1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/amba/bus.h> 10 #include <linux/device.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/host1x_context_bus.h> 20 #include <linux/iommu.h> 21 #include <linux/idr.h> 22 #include <linux/err.h> 23 #include <linux/pci.h> 24 #include <linux/pci-ats.h> 25 #include <linux/bitops.h> 26 #include <linux/platform_device.h> 27 #include <linux/property.h> 28 #include <linux/fsl/mc.h> 29 #include <linux/module.h> 30 #include <linux/cc_platform.h> 31 #include <linux/cdx/cdx_bus.h> 32 #include <trace/events/iommu.h> 33 #include <linux/sched/mm.h> 34 #include <linux/msi.h> 35 36 #include "dma-iommu.h" 37 38 #include "iommu-sva.h" 39 40 static struct kset *iommu_group_kset; 41 static DEFINE_IDA(iommu_group_ida); 42 43 static unsigned int iommu_def_domain_type __read_mostly; 44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 45 static u32 iommu_cmd_line __read_mostly; 46 47 struct iommu_group { 48 struct kobject kobj; 49 struct kobject *devices_kobj; 50 struct list_head devices; 51 struct xarray pasid_array; 52 struct mutex mutex; 53 void *iommu_data; 54 void (*iommu_data_release)(void *iommu_data); 55 char *name; 56 int id; 57 struct iommu_domain *default_domain; 58 struct iommu_domain *blocking_domain; 59 struct iommu_domain *domain; 60 struct list_head entry; 61 unsigned int owner_cnt; 62 void *owner; 63 }; 64 65 struct group_device { 66 struct list_head list; 67 struct device *dev; 68 char *name; 69 }; 70 71 struct iommu_group_attribute { 72 struct attribute attr; 73 ssize_t (*show)(struct iommu_group *group, char *buf); 74 ssize_t (*store)(struct iommu_group *group, 75 const char *buf, size_t count); 76 }; 77 78 static const char * const iommu_group_resv_type_string[] = { 79 [IOMMU_RESV_DIRECT] = "direct", 80 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 81 [IOMMU_RESV_RESERVED] = "reserved", 82 [IOMMU_RESV_MSI] = "msi", 83 [IOMMU_RESV_SW_MSI] = "msi", 84 }; 85 86 #define IOMMU_CMD_LINE_DMA_API BIT(0) 87 #define IOMMU_CMD_LINE_STRICT BIT(1) 88 89 static int iommu_bus_notifier(struct notifier_block *nb, 90 unsigned long action, void *data); 91 static void iommu_release_device(struct device *dev); 92 static int iommu_alloc_default_domain(struct iommu_group *group, 93 struct device *dev); 94 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus, 95 unsigned type); 96 static int __iommu_attach_device(struct iommu_domain *domain, 97 struct device *dev); 98 static int __iommu_attach_group(struct iommu_domain *domain, 99 struct iommu_group *group); 100 static int __iommu_group_set_domain(struct iommu_group *group, 101 struct iommu_domain *new_domain); 102 static int iommu_create_device_direct_mappings(struct iommu_group *group, 103 struct device *dev); 104 static struct iommu_group *iommu_group_get_for_dev(struct device *dev); 105 static ssize_t iommu_group_store_type(struct iommu_group *group, 106 const char *buf, size_t count); 107 108 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 109 struct iommu_group_attribute iommu_group_attr_##_name = \ 110 __ATTR(_name, _mode, _show, _store) 111 112 #define to_iommu_group_attr(_attr) \ 113 container_of(_attr, struct iommu_group_attribute, attr) 114 #define to_iommu_group(_kobj) \ 115 container_of(_kobj, struct iommu_group, kobj) 116 117 static LIST_HEAD(iommu_device_list); 118 static DEFINE_SPINLOCK(iommu_device_lock); 119 120 static struct bus_type * const iommu_buses[] = { 121 &platform_bus_type, 122 #ifdef CONFIG_PCI 123 &pci_bus_type, 124 #endif 125 #ifdef CONFIG_ARM_AMBA 126 &amba_bustype, 127 #endif 128 #ifdef CONFIG_FSL_MC_BUS 129 &fsl_mc_bus_type, 130 #endif 131 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS 132 &host1x_context_device_bus_type, 133 #endif 134 #ifdef CONFIG_CDX_BUS 135 &cdx_bus_type, 136 #endif 137 }; 138 139 /* 140 * Use a function instead of an array here because the domain-type is a 141 * bit-field, so an array would waste memory. 142 */ 143 static const char *iommu_domain_type_str(unsigned int t) 144 { 145 switch (t) { 146 case IOMMU_DOMAIN_BLOCKED: 147 return "Blocked"; 148 case IOMMU_DOMAIN_IDENTITY: 149 return "Passthrough"; 150 case IOMMU_DOMAIN_UNMANAGED: 151 return "Unmanaged"; 152 case IOMMU_DOMAIN_DMA: 153 case IOMMU_DOMAIN_DMA_FQ: 154 return "Translated"; 155 default: 156 return "Unknown"; 157 } 158 } 159 160 static int __init iommu_subsys_init(void) 161 { 162 struct notifier_block *nb; 163 164 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 165 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 166 iommu_set_default_passthrough(false); 167 else 168 iommu_set_default_translated(false); 169 170 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 171 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 172 iommu_set_default_translated(false); 173 } 174 } 175 176 if (!iommu_default_passthrough() && !iommu_dma_strict) 177 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 178 179 pr_info("Default domain type: %s %s\n", 180 iommu_domain_type_str(iommu_def_domain_type), 181 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 182 "(set via kernel command line)" : ""); 183 184 if (!iommu_default_passthrough()) 185 pr_info("DMA domain TLB invalidation policy: %s mode %s\n", 186 iommu_dma_strict ? "strict" : "lazy", 187 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 188 "(set via kernel command line)" : ""); 189 190 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL); 191 if (!nb) 192 return -ENOMEM; 193 194 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { 195 nb[i].notifier_call = iommu_bus_notifier; 196 bus_register_notifier(iommu_buses[i], &nb[i]); 197 } 198 199 return 0; 200 } 201 subsys_initcall(iommu_subsys_init); 202 203 static int remove_iommu_group(struct device *dev, void *data) 204 { 205 if (dev->iommu && dev->iommu->iommu_dev == data) 206 iommu_release_device(dev); 207 208 return 0; 209 } 210 211 /** 212 * iommu_device_register() - Register an IOMMU hardware instance 213 * @iommu: IOMMU handle for the instance 214 * @ops: IOMMU ops to associate with the instance 215 * @hwdev: (optional) actual instance device, used for fwnode lookup 216 * 217 * Return: 0 on success, or an error. 218 */ 219 int iommu_device_register(struct iommu_device *iommu, 220 const struct iommu_ops *ops, struct device *hwdev) 221 { 222 int err = 0; 223 224 /* We need to be able to take module references appropriately */ 225 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 226 return -EINVAL; 227 /* 228 * Temporarily enforce global restriction to a single driver. This was 229 * already the de-facto behaviour, since any possible combination of 230 * existing drivers would compete for at least the PCI or platform bus. 231 */ 232 if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops) 233 return -EBUSY; 234 235 iommu->ops = ops; 236 if (hwdev) 237 iommu->fwnode = dev_fwnode(hwdev); 238 239 spin_lock(&iommu_device_lock); 240 list_add_tail(&iommu->list, &iommu_device_list); 241 spin_unlock(&iommu_device_lock); 242 243 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) { 244 iommu_buses[i]->iommu_ops = ops; 245 err = bus_iommu_probe(iommu_buses[i]); 246 } 247 if (err) 248 iommu_device_unregister(iommu); 249 return err; 250 } 251 EXPORT_SYMBOL_GPL(iommu_device_register); 252 253 void iommu_device_unregister(struct iommu_device *iommu) 254 { 255 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) 256 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group); 257 258 spin_lock(&iommu_device_lock); 259 list_del(&iommu->list); 260 spin_unlock(&iommu_device_lock); 261 } 262 EXPORT_SYMBOL_GPL(iommu_device_unregister); 263 264 static struct dev_iommu *dev_iommu_get(struct device *dev) 265 { 266 struct dev_iommu *param = dev->iommu; 267 268 if (param) 269 return param; 270 271 param = kzalloc(sizeof(*param), GFP_KERNEL); 272 if (!param) 273 return NULL; 274 275 mutex_init(¶m->lock); 276 dev->iommu = param; 277 return param; 278 } 279 280 static void dev_iommu_free(struct device *dev) 281 { 282 struct dev_iommu *param = dev->iommu; 283 284 dev->iommu = NULL; 285 if (param->fwspec) { 286 fwnode_handle_put(param->fwspec->iommu_fwnode); 287 kfree(param->fwspec); 288 } 289 kfree(param); 290 } 291 292 static u32 dev_iommu_get_max_pasids(struct device *dev) 293 { 294 u32 max_pasids = 0, bits = 0; 295 int ret; 296 297 if (dev_is_pci(dev)) { 298 ret = pci_max_pasids(to_pci_dev(dev)); 299 if (ret > 0) 300 max_pasids = ret; 301 } else { 302 ret = device_property_read_u32(dev, "pasid-num-bits", &bits); 303 if (!ret) 304 max_pasids = 1UL << bits; 305 } 306 307 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids); 308 } 309 310 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 311 { 312 const struct iommu_ops *ops = dev->bus->iommu_ops; 313 struct iommu_device *iommu_dev; 314 struct iommu_group *group; 315 static DEFINE_MUTEX(iommu_probe_device_lock); 316 int ret; 317 318 if (!ops) 319 return -ENODEV; 320 /* 321 * Serialise to avoid races between IOMMU drivers registering in 322 * parallel and/or the "replay" calls from ACPI/OF code via client 323 * driver probe. Once the latter have been cleaned up we should 324 * probably be able to use device_lock() here to minimise the scope, 325 * but for now enforcing a simple global ordering is fine. 326 */ 327 mutex_lock(&iommu_probe_device_lock); 328 if (!dev_iommu_get(dev)) { 329 ret = -ENOMEM; 330 goto err_unlock; 331 } 332 333 if (!try_module_get(ops->owner)) { 334 ret = -EINVAL; 335 goto err_free; 336 } 337 338 iommu_dev = ops->probe_device(dev); 339 if (IS_ERR(iommu_dev)) { 340 ret = PTR_ERR(iommu_dev); 341 goto out_module_put; 342 } 343 344 dev->iommu->iommu_dev = iommu_dev; 345 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev); 346 347 group = iommu_group_get_for_dev(dev); 348 if (IS_ERR(group)) { 349 ret = PTR_ERR(group); 350 goto out_release; 351 } 352 353 mutex_lock(&group->mutex); 354 if (group_list && !group->default_domain && list_empty(&group->entry)) 355 list_add_tail(&group->entry, group_list); 356 mutex_unlock(&group->mutex); 357 iommu_group_put(group); 358 359 mutex_unlock(&iommu_probe_device_lock); 360 iommu_device_link(iommu_dev, dev); 361 362 return 0; 363 364 out_release: 365 if (ops->release_device) 366 ops->release_device(dev); 367 368 out_module_put: 369 module_put(ops->owner); 370 371 err_free: 372 dev_iommu_free(dev); 373 374 err_unlock: 375 mutex_unlock(&iommu_probe_device_lock); 376 377 return ret; 378 } 379 380 static bool iommu_is_attach_deferred(struct device *dev) 381 { 382 const struct iommu_ops *ops = dev_iommu_ops(dev); 383 384 if (ops->is_attach_deferred) 385 return ops->is_attach_deferred(dev); 386 387 return false; 388 } 389 390 static int iommu_group_do_dma_first_attach(struct device *dev, void *data) 391 { 392 struct iommu_domain *domain = data; 393 394 lockdep_assert_held(&dev->iommu_group->mutex); 395 396 if (iommu_is_attach_deferred(dev)) { 397 dev->iommu->attach_deferred = 1; 398 return 0; 399 } 400 401 return __iommu_attach_device(domain, dev); 402 } 403 404 int iommu_probe_device(struct device *dev) 405 { 406 const struct iommu_ops *ops; 407 struct iommu_group *group; 408 int ret; 409 410 ret = __iommu_probe_device(dev, NULL); 411 if (ret) 412 goto err_out; 413 414 group = iommu_group_get(dev); 415 if (!group) { 416 ret = -ENODEV; 417 goto err_release; 418 } 419 420 /* 421 * Try to allocate a default domain - needs support from the 422 * IOMMU driver. There are still some drivers which don't 423 * support default domains, so the return value is not yet 424 * checked. 425 */ 426 mutex_lock(&group->mutex); 427 iommu_alloc_default_domain(group, dev); 428 429 /* 430 * If device joined an existing group which has been claimed, don't 431 * attach the default domain. 