xref: /linux/drivers/iommu/iommu.c (revision c48a7c44a1d02516309015b6134c9bb982e17008)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35 
36 #include "dma-iommu.h"
37 #include "iommu-priv.h"
38 
39 #include "iommu-sva.h"
40 
41 static struct kset *iommu_group_kset;
42 static DEFINE_IDA(iommu_group_ida);
43 static DEFINE_IDA(iommu_global_pasid_ida);
44 
45 static unsigned int iommu_def_domain_type __read_mostly;
46 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
47 static u32 iommu_cmd_line __read_mostly;
48 
49 struct iommu_group {
50 	struct kobject kobj;
51 	struct kobject *devices_kobj;
52 	struct list_head devices;
53 	struct xarray pasid_array;
54 	struct mutex mutex;
55 	void *iommu_data;
56 	void (*iommu_data_release)(void *iommu_data);
57 	char *name;
58 	int id;
59 	struct iommu_domain *default_domain;
60 	struct iommu_domain *blocking_domain;
61 	struct iommu_domain *domain;
62 	struct list_head entry;
63 	unsigned int owner_cnt;
64 	void *owner;
65 };
66 
67 struct group_device {
68 	struct list_head list;
69 	struct device *dev;
70 	char *name;
71 };
72 
73 /* Iterate over each struct group_device in a struct iommu_group */
74 #define for_each_group_device(group, pos) \
75 	list_for_each_entry(pos, &(group)->devices, list)
76 
77 struct iommu_group_attribute {
78 	struct attribute attr;
79 	ssize_t (*show)(struct iommu_group *group, char *buf);
80 	ssize_t (*store)(struct iommu_group *group,
81 			 const char *buf, size_t count);
82 };
83 
84 static const char * const iommu_group_resv_type_string[] = {
85 	[IOMMU_RESV_DIRECT]			= "direct",
86 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
87 	[IOMMU_RESV_RESERVED]			= "reserved",
88 	[IOMMU_RESV_MSI]			= "msi",
89 	[IOMMU_RESV_SW_MSI]			= "msi",
90 };
91 
92 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
93 #define IOMMU_CMD_LINE_STRICT		BIT(1)
94 
95 static int iommu_bus_notifier(struct notifier_block *nb,
96 			      unsigned long action, void *data);
97 static void iommu_release_device(struct device *dev);
98 static struct iommu_domain *
99 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type);
100 static int __iommu_attach_device(struct iommu_domain *domain,
101 				 struct device *dev);
102 static int __iommu_attach_group(struct iommu_domain *domain,
103 				struct iommu_group *group);
104 
105 enum {
106 	IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
107 };
108 
109 static int __iommu_device_set_domain(struct iommu_group *group,
110 				     struct device *dev,
111 				     struct iommu_domain *new_domain,
112 				     unsigned int flags);
113 static int __iommu_group_set_domain_internal(struct iommu_group *group,
114 					     struct iommu_domain *new_domain,
115 					     unsigned int flags);
116 static int __iommu_group_set_domain(struct iommu_group *group,
117 				    struct iommu_domain *new_domain)
118 {
119 	return __iommu_group_set_domain_internal(group, new_domain, 0);
120 }
121 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
122 					    struct iommu_domain *new_domain)
123 {
124 	WARN_ON(__iommu_group_set_domain_internal(
125 		group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
126 }
127 
128 static int iommu_setup_default_domain(struct iommu_group *group,
129 				      int target_type);
130 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
131 					       struct device *dev);
132 static ssize_t iommu_group_store_type(struct iommu_group *group,
133 				      const char *buf, size_t count);
134 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
135 						     struct device *dev);
136 static void __iommu_group_free_device(struct iommu_group *group,
137 				      struct group_device *grp_dev);
138 
139 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
140 struct iommu_group_attribute iommu_group_attr_##_name =		\
141 	__ATTR(_name, _mode, _show, _store)
142 
143 #define to_iommu_group_attr(_attr)	\
144 	container_of(_attr, struct iommu_group_attribute, attr)
145 #define to_iommu_group(_kobj)		\
146 	container_of(_kobj, struct iommu_group, kobj)
147 
148 static LIST_HEAD(iommu_device_list);
149 static DEFINE_SPINLOCK(iommu_device_lock);
150 
151 static struct bus_type * const iommu_buses[] = {
152 	&platform_bus_type,
153 #ifdef CONFIG_PCI
154 	&pci_bus_type,
155 #endif
156 #ifdef CONFIG_ARM_AMBA
157 	&amba_bustype,
158 #endif
159 #ifdef CONFIG_FSL_MC_BUS
160 	&fsl_mc_bus_type,
161 #endif
162 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
163 	&host1x_context_device_bus_type,
164 #endif
165 #ifdef CONFIG_CDX_BUS
166 	&cdx_bus_type,
167 #endif
168 };
169 
170 /*
171  * Use a function instead of an array here because the domain-type is a
172  * bit-field, so an array would waste memory.
173  */
174 static const char *iommu_domain_type_str(unsigned int t)
175 {
176 	switch (t) {
177 	case IOMMU_DOMAIN_BLOCKED:
178 		return "Blocked";
179 	case IOMMU_DOMAIN_IDENTITY:
180 		return "Passthrough";
181 	case IOMMU_DOMAIN_UNMANAGED:
182 		return "Unmanaged";
183 	case IOMMU_DOMAIN_DMA:
184 	case IOMMU_DOMAIN_DMA_FQ:
185 		return "Translated";
186 	case IOMMU_DOMAIN_PLATFORM:
187 		return "Platform";
188 	default:
189 		return "Unknown";
190 	}
191 }
192 
193 static int __init iommu_subsys_init(void)
194 {
195 	struct notifier_block *nb;
196 
197 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
198 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
199 			iommu_set_default_passthrough(false);
200 		else
201 			iommu_set_default_translated(false);
202 
203 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
204 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
205 			iommu_set_default_translated(false);
206 		}
207 	}
208 
209 	if (!iommu_default_passthrough() && !iommu_dma_strict)
210 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
211 
212 	pr_info("Default domain type: %s%s\n",
213 		iommu_domain_type_str(iommu_def_domain_type),
214 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
215 			" (set via kernel command line)" : "");
216 
217 	if (!iommu_default_passthrough())
218 		pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
219 			iommu_dma_strict ? "strict" : "lazy",
220 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
221 				" (set via kernel command line)" : "");
222 
223 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
224 	if (!nb)
225 		return -ENOMEM;
226 
227 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
228 		nb[i].notifier_call = iommu_bus_notifier;
229 		bus_register_notifier(iommu_buses[i], &nb[i]);
230 	}
231 
232 	return 0;
233 }
234 subsys_initcall(iommu_subsys_init);
235 
236 static int remove_iommu_group(struct device *dev, void *data)
237 {
238 	if (dev->iommu && dev->iommu->iommu_dev == data)
239 		iommu_release_device(dev);
240 
241 	return 0;
242 }
243 
244 /**
245  * iommu_device_register() - Register an IOMMU hardware instance
246  * @iommu: IOMMU handle for the instance
247  * @ops:   IOMMU ops to associate with the instance
248  * @hwdev: (optional) actual instance device, used for fwnode lookup
249  *
250  * Return: 0 on success, or an error.
251  */
252 int iommu_device_register(struct iommu_device *iommu,
253 			  const struct iommu_ops *ops, struct device *hwdev)
254 {
255 	int err = 0;
256 
257 	/* We need to be able to take module references appropriately */
258 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
259 		return -EINVAL;
260 	/*
261 	 * Temporarily enforce global restriction to a single driver. This was
262 	 * already the de-facto behaviour, since any possible combination of
263 	 * existing drivers would compete for at least the PCI or platform bus.
264 	 */
265 	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
266 		return -EBUSY;
267 
268 	iommu->ops = ops;
269 	if (hwdev)
270 		iommu->fwnode = dev_fwnode(hwdev);
271 
272 	spin_lock(&iommu_device_lock);
273 	list_add_tail(&iommu->list, &iommu_device_list);
274 	spin_unlock(&iommu_device_lock);
275 
276 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
277 		iommu_buses[i]->iommu_ops = ops;
278 		err = bus_iommu_probe(iommu_buses[i]);
279 	}
280 	if (err)
281 		iommu_device_unregister(iommu);
282 	return err;
283 }
284 EXPORT_SYMBOL_GPL(iommu_device_register);
285 
286 void iommu_device_unregister(struct iommu_device *iommu)
287 {
288 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
289 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
290 
291 	spin_lock(&iommu_device_lock);
292 	list_del(&iommu->list);
293 	spin_unlock(&iommu_device_lock);
294 
295 	/* Pairs with the alloc in generic_single_device_group() */
296 	iommu_group_put(iommu->singleton_group);
297 	iommu->singleton_group = NULL;
298 }
299 EXPORT_SYMBOL_GPL(iommu_device_unregister);
300 
301 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
302 void iommu_device_unregister_bus(struct iommu_device *iommu,
303 				 struct bus_type *bus,
304 				 struct notifier_block *nb)
305 {
306 	bus_unregister_notifier(bus, nb);
307 	iommu_device_unregister(iommu);
308 }
309 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
310 
311 /*
312  * Register an iommu driver against a single bus. This is only used by iommufd
313  * selftest to create a mock iommu driver. The caller must provide
314  * some memory to hold a notifier_block.
315  */
316 int iommu_device_register_bus(struct iommu_device *iommu,
317 			      const struct iommu_ops *ops, struct bus_type *bus,
318 			      struct notifier_block *nb)
319 {
320 	int err;
321 
322 	iommu->ops = ops;
323 	nb->notifier_call = iommu_bus_notifier;
324 	err = bus_register_notifier(bus, nb);
325 	if (err)
326 		return err;
327 
328 	spin_lock(&iommu_device_lock);
329 	list_add_tail(&iommu->list, &iommu_device_list);
330 	spin_unlock(&iommu_device_lock);
331 
332 	bus->iommu_ops = ops;
333 	err = bus_iommu_probe(bus);
334 	if (err) {
335 		iommu_device_unregister_bus(iommu, bus, nb);
336 		return err;
337 	}
338 	return 0;
339 }
340 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
341 #endif
342 
343 static struct dev_iommu *dev_iommu_get(struct device *dev)
344 {
345 	struct dev_iommu *param = dev->iommu;
346 
347 	if (param)
348 		return param;
349 
350 	param = kzalloc(sizeof(*param), GFP_KERNEL);
351 	if (!param)
352 		return NULL;
353 
354 	mutex_init(&param->lock);
355 	dev->iommu = param;
356 	return param;
357 }
358 
359 static void dev_iommu_free(struct device *dev)
360 {
361 	struct dev_iommu *param = dev->iommu;
362 
363 	dev->iommu = NULL;
364 	if (param->fwspec) {
365 		fwnode_handle_put(param->fwspec->iommu_fwnode);
366 		kfree(param->fwspec);
367 	}
368 	kfree(param);
369 }
370 
371 static u32 dev_iommu_get_max_pasids(struct device *dev)
372 {
373 	u32 max_pasids = 0, bits = 0;
374 	int ret;
375 
376 	if (dev_is_pci(dev)) {
377 		ret = pci_max_pasids(to_pci_dev(dev));
378 		if (ret > 0)
379 			max_pasids = ret;
380 	} else {
381 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
382 		if (!ret)
383 			max_pasids = 1UL << bits;
384 	}
385 
386 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
387 }
388 
389 /*
390  * Init the dev->iommu and dev->iommu_group in the struct device and get the
391  * driver probed
392  */
393 static int iommu_init_device(struct device *dev, const struct iommu_ops *ops)
394 {
395 	struct iommu_device *iommu_dev;
396 	struct iommu_group *group;
397 	int ret;
398 
399 	if (!dev_iommu_get(dev))
400 		return -ENOMEM;
401 
402 	if (!try_module_get(ops->owner)) {
403 		ret = -EINVAL;
404 		goto err_free;
405 	}
406 
407 	iommu_dev = ops->probe_device(dev);
408 	if (IS_ERR(iommu_dev)) {
409 		ret = PTR_ERR(iommu_dev);
410 		goto err_module_put;
411 	}
412 	dev->iommu->iommu_dev = iommu_dev;
413 
414 	ret = iommu_device_link(iommu_dev, dev);
415 	if (ret)
416 		goto err_release;
417 
418 	group = ops->device_group(dev);
419 	if (WARN_ON_ONCE(group == NULL))
420 		group = ERR_PTR(-EINVAL);
421 	if (IS_ERR(group)) {
422 		ret = PTR_ERR(group);
423 		goto err_unlink;
424 	}
425 	dev->iommu_group = group;
426 
427 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
428 	if (ops->is_attach_deferred)
429 		dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
430 	return 0;
431 
432 err_unlink:
433 	iommu_device_unlink(iommu_dev, dev);
434 err_release:
435 	if (ops->release_device)
436 		ops->release_device(dev);
437 err_module_put:
438 	module_put(ops->owner);
439 err_free:
440 	dev->iommu->iommu_dev = NULL;
441 	dev_iommu_free(dev);
442 	return ret;
443 }
444 
445 static void iommu_deinit_device(struct device *dev)
446 {
447 	struct iommu_group *group = dev->iommu_group;
448 	const struct iommu_ops *ops = dev_iommu_ops(dev);
449 
450 	lockdep_assert_held(&group->mutex);
451 
452 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
453 
454 	/*
455 	 * release_device() must stop using any attached domain on the device.
