else 3044 return -EINVAL; 3045 3046 mutex_lock(&group->mutex); 3047 /* We can bring up a flush queue without tearing down the domain. */ 3048 if (req_type == IOMMU_DOMAIN_DMA_FQ && 3049 group->default_domain->type == IOMMU_DOMAIN_DMA) { 3050 ret = iommu_dma_init_fq(group->default_domain); 3051 if (ret) 3052 goto out_unlock; 3053 3054 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ; 3055 ret = count; 3056 goto out_unlock; 3057 } 3058 3059 /* Otherwise, ensure that device exists and no driver is bound. */ 3060 if (list_empty(&group->devices) || group->owner_cnt) { 3061 ret = -EPERM; 3062 goto out_unlock; 3063 } 3064 3065 ret = iommu_setup_default_domain(group, req_type); 3066 if (ret) 3067 goto out_unlock; 3068 3069 /* 3070 * Release the mutex here because ops->probe_finalize() call-back of 3071 * some vendor IOMMU drivers calls arm_iommu_attach_device() which 3072 * in-turn might call back into IOMMU core code, where it tries to take 3073 * group->mutex, resulting in a deadlock. 3074 */ 3075 mutex_unlock(&group->mutex); 3076 3077 /* Make sure dma_ops is appropriatley set */ 3078 for_each_group_device(group, gdev) 3079 iommu_group_do_probe_finalize(gdev->dev); 3080 return count; 3081 3082 out_unlock: 3083 mutex_unlock(&group->mutex); 3084 return ret ?: count; 3085 } 3086 3087 /** 3088 * iommu_device_use_default_domain() - Device driver wants to handle device 3089 * DMA through the kernel DMA API. 3090 * @dev: The device. 3091 * 3092 * The device driver about to bind @dev wants to do DMA through the kernel 3093 * DMA API. Return 0 if it is allowed, otherwise an error. 3094 */ 3095 int iommu_device_use_default_domain(struct device *dev) 3096 { 3097 /* Caller is the driver core during the pre-probe path */ 3098 struct iommu_group *group = dev->iommu_group; 3099 int ret = 0; 3100 3101 if (!group) 3102 return 0; 3103 3104 mutex_lock(&group->mutex); 3105 if (group->owner_cnt) { 3106 if (group->domain != group->default_domain || group->owner || 3107 !xa_empty(&group->pasid_array)) { 3108 ret = -EBUSY; 3109 goto unlock_out; 3110 } 3111 } 3112 3113 group->owner_cnt++; 3114 3115 unlock_out: 3116 mutex_unlock(&group->mutex); 3117 return ret; 3118 } 3119 3120 /** 3121 * iommu_device_unuse_default_domain() - Device driver stops handling device 3122 * DMA through the kernel DMA API. 3123 * @dev: The device. 3124 * 3125 * The device driver doesn't want to do DMA through kernel DMA API anymore. 3126 * It must be called after iommu_device_use_default_domain(). 3127 */ 3128 void iommu_device_unuse_default_domain(struct device *dev) 3129 { 3130 /* Caller is the driver core during the post-probe path */ 3131 struct iommu_group *group = dev->iommu_group; 3132 3133 if (!group) 3134 return; 3135 3136 mutex_lock(&group->mutex); 3137 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array))) 3138 group->owner_cnt--; 3139 3140 mutex_unlock(&group->mutex); 3141 } 3142 3143 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group) 3144 { 3145 struct iommu_domain *domain; 3146 3147 if (group->blocking_domain) 3148 return 0; 3149 3150 domain = __iommu_group_domain_alloc(group, IOMMU_DOMAIN_BLOCKED); 3151 if (IS_ERR(domain)) { 3152 /* 3153 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED 3154 * create an empty domain instead. 3155 */ 3156 domain = __iommu_group_domain_alloc(group, 3157 IOMMU_DOMAIN_UNMANAGED); 3158 if (IS_ERR(domain)) 3159 return PTR_ERR(domain); 3160 } 3161 group->blocking_domain = domain; 3162 return 0; 3163 } 3164 3165 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner) 3166 { 3167 int ret; 3168 3169 if ((group->domain && group->domain != group->default_domain) || 3170 !xa_empty(&group->pasid_array)) 3171 return -EBUSY; 3172 3173 ret = __iommu_group_alloc_blocking_domain(group); 3174 if (ret) 3175 return ret; 3176 ret = __iommu_group_set_domain(group, group->blocking_domain); 3177 if (ret) 3178 return ret; 3179 3180 group->owner = owner; 3181 group->owner_cnt++; 3182 return 0; 3183 } 3184 3185 /** 3186 * iommu_group_claim_dma_owner() - Set DMA ownership of a group 3187 * @group: The group. 3188 * @owner: Caller specified pointer. Used for exclusive ownership. 