xref: /linux/drivers/iommu/iommu.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35 
36 #include "dma-iommu.h"
37 #include "iommu-priv.h"
38 
39 static struct kset *iommu_group_kset;
40 static DEFINE_IDA(iommu_group_ida);
41 static DEFINE_IDA(iommu_global_pasid_ida);
42 
43 static unsigned int iommu_def_domain_type __read_mostly;
44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
45 static u32 iommu_cmd_line __read_mostly;
46 
47 struct iommu_group {
48 	struct kobject kobj;
49 	struct kobject *devices_kobj;
50 	struct list_head devices;
51 	struct xarray pasid_array;
52 	struct mutex mutex;
53 	void *iommu_data;
54 	void (*iommu_data_release)(void *iommu_data);
55 	char *name;
56 	int id;
57 	struct iommu_domain *default_domain;
58 	struct iommu_domain *blocking_domain;
59 	struct iommu_domain *domain;
60 	struct list_head entry;
61 	unsigned int owner_cnt;
62 	void *owner;
63 };
64 
65 struct group_device {
66 	struct list_head list;
67 	struct device *dev;
68 	char *name;
69 };
70 
71 /* Iterate over each struct group_device in a struct iommu_group */
72 #define for_each_group_device(group, pos) \
73 	list_for_each_entry(pos, &(group)->devices, list)
74 
75 struct iommu_group_attribute {
76 	struct attribute attr;
77 	ssize_t (*show)(struct iommu_group *group, char *buf);
78 	ssize_t (*store)(struct iommu_group *group,
79 			 const char *buf, size_t count);
80 };
81 
82 static const char * const iommu_group_resv_type_string[] = {
83 	[IOMMU_RESV_DIRECT]			= "direct",
84 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
85 	[IOMMU_RESV_RESERVED]			= "reserved",
86 	[IOMMU_RESV_MSI]			= "msi",
87 	[IOMMU_RESV_SW_MSI]			= "msi",
88 };
89 
90 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
91 #define IOMMU_CMD_LINE_STRICT		BIT(1)
92 
93 static int iommu_bus_notifier(struct notifier_block *nb,
94 			      unsigned long action, void *data);
95 static void iommu_release_device(struct device *dev);
96 static struct iommu_domain *
97 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type);
98 static int __iommu_attach_device(struct iommu_domain *domain,
99 				 struct device *dev);
100 static int __iommu_attach_group(struct iommu_domain *domain,
101 				struct iommu_group *group);
102 
103 enum {
104 	IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
105 };
106 
107 static int __iommu_device_set_domain(struct iommu_group *group,
108 				     struct device *dev,
109 				     struct iommu_domain *new_domain,
110 				     unsigned int flags);
111 static int __iommu_group_set_domain_internal(struct iommu_group *group,
112 					     struct iommu_domain *new_domain,
113 					     unsigned int flags);
114 static int __iommu_group_set_domain(struct iommu_group *group,
115 				    struct iommu_domain *new_domain)
116 {
117 	return __iommu_group_set_domain_internal(group, new_domain, 0);
118 }
119 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
120 					    struct iommu_domain *new_domain)
121 {
122 	WARN_ON(__iommu_group_set_domain_internal(
123 		group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
124 }
125 
126 static int iommu_setup_default_domain(struct iommu_group *group,
127 				      int target_type);
128 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
129 					       struct device *dev);
130 static ssize_t iommu_group_store_type(struct iommu_group *group,
131 				      const char *buf, size_t count);
132 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
133 						     struct device *dev);
134 static void __iommu_group_free_device(struct iommu_group *group,
135 				      struct group_device *grp_dev);
136 
137 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
138 struct iommu_group_attribute iommu_group_attr_##_name =		\
139 	__ATTR(_name, _mode, _show, _store)
140 
141 #define to_iommu_group_attr(_attr)	\
142 	container_of(_attr, struct iommu_group_attribute, attr)
143 #define to_iommu_group(_kobj)		\
144 	container_of(_kobj, struct iommu_group, kobj)
145 
146 static LIST_HEAD(iommu_device_list);
147 static DEFINE_SPINLOCK(iommu_device_lock);
148 
149 static const struct bus_type * const iommu_buses[] = {
150 	&platform_bus_type,
151 #ifdef CONFIG_PCI
152 	&pci_bus_type,
153 #endif
154 #ifdef CONFIG_ARM_AMBA
155 	&amba_bustype,
156 #endif
157 #ifdef CONFIG_FSL_MC_BUS
158 	&fsl_mc_bus_type,
159 #endif
160 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
161 	&host1x_context_device_bus_type,
162 #endif
163 #ifdef CONFIG_CDX_BUS
164 	&cdx_bus_type,
165 #endif
166 };
167 
168 /*
169  * Use a function instead of an array here because the domain-type is a
170  * bit-field, so an array would waste memory.
171  */
172 static const char *iommu_domain_type_str(unsigned int t)
173 {
174 	switch (t) {
175 	case IOMMU_DOMAIN_BLOCKED:
176 		return "Blocked";
177 	case IOMMU_DOMAIN_IDENTITY:
178 		return "Passthrough";
179 	case IOMMU_DOMAIN_UNMANAGED:
180 		return "Unmanaged";
181 	case IOMMU_DOMAIN_DMA:
182 	case IOMMU_DOMAIN_DMA_FQ:
183 		return "Translated";
184 	case IOMMU_DOMAIN_PLATFORM:
185 		return "Platform";
186 	default:
187 		return "Unknown";
188 	}
189 }
190 
191 static int __init iommu_subsys_init(void)
192 {
193 	struct notifier_block *nb;
194 
195 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
196 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
197 			iommu_set_default_passthrough(false);
198 		else
199 			iommu_set_default_translated(false);
200 
201 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
202 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
203 			iommu_set_default_translated(false);
204 		}
205 	}
206 
207 	if (!iommu_default_passthrough() && !iommu_dma_strict)
208 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
209 
210 	pr_info("Default domain type: %s%s\n",
211 		iommu_domain_type_str(iommu_def_domain_type),
212 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
213 			" (set via kernel command line)" : "");
214 
215 	if (!iommu_default_passthrough())
216 		pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
217 			iommu_dma_strict ? "strict" : "lazy",
218 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
219 				" (set via kernel command line)" : "");
220 
221 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
222 	if (!nb)
223 		return -ENOMEM;
224 
225 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
226 		nb[i].notifier_call = iommu_bus_notifier;
227 		bus_register_notifier(iommu_buses[i], &nb[i]);
228 	}
229 
230 	return 0;
231 }
232 subsys_initcall(iommu_subsys_init);
233 
234 static int remove_iommu_group(struct device *dev, void *data)
235 {
236 	if (dev->iommu && dev->iommu->iommu_dev == data)
237 		iommu_release_device(dev);
238 
239 	return 0;
240 }
241 
242 /**
243  * iommu_device_register() - Register an IOMMU hardware instance
244  * @iommu: IOMMU handle for the instance
245  * @ops:   IOMMU ops to associate with the instance
246  * @hwdev: (optional) actual instance device, used for fwnode lookup
247  *
248  * Return: 0 on success, or an error.
249  */
250 int iommu_device_register(struct iommu_device *iommu,
251 			  const struct iommu_ops *ops, struct device *hwdev)
252 {
253 	int err = 0;
254 
255 	/* We need to be able to take module references appropriately */
256 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
257 		return -EINVAL;
258 
259 	iommu->ops = ops;
260 	if (hwdev)
261 		iommu->fwnode = dev_fwnode(hwdev);
262 
263 	spin_lock(&iommu_device_lock);
264 	list_add_tail(&iommu->list, &iommu_device_list);
265 	spin_unlock(&iommu_device_lock);
266 
267 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++)
268 		err = bus_iommu_probe(iommu_buses[i]);
269 	if (err)
270 		iommu_device_unregister(iommu);
271 	return err;
272 }
273 EXPORT_SYMBOL_GPL(iommu_device_register);
274 
275 void iommu_device_unregister(struct iommu_device *iommu)
276 {
277 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
278 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
279 
280 	spin_lock(&iommu_device_lock);
281 	list_del(&iommu->list);
282 	spin_unlock(&iommu_device_lock);
283 
284 	/* Pairs with the alloc in generic_single_device_group() */
285 	iommu_group_put(iommu->singleton_group);
286 	iommu->singleton_group = NULL;
287 }
288 EXPORT_SYMBOL_GPL(iommu_device_unregister);
289 
290 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
291 void iommu_device_unregister_bus(struct iommu_device *iommu,
292 				 const struct bus_type *bus,
293 				 struct notifier_block *nb)
294 {
295 	bus_unregister_notifier(bus, nb);
296 	iommu_device_unregister(iommu);
297 }
298 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
299 
300 /*
301  * Register an iommu driver against a single bus. This is only used by iommufd
302  * selftest to create a mock iommu driver. The caller must provide
303  * some memory to hold a notifier_block.
304  */
305 int iommu_device_register_bus(struct iommu_device *iommu,
306 			      const struct iommu_ops *ops,
307 			      const struct bus_type *bus,
308 			      struct notifier_block *nb)
309 {
310 	int err;
311 
312 	iommu->ops = ops;
313 	nb->notifier_call = iommu_bus_notifier;
314 	err = bus_register_notifier(bus, nb);
315 	if (err)
316 		return err;
317 
318 	spin_lock(&iommu_device_lock);
319 	list_add_tail(&iommu->list, &iommu_device_list);
320 	spin_unlock(&iommu_device_lock);
321 
322 	err = bus_iommu_probe(bus);
323 	if (err) {
324 		iommu_device_unregister_bus(iommu, bus, nb);
325 		return err;
326 	}
327 	return 0;
328 }
329 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
330 #endif
331 
332 static struct dev_iommu *dev_iommu_get(struct device *dev)
333 {
334 	struct dev_iommu *param = dev->iommu;
335 
336 	lockdep_assert_held(&iommu_probe_device_lock);
337 
338 	if (param)
339 		return param;
340 
341 	param = kzalloc(sizeof(*param), GFP_KERNEL);
342 	if (!param)
343 		return NULL;
344 
345 	mutex_init(&param->lock);
346 	dev->iommu = param;
347 	return param;
348 }
349 
350 static void dev_iommu_free(struct device *dev)
351 {
352 	struct dev_iommu *param = dev->iommu;
353 
354 	dev->iommu = NULL;
355 	if (param->fwspec) {
356 		fwnode_handle_put(param->fwspec->iommu_fwnode);
357 		kfree(param->fwspec);
358 	}
359 	kfree(param);
360 }
361 
362 /*
363  * Internal equivalent of device_iommu_mapped() for when we care that a device
364  * actually has API ops, and don't want false positives from VFIO-only groups.
365  */
366 static bool dev_has_iommu(struct device *dev)
367 {
368 	return dev->iommu && dev->iommu->iommu_dev;
369 }
370 
371 static u32 dev_iommu_get_max_pasids(struct device *dev)
372 {
373 	u32 max_pasids = 0, bits = 0;
374 	int ret;
375 
376 	if (dev_is_pci(dev)) {
377 		ret = pci_max_pasids(to_pci_dev(dev));
378 		if (ret > 0)
379 			max_pasids = ret;
380 	} else {
381 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
382 		if (!ret)
383 			max_pasids = 1UL << bits;
384 	}
385 
386 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
387 }
388 
389 void dev_iommu_priv_set(struct device *dev, void *priv)
390 {
391 	/* FSL_PAMU does something weird */
392 	if (!IS_ENABLED(CONFIG_FSL_PAMU))
393 		lockdep_assert_held(&iommu_probe_device_lock);
394 	dev->iommu->priv = priv;
395 }
396 EXPORT_SYMBOL_GPL(dev_iommu_priv_set);
397 
398 /*
399  * Init the dev->iommu and dev->iommu_group in the struct device and get the
400  * driver probed
401  */
402 static int iommu_init_device(struct device *dev, const struct iommu_ops *ops)
403 {
404 	struct iommu_device *iommu_dev;
405 	struct iommu_group *group;
406 	int ret;
407 
408 	if (!dev_iommu_get(dev))
409 		return -ENOMEM;
410 
411 	if (!try_module_get(ops->owner)) {
412 		ret = -EINVAL;
413 		goto err_free;
414 	}
415 
416 	iommu_dev = ops->probe_device(dev);
417 	if (IS_ERR(iommu_dev)) {
418 		ret = PTR_ERR(iommu_dev);
419 		goto err_module_put;
420 	}
421 	dev->iommu->iommu_dev = iommu_dev;
422 
423 	ret = iommu_device_link(iommu_dev, dev);
424 	if (ret)
425 		goto err_release;
426 
427 	group = ops->device_group(dev);
428 	if (WARN_ON_ONCE(group == NULL))
429 		group = ERR_PTR(-EINVAL);
430 	if (IS_ERR(group)) {
431 		ret = PTR_ERR(group);
432 		goto err_unlink;
433 	}
434 	dev->iommu_group = group;
435 
436 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
437 	if (ops->is_attach_deferred)
438 		dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
439 	return 0;
440 
441 err_unlink:
442 	iommu_device_unlink(iommu_dev, dev);
443 err_release:
444 	if (ops->release_device)
445 		ops->release_device(dev);
446 err_module_put:
447 	module_put(ops->owner);
448 err_free:
449 	dev->iommu->iommu_dev = NULL;
450 	dev_iommu_free(dev);
451 	return ret;
452 }
453 
454 static void iommu_deinit_device(struct device *dev)
455 {
456 	struct iommu_group *group = dev->iommu_group;
457 	const struct iommu_ops *ops = dev_iommu_ops(dev);
458 
459 	lockdep_assert_held(&group->mutex);
460 
461 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
462 
463 	/*
464 	 * release_device() must stop using any attached domain on the device.
465 	 * If there are still other devices in the group, they are not affected
466 	 * by this callback.
467 	 *
468 	 * If the iommu driver provides release_domain, the core code ensures
469 	 * that domain is attached prior to calling release_device. Drivers can
470 	 * use this to enforce a translation on the idle iommu. Typically, the
471 	 * global static blocked_domain is a good choice.