456 	 * If there are still other devices in the group they are not effected
457 	 * by this callback.
458 	 *
459 	 * The IOMMU driver must set the device to either an identity or
460 	 * blocking translation and stop using any domain pointer, as it is
461 	 * going to be freed.
462 	 */
463 	if (ops->release_device)
464 		ops->release_device(dev);
465 
466 	/*
467 	 * If this is the last driver to use the group then we must free the
468 	 * domains before we do the module_put().
469 	 */
470 	if (list_empty(&group->devices)) {
471 		if (group->default_domain) {
472 			iommu_domain_free(group->default_domain);
473 			group->default_domain = NULL;
474 		}
475 		if (group->blocking_domain) {
476 			iommu_domain_free(group->blocking_domain);
477 			group->blocking_domain = NULL;
478 		}
479 		group->domain = NULL;
480 	}
481 
482 	/* Caller must put iommu_group */
483 	dev->iommu_group = NULL;
484 	module_put(ops->owner);
485 	dev_iommu_free(dev);
486 }
487 
488 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
489 {
490 	const struct iommu_ops *ops = dev->bus->iommu_ops;
491 	struct iommu_group *group;
492 	static DEFINE_MUTEX(iommu_probe_device_lock);
493 	struct group_device *gdev;
494 	int ret;
495 
496 	if (!ops)
497 		return -ENODEV;
498 	/*
499 	 * Serialise to avoid races between IOMMU drivers registering in
500 	 * parallel and/or the "replay" calls from ACPI/OF code via client
501 	 * driver probe. Once the latter have been cleaned up we should
502 	 * probably be able to use device_lock() here to minimise the scope,
503 	 * but for now enforcing a simple global ordering is fine.
504 	 */
505 	mutex_lock(&iommu_probe_device_lock);
506 
507 	/* Device is probed already if in a group */
508 	if (dev->iommu_group) {
509 		ret = 0;
510 		goto out_unlock;
511 	}
512 
513 	ret = iommu_init_device(dev, ops);
514 	if (ret)
515 		goto out_unlock;
516 
517 	group = dev->iommu_group;
518 	gdev = iommu_group_alloc_device(group, dev);
519 	mutex_lock(&group->mutex);
520 	if (IS_ERR(gdev)) {
521 		ret = PTR_ERR(gdev);
522 		goto err_put_group;
523 	}
524 
525 	/*
526 	 * The gdev must be in the list before calling
527 	 * iommu_setup_default_domain()
528 	 */
529 	list_add_tail(&gdev->list, &group->devices);
530 	WARN_ON(group->default_domain && !group->domain);
531 	if (group->default_domain)
532 		iommu_create_device_direct_mappings(group->default_domain, dev);
533 	if (group->domain) {
534 		ret = __iommu_device_set_domain(group, dev, group->domain, 0);
535 		if (ret)
536 			goto err_remove_gdev;
537 	} else if (!group->default_domain && !group_list) {
538 		ret = iommu_setup_default_domain(group, 0);
539 		if (ret)
540 			goto err_remove_gdev;
541 	} else if (!group->default_domain) {
542 		/*
543 		 * With a group_list argument we defer the default_domain setup
544 		 * to the caller by providing a de-duplicated list of groups
545 		 * that need further setup.
546 		 */
547 		if (list_empty(&group->entry))
548 			list_add_tail(&group->entry, group_list);
549 	}
550 	mutex_unlock(&group->mutex);
551 	mutex_unlock(&iommu_probe_device_lock);
552 
553 	if (dev_is_pci(dev))
554 		iommu_dma_set_pci_32bit_workaround(dev);
555 
556 	return 0;
557 
558 err_remove_gdev:
559 	list_del(&gdev->list);
560 	__iommu_group_free_device(group, gdev);
561 err_put_group:
562 	iommu_deinit_device(dev);
563 	mutex_unlock(&group->mutex);
564 	iommu_group_put(group);
565 out_unlock:
566 	mutex_unlock(&iommu_probe_device_lock);
567 
568 	return ret;
569 }
570 
571 int iommu_probe_device(struct device *dev)
572 {
573 	const struct iommu_ops *ops;
574 	int ret;
575 
576 	ret = __iommu_probe_device(dev, NULL);
577 	if (ret)
578 		return ret;
579 
580 	ops = dev_iommu_ops(dev);
581 	if (ops->probe_finalize)
582 		ops->probe_finalize(dev);
583 
584 	return 0;
585 }
586 
587 static void __iommu_group_free_device(struct iommu_group *group,
588 				      struct group_device *grp_dev)
589 {
590 	struct device *dev = grp_dev->dev;
591 
592 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
593 	sysfs_remove_link(&dev->kobj, "iommu_group");
594 
595 	trace_remove_device_from_group(group->id, dev);
596 
597 	/*
598 	 * If the group has become empty then ownership must have been
599 	 * released, and the current domain must be set back to NULL or
600 	 * the default domain.
601 	 */
602 	if (list_empty(&group->devices))
603 		WARN_ON(group->owner_cnt ||
604 			group->domain != group->default_domain);
605 
606 	kfree(grp_dev->name);
607 	kfree(grp_dev);
608 }
609 
610 /* Remove the iommu_group from the struct device. */
611 static void __iommu_group_remove_device(struct device *dev)
612 {
613 	struct iommu_group *group = dev->iommu_group;
614 	struct group_device *device;
615 
616 	mutex_lock(&group->mutex);
617 	for_each_group_device(group, device) {
618 		if (device->dev != dev)
619 			continue;
620 
621 		list_del(&device->list);
622 		__iommu_group_free_device(group, device);
623 		if (dev->iommu && dev->iommu->iommu_dev)
624 			iommu_deinit_device(dev);
625 		else
626 			dev->iommu_group = NULL;
627 		break;
628 	}
629 	mutex_unlock(&group->mutex);
630 
631 	/*
632 	 * Pairs with the get in iommu_init_device() or
633 	 * iommu_group_add_device()
634 	 */
635 	iommu_group_put(group);
636 }
637 
638 static void iommu_release_device(struct device *dev)
639 {
640 	struct iommu_group *group = dev->iommu_group;
641 
642 	if (group)
643 		__iommu_group_remove_device(dev);
644 
645 	/* Free any fwspec if no iommu_driver was ever attached */
646 	if (dev->iommu)
647 		dev_iommu_free(dev);
648 }
649 
650 static int __init iommu_set_def_domain_type(char *str)
651 {
652 	bool pt;
653 	int ret;
654 
655 	ret = kstrtobool(str, &pt);
656 	if (ret)
657 		return ret;
658 
659 	if (pt)
660 		iommu_set_default_passthrough(true);
661 	else
662 		iommu_set_default_translated(true);
663 
664 	return 0;
665 }
666 early_param("iommu.passthrough", iommu_set_def_domain_type);
667 
668 static int __init iommu_dma_setup(char *str)
669 {
670 	int ret = kstrtobool(str, &iommu_dma_strict);
671 
672 	if (!ret)
673 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
674 	return ret;
675 }
676 early_param("iommu.strict", iommu_dma_setup);
677 
678 void iommu_set_dma_strict(void)
679 {
680 	iommu_dma_strict = true;
681 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
682 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
683 }
684 
685 static ssize_t iommu_group_attr_show(struct kobject *kobj,
686 				     struct attribute *__attr, char *buf)
687 {
688 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
689 	struct iommu_group *group = to_iommu_group(kobj);
690 	ssize_t ret = -EIO;
691 
692 	if (attr->show)
693 		ret = attr->show(group, buf);
694 	return ret;
695 }
696 
697 static ssize_t iommu_group_attr_store(struct kobject *kobj,
698 				      struct attribute *__attr,
699 				      const char *buf, size_t count)
700 {
701 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
702 	struct iommu_group *group = to_iommu_group(kobj);
703 	ssize_t ret = -EIO;
704 
705 	if (attr->store)
706 		ret = attr->store(group, buf, count);
707 	return ret;
708 }
709 
710 static const struct sysfs_ops iommu_group_sysfs_ops = {
711 	.show = iommu_group_attr_show,
712 	.store = iommu_group_attr_store,
713 };
714 
715 static int iommu_group_create_file(struct iommu_group *group,
716 				   struct iommu_group_attribute *attr)
717 {
718 	return sysfs_create_file(&group->kobj, &attr->attr);
719 }
720 
721 static void iommu_group_remove_file(struct iommu_group *group,
722 				    struct iommu_group_attribute *attr)
723 {
724 	sysfs_remove_file(&group->kobj, &attr->attr);
725 }
726 
727 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
728 {
729 	return sysfs_emit(buf, "%s\n", group->name);
730 }
731 
732 /**
733  * iommu_insert_resv_region - Insert a new region in the
734  * list of reserved regions.
735  * @new: new region to insert
736  * @regions: list of regions
737  *
738  * Elements are sorted by start address and overlapping segments
739  * of the same type are merged.
740  */
741 static int iommu_insert_resv_region(struct iommu_resv_region *new,
742 				    struct list_head *regions)
743 {
744 	struct iommu_resv_region *iter, *tmp, *nr, *top;
745 	LIST_HEAD(stack);
746 
747 	nr = iommu_alloc_resv_region(new->start, new->length,
748 				     new->prot, new->type, GFP_KERNEL);
749 	if (!nr)
750 		return -ENOMEM;
751 
752 	/* First add the new element based on start address sorting */
753 	list_for_each_entry(iter, regions, list) {
754 		if (nr->start < iter->start ||
755 		    (nr->start == iter->start && nr->type <= iter->type))
756 			break;
757 	}
758 	list_add_tail(&nr->list, &iter->list);
759 
760 	/* Merge overlapping segments of type nr->type in @regions, if any */
761 	list_for_each_entry_safe(iter, tmp, regions, list) {
762 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
763 
764 		/* no merge needed on elements of different types than @new */
765 		if (iter->type != new->type) {
766 			list_move_tail(&iter->list, &stack);
767 			continue;
768 		}
769 
770 		/* look for the last stack element of same type as @iter */
771 		list_for_each_entry_reverse(top, &stack, list)
772 			if (top->type == iter->type)
773 				goto check_overlap;
774 
775 		list_move_tail(&iter->list, &stack);
776 		continue;
777 
778 check_overlap:
779 		top_end = top->start + top->length - 1;
780 
781 		if (iter->start > top_end + 1) {
782 			list_move_tail(&iter->list, &stack);
783 		} else {
784 			top->length = max(top_end, iter_end) - top->start + 1;
785 			list_del(&iter->list);
786 			kfree(iter);
787 		}
788 	}
789 	list_splice(&stack, regions);
790 	return 0;
791 }
792 
793 static int
794 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
795 				 struct list_head *group_resv_regions)
796 {
797 	struct iommu_resv_region *entry;
798 	int ret = 0;
799 
800 	list_for_each_entry(entry, dev_resv_regions, list) {
801 		ret = iommu_insert_resv_region(entry, group_resv_regions);
802 		if (ret)
803 			break;
804 	}
805 	return ret;
806 }
807 
808 int iommu_get_group_resv_regions(struct iommu_group *group,
809 				 struct list_head *head)
810 {
811 	struct group_device *device;
812 	int ret = 0;
813 
814 	mutex_lock(&group->mutex);
815 	for_each_group_device(group, device) {
816 		struct list_head dev_resv_regions;
817 
818 		/*
819 		 * Non-API groups still expose reserved_regions in sysfs,
820 		 * so filter out calls that get here that way.