3189 * 3190 * This is to support backward compatibility for vfio which manages the dma 3191 * ownership in iommu_group level. New invocations on this interface should be 3192 * prohibited. Only a single owner may exist for a group. 3193 */ 3194 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner) 3195 { 3196 int ret = 0; 3197 3198 if (WARN_ON(!owner)) 3199 return -EINVAL; 3200 3201 mutex_lock(&group->mutex); 3202 if (group->owner_cnt) { 3203 ret = -EPERM; 3204 goto unlock_out; 3205 } 3206 3207 ret = __iommu_take_dma_ownership(group, owner); 3208 unlock_out: 3209 mutex_unlock(&group->mutex); 3210 3211 return ret; 3212 } 3213 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner); 3214 3215 /** 3216 * iommu_device_claim_dma_owner() - Set DMA ownership of a device 3217 * @dev: The device. 3218 * @owner: Caller specified pointer. Used for exclusive ownership. 3219 * 3220 * Claim the DMA ownership of a device. Multiple devices in the same group may 3221 * concurrently claim ownership if they present the same owner value. Returns 0 3222 * on success and error code on failure 3223 */ 3224 int iommu_device_claim_dma_owner(struct device *dev, void *owner) 3225 { 3226 /* Caller must be a probed driver on dev */ 3227 struct iommu_group *group = dev->iommu_group; 3228 int ret = 0; 3229 3230 if (WARN_ON(!owner)) 3231 return -EINVAL; 3232 3233 if (!group) 3234 return -ENODEV; 3235 3236 mutex_lock(&group->mutex); 3237 if (group->owner_cnt) { 3238 if (group->owner != owner) { 3239 ret = -EPERM; 3240 goto unlock_out; 3241 } 3242 group->owner_cnt++; 3243 goto unlock_out; 3244 } 3245 3246 ret = __iommu_take_dma_ownership(group, owner); 3247 unlock_out: 3248 mutex_unlock(&group->mutex); 3249 return ret; 3250 } 3251 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner); 3252 3253 static void __iommu_release_dma_ownership(struct iommu_group *group) 3254 { 3255 if (WARN_ON(!group->owner_cnt || !group->owner || 3256 !xa_empty(&group->pasid_array))) 3257 return; 3258 3259 group->owner_cnt = 0; 3260 group->owner = NULL; 3261 __iommu_group_set_domain_nofail(group, group->default_domain); 3262 } 3263 3264 /** 3265 * iommu_group_release_dma_owner() - Release DMA ownership of a group 3266 * @group: The group 3267 * 3268 * Release the DMA ownership claimed by iommu_group_claim_dma_owner(). 3269 */ 3270 void iommu_group_release_dma_owner(struct iommu_group *group) 3271 { 3272 mutex_lock(&group->mutex); 3273 __iommu_release_dma_ownership(group); 3274 mutex_unlock(&group->mutex); 3275 } 3276 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner); 3277 3278 /** 3279 * iommu_device_release_dma_owner() - Release DMA ownership of a device 3280 * @dev: The device. 3281 * 3282 * Release the DMA ownership claimed by iommu_device_claim_dma_owner(). 3283 */ 3284 void iommu_device_release_dma_owner(struct device *dev) 3285 { 3286 /* Caller must be a probed driver on dev */ 3287 struct iommu_group *group = dev->iommu_group; 3288 3289 mutex_lock(&group->mutex); 3290 if (group->owner_cnt > 1) 3291 group->owner_cnt--; 3292 else 3293 __iommu_release_dma_ownership(group); 3294 mutex_unlock(&group->mutex); 3295 } 3296 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner); 3297 3298 /** 3299 * iommu_group_dma_owner_claimed() - Query group dma ownership status 3300 * @group: The group. 3301 * 3302 * This provides status query on a given group. It is racy and only for 3303 * non-binding status reporting. 3304 */ 3305 bool iommu_group_dma_owner_claimed(struct iommu_group *group) 3306 { 3307 unsigned int user; 3308 3309 mutex_lock(&group->mutex); 3310 user = group->owner_cnt; 3311 mutex_unlock(&group->mutex); 3312 3313 return user; 3314 } 3315 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed); 3316 3317 static int __iommu_set_group_pasid(struct iommu_domain *domain, 3318 struct iommu_group *group, ioasid_t pasid) 3319 { 3320 struct group_device *device; 3321 int ret = 0; 3322 3323 for_each_group_device(group, device) { 3324 ret = domain->ops->set_dev_pasid(domain, device->dev, pasid); 3325 if (ret) 3326 break; 3327 } 3328 3329 return ret; 3330 } 3331 3332 static void __iommu_remove_group_pasid(struct iommu_group *group, 3333 ioasid_t pasid) 3334 { 3335 struct group_device *device; 3336 const struct iommu_ops *ops; 3337 3338 for_each_group_device(group, device) { 3339 ops = dev_iommu_ops(device->dev); 3340 ops->remove_dev_pasid(device->dev, pasid); 3341 } 3342 } 3343 3344 /* 3345 * iommu_attach_device_pasid() - Attach a domain to pasid of device 3346 * @domain: the iommu domain. 