472 	 *
473 	 * Otherwise, the iommu driver must set the device to either an identity
474 	 * or a blocking translation in release_device() and stop using any
475 	 * domain pointer, as it is going to be freed.
476 	 *
477 	 * Regardless, if a delayed attach never occurred, then the release
478 	 * should still avoid touching any hardware configuration either.
479 	 */
480 	if (!dev->iommu->attach_deferred && ops->release_domain)
481 		ops->release_domain->ops->attach_dev(ops->release_domain, dev);
482 
483 	if (ops->release_device)
484 		ops->release_device(dev);
485 
486 	/*
487 	 * If this is the last driver to use the group then we must free the
488 	 * domains before we do the module_put().
489 	 */
490 	if (list_empty(&group->devices)) {
491 		if (group->default_domain) {
492 			iommu_domain_free(group->default_domain);
493 			group->default_domain = NULL;
494 		}
495 		if (group->blocking_domain) {
496 			iommu_domain_free(group->blocking_domain);
497 			group->blocking_domain = NULL;
498 		}
499 		group->domain = NULL;
500 	}
501 
502 	/* Caller must put iommu_group */
503 	dev->iommu_group = NULL;
504 	module_put(ops->owner);
505 	dev_iommu_free(dev);
506 }
507 
508 DEFINE_MUTEX(iommu_probe_device_lock);
509 
510 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
511 {
512 	const struct iommu_ops *ops;
513 	struct iommu_group *group;
514 	struct group_device *gdev;
515 	int ret;
516 
517 	/*
518 	 * For FDT-based systems and ACPI IORT/VIOT, drivers register IOMMU
519 	 * instances with non-NULL fwnodes, and client devices should have been
520 	 * identified with a fwspec by this point. Otherwise, we can currently
521 	 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can
522 	 * be present, and that any of their registered instances has suitable
523 	 * ops for probing, and thus cheekily co-opt the same mechanism.
524 	 */
525 	ops = iommu_fwspec_ops(dev_iommu_fwspec_get(dev));
526 	if (!ops)
527 		return -ENODEV;
528 	/*
529 	 * Serialise to avoid races between IOMMU drivers registering in
530 	 * parallel and/or the "replay" calls from ACPI/OF code via client
531 	 * driver probe. Once the latter have been cleaned up we should
532 	 * probably be able to use device_lock() here to minimise the scope,
533 	 * but for now enforcing a simple global ordering is fine.
534 	 */
535 	lockdep_assert_held(&iommu_probe_device_lock);
536 
537 	/* Device is probed already if in a group */
538 	if (dev->iommu_group)
539 		return 0;
540 
541 	ret = iommu_init_device(dev, ops);
542 	if (ret)
543 		return ret;
544 
545 	group = dev->iommu_group;
546 	gdev = iommu_group_alloc_device(group, dev);
547 	mutex_lock(&group->mutex);
548 	if (IS_ERR(gdev)) {
549 		ret = PTR_ERR(gdev);
550 		goto err_put_group;
551 	}
552 
553 	/*
554 	 * The gdev must be in the list before calling
555 	 * iommu_setup_default_domain()
556 	 */
557 	list_add_tail(&gdev->list, &group->devices);
558 	WARN_ON(group->default_domain && !group->domain);
559 	if (group->default_domain)
560 		iommu_create_device_direct_mappings(group->default_domain, dev);
561 	if (group->domain) {
562 		ret = __iommu_device_set_domain(group, dev, group->domain, 0);
563 		if (ret)
564 			goto err_remove_gdev;
565 	} else if (!group->default_domain && !group_list) {
566 		ret = iommu_setup_default_domain(group, 0);
567 		if (ret)
568 			goto err_remove_gdev;
569 	} else if (!group->default_domain) {
570 		/*
571 		 * With a group_list argument we defer the default_domain setup
572 		 * to the caller by providing a de-duplicated list of groups
573 		 * that need further setup.
574 		 */
575 		if (list_empty(&group->entry))
576 			list_add_tail(&group->entry, group_list);
577 	}
578 
579 	if (group->default_domain)
580 		iommu_setup_dma_ops(dev);
581 
582 	mutex_unlock(&group->mutex);
583 
584 	return 0;
585 
586 err_remove_gdev:
587 	list_del(&gdev->list);
588 	__iommu_group_free_device(group, gdev);
589 err_put_group:
590 	iommu_deinit_device(dev);
591 	mutex_unlock(&group->mutex);
592 	iommu_group_put(group);
593 
594 	return ret;
595 }
596 
597 int iommu_probe_device(struct device *dev)
598 {
599 	const struct iommu_ops *ops;
600 	int ret;
601 
602 	mutex_lock(&iommu_probe_device_lock);
603 	ret = __iommu_probe_device(dev, NULL);
604 	mutex_unlock(&iommu_probe_device_lock);
605 	if (ret)
606 		return ret;
607 
608 	ops = dev_iommu_ops(dev);
609 	if (ops->probe_finalize)
610 		ops->probe_finalize(dev);
611 
612 	return 0;
613 }
614 
615 static void __iommu_group_free_device(struct iommu_group *group,
616 				      struct group_device *grp_dev)
617 {
618 	struct device *dev = grp_dev->dev;
619 
620 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
621 	sysfs_remove_link(&dev->kobj, "iommu_group");
622 
623 	trace_remove_device_from_group(group->id, dev);
624 
625 	/*
626 	 * If the group has become empty then ownership must have been
627 	 * released, and the current domain must be set back to NULL or
628 	 * the default domain.
629 	 */
630 	if (list_empty(&group->devices))
631 		WARN_ON(group->owner_cnt ||
632 			group->domain != group->default_domain);
633 
634 	kfree(grp_dev->name);
635 	kfree(grp_dev);
636 }
637 
638 /* Remove the iommu_group from the struct device. */
639 static void __iommu_group_remove_device(struct device *dev)
640 {
641 	struct iommu_group *group = dev->iommu_group;
642 	struct group_device *device;
643 
644 	mutex_lock(&group->mutex);
645 	for_each_group_device(group, device) {
646 		if (device->dev != dev)
647 			continue;
648 
649 		list_del(&device->list);
650 		__iommu_group_free_device(group, device);
651 		if (dev_has_iommu(dev))
652 			iommu_deinit_device(dev);
653 		else
654 			dev->iommu_group = NULL;
655 		break;
656 	}
657 	mutex_unlock(&group->mutex);
658 
659 	/*
660 	 * Pairs with the get in iommu_init_device() or
661 	 * iommu_group_add_device()
662 	 */
663 	iommu_group_put(group);
664 }
665 
666 static void iommu_release_device(struct device *dev)
667 {
668 	struct iommu_group *group = dev->iommu_group;
669 
670 	if (group)
671 		__iommu_group_remove_device(dev);
672 
673 	/* Free any fwspec if no iommu_driver was ever attached */
674 	if (dev->iommu)
675 		dev_iommu_free(dev);
676 }
677 
678 static int __init iommu_set_def_domain_type(char *str)
679 {
680 	bool pt;
681 	int ret;
682 
683 	ret = kstrtobool(str, &pt);
684 	if (ret)
685 		return ret;
686 
687 	if (pt)
688 		iommu_set_default_passthrough(true);
689 	else
690 		iommu_set_default_translated(true);
691 
692 	return 0;
693 }
694 early_param("iommu.passthrough", iommu_set_def_domain_type);
695 
696 static int __init iommu_dma_setup(char *str)
697 {
698 	int ret = kstrtobool(str, &iommu_dma_strict);
699 
700 	if (!ret)
701 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
702 	return ret;
703 }
704 early_param("iommu.strict", iommu_dma_setup);
705 
706 void iommu_set_dma_strict(void)
707 {
708 	iommu_dma_strict = true;
709 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
710 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
711 }
712 
713 static ssize_t iommu_group_attr_show(struct kobject *kobj,
714 				     struct attribute *__attr, char *buf)
715 {
716 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
717 	struct iommu_group *group = to_iommu_group(kobj);
718 	ssize_t ret = -EIO;
719 
720 	if (attr->show)
721 		ret = attr->show(group, buf);
722 	return ret;
723 }
724 
725 static ssize_t iommu_group_attr_store(struct kobject *kobj,
726 				      struct attribute *__attr,
727 				      const char *buf, size_t count)
728 {
729 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
730 	struct iommu_group *group = to_iommu_group(kobj);
731 	ssize_t ret = -EIO;
732 
733 	if (attr->store)
734 		ret = attr->store(group, buf, count);
735 	return ret;
736 }
737 
738 static const struct sysfs_ops iommu_group_sysfs_ops = {
739 	.show = iommu_group_attr_show,
740 	.store = iommu_group_attr_store,
741 };
742 
743 static int iommu_group_create_file(struct iommu_group *group,
744 				   struct iommu_group_attribute *attr)
745 {
746 	return sysfs_create_file(&group->kobj, &attr->attr);
747 }
748 
749 static void iommu_group_remove_file(struct iommu_group *group,
750 				    struct iommu_group_attribute *attr)
751 {
752 	sysfs_remove_file(&group->kobj, &attr->attr);
753 }
754 
755 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
756 {
757 	return sysfs_emit(buf, "%s\n", group->name);
758 }
759 
760 /**
761  * iommu_insert_resv_region - Insert a new region in the
762  * list of reserved regions.
763  * @new: new region to insert
764  * @regions: list of regions
765  *
766  * Elements are sorted by start address and overlapping segments
767  * of the same type are merged.
768  */
769 static int iommu_insert_resv_region(struct iommu_resv_region *new,
770 				    struct list_head *regions)
771 {
772 	struct iommu_resv_region *iter, *tmp, *nr, *top;
773 	LIST_HEAD(stack);
774 
775 	nr = iommu_alloc_resv_region(new->start, new->length,
776 				     new->prot, new->type, GFP_KERNEL);
777 	if (!nr)
778 		return -ENOMEM;
779 
780 	/* First add the new element based on start address sorting */
781 	list_for_each_entry(iter, regions, list) {
782 		if (nr->start < iter->start ||
783 		    (nr->start == iter->start && nr->type <= iter->type))
784 			break;
785 	}
786 	list_add_tail(&nr->list, &iter->list);
787 
788 	/* Merge overlapping segments of type nr->type in @regions, if any */
789 	list_for_each_entry_safe(iter, tmp, regions, list) {
790 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
791 
792 		/* no merge needed on elements of different types than @new */
793 		if (iter->type != new->type) {
794 			list_move_tail(&iter->list, &stack);
795 			continue;
796 		}
797 
798 		/* look for the last stack element of same type as @iter */
799 		list_for_each_entry_reverse(top, &stack, list)
800 			if (top->type == iter->type)
801 				goto check_overlap;
802 
803 		list_move_tail(&iter->list, &stack);
804 		continue;
805 
806 check_overlap:
807 		top_end = top->start + top->length - 1;
808 
809 		if (iter->start > top_end + 1) {
810 			list_move_tail(&iter->list, &stack);
811 		} else {
812 			top->length = max(top_end, iter_end) - top->start + 1;
813 			list_del(&iter->list);
814 			kfree(iter);
815 		}
816 	}
817 	list_splice(&stack, regions);
818 	return 0;
819 }
820 
821 static int
822 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
823 				 struct list_head *group_resv_regions)
824 {
825 	struct iommu_resv_region *entry;
826 	int ret = 0;
827 
828 	list_for_each_entry(entry, dev_resv_regions, list) {
829 		ret = iommu_insert_resv_region(entry, group_resv_regions);
830 		if (ret)
831 			break;
832 	}
833 	return ret;
834 }
835 
836 int iommu_get_group_resv_regions(struct iommu_group *group,
837 				 struct list_head *head)
838 {
839 	struct group_device *device;
840 	int ret = 0;
841 
842 	mutex_lock(&group->mutex);
843 	for_each_group_device(group, device) {
844 		struct list_head dev_resv_regions;
845 
846 		/*
847 		 * Non-API groups still expose reserved_regions in sysfs,
848 		 * so filter out calls that get here that way.
849 		 */
850 		if (!dev_has_iommu(device->dev))
851 			break;
852 
853 		INIT_LIST_HEAD(&dev_resv_regions);
854 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
855 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
856 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
857 		if (ret)
858 			break;
859 	}
860 	mutex_unlock(&group->mutex);
861 	return ret;
862 }
863 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
864 
865 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
866 					     char *buf)
867 {
868 	struct iommu_resv_region *region, *next;
869 	struct list_head group_resv_regions;
870 	int offset = 0;
871 
872 	INIT_LIST_HEAD(&group_resv_regions);
873 	iommu_get_group_resv_regions(group, &group_resv_regions);
874 
875 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
876 		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
877 					(long long)region->start,
878 					(long long)(region->start +
879 						    region->length - 1),
880 					iommu_group_resv_type_string[region->type]);
881 		kfree(region);
882 	}
883 
884 	return offset;
885 }
886 
887 static ssize_t iommu_group_show_type(struct iommu_group *group,
888 				     char *buf)
889 {
890 	char *type = "unknown";
891 
892 	mutex_lock(&group->mutex);
893 	if (group->default_domain) {
894 		switch (group->default_domain->type) {
895 		case IOMMU_DOMAIN_BLOCKED:
896 			type = "blocked";
897 			break;
898 		case IOMMU_DOMAIN_IDENTITY:
899 			type = "identity";
900 			break;
901 		case IOMMU_DOMAIN_UNMANAGED:
902 			type = "unmanaged";
903 			break;
904 		case IOMMU_DOMAIN_DMA:
905 			type = "DMA";
906 			break;
907 		case IOMMU_DOMAIN_DMA_FQ:
908 			type = "DMA-FQ";
909 			break;
910 		}
911 	}
912 	mutex_unlock(&group->mutex);
913 
914 	return sysfs_emit(buf, "%s\n", type);
915 }
916 
917 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
918 
919 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
920 			iommu_group_show_resv_regions, NULL);
921 
922 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
923 			iommu_group_store_type);
924 
925 static void iommu_group_release(struct kobject *kobj)
926 {
927 	struct iommu_group *group = to_iommu_group(kobj);
928 
929 	pr_debug("Releasing group %d\n", group->id);
930 
931 	if (group->iommu_data_release)
932 		group->iommu_data_release(group->iommu_data);
933 
934 	ida_free(&iommu_group_ida, group->id);
935 
936 	/* Domains are free'd by iommu_deinit_device() */
937 	WARN_ON(group->default_domain);
938 	WARN_ON(group->blocking_domain);
939 
940 	kfree(group->name);
941 	kfree(group);
942 }
943 
944 static const struct kobj_type iommu_group_ktype = {
945 	.sysfs_ops = &iommu_group_sysfs_ops,
946 	.release = iommu_group_release,
947 };
948 
949 /**
950  * iommu_group_alloc - Allocate a new group
951  *
952  * This function is called by an iommu driver to allocate a new iommu
953  * group.  The iommu group represents the minimum granularity of the iommu.