432 */ 433 if (group->default_domain && !group->owner) { 434 ret = iommu_group_do_dma_first_attach(dev, group->default_domain); 435 if (ret) { 436 mutex_unlock(&group->mutex); 437 iommu_group_put(group); 438 goto err_release; 439 } 440 } 441 442 iommu_create_device_direct_mappings(group, dev); 443 444 mutex_unlock(&group->mutex); 445 iommu_group_put(group); 446 447 ops = dev_iommu_ops(dev); 448 if (ops->probe_finalize) 449 ops->probe_finalize(dev); 450 451 return 0; 452 453 err_release: 454 iommu_release_device(dev); 455 456 err_out: 457 return ret; 458 459 } 460 461 /* 462 * Remove a device from a group's device list and return the group device 463 * if successful. 464 */ 465 static struct group_device * 466 __iommu_group_remove_device(struct iommu_group *group, struct device *dev) 467 { 468 struct group_device *device; 469 470 lockdep_assert_held(&group->mutex); 471 list_for_each_entry(device, &group->devices, list) { 472 if (device->dev == dev) { 473 list_del(&device->list); 474 return device; 475 } 476 } 477 478 return NULL; 479 } 480 481 /* 482 * Release a device from its group and decrements the iommu group reference 483 * count. 484 */ 485 static void __iommu_group_release_device(struct iommu_group *group, 486 struct group_device *grp_dev) 487 { 488 struct device *dev = grp_dev->dev; 489 490 sysfs_remove_link(group->devices_kobj, grp_dev->name); 491 sysfs_remove_link(&dev->kobj, "iommu_group"); 492 493 trace_remove_device_from_group(group->id, dev); 494 495 kfree(grp_dev->name); 496 kfree(grp_dev); 497 dev->iommu_group = NULL; 498 kobject_put(group->devices_kobj); 499 } 500 501 static void iommu_release_device(struct device *dev) 502 { 503 struct iommu_group *group = dev->iommu_group; 504 struct group_device *device; 505 const struct iommu_ops *ops; 506 507 if (!dev->iommu || !group) 508 return; 509 510 iommu_device_unlink(dev->iommu->iommu_dev, dev); 511 512 mutex_lock(&group->mutex); 513 device = __iommu_group_remove_device(group, dev); 514 515 /* 516 * If the group has become empty then ownership must have been released, 517 * and the current domain must be set back to NULL or the default 518 * domain. 519 */ 520 if (list_empty(&group->devices)) 521 WARN_ON(group->owner_cnt || 522 group->domain != group->default_domain); 523 524 /* 525 * release_device() must stop using any attached domain on the device. 526 * If there are still other devices in the group they are not effected 527 * by this callback. 528 * 529 * The IOMMU driver must set the device to either an identity or 530 * blocking translation and stop using any domain pointer, as it is 531 * going to be freed. 532 */ 533 ops = dev_iommu_ops(dev); 534 if (ops->release_device) 535 ops->release_device(dev); 536 mutex_unlock(&group->mutex); 537 538 if (device) 539 __iommu_group_release_device(group, device); 540 541 module_put(ops->owner); 542 dev_iommu_free(dev); 543 } 544 545 static int __init iommu_set_def_domain_type(char *str) 546 { 547 bool pt; 548 int ret; 549 550 ret = kstrtobool(str, &pt); 551 if (ret) 552 return ret; 553 554 if (pt) 555 iommu_set_default_passthrough(true); 556 else 557 iommu_set_default_translated(true); 558 559 return 0; 560 } 561 early_param("iommu.passthrough", iommu_set_def_domain_type); 562 563 static int __init iommu_dma_setup(char *str) 564 { 565 int ret = kstrtobool(str, &iommu_dma_strict); 566 567 if (!ret) 568 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 569 return ret; 570 } 571 early_param("iommu.strict", iommu_dma_setup); 572 573 void iommu_set_dma_strict(void) 574 { 575 iommu_dma_strict = true; 576 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 577 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 578 } 579 580 static ssize_t iommu_group_attr_show(struct kobject *kobj, 581 struct attribute *__attr, char *buf) 582 { 583 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 584 struct iommu_group *group = to_iommu_group(kobj); 585 ssize_t ret = -EIO; 586 587 if (attr->show) 588 ret = attr->show(group, buf); 589 return ret; 590 } 591 592 static ssize_t iommu_group_attr_store(struct kobject *kobj, 593 struct attribute *__attr, 594 const char *buf, size_t count) 595 { 596 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 597 struct iommu_group *group = to_iommu_group(kobj); 598 ssize_t ret = -EIO; 599 600 if (attr->store) 601 ret = attr->store(group, buf, count); 602 return ret; 603 } 604 605 static const struct sysfs_ops iommu_group_sysfs_ops = { 606 .show = iommu_group_attr_show, 607 .store = iommu_group_attr_store, 608 }; 609 610 static int iommu_group_create_file(struct iommu_group *group, 611 struct iommu_group_attribute *attr) 612 { 613 return sysfs_create_file(&group->kobj, &attr->attr); 614 } 615 616 static void iommu_group_remove_file(struct iommu_group *group, 617 struct iommu_group_attribute *attr) 618 { 619 sysfs_remove_file(&group->kobj, &attr->attr); 620 } 621 622 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 623 { 624 return sysfs_emit(buf, "%s\n", group->name); 625 } 626 627 /** 628 * iommu_insert_resv_region - Insert a new region in the 629 * list of reserved regions. 630 * @new: new region to insert 631 * @regions: list of regions 632 * 633 * Elements are sorted by start address and overlapping segments 634 * of the same type are merged. 635 */ 636 static int iommu_insert_resv_region(struct iommu_resv_region *new, 637 struct list_head *regions) 638 { 639 struct iommu_resv_region *iter, *tmp, *nr, *top; 640 LIST_HEAD(stack); 641 642 nr = iommu_alloc_resv_region(new->start, new->length, 643 new->prot, new->type, GFP_KERNEL); 644 if (!nr) 645 return -ENOMEM; 646 647 /* First add the new element based on start address sorting */ 648 list_for_each_entry(iter, regions, list) { 649 if (nr->start < iter->start || 650 (nr->start == iter->start && nr->type <= iter->type)) 651 break; 652 } 653 list_add_tail(&nr->list, &iter->list); 654 655 /* Merge overlapping segments of type nr->type in @regions, if any */ 656 list_for_each_entry_safe(iter, tmp, regions, list) { 657 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 658 659 /* no merge needed on elements of different types than @new */ 660 if (iter->type != new->type) { 661 list_move_tail(&iter->list, &stack); 662 continue; 663 } 664 665 /* look for the last stack element of same type as @iter */ 666 list_for_each_entry_reverse(top, &stack, list) 667 if (top->type == iter->type) 668 goto check_overlap; 669 670 list_move_tail(&iter->list, &stack); 671 continue; 672 673 check_overlap: 674 top_end = top->start + top->length - 1; 675 676 if (iter->start > top_end + 1) { 677 list_move_tail(&iter->list, &stack); 678 } else { 679 top->length = max(top_end, iter_end) - top->start + 1; 680 list_del(&iter->list); 681 kfree(iter); 682 } 683 } 684 list_splice(&stack, regions); 685 return 0; 686 } 687 688 static int 689 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 690 struct list_head *group_resv_regions) 691 { 692 struct iommu_resv_region *entry; 693 int ret = 0; 694 695 list_for_each_entry(entry, dev_resv_regions, list) { 696 ret = iommu_insert_resv_region(entry, group_resv_regions); 697 if (ret) 698 break; 699 } 700 return ret; 701 } 702 703 int iommu_get_group_resv_regions(struct iommu_group *group, 704 struct list_head *head) 705 { 706 struct group_device *device; 707 int ret = 0; 708 709 mutex_lock(&group->mutex); 710 list_for_each_entry(device, &group->devices, list) { 711 struct list_head dev_resv_regions; 712 713 /* 714 * Non-API groups still expose reserved_regions in sysfs, 715 * so filter out calls that get here that way. 716 */ 717 if (!device->dev->iommu) 718 break; 719 720 INIT_LIST_HEAD(&dev_resv_regions); 721 iommu_get_resv_regions(device->dev, &dev_resv_regions); 722 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 723 iommu_put_resv_regions(device->dev, &dev_resv_regions); 724 if (ret) 725 break; 726 } 727 mutex_unlock(&group->mutex); 728 return ret; 729 } 730 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 731 732 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 733 char *buf) 734 { 735 struct iommu_resv_region *region, *next; 736 struct list_head group_resv_regions; 737 int offset = 0; 738 739 INIT_LIST_HEAD(&group_resv_regions); 740 iommu_get_group_resv_regions(group, &group_resv_regions); 741 742 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 743 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n", 744 (long long)region->start, 745 (long long)(region->start + 746 region->length - 1), 747 iommu_group_resv_type_string[region->type]); 748 kfree(region); 749 } 750 751 return offset; 752 } 753 754 static ssize_t iommu_group_show_type(struct iommu_group *group, 755 char *buf) 756 { 757 char *type = "unknown"; 758 759 mutex_lock(&group->mutex); 760 if (group->default_domain) { 761 switch (group->default_domain->type) { 762 case IOMMU_DOMAIN_BLOCKED: 763 type = "blocked"; 764 break; 765 case IOMMU_DOMAIN_IDENTITY: 766 type = "identity"; 767 break; 768 case IOMMU_DOMAIN_UNMANAGED: 769 type = "unmanaged"; 770 break; 771 case IOMMU_DOMAIN_DMA: 772 type = "DMA"; 773 break; 774 case IOMMU_DOMAIN_DMA_FQ: 775 type = "DMA-FQ"; 776 break; 777 } 778 } 779 mutex_unlock(&group->mutex); 780 781 return sysfs_emit(buf, "%s\n", type); 782 } 783 784 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 785 786 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 787 iommu_group_show_resv_regions, NULL); 788 789 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 790 iommu_group_store_type); 791 792 static void iommu_group_release(struct kobject *kobj) 793 { 794 struct iommu_group *group = to_iommu_group(kobj); 795 796 pr_debug("Releasing group %d\n", group->id); 797 798 if (group->iommu_data_release) 799 group->iommu_data_release(group->iommu_data); 800 801 ida_free(&iommu_group_ida, group->id); 802 803 if (group->default_domain) 804 iommu_domain_free(group->default_domain); 805 if (group->blocking_domain) 806 iommu_domain_free(group->blocking_domain); 807 808 kfree(group->name); 809 kfree(group); 810 } 811 812 static const struct kobj_type iommu_group_ktype = { 813 .sysfs_ops = &iommu_group_sysfs_ops, 814 .release = iommu_group_release, 815 }; 816 817 /** 818 * iommu_group_alloc - Allocate a new group 819 * 820 * This function is called by an iommu driver to allocate a new iommu 821 * group. The iommu group represents the minimum granularity of the iommu. 822 * Upon successful return, the caller holds a reference to the supplied 823 * group in order to hold the group until devices are added. Use 824 * iommu_group_put() to release this extra reference count, allowing the 825 * group to be automatically reclaimed once it has no devices or external 826 * references. 827 */ 828 struct iommu_group *iommu_group_alloc(void) 829 { 830 struct iommu_group *group; 831 int ret; 832 833 group = kzalloc(sizeof(*group), GFP_KERNEL); 834 if (!group) 835 return ERR_PTR(-ENOMEM); 836 837 group->kobj.kset = iommu_group_kset; 838 mutex_init(&group->mutex); 839 INIT_LIST_HEAD(&group->devices); 840 INIT_LIST_HEAD(&group->entry); 841 xa_init(&group->pasid_array); 842 843 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL); 844 if (ret < 0) { 845 kfree(group); 846 return ERR_PTR(ret); 847 } 848 group->id = ret; 849 850 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 851 NULL, "%d", group->id); 852 if (ret) { 853 kobject_put(&group->kobj); 854 return ERR_PTR(ret); 855 } 856 857 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 858 if (!group->devices_kobj) { 859 kobject_put(&group->kobj); /* triggers .release & free */ 860 return ERR_PTR(-ENOMEM); 861 } 862 863 /* 864 * The devices_kobj holds a reference on the group kobject, so 865 * as long as that exists so will the group. We can therefore 866 * use the devices_kobj for reference counting. 867 */ 868 kobject_put(&group->kobj); 869 870 ret = iommu_group_create_file(group, 871 &iommu_group_attr_reserved_regions); 872 if (ret) { 873 kobject_put(group->devices_kobj); 874 return ERR_PTR(ret); 875 } 876 877 ret = iommu_group_create_file(group, &iommu_group_attr_type); 878 if (ret) { 879 kobject_put(group->devices_kobj); 880 return ERR_PTR(ret); 881 } 882 883 pr_debug("Allocated group %d\n", group->id); 884 885 return group; 886 } 887 EXPORT_SYMBOL_GPL(iommu_group_alloc); 888 889 /** 890 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 891 * @group: the group 892 * 893 * iommu drivers can store data in the group for use when doing iommu 894 * operations. This function provides a way to retrieve it. Caller 895 * should hold a group reference. 