821 		 */
822 		if (!device->dev->iommu)
823 			break;
824 
825 		INIT_LIST_HEAD(&dev_resv_regions);
826 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
827 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
828 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
829 		if (ret)
830 			break;
831 	}
832 	mutex_unlock(&group->mutex);
833 	return ret;
834 }
835 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
836 
837 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
838 					     char *buf)
839 {
840 	struct iommu_resv_region *region, *next;
841 	struct list_head group_resv_regions;
842 	int offset = 0;
843 
844 	INIT_LIST_HEAD(&group_resv_regions);
845 	iommu_get_group_resv_regions(group, &group_resv_regions);
846 
847 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
848 		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
849 					(long long)region->start,
850 					(long long)(region->start +
851 						    region->length - 1),
852 					iommu_group_resv_type_string[region->type]);
853 		kfree(region);
854 	}
855 
856 	return offset;
857 }
858 
859 static ssize_t iommu_group_show_type(struct iommu_group *group,
860 				     char *buf)
861 {
862 	char *type = "unknown";
863 
864 	mutex_lock(&group->mutex);
865 	if (group->default_domain) {
866 		switch (group->default_domain->type) {
867 		case IOMMU_DOMAIN_BLOCKED:
868 			type = "blocked";
869 			break;
870 		case IOMMU_DOMAIN_IDENTITY:
871 			type = "identity";
872 			break;
873 		case IOMMU_DOMAIN_UNMANAGED:
874 			type = "unmanaged";
875 			break;
876 		case IOMMU_DOMAIN_DMA:
877 			type = "DMA";
878 			break;
879 		case IOMMU_DOMAIN_DMA_FQ:
880 			type = "DMA-FQ";
881 			break;
882 		}
883 	}
884 	mutex_unlock(&group->mutex);
885 
886 	return sysfs_emit(buf, "%s\n", type);
887 }
888 
889 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
890 
891 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
892 			iommu_group_show_resv_regions, NULL);
893 
894 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
895 			iommu_group_store_type);
896 
897 static void iommu_group_release(struct kobject *kobj)
898 {
899 	struct iommu_group *group = to_iommu_group(kobj);
900 
901 	pr_debug("Releasing group %d\n", group->id);
902 
903 	if (group->iommu_data_release)
904 		group->iommu_data_release(group->iommu_data);
905 
906 	ida_free(&iommu_group_ida, group->id);
907 
908 	/* Domains are free'd by iommu_deinit_device() */
909 	WARN_ON(group->default_domain);
910 	WARN_ON(group->blocking_domain);
911 
912 	kfree(group->name);
913 	kfree(group);
914 }
915 
916 static const struct kobj_type iommu_group_ktype = {
917 	.sysfs_ops = &iommu_group_sysfs_ops,
918 	.release = iommu_group_release,
919 };
920 
921 /**
922  * iommu_group_alloc - Allocate a new group
923  *
924  * This function is called by an iommu driver to allocate a new iommu
925  * group.  The iommu group represents the minimum granularity of the iommu.
926  * Upon successful return, the caller holds a reference to the supplied
927  * group in order to hold the group until devices are added.  Use
928  * iommu_group_put() to release this extra reference count, allowing the
929  * group to be automatically reclaimed once it has no devices or external
930  * references.
931  */
932 struct iommu_group *iommu_group_alloc(void)
933 {
934 	struct iommu_group *group;
935 	int ret;
936 
937 	group = kzalloc(sizeof(*group), GFP_KERNEL);
938 	if (!group)
939 		return ERR_PTR(-ENOMEM);
940 
941 	group->kobj.kset = iommu_group_kset;
942 	mutex_init(&group->mutex);
943 	INIT_LIST_HEAD(&group->devices);
944 	INIT_LIST_HEAD(&group->entry);
945 	xa_init(&group->pasid_array);
946 
947 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
948 	if (ret < 0) {
949 		kfree(group);
950 		return ERR_PTR(ret);
951 	}
952 	group->id = ret;
953 
954 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
955 				   NULL, "%d", group->id);
956 	if (ret) {
957 		kobject_put(&group->kobj);
958 		return ERR_PTR(ret);
959 	}
960 
961 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
962 	if (!group->devices_kobj) {
963 		kobject_put(&group->kobj); /* triggers .release & free */
964 		return ERR_PTR(-ENOMEM);
965 	}
966 
967 	/*
968 	 * The devices_kobj holds a reference on the group kobject, so
969 	 * as long as that exists so will the group.  We can therefore
970 	 * use the devices_kobj for reference counting.
971 	 */
972 	kobject_put(&group->kobj);
973 
974 	ret = iommu_group_create_file(group,
975 				      &iommu_group_attr_reserved_regions);
976 	if (ret) {
977 		kobject_put(group->devices_kobj);
978 		return ERR_PTR(ret);
979 	}
980 
981 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
982 	if (ret) {
983 		kobject_put(group->devices_kobj);
984 		return ERR_PTR(ret);
985 	}
986 
987 	pr_debug("Allocated group %d\n", group->id);
988 
989 	return group;
990 }
991 EXPORT_SYMBOL_GPL(iommu_group_alloc);
992 
993 /**
994  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
995  * @group: the group
996  *
997  * iommu drivers can store data in the group for use when doing iommu
998  * operations.  This function provides a way to retrieve it.  Caller
999  * should hold a group reference.
1000  */
1001 void *iommu_group_get_iommudata(struct iommu_group *group)
1002 {
1003 	return group->iommu_data;
1004 }
1005 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1006 
1007 /**
1008  * iommu_group_set_iommudata - set iommu_data for a group
1009  * @group: the group
1010  * @iommu_data: new data
1011  * @release: release function for iommu_data
1012  *
1013  * iommu drivers can store data in the group for use when doing iommu
1014  * operations.  This function provides a way to set the data after
1015  * the group has been allocated.  Caller should hold a group reference.
1016  */
1017 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1018 			       void (*release)(void *iommu_data))
1019 {
1020 	group->iommu_data = iommu_data;
1021 	group->iommu_data_release = release;
1022 }
1023 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1024 
1025 /**
1026  * iommu_group_set_name - set name for a group
1027  * @group: the group
1028  * @name: name
1029  *
1030  * Allow iommu driver to set a name for a group.  When set it will
1031  * appear in a name attribute file under the group in sysfs.
1032  */
1033 int iommu_group_set_name(struct iommu_group *group, const char *name)
1034 {
1035 	int ret;
1036 
1037 	if (group->name) {
1038 		iommu_group_remove_file(group, &iommu_group_attr_name);
1039 		kfree(group->name);
1040 		group->name = NULL;
1041 		if (!name)
1042 			return 0;
1043 	}
1044 
1045 	group->name = kstrdup(name, GFP_KERNEL);
1046 	if (!group->name)
1047 		return -ENOMEM;
1048 
1049 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
1050 	if (ret) {
1051 		kfree(group->name);
1052 		group->name = NULL;
1053 		return ret;
1054 	}
1055 
1056 	return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1059 
1060 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1061 					       struct device *dev)
1062 {
1063 	struct iommu_resv_region *entry;
1064 	struct list_head mappings;
1065 	unsigned long pg_size;
1066 	int ret = 0;
1067 
1068 	pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1069 	INIT_LIST_HEAD(&mappings);
1070 
1071 	if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1072 		return -EINVAL;
1073 
1074 	iommu_get_resv_regions(dev, &mappings);
1075 
1076 	/* We need to consider overlapping regions for different devices */
1077 	list_for_each_entry(entry, &mappings, list) {
1078 		dma_addr_t start, end, addr;
1079 		size_t map_size = 0;
1080 
1081 		if (entry->type == IOMMU_RESV_DIRECT)
1082 			dev->iommu->require_direct = 1;
1083 
1084 		if ((entry->type != IOMMU_RESV_DIRECT &&
1085 		     entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1086 		    !iommu_is_dma_domain(domain))
1087 			continue;
1088 
1089 		start = ALIGN(entry->start, pg_size);
1090 		end   = ALIGN(entry->start + entry->length, pg_size);
1091 
1092 		for (addr = start; addr <= end; addr += pg_size) {
1093 			phys_addr_t phys_addr;
1094 
1095 			if (addr == end)
1096 				goto map_end;
1097 
1098 			phys_addr = iommu_iova_to_phys(domain, addr);
1099 			if (!phys_addr) {
1100 				map_size += pg_size;
1101 				continue;
1102 			}
1103 
1104 map_end:
1105 			if (map_size) {
1106 				ret = iommu_map(domain, addr - map_size,
1107 						addr - map_size, map_size,
1108 						entry->prot, GFP_KERNEL);
1109 				if (ret)
1110 					goto out;
1111 				map_size = 0;
1112 			}
1113 		}
1114 
1115 	}
1116 
1117 	if (!list_empty(&mappings) && iommu_is_dma_domain(domain))
1118 		iommu_flush_iotlb_all(domain);
1119 
1120 out:
1121 	iommu_put_resv_regions(dev, &mappings);
1122 
1123 	return ret;
1124 }
1125 
1126 /* This is undone by __iommu_group_free_device() */
1127 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1128 						     struct device *dev)
1129 {
1130 	int ret, i = 0;
1131 	struct group_device *device;
1132 
1133 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1134 	if (!device)
1135 		return ERR_PTR(-ENOMEM);
1136 
1137 	device->dev = dev;
1138 
1139 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1140 	if (ret)
1141 		goto err_free_device;
1142 
1143 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1144 rename:
1145 	if (!device->name) {
1146 		ret = -ENOMEM;
1147 		goto err_remove_link;
1148 	}
1149 
1150 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1151 				       &dev->kobj, device->name);
1152 	if (ret) {
1153 		if (ret == -EEXIST && i >= 0) {
1154 			/*
1155 			 * Account for the slim chance of collision
1156 			 * and append an instance to the name.
1157 			 */
1158 			kfree(device->name);
1159 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1160 						 kobject_name(&dev->kobj), i++);
1161 			goto rename;
1162 		}
1163 		goto err_free_name;
1164 	}
1165 
1166 	trace_add_device_to_group(group->id, dev);
1167 
1168 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1169 
1170 	return device;
1171 
1172 err_free_name:
1173 	kfree(device->name);
1174 err_remove_link:
1175 	sysfs_remove_link(&dev->kobj, "iommu_group");
1176 err_free_device:
1177 	kfree(device);
1178 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1179 	return ERR_PTR(ret);
1180 }
1181 
1182 /**
1183  * iommu_group_add_device - add a device to an iommu group
1184  * @group: the group into which to add the device (reference should be held)
1185  * @dev: the device
1186  *
1187  * This function is called by an iommu driver to add a device into a
1188  * group.  Adding a device increments the group reference count.
1189  */
1190 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1191 {
1192 	struct group_device *gdev;
1193 
1194 	gdev = iommu_group_alloc_device(group, dev);
1195 	if (IS_ERR(gdev))
1196 		return PTR_ERR(gdev);
1197 
1198 	iommu_group_ref_get(group);
1199 	dev->iommu_group = group;
1200 
1201 	mutex_lock(&group->mutex);
1202 	list_add_tail(&gdev->list, &group->devices);
1203 	mutex_unlock(&group->mutex);
1204 	return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1207 
1208 /**
1209  * iommu_group_remove_device - remove a device from it's current group
1210  * @dev: device to be removed
1211  *
1212  * This function is called by an iommu driver to remove the device from
1213  * it's current group.  This decrements the iommu group reference count.