954  * Upon successful return, the caller holds a reference to the supplied
955  * group in order to hold the group until devices are added.  Use
956  * iommu_group_put() to release this extra reference count, allowing the
957  * group to be automatically reclaimed once it has no devices or external
958  * references.
959  */
960 struct iommu_group *iommu_group_alloc(void)
961 {
962 	struct iommu_group *group;
963 	int ret;
964 
965 	group = kzalloc(sizeof(*group), GFP_KERNEL);
966 	if (!group)
967 		return ERR_PTR(-ENOMEM);
968 
969 	group->kobj.kset = iommu_group_kset;
970 	mutex_init(&group->mutex);
971 	INIT_LIST_HEAD(&group->devices);
972 	INIT_LIST_HEAD(&group->entry);
973 	xa_init(&group->pasid_array);
974 
975 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
976 	if (ret < 0) {
977 		kfree(group);
978 		return ERR_PTR(ret);
979 	}
980 	group->id = ret;
981 
982 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
983 				   NULL, "%d", group->id);
984 	if (ret) {
985 		kobject_put(&group->kobj);
986 		return ERR_PTR(ret);
987 	}
988 
989 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
990 	if (!group->devices_kobj) {
991 		kobject_put(&group->kobj); /* triggers .release & free */
992 		return ERR_PTR(-ENOMEM);
993 	}
994 
995 	/*
996 	 * The devices_kobj holds a reference on the group kobject, so
997 	 * as long as that exists so will the group.  We can therefore
998 	 * use the devices_kobj for reference counting.
999 	 */
1000 	kobject_put(&group->kobj);
1001 
1002 	ret = iommu_group_create_file(group,
1003 				      &iommu_group_attr_reserved_regions);
1004 	if (ret) {
1005 		kobject_put(group->devices_kobj);
1006 		return ERR_PTR(ret);
1007 	}
1008 
1009 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
1010 	if (ret) {
1011 		kobject_put(group->devices_kobj);
1012 		return ERR_PTR(ret);
1013 	}
1014 
1015 	pr_debug("Allocated group %d\n", group->id);
1016 
1017 	return group;
1018 }
1019 EXPORT_SYMBOL_GPL(iommu_group_alloc);
1020 
1021 /**
1022  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
1023  * @group: the group
1024  *
1025  * iommu drivers can store data in the group for use when doing iommu
1026  * operations.  This function provides a way to retrieve it.  Caller
1027  * should hold a group reference.
1028  */
1029 void *iommu_group_get_iommudata(struct iommu_group *group)
1030 {
1031 	return group->iommu_data;
1032 }
1033 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1034 
1035 /**
1036  * iommu_group_set_iommudata - set iommu_data for a group
1037  * @group: the group
1038  * @iommu_data: new data
1039  * @release: release function for iommu_data
1040  *
1041  * iommu drivers can store data in the group for use when doing iommu
1042  * operations.  This function provides a way to set the data after
1043  * the group has been allocated.  Caller should hold a group reference.
1044  */
1045 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1046 			       void (*release)(void *iommu_data))
1047 {
1048 	group->iommu_data = iommu_data;
1049 	group->iommu_data_release = release;
1050 }
1051 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1052 
1053 /**
1054  * iommu_group_set_name - set name for a group
1055  * @group: the group
1056  * @name: name
1057  *
1058  * Allow iommu driver to set a name for a group.  When set it will
1059  * appear in a name attribute file under the group in sysfs.
1060  */
1061 int iommu_group_set_name(struct iommu_group *group, const char *name)
1062 {
1063 	int ret;
1064 
1065 	if (group->name) {
1066 		iommu_group_remove_file(group, &iommu_group_attr_name);
1067 		kfree(group->name);
1068 		group->name = NULL;
1069 		if (!name)
1070 			return 0;
1071 	}
1072 
1073 	group->name = kstrdup(name, GFP_KERNEL);
1074 	if (!group->name)
1075 		return -ENOMEM;
1076 
1077 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
1078 	if (ret) {
1079 		kfree(group->name);
1080 		group->name = NULL;
1081 		return ret;
1082 	}
1083 
1084 	return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1087 
1088 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1089 					       struct device *dev)
1090 {
1091 	struct iommu_resv_region *entry;
1092 	struct list_head mappings;
1093 	unsigned long pg_size;
1094 	int ret = 0;
1095 
1096 	pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1097 	INIT_LIST_HEAD(&mappings);
1098 
1099 	if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1100 		return -EINVAL;
1101 
1102 	iommu_get_resv_regions(dev, &mappings);
1103 
1104 	/* We need to consider overlapping regions for different devices */
1105 	list_for_each_entry(entry, &mappings, list) {
1106 		dma_addr_t start, end, addr;
1107 		size_t map_size = 0;
1108 
1109 		if (entry->type == IOMMU_RESV_DIRECT)
1110 			dev->iommu->require_direct = 1;
1111 
1112 		if ((entry->type != IOMMU_RESV_DIRECT &&
1113 		     entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1114 		    !iommu_is_dma_domain(domain))
1115 			continue;
1116 
1117 		start = ALIGN(entry->start, pg_size);
1118 		end   = ALIGN(entry->start + entry->length, pg_size);
1119 
1120 		for (addr = start; addr <= end; addr += pg_size) {
1121 			phys_addr_t phys_addr;
1122 
1123 			if (addr == end)
1124 				goto map_end;
1125 
1126 			phys_addr = iommu_iova_to_phys(domain, addr);
1127 			if (!phys_addr) {
1128 				map_size += pg_size;
1129 				continue;
1130 			}
1131 
1132 map_end:
1133 			if (map_size) {
1134 				ret = iommu_map(domain, addr - map_size,
1135 						addr - map_size, map_size,
1136 						entry->prot, GFP_KERNEL);
1137 				if (ret)
1138 					goto out;
1139 				map_size = 0;
1140 			}
1141 		}
1142 
1143 	}
1144 
1145 	if (!list_empty(&mappings) && iommu_is_dma_domain(domain))
1146 		iommu_flush_iotlb_all(domain);
1147 
1148 out:
1149 	iommu_put_resv_regions(dev, &mappings);
1150 
1151 	return ret;
1152 }
1153 
1154 /* This is undone by __iommu_group_free_device() */
1155 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1156 						     struct device *dev)
1157 {
1158 	int ret, i = 0;
1159 	struct group_device *device;
1160 
1161 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1162 	if (!device)
1163 		return ERR_PTR(-ENOMEM);
1164 
1165 	device->dev = dev;
1166 
1167 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1168 	if (ret)
1169 		goto err_free_device;
1170 
1171 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1172 rename:
1173 	if (!device->name) {
1174 		ret = -ENOMEM;
1175 		goto err_remove_link;
1176 	}
1177 
1178 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1179 				       &dev->kobj, device->name);
1180 	if (ret) {
1181 		if (ret == -EEXIST && i >= 0) {
1182 			/*
1183 			 * Account for the slim chance of collision
1184 			 * and append an instance to the name.
1185 			 */
1186 			kfree(device->name);
1187 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1188 						 kobject_name(&dev->kobj), i++);
1189 			goto rename;
1190 		}
1191 		goto err_free_name;
1192 	}
1193 
1194 	trace_add_device_to_group(group->id, dev);
1195 
1196 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1197 
1198 	return device;
1199 
1200 err_free_name:
1201 	kfree(device->name);
1202 err_remove_link:
1203 	sysfs_remove_link(&dev->kobj, "iommu_group");
1204 err_free_device:
1205 	kfree(device);
1206 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1207 	return ERR_PTR(ret);
1208 }
1209 
1210 /**
1211  * iommu_group_add_device - add a device to an iommu group
1212  * @group: the group into which to add the device (reference should be held)
1213  * @dev: the device
1214  *
1215  * This function is called by an iommu driver to add a device into a
1216  * group.  Adding a device increments the group reference count.
1217  */
1218 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1219 {
1220 	struct group_device *gdev;
1221 
1222 	gdev = iommu_group_alloc_device(group, dev);
1223 	if (IS_ERR(gdev))
1224 		return PTR_ERR(gdev);
1225 
1226 	iommu_group_ref_get(group);
1227 	dev->iommu_group = group;
1228 
1229 	mutex_lock(&group->mutex);
1230 	list_add_tail(&gdev->list, &group->devices);
1231 	mutex_unlock(&group->mutex);
1232 	return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1235 
1236 /**
1237  * iommu_group_remove_device - remove a device from it's current group
1238  * @dev: device to be removed
1239  *
1240  * This function is called by an iommu driver to remove the device from
1241  * it's current group.  This decrements the iommu group reference count.
1242  */
1243 void iommu_group_remove_device(struct device *dev)
1244 {
1245 	struct iommu_group *group = dev->iommu_group;
1246 
1247 	if (!group)
1248 		return;
1249 
1250 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1251 
1252 	__iommu_group_remove_device(dev);
1253 }
1254 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1255 
1256 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API)
1257 /**
1258  * iommu_group_mutex_assert - Check device group mutex lock
1259  * @dev: the device that has group param set
1260  *
1261  * This function is called by an iommu driver to check whether it holds
1262  * group mutex lock for the given device or not.
1263  *
1264  * Note that this function must be called after device group param is set.
1265  */
1266 void iommu_group_mutex_assert(struct device *dev)
1267 {
1268 	struct iommu_group *group = dev->iommu_group;
1269 
1270 	lockdep_assert_held(&group->mutex);
1271 }
1272 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert);
1273 #endif
1274 
1275 static struct device *iommu_group_first_dev(struct iommu_group *group)
1276 {
1277 	lockdep_assert_held(&group->mutex);
1278 	return list_first_entry(&group->devices, struct group_device, list)->dev;
1279 }
1280 
1281 /**
1282  * iommu_group_for_each_dev - iterate over each device in the group
1283  * @group: the group
1284  * @data: caller opaque data to be passed to callback function
1285  * @fn: caller supplied callback function
1286  *
1287  * This function is called by group users to iterate over group devices.
1288  * Callers should hold a reference count to the group during callback.
1289  * The group->mutex is held across callbacks, which will block calls to
1290  * iommu_group_add/remove_device.
1291  */
1292 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1293 			     int (*fn)(struct device *, void *))
1294 {
1295 	struct group_device *device;
1296 	int ret = 0;
1297 
1298 	mutex_lock(&group->mutex);
1299 	for_each_group_device(group, device) {
1300 		ret = fn(device->dev, data);
1301 		if (ret)
1302 			break;
1303 	}
1304 	mutex_unlock(&group->mutex);
1305 
1306 	return ret;
1307 }
1308 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1309 
1310 /**
1311  * iommu_group_get - Return the group for a device and increment reference
1312  * @dev: get the group that this device belongs to
1313  *
1314  * This function is called by iommu drivers and users to get the group
1315  * for the specified device.  If found, the group is returned and the group
1316  * reference in incremented, else NULL.
1317  */
1318 struct iommu_group *iommu_group_get(struct device *dev)
1319 {
1320 	struct iommu_group *group = dev->iommu_group;
1321 
1322 	if (group)
1323 		kobject_get(group->devices_kobj);
1324 
1325 	return group;
1326 }
1327 EXPORT_SYMBOL_GPL(iommu_group_get);
1328 
1329 /**
1330  * iommu_group_ref_get - Increment reference on a group
1331  * @group: the group to use, must not be NULL
1332  *
1333  * This function is called by iommu drivers to take additional references on an
1334  * existing group.  Returns the given group for convenience.
1335  */
1336 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1337 {
1338 	kobject_get(group->devices_kobj);
1339 	return group;
1340 }
1341 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1342 
1343 /**
1344  * iommu_group_put - Decrement group reference
1345  * @group: the group to use
1346  *
1347  * This function is called by iommu drivers and users to release the
1348  * iommu group.  Once the reference count is zero, the group is released.
1349  */
1350 void iommu_group_put(struct iommu_group *group)
1351 {
1352 	if (group)
1353 		kobject_put(group->devices_kobj);
1354 }
1355 EXPORT_SYMBOL_GPL(iommu_group_put);
1356 
1357 /**
1358  * iommu_group_id - Return ID for a group
1359  * @group: the group to ID
1360  *
1361  * Return the unique ID for the group matching the sysfs group number.
1362  */
1363 int iommu_group_id(struct iommu_group *group)
1364 {
1365 	return group->id;
1366 }
1367 EXPORT_SYMBOL_GPL(iommu_group_id);
1368 
1369 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1370 					       unsigned long *devfns);
1371 
1372 /*
1373  * To consider a PCI device isolated, we require ACS to support Source
1374  * Validation, Request Redirection, Completer Redirection, and Upstream
1375  * Forwarding.  This effectively means that devices cannot spoof their
1376  * requester ID, requests and completions cannot be redirected, and all
1377  * transactions are forwarded upstream, even as it passes through a
1378  * bridge where the target device is downstream.
1379  */
1380 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1381 
1382 /*
1383  * For multifunction devices which are not isolated from each other, find
1384  * all the other non-isolated functions and look for existing groups.  For
1385  * each function, we also need to look for aliases to or from other devices
1386  * that may already have a group.