896 */ 897 void *iommu_group_get_iommudata(struct iommu_group *group) 898 { 899 return group->iommu_data; 900 } 901 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 902 903 /** 904 * iommu_group_set_iommudata - set iommu_data for a group 905 * @group: the group 906 * @iommu_data: new data 907 * @release: release function for iommu_data 908 * 909 * iommu drivers can store data in the group for use when doing iommu 910 * operations. This function provides a way to set the data after 911 * the group has been allocated. Caller should hold a group reference. 912 */ 913 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 914 void (*release)(void *iommu_data)) 915 { 916 group->iommu_data = iommu_data; 917 group->iommu_data_release = release; 918 } 919 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 920 921 /** 922 * iommu_group_set_name - set name for a group 923 * @group: the group 924 * @name: name 925 * 926 * Allow iommu driver to set a name for a group. When set it will 927 * appear in a name attribute file under the group in sysfs. 928 */ 929 int iommu_group_set_name(struct iommu_group *group, const char *name) 930 { 931 int ret; 932 933 if (group->name) { 934 iommu_group_remove_file(group, &iommu_group_attr_name); 935 kfree(group->name); 936 group->name = NULL; 937 if (!name) 938 return 0; 939 } 940 941 group->name = kstrdup(name, GFP_KERNEL); 942 if (!group->name) 943 return -ENOMEM; 944 945 ret = iommu_group_create_file(group, &iommu_group_attr_name); 946 if (ret) { 947 kfree(group->name); 948 group->name = NULL; 949 return ret; 950 } 951 952 return 0; 953 } 954 EXPORT_SYMBOL_GPL(iommu_group_set_name); 955 956 static int iommu_create_device_direct_mappings(struct iommu_group *group, 957 struct device *dev) 958 { 959 struct iommu_domain *domain = group->default_domain; 960 struct iommu_resv_region *entry; 961 struct list_head mappings; 962 unsigned long pg_size; 963 int ret = 0; 964 965 if (!domain || !iommu_is_dma_domain(domain)) 966 return 0; 967 968 BUG_ON(!domain->pgsize_bitmap); 969 970 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 971 INIT_LIST_HEAD(&mappings); 972 973 iommu_get_resv_regions(dev, &mappings); 974 975 /* We need to consider overlapping regions for different devices */ 976 list_for_each_entry(entry, &mappings, list) { 977 dma_addr_t start, end, addr; 978 size_t map_size = 0; 979 980 start = ALIGN(entry->start, pg_size); 981 end = ALIGN(entry->start + entry->length, pg_size); 982 983 if (entry->type != IOMMU_RESV_DIRECT && 984 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 985 continue; 986 987 for (addr = start; addr <= end; addr += pg_size) { 988 phys_addr_t phys_addr; 989 990 if (addr == end) 991 goto map_end; 992 993 phys_addr = iommu_iova_to_phys(domain, addr); 994 if (!phys_addr) { 995 map_size += pg_size; 996 continue; 997 } 998 999 map_end: 1000 if (map_size) { 1001 ret = iommu_map(domain, addr - map_size, 1002 addr - map_size, map_size, 1003 entry->prot, GFP_KERNEL); 1004 if (ret) 1005 goto out; 1006 map_size = 0; 1007 } 1008 } 1009 1010 } 1011 1012 iommu_flush_iotlb_all(domain); 1013 1014 out: 1015 iommu_put_resv_regions(dev, &mappings); 1016 1017 return ret; 1018 } 1019 1020 /** 1021 * iommu_group_add_device - add a device to an iommu group 1022 * @group: the group into which to add the device (reference should be held) 1023 * @dev: the device 1024 * 1025 * This function is called by an iommu driver to add a device into a 1026 * group. Adding a device increments the group reference count. 1027 */ 1028 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 1029 { 1030 int ret, i = 0; 1031 struct group_device *device; 1032 1033 device = kzalloc(sizeof(*device), GFP_KERNEL); 1034 if (!device) 1035 return -ENOMEM; 1036 1037 device->dev = dev; 1038 1039 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 1040 if (ret) 1041 goto err_free_device; 1042 1043 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 1044 rename: 1045 if (!device->name) { 1046 ret = -ENOMEM; 1047 goto err_remove_link; 1048 } 1049 1050 ret = sysfs_create_link_nowarn(group->devices_kobj, 1051 &dev->kobj, device->name); 1052 if (ret) { 1053 if (ret == -EEXIST && i >= 0) { 1054 /* 1055 * Account for the slim chance of collision 1056 * and append an instance to the name. 1057 */ 1058 kfree(device->name); 1059 device->name = kasprintf(GFP_KERNEL, "%s.%d", 1060 kobject_name(&dev->kobj), i++); 1061 goto rename; 1062 } 1063 goto err_free_name; 1064 } 1065 1066 kobject_get(group->devices_kobj); 1067 1068 dev->iommu_group = group; 1069 1070 mutex_lock(&group->mutex); 1071 list_add_tail(&device->list, &group->devices); 1072 if (group->domain) 1073 ret = iommu_group_do_dma_first_attach(dev, group->domain); 1074 mutex_unlock(&group->mutex); 1075 if (ret) 1076 goto err_put_group; 1077 1078 trace_add_device_to_group(group->id, dev); 1079 1080 dev_info(dev, "Adding to iommu group %d\n", group->id); 1081 1082 return 0; 1083 1084 err_put_group: 1085 mutex_lock(&group->mutex); 1086 list_del(&device->list); 1087 mutex_unlock(&group->mutex); 1088 dev->iommu_group = NULL; 1089 kobject_put(group->devices_kobj); 1090 sysfs_remove_link(group->devices_kobj, device->name); 1091 err_free_name: 1092 kfree(device->name); 1093 err_remove_link: 1094 sysfs_remove_link(&dev->kobj, "iommu_group"); 1095 err_free_device: 1096 kfree(device); 1097 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 1098 return ret; 1099 } 1100 EXPORT_SYMBOL_GPL(iommu_group_add_device); 1101 1102 /** 1103 * iommu_group_remove_device - remove a device from it's current group 1104 * @dev: device to be removed 1105 * 1106 * This function is called by an iommu driver to remove the device from 1107 * it's current group. This decrements the iommu group reference count. 1108 */ 1109 void iommu_group_remove_device(struct device *dev) 1110 { 1111 struct iommu_group *group = dev->iommu_group; 1112 struct group_device *device; 1113 1114 if (!group) 1115 return; 1116 1117 dev_info(dev, "Removing from iommu group %d\n", group->id); 1118 1119 mutex_lock(&group->mutex); 1120 device = __iommu_group_remove_device(group, dev); 1121 mutex_unlock(&group->mutex); 1122 1123 if (device) 1124 __iommu_group_release_device(group, device); 1125 } 1126 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 1127 1128 static int iommu_group_device_count(struct iommu_group *group) 1129 { 1130 struct group_device *entry; 1131 int ret = 0; 1132 1133 list_for_each_entry(entry, &group->devices, list) 1134 ret++; 1135 1136 return ret; 1137 } 1138 1139 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 1140 int (*fn)(struct device *, void *)) 1141 { 1142 struct group_device *device; 1143 int ret = 0; 1144 1145 list_for_each_entry(device, &group->devices, list) { 1146 ret = fn(device->dev, data); 1147 if (ret) 1148 break; 1149 } 1150 return ret; 1151 } 1152 1153 /** 1154 * iommu_group_for_each_dev - iterate over each device in the group 1155 * @group: the group 1156 * @data: caller opaque data to be passed to callback function 1157 * @fn: caller supplied callback function 1158 * 1159 * This function is called by group users to iterate over group devices. 1160 * Callers should hold a reference count to the group during callback. 1161 * The group->mutex is held across callbacks, which will block calls to 1162 * iommu_group_add/remove_device. 1163 */ 1164 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1165 int (*fn)(struct device *, void *)) 1166 { 1167 int ret; 1168 1169 mutex_lock(&group->mutex); 1170 ret = __iommu_group_for_each_dev(group, data, fn); 1171 mutex_unlock(&group->mutex); 1172 1173 return ret; 1174 } 1175 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1176 1177 /** 1178 * iommu_group_get - Return the group for a device and increment reference 1179 * @dev: get the group that this device belongs to 1180 * 1181 * This function is called by iommu drivers and users to get the group 1182 * for the specified device. If found, the group is returned and the group 1183 * reference in incremented, else NULL. 1184 */ 1185 struct iommu_group *iommu_group_get(struct device *dev) 1186 { 1187 struct iommu_group *group = dev->iommu_group; 1188 1189 if (group) 1190 kobject_get(group->devices_kobj); 1191 1192 return group; 1193 } 1194 EXPORT_SYMBOL_GPL(iommu_group_get); 1195 1196 /** 1197 * iommu_group_ref_get - Increment reference on a group 1198 * @group: the group to use, must not be NULL 1199 * 1200 * This function is called by iommu drivers to take additional references on an 1201 * existing group. Returns the given group for convenience. 1202 */ 1203 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1204 { 1205 kobject_get(group->devices_kobj); 1206 return group; 1207 } 1208 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1209 1210 /** 1211 * iommu_group_put - Decrement group reference 1212 * @group: the group to use 1213 * 1214 * This function is called by iommu drivers and users to release the 1215 * iommu group. Once the reference count is zero, the group is released. 1216 */ 1217 void iommu_group_put(struct iommu_group *group) 1218 { 1219 if (group) 1220 kobject_put(group->devices_kobj); 1221 } 1222 EXPORT_SYMBOL_GPL(iommu_group_put); 1223 1224 /** 1225 * iommu_register_device_fault_handler() - Register a device fault handler 1226 * @dev: the device 1227 * @handler: the fault handler 1228 * @data: private data passed as argument to the handler 1229 * 1230 * When an IOMMU fault event is received, this handler gets called with the 1231 * fault event and data as argument. The handler should return 0 on success. If 1232 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1233 * complete the fault by calling iommu_page_response() with one of the following 1234 * response code: 1235 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1236 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1237 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1238 * page faults if possible. 1239 * 1240 * Return 0 if the fault handler was installed successfully, or an error. 1241 */ 1242 int iommu_register_device_fault_handler(struct device *dev, 1243 iommu_dev_fault_handler_t handler, 1244 void *data) 1245 { 1246 struct dev_iommu *param = dev->iommu; 1247 int ret = 0; 1248 1249 if (!param) 1250 return -EINVAL; 1251 1252 mutex_lock(¶m->lock); 1253 /* Only allow one fault handler registered for each device */ 1254 if (param->fault_param) { 1255 ret = -EBUSY; 1256 goto done_unlock; 1257 } 1258 1259 get_device(dev); 1260 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1261 if (!param->fault_param) { 1262 put_device(dev); 1263 ret = -ENOMEM; 1264 goto done_unlock; 1265 } 1266 param->fault_param->handler = handler; 1267 param->fault_param->data = data; 1268 mutex_init(¶m->fault_param->lock); 1269 INIT_LIST_HEAD(¶m->fault_param->faults); 1270 1271 done_unlock: 1272 mutex_unlock(¶m->lock); 1273 1274 return ret; 1275 } 1276 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1277 1278 /** 1279 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1280 * @dev: the device 1281 * 1282 * Remove the device fault handler installed with 1283 * iommu_register_device_fault_handler(). 1284 * 1285 * Return 0 on success, or an error. 1286 */ 1287 int iommu_unregister_device_fault_handler(struct device *dev) 1288 { 1289 struct dev_iommu *param = dev->iommu; 1290 int ret = 0; 1291 1292 if (!param) 1293 return -EINVAL; 1294 1295 mutex_lock(¶m->lock); 1296 1297 if (!param->fault_param) 1298 goto unlock; 1299 1300 /* we cannot unregister handler if there are pending faults */ 1301 if (!list_empty(¶m->fault_param->faults)) { 1302 ret = -EBUSY; 1303 goto unlock; 1304 } 1305 1306 kfree(param->fault_param); 1307 param->fault_param = NULL; 1308 put_device(dev); 1309 unlock: 1310 mutex_unlock(¶m->lock); 1311 1312 return ret; 1313 } 1314 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1315 1316 /** 1317 * iommu_report_device_fault() - Report fault event to device driver 1318 * @dev: the device 1319 * @evt: fault event data 1320 * 1321 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1322 * handler. When this function fails and the fault is recoverable, it is the 1323 * caller's responsibility to complete the fault. 