1214  */
1215 void iommu_group_remove_device(struct device *dev)
1216 {
1217 	struct iommu_group *group = dev->iommu_group;
1218 
1219 	if (!group)
1220 		return;
1221 
1222 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1223 
1224 	__iommu_group_remove_device(dev);
1225 }
1226 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1227 
1228 /**
1229  * iommu_group_for_each_dev - iterate over each device in the group
1230  * @group: the group
1231  * @data: caller opaque data to be passed to callback function
1232  * @fn: caller supplied callback function
1233  *
1234  * This function is called by group users to iterate over group devices.
1235  * Callers should hold a reference count to the group during callback.
1236  * The group->mutex is held across callbacks, which will block calls to
1237  * iommu_group_add/remove_device.
1238  */
1239 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1240 			     int (*fn)(struct device *, void *))
1241 {
1242 	struct group_device *device;
1243 	int ret = 0;
1244 
1245 	mutex_lock(&group->mutex);
1246 	for_each_group_device(group, device) {
1247 		ret = fn(device->dev, data);
1248 		if (ret)
1249 			break;
1250 	}
1251 	mutex_unlock(&group->mutex);
1252 
1253 	return ret;
1254 }
1255 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1256 
1257 /**
1258  * iommu_group_get - Return the group for a device and increment reference
1259  * @dev: get the group that this device belongs to
1260  *
1261  * This function is called by iommu drivers and users to get the group
1262  * for the specified device.  If found, the group is returned and the group
1263  * reference in incremented, else NULL.
1264  */
1265 struct iommu_group *iommu_group_get(struct device *dev)
1266 {
1267 	struct iommu_group *group = dev->iommu_group;
1268 
1269 	if (group)
1270 		kobject_get(group->devices_kobj);
1271 
1272 	return group;
1273 }
1274 EXPORT_SYMBOL_GPL(iommu_group_get);
1275 
1276 /**
1277  * iommu_group_ref_get - Increment reference on a group
1278  * @group: the group to use, must not be NULL
1279  *
1280  * This function is called by iommu drivers to take additional references on an
1281  * existing group.  Returns the given group for convenience.
1282  */
1283 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1284 {
1285 	kobject_get(group->devices_kobj);
1286 	return group;
1287 }
1288 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1289 
1290 /**
1291  * iommu_group_put - Decrement group reference
1292  * @group: the group to use
1293  *
1294  * This function is called by iommu drivers and users to release the
1295  * iommu group.  Once the reference count is zero, the group is released.
1296  */
1297 void iommu_group_put(struct iommu_group *group)
1298 {
1299 	if (group)
1300 		kobject_put(group->devices_kobj);
1301 }
1302 EXPORT_SYMBOL_GPL(iommu_group_put);
1303 
1304 /**
1305  * iommu_register_device_fault_handler() - Register a device fault handler
1306  * @dev: the device
1307  * @handler: the fault handler
1308  * @data: private data passed as argument to the handler
1309  *
1310  * When an IOMMU fault event is received, this handler gets called with the
1311  * fault event and data as argument. The handler should return 0 on success. If
1312  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1313  * complete the fault by calling iommu_page_response() with one of the following
1314  * response code:
1315  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1316  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1317  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1318  *   page faults if possible.
1319  *
1320  * Return 0 if the fault handler was installed successfully, or an error.
1321  */
1322 int iommu_register_device_fault_handler(struct device *dev,
1323 					iommu_dev_fault_handler_t handler,
1324 					void *data)
1325 {
1326 	struct dev_iommu *param = dev->iommu;
1327 	int ret = 0;
1328 
1329 	if (!param)
1330 		return -EINVAL;
1331 
1332 	mutex_lock(&param->lock);
1333 	/* Only allow one fault handler registered for each device */
1334 	if (param->fault_param) {
1335 		ret = -EBUSY;
1336 		goto done_unlock;
1337 	}
1338 
1339 	get_device(dev);
1340 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1341 	if (!param->fault_param) {
1342 		put_device(dev);
1343 		ret = -ENOMEM;
1344 		goto done_unlock;
1345 	}
1346 	param->fault_param->handler = handler;
1347 	param->fault_param->data = data;
1348 	mutex_init(&param->fault_param->lock);
1349 	INIT_LIST_HEAD(&param->fault_param->faults);
1350 
1351 done_unlock:
1352 	mutex_unlock(&param->lock);
1353 
1354 	return ret;
1355 }
1356 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1357 
1358 /**
1359  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1360  * @dev: the device
1361  *
1362  * Remove the device fault handler installed with
1363  * iommu_register_device_fault_handler().
1364  *
1365  * Return 0 on success, or an error.
1366  */
1367 int iommu_unregister_device_fault_handler(struct device *dev)
1368 {
1369 	struct dev_iommu *param = dev->iommu;
1370 	int ret = 0;
1371 
1372 	if (!param)
1373 		return -EINVAL;
1374 
1375 	mutex_lock(&param->lock);
1376 
1377 	if (!param->fault_param)
1378 		goto unlock;
1379 
1380 	/* we cannot unregister handler if there are pending faults */
1381 	if (!list_empty(&param->fault_param->faults)) {
1382 		ret = -EBUSY;
1383 		goto unlock;
1384 	}
1385 
1386 	kfree(param->fault_param);
1387 	param->fault_param = NULL;
1388 	put_device(dev);
1389 unlock:
1390 	mutex_unlock(&param->lock);
1391 
1392 	return ret;
1393 }
1394 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1395 
1396 /**
1397  * iommu_report_device_fault() - Report fault event to device driver
1398  * @dev: the device
1399  * @evt: fault event data
1400  *
1401  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1402  * handler. When this function fails and the fault is recoverable, it is the
1403  * caller's responsibility to complete the fault.
1404  *
1405  * Return 0 on success, or an error.
1406  */
1407 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1408 {
1409 	struct dev_iommu *param = dev->iommu;
1410 	struct iommu_fault_event *evt_pending = NULL;
1411 	struct iommu_fault_param *fparam;
1412 	int ret = 0;
1413 
1414 	if (!param || !evt)
1415 		return -EINVAL;
1416 
1417 	/* we only report device fault if there is a handler registered */
1418 	mutex_lock(&param->lock);
1419 	fparam = param->fault_param;
1420 	if (!fparam || !fparam->handler) {
1421 		ret = -EINVAL;
1422 		goto done_unlock;
1423 	}
1424 
1425 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1426 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1427 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1428 				      GFP_KERNEL);
1429 		if (!evt_pending) {
1430 			ret = -ENOMEM;
1431 			goto done_unlock;
1432 		}
1433 		mutex_lock(&fparam->lock);
1434 		list_add_tail(&evt_pending->list, &fparam->faults);
1435 		mutex_unlock(&fparam->lock);
1436 	}
1437 
1438 	ret = fparam->handler(&evt->fault, fparam->data);
1439 	if (ret && evt_pending) {
1440 		mutex_lock(&fparam->lock);
1441 		list_del(&evt_pending->list);
1442 		mutex_unlock(&fparam->lock);
1443 		kfree(evt_pending);
1444 	}
1445 done_unlock:
1446 	mutex_unlock(&param->lock);
1447 	return ret;
1448 }
1449 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1450 
1451 int iommu_page_response(struct device *dev,
1452 			struct iommu_page_response *msg)
1453 {
1454 	bool needs_pasid;
1455 	int ret = -EINVAL;
1456 	struct iommu_fault_event *evt;
1457 	struct iommu_fault_page_request *prm;
1458 	struct dev_iommu *param = dev->iommu;
1459 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1460 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1461 
1462 	if (!ops->page_response)
1463 		return -ENODEV;
1464 
1465 	if (!param || !param->fault_param)
1466 		return -EINVAL;
1467 
1468 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1469 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1470 		return -EINVAL;
1471 
1472 	/* Only send response if there is a fault report pending */
1473 	mutex_lock(&param->fault_param->lock);
1474 	if (list_empty(&param->fault_param->faults)) {
1475 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1476 		goto done_unlock;
1477 	}
1478 	/*
1479 	 * Check if we have a matching page request pending to respond,
1480 	 * otherwise return -EINVAL
1481 	 */
1482 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1483 		prm = &evt->fault.prm;
1484 		if (prm->grpid != msg->grpid)
1485 			continue;
1486 
1487 		/*
1488 		 * If the PASID is required, the corresponding request is
1489 		 * matched using the group ID, the PASID valid bit and the PASID
1490 		 * value. Otherwise only the group ID matches request and
1491 		 * response.
1492 		 */
1493 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1494 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1495 			continue;
1496 
1497 		if (!needs_pasid && has_pasid) {
1498 			/* No big deal, just clear it. */
1499 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1500 			msg->pasid = 0;
1501 		}
1502 
1503 		ret = ops->page_response(dev, evt, msg);
1504 		list_del(&evt->list);
1505 		kfree(evt);
1506 		break;
1507 	}
1508 
1509 done_unlock:
1510 	mutex_unlock(&param->fault_param->lock);
1511 	return ret;
1512 }
1513 EXPORT_SYMBOL_GPL(iommu_page_response);
1514 
1515 /**
1516  * iommu_group_id - Return ID for a group
1517  * @group: the group to ID
1518  *
1519  * Return the unique ID for the group matching the sysfs group number.
1520  */
1521 int iommu_group_id(struct iommu_group *group)
1522 {
1523 	return group->id;
1524 }
1525 EXPORT_SYMBOL_GPL(iommu_group_id);
1526 
1527 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1528 					       unsigned long *devfns);
1529 
1530 /*
1531  * To consider a PCI device isolated, we require ACS to support Source
1532  * Validation, Request Redirection, Completer Redirection, and Upstream
1533  * Forwarding.  This effectively means that devices cannot spoof their
1534  * requester ID, requests and completions cannot be redirected, and all
1535  * transactions are forwarded upstream, even as it passes through a
1536  * bridge where the target device is downstream.
1537  */
1538 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1539 
1540 /*
1541  * For multifunction devices which are not isolated from each other, find
1542  * all the other non-isolated functions and look for existing groups.  For
1543  * each function, we also need to look for aliases to or from other devices
1544  * that may already have a group.
1545  */
1546 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1547 							unsigned long *devfns)
1548 {
1549 	struct pci_dev *tmp = NULL;
1550 	struct iommu_group *group;
1551 
1552 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1553 		return NULL;
1554 
1555 	for_each_pci_dev(tmp) {
1556 		if (tmp == pdev || tmp->bus != pdev->bus ||
1557 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1558 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1559 			continue;
1560 
1561 		group = get_pci_alias_group(tmp, devfns);
1562 		if (group) {
1563 			pci_dev_put(tmp);
1564 			return group;
1565 		}
1566 	}
1567 
1568 	return NULL;
1569 }
1570 
1571 /*
1572  * Look for aliases to or from the given device for existing groups. DMA
1573  * aliases are only supported on the same bus, therefore the search
1574  * space is quite small (especially since we're really only looking at pcie
1575  * device, and therefore only expect multiple slots on the root complex or
1576  * downstream switch ports).  It's conceivable though that a pair of
1577  * multifunction devices could have aliases between them that would cause a
1578  * loop.  To prevent this, we use a bitmap to track where we've been.
1579  */
1580 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1581 					       unsigned long *devfns)
1582 {
1583 	struct pci_dev *tmp = NULL;
1584 	struct iommu_group *group;
1585 
1586 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1587 		return NULL;
1588 
1589 	group = iommu_group_get(&pdev->dev);
1590 	if (group)
1591 		return group;
1592 
1593 	for_each_pci_dev(tmp) {
1594 		if (tmp == pdev || tmp->bus != pdev->bus)
1595 			continue;
1596 
1597 		/* We alias them or they alias us */
1598 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1599 			group = get_pci_alias_group(tmp, devfns);
1600 			if (group) {
1601 				pci_dev_put(tmp);
1602 				return group;
1603 			}
1604 
1605 			group = get_pci_function_alias_group(tmp, devfns);
1606 			if (group) {
1607 				pci_dev_put(tmp);
1608 				return group;
1609 			}
1610 		}
1611 	}
1612 
1613 	return NULL;
1614 }
1615 
1616 struct group_for_pci_data {
1617 	struct pci_dev *pdev;
1618 	struct iommu_group *group;
1619 };
1620 
1621 /*
1622  * DMA alias iterator callback, return the last seen device.  Stop and return
1623  * the IOMMU group if we find one along the way.