1387  */
1388 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1389 							unsigned long *devfns)
1390 {
1391 	struct pci_dev *tmp = NULL;
1392 	struct iommu_group *group;
1393 
1394 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1395 		return NULL;
1396 
1397 	for_each_pci_dev(tmp) {
1398 		if (tmp == pdev || tmp->bus != pdev->bus ||
1399 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1400 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1401 			continue;
1402 
1403 		group = get_pci_alias_group(tmp, devfns);
1404 		if (group) {
1405 			pci_dev_put(tmp);
1406 			return group;
1407 		}
1408 	}
1409 
1410 	return NULL;
1411 }
1412 
1413 /*
1414  * Look for aliases to or from the given device for existing groups. DMA
1415  * aliases are only supported on the same bus, therefore the search
1416  * space is quite small (especially since we're really only looking at pcie
1417  * device, and therefore only expect multiple slots on the root complex or
1418  * downstream switch ports).  It's conceivable though that a pair of
1419  * multifunction devices could have aliases between them that would cause a
1420  * loop.  To prevent this, we use a bitmap to track where we've been.
1421  */
1422 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1423 					       unsigned long *devfns)
1424 {
1425 	struct pci_dev *tmp = NULL;
1426 	struct iommu_group *group;
1427 
1428 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1429 		return NULL;
1430 
1431 	group = iommu_group_get(&pdev->dev);
1432 	if (group)
1433 		return group;
1434 
1435 	for_each_pci_dev(tmp) {
1436 		if (tmp == pdev || tmp->bus != pdev->bus)
1437 			continue;
1438 
1439 		/* We alias them or they alias us */
1440 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1441 			group = get_pci_alias_group(tmp, devfns);
1442 			if (group) {
1443 				pci_dev_put(tmp);
1444 				return group;
1445 			}
1446 
1447 			group = get_pci_function_alias_group(tmp, devfns);
1448 			if (group) {
1449 				pci_dev_put(tmp);
1450 				return group;
1451 			}
1452 		}
1453 	}
1454 
1455 	return NULL;
1456 }
1457 
1458 struct group_for_pci_data {
1459 	struct pci_dev *pdev;
1460 	struct iommu_group *group;
1461 };
1462 
1463 /*
1464  * DMA alias iterator callback, return the last seen device.  Stop and return
1465  * the IOMMU group if we find one along the way.
1466  */
1467 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1468 {
1469 	struct group_for_pci_data *data = opaque;
1470 
1471 	data->pdev = pdev;
1472 	data->group = iommu_group_get(&pdev->dev);
1473 
1474 	return data->group != NULL;
1475 }
1476 
1477 /*
1478  * Generic device_group call-back function. It just allocates one
1479  * iommu-group per device.
1480  */
1481 struct iommu_group *generic_device_group(struct device *dev)
1482 {
1483 	return iommu_group_alloc();
1484 }
1485 EXPORT_SYMBOL_GPL(generic_device_group);
1486 
1487 /*
1488  * Generic device_group call-back function. It just allocates one
1489  * iommu-group per iommu driver instance shared by every device
1490  * probed by that iommu driver.
1491  */
1492 struct iommu_group *generic_single_device_group(struct device *dev)
1493 {
1494 	struct iommu_device *iommu = dev->iommu->iommu_dev;
1495 
1496 	if (!iommu->singleton_group) {
1497 		struct iommu_group *group;
1498 
1499 		group = iommu_group_alloc();
1500 		if (IS_ERR(group))
1501 			return group;
1502 		iommu->singleton_group = group;
1503 	}
1504 	return iommu_group_ref_get(iommu->singleton_group);
1505 }
1506 EXPORT_SYMBOL_GPL(generic_single_device_group);
1507 
1508 /*
1509  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1510  * to find or create an IOMMU group for a device.
1511  */
1512 struct iommu_group *pci_device_group(struct device *dev)
1513 {
1514 	struct pci_dev *pdev = to_pci_dev(dev);
1515 	struct group_for_pci_data data;
1516 	struct pci_bus *bus;
1517 	struct iommu_group *group = NULL;
1518 	u64 devfns[4] = { 0 };
1519 
1520 	if (WARN_ON(!dev_is_pci(dev)))
1521 		return ERR_PTR(-EINVAL);
1522 
1523 	/*
1524 	 * Find the upstream DMA alias for the device.  A device must not
1525 	 * be aliased due to topology in order to have its own IOMMU group.
1526 	 * If we find an alias along the way that already belongs to a
1527 	 * group, use it.
1528 	 */
1529 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1530 		return data.group;
1531 
1532 	pdev = data.pdev;
1533 
1534 	/*
1535 	 * Continue upstream from the point of minimum IOMMU granularity
1536 	 * due to aliases to the point where devices are protected from
1537 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1538 	 * group, use it.
1539 	 */
1540 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1541 		if (!bus->self)
1542 			continue;
1543 
1544 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1545 			break;
1546 
1547 		pdev = bus->self;
1548 
1549 		group = iommu_group_get(&pdev->dev);
1550 		if (group)
1551 			return group;
1552 	}
1553 
1554 	/*
1555 	 * Look for existing groups on device aliases.  If we alias another
1556 	 * device or another device aliases us, use the same group.
1557 	 */
1558 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1559 	if (group)
1560 		return group;
1561 
1562 	/*
1563 	 * Look for existing groups on non-isolated functions on the same
1564 	 * slot and aliases of those funcions, if any.  No need to clear
1565 	 * the search bitmap, the tested devfns are still valid.
1566 	 */
1567 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1568 	if (group)
1569 		return group;
1570 
1571 	/* No shared group found, allocate new */
1572 	return iommu_group_alloc();
1573 }
1574 EXPORT_SYMBOL_GPL(pci_device_group);
1575 
1576 /* Get the IOMMU group for device on fsl-mc bus */
1577 struct iommu_group *fsl_mc_device_group(struct device *dev)
1578 {
1579 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1580 	struct iommu_group *group;
1581 
1582 	group = iommu_group_get(cont_dev);
1583 	if (!group)
1584 		group = iommu_group_alloc();
1585 	return group;
1586 }
1587 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1588 
1589 static struct iommu_domain *
1590 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1591 {
1592 	if (group->default_domain && group->default_domain->type == req_type)
1593 		return group->default_domain;
1594 	return __iommu_group_domain_alloc(group, req_type);
1595 }
1596 
1597 /*
1598  * req_type of 0 means "auto" which means to select a domain based on
1599  * iommu_def_domain_type or what the driver actually supports.
1600  */
1601 static struct iommu_domain *
1602 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1603 {
1604 	const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group));
1605 	struct iommu_domain *dom;
1606 
1607 	lockdep_assert_held(&group->mutex);
1608 
1609 	/*
1610 	 * Allow legacy drivers to specify the domain that will be the default
1611 	 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM
1612 	 * domain. Do not use in new drivers.
1613 	 */
1614 	if (ops->default_domain) {
1615 		if (req_type != ops->default_domain->type)
1616 			return ERR_PTR(-EINVAL);
1617 		return ops->default_domain;
1618 	}
1619 
1620 	if (req_type)
1621 		return __iommu_group_alloc_default_domain(group, req_type);
1622 
1623 	/* The driver gave no guidance on what type to use, try the default */
1624 	dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type);
1625 	if (!IS_ERR(dom))
1626 		return dom;
1627 
1628 	/* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1629 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1630 		return ERR_PTR(-EINVAL);
1631 	dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA);
1632 	if (IS_ERR(dom))
1633 		return dom;
1634 
1635 	pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1636 		iommu_def_domain_type, group->name);
1637 	return dom;
1638 }
1639 
1640 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1641 {
1642 	return group->default_domain;
1643 }
1644 
1645 static int probe_iommu_group(struct device *dev, void *data)
1646 {
1647 	struct list_head *group_list = data;
1648 	int ret;
1649 
1650 	mutex_lock(&iommu_probe_device_lock);
1651 	ret = __iommu_probe_device(dev, group_list);
1652 	mutex_unlock(&iommu_probe_device_lock);
1653 	if (ret == -ENODEV)
1654 		ret = 0;
1655 
1656 	return ret;
1657 }
1658 
1659 static int iommu_bus_notifier(struct notifier_block *nb,
1660 			      unsigned long action, void *data)
1661 {
1662 	struct device *dev = data;
1663 
1664 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1665 		int ret;
1666 
1667 		ret = iommu_probe_device(dev);
1668 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1669 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1670 		iommu_release_device(dev);
1671 		return NOTIFY_OK;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 /*
1678  * Combine the driver's chosen def_domain_type across all the devices in a
1679  * group. Drivers must give a consistent result.
1680  */
1681 static int iommu_get_def_domain_type(struct iommu_group *group,
1682 				     struct device *dev, int cur_type)
1683 {
1684 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1685 	int type;
1686 
1687 	if (ops->default_domain) {
1688 		/*
1689 		 * Drivers that declare a global static default_domain will
1690 		 * always choose that.
1691 		 */
1692 		type = ops->default_domain->type;
1693 	} else {
1694 		if (ops->def_domain_type)
1695 			type = ops->def_domain_type(dev);
1696 		else
1697 			return cur_type;
1698 	}
1699 	if (!type || cur_type == type)
1700 		return cur_type;
1701 	if (!cur_type)
1702 		return type;
1703 
1704 	dev_err_ratelimited(
1705 		dev,
1706 		"IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n",
1707 		iommu_domain_type_str(cur_type), iommu_domain_type_str(type),
1708 		group->id);
1709 
1710 	/*
1711 	 * Try to recover, drivers are allowed to force IDENITY or DMA, IDENTITY
1712 	 * takes precedence.
1713 	 */
1714 	if (type == IOMMU_DOMAIN_IDENTITY)
1715 		return type;
1716 	return cur_type;
1717 }
1718 
1719 /*
1720  * A target_type of 0 will select the best domain type. 0 can be returned in
1721  * this case meaning the global default should be used.
1722  */
1723 static int iommu_get_default_domain_type(struct iommu_group *group,
1724 					 int target_type)
1725 {
1726 	struct device *untrusted = NULL;
1727 	struct group_device *gdev;
1728 	int driver_type = 0;
1729 
1730 	lockdep_assert_held(&group->mutex);
1731 
1732 	/*
1733 	 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an
1734 	 * identity_domain and it will automatically become their default
1735 	 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain.
1736 	 * Override the selection to IDENTITY.
1737 	 */
1738 	if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
1739 		static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) &&
1740 				IS_ENABLED(CONFIG_IOMMU_DMA)));
1741 		driver_type = IOMMU_DOMAIN_IDENTITY;
1742 	}
1743 
1744 	for_each_group_device(group, gdev) {
1745 		driver_type = iommu_get_def_domain_type(group, gdev->dev,
1746 							driver_type);
1747 
1748 		if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) {
1749 			/*
1750 			 * No ARM32 using systems will set untrusted, it cannot
1751 			 * work.
1752 			 */
1753 			if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)))
1754 				return -1;
1755 			untrusted = gdev->dev;
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * If the common dma ops are not selected in kconfig then we cannot use
1761 	 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been
1762 	 * selected.
1763 	 */
1764 	if (!IS_ENABLED(CONFIG_IOMMU_DMA)) {
1765 		if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA))
1766 			return -1;
1767 		if (!driver_type)
1768 			driver_type = IOMMU_DOMAIN_IDENTITY;
1769 	}
1770 
1771 	if (untrusted) {
1772 		if (driver_type && driver_type != IOMMU_DOMAIN_DMA) {
1773 			dev_err_ratelimited(
1774 				untrusted,
1775 				"Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n",
1776 				group->id, iommu_domain_type_str(driver_type));
1777 			return -1;
1778 		}
1779 		driver_type = IOMMU_DOMAIN_DMA;
1780 	}
1781 
1782 	if (target_type) {
1783 		if (driver_type && target_type != driver_type)
1784 			return -1;
1785 		return target_type;
1786 	}
1787 	return driver_type;
1788 }
1789 
1790 static void iommu_group_do_probe_finalize(struct device *dev)
1791 {
1792 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1793 
1794 	if (ops->probe_finalize)
1795 		ops->probe_finalize(dev);
1796 }
1797 
1798 int bus_iommu_probe(const struct bus_type *bus)
1799 {
1800 	struct iommu_group *group, *next;
1801 	LIST_HEAD(group_list);
1802 	int ret;
1803 
1804 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1805 	if (ret)
1806 		return ret;
1807 
1808 	list_for_each_entry_safe(group, next, &group_list, entry) {
1809 		struct group_device *gdev;
1810 
1811 		mutex_lock(&group->mutex);
1812 
1813 		/* Remove item from the list */
1814 		list_del_init(&group->entry);
1815 
1816 		/*
1817 		 * We go to the trouble of deferred default domain creation so
1818 		 * that the cross-group default domain type and the setup of the
1819 		 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1820 		 */
1821 		ret = iommu_setup_default_domain(group, 0);
1822 		if (ret) {
1823 			mutex_unlock(&group->mutex);
1824 			return ret;
1825 		}
1826 		for_each_group_device(group, gdev)
1827 			iommu_setup_dma_ops(gdev->dev);
1828 		mutex_unlock(&group->mutex);
1829 
1830 		/*
1831 		 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1832 		 * of some IOMMU drivers calls arm_iommu_attach_device() which
1833 		 * in-turn might call back into IOMMU core code, where it tries
1834 		 * to take group->mutex, resulting in a deadlock.
1835 		 */
1836 		for_each_group_device(group, gdev)
1837 			iommu_group_do_probe_finalize(gdev->dev);
1838 	}
1839 
1840 	return 0;
1841 }
1842 
1843 /**
1844  * iommu_present() - make platform-specific assumptions about an IOMMU
1845  * @bus: bus to check
1846  *
1847  * Do not use this function. You want device_iommu_mapped() instead.