1324 * 1325 * Return 0 on success, or an error. 1326 */ 1327 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1328 { 1329 struct dev_iommu *param = dev->iommu; 1330 struct iommu_fault_event *evt_pending = NULL; 1331 struct iommu_fault_param *fparam; 1332 int ret = 0; 1333 1334 if (!param || !evt) 1335 return -EINVAL; 1336 1337 /* we only report device fault if there is a handler registered */ 1338 mutex_lock(¶m->lock); 1339 fparam = param->fault_param; 1340 if (!fparam || !fparam->handler) { 1341 ret = -EINVAL; 1342 goto done_unlock; 1343 } 1344 1345 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1346 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1347 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1348 GFP_KERNEL); 1349 if (!evt_pending) { 1350 ret = -ENOMEM; 1351 goto done_unlock; 1352 } 1353 mutex_lock(&fparam->lock); 1354 list_add_tail(&evt_pending->list, &fparam->faults); 1355 mutex_unlock(&fparam->lock); 1356 } 1357 1358 ret = fparam->handler(&evt->fault, fparam->data); 1359 if (ret && evt_pending) { 1360 mutex_lock(&fparam->lock); 1361 list_del(&evt_pending->list); 1362 mutex_unlock(&fparam->lock); 1363 kfree(evt_pending); 1364 } 1365 done_unlock: 1366 mutex_unlock(¶m->lock); 1367 return ret; 1368 } 1369 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1370 1371 int iommu_page_response(struct device *dev, 1372 struct iommu_page_response *msg) 1373 { 1374 bool needs_pasid; 1375 int ret = -EINVAL; 1376 struct iommu_fault_event *evt; 1377 struct iommu_fault_page_request *prm; 1378 struct dev_iommu *param = dev->iommu; 1379 const struct iommu_ops *ops = dev_iommu_ops(dev); 1380 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; 1381 1382 if (!ops->page_response) 1383 return -ENODEV; 1384 1385 if (!param || !param->fault_param) 1386 return -EINVAL; 1387 1388 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1389 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1390 return -EINVAL; 1391 1392 /* Only send response if there is a fault report pending */ 1393 mutex_lock(¶m->fault_param->lock); 1394 if (list_empty(¶m->fault_param->faults)) { 1395 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1396 goto done_unlock; 1397 } 1398 /* 1399 * Check if we have a matching page request pending to respond, 1400 * otherwise return -EINVAL 1401 */ 1402 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1403 prm = &evt->fault.prm; 1404 if (prm->grpid != msg->grpid) 1405 continue; 1406 1407 /* 1408 * If the PASID is required, the corresponding request is 1409 * matched using the group ID, the PASID valid bit and the PASID 1410 * value. Otherwise only the group ID matches request and 1411 * response. 1412 */ 1413 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 1414 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) 1415 continue; 1416 1417 if (!needs_pasid && has_pasid) { 1418 /* No big deal, just clear it. */ 1419 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; 1420 msg->pasid = 0; 1421 } 1422 1423 ret = ops->page_response(dev, evt, msg); 1424 list_del(&evt->list); 1425 kfree(evt); 1426 break; 1427 } 1428 1429 done_unlock: 1430 mutex_unlock(¶m->fault_param->lock); 1431 return ret; 1432 } 1433 EXPORT_SYMBOL_GPL(iommu_page_response); 1434 1435 /** 1436 * iommu_group_id - Return ID for a group 1437 * @group: the group to ID 1438 * 1439 * Return the unique ID for the group matching the sysfs group number. 1440 */ 1441 int iommu_group_id(struct iommu_group *group) 1442 { 1443 return group->id; 1444 } 1445 EXPORT_SYMBOL_GPL(iommu_group_id); 1446 1447 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1448 unsigned long *devfns); 1449 1450 /* 1451 * To consider a PCI device isolated, we require ACS to support Source 1452 * Validation, Request Redirection, Completer Redirection, and Upstream 1453 * Forwarding. This effectively means that devices cannot spoof their 1454 * requester ID, requests and completions cannot be redirected, and all 1455 * transactions are forwarded upstream, even as it passes through a 1456 * bridge where the target device is downstream. 1457 */ 1458 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1459 1460 /* 1461 * For multifunction devices which are not isolated from each other, find 1462 * all the other non-isolated functions and look for existing groups. For 1463 * each function, we also need to look for aliases to or from other devices 1464 * that may already have a group. 1465 */ 1466 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1467 unsigned long *devfns) 1468 { 1469 struct pci_dev *tmp = NULL; 1470 struct iommu_group *group; 1471 1472 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1473 return NULL; 1474 1475 for_each_pci_dev(tmp) { 1476 if (tmp == pdev || tmp->bus != pdev->bus || 1477 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1478 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1479 continue; 1480 1481 group = get_pci_alias_group(tmp, devfns); 1482 if (group) { 1483 pci_dev_put(tmp); 1484 return group; 1485 } 1486 } 1487 1488 return NULL; 1489 } 1490 1491 /* 1492 * Look for aliases to or from the given device for existing groups. DMA 1493 * aliases are only supported on the same bus, therefore the search 1494 * space is quite small (especially since we're really only looking at pcie 1495 * device, and therefore only expect multiple slots on the root complex or 1496 * downstream switch ports). It's conceivable though that a pair of 1497 * multifunction devices could have aliases between them that would cause a 1498 * loop. To prevent this, we use a bitmap to track where we've been. 1499 */ 1500 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1501 unsigned long *devfns) 1502 { 1503 struct pci_dev *tmp = NULL; 1504 struct iommu_group *group; 1505 1506 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1507 return NULL; 1508 1509 group = iommu_group_get(&pdev->dev); 1510 if (group) 1511 return group; 1512 1513 for_each_pci_dev(tmp) { 1514 if (tmp == pdev || tmp->bus != pdev->bus) 1515 continue; 1516 1517 /* We alias them or they alias us */ 1518 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1519 group = get_pci_alias_group(tmp, devfns); 1520 if (group) { 1521 pci_dev_put(tmp); 1522 return group; 1523 } 1524 1525 group = get_pci_function_alias_group(tmp, devfns); 1526 if (group) { 1527 pci_dev_put(tmp); 1528 return group; 1529 } 1530 } 1531 } 1532 1533 return NULL; 1534 } 1535 1536 struct group_for_pci_data { 1537 struct pci_dev *pdev; 1538 struct iommu_group *group; 1539 }; 1540 1541 /* 1542 * DMA alias iterator callback, return the last seen device. Stop and return 1543 * the IOMMU group if we find one along the way. 1544 */ 1545 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1546 { 1547 struct group_for_pci_data *data = opaque; 1548 1549 data->pdev = pdev; 1550 data->group = iommu_group_get(&pdev->dev); 1551 1552 return data->group != NULL; 1553 } 1554 1555 /* 1556 * Generic device_group call-back function. It just allocates one 1557 * iommu-group per device. 1558 */ 1559 struct iommu_group *generic_device_group(struct device *dev) 1560 { 1561 return iommu_group_alloc(); 1562 } 1563 EXPORT_SYMBOL_GPL(generic_device_group); 1564 1565 /* 1566 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1567 * to find or create an IOMMU group for a device. 1568 */ 1569 struct iommu_group *pci_device_group(struct device *dev) 1570 { 1571 struct pci_dev *pdev = to_pci_dev(dev); 1572 struct group_for_pci_data data; 1573 struct pci_bus *bus; 1574 struct iommu_group *group = NULL; 1575 u64 devfns[4] = { 0 }; 1576 1577 if (WARN_ON(!dev_is_pci(dev))) 1578 return ERR_PTR(-EINVAL); 1579 1580 /* 1581 * Find the upstream DMA alias for the device. A device must not 1582 * be aliased due to topology in order to have its own IOMMU group. 1583 * If we find an alias along the way that already belongs to a 1584 * group, use it. 1585 */ 1586 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1587 return data.group; 1588 1589 pdev = data.pdev; 1590 1591 /* 1592 * Continue upstream from the point of minimum IOMMU granularity 1593 * due to aliases to the point where devices are protected from 1594 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1595 * group, use it. 1596 */ 1597 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1598 if (!bus->self) 1599 continue; 1600 1601 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1602 break; 1603 1604 pdev = bus->self; 1605 1606 group = iommu_group_get(&pdev->dev); 1607 if (group) 1608 return group; 1609 } 1610 1611 /* 1612 * Look for existing groups on device aliases. If we alias another 1613 * device or another device aliases us, use the same group. 1614 */ 1615 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1616 if (group) 1617 return group; 1618 1619 /* 1620 * Look for existing groups on non-isolated functions on the same 1621 * slot and aliases of those funcions, if any. No need to clear 1622 * the search bitmap, the tested devfns are still valid. 1623 */ 1624 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1625 if (group) 1626 return group; 1627 1628 /* No shared group found, allocate new */ 1629 return iommu_group_alloc(); 1630 } 1631 EXPORT_SYMBOL_GPL(pci_device_group); 1632 1633 /* Get the IOMMU group for device on fsl-mc bus */ 1634 struct iommu_group *fsl_mc_device_group(struct device *dev) 1635 { 1636 struct device *cont_dev = fsl_mc_cont_dev(dev); 1637 struct iommu_group *group; 1638 1639 group = iommu_group_get(cont_dev); 1640 if (!group) 1641 group = iommu_group_alloc(); 1642 return group; 1643 } 1644 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1645 1646 static int iommu_get_def_domain_type(struct device *dev) 1647 { 1648 const struct iommu_ops *ops = dev_iommu_ops(dev); 1649 1650 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 1651 return IOMMU_DOMAIN_DMA; 1652 1653 if (ops->def_domain_type) 1654 return ops->def_domain_type(dev); 1655 1656 return 0; 1657 } 1658 1659 static int iommu_group_alloc_default_domain(const struct bus_type *bus, 1660 struct iommu_group *group, 1661 unsigned int type) 1662 { 1663 struct iommu_domain *dom; 1664 1665 dom = __iommu_domain_alloc(bus, type); 1666 if (!dom && type != IOMMU_DOMAIN_DMA) { 1667 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA); 1668 if (dom) 1669 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1670 type, group->name); 1671 } 1672 1673 if (!dom) 1674 return -ENOMEM; 1675 1676 group->default_domain = dom; 1677 if (!group->domain) 1678 group->domain = dom; 1679 return 0; 1680 } 1681 1682 static int iommu_alloc_default_domain(struct iommu_group *group, 1683 struct device *dev) 1684 { 1685 unsigned int type; 1686 1687 if (group->default_domain) 1688 return 0; 1689 1690 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type; 1691 1692 return iommu_group_alloc_default_domain(dev->bus, group, type); 1693 } 1694 1695 /** 1696 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1697 * @dev: target device 1698 * 1699 * This function is intended to be called by IOMMU drivers and extended to 1700 * support common, bus-defined algorithms when determining or creating the 1701 * IOMMU group for a device. On success, the caller will hold a reference 1702 * to the returned IOMMU group, which will already include the provided 1703 * device. The reference should be released with iommu_group_put(). 