1624  */
1625 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1626 {
1627 	struct group_for_pci_data *data = opaque;
1628 
1629 	data->pdev = pdev;
1630 	data->group = iommu_group_get(&pdev->dev);
1631 
1632 	return data->group != NULL;
1633 }
1634 
1635 /*
1636  * Generic device_group call-back function. It just allocates one
1637  * iommu-group per device.
1638  */
1639 struct iommu_group *generic_device_group(struct device *dev)
1640 {
1641 	return iommu_group_alloc();
1642 }
1643 EXPORT_SYMBOL_GPL(generic_device_group);
1644 
1645 /*
1646  * Generic device_group call-back function. It just allocates one
1647  * iommu-group per iommu driver instance shared by every device
1648  * probed by that iommu driver.
1649  */
1650 struct iommu_group *generic_single_device_group(struct device *dev)
1651 {
1652 	struct iommu_device *iommu = dev->iommu->iommu_dev;
1653 
1654 	if (!iommu->singleton_group) {
1655 		struct iommu_group *group;
1656 
1657 		group = iommu_group_alloc();
1658 		if (IS_ERR(group))
1659 			return group;
1660 		iommu->singleton_group = group;
1661 	}
1662 	return iommu_group_ref_get(iommu->singleton_group);
1663 }
1664 EXPORT_SYMBOL_GPL(generic_single_device_group);
1665 
1666 /*
1667  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1668  * to find or create an IOMMU group for a device.
1669  */
1670 struct iommu_group *pci_device_group(struct device *dev)
1671 {
1672 	struct pci_dev *pdev = to_pci_dev(dev);
1673 	struct group_for_pci_data data;
1674 	struct pci_bus *bus;
1675 	struct iommu_group *group = NULL;
1676 	u64 devfns[4] = { 0 };
1677 
1678 	if (WARN_ON(!dev_is_pci(dev)))
1679 		return ERR_PTR(-EINVAL);
1680 
1681 	/*
1682 	 * Find the upstream DMA alias for the device.  A device must not
1683 	 * be aliased due to topology in order to have its own IOMMU group.
1684 	 * If we find an alias along the way that already belongs to a
1685 	 * group, use it.
1686 	 */
1687 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1688 		return data.group;
1689 
1690 	pdev = data.pdev;
1691 
1692 	/*
1693 	 * Continue upstream from the point of minimum IOMMU granularity
1694 	 * due to aliases to the point where devices are protected from
1695 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1696 	 * group, use it.
1697 	 */
1698 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1699 		if (!bus->self)
1700 			continue;
1701 
1702 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1703 			break;
1704 
1705 		pdev = bus->self;
1706 
1707 		group = iommu_group_get(&pdev->dev);
1708 		if (group)
1709 			return group;
1710 	}
1711 
1712 	/*
1713 	 * Look for existing groups on device aliases.  If we alias another
1714 	 * device or another device aliases us, use the same group.
1715 	 */
1716 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1717 	if (group)
1718 		return group;
1719 
1720 	/*
1721 	 * Look for existing groups on non-isolated functions on the same
1722 	 * slot and aliases of those funcions, if any.  No need to clear
1723 	 * the search bitmap, the tested devfns are still valid.
1724 	 */
1725 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1726 	if (group)
1727 		return group;
1728 
1729 	/* No shared group found, allocate new */
1730 	return iommu_group_alloc();
1731 }
1732 EXPORT_SYMBOL_GPL(pci_device_group);
1733 
1734 /* Get the IOMMU group for device on fsl-mc bus */
1735 struct iommu_group *fsl_mc_device_group(struct device *dev)
1736 {
1737 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1738 	struct iommu_group *group;
1739 
1740 	group = iommu_group_get(cont_dev);
1741 	if (!group)
1742 		group = iommu_group_alloc();
1743 	return group;
1744 }
1745 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1746 
1747 static struct iommu_domain *
1748 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1749 {
1750 	if (group->default_domain && group->default_domain->type == req_type)
1751 		return group->default_domain;
1752 	return __iommu_group_domain_alloc(group, req_type);
1753 }
1754 
1755 /*
1756  * Returns the iommu_ops for the devices in an iommu group.
1757  *
1758  * It is assumed that all devices in an iommu group are managed by a single
1759  * IOMMU unit. Therefore, this returns the dev_iommu_ops of the first device
1760  * in the group.
1761  */
1762 static const struct iommu_ops *group_iommu_ops(struct iommu_group *group)
1763 {
1764 	struct group_device *device =
1765 		list_first_entry(&group->devices, struct group_device, list);
1766 
1767 	lockdep_assert_held(&group->mutex);
1768 
1769 	return dev_iommu_ops(device->dev);
1770 }
1771 
1772 /*
1773  * req_type of 0 means "auto" which means to select a domain based on
1774  * iommu_def_domain_type or what the driver actually supports.
1775  */
1776 static struct iommu_domain *
1777 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1778 {
1779 	const struct iommu_ops *ops = group_iommu_ops(group);
1780 	struct iommu_domain *dom;
1781 
1782 	lockdep_assert_held(&group->mutex);
1783 
1784 	/*
1785 	 * Allow legacy drivers to specify the domain that will be the default
1786 	 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM
1787 	 * domain. Do not use in new drivers.
1788 	 */
1789 	if (ops->default_domain) {
1790 		if (req_type)
1791 			return NULL;
1792 		return ops->default_domain;
1793 	}
1794 
1795 	if (req_type)
1796 		return __iommu_group_alloc_default_domain(group, req_type);
1797 
1798 	/* The driver gave no guidance on what type to use, try the default */
1799 	dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type);
1800 	if (dom)
1801 		return dom;
1802 
1803 	/* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1804 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1805 		return NULL;
1806 	dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA);
1807 	if (!dom)
1808 		return NULL;
1809 
1810 	pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1811 		iommu_def_domain_type, group->name);
1812 	return dom;
1813 }
1814 
1815 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1816 {
1817 	return group->default_domain;
1818 }
1819 
1820 static int probe_iommu_group(struct device *dev, void *data)
1821 {
1822 	struct list_head *group_list = data;
1823 	int ret;
1824 
1825 	ret = __iommu_probe_device(dev, group_list);
1826 	if (ret == -ENODEV)
1827 		ret = 0;
1828 
1829 	return ret;
1830 }
1831 
1832 static int iommu_bus_notifier(struct notifier_block *nb,
1833 			      unsigned long action, void *data)
1834 {
1835 	struct device *dev = data;
1836 
1837 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1838 		int ret;
1839 
1840 		ret = iommu_probe_device(dev);
1841 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1842 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1843 		iommu_release_device(dev);
1844 		return NOTIFY_OK;
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 /*
1851  * Combine the driver's chosen def_domain_type across all the devices in a
1852  * group. Drivers must give a consistent result.
1853  */
1854 static int iommu_get_def_domain_type(struct iommu_group *group,
1855 				     struct device *dev, int cur_type)
1856 {
1857 	const struct iommu_ops *ops = group_iommu_ops(group);
1858 	int type;
1859 
1860 	if (!ops->def_domain_type)
1861 		return cur_type;
1862 
1863 	type = ops->def_domain_type(dev);
1864 	if (!type || cur_type == type)
1865 		return cur_type;
1866 	if (!cur_type)
1867 		return type;
1868 
1869 	dev_err_ratelimited(
1870 		dev,
1871 		"IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n",
1872 		iommu_domain_type_str(cur_type), iommu_domain_type_str(type),
1873 		group->id);
1874 
1875 	/*
1876 	 * Try to recover, drivers are allowed to force IDENITY or DMA, IDENTITY
1877 	 * takes precedence.
1878 	 */
1879 	if (type == IOMMU_DOMAIN_IDENTITY)
1880 		return type;
1881 	return cur_type;
1882 }
1883 
1884 /*
1885  * A target_type of 0 will select the best domain type. 0 can be returned in
1886  * this case meaning the global default should be used.
1887  */
1888 static int iommu_get_default_domain_type(struct iommu_group *group,
1889 					 int target_type)
1890 {
1891 	struct device *untrusted = NULL;
1892 	struct group_device *gdev;
1893 	int driver_type = 0;
1894 
1895 	lockdep_assert_held(&group->mutex);
1896 
1897 	/*
1898 	 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an
1899 	 * identity_domain and it will automatically become their default
1900 	 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain.
1901 	 * Override the selection to IDENTITY.
1902 	 */
1903 	if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
1904 		static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) &&
1905 				IS_ENABLED(CONFIG_IOMMU_DMA)));
1906 		driver_type = IOMMU_DOMAIN_IDENTITY;
1907 	}
1908 
1909 	for_each_group_device(group, gdev) {
1910 		driver_type = iommu_get_def_domain_type(group, gdev->dev,
1911 							driver_type);
1912 
1913 		if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) {
1914 			/*
1915 			 * No ARM32 using systems will set untrusted, it cannot
1916 			 * work.
1917 			 */
1918 			if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)))
1919 				return -1;
1920 			untrusted = gdev->dev;
1921 		}
1922 	}
1923 
1924 	/*
1925 	 * If the common dma ops are not selected in kconfig then we cannot use
1926 	 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been
1927 	 * selected.
1928 	 */
1929 	if (!IS_ENABLED(CONFIG_IOMMU_DMA)) {
1930 		if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA))
1931 			return -1;
1932 		if (!driver_type)
1933 			driver_type = IOMMU_DOMAIN_IDENTITY;
1934 	}
1935 
1936 	if (untrusted) {
1937 		if (driver_type && driver_type != IOMMU_DOMAIN_DMA) {
1938 			dev_err_ratelimited(
1939 				untrusted,
1940 				"Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n",
1941 				group->id, iommu_domain_type_str(driver_type));
1942 			return -1;
1943 		}
1944 		driver_type = IOMMU_DOMAIN_DMA;
1945 	}
1946 
1947 	if (target_type) {
1948 		if (driver_type && target_type != driver_type)
1949 			return -1;
1950 		return target_type;
1951 	}
1952 	return driver_type;
1953 }
1954 
1955 static void iommu_group_do_probe_finalize(struct device *dev)
1956 {
1957 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1958 
1959 	if (ops->probe_finalize)
1960 		ops->probe_finalize(dev);
1961 }
1962 
1963 int bus_iommu_probe(const struct bus_type *bus)
1964 {
1965 	struct iommu_group *group, *next;
1966 	LIST_HEAD(group_list);
1967 	int ret;
1968 
1969 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1970 	if (ret)
1971 		return ret;
1972 
1973 	list_for_each_entry_safe(group, next, &group_list, entry) {
1974 		struct group_device *gdev;
1975 
1976 		mutex_lock(&group->mutex);
1977 
1978 		/* Remove item from the list */
1979 		list_del_init(&group->entry);
1980 
1981 		/*
1982 		 * We go to the trouble of deferred default domain creation so
1983 		 * that the cross-group default domain type and the setup of the
1984 		 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1985 		 */
1986 		ret = iommu_setup_default_domain(group, 0);
1987 		if (ret) {
1988 			mutex_unlock(&group->mutex);
1989 			return ret;
1990 		}
1991 		mutex_unlock(&group->mutex);
1992 
1993 		/*
1994 		 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1995 		 * of some IOMMU drivers calls arm_iommu_attach_device() which
1996 		 * in-turn might call back into IOMMU core code, where it tries
1997 		 * to take group->mutex, resulting in a deadlock.
1998 		 */
1999 		for_each_group_device(group, gdev)
2000 			iommu_group_do_probe_finalize(gdev->dev);
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 bool iommu_present(const struct bus_type *bus)
2007 {
2008 	return bus->iommu_ops != NULL;
2009 }
2010 EXPORT_SYMBOL_GPL(iommu_present);
2011 
2012 /**
2013  * device_iommu_capable() - check for a general IOMMU capability
2014  * @dev: device to which the capability would be relevant, if available
2015  * @cap: IOMMU capability
2016  *
2017  * Return: true if an IOMMU is present and supports the given capability
2018  * for the given device, otherwise false.