1848  *
1849  * Return: true if some IOMMU is present and aware of devices on the given bus;
1850  * in general it may not be the only IOMMU, and it may not have anything to do
1851  * with whatever device you are ultimately interested in.
1852  */
1853 bool iommu_present(const struct bus_type *bus)
1854 {
1855 	bool ret = false;
1856 
1857 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
1858 		if (iommu_buses[i] == bus) {
1859 			spin_lock(&iommu_device_lock);
1860 			ret = !list_empty(&iommu_device_list);
1861 			spin_unlock(&iommu_device_lock);
1862 		}
1863 	}
1864 	return ret;
1865 }
1866 EXPORT_SYMBOL_GPL(iommu_present);
1867 
1868 /**
1869  * device_iommu_capable() - check for a general IOMMU capability
1870  * @dev: device to which the capability would be relevant, if available
1871  * @cap: IOMMU capability
1872  *
1873  * Return: true if an IOMMU is present and supports the given capability
1874  * for the given device, otherwise false.
1875  */
1876 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1877 {
1878 	const struct iommu_ops *ops;
1879 
1880 	if (!dev_has_iommu(dev))
1881 		return false;
1882 
1883 	ops = dev_iommu_ops(dev);
1884 	if (!ops->capable)
1885 		return false;
1886 
1887 	return ops->capable(dev, cap);
1888 }
1889 EXPORT_SYMBOL_GPL(device_iommu_capable);
1890 
1891 /**
1892  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1893  *       for a group
1894  * @group: Group to query
1895  *
1896  * IOMMU groups should not have differing values of
1897  * msi_device_has_isolated_msi() for devices in a group. However nothing
1898  * directly prevents this, so ensure mistakes don't result in isolation failures
1899  * by checking that all the devices are the same.
1900  */
1901 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1902 {
1903 	struct group_device *group_dev;
1904 	bool ret = true;
1905 
1906 	mutex_lock(&group->mutex);
1907 	for_each_group_device(group, group_dev)
1908 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1909 	mutex_unlock(&group->mutex);
1910 	return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1913 
1914 /**
1915  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1916  * @domain: iommu domain
1917  * @handler: fault handler
1918  * @token: user data, will be passed back to the fault handler
1919  *
1920  * This function should be used by IOMMU users which want to be notified
1921  * whenever an IOMMU fault happens.
1922  *
1923  * The fault handler itself should return 0 on success, and an appropriate
1924  * error code otherwise.
1925  */
1926 void iommu_set_fault_handler(struct iommu_domain *domain,
1927 					iommu_fault_handler_t handler,
1928 					void *token)
1929 {
1930 	BUG_ON(!domain);
1931 
1932 	domain->handler = handler;
1933 	domain->handler_token = token;
1934 }
1935 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1936 
1937 static struct iommu_domain *__iommu_domain_alloc(const struct iommu_ops *ops,
1938 						 struct device *dev,
1939 						 unsigned int type)
1940 {
1941 	struct iommu_domain *domain;
1942 	unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS;
1943 
1944 	if (alloc_type == IOMMU_DOMAIN_IDENTITY && ops->identity_domain)
1945 		return ops->identity_domain;
1946 	else if (alloc_type == IOMMU_DOMAIN_BLOCKED && ops->blocked_domain)
1947 		return ops->blocked_domain;
1948 	else if (type & __IOMMU_DOMAIN_PAGING && ops->domain_alloc_paging)
1949 		domain = ops->domain_alloc_paging(dev);
1950 	else if (ops->domain_alloc)
1951 		domain = ops->domain_alloc(alloc_type);
1952 	else
1953 		return ERR_PTR(-EOPNOTSUPP);
1954 
1955 	/*
1956 	 * Many domain_alloc ops now return ERR_PTR, make things easier for the
1957 	 * driver by accepting ERR_PTR from all domain_alloc ops instead of
1958 	 * having two rules.
1959 	 */
1960 	if (IS_ERR(domain))
1961 		return domain;
1962 	if (!domain)
1963 		return ERR_PTR(-ENOMEM);
1964 
1965 	domain->type = type;
1966 	domain->owner = ops;
1967 	/*
1968 	 * If not already set, assume all sizes by default; the driver
1969 	 * may override this later
1970 	 */
1971 	if (!domain->pgsize_bitmap)
1972 		domain->pgsize_bitmap = ops->pgsize_bitmap;
1973 
1974 	if (!domain->ops)
1975 		domain->ops = ops->default_domain_ops;
1976 
1977 	if (iommu_is_dma_domain(domain)) {
1978 		int rc;
1979 
1980 		rc = iommu_get_dma_cookie(domain);
1981 		if (rc) {
1982 			iommu_domain_free(domain);
1983 			return ERR_PTR(rc);
1984 		}
1985 	}
1986 	return domain;
1987 }
1988 
1989 static struct iommu_domain *
1990 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type)
1991 {
1992 	struct device *dev = iommu_group_first_dev(group);
1993 
1994 	return __iommu_domain_alloc(dev_iommu_ops(dev), dev, type);
1995 }
1996 
1997 static int __iommu_domain_alloc_dev(struct device *dev, void *data)
1998 {
1999 	const struct iommu_ops **ops = data;
2000 
2001 	if (!dev_has_iommu(dev))
2002 		return 0;
2003 
2004 	if (WARN_ONCE(*ops && *ops != dev_iommu_ops(dev),
2005 		      "Multiple IOMMU drivers present for bus %s, which the public IOMMU API can't fully support yet. You will still need to disable one or more for this to work, sorry!\n",
2006 		      dev_bus_name(dev)))
2007 		return -EBUSY;
2008 
2009 	*ops = dev_iommu_ops(dev);
2010 	return 0;
2011 }
2012 
2013 /*
2014  * The iommu ops in bus has been retired. Do not use this interface in
2015  * new drivers.
2016  */
2017 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus)
2018 {
2019 	const struct iommu_ops *ops = NULL;
2020 	int err = bus_for_each_dev(bus, NULL, &ops, __iommu_domain_alloc_dev);
2021 	struct iommu_domain *domain;
2022 
2023 	if (err || !ops)
2024 		return NULL;
2025 
2026 	domain = __iommu_domain_alloc(ops, NULL, IOMMU_DOMAIN_UNMANAGED);
2027 	if (IS_ERR(domain))
2028 		return NULL;
2029 	return domain;
2030 }
2031 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
2032 
2033 /**
2034  * iommu_paging_domain_alloc() - Allocate a paging domain
2035  * @dev: device for which the domain is allocated
2036  *
2037  * Allocate a paging domain which will be managed by a kernel driver. Return
2038  * allocated domain if successful, or a ERR pointer for failure.
2039  */
2040 struct iommu_domain *iommu_paging_domain_alloc(struct device *dev)
2041 {
2042 	if (!dev_has_iommu(dev))
2043 		return ERR_PTR(-ENODEV);
2044 
2045 	return __iommu_domain_alloc(dev_iommu_ops(dev), dev, IOMMU_DOMAIN_UNMANAGED);
2046 }
2047 EXPORT_SYMBOL_GPL(iommu_paging_domain_alloc);
2048 
2049 void iommu_domain_free(struct iommu_domain *domain)
2050 {
2051 	if (domain->type == IOMMU_DOMAIN_SVA)
2052 		mmdrop(domain->mm);
2053 	iommu_put_dma_cookie(domain);
2054 	if (domain->ops->free)
2055 		domain->ops->free(domain);
2056 }
2057 EXPORT_SYMBOL_GPL(iommu_domain_free);
2058 
2059 /*
2060  * Put the group's domain back to the appropriate core-owned domain - either the
2061  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2062  */
2063 static void __iommu_group_set_core_domain(struct iommu_group *group)
2064 {
2065 	struct iommu_domain *new_domain;
2066 
2067 	if (group->owner)
2068 		new_domain = group->blocking_domain;
2069 	else
2070 		new_domain = group->default_domain;
2071 
2072 	__iommu_group_set_domain_nofail(group, new_domain);
2073 }
2074 
2075 static int __iommu_attach_device(struct iommu_domain *domain,
2076 				 struct device *dev)
2077 {
2078 	int ret;
2079 
2080 	if (unlikely(domain->ops->attach_dev == NULL))
2081 		return -ENODEV;
2082 
2083 	ret = domain->ops->attach_dev(domain, dev);
2084 	if (ret)
2085 		return ret;
2086 	dev->iommu->attach_deferred = 0;
2087 	trace_attach_device_to_domain(dev);
2088 	return 0;
2089 }
2090 
2091 /**
2092  * iommu_attach_device - Attach an IOMMU domain to a device
2093  * @domain: IOMMU domain to attach
2094  * @dev: Device that will be attached
2095  *
2096  * Returns 0 on success and error code on failure
2097  *
2098  * Note that EINVAL can be treated as a soft failure, indicating
2099  * that certain configuration of the domain is incompatible with
2100  * the device. In this case attaching a different domain to the
2101  * device may succeed.
2102  */
2103 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2104 {
2105 	/* Caller must be a probed driver on dev */
2106 	struct iommu_group *group = dev->iommu_group;
2107 	int ret;
2108 
2109 	if (!group)
2110 		return -ENODEV;
2111 
2112 	/*
2113 	 * Lock the group to make sure the device-count doesn't
2114 	 * change while we are attaching
2115 	 */
2116 	mutex_lock(&group->mutex);
2117 	ret = -EINVAL;
2118 	if (list_count_nodes(&group->devices) != 1)
2119 		goto out_unlock;
2120 
2121 	ret = __iommu_attach_group(domain, group);
2122 
2123 out_unlock:
2124 	mutex_unlock(&group->mutex);
2125 	return ret;
2126 }
2127 EXPORT_SYMBOL_GPL(iommu_attach_device);
2128 
2129 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2130 {
2131 	if (dev->iommu && dev->iommu->attach_deferred)
2132 		return __iommu_attach_device(domain, dev);
2133 
2134 	return 0;
2135 }
2136 
2137 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2138 {
2139 	/* Caller must be a probed driver on dev */
2140 	struct iommu_group *group = dev->iommu_group;
2141 
2142 	if (!group)
2143 		return;
2144 
2145 	mutex_lock(&group->mutex);
2146 	if (WARN_ON(domain != group->domain) ||
2147 	    WARN_ON(list_count_nodes(&group->devices) != 1))
2148 		goto out_unlock;
2149 	__iommu_group_set_core_domain(group);
2150 
2151 out_unlock:
2152 	mutex_unlock(&group->mutex);
2153 }
2154 EXPORT_SYMBOL_GPL(iommu_detach_device);
2155 
2156 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2157 {
2158 	/* Caller must be a probed driver on dev */
2159 	struct iommu_group *group = dev->iommu_group;
2160 
2161 	if (!group)
2162 		return NULL;
2163 
2164 	return group->domain;
2165 }
2166 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2167 
2168 /*
2169  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2170  * guarantees that the group and its default domain are valid and correct.
2171  */
2172 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2173 {
2174 	return dev->iommu_group->default_domain;
2175 }
2176 
2177 static int __iommu_attach_group(struct iommu_domain *domain,
2178 				struct iommu_group *group)
2179 {
2180 	struct device *dev;
2181 
2182 	if (group->domain && group->domain != group->default_domain &&
2183 	    group->domain != group->blocking_domain)
2184 		return -EBUSY;
2185 
2186 	dev = iommu_group_first_dev(group);
2187 	if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner)
2188 		return -EINVAL;
2189 
2190 	return __iommu_group_set_domain(group, domain);
2191 }
2192 
2193 /**
2194  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2195  * @domain: IOMMU domain to attach
2196  * @group: IOMMU group that will be attached
2197  *
2198  * Returns 0 on success and error code on failure
2199  *
2200  * Note that EINVAL can be treated as a soft failure, indicating
2201  * that certain configuration of the domain is incompatible with
2202  * the group. In this case attaching a different domain to the
2203  * group may succeed.
2204  */
2205 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2206 {
2207 	int ret;
2208 
2209 	mutex_lock(&group->mutex);
2210 	ret = __iommu_attach_group(domain, group);
2211 	mutex_unlock(&group->mutex);
2212 
2213 	return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(iommu_attach_group);
2216 
2217 /**
2218  * iommu_group_replace_domain - replace the domain that a group is attached to
2219  * @new_domain: new IOMMU domain to replace with
2220  * @group: IOMMU group that will be attached to the new domain
2221  *
2222  * This API allows the group to switch domains without being forced to go to
2223  * the blocking domain in-between.
2224  *
2225  * If the currently attached domain is a core domain (e.g. a default_domain),
2226  * it will act just like the iommu_attach_group().
2227  */
2228 int iommu_group_replace_domain(struct iommu_group *group,
2229 			       struct iommu_domain *new_domain)
2230 {
2231 	int ret;
2232 
2233 	if (!new_domain)
2234 		return -EINVAL;
2235 
2236 	mutex_lock(&group->mutex);
2237 	ret = __iommu_group_set_domain(group, new_domain);
2238 	mutex_unlock(&group->mutex);
2239 	return ret;
2240 }
2241 EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL);
2242 
2243 static int __iommu_device_set_domain(struct iommu_group *group,
2244 				     struct device *dev,
2245 				     struct iommu_domain *new_domain,
2246 				     unsigned int flags)
2247 {
2248 	int ret;
2249 
2250 	/*
2251 	 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2252 	 * the blocking domain to be attached as it does not contain the
2253 	 * required 1:1 mapping. This test effectively excludes the device
2254 	 * being used with iommu_group_claim_dma_owner() which will block
2255 	 * vfio and iommufd as well.
2256 	 */
2257 	if (dev->iommu->require_direct &&
2258 	    (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2259 	     new_domain == group->blocking_domain)) {
2260 		dev_warn(dev,
2261 			 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2262 		return -EINVAL;
2263 	}
2264 
2265 	if (dev->iommu->attach_deferred) {
2266 		if (new_domain == group->default_domain)
2267 			return 0;
2268 		dev->iommu->attach_deferred = 0;
2269 	}
2270 
2271 	ret = __iommu_attach_device(new_domain, dev);
2272 	if (ret) {
2273 		/*
2274 		 * If we have a blocking domain then try to attach that in hopes
2275 		 * of avoiding a UAF. Modern drivers should implement blocking
2276 		 * domains as global statics that cannot fail.