1704 */ 1705 static struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1706 { 1707 const struct iommu_ops *ops = dev_iommu_ops(dev); 1708 struct iommu_group *group; 1709 int ret; 1710 1711 group = iommu_group_get(dev); 1712 if (group) 1713 return group; 1714 1715 group = ops->device_group(dev); 1716 if (WARN_ON_ONCE(group == NULL)) 1717 return ERR_PTR(-EINVAL); 1718 1719 if (IS_ERR(group)) 1720 return group; 1721 1722 ret = iommu_group_add_device(group, dev); 1723 if (ret) 1724 goto out_put_group; 1725 1726 return group; 1727 1728 out_put_group: 1729 iommu_group_put(group); 1730 1731 return ERR_PTR(ret); 1732 } 1733 1734 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1735 { 1736 return group->default_domain; 1737 } 1738 1739 static int probe_iommu_group(struct device *dev, void *data) 1740 { 1741 struct list_head *group_list = data; 1742 struct iommu_group *group; 1743 int ret; 1744 1745 /* Device is probed already if in a group */ 1746 group = iommu_group_get(dev); 1747 if (group) { 1748 iommu_group_put(group); 1749 return 0; 1750 } 1751 1752 ret = __iommu_probe_device(dev, group_list); 1753 if (ret == -ENODEV) 1754 ret = 0; 1755 1756 return ret; 1757 } 1758 1759 static int iommu_bus_notifier(struct notifier_block *nb, 1760 unsigned long action, void *data) 1761 { 1762 struct device *dev = data; 1763 1764 if (action == BUS_NOTIFY_ADD_DEVICE) { 1765 int ret; 1766 1767 ret = iommu_probe_device(dev); 1768 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1769 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1770 iommu_release_device(dev); 1771 return NOTIFY_OK; 1772 } 1773 1774 return 0; 1775 } 1776 1777 struct __group_domain_type { 1778 struct device *dev; 1779 unsigned int type; 1780 }; 1781 1782 static int probe_get_default_domain_type(struct device *dev, void *data) 1783 { 1784 struct __group_domain_type *gtype = data; 1785 unsigned int type = iommu_get_def_domain_type(dev); 1786 1787 if (type) { 1788 if (gtype->type && gtype->type != type) { 1789 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1790 iommu_domain_type_str(type), 1791 dev_name(gtype->dev), 1792 iommu_domain_type_str(gtype->type)); 1793 gtype->type = 0; 1794 } 1795 1796 if (!gtype->dev) { 1797 gtype->dev = dev; 1798 gtype->type = type; 1799 } 1800 } 1801 1802 return 0; 1803 } 1804 1805 static void probe_alloc_default_domain(const struct bus_type *bus, 1806 struct iommu_group *group) 1807 { 1808 struct __group_domain_type gtype; 1809 1810 memset(>ype, 0, sizeof(gtype)); 1811 1812 /* Ask for default domain requirements of all devices in the group */ 1813 __iommu_group_for_each_dev(group, >ype, 1814 probe_get_default_domain_type); 1815 1816 if (!gtype.type) 1817 gtype.type = iommu_def_domain_type; 1818 1819 iommu_group_alloc_default_domain(bus, group, gtype.type); 1820 1821 } 1822 1823 static int __iommu_group_dma_first_attach(struct iommu_group *group) 1824 { 1825 return __iommu_group_for_each_dev(group, group->default_domain, 1826 iommu_group_do_dma_first_attach); 1827 } 1828 1829 static int iommu_group_do_probe_finalize(struct device *dev, void *data) 1830 { 1831 const struct iommu_ops *ops = dev_iommu_ops(dev); 1832 1833 if (ops->probe_finalize) 1834 ops->probe_finalize(dev); 1835 1836 return 0; 1837 } 1838 1839 static void __iommu_group_dma_finalize(struct iommu_group *group) 1840 { 1841 __iommu_group_for_each_dev(group, group->default_domain, 1842 iommu_group_do_probe_finalize); 1843 } 1844 1845 static int iommu_do_create_direct_mappings(struct device *dev, void *data) 1846 { 1847 struct iommu_group *group = data; 1848 1849 iommu_create_device_direct_mappings(group, dev); 1850 1851 return 0; 1852 } 1853 1854 static int iommu_group_create_direct_mappings(struct iommu_group *group) 1855 { 1856 return __iommu_group_for_each_dev(group, group, 1857 iommu_do_create_direct_mappings); 1858 } 1859 1860 int bus_iommu_probe(const struct bus_type *bus) 1861 { 1862 struct iommu_group *group, *next; 1863 LIST_HEAD(group_list); 1864 int ret; 1865 1866 /* 1867 * This code-path does not allocate the default domain when 1868 * creating the iommu group, so do it after the groups are 1869 * created. 1870 */ 1871 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1872 if (ret) 1873 return ret; 1874 1875 list_for_each_entry_safe(group, next, &group_list, entry) { 1876 mutex_lock(&group->mutex); 1877 1878 /* Remove item from the list */ 1879 list_del_init(&group->entry); 1880 1881 /* Try to allocate default domain */ 1882 probe_alloc_default_domain(bus, group); 1883 1884 if (!group->default_domain) { 1885 mutex_unlock(&group->mutex); 1886 continue; 1887 } 1888 1889 iommu_group_create_direct_mappings(group); 1890 1891 ret = __iommu_group_dma_first_attach(group); 1892 1893 mutex_unlock(&group->mutex); 1894 1895 if (ret) 1896 break; 1897 1898 __iommu_group_dma_finalize(group); 1899 } 1900 1901 return ret; 1902 } 1903 1904 bool iommu_present(const struct bus_type *bus) 1905 { 1906 return bus->iommu_ops != NULL; 1907 } 1908 EXPORT_SYMBOL_GPL(iommu_present); 1909 1910 /** 1911 * device_iommu_capable() - check for a general IOMMU capability 1912 * @dev: device to which the capability would be relevant, if available 1913 * @cap: IOMMU capability 1914 * 1915 * Return: true if an IOMMU is present and supports the given capability 1916 * for the given device, otherwise false. 1917 */ 1918 bool device_iommu_capable(struct device *dev, enum iommu_cap cap) 1919 { 1920 const struct iommu_ops *ops; 1921 1922 if (!dev->iommu || !dev->iommu->iommu_dev) 1923 return false; 1924 1925 ops = dev_iommu_ops(dev); 1926 if (!ops->capable) 1927 return false; 1928 1929 return ops->capable(dev, cap); 1930 } 1931 EXPORT_SYMBOL_GPL(device_iommu_capable); 1932 1933 /** 1934 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi() 1935 * for a group 1936 * @group: Group to query 1937 * 1938 * IOMMU groups should not have differing values of 1939 * msi_device_has_isolated_msi() for devices in a group. However nothing 1940 * directly prevents this, so ensure mistakes don't result in isolation failures 1941 * by checking that all the devices are the same. 1942 */ 1943 bool iommu_group_has_isolated_msi(struct iommu_group *group) 1944 { 1945 struct group_device *group_dev; 1946 bool ret = true; 1947 1948 mutex_lock(&group->mutex); 1949 list_for_each_entry(group_dev, &group->devices, list) 1950 ret &= msi_device_has_isolated_msi(group_dev->dev); 1951 mutex_unlock(&group->mutex); 1952 return ret; 1953 } 1954 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi); 1955 1956 /** 1957 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1958 * @domain: iommu domain 1959 * @handler: fault handler 1960 * @token: user data, will be passed back to the fault handler 1961 * 1962 * This function should be used by IOMMU users which want to be notified 1963 * whenever an IOMMU fault happens. 1964 * 1965 * The fault handler itself should return 0 on success, and an appropriate 1966 * error code otherwise. 1967 */ 1968 void iommu_set_fault_handler(struct iommu_domain *domain, 1969 iommu_fault_handler_t handler, 1970 void *token) 1971 { 1972 BUG_ON(!domain); 1973 1974 domain->handler = handler; 1975 domain->handler_token = token; 1976 } 1977 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1978 1979 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus, 1980 unsigned type) 1981 { 1982 struct iommu_domain *domain; 1983 1984 if (bus == NULL || bus->iommu_ops == NULL) 1985 return NULL; 1986 1987 domain = bus->iommu_ops->domain_alloc(type); 1988 if (!domain) 1989 return NULL; 1990 1991 domain->type = type; 1992 /* 1993 * If not already set, assume all sizes by default; the driver 1994 * may override this later 1995 */ 1996 if (!domain->pgsize_bitmap) 1997 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1998 1999 if (!domain->ops) 2000 domain->ops = bus->iommu_ops->default_domain_ops; 2001 2002 if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) { 2003 iommu_domain_free(domain); 2004 domain = NULL; 2005 } 2006 return domain; 2007 } 2008 2009 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus) 2010 { 2011 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 2012 } 2013 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 2014 2015 void iommu_domain_free(struct iommu_domain *domain) 2016 { 2017 if (domain->type == IOMMU_DOMAIN_SVA) 2018 mmdrop(domain->mm); 2019 iommu_put_dma_cookie(domain); 2020 domain->ops->free(domain); 2021 } 2022 EXPORT_SYMBOL_GPL(iommu_domain_free); 2023 2024 /* 2025 * Put the group's domain back to the appropriate core-owned domain - either the 2026 * standard kernel-mode DMA configuration or an all-DMA-blocked domain. 2027 */ 2028 static void __iommu_group_set_core_domain(struct iommu_group *group) 2029 { 2030 struct iommu_domain *new_domain; 2031 int ret; 2032 2033 if (group->owner) 2034 new_domain = group->blocking_domain; 2035 else 2036 new_domain = group->default_domain; 2037 2038 ret = __iommu_group_set_domain(group, new_domain); 2039 WARN(ret, "iommu driver failed to attach the default/blocking domain"); 2040 } 2041 2042 static int __iommu_attach_device(struct iommu_domain *domain, 2043 struct device *dev) 2044 { 2045 int ret; 2046 2047 if (unlikely(domain->ops->attach_dev == NULL)) 2048 return -ENODEV; 2049 2050 ret = domain->ops->attach_dev(domain, dev); 2051 if (ret) 2052 return ret; 2053 dev->iommu->attach_deferred = 0; 2054 trace_attach_device_to_domain(dev); 2055 return 0; 2056 } 2057 2058 /** 2059 * iommu_attach_device - Attach an IOMMU domain to a device 2060 * @domain: IOMMU domain to attach 2061 * @dev: Device that will be attached 2062 * 2063 * Returns 0 on success and error code on failure 2064 * 2065 * Note that EINVAL can be treated as a soft failure, indicating 2066 * that certain configuration of the domain is incompatible with 2067 * the device. In this case attaching a different domain to the 2068 * device may succeed. 2069 */ 2070 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 2071 { 2072 struct iommu_group *group; 2073 int ret; 2074 2075 group = iommu_group_get(dev); 2076 if (!group) 2077 return -ENODEV; 2078 2079 /* 2080 * Lock the group to make sure the device-count doesn't 2081 * change while we are attaching 2082 */ 2083 mutex_lock(&group->mutex); 2084 ret = -EINVAL; 2085 if (iommu_group_device_count(group) != 1) 2086 goto out_unlock; 2087 2088 ret = __iommu_attach_group(domain, group); 2089 2090 out_unlock: 2091 mutex_unlock(&group->mutex); 2092 iommu_group_put(group); 2093 2094 return ret; 2095 } 2096 EXPORT_SYMBOL_GPL(iommu_attach_device); 2097 2098 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2099 { 2100 if (dev->iommu && dev->iommu->attach_deferred) 2101 return __iommu_attach_device(domain, dev); 2102 2103 return 0; 2104 } 2105 2106 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2107 { 2108 struct iommu_group *group; 2109 2110 group = iommu_group_get(dev); 2111 if (!group) 2112 return; 2113 2114 mutex_lock(&group->mutex); 2115 if (WARN_ON(domain != group->domain) || 2116 WARN_ON(iommu_group_device_count(group) != 1)) 2117 goto out_unlock; 2118 __iommu_group_set_core_domain(group); 2119 2120 out_unlock: 2121 mutex_unlock(&group->mutex); 2122 iommu_group_put(group); 2123 } 2124 EXPORT_SYMBOL_GPL(iommu_detach_device); 2125 2126 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2127 { 2128 struct iommu_domain *domain; 2129 struct iommu_group *group; 2130 2131 group = iommu_group_get(dev); 2132 if (!group) 2133 return NULL; 2134 2135 domain = group->domain; 2136 2137 iommu_group_put(group); 2138 2139 return domain; 2140 } 2141 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2142 2143 /* 2144 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2145 * guarantees that the group and its default domain are valid and correct. 2146 */ 2147 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2148 { 2149 return dev->iommu_group->default_domain; 2150 } 2151 2152 /* 2153 * IOMMU groups are really the natural working unit of the IOMMU, but 2154 * the IOMMU API works on domains and devices. Bridge that gap by 2155 * iterating over the devices in a group. Ideally we'd have a single 2156 * device which represents the requestor ID of the group, but we also 2157 * allow IOMMU drivers to create policy defined minimum sets, where 2158 * the physical hardware may be able to distiguish members, but we 2159 * wish to group them at a higher level (ex. untrusted multi-function 2160 * PCI devices). Thus we attach each device. 