2019  */
2020 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
2021 {
2022 	const struct iommu_ops *ops;
2023 
2024 	if (!dev->iommu || !dev->iommu->iommu_dev)
2025 		return false;
2026 
2027 	ops = dev_iommu_ops(dev);
2028 	if (!ops->capable)
2029 		return false;
2030 
2031 	return ops->capable(dev, cap);
2032 }
2033 EXPORT_SYMBOL_GPL(device_iommu_capable);
2034 
2035 /**
2036  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
2037  *       for a group
2038  * @group: Group to query
2039  *
2040  * IOMMU groups should not have differing values of
2041  * msi_device_has_isolated_msi() for devices in a group. However nothing
2042  * directly prevents this, so ensure mistakes don't result in isolation failures
2043  * by checking that all the devices are the same.
2044  */
2045 bool iommu_group_has_isolated_msi(struct iommu_group *group)
2046 {
2047 	struct group_device *group_dev;
2048 	bool ret = true;
2049 
2050 	mutex_lock(&group->mutex);
2051 	for_each_group_device(group, group_dev)
2052 		ret &= msi_device_has_isolated_msi(group_dev->dev);
2053 	mutex_unlock(&group->mutex);
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
2057 
2058 /**
2059  * iommu_set_fault_handler() - set a fault handler for an iommu domain
2060  * @domain: iommu domain
2061  * @handler: fault handler
2062  * @token: user data, will be passed back to the fault handler
2063  *
2064  * This function should be used by IOMMU users which want to be notified
2065  * whenever an IOMMU fault happens.
2066  *
2067  * The fault handler itself should return 0 on success, and an appropriate
2068  * error code otherwise.
2069  */
2070 void iommu_set_fault_handler(struct iommu_domain *domain,
2071 					iommu_fault_handler_t handler,
2072 					void *token)
2073 {
2074 	BUG_ON(!domain);
2075 
2076 	domain->handler = handler;
2077 	domain->handler_token = token;
2078 }
2079 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
2080 
2081 static struct iommu_domain *__iommu_domain_alloc(const struct iommu_ops *ops,
2082 						 struct device *dev,
2083 						 unsigned int type)
2084 {
2085 	struct iommu_domain *domain;
2086 	unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS;
2087 
2088 	if (alloc_type == IOMMU_DOMAIN_IDENTITY && ops->identity_domain)
2089 		return ops->identity_domain;
2090 	else if (alloc_type == IOMMU_DOMAIN_BLOCKED && ops->blocked_domain)
2091 		return ops->blocked_domain;
2092 	else if (type & __IOMMU_DOMAIN_PAGING && ops->domain_alloc_paging)
2093 		domain = ops->domain_alloc_paging(dev);
2094 	else if (ops->domain_alloc)
2095 		domain = ops->domain_alloc(alloc_type);
2096 	else
2097 		return NULL;
2098 
2099 	if (!domain)
2100 		return NULL;
2101 
2102 	domain->type = type;
2103 	/*
2104 	 * If not already set, assume all sizes by default; the driver
2105 	 * may override this later
2106 	 */
2107 	if (!domain->pgsize_bitmap)
2108 		domain->pgsize_bitmap = ops->pgsize_bitmap;
2109 
2110 	if (!domain->ops)
2111 		domain->ops = ops->default_domain_ops;
2112 
2113 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
2114 		iommu_domain_free(domain);
2115 		domain = NULL;
2116 	}
2117 	return domain;
2118 }
2119 
2120 static struct iommu_domain *
2121 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type)
2122 {
2123 	struct device *dev =
2124 		list_first_entry(&group->devices, struct group_device, list)
2125 			->dev;
2126 
2127 	return __iommu_domain_alloc(group_iommu_ops(group), dev, type);
2128 }
2129 
2130 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus)
2131 {
2132 	if (bus == NULL || bus->iommu_ops == NULL)
2133 		return NULL;
2134 	return __iommu_domain_alloc(bus->iommu_ops, NULL,
2135 				    IOMMU_DOMAIN_UNMANAGED);
2136 }
2137 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
2138 
2139 void iommu_domain_free(struct iommu_domain *domain)
2140 {
2141 	if (domain->type == IOMMU_DOMAIN_SVA)
2142 		mmdrop(domain->mm);
2143 	iommu_put_dma_cookie(domain);
2144 	if (domain->ops->free)
2145 		domain->ops->free(domain);
2146 }
2147 EXPORT_SYMBOL_GPL(iommu_domain_free);
2148 
2149 /*
2150  * Put the group's domain back to the appropriate core-owned domain - either the
2151  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2152  */
2153 static void __iommu_group_set_core_domain(struct iommu_group *group)
2154 {
2155 	struct iommu_domain *new_domain;
2156 
2157 	if (group->owner)
2158 		new_domain = group->blocking_domain;
2159 	else
2160 		new_domain = group->default_domain;
2161 
2162 	__iommu_group_set_domain_nofail(group, new_domain);
2163 }
2164 
2165 static int __iommu_attach_device(struct iommu_domain *domain,
2166 				 struct device *dev)
2167 {
2168 	int ret;
2169 
2170 	if (unlikely(domain->ops->attach_dev == NULL))
2171 		return -ENODEV;
2172 
2173 	ret = domain->ops->attach_dev(domain, dev);
2174 	if (ret)
2175 		return ret;
2176 	dev->iommu->attach_deferred = 0;
2177 	trace_attach_device_to_domain(dev);
2178 	return 0;
2179 }
2180 
2181 /**
2182  * iommu_attach_device - Attach an IOMMU domain to a device
2183  * @domain: IOMMU domain to attach
2184  * @dev: Device that will be attached
2185  *
2186  * Returns 0 on success and error code on failure
2187  *
2188  * Note that EINVAL can be treated as a soft failure, indicating
2189  * that certain configuration of the domain is incompatible with
2190  * the device. In this case attaching a different domain to the
2191  * device may succeed.
2192  */
2193 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2194 {
2195 	/* Caller must be a probed driver on dev */
2196 	struct iommu_group *group = dev->iommu_group;
2197 	int ret;
2198 
2199 	if (!group)
2200 		return -ENODEV;
2201 
2202 	/*
2203 	 * Lock the group to make sure the device-count doesn't
2204 	 * change while we are attaching
2205 	 */
2206 	mutex_lock(&group->mutex);
2207 	ret = -EINVAL;
2208 	if (list_count_nodes(&group->devices) != 1)
2209 		goto out_unlock;
2210 
2211 	ret = __iommu_attach_group(domain, group);
2212 
2213 out_unlock:
2214 	mutex_unlock(&group->mutex);
2215 	return ret;
2216 }
2217 EXPORT_SYMBOL_GPL(iommu_attach_device);
2218 
2219 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2220 {
2221 	if (dev->iommu && dev->iommu->attach_deferred)
2222 		return __iommu_attach_device(domain, dev);
2223 
2224 	return 0;
2225 }
2226 
2227 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2228 {
2229 	/* Caller must be a probed driver on dev */
2230 	struct iommu_group *group = dev->iommu_group;
2231 
2232 	if (!group)
2233 		return;
2234 
2235 	mutex_lock(&group->mutex);
2236 	if (WARN_ON(domain != group->domain) ||
2237 	    WARN_ON(list_count_nodes(&group->devices) != 1))
2238 		goto out_unlock;
2239 	__iommu_group_set_core_domain(group);
2240 
2241 out_unlock:
2242 	mutex_unlock(&group->mutex);
2243 }
2244 EXPORT_SYMBOL_GPL(iommu_detach_device);
2245 
2246 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2247 {
2248 	/* Caller must be a probed driver on dev */
2249 	struct iommu_group *group = dev->iommu_group;
2250 
2251 	if (!group)
2252 		return NULL;
2253 
2254 	return group->domain;
2255 }
2256 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2257 
2258 /*
2259  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2260  * guarantees that the group and its default domain are valid and correct.
2261  */
2262 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2263 {
2264 	return dev->iommu_group->default_domain;
2265 }
2266 
2267 static int __iommu_attach_group(struct iommu_domain *domain,
2268 				struct iommu_group *group)
2269 {
2270 	if (group->domain && group->domain != group->default_domain &&
2271 	    group->domain != group->blocking_domain)
2272 		return -EBUSY;
2273 
2274 	return __iommu_group_set_domain(group, domain);
2275 }
2276 
2277 /**
2278  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2279  * @domain: IOMMU domain to attach
2280  * @group: IOMMU group that will be attached
2281  *
2282  * Returns 0 on success and error code on failure
2283  *
2284  * Note that EINVAL can be treated as a soft failure, indicating
2285  * that certain configuration of the domain is incompatible with
2286  * the group. In this case attaching a different domain to the
2287  * group may succeed.
2288  */
2289 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2290 {
2291 	int ret;
2292 
2293 	mutex_lock(&group->mutex);
2294 	ret = __iommu_attach_group(domain, group);
2295 	mutex_unlock(&group->mutex);
2296 
2297 	return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(iommu_attach_group);
2300 
2301 /**
2302  * iommu_group_replace_domain - replace the domain that a group is attached to
2303  * @new_domain: new IOMMU domain to replace with
2304  * @group: IOMMU group that will be attached to the new domain
2305  *
2306  * This API allows the group to switch domains without being forced to go to
2307  * the blocking domain in-between.
2308  *
2309  * If the currently attached domain is a core domain (e.g. a default_domain),
2310  * it will act just like the iommu_attach_group().
2311  */
2312 int iommu_group_replace_domain(struct iommu_group *group,
2313 			       struct iommu_domain *new_domain)
2314 {
2315 	int ret;
2316 
2317 	if (!new_domain)
2318 		return -EINVAL;
2319 
2320 	mutex_lock(&group->mutex);
2321 	ret = __iommu_group_set_domain(group, new_domain);
2322 	mutex_unlock(&group->mutex);
2323 	return ret;
2324 }
2325 EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL);
2326 
2327 static int __iommu_device_set_domain(struct iommu_group *group,
2328 				     struct device *dev,
2329 				     struct iommu_domain *new_domain,
2330 				     unsigned int flags)
2331 {
2332 	int ret;
2333 
2334 	/*
2335 	 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2336 	 * the blocking domain to be attached as it does not contain the
2337 	 * required 1:1 mapping. This test effectively excludes the device
2338 	 * being used with iommu_group_claim_dma_owner() which will block
2339 	 * vfio and iommufd as well.
2340 	 */
2341 	if (dev->iommu->require_direct &&
2342 	    (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2343 	     new_domain == group->blocking_domain)) {
2344 		dev_warn(dev,
2345 			 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2346 		return -EINVAL;
2347 	}
2348 
2349 	if (dev->iommu->attach_deferred) {
2350 		if (new_domain == group->default_domain)
2351 			return 0;
2352 		dev->iommu->attach_deferred = 0;
2353 	}
2354 
2355 	ret = __iommu_attach_device(new_domain, dev);
2356 	if (ret) {
2357 		/*
2358 		 * If we have a blocking domain then try to attach that in hopes
2359 		 * of avoiding a UAF. Modern drivers should implement blocking
2360 		 * domains as global statics that cannot fail.
2361 		 */
2362 		if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2363 		    group->blocking_domain &&
2364 		    group->blocking_domain != new_domain)
2365 			__iommu_attach_device(group->blocking_domain, dev);
2366 		return ret;
2367 	}
2368 	return 0;
2369 }
2370 
2371 /*
2372  * If 0 is returned the group's domain is new_domain. If an error is returned
2373  * then the group's domain will be set back to the existing domain unless
2374  * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2375  * domains is left inconsistent. This is a driver bug to fail attach with a
2376  * previously good domain. We try to avoid a kernel UAF because of this.
2377  *
2378  * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2379  * API works on domains and devices.  Bridge that gap by iterating over the
2380  * devices in a group.  Ideally we'd have a single device which represents the
2381  * requestor ID of the group, but we also allow IOMMU drivers to create policy
2382  * defined minimum sets, where the physical hardware may be able to distiguish
2383  * members, but we wish to group them at a higher level (ex. untrusted
2384  * multi-function PCI devices).  Thus we attach each device.