2277 		 */
2278 		if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2279 		    group->blocking_domain &&
2280 		    group->blocking_domain != new_domain)
2281 			__iommu_attach_device(group->blocking_domain, dev);
2282 		return ret;
2283 	}
2284 	return 0;
2285 }
2286 
2287 /*
2288  * If 0 is returned the group's domain is new_domain. If an error is returned
2289  * then the group's domain will be set back to the existing domain unless
2290  * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2291  * domains is left inconsistent. This is a driver bug to fail attach with a
2292  * previously good domain. We try to avoid a kernel UAF because of this.
2293  *
2294  * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2295  * API works on domains and devices.  Bridge that gap by iterating over the
2296  * devices in a group.  Ideally we'd have a single device which represents the
2297  * requestor ID of the group, but we also allow IOMMU drivers to create policy
2298  * defined minimum sets, where the physical hardware may be able to distiguish
2299  * members, but we wish to group them at a higher level (ex. untrusted
2300  * multi-function PCI devices).  Thus we attach each device.
2301  */
2302 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2303 					     struct iommu_domain *new_domain,
2304 					     unsigned int flags)
2305 {
2306 	struct group_device *last_gdev;
2307 	struct group_device *gdev;
2308 	int result;
2309 	int ret;
2310 
2311 	lockdep_assert_held(&group->mutex);
2312 
2313 	if (group->domain == new_domain)
2314 		return 0;
2315 
2316 	if (WARN_ON(!new_domain))
2317 		return -EINVAL;
2318 
2319 	/*
2320 	 * Changing the domain is done by calling attach_dev() on the new
2321 	 * domain. This switch does not have to be atomic and DMA can be
2322 	 * discarded during the transition. DMA must only be able to access
2323 	 * either new_domain or group->domain, never something else.
2324 	 */
2325 	result = 0;
2326 	for_each_group_device(group, gdev) {
2327 		ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2328 						flags);
2329 		if (ret) {
2330 			result = ret;
2331 			/*
2332 			 * Keep trying the other devices in the group. If a
2333 			 * driver fails attach to an otherwise good domain, and
2334 			 * does not support blocking domains, it should at least
2335 			 * drop its reference on the current domain so we don't
2336 			 * UAF.
2337 			 */
2338 			if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2339 				continue;
2340 			goto err_revert;
2341 		}
2342 	}
2343 	group->domain = new_domain;
2344 	return result;
2345 
2346 err_revert:
2347 	/*
2348 	 * This is called in error unwind paths. A well behaved driver should
2349 	 * always allow us to attach to a domain that was already attached.
2350 	 */
2351 	last_gdev = gdev;
2352 	for_each_group_device(group, gdev) {
2353 		/*
2354 		 * A NULL domain can happen only for first probe, in which case
2355 		 * we leave group->domain as NULL and let release clean
2356 		 * everything up.
2357 		 */
2358 		if (group->domain)
2359 			WARN_ON(__iommu_device_set_domain(
2360 				group, gdev->dev, group->domain,
2361 				IOMMU_SET_DOMAIN_MUST_SUCCEED));
2362 		if (gdev == last_gdev)
2363 			break;
2364 	}
2365 	return ret;
2366 }
2367 
2368 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2369 {
2370 	mutex_lock(&group->mutex);
2371 	__iommu_group_set_core_domain(group);
2372 	mutex_unlock(&group->mutex);
2373 }
2374 EXPORT_SYMBOL_GPL(iommu_detach_group);
2375 
2376 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2377 {
2378 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2379 		return iova;
2380 
2381 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2382 		return 0;
2383 
2384 	return domain->ops->iova_to_phys(domain, iova);
2385 }
2386 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2387 
2388 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2389 			   phys_addr_t paddr, size_t size, size_t *count)
2390 {
2391 	unsigned int pgsize_idx, pgsize_idx_next;
2392 	unsigned long pgsizes;
2393 	size_t offset, pgsize, pgsize_next;
2394 	unsigned long addr_merge = paddr | iova;
2395 
2396 	/* Page sizes supported by the hardware and small enough for @size */
2397 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2398 
2399 	/* Constrain the page sizes further based on the maximum alignment */
2400 	if (likely(addr_merge))
2401 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2402 
2403 	/* Make sure we have at least one suitable page size */
2404 	BUG_ON(!pgsizes);
2405 
2406 	/* Pick the biggest page size remaining */
2407 	pgsize_idx = __fls(pgsizes);
2408 	pgsize = BIT(pgsize_idx);
2409 	if (!count)
2410 		return pgsize;
2411 
2412 	/* Find the next biggest support page size, if it exists */
2413 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2414 	if (!pgsizes)
2415 		goto out_set_count;
2416 
2417 	pgsize_idx_next = __ffs(pgsizes);
2418 	pgsize_next = BIT(pgsize_idx_next);
2419 
2420 	/*
2421 	 * There's no point trying a bigger page size unless the virtual
2422 	 * and physical addresses are similarly offset within the larger page.
2423 	 */
2424 	if ((iova ^ paddr) & (pgsize_next - 1))
2425 		goto out_set_count;
2426 
2427 	/* Calculate the offset to the next page size alignment boundary */
2428 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2429 
2430 	/*
2431 	 * If size is big enough to accommodate the larger page, reduce
2432 	 * the number of smaller pages.
2433 	 */
2434 	if (offset + pgsize_next <= size)
2435 		size = offset;
2436 
2437 out_set_count:
2438 	*count = size >> pgsize_idx;
2439 	return pgsize;
2440 }
2441 
2442 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2443 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2444 {
2445 	const struct iommu_domain_ops *ops = domain->ops;
2446 	unsigned long orig_iova = iova;
2447 	unsigned int min_pagesz;
2448 	size_t orig_size = size;
2449 	phys_addr_t orig_paddr = paddr;
2450 	int ret = 0;
2451 
2452 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2453 		return -EINVAL;
2454 
2455 	if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL))
2456 		return -ENODEV;
2457 
2458 	/* find out the minimum page size supported */
2459 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2460 
2461 	/*
2462 	 * both the virtual address and the physical one, as well as
2463 	 * the size of the mapping, must be aligned (at least) to the
2464 	 * size of the smallest page supported by the hardware
2465 	 */
2466 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2467 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2468 		       iova, &paddr, size, min_pagesz);
2469 		return -EINVAL;
2470 	}
2471 
2472 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2473 
2474 	while (size) {
2475 		size_t pgsize, count, mapped = 0;
2476 
2477 		pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2478 
2479 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2480 			 iova, &paddr, pgsize, count);
2481 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2482 				     gfp, &mapped);
2483 		/*
2484 		 * Some pages may have been mapped, even if an error occurred,
2485 		 * so we should account for those so they can be unmapped.
2486 		 */
2487 		size -= mapped;
2488 
2489 		if (ret)
2490 			break;
2491 
2492 		iova += mapped;
2493 		paddr += mapped;
2494 	}
2495 
2496 	/* unroll mapping in case something went wrong */
2497 	if (ret)
2498 		iommu_unmap(domain, orig_iova, orig_size - size);
2499 	else
2500 		trace_map(orig_iova, orig_paddr, orig_size);
2501 
2502 	return ret;
2503 }
2504 
2505 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2506 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2507 {
2508 	const struct iommu_domain_ops *ops = domain->ops;
2509 	int ret;
2510 
2511 	might_sleep_if(gfpflags_allow_blocking(gfp));
2512 
2513 	/* Discourage passing strange GFP flags */
2514 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2515 				__GFP_HIGHMEM)))
2516 		return -EINVAL;
2517 
2518 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2519 	if (ret == 0 && ops->iotlb_sync_map) {
2520 		ret = ops->iotlb_sync_map(domain, iova, size);
2521 		if (ret)
2522 			goto out_err;
2523 	}
2524 
2525 	return ret;
2526 
2527 out_err:
2528 	/* undo mappings already done */
2529 	iommu_unmap(domain, iova, size);
2530 
2531 	return ret;
2532 }
2533 EXPORT_SYMBOL_GPL(iommu_map);
2534 
2535 static size_t __iommu_unmap(struct iommu_domain *domain,
2536 			    unsigned long iova, size_t size,
2537 			    struct iommu_iotlb_gather *iotlb_gather)
2538 {
2539 	const struct iommu_domain_ops *ops = domain->ops;
2540 	size_t unmapped_page, unmapped = 0;
2541 	unsigned long orig_iova = iova;
2542 	unsigned int min_pagesz;
2543 
2544 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2545 		return 0;
2546 
2547 	if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL))
2548 		return 0;
2549 
2550 	/* find out the minimum page size supported */
2551 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2552 
2553 	/*
2554 	 * The virtual address, as well as the size of the mapping, must be
2555 	 * aligned (at least) to the size of the smallest page supported
2556 	 * by the hardware
2557 	 */
2558 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2559 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2560 		       iova, size, min_pagesz);
2561 		return 0;
2562 	}
2563 
2564 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2565 
2566 	/*
2567 	 * Keep iterating until we either unmap 'size' bytes (or more)
2568 	 * or we hit an area that isn't mapped.
2569 	 */
2570 	while (unmapped < size) {
2571 		size_t pgsize, count;
2572 
2573 		pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count);
2574 		unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather);
2575 		if (!unmapped_page)
2576 			break;
2577 
2578 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2579 			 iova, unmapped_page);
2580 
2581 		iova += unmapped_page;
2582 		unmapped += unmapped_page;
2583 	}
2584 
2585 	trace_unmap(orig_iova, size, unmapped);
2586 	return unmapped;
2587 }
2588 
2589 size_t iommu_unmap(struct iommu_domain *domain,
2590 		   unsigned long iova, size_t size)
2591 {
2592 	struct iommu_iotlb_gather iotlb_gather;
2593 	size_t ret;
2594 
2595 	iommu_iotlb_gather_init(&iotlb_gather);
2596 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2597 	iommu_iotlb_sync(domain, &iotlb_gather);
2598 
2599 	return ret;
2600 }
2601 EXPORT_SYMBOL_GPL(iommu_unmap);
2602 
2603 size_t iommu_unmap_fast(struct iommu_domain *domain,
2604 			unsigned long iova, size_t size,
2605 			struct iommu_iotlb_gather *iotlb_gather)
2606 {
2607 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2608 }
2609 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2610 
2611 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2612 		     struct scatterlist *sg, unsigned int nents, int prot,
2613 		     gfp_t gfp)
2614 {
2615 	const struct iommu_domain_ops *ops = domain->ops;
2616 	size_t len = 0, mapped = 0;
2617 	phys_addr_t start;
2618 	unsigned int i = 0;
2619 	int ret;
2620 
2621 	might_sleep_if(gfpflags_allow_blocking(gfp));
2622 
2623 	/* Discourage passing strange GFP flags */
2624 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2625 				__GFP_HIGHMEM)))
2626 		return -EINVAL;
2627 
2628 	while (i <= nents) {
2629 		phys_addr_t s_phys = sg_phys(sg);
2630 
2631 		if (len && s_phys != start + len) {
2632 			ret = __iommu_map(domain, iova + mapped, start,
2633 					len, prot, gfp);
2634 
2635 			if (ret)
2636 				goto out_err;
2637 
2638 			mapped += len;
2639 			len = 0;
2640 		}
2641 
2642 		if (sg_dma_is_bus_address(sg))
2643 			goto next;
2644 
2645 		if (len) {
2646 			len += sg->length;
2647 		} else {
2648 			len = sg->length;
2649 			start = s_phys;
2650 		}
2651 
2652 next:
2653 		if (++i < nents)
2654 			sg = sg_next(sg);
2655 	}
2656 
2657 	if (ops->iotlb_sync_map) {
2658 		ret = ops->iotlb_sync_map(domain, iova, mapped);
2659 		if (ret)
2660 			goto out_err;
2661 	}
2662 	return mapped;
2663 
2664 out_err:
2665 	/* undo mappings already done */
2666 	iommu_unmap(domain, iova, mapped);
2667 
2668 	return ret;
2669 }
2670 EXPORT_SYMBOL_GPL(iommu_map_sg);
2671 
2672 /**
2673  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2674  * @domain: the iommu domain where the fault has happened
2675  * @dev: the device where the fault has happened
2676  * @iova: the faulting address
2677  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2678  *
2679  * This function should be called by the low-level IOMMU implementations
2680  * whenever IOMMU faults happen, to allow high-level users, that are
2681  * interested in such events, to know about them.
2682  *
2683  * This event may be useful for several possible use cases:
2684  * - mere logging of the event
2685  * - dynamic TLB/PTE loading
2686  * - if restarting of the faulting device is required
2687  *
2688  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2689  * PTE/TLB loading will one day be supported, implementations will be able
2690  * to tell whether it succeeded or not according to this return value).
2691  *
2692  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2693  * (though fault handlers can also return -ENOSYS, in case they want to
2694  * elicit the default behavior of the IOMMU drivers).
2695  */
2696 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2697 		       unsigned long iova, int flags)
2698 {
2699 	int ret = -ENOSYS;
2700 
2701 	/*
2702 	 * if upper layers showed interest and installed a fault handler,
2703 	 * invoke it.