2161 */ 2162 static int iommu_group_do_attach_device(struct device *dev, void *data) 2163 { 2164 struct iommu_domain *domain = data; 2165 2166 return __iommu_attach_device(domain, dev); 2167 } 2168 2169 static int __iommu_attach_group(struct iommu_domain *domain, 2170 struct iommu_group *group) 2171 { 2172 int ret; 2173 2174 if (group->domain && group->domain != group->default_domain && 2175 group->domain != group->blocking_domain) 2176 return -EBUSY; 2177 2178 ret = __iommu_group_for_each_dev(group, domain, 2179 iommu_group_do_attach_device); 2180 if (ret == 0) { 2181 group->domain = domain; 2182 } else { 2183 /* 2184 * To recover from the case when certain device within the 2185 * group fails to attach to the new domain, we need force 2186 * attaching all devices back to the old domain. The old 2187 * domain is compatible for all devices in the group, 2188 * hence the iommu driver should always return success. 2189 */ 2190 struct iommu_domain *old_domain = group->domain; 2191 2192 group->domain = NULL; 2193 WARN(__iommu_group_set_domain(group, old_domain), 2194 "iommu driver failed to attach a compatible domain"); 2195 } 2196 2197 return ret; 2198 } 2199 2200 /** 2201 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group 2202 * @domain: IOMMU domain to attach 2203 * @group: IOMMU group that will be attached 2204 * 2205 * Returns 0 on success and error code on failure 2206 * 2207 * Note that EINVAL can be treated as a soft failure, indicating 2208 * that certain configuration of the domain is incompatible with 2209 * the group. In this case attaching a different domain to the 2210 * group may succeed. 2211 */ 2212 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2213 { 2214 int ret; 2215 2216 mutex_lock(&group->mutex); 2217 ret = __iommu_attach_group(domain, group); 2218 mutex_unlock(&group->mutex); 2219 2220 return ret; 2221 } 2222 EXPORT_SYMBOL_GPL(iommu_attach_group); 2223 2224 static int iommu_group_do_set_platform_dma(struct device *dev, void *data) 2225 { 2226 const struct iommu_ops *ops = dev_iommu_ops(dev); 2227 2228 if (!WARN_ON(!ops->set_platform_dma_ops)) 2229 ops->set_platform_dma_ops(dev); 2230 2231 return 0; 2232 } 2233 2234 static int __iommu_group_set_domain(struct iommu_group *group, 2235 struct iommu_domain *new_domain) 2236 { 2237 int ret; 2238 2239 if (group->domain == new_domain) 2240 return 0; 2241 2242 /* 2243 * New drivers should support default domains, so set_platform_dma() 2244 * op will never be called. Otherwise the NULL domain represents some 2245 * platform specific behavior. 2246 */ 2247 if (!new_domain) { 2248 __iommu_group_for_each_dev(group, NULL, 2249 iommu_group_do_set_platform_dma); 2250 group->domain = NULL; 2251 return 0; 2252 } 2253 2254 /* 2255 * Changing the domain is done by calling attach_dev() on the new 2256 * domain. This switch does not have to be atomic and DMA can be 2257 * discarded during the transition. DMA must only be able to access 2258 * either new_domain or group->domain, never something else. 2259 * 2260 * Note that this is called in error unwind paths, attaching to a 2261 * domain that has already been attached cannot fail. 2262 */ 2263 ret = __iommu_group_for_each_dev(group, new_domain, 2264 iommu_group_do_attach_device); 2265 if (ret) 2266 return ret; 2267 group->domain = new_domain; 2268 return 0; 2269 } 2270 2271 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2272 { 2273 mutex_lock(&group->mutex); 2274 __iommu_group_set_core_domain(group); 2275 mutex_unlock(&group->mutex); 2276 } 2277 EXPORT_SYMBOL_GPL(iommu_detach_group); 2278 2279 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2280 { 2281 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2282 return iova; 2283 2284 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2285 return 0; 2286 2287 return domain->ops->iova_to_phys(domain, iova); 2288 } 2289 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2290 2291 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2292 phys_addr_t paddr, size_t size, size_t *count) 2293 { 2294 unsigned int pgsize_idx, pgsize_idx_next; 2295 unsigned long pgsizes; 2296 size_t offset, pgsize, pgsize_next; 2297 unsigned long addr_merge = paddr | iova; 2298 2299 /* Page sizes supported by the hardware and small enough for @size */ 2300 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2301 2302 /* Constrain the page sizes further based on the maximum alignment */ 2303 if (likely(addr_merge)) 2304 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2305 2306 /* Make sure we have at least one suitable page size */ 2307 BUG_ON(!pgsizes); 2308 2309 /* Pick the biggest page size remaining */ 2310 pgsize_idx = __fls(pgsizes); 2311 pgsize = BIT(pgsize_idx); 2312 if (!count) 2313 return pgsize; 2314 2315 /* Find the next biggest support page size, if it exists */ 2316 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2317 if (!pgsizes) 2318 goto out_set_count; 2319 2320 pgsize_idx_next = __ffs(pgsizes); 2321 pgsize_next = BIT(pgsize_idx_next); 2322 2323 /* 2324 * There's no point trying a bigger page size unless the virtual 2325 * and physical addresses are similarly offset within the larger page. 2326 */ 2327 if ((iova ^ paddr) & (pgsize_next - 1)) 2328 goto out_set_count; 2329 2330 /* Calculate the offset to the next page size alignment boundary */ 2331 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2332 2333 /* 2334 * If size is big enough to accommodate the larger page, reduce 2335 * the number of smaller pages. 2336 */ 2337 if (offset + pgsize_next <= size) 2338 size = offset; 2339 2340 out_set_count: 2341 *count = size >> pgsize_idx; 2342 return pgsize; 2343 } 2344 2345 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova, 2346 phys_addr_t paddr, size_t size, int prot, 2347 gfp_t gfp, size_t *mapped) 2348 { 2349 const struct iommu_domain_ops *ops = domain->ops; 2350 size_t pgsize, count; 2351 int ret; 2352 2353 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2354 2355 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2356 iova, &paddr, pgsize, count); 2357 2358 if (ops->map_pages) { 2359 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2360 gfp, mapped); 2361 } else { 2362 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2363 *mapped = ret ? 0 : pgsize; 2364 } 2365 2366 return ret; 2367 } 2368 2369 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2370 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2371 { 2372 const struct iommu_domain_ops *ops = domain->ops; 2373 unsigned long orig_iova = iova; 2374 unsigned int min_pagesz; 2375 size_t orig_size = size; 2376 phys_addr_t orig_paddr = paddr; 2377 int ret = 0; 2378 2379 if (unlikely(!(ops->map || ops->map_pages) || 2380 domain->pgsize_bitmap == 0UL)) 2381 return -ENODEV; 2382 2383 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2384 return -EINVAL; 2385 2386 /* find out the minimum page size supported */ 2387 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2388 2389 /* 2390 * both the virtual address and the physical one, as well as 2391 * the size of the mapping, must be aligned (at least) to the 2392 * size of the smallest page supported by the hardware 2393 */ 2394 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2395 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2396 iova, &paddr, size, min_pagesz); 2397 return -EINVAL; 2398 } 2399 2400 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2401 2402 while (size) { 2403 size_t mapped = 0; 2404 2405 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp, 2406 &mapped); 2407 /* 2408 * Some pages may have been mapped, even if an error occurred, 2409 * so we should account for those so they can be unmapped. 2410 */ 2411 size -= mapped; 2412 2413 if (ret) 2414 break; 2415 2416 iova += mapped; 2417 paddr += mapped; 2418 } 2419 2420 /* unroll mapping in case something went wrong */ 2421 if (ret) 2422 iommu_unmap(domain, orig_iova, orig_size - size); 2423 else 2424 trace_map(orig_iova, orig_paddr, orig_size); 2425 2426 return ret; 2427 } 2428 2429 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2430 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2431 { 2432 const struct iommu_domain_ops *ops = domain->ops; 2433 int ret; 2434 2435 might_sleep_if(gfpflags_allow_blocking(gfp)); 2436 2437 /* Discourage passing strange GFP flags */ 2438 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2439 __GFP_HIGHMEM))) 2440 return -EINVAL; 2441 2442 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2443 if (ret == 0 && ops->iotlb_sync_map) 2444 ops->iotlb_sync_map(domain, iova, size); 2445 2446 return ret; 2447 } 2448 EXPORT_SYMBOL_GPL(iommu_map); 2449 2450 static size_t __iommu_unmap_pages(struct iommu_domain *domain, 2451 unsigned long iova, size_t size, 2452 struct iommu_iotlb_gather *iotlb_gather) 2453 { 2454 const struct iommu_domain_ops *ops = domain->ops; 2455 size_t pgsize, count; 2456 2457 pgsize = iommu_pgsize(domain, iova, iova, size, &count); 2458 return ops->unmap_pages ? 2459 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) : 2460 ops->unmap(domain, iova, pgsize, iotlb_gather); 2461 } 2462 2463 static size_t __iommu_unmap(struct iommu_domain *domain, 2464 unsigned long iova, size_t size, 2465 struct iommu_iotlb_gather *iotlb_gather) 2466 { 2467 const struct iommu_domain_ops *ops = domain->ops; 2468 size_t unmapped_page, unmapped = 0; 2469 unsigned long orig_iova = iova; 2470 unsigned int min_pagesz; 2471 2472 if (unlikely(!(ops->unmap || ops->unmap_pages) || 2473 domain->pgsize_bitmap == 0UL)) 2474 return 0; 2475 2476 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2477 return 0; 2478 2479 /* find out the minimum page size supported */ 2480 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2481 2482 /* 2483 * The virtual address, as well as the size of the mapping, must be 2484 * aligned (at least) to the size of the smallest page supported 2485 * by the hardware 2486 */ 2487 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2488 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2489 iova, size, min_pagesz); 2490 return 0; 2491 } 2492 2493 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2494 2495 /* 2496 * Keep iterating until we either unmap 'size' bytes (or more) 2497 * or we hit an area that isn't mapped. 2498 */ 2499 while (unmapped < size) { 2500 unmapped_page = __iommu_unmap_pages(domain, iova, 2501 size - unmapped, 2502 iotlb_gather); 2503 if (!unmapped_page) 2504 break; 2505 2506 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2507 iova, unmapped_page); 2508 2509 iova += unmapped_page; 2510 unmapped += unmapped_page; 2511 } 2512 2513 trace_unmap(orig_iova, size, unmapped); 2514 return unmapped; 2515 } 2516 2517 size_t iommu_unmap(struct iommu_domain *domain, 2518 unsigned long iova, size_t size) 2519 { 2520 struct iommu_iotlb_gather iotlb_gather; 2521 size_t ret; 2522 2523 iommu_iotlb_gather_init(&iotlb_gather); 2524 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2525 iommu_iotlb_sync(domain, &iotlb_gather); 2526 2527 return ret; 2528 } 2529 EXPORT_SYMBOL_GPL(iommu_unmap); 2530 2531 size_t iommu_unmap_fast(struct iommu_domain *domain, 2532 unsigned long iova, size_t size, 2533 struct iommu_iotlb_gather *iotlb_gather) 2534 { 2535 return __iommu_unmap(domain, iova, size, iotlb_gather); 2536 } 2537 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2538 2539 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2540 struct scatterlist *sg, unsigned int nents, int prot, 2541 gfp_t gfp) 2542 { 2543 const struct iommu_domain_ops *ops = domain->ops; 2544 size_t len = 0, mapped = 0; 2545 phys_addr_t start; 2546 unsigned int i = 0; 2547 int ret; 2548 2549 might_sleep_if(gfpflags_allow_blocking(gfp)); 2550 2551 /* Discourage passing strange GFP flags */ 2552 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2553 __GFP_HIGHMEM))) 2554 return -EINVAL; 2555 2556 while (i <= nents) { 2557 phys_addr_t s_phys = sg_phys(sg); 2558 2559 if (len && s_phys != start + len) { 2560 ret = __iommu_map(domain, iova + mapped, start, 2561 len, prot, gfp); 2562 2563 if (ret) 2564 goto out_err; 2565 2566 mapped += len; 2567 len = 0; 2568 } 2569 2570 if (sg_is_dma_bus_address(sg)) 2571 goto next; 2572 2573 if (len) { 2574 len += sg->length; 2575 } else { 2576 len = sg->length; 2577 start = s_phys; 2578 } 2579 2580 next: 2581 if (++i < nents) 2582 sg = sg_next(sg); 2583 } 2584 2585 if (ops->iotlb_sync_map) 2586 ops->iotlb_sync_map(domain, iova, mapped); 2587 return mapped; 2588 2589 out_err: 2590 /* undo mappings already done */ 2591 iommu_unmap(domain, iova, mapped); 2592 2593 return ret; 2594 } 2595 EXPORT_SYMBOL_GPL(iommu_map_sg); 2596 2597 /** 2598 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2599 * @domain: the iommu domain where the fault has happened 2600 * @dev: the device where the fault has happened 2601 * @iova: the faulting address 2602 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2603 * 2604 * This function should be called by the low-level IOMMU implementations 2605 * whenever IOMMU faults happen, to allow high-level users, that are 2606 * interested in such events, to know about them. 2607 * 2608 * This event may be useful for several possible use cases: 2609 * - mere logging of the event 2610 * - dynamic TLB/PTE loading 2611 * - if restarting of the faulting device is required 2612 * 2613 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2614 * PTE/TLB loading will one day be supported, implementations will be able 2615 * to tell whether it succeeded or not according to this return value). 