2385  */
2386 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2387 					     struct iommu_domain *new_domain,
2388 					     unsigned int flags)
2389 {
2390 	struct group_device *last_gdev;
2391 	struct group_device *gdev;
2392 	int result;
2393 	int ret;
2394 
2395 	lockdep_assert_held(&group->mutex);
2396 
2397 	if (group->domain == new_domain)
2398 		return 0;
2399 
2400 	if (WARN_ON(!new_domain))
2401 		return -EINVAL;
2402 
2403 	/*
2404 	 * Changing the domain is done by calling attach_dev() on the new
2405 	 * domain. This switch does not have to be atomic and DMA can be
2406 	 * discarded during the transition. DMA must only be able to access
2407 	 * either new_domain or group->domain, never something else.
2408 	 */
2409 	result = 0;
2410 	for_each_group_device(group, gdev) {
2411 		ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2412 						flags);
2413 		if (ret) {
2414 			result = ret;
2415 			/*
2416 			 * Keep trying the other devices in the group. If a
2417 			 * driver fails attach to an otherwise good domain, and
2418 			 * does not support blocking domains, it should at least
2419 			 * drop its reference on the current domain so we don't
2420 			 * UAF.
2421 			 */
2422 			if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2423 				continue;
2424 			goto err_revert;
2425 		}
2426 	}
2427 	group->domain = new_domain;
2428 	return result;
2429 
2430 err_revert:
2431 	/*
2432 	 * This is called in error unwind paths. A well behaved driver should
2433 	 * always allow us to attach to a domain that was already attached.
2434 	 */
2435 	last_gdev = gdev;
2436 	for_each_group_device(group, gdev) {
2437 		/*
2438 		 * A NULL domain can happen only for first probe, in which case
2439 		 * we leave group->domain as NULL and let release clean
2440 		 * everything up.
2441 		 */
2442 		if (group->domain)
2443 			WARN_ON(__iommu_device_set_domain(
2444 				group, gdev->dev, group->domain,
2445 				IOMMU_SET_DOMAIN_MUST_SUCCEED));
2446 		if (gdev == last_gdev)
2447 			break;
2448 	}
2449 	return ret;
2450 }
2451 
2452 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2453 {
2454 	mutex_lock(&group->mutex);
2455 	__iommu_group_set_core_domain(group);
2456 	mutex_unlock(&group->mutex);
2457 }
2458 EXPORT_SYMBOL_GPL(iommu_detach_group);
2459 
2460 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2461 {
2462 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2463 		return iova;
2464 
2465 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2466 		return 0;
2467 
2468 	return domain->ops->iova_to_phys(domain, iova);
2469 }
2470 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2471 
2472 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2473 			   phys_addr_t paddr, size_t size, size_t *count)
2474 {
2475 	unsigned int pgsize_idx, pgsize_idx_next;
2476 	unsigned long pgsizes;
2477 	size_t offset, pgsize, pgsize_next;
2478 	unsigned long addr_merge = paddr | iova;
2479 
2480 	/* Page sizes supported by the hardware and small enough for @size */
2481 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2482 
2483 	/* Constrain the page sizes further based on the maximum alignment */
2484 	if (likely(addr_merge))
2485 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2486 
2487 	/* Make sure we have at least one suitable page size */
2488 	BUG_ON(!pgsizes);
2489 
2490 	/* Pick the biggest page size remaining */
2491 	pgsize_idx = __fls(pgsizes);
2492 	pgsize = BIT(pgsize_idx);
2493 	if (!count)
2494 		return pgsize;
2495 
2496 	/* Find the next biggest support page size, if it exists */
2497 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2498 	if (!pgsizes)
2499 		goto out_set_count;
2500 
2501 	pgsize_idx_next = __ffs(pgsizes);
2502 	pgsize_next = BIT(pgsize_idx_next);
2503 
2504 	/*
2505 	 * There's no point trying a bigger page size unless the virtual
2506 	 * and physical addresses are similarly offset within the larger page.
2507 	 */
2508 	if ((iova ^ paddr) & (pgsize_next - 1))
2509 		goto out_set_count;
2510 
2511 	/* Calculate the offset to the next page size alignment boundary */
2512 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2513 
2514 	/*
2515 	 * If size is big enough to accommodate the larger page, reduce
2516 	 * the number of smaller pages.
2517 	 */
2518 	if (offset + pgsize_next <= size)
2519 		size = offset;
2520 
2521 out_set_count:
2522 	*count = size >> pgsize_idx;
2523 	return pgsize;
2524 }
2525 
2526 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2527 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2528 {
2529 	const struct iommu_domain_ops *ops = domain->ops;
2530 	unsigned long orig_iova = iova;
2531 	unsigned int min_pagesz;
2532 	size_t orig_size = size;
2533 	phys_addr_t orig_paddr = paddr;
2534 	int ret = 0;
2535 
2536 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2537 		return -EINVAL;
2538 
2539 	if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL))
2540 		return -ENODEV;
2541 
2542 	/* find out the minimum page size supported */
2543 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2544 
2545 	/*
2546 	 * both the virtual address and the physical one, as well as
2547 	 * the size of the mapping, must be aligned (at least) to the
2548 	 * size of the smallest page supported by the hardware
2549 	 */
2550 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2551 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2552 		       iova, &paddr, size, min_pagesz);
2553 		return -EINVAL;
2554 	}
2555 
2556 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2557 
2558 	while (size) {
2559 		size_t pgsize, count, mapped = 0;
2560 
2561 		pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2562 
2563 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2564 			 iova, &paddr, pgsize, count);
2565 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2566 				     gfp, &mapped);
2567 		/*
2568 		 * Some pages may have been mapped, even if an error occurred,
2569 		 * so we should account for those so they can be unmapped.
2570 		 */
2571 		size -= mapped;
2572 
2573 		if (ret)
2574 			break;
2575 
2576 		iova += mapped;
2577 		paddr += mapped;
2578 	}
2579 
2580 	/* unroll mapping in case something went wrong */
2581 	if (ret)
2582 		iommu_unmap(domain, orig_iova, orig_size - size);
2583 	else
2584 		trace_map(orig_iova, orig_paddr, orig_size);
2585 
2586 	return ret;
2587 }
2588 
2589 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2590 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2591 {
2592 	const struct iommu_domain_ops *ops = domain->ops;
2593 	int ret;
2594 
2595 	might_sleep_if(gfpflags_allow_blocking(gfp));
2596 
2597 	/* Discourage passing strange GFP flags */
2598 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2599 				__GFP_HIGHMEM)))
2600 		return -EINVAL;
2601 
2602 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2603 	if (ret == 0 && ops->iotlb_sync_map) {
2604 		ret = ops->iotlb_sync_map(domain, iova, size);
2605 		if (ret)
2606 			goto out_err;
2607 	}
2608 
2609 	return ret;
2610 
2611 out_err:
2612 	/* undo mappings already done */
2613 	iommu_unmap(domain, iova, size);
2614 
2615 	return ret;
2616 }
2617 EXPORT_SYMBOL_GPL(iommu_map);
2618 
2619 static size_t __iommu_unmap(struct iommu_domain *domain,
2620 			    unsigned long iova, size_t size,
2621 			    struct iommu_iotlb_gather *iotlb_gather)
2622 {
2623 	const struct iommu_domain_ops *ops = domain->ops;
2624 	size_t unmapped_page, unmapped = 0;
2625 	unsigned long orig_iova = iova;
2626 	unsigned int min_pagesz;
2627 
2628 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2629 		return 0;
2630 
2631 	if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL))
2632 		return 0;
2633 
2634 	/* find out the minimum page size supported */
2635 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2636 
2637 	/*
2638 	 * The virtual address, as well as the size of the mapping, must be
2639 	 * aligned (at least) to the size of the smallest page supported
2640 	 * by the hardware
2641 	 */
2642 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2643 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2644 		       iova, size, min_pagesz);
2645 		return 0;
2646 	}
2647 
2648 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2649 
2650 	/*
2651 	 * Keep iterating until we either unmap 'size' bytes (or more)
2652 	 * or we hit an area that isn't mapped.
2653 	 */
2654 	while (unmapped < size) {
2655 		size_t pgsize, count;
2656 
2657 		pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count);
2658 		unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather);
2659 		if (!unmapped_page)
2660 			break;
2661 
2662 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2663 			 iova, unmapped_page);
2664 
2665 		iova += unmapped_page;
2666 		unmapped += unmapped_page;
2667 	}
2668 
2669 	trace_unmap(orig_iova, size, unmapped);
2670 	return unmapped;
2671 }
2672 
2673 size_t iommu_unmap(struct iommu_domain *domain,
2674 		   unsigned long iova, size_t size)
2675 {
2676 	struct iommu_iotlb_gather iotlb_gather;
2677 	size_t ret;
2678 
2679 	iommu_iotlb_gather_init(&iotlb_gather);
2680 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2681 	iommu_iotlb_sync(domain, &iotlb_gather);
2682 
2683 	return ret;
2684 }
2685 EXPORT_SYMBOL_GPL(iommu_unmap);
2686 
2687 size_t iommu_unmap_fast(struct iommu_domain *domain,
2688 			unsigned long iova, size_t size,
2689 			struct iommu_iotlb_gather *iotlb_gather)
2690 {
2691 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2692 }
2693 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2694 
2695 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2696 		     struct scatterlist *sg, unsigned int nents, int prot,
2697 		     gfp_t gfp)
2698 {
2699 	const struct iommu_domain_ops *ops = domain->ops;
2700 	size_t len = 0, mapped = 0;
2701 	phys_addr_t start;
2702 	unsigned int i = 0;
2703 	int ret;
2704 
2705 	might_sleep_if(gfpflags_allow_blocking(gfp));
2706 
2707 	/* Discourage passing strange GFP flags */
2708 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2709 				__GFP_HIGHMEM)))
2710 		return -EINVAL;
2711 
2712 	while (i <= nents) {
2713 		phys_addr_t s_phys = sg_phys(sg);
2714 
2715 		if (len && s_phys != start + len) {
2716 			ret = __iommu_map(domain, iova + mapped, start,
2717 					len, prot, gfp);
2718 
2719 			if (ret)
2720 				goto out_err;
2721 
2722 			mapped += len;
2723 			len = 0;
2724 		}
2725 
2726 		if (sg_dma_is_bus_address(sg))
2727 			goto next;
2728 
2729 		if (len) {
2730 			len += sg->length;
2731 		} else {
2732 			len = sg->length;
2733 			start = s_phys;
2734 		}
2735 
2736 next:
2737 		if (++i < nents)
2738 			sg = sg_next(sg);
2739 	}
2740 
2741 	if (ops->iotlb_sync_map) {
2742 		ret = ops->iotlb_sync_map(domain, iova, mapped);
2743 		if (ret)
2744 			goto out_err;
2745 	}
2746 	return mapped;
2747 
2748 out_err:
2749 	/* undo mappings already done */
2750 	iommu_unmap(domain, iova, mapped);
2751 
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL_GPL(iommu_map_sg);
2755 
2756 /**
2757  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2758  * @domain: the iommu domain where the fault has happened
2759  * @dev: the device where the fault has happened
2760  * @iova: the faulting address
2761  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2762  *
2763  * This function should be called by the low-level IOMMU implementations
2764  * whenever IOMMU faults happen, to allow high-level users, that are
2765  * interested in such events, to know about them.
2766  *
2767  * This event may be useful for several possible use cases:
2768  * - mere logging of the event
2769  * - dynamic TLB/PTE loading
2770  * - if restarting of the faulting device is required
2771  *
2772  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2773  * PTE/TLB loading will one day be supported, implementations will be able
2774  * to tell whether it succeeded or not according to this return value).
2775  *
2776  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2777  * (though fault handlers can also return -ENOSYS, in case they want to
2778  * elicit the default behavior of the IOMMU drivers).
2779  */
2780 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2781 		       unsigned long iova, int flags)
2782 {
2783 	int ret = -ENOSYS;
2784 
2785 	/*
2786 	 * if upper layers showed interest and installed a fault handler,
2787 	 * invoke it.