2704 	 */
2705 	if (domain->handler)
2706 		ret = domain->handler(domain, dev, iova, flags,
2707 						domain->handler_token);
2708 
2709 	trace_io_page_fault(dev, iova, flags);
2710 	return ret;
2711 }
2712 EXPORT_SYMBOL_GPL(report_iommu_fault);
2713 
2714 static int __init iommu_init(void)
2715 {
2716 	iommu_group_kset = kset_create_and_add("iommu_groups",
2717 					       NULL, kernel_kobj);
2718 	BUG_ON(!iommu_group_kset);
2719 
2720 	iommu_debugfs_setup();
2721 
2722 	return 0;
2723 }
2724 core_initcall(iommu_init);
2725 
2726 int iommu_enable_nesting(struct iommu_domain *domain)
2727 {
2728 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2729 		return -EINVAL;
2730 	if (!domain->ops->enable_nesting)
2731 		return -EINVAL;
2732 	return domain->ops->enable_nesting(domain);
2733 }
2734 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2735 
2736 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2737 		unsigned long quirk)
2738 {
2739 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2740 		return -EINVAL;
2741 	if (!domain->ops->set_pgtable_quirks)
2742 		return -EINVAL;
2743 	return domain->ops->set_pgtable_quirks(domain, quirk);
2744 }
2745 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2746 
2747 /**
2748  * iommu_get_resv_regions - get reserved regions
2749  * @dev: device for which to get reserved regions
2750  * @list: reserved region list for device
2751  *
2752  * This returns a list of reserved IOVA regions specific to this device.
2753  * A domain user should not map IOVA in these ranges.
2754  */
2755 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2756 {
2757 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2758 
2759 	if (ops->get_resv_regions)
2760 		ops->get_resv_regions(dev, list);
2761 }
2762 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2763 
2764 /**
2765  * iommu_put_resv_regions - release reserved regions
2766  * @dev: device for which to free reserved regions
2767  * @list: reserved region list for device
2768  *
2769  * This releases a reserved region list acquired by iommu_get_resv_regions().
2770  */
2771 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2772 {
2773 	struct iommu_resv_region *entry, *next;
2774 
2775 	list_for_each_entry_safe(entry, next, list, list) {
2776 		if (entry->free)
2777 			entry->free(dev, entry);
2778 		else
2779 			kfree(entry);
2780 	}
2781 }
2782 EXPORT_SYMBOL(iommu_put_resv_regions);
2783 
2784 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2785 						  size_t length, int prot,
2786 						  enum iommu_resv_type type,
2787 						  gfp_t gfp)
2788 {
2789 	struct iommu_resv_region *region;
2790 
2791 	region = kzalloc(sizeof(*region), gfp);
2792 	if (!region)
2793 		return NULL;
2794 
2795 	INIT_LIST_HEAD(&region->list);
2796 	region->start = start;
2797 	region->length = length;
2798 	region->prot = prot;
2799 	region->type = type;
2800 	return region;
2801 }
2802 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2803 
2804 void iommu_set_default_passthrough(bool cmd_line)
2805 {
2806 	if (cmd_line)
2807 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2808 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2809 }
2810 
2811 void iommu_set_default_translated(bool cmd_line)
2812 {
2813 	if (cmd_line)
2814 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2815 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2816 }
2817 
2818 bool iommu_default_passthrough(void)
2819 {
2820 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2821 }
2822 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2823 
2824 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode)
2825 {
2826 	const struct iommu_ops *ops = NULL;
2827 	struct iommu_device *iommu;
2828 
2829 	spin_lock(&iommu_device_lock);
2830 	list_for_each_entry(iommu, &iommu_device_list, list)
2831 		if (iommu->fwnode == fwnode) {
2832 			ops = iommu->ops;
2833 			break;
2834 		}
2835 	spin_unlock(&iommu_device_lock);
2836 	return ops;
2837 }
2838 
2839 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode)
2840 {
2841 	const struct iommu_ops *ops = iommu_ops_from_fwnode(iommu_fwnode);
2842 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2843 
2844 	if (!ops)
2845 		return -EPROBE_DEFER;
2846 
2847 	if (fwspec)
2848 		return ops == iommu_fwspec_ops(fwspec) ? 0 : -EINVAL;
2849 
2850 	if (!dev_iommu_get(dev))
2851 		return -ENOMEM;
2852 
2853 	/* Preallocate for the overwhelmingly common case of 1 ID */
2854 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2855 	if (!fwspec)
2856 		return -ENOMEM;
2857 
2858 	fwnode_handle_get(iommu_fwnode);
2859 	fwspec->iommu_fwnode = iommu_fwnode;
2860 	dev_iommu_fwspec_set(dev, fwspec);
2861 	return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2864 
2865 void iommu_fwspec_free(struct device *dev)
2866 {
2867 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2868 
2869 	if (fwspec) {
2870 		fwnode_handle_put(fwspec->iommu_fwnode);
2871 		kfree(fwspec);
2872 		dev_iommu_fwspec_set(dev, NULL);
2873 	}
2874 }
2875 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2876 
2877 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids)
2878 {
2879 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2880 	int i, new_num;
2881 
2882 	if (!fwspec)
2883 		return -EINVAL;
2884 
2885 	new_num = fwspec->num_ids + num_ids;
2886 	if (new_num > 1) {
2887 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2888 				  GFP_KERNEL);
2889 		if (!fwspec)
2890 			return -ENOMEM;
2891 
2892 		dev_iommu_fwspec_set(dev, fwspec);
2893 	}
2894 
2895 	for (i = 0; i < num_ids; i++)
2896 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2897 
2898 	fwspec->num_ids = new_num;
2899 	return 0;
2900 }
2901 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2902 
2903 /*
2904  * Per device IOMMU features.
2905  */
2906 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2907 {
2908 	if (dev_has_iommu(dev)) {
2909 		const struct iommu_ops *ops = dev_iommu_ops(dev);
2910 
2911 		if (ops->dev_enable_feat)
2912 			return ops->dev_enable_feat(dev, feat);
2913 	}
2914 
2915 	return -ENODEV;
2916 }
2917 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2918 
2919 /*
2920  * The device drivers should do the necessary cleanups before calling this.
2921  */
2922 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2923 {
2924 	if (dev_has_iommu(dev)) {
2925 		const struct iommu_ops *ops = dev_iommu_ops(dev);
2926 
2927 		if (ops->dev_disable_feat)
2928 			return ops->dev_disable_feat(dev, feat);
2929 	}
2930 
2931 	return -EBUSY;
2932 }
2933 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2934 
2935 /**
2936  * iommu_setup_default_domain - Set the default_domain for the group
2937  * @group: Group to change
2938  * @target_type: Domain type to set as the default_domain
2939  *
2940  * Allocate a default domain and set it as the current domain on the group. If
2941  * the group already has a default domain it will be changed to the target_type.
2942  * When target_type is 0 the default domain is selected based on driver and
2943  * system preferences.
2944  */
2945 static int iommu_setup_default_domain(struct iommu_group *group,
2946 				      int target_type)
2947 {
2948 	struct iommu_domain *old_dom = group->default_domain;
2949 	struct group_device *gdev;
2950 	struct iommu_domain *dom;
2951 	bool direct_failed;
2952 	int req_type;
2953 	int ret;
2954 
2955 	lockdep_assert_held(&group->mutex);
2956 
2957 	req_type = iommu_get_default_domain_type(group, target_type);
2958 	if (req_type < 0)
2959 		return -EINVAL;
2960 
2961 	dom = iommu_group_alloc_default_domain(group, req_type);
2962 	if (IS_ERR(dom))
2963 		return PTR_ERR(dom);
2964 
2965 	if (group->default_domain == dom)
2966 		return 0;
2967 
2968 	/*
2969 	 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2970 	 * mapped before their device is attached, in order to guarantee
2971 	 * continuity with any FW activity
2972 	 */
2973 	direct_failed = false;
2974 	for_each_group_device(group, gdev) {
2975 		if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2976 			direct_failed = true;
2977 			dev_warn_once(
2978 				gdev->dev->iommu->iommu_dev->dev,
2979 				"IOMMU driver was not able to establish FW requested direct mapping.");
2980 		}
2981 	}
2982 
2983 	/* We must set default_domain early for __iommu_device_set_domain */
2984 	group->default_domain = dom;
2985 	if (!group->domain) {
2986 		/*
2987 		 * Drivers are not allowed to fail the first domain attach.
2988 		 * The only way to recover from this is to fail attaching the
2989 		 * iommu driver and call ops->release_device. Put the domain
2990 		 * in group->default_domain so it is freed after.
2991 		 */
2992 		ret = __iommu_group_set_domain_internal(
2993 			group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
2994 		if (WARN_ON(ret))
2995 			goto out_free_old;
2996 	} else {
2997 		ret = __iommu_group_set_domain(group, dom);
2998 		if (ret)
2999 			goto err_restore_def_domain;
3000 	}
3001 
3002 	/*
3003 	 * Drivers are supposed to allow mappings to be installed in a domain
3004 	 * before device attachment, but some don't. Hack around this defect by
3005 	 * trying again after attaching. If this happens it means the device
3006 	 * will not continuously have the IOMMU_RESV_DIRECT map.
3007 	 */
3008 	if (direct_failed) {
3009 		for_each_group_device(group, gdev) {
3010 			ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3011 			if (ret)
3012 				goto err_restore_domain;
3013 		}
3014 	}
3015 
3016 out_free_old:
3017 	if (old_dom)
3018 		iommu_domain_free(old_dom);
3019 	return ret;
3020 
3021 err_restore_domain:
3022 	if (old_dom)
3023 		__iommu_group_set_domain_internal(
3024 			group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3025 err_restore_def_domain:
3026 	if (old_dom) {
3027 		iommu_domain_free(dom);
3028 		group->default_domain = old_dom;
3029 	}
3030 	return ret;
3031 }
3032 
3033 /*
3034  * Changing the default domain through sysfs requires the users to unbind the
3035  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3036  * transition. Return failure if this isn't met.
3037  *
3038  * We need to consider the race between this and the device release path.
3039  * group->mutex is used here to guarantee that the device release path
3040  * will not be entered at the same time.
3041  */
3042 static ssize_t iommu_group_store_type(struct iommu_group *group,
3043 				      const char *buf, size_t count)
3044 {
3045 	struct group_device *gdev;
3046 	int ret, req_type;
3047 
3048 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3049 		return -EACCES;
3050 
3051 	if (WARN_ON(!group) || !group->default_domain)
3052 		return -EINVAL;
3053 
3054 	if (sysfs_streq(buf, "identity"))
3055 		req_type = IOMMU_DOMAIN_IDENTITY;
3056 	else if (sysfs_streq(buf, "DMA"))
3057 		req_type = IOMMU_DOMAIN_DMA;
3058 	else if (sysfs_streq(buf, "DMA-FQ"))
3059 		req_type = IOMMU_DOMAIN_DMA_FQ;
3060 	else if (sysfs_streq(buf, "auto"))
3061 		req_type = 0;
3062 	else
3063 		return -EINVAL;
3064 
3065 	mutex_lock(&group->mutex);
3066 	/* We can bring up a flush queue without tearing down the domain. */
3067 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3068 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
3069 		ret = iommu_dma_init_fq(group->default_domain);
3070 		if (ret)
3071 			goto out_unlock;
3072 
3073 		group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3074 		ret = count;
3075 		goto out_unlock;
3076 	}
3077 
3078 	/* Otherwise, ensure that device exists and no driver is bound. */
3079 	if (list_empty(&group->devices) || group->owner_cnt) {
3080 		ret = -EPERM;
3081 		goto out_unlock;
3082 	}
3083 
3084 	ret = iommu_setup_default_domain(group, req_type);
3085 	if (ret)
3086 		goto out_unlock;
3087 
3088 	/* Make sure dma_ops is appropriatley set */
3089 	for_each_group_device(group, gdev)
3090 		iommu_setup_dma_ops(gdev->dev);
3091 
3092 out_unlock:
3093 	mutex_unlock(&group->mutex);
3094 	return ret ?: count;
3095 }
3096 
3097 /**
3098  * iommu_device_use_default_domain() - Device driver wants to handle device
3099  *                                     DMA through the kernel DMA API.
3100  * @dev: The device.
3101  *
3102  * The device driver about to bind @dev wants to do DMA through the kernel
3103  * DMA API. Return 0 if it is allowed, otherwise an error.
3104  */
3105 int iommu_device_use_default_domain(struct device *dev)
3106 {
3107 	/* Caller is the driver core during the pre-probe path */
3108 	struct iommu_group *group = dev->iommu_group;
3109 	int ret = 0;
3110 
3111 	if (!group)
3112 		return 0;
3113 
3114 	mutex_lock(&group->mutex);
3115 	if (group->owner_cnt) {
3116 		if (group->domain != group->default_domain || group->owner ||
3117 		    !xa_empty(&group->pasid_array)) {
3118 			ret = -EBUSY;
3119 			goto unlock_out;
3120 		}
3121 	}
3122 
3123 	group->owner_cnt++;
3124 
3125 unlock_out:
3126 	mutex_unlock(&group->mutex);
3127 	return ret;
3128 }
3129 
3130 /**
3131  * iommu_device_unuse_default_domain() - Device driver stops handling device
3132  *                                       DMA through the kernel DMA API.
3133  * @dev: The device.
3134  *
3135  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3136  * It must be called after iommu_device_use_default_domain().
3137  */
3138 void iommu_device_unuse_default_domain(struct device *dev)
3139 {
3140 	/* Caller is the driver core during the post-probe path */
3141 	struct iommu_group *group = dev->iommu_group;
3142 
3143 	if (!group)
3144 		return;
3145 
3146 	mutex_lock(&group->mutex);
3147 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3148 		group->owner_cnt--;
3149 
3150 	mutex_unlock(&group->mutex);
3151 }
3152 
3153 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3154 {
3155 	struct iommu_domain *domain;
3156 
3157 	if (group->blocking_domain)
3158 		return 0;
3159 
3160 	domain = __iommu_group_domain_alloc(group, IOMMU_DOMAIN_BLOCKED);
3161 	if (IS_ERR(domain)) {
3162 		/*
3163 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3164 		 * create an empty domain instead.
3165 		 */
3166 		domain = __iommu_group_domain_alloc(group,
3167 						    IOMMU_DOMAIN_UNMANAGED);
3168 		if (IS_ERR(domain))
3169 			return PTR_ERR(domain);
3170 	}
3171 	group->blocking_domain = domain;
3172 	return 0;
3173 }
3174 
3175 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3176 {
3177 	int ret;
3178 
3179 	if ((group->domain && group->domain != group->default_domain) ||
3180 	    !xa_empty(&group->pasid_array))
3181 		return -EBUSY;
3182 
3183 	ret = __iommu_group_alloc_blocking_domain(group);
3184 	if (ret)
3185 		return ret;
3186 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3187 	if (ret)
3188 		return ret;
3189 
3190 	group->owner = owner;
3191 	group->owner_cnt++;
3192 	return 0;
3193 }
3194 
3195 /**
3196  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3197  * @group: The group.