3347 * @dev: the attached device. 3348 * @pasid: the pasid of the device. 3349 * 3350 * Return: 0 on success, or an error. 3351 */ 3352 int iommu_attach_device_pasid(struct iommu_domain *domain, 3353 struct device *dev, ioasid_t pasid) 3354 { 3355 /* Caller must be a probed driver on dev */ 3356 struct iommu_group *group = dev->iommu_group; 3357 struct group_device *device; 3358 void *curr; 3359 int ret; 3360 3361 if (!domain->ops->set_dev_pasid) 3362 return -EOPNOTSUPP; 3363 3364 if (!group) 3365 return -ENODEV; 3366 3367 if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner || 3368 pasid == IOMMU_NO_PASID) 3369 return -EINVAL; 3370 3371 mutex_lock(&group->mutex); 3372 for_each_group_device(group, device) { 3373 if (pasid >= device->dev->iommu->max_pasids) { 3374 ret = -EINVAL; 3375 goto out_unlock; 3376 } 3377 } 3378 3379 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL); 3380 if (curr) { 3381 ret = xa_err(curr) ? : -EBUSY; 3382 goto out_unlock; 3383 } 3384 3385 ret = __iommu_set_group_pasid(domain, group, pasid); 3386 if (ret) { 3387 __iommu_remove_group_pasid(group, pasid); 3388 xa_erase(&group->pasid_array, pasid); 3389 } 3390 out_unlock: 3391 mutex_unlock(&group->mutex); 3392 return ret; 3393 } 3394 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid); 3395 3396 /* 3397 * iommu_detach_device_pasid() - Detach the domain from pasid of device 3398 * @domain: the iommu domain. 3399 * @dev: the attached device. 3400 * @pasid: the pasid of the device. 3401 * 3402 * The @domain must have been attached to @pasid of the @dev with 3403 * iommu_attach_device_pasid(). 3404 */ 3405 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev, 3406 ioasid_t pasid) 3407 { 3408 /* Caller must be a probed driver on dev */ 3409 struct iommu_group *group = dev->iommu_group; 3410 3411 mutex_lock(&group->mutex); 3412 __iommu_remove_group_pasid(group, pasid); 3413 WARN_ON(xa_erase(&group->pasid_array, pasid) != domain); 3414 mutex_unlock(&group->mutex); 3415 } 3416 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid); 3417 3418 /* 3419 * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev 3420 * @dev: the queried device 3421 * @pasid: the pasid of the device 3422 * @type: matched domain type, 0 for any match 3423 * 3424 * This is a variant of iommu_get_domain_for_dev(). It returns the existing 3425 * domain attached to pasid of a device. Callers must hold a lock around this 3426 * function, and both iommu_attach/detach_dev_pasid() whenever a domain of 3427 * type is being manipulated. This API does not internally resolve races with 3428 * attach/detach. 3429 * 3430 * Return: attached domain on success, NULL otherwise. 3431 */ 3432 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev, 3433 ioasid_t pasid, 3434 unsigned int type) 3435 { 3436 /* Caller must be a probed driver on dev */ 3437 struct iommu_group *group = dev->iommu_group; 3438 struct iommu_domain *domain; 3439 3440 if (!group) 3441 return NULL; 3442 3443 xa_lock(&group->pasid_array); 3444 domain = xa_load(&group->pasid_array, pasid); 3445 if (type && domain && domain->type != type) 3446 domain = ERR_PTR(-EBUSY); 3447 xa_unlock(&group->pasid_array); 3448 3449 return domain; 3450 } 3451 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid); 3452 3453 ioasid_t iommu_alloc_global_pasid(struct device *dev) 3454 { 3455 int ret; 3456 3457 /* max_pasids == 0 means that the device does not support PASID */ 3458 if (!dev->iommu->max_pasids) 3459 return IOMMU_PASID_INVALID; 3460 3461 /* 3462 * max_pasids is set up by vendor driver based on number of PASID bits 3463 * supported but the IDA allocation is inclusive. 3464 */ 3465 ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID, 3466 dev->iommu->max_pasids - 1, GFP_KERNEL); 3467 return ret < 0 ? IOMMU_PASID_INVALID : ret; 3468 } 3469 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid); 3470 3471 void iommu_free_global_pasid(ioasid_t pasid) 3472 { 3473 if (WARN_ON(pasid == IOMMU_PASID_INVALID)) 3474 return; 3475 3476 ida_free(&iommu_global_pasid_ida, pasid); 3477 } 3478 EXPORT_SYMBOL_GPL(iommu_free_global_pasid); 3479