2616 * 2617 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2618 * (though fault handlers can also return -ENOSYS, in case they want to 2619 * elicit the default behavior of the IOMMU drivers). 2620 */ 2621 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2622 unsigned long iova, int flags) 2623 { 2624 int ret = -ENOSYS; 2625 2626 /* 2627 * if upper layers showed interest and installed a fault handler, 2628 * invoke it. 2629 */ 2630 if (domain->handler) 2631 ret = domain->handler(domain, dev, iova, flags, 2632 domain->handler_token); 2633 2634 trace_io_page_fault(dev, iova, flags); 2635 return ret; 2636 } 2637 EXPORT_SYMBOL_GPL(report_iommu_fault); 2638 2639 static int __init iommu_init(void) 2640 { 2641 iommu_group_kset = kset_create_and_add("iommu_groups", 2642 NULL, kernel_kobj); 2643 BUG_ON(!iommu_group_kset); 2644 2645 iommu_debugfs_setup(); 2646 2647 return 0; 2648 } 2649 core_initcall(iommu_init); 2650 2651 int iommu_enable_nesting(struct iommu_domain *domain) 2652 { 2653 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2654 return -EINVAL; 2655 if (!domain->ops->enable_nesting) 2656 return -EINVAL; 2657 return domain->ops->enable_nesting(domain); 2658 } 2659 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2660 2661 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2662 unsigned long quirk) 2663 { 2664 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2665 return -EINVAL; 2666 if (!domain->ops->set_pgtable_quirks) 2667 return -EINVAL; 2668 return domain->ops->set_pgtable_quirks(domain, quirk); 2669 } 2670 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2671 2672 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2673 { 2674 const struct iommu_ops *ops = dev_iommu_ops(dev); 2675 2676 if (ops->get_resv_regions) 2677 ops->get_resv_regions(dev, list); 2678 } 2679 2680 /** 2681 * iommu_put_resv_regions - release resered regions 2682 * @dev: device for which to free reserved regions 2683 * @list: reserved region list for device 2684 * 2685 * This releases a reserved region list acquired by iommu_get_resv_regions(). 2686 */ 2687 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2688 { 2689 struct iommu_resv_region *entry, *next; 2690 2691 list_for_each_entry_safe(entry, next, list, list) { 2692 if (entry->free) 2693 entry->free(dev, entry); 2694 else 2695 kfree(entry); 2696 } 2697 } 2698 EXPORT_SYMBOL(iommu_put_resv_regions); 2699 2700 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2701 size_t length, int prot, 2702 enum iommu_resv_type type, 2703 gfp_t gfp) 2704 { 2705 struct iommu_resv_region *region; 2706 2707 region = kzalloc(sizeof(*region), gfp); 2708 if (!region) 2709 return NULL; 2710 2711 INIT_LIST_HEAD(®ion->list); 2712 region->start = start; 2713 region->length = length; 2714 region->prot = prot; 2715 region->type = type; 2716 return region; 2717 } 2718 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2719 2720 void iommu_set_default_passthrough(bool cmd_line) 2721 { 2722 if (cmd_line) 2723 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2724 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2725 } 2726 2727 void iommu_set_default_translated(bool cmd_line) 2728 { 2729 if (cmd_line) 2730 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2731 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2732 } 2733 2734 bool iommu_default_passthrough(void) 2735 { 2736 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2737 } 2738 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2739 2740 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2741 { 2742 const struct iommu_ops *ops = NULL; 2743 struct iommu_device *iommu; 2744 2745 spin_lock(&iommu_device_lock); 2746 list_for_each_entry(iommu, &iommu_device_list, list) 2747 if (iommu->fwnode == fwnode) { 2748 ops = iommu->ops; 2749 break; 2750 } 2751 spin_unlock(&iommu_device_lock); 2752 return ops; 2753 } 2754 2755 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2756 const struct iommu_ops *ops) 2757 { 2758 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2759 2760 if (fwspec) 2761 return ops == fwspec->ops ? 0 : -EINVAL; 2762 2763 if (!dev_iommu_get(dev)) 2764 return -ENOMEM; 2765 2766 /* Preallocate for the overwhelmingly common case of 1 ID */ 2767 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2768 if (!fwspec) 2769 return -ENOMEM; 2770 2771 of_node_get(to_of_node(iommu_fwnode)); 2772 fwspec->iommu_fwnode = iommu_fwnode; 2773 fwspec->ops = ops; 2774 dev_iommu_fwspec_set(dev, fwspec); 2775 return 0; 2776 } 2777 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2778 2779 void iommu_fwspec_free(struct device *dev) 2780 { 2781 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2782 2783 if (fwspec) { 2784 fwnode_handle_put(fwspec->iommu_fwnode); 2785 kfree(fwspec); 2786 dev_iommu_fwspec_set(dev, NULL); 2787 } 2788 } 2789 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2790 2791 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2792 { 2793 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2794 int i, new_num; 2795 2796 if (!fwspec) 2797 return -EINVAL; 2798 2799 new_num = fwspec->num_ids + num_ids; 2800 if (new_num > 1) { 2801 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2802 GFP_KERNEL); 2803 if (!fwspec) 2804 return -ENOMEM; 2805 2806 dev_iommu_fwspec_set(dev, fwspec); 2807 } 2808 2809 for (i = 0; i < num_ids; i++) 2810 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2811 2812 fwspec->num_ids = new_num; 2813 return 0; 2814 } 2815 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2816 2817 /* 2818 * Per device IOMMU features. 2819 */ 2820 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2821 { 2822 if (dev->iommu && dev->iommu->iommu_dev) { 2823 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2824 2825 if (ops->dev_enable_feat) 2826 return ops->dev_enable_feat(dev, feat); 2827 } 2828 2829 return -ENODEV; 2830 } 2831 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2832 2833 /* 2834 * The device drivers should do the necessary cleanups before calling this. 2835 */ 2836 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2837 { 2838 if (dev->iommu && dev->iommu->iommu_dev) { 2839 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2840 2841 if (ops->dev_disable_feat) 2842 return ops->dev_disable_feat(dev, feat); 2843 } 2844 2845 return -EBUSY; 2846 } 2847 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2848 2849 /* 2850 * Changes the default domain of an iommu group 2851 * 2852 * @group: The group for which the default domain should be changed 2853 * @dev: The first device in the group 2854 * @type: The type of the new default domain that gets associated with the group 2855 * 2856 * Returns 0 on success and error code on failure 2857 * 2858 * Note: 2859 * 1. Presently, this function is called only when user requests to change the 2860 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type 2861 * Please take a closer look if intended to use for other purposes. 2862 */ 2863 static int iommu_change_dev_def_domain(struct iommu_group *group, 2864 struct device *dev, int type) 2865 { 2866 struct __group_domain_type gtype = {NULL, 0}; 2867 struct iommu_domain *prev_dom; 2868 int ret; 2869 2870 lockdep_assert_held(&group->mutex); 2871 2872 prev_dom = group->default_domain; 2873 __iommu_group_for_each_dev(group, >ype, 2874 probe_get_default_domain_type); 2875 if (!type) { 2876 /* 2877 * If the user hasn't requested any specific type of domain and 2878 * if the device supports both the domains, then default to the 2879 * domain the device was booted with 2880 */ 2881 type = gtype.type ? : iommu_def_domain_type; 2882 } else if (gtype.type && type != gtype.type) { 2883 dev_err_ratelimited(dev, "Device cannot be in %s domain\n", 2884 iommu_domain_type_str(type)); 2885 return -EINVAL; 2886 } 2887 2888 /* 2889 * Switch to a new domain only if the requested domain type is different 2890 * from the existing default domain type 2891 */ 2892 if (prev_dom->type == type) 2893 return 0; 2894 2895 group->default_domain = NULL; 2896 group->domain = NULL; 2897 2898 /* Sets group->default_domain to the newly allocated domain */ 2899 ret = iommu_group_alloc_default_domain(dev->bus, group, type); 2900 if (ret) 2901 goto restore_old_domain; 2902 2903 ret = iommu_group_create_direct_mappings(group); 2904 if (ret) 2905 goto free_new_domain; 2906 2907 ret = __iommu_attach_group(group->default_domain, group); 2908 if (ret) 2909 goto free_new_domain; 2910 2911 iommu_domain_free(prev_dom); 2912 2913 return 0; 2914 2915 free_new_domain: 2916 iommu_domain_free(group->default_domain); 2917 restore_old_domain: 2918 group->default_domain = prev_dom; 2919 group->domain = prev_dom; 2920 2921 return ret; 2922 } 2923 2924 /* 2925 * Changing the default domain through sysfs requires the users to unbind the 2926 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 2927 * transition. Return failure if this isn't met. 2928 * 2929 * We need to consider the race between this and the device release path. 2930 * group->mutex is used here to guarantee that the device release path 2931 * will not be entered at the same time. 2932 */ 2933 static ssize_t iommu_group_store_type(struct iommu_group *group, 2934 const char *buf, size_t count) 2935 { 2936 struct group_device *grp_dev; 2937 struct device *dev; 2938 int ret, req_type; 2939 2940 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 2941 return -EACCES; 2942 2943 if (WARN_ON(!group) || !group->default_domain) 2944 return -EINVAL; 2945 2946 if (sysfs_streq(buf, "identity")) 2947 req_type = IOMMU_DOMAIN_IDENTITY; 2948 else if (sysfs_streq(buf, "DMA")) 2949 req_type = IOMMU_DOMAIN_DMA; 2950 else if (sysfs_streq(buf, "DMA-FQ")) 2951 req_type = IOMMU_DOMAIN_DMA_FQ; 2952 else if (sysfs_streq(buf, "auto")) 2953 req_type = 0; 2954 else 2955 return -EINVAL; 2956 2957 mutex_lock(&group->mutex); 2958 /* We can bring up a flush queue without tearing down the domain. */ 2959 if (req_type == IOMMU_DOMAIN_DMA_FQ && 2960 group->default_domain->type == IOMMU_DOMAIN_DMA) { 2961 ret = iommu_dma_init_fq(group->default_domain); 2962 if (!ret) 2963 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ; 2964 mutex_unlock(&group->mutex); 2965 2966 return ret ?: count; 2967 } 2968 2969 /* Otherwise, ensure that device exists and no driver is bound. */ 2970 if (list_empty(&group->devices) || group->owner_cnt) { 2971 mutex_unlock(&group->mutex); 2972 return -EPERM; 2973 } 2974 2975 grp_dev = list_first_entry(&group->devices, struct group_device, list); 2976 dev = grp_dev->dev; 2977 2978 ret = iommu_change_dev_def_domain(group, dev, req_type); 2979 2980 /* 2981 * Release the mutex here because ops->probe_finalize() call-back of 2982 * some vendor IOMMU drivers calls arm_iommu_attach_device() which 2983 * in-turn might call back into IOMMU core code, where it tries to take 2984 * group->mutex, resulting in a deadlock. 