3198  * @owner: Caller specified pointer. Used for exclusive ownership.
3199  *
3200  * This is to support backward compatibility for vfio which manages the dma
3201  * ownership in iommu_group level. New invocations on this interface should be
3202  * prohibited. Only a single owner may exist for a group.
3203  */
3204 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3205 {
3206 	int ret = 0;
3207 
3208 	if (WARN_ON(!owner))
3209 		return -EINVAL;
3210 
3211 	mutex_lock(&group->mutex);
3212 	if (group->owner_cnt) {
3213 		ret = -EPERM;
3214 		goto unlock_out;
3215 	}
3216 
3217 	ret = __iommu_take_dma_ownership(group, owner);
3218 unlock_out:
3219 	mutex_unlock(&group->mutex);
3220 
3221 	return ret;
3222 }
3223 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3224 
3225 /**
3226  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3227  * @dev: The device.
3228  * @owner: Caller specified pointer. Used for exclusive ownership.
3229  *
3230  * Claim the DMA ownership of a device. Multiple devices in the same group may
3231  * concurrently claim ownership if they present the same owner value. Returns 0
3232  * on success and error code on failure
3233  */
3234 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3235 {
3236 	/* Caller must be a probed driver on dev */
3237 	struct iommu_group *group = dev->iommu_group;
3238 	int ret = 0;
3239 
3240 	if (WARN_ON(!owner))
3241 		return -EINVAL;
3242 
3243 	if (!group)
3244 		return -ENODEV;
3245 
3246 	mutex_lock(&group->mutex);
3247 	if (group->owner_cnt) {
3248 		if (group->owner != owner) {
3249 			ret = -EPERM;
3250 			goto unlock_out;
3251 		}
3252 		group->owner_cnt++;
3253 		goto unlock_out;
3254 	}
3255 
3256 	ret = __iommu_take_dma_ownership(group, owner);
3257 unlock_out:
3258 	mutex_unlock(&group->mutex);
3259 	return ret;
3260 }
3261 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3262 
3263 static void __iommu_release_dma_ownership(struct iommu_group *group)
3264 {
3265 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3266 		    !xa_empty(&group->pasid_array)))
3267 		return;
3268 
3269 	group->owner_cnt = 0;
3270 	group->owner = NULL;
3271 	__iommu_group_set_domain_nofail(group, group->default_domain);
3272 }
3273 
3274 /**
3275  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3276  * @group: The group
3277  *
3278  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3279  */
3280 void iommu_group_release_dma_owner(struct iommu_group *group)
3281 {
3282 	mutex_lock(&group->mutex);
3283 	__iommu_release_dma_ownership(group);
3284 	mutex_unlock(&group->mutex);
3285 }
3286 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3287 
3288 /**
3289  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3290  * @dev: The device.
3291  *
3292  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3293  */
3294 void iommu_device_release_dma_owner(struct device *dev)
3295 {
3296 	/* Caller must be a probed driver on dev */
3297 	struct iommu_group *group = dev->iommu_group;
3298 
3299 	mutex_lock(&group->mutex);
3300 	if (group->owner_cnt > 1)
3301 		group->owner_cnt--;
3302 	else
3303 		__iommu_release_dma_ownership(group);
3304 	mutex_unlock(&group->mutex);
3305 }
3306 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3307 
3308 /**
3309  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3310  * @group: The group.
3311  *
3312  * This provides status query on a given group. It is racy and only for
3313  * non-binding status reporting.
3314  */
3315 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3316 {
3317 	unsigned int user;
3318 
3319 	mutex_lock(&group->mutex);
3320 	user = group->owner_cnt;
3321 	mutex_unlock(&group->mutex);
3322 
3323 	return user;
3324 }
3325 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3326 
3327 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3328 				   struct iommu_group *group, ioasid_t pasid)
3329 {
3330 	struct group_device *device, *last_gdev;
3331 	int ret;
3332 
3333 	for_each_group_device(group, device) {
3334 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3335 		if (ret)
3336 			goto err_revert;
3337 	}
3338 
3339 	return 0;
3340 
3341 err_revert:
3342 	last_gdev = device;
3343 	for_each_group_device(group, device) {
3344 		const struct iommu_ops *ops = dev_iommu_ops(device->dev);
3345 
3346 		if (device == last_gdev)
3347 			break;
3348 		ops->remove_dev_pasid(device->dev, pasid, domain);
3349 	}
3350 	return ret;
3351 }
3352 
3353 static void __iommu_remove_group_pasid(struct iommu_group *group,
3354 				       ioasid_t pasid,
3355 				       struct iommu_domain *domain)
3356 {
3357 	struct group_device *device;
3358 	const struct iommu_ops *ops;
3359 
3360 	for_each_group_device(group, device) {
3361 		ops = dev_iommu_ops(device->dev);
3362 		ops->remove_dev_pasid(device->dev, pasid, domain);
3363 	}
3364 }
3365 
3366 /*
3367  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3368  * @domain: the iommu domain.
3369  * @dev: the attached device.
3370  * @pasid: the pasid of the device.
3371  * @handle: the attach handle.
3372  *
3373  * Return: 0 on success, or an error.
3374  */
3375 int iommu_attach_device_pasid(struct iommu_domain *domain,
3376 			      struct device *dev, ioasid_t pasid,
3377 			      struct iommu_attach_handle *handle)
3378 {
3379 	/* Caller must be a probed driver on dev */
3380 	struct iommu_group *group = dev->iommu_group;
3381 	struct group_device *device;
3382 	int ret;
3383 
3384 	if (!domain->ops->set_dev_pasid)
3385 		return -EOPNOTSUPP;
3386 
3387 	if (!group)
3388 		return -ENODEV;
3389 
3390 	if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner ||
3391 	    pasid == IOMMU_NO_PASID)
3392 		return -EINVAL;
3393 
3394 	mutex_lock(&group->mutex);
3395 	for_each_group_device(group, device) {
3396 		if (pasid >= device->dev->iommu->max_pasids) {
3397 			ret = -EINVAL;
3398 			goto out_unlock;
3399 		}
3400 	}
3401 
3402 	if (handle)
3403 		handle->domain = domain;
3404 
3405 	ret = xa_insert(&group->pasid_array, pasid, handle, GFP_KERNEL);
3406 	if (ret)
3407 		goto out_unlock;
3408 
3409 	ret = __iommu_set_group_pasid(domain, group, pasid);
3410 	if (ret)
3411 		xa_erase(&group->pasid_array, pasid);
3412 out_unlock:
3413 	mutex_unlock(&group->mutex);
3414 	return ret;
3415 }
3416 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3417 
3418 /*
3419  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3420  * @domain: the iommu domain.
3421  * @dev: the attached device.
3422  * @pasid: the pasid of the device.
3423  *
3424  * The @domain must have been attached to @pasid of the @dev with
3425  * iommu_attach_device_pasid().
3426  */
3427 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3428 			       ioasid_t pasid)
3429 {
3430 	/* Caller must be a probed driver on dev */
3431 	struct iommu_group *group = dev->iommu_group;
3432 
3433 	mutex_lock(&group->mutex);
3434 	__iommu_remove_group_pasid(group, pasid, domain);
3435 	xa_erase(&group->pasid_array, pasid);
3436 	mutex_unlock(&group->mutex);
3437 }
3438 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3439 
3440 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3441 {
3442 	int ret;
3443 
3444 	/* max_pasids == 0 means that the device does not support PASID */
3445 	if (!dev->iommu->max_pasids)
3446 		return IOMMU_PASID_INVALID;
3447 
3448 	/*
3449 	 * max_pasids is set up by vendor driver based on number of PASID bits
3450 	 * supported but the IDA allocation is inclusive.
3451 	 */
3452 	ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3453 			      dev->iommu->max_pasids - 1, GFP_KERNEL);
3454 	return ret < 0 ? IOMMU_PASID_INVALID : ret;
3455 }
3456 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3457 
3458 void iommu_free_global_pasid(ioasid_t pasid)
3459 {
3460 	if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3461 		return;
3462 
3463 	ida_free(&iommu_global_pasid_ida, pasid);
3464 }
3465 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3466 
3467 /**
3468  * iommu_attach_handle_get - Return the attach handle
3469  * @group: the iommu group that domain was attached to
3470  * @pasid: the pasid within the group
3471  * @type: matched domain type, 0 for any match
3472  *
3473  * Return handle or ERR_PTR(-ENOENT) on none, ERR_PTR(-EBUSY) on mismatch.
3474  *
3475  * Return the attach handle to the caller. The life cycle of an iommu attach
3476  * handle is from the time when the domain is attached to the time when the
3477  * domain is detached. Callers are required to synchronize the call of
3478  * iommu_attach_handle_get() with domain attachment and detachment. The attach
3479  * handle can only be used during its life cycle.
3480  */
3481 struct iommu_attach_handle *
3482 iommu_attach_handle_get(struct iommu_group *group, ioasid_t pasid, unsigned int type)
3483 {
3484 	struct iommu_attach_handle *handle;
3485 
3486 	xa_lock(&group->pasid_array);
3487 	handle = xa_load(&group->pasid_array, pasid);
3488 	if (!handle)
3489 		handle = ERR_PTR(-ENOENT);
3490 	else if (type && handle->domain->type != type)
3491 		handle = ERR_PTR(-EBUSY);
3492 	xa_unlock(&group->pasid_array);
3493 
3494 	return handle;
3495 }
3496 EXPORT_SYMBOL_NS_GPL(iommu_attach_handle_get, IOMMUFD_INTERNAL);
3497 
3498 /**
3499  * iommu_attach_group_handle - Attach an IOMMU domain to an IOMMU group
3500  * @domain: IOMMU domain to attach
3501  * @group: IOMMU group that will be attached
3502  * @handle: attach handle
3503  *
3504  * Returns 0 on success and error code on failure.
3505  *
3506  * This is a variant of iommu_attach_group(). It allows the caller to provide
3507  * an attach handle and use it when the domain is attached. This is currently
3508  * used by IOMMUFD to deliver the I/O page faults.
3509  */
3510 int iommu_attach_group_handle(struct iommu_domain *domain,
3511 			      struct iommu_group *group,
3512 			      struct iommu_attach_handle *handle)
3513 {
3514 	int ret;
3515 
3516 	if (handle)
3517 		handle->domain = domain;
3518 
3519 	mutex_lock(&group->mutex);
3520 	ret = xa_insert(&group->pasid_array, IOMMU_NO_PASID, handle, GFP_KERNEL);
3521 	if (ret)
3522 		goto err_unlock;
3523 
3524 	ret = __iommu_attach_group(domain, group);
3525 	if (ret)
3526 		goto err_erase;
3527 	mutex_unlock(&group->mutex);
3528 
3529 	return 0;
3530 err_erase:
3531 	xa_erase(&group->pasid_array, IOMMU_NO_PASID);
3532 err_unlock:
3533 	mutex_unlock(&group->mutex);
3534 	return ret;
3535 }
3536 EXPORT_SYMBOL_NS_GPL(iommu_attach_group_handle, IOMMUFD_INTERNAL);
3537 
3538 /**
3539  * iommu_detach_group_handle - Detach an IOMMU domain from an IOMMU group
3540  * @domain: IOMMU domain to attach
3541  * @group: IOMMU group that will be attached
3542  *
3543  * Detach the specified IOMMU domain from the specified IOMMU group.
3544  * It must be used in conjunction with iommu_attach_group_handle().
3545  */
3546 void iommu_detach_group_handle(struct iommu_domain *domain,
3547 			       struct iommu_group *group)
3548 {
3549 	mutex_lock(&group->mutex);
3550 	__iommu_group_set_core_domain(group);
3551 	xa_erase(&group->pasid_array, IOMMU_NO_PASID);
3552 	mutex_unlock(&group->mutex);
3553 }
3554 EXPORT_SYMBOL_NS_GPL(iommu_detach_group_handle, IOMMUFD_INTERNAL);
3555 
3556 /**
3557  * iommu_replace_group_handle - replace the domain that a group is attached to
3558  * @group: IOMMU group that will be attached to the new domain
3559  * @new_domain: new IOMMU domain to replace with
3560  * @handle: attach handle
3561  *
3562  * This is a variant of iommu_group_replace_domain(). It allows the caller to
3563  * provide an attach handle for the new domain and use it when the domain is
3564  * attached.
3565  */
3566 int iommu_replace_group_handle(struct iommu_group *group,
3567 			       struct iommu_domain *new_domain,
3568 			       struct iommu_attach_handle *handle)
3569 {
3570 	void *curr;
3571 	int ret;
3572 
3573 	if (!new_domain)
3574 		return -EINVAL;
3575 
3576 	mutex_lock(&group->mutex);
3577 	if (handle) {
3578 		ret = xa_reserve(&group->pasid_array, IOMMU_NO_PASID, GFP_KERNEL);
3579 		if (ret)
3580 			goto err_unlock;
3581 	}
3582 
3583 	ret = __iommu_group_set_domain(group, new_domain);
3584 	if (ret)
3585 		goto err_release;
3586 
3587 	curr = xa_store(&group->pasid_array, IOMMU_NO_PASID, handle, GFP_KERNEL);
3588 	WARN_ON(xa_is_err(curr));
3589 
3590 	mutex_unlock(&group->mutex);
3591 
3592 	return 0;
3593 err_release:
3594 	xa_release(&group->pasid_array, IOMMU_NO_PASID);
3595 err_unlock:
3596 	mutex_unlock(&group->mutex);
3597 	return ret;
3598 }
3599 EXPORT_SYMBOL_NS_GPL(iommu_replace_group_handle, IOMMUFD_INTERNAL);
3600