2985 */ 2986 mutex_unlock(&group->mutex); 2987 2988 /* Make sure dma_ops is appropriatley set */ 2989 if (!ret) 2990 __iommu_group_dma_finalize(group); 2991 2992 return ret ?: count; 2993 } 2994 2995 static bool iommu_is_default_domain(struct iommu_group *group) 2996 { 2997 if (group->domain == group->default_domain) 2998 return true; 2999 3000 /* 3001 * If the default domain was set to identity and it is still an identity 3002 * domain then we consider this a pass. This happens because of 3003 * amd_iommu_init_device() replacing the default idenytity domain with an 3004 * identity domain that has a different configuration for AMDGPU. 3005 */ 3006 if (group->default_domain && 3007 group->default_domain->type == IOMMU_DOMAIN_IDENTITY && 3008 group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY) 3009 return true; 3010 return false; 3011 } 3012 3013 /** 3014 * iommu_device_use_default_domain() - Device driver wants to handle device 3015 * DMA through the kernel DMA API. 3016 * @dev: The device. 3017 * 3018 * The device driver about to bind @dev wants to do DMA through the kernel 3019 * DMA API. Return 0 if it is allowed, otherwise an error. 3020 */ 3021 int iommu_device_use_default_domain(struct device *dev) 3022 { 3023 struct iommu_group *group = iommu_group_get(dev); 3024 int ret = 0; 3025 3026 if (!group) 3027 return 0; 3028 3029 mutex_lock(&group->mutex); 3030 if (group->owner_cnt) { 3031 if (group->owner || !iommu_is_default_domain(group) || 3032 !xa_empty(&group->pasid_array)) { 3033 ret = -EBUSY; 3034 goto unlock_out; 3035 } 3036 } 3037 3038 group->owner_cnt++; 3039 3040 unlock_out: 3041 mutex_unlock(&group->mutex); 3042 iommu_group_put(group); 3043 3044 return ret; 3045 } 3046 3047 /** 3048 * iommu_device_unuse_default_domain() - Device driver stops handling device 3049 * DMA through the kernel DMA API. 3050 * @dev: The device. 3051 * 3052 * The device driver doesn't want to do DMA through kernel DMA API anymore. 3053 * It must be called after iommu_device_use_default_domain(). 3054 */ 3055 void iommu_device_unuse_default_domain(struct device *dev) 3056 { 3057 struct iommu_group *group = iommu_group_get(dev); 3058 3059 if (!group) 3060 return; 3061 3062 mutex_lock(&group->mutex); 3063 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array))) 3064 group->owner_cnt--; 3065 3066 mutex_unlock(&group->mutex); 3067 iommu_group_put(group); 3068 } 3069 3070 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group) 3071 { 3072 struct group_device *dev = 3073 list_first_entry(&group->devices, struct group_device, list); 3074 3075 if (group->blocking_domain) 3076 return 0; 3077 3078 group->blocking_domain = 3079 __iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED); 3080 if (!group->blocking_domain) { 3081 /* 3082 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED 3083 * create an empty domain instead. 3084 */ 3085 group->blocking_domain = __iommu_domain_alloc( 3086 dev->dev->bus, IOMMU_DOMAIN_UNMANAGED); 3087 if (!group->blocking_domain) 3088 return -EINVAL; 3089 } 3090 return 0; 3091 } 3092 3093 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner) 3094 { 3095 int ret; 3096 3097 if ((group->domain && group->domain != group->default_domain) || 3098 !xa_empty(&group->pasid_array)) 3099 return -EBUSY; 3100 3101 ret = __iommu_group_alloc_blocking_domain(group); 3102 if (ret) 3103 return ret; 3104 ret = __iommu_group_set_domain(group, group->blocking_domain); 3105 if (ret) 3106 return ret; 3107 3108 group->owner = owner; 3109 group->owner_cnt++; 3110 return 0; 3111 } 3112 3113 /** 3114 * iommu_group_claim_dma_owner() - Set DMA ownership of a group 3115 * @group: The group. 3116 * @owner: Caller specified pointer. Used for exclusive ownership. 3117 * 3118 * This is to support backward compatibility for vfio which manages the dma 3119 * ownership in iommu_group level. New invocations on this interface should be 3120 * prohibited. Only a single owner may exist for a group. 3121 */ 3122 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner) 3123 { 3124 int ret = 0; 3125 3126 if (WARN_ON(!owner)) 3127 return -EINVAL; 3128 3129 mutex_lock(&group->mutex); 3130 if (group->owner_cnt) { 3131 ret = -EPERM; 3132 goto unlock_out; 3133 } 3134 3135 ret = __iommu_take_dma_ownership(group, owner); 3136 unlock_out: 3137 mutex_unlock(&group->mutex); 3138 3139 return ret; 3140 } 3141 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner); 3142 3143 /** 3144 * iommu_device_claim_dma_owner() - Set DMA ownership of a device 3145 * @dev: The device. 3146 * @owner: Caller specified pointer. Used for exclusive ownership. 3147 * 3148 * Claim the DMA ownership of a device. Multiple devices in the same group may 3149 * concurrently claim ownership if they present the same owner value. Returns 0 3150 * on success and error code on failure 3151 */ 3152 int iommu_device_claim_dma_owner(struct device *dev, void *owner) 3153 { 3154 struct iommu_group *group; 3155 int ret = 0; 3156 3157 if (WARN_ON(!owner)) 3158 return -EINVAL; 3159 3160 group = iommu_group_get(dev); 3161 if (!group) 3162 return -ENODEV; 3163 3164 mutex_lock(&group->mutex); 3165 if (group->owner_cnt) { 3166 if (group->owner != owner) { 3167 ret = -EPERM; 3168 goto unlock_out; 3169 } 3170 group->owner_cnt++; 3171 goto unlock_out; 3172 } 3173 3174 ret = __iommu_take_dma_ownership(group, owner); 3175 unlock_out: 3176 mutex_unlock(&group->mutex); 3177 iommu_group_put(group); 3178 3179 return ret; 3180 } 3181 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner); 3182 3183 static void __iommu_release_dma_ownership(struct iommu_group *group) 3184 { 3185 int ret; 3186 3187 if (WARN_ON(!group->owner_cnt || !group->owner || 3188 !xa_empty(&group->pasid_array))) 3189 return; 3190 3191 group->owner_cnt = 0; 3192 group->owner = NULL; 3193 ret = __iommu_group_set_domain(group, group->default_domain); 3194 WARN(ret, "iommu driver failed to attach the default domain"); 3195 } 3196 3197 /** 3198 * iommu_group_release_dma_owner() - Release DMA ownership of a group 3199 * @dev: The device 3200 * 3201 * Release the DMA ownership claimed by iommu_group_claim_dma_owner(). 3202 */ 3203 void iommu_group_release_dma_owner(struct iommu_group *group) 3204 { 3205 mutex_lock(&group->mutex); 3206 __iommu_release_dma_ownership(group); 3207 mutex_unlock(&group->mutex); 3208 } 3209 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner); 3210 3211 /** 3212 * iommu_device_release_dma_owner() - Release DMA ownership of a device 3213 * @group: The device. 3214 * 3215 * Release the DMA ownership claimed by iommu_device_claim_dma_owner(). 3216 */ 3217 void iommu_device_release_dma_owner(struct device *dev) 3218 { 3219 struct iommu_group *group = iommu_group_get(dev); 3220 3221 mutex_lock(&group->mutex); 3222 if (group->owner_cnt > 1) 3223 group->owner_cnt--; 3224 else 3225 __iommu_release_dma_ownership(group); 3226 mutex_unlock(&group->mutex); 3227 iommu_group_put(group); 3228 } 3229 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner); 3230 3231 /** 3232 * iommu_group_dma_owner_claimed() - Query group dma ownership status 3233 * @group: The group. 3234 * 3235 * This provides status query on a given group. It is racy and only for 3236 * non-binding status reporting. 3237 */ 3238 bool iommu_group_dma_owner_claimed(struct iommu_group *group) 3239 { 3240 unsigned int user; 3241 3242 mutex_lock(&group->mutex); 3243 user = group->owner_cnt; 3244 mutex_unlock(&group->mutex); 3245 3246 return user; 3247 } 3248 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed); 3249 3250 static int __iommu_set_group_pasid(struct iommu_domain *domain, 3251 struct iommu_group *group, ioasid_t pasid) 3252 { 3253 struct group_device *device; 3254 int ret = 0; 3255 3256 list_for_each_entry(device, &group->devices, list) { 3257 ret = domain->ops->set_dev_pasid(domain, device->dev, pasid); 3258 if (ret) 3259 break; 3260 } 3261 3262 return ret; 3263 } 3264 3265 static void __iommu_remove_group_pasid(struct iommu_group *group, 3266 ioasid_t pasid) 3267 { 3268 struct group_device *device; 3269 const struct iommu_ops *ops; 3270 3271 list_for_each_entry(device, &group->devices, list) { 3272 ops = dev_iommu_ops(device->dev); 3273 ops->remove_dev_pasid(device->dev, pasid); 3274 } 3275 } 3276 3277 /* 3278 * iommu_attach_device_pasid() - Attach a domain to pasid of device 3279 * @domain: the iommu domain. 3280 * @dev: the attached device. 3281 * @pasid: the pasid of the device. 3282 * 3283 * Return: 0 on success, or an error. 3284 */ 3285 int iommu_attach_device_pasid(struct iommu_domain *domain, 3286 struct device *dev, ioasid_t pasid) 3287 { 3288 struct iommu_group *group; 3289 void *curr; 3290 int ret; 3291 3292 if (!domain->ops->set_dev_pasid) 3293 return -EOPNOTSUPP; 3294 3295 group = iommu_group_get(dev); 3296 if (!group) 3297 return -ENODEV; 3298 3299 mutex_lock(&group->mutex); 3300 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL); 3301 if (curr) { 3302 ret = xa_err(curr) ? : -EBUSY; 3303 goto out_unlock; 3304 } 3305 3306 ret = __iommu_set_group_pasid(domain, group, pasid); 3307 if (ret) { 3308 __iommu_remove_group_pasid(group, pasid); 3309 xa_erase(&group->pasid_array, pasid); 3310 } 3311 out_unlock: 3312 mutex_unlock(&group->mutex); 3313 iommu_group_put(group); 3314 3315 return ret; 3316 } 3317 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid); 3318 3319 /* 3320 * iommu_detach_device_pasid() - Detach the domain from pasid of device 3321 * @domain: the iommu domain. 3322 * @dev: the attached device. 3323 * @pasid: the pasid of the device. 3324 * 3325 * The @domain must have been attached to @pasid of the @dev with 3326 * iommu_attach_device_pasid(). 3327 */ 3328 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev, 3329 ioasid_t pasid) 3330 { 3331 struct iommu_group *group = iommu_group_get(dev); 3332 3333 mutex_lock(&group->mutex); 3334 __iommu_remove_group_pasid(group, pasid); 3335 WARN_ON(xa_erase(&group->pasid_array, pasid) != domain); 3336 mutex_unlock(&group->mutex); 3337 3338 iommu_group_put(group); 3339 } 3340 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid); 3341 3342 /* 3343 * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev 3344 * @dev: the queried device 3345 * @pasid: the pasid of the device 3346 * @type: matched domain type, 0 for any match 3347 * 3348 * This is a variant of iommu_get_domain_for_dev(). It returns the existing 3349 * domain attached to pasid of a device. Callers must hold a lock around this 3350 * function, and both iommu_attach/detach_dev_pasid() whenever a domain of 3351 * type is being manipulated. This API does not internally resolve races with 3352 * attach/detach. 3353 * 3354 * Return: attached domain on success, NULL otherwise. 3355 */ 3356 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev, 3357 ioasid_t pasid, 3358 unsigned int type) 3359 { 3360 struct iommu_domain *domain; 3361 struct iommu_group *group; 3362 3363 group = iommu_group_get(dev); 3364 if (!group) 3365 return NULL; 3366 3367 xa_lock(&group->pasid_array); 3368 domain = xa_load(&group->pasid_array, pasid); 3369 if (type && domain && domain->type != type) 3370 domain = ERR_PTR(-EBUSY); 3371 xa_unlock(&group->pasid_array); 3372 iommu_group_put(group); 3373 3374 return domain; 3375 } 3376 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid); 3377 3378 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev, 3379 struct mm_struct *mm) 3380 { 3381 const struct iommu_ops *ops = dev_iommu_ops(dev); 3382 struct iommu_domain *domain; 3383 3384 domain = ops->domain_alloc(IOMMU_DOMAIN_SVA); 3385 if (!domain) 3386 return NULL; 3387 3388 domain->type = IOMMU_DOMAIN_SVA; 3389 mmgrab(mm); 3390 domain->mm = mm; 3391 domain->iopf_handler = iommu_sva_handle_iopf; 3392 domain->fault_data = mm; 3393 3394 return domain; 3395 } 3396