2788 	 */
2789 	if (domain->handler)
2790 		ret = domain->handler(domain, dev, iova, flags,
2791 						domain->handler_token);
2792 
2793 	trace_io_page_fault(dev, iova, flags);
2794 	return ret;
2795 }
2796 EXPORT_SYMBOL_GPL(report_iommu_fault);
2797 
2798 static int __init iommu_init(void)
2799 {
2800 	iommu_group_kset = kset_create_and_add("iommu_groups",
2801 					       NULL, kernel_kobj);
2802 	BUG_ON(!iommu_group_kset);
2803 
2804 	iommu_debugfs_setup();
2805 
2806 	return 0;
2807 }
2808 core_initcall(iommu_init);
2809 
2810 int iommu_enable_nesting(struct iommu_domain *domain)
2811 {
2812 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2813 		return -EINVAL;
2814 	if (!domain->ops->enable_nesting)
2815 		return -EINVAL;
2816 	return domain->ops->enable_nesting(domain);
2817 }
2818 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2819 
2820 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2821 		unsigned long quirk)
2822 {
2823 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2824 		return -EINVAL;
2825 	if (!domain->ops->set_pgtable_quirks)
2826 		return -EINVAL;
2827 	return domain->ops->set_pgtable_quirks(domain, quirk);
2828 }
2829 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2830 
2831 /**
2832  * iommu_get_resv_regions - get reserved regions
2833  * @dev: device for which to get reserved regions
2834  * @list: reserved region list for device
2835  *
2836  * This returns a list of reserved IOVA regions specific to this device.
2837  * A domain user should not map IOVA in these ranges.
2838  */
2839 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2840 {
2841 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2842 
2843 	if (ops->get_resv_regions)
2844 		ops->get_resv_regions(dev, list);
2845 }
2846 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2847 
2848 /**
2849  * iommu_put_resv_regions - release reserved regions
2850  * @dev: device for which to free reserved regions
2851  * @list: reserved region list for device
2852  *
2853  * This releases a reserved region list acquired by iommu_get_resv_regions().
2854  */
2855 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2856 {
2857 	struct iommu_resv_region *entry, *next;
2858 
2859 	list_for_each_entry_safe(entry, next, list, list) {
2860 		if (entry->free)
2861 			entry->free(dev, entry);
2862 		else
2863 			kfree(entry);
2864 	}
2865 }
2866 EXPORT_SYMBOL(iommu_put_resv_regions);
2867 
2868 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2869 						  size_t length, int prot,
2870 						  enum iommu_resv_type type,
2871 						  gfp_t gfp)
2872 {
2873 	struct iommu_resv_region *region;
2874 
2875 	region = kzalloc(sizeof(*region), gfp);
2876 	if (!region)
2877 		return NULL;
2878 
2879 	INIT_LIST_HEAD(&region->list);
2880 	region->start = start;
2881 	region->length = length;
2882 	region->prot = prot;
2883 	region->type = type;
2884 	return region;
2885 }
2886 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2887 
2888 void iommu_set_default_passthrough(bool cmd_line)
2889 {
2890 	if (cmd_line)
2891 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2892 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2893 }
2894 
2895 void iommu_set_default_translated(bool cmd_line)
2896 {
2897 	if (cmd_line)
2898 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2899 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2900 }
2901 
2902 bool iommu_default_passthrough(void)
2903 {
2904 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2905 }
2906 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2907 
2908 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2909 {
2910 	const struct iommu_ops *ops = NULL;
2911 	struct iommu_device *iommu;
2912 
2913 	spin_lock(&iommu_device_lock);
2914 	list_for_each_entry(iommu, &iommu_device_list, list)
2915 		if (iommu->fwnode == fwnode) {
2916 			ops = iommu->ops;
2917 			break;
2918 		}
2919 	spin_unlock(&iommu_device_lock);
2920 	return ops;
2921 }
2922 
2923 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2924 		      const struct iommu_ops *ops)
2925 {
2926 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2927 
2928 	if (fwspec)
2929 		return ops == fwspec->ops ? 0 : -EINVAL;
2930 
2931 	if (!dev_iommu_get(dev))
2932 		return -ENOMEM;
2933 
2934 	/* Preallocate for the overwhelmingly common case of 1 ID */
2935 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2936 	if (!fwspec)
2937 		return -ENOMEM;
2938 
2939 	of_node_get(to_of_node(iommu_fwnode));
2940 	fwspec->iommu_fwnode = iommu_fwnode;
2941 	fwspec->ops = ops;
2942 	dev_iommu_fwspec_set(dev, fwspec);
2943 	return 0;
2944 }
2945 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2946 
2947 void iommu_fwspec_free(struct device *dev)
2948 {
2949 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2950 
2951 	if (fwspec) {
2952 		fwnode_handle_put(fwspec->iommu_fwnode);
2953 		kfree(fwspec);
2954 		dev_iommu_fwspec_set(dev, NULL);
2955 	}
2956 }
2957 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2958 
2959 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2960 {
2961 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2962 	int i, new_num;
2963 
2964 	if (!fwspec)
2965 		return -EINVAL;
2966 
2967 	new_num = fwspec->num_ids + num_ids;
2968 	if (new_num > 1) {
2969 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2970 				  GFP_KERNEL);
2971 		if (!fwspec)
2972 			return -ENOMEM;
2973 
2974 		dev_iommu_fwspec_set(dev, fwspec);
2975 	}
2976 
2977 	for (i = 0; i < num_ids; i++)
2978 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2979 
2980 	fwspec->num_ids = new_num;
2981 	return 0;
2982 }
2983 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2984 
2985 /*
2986  * Per device IOMMU features.
2987  */
2988 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2989 {
2990 	if (dev->iommu && dev->iommu->iommu_dev) {
2991 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2992 
2993 		if (ops->dev_enable_feat)
2994 			return ops->dev_enable_feat(dev, feat);
2995 	}
2996 
2997 	return -ENODEV;
2998 }
2999 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
3000 
3001 /*
3002  * The device drivers should do the necessary cleanups before calling this.
3003  */
3004 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
3005 {
3006 	if (dev->iommu && dev->iommu->iommu_dev) {
3007 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
3008 
3009 		if (ops->dev_disable_feat)
3010 			return ops->dev_disable_feat(dev, feat);
3011 	}
3012 
3013 	return -EBUSY;
3014 }
3015 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
3016 
3017 /**
3018  * iommu_setup_default_domain - Set the default_domain for the group
3019  * @group: Group to change
3020  * @target_type: Domain type to set as the default_domain
3021  *
3022  * Allocate a default domain and set it as the current domain on the group. If
3023  * the group already has a default domain it will be changed to the target_type.
3024  * When target_type is 0 the default domain is selected based on driver and
3025  * system preferences.
3026  */
3027 static int iommu_setup_default_domain(struct iommu_group *group,
3028 				      int target_type)
3029 {
3030 	struct iommu_domain *old_dom = group->default_domain;
3031 	struct group_device *gdev;
3032 	struct iommu_domain *dom;
3033 	bool direct_failed;
3034 	int req_type;
3035 	int ret;
3036 
3037 	lockdep_assert_held(&group->mutex);
3038 
3039 	req_type = iommu_get_default_domain_type(group, target_type);
3040 	if (req_type < 0)
3041 		return -EINVAL;
3042 
3043 	dom = iommu_group_alloc_default_domain(group, req_type);
3044 	if (!dom)
3045 		return -ENODEV;
3046 
3047 	if (group->default_domain == dom)
3048 		return 0;
3049 
3050 	/*
3051 	 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
3052 	 * mapped before their device is attached, in order to guarantee
3053 	 * continuity with any FW activity
3054 	 */
3055 	direct_failed = false;
3056 	for_each_group_device(group, gdev) {
3057 		if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
3058 			direct_failed = true;
3059 			dev_warn_once(
3060 				gdev->dev->iommu->iommu_dev->dev,
3061 				"IOMMU driver was not able to establish FW requested direct mapping.");
3062 		}
3063 	}
3064 
3065 	/* We must set default_domain early for __iommu_device_set_domain */
3066 	group->default_domain = dom;
3067 	if (!group->domain) {
3068 		/*
3069 		 * Drivers are not allowed to fail the first domain attach.
3070 		 * The only way to recover from this is to fail attaching the
3071 		 * iommu driver and call ops->release_device. Put the domain
3072 		 * in group->default_domain so it is freed after.
3073 		 */
3074 		ret = __iommu_group_set_domain_internal(
3075 			group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3076 		if (WARN_ON(ret))
3077 			goto out_free_old;
3078 	} else {
3079 		ret = __iommu_group_set_domain(group, dom);
3080 		if (ret)
3081 			goto err_restore_def_domain;
3082 	}
3083 
3084 	/*
3085 	 * Drivers are supposed to allow mappings to be installed in a domain
3086 	 * before device attachment, but some don't. Hack around this defect by
3087 	 * trying again after attaching. If this happens it means the device
3088 	 * will not continuously have the IOMMU_RESV_DIRECT map.
3089 	 */
3090 	if (direct_failed) {
3091 		for_each_group_device(group, gdev) {
3092 			ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3093 			if (ret)
3094 				goto err_restore_domain;
3095 		}
3096 	}
3097 
3098 out_free_old:
3099 	if (old_dom)
3100 		iommu_domain_free(old_dom);
3101 	return ret;
3102 
3103 err_restore_domain:
3104 	if (old_dom)
3105 		__iommu_group_set_domain_internal(
3106 			group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3107 err_restore_def_domain:
3108 	if (old_dom) {
3109 		iommu_domain_free(dom);
3110 		group->default_domain = old_dom;
3111 	}
3112 	return ret;
3113 }
3114 
3115 /*
3116  * Changing the default domain through sysfs requires the users to unbind the
3117  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3118  * transition. Return failure if this isn't met.
3119  *
3120  * We need to consider the race between this and the device release path.
3121  * group->mutex is used here to guarantee that the device release path
3122  * will not be entered at the same time.
3123  */
3124 static ssize_t iommu_group_store_type(struct iommu_group *group,
3125 				      const char *buf, size_t count)
3126 {
3127 	struct group_device *gdev;
3128 	int ret, req_type;
3129 
3130 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3131 		return -EACCES;
3132 
3133 	if (WARN_ON(!group) || !group->default_domain)
3134 		return -EINVAL;
3135 
3136 	if (sysfs_streq(buf, "identity"))
3137 		req_type = IOMMU_DOMAIN_IDENTITY;
3138 	else if (sysfs_streq(buf, "DMA"))
3139 		req_type = IOMMU_DOMAIN_DMA;
3140 	else if (sysfs_streq(buf, "DMA-FQ"))
3141 		req_type = IOMMU_DOMAIN_DMA_FQ;
3142 	else if (sysfs_streq(buf, "auto"))
3143 		req_type = 0;
3144 	else
3145 		return -EINVAL;
3146 
3147 	mutex_lock(&group->mutex);
3148 	/* We can bring up a flush queue without tearing down the domain. */
3149 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3150 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
3151 		ret = iommu_dma_init_fq(group->default_domain);
3152 		if (ret)
3153 			goto out_unlock;
3154 
3155 		group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3156 		ret = count;
3157 		goto out_unlock;
3158 	}
3159 
3160 	/* Otherwise, ensure that device exists and no driver is bound. */
3161 	if (list_empty(&group->devices) || group->owner_cnt) {
3162 		ret = -EPERM;
3163 		goto out_unlock;
3164 	}
3165 
3166 	ret = iommu_setup_default_domain(group, req_type);
3167 	if (ret)
3168 		goto out_unlock;
3169 
3170 	/*
3171 	 * Release the mutex here because ops->probe_finalize() call-back of
3172 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3173 	 * in-turn might call back into IOMMU core code, where it tries to take
3174 	 * group->mutex, resulting in a deadlock.
3175 	 */
3176 	mutex_unlock(&group->mutex);
3177 
3178 	/* Make sure dma_ops is appropriatley set */
3179 	for_each_group_device(group, gdev)
3180 		iommu_group_do_probe_finalize(gdev->dev);
3181 	return count;
3182 
3183 out_unlock:
3184 	mutex_unlock(&group->mutex);
3185 	return ret ?: count;
3186 }
3187 
3188 /**
3189  * iommu_device_use_default_domain() - Device driver wants to handle device
3190  *                                     DMA through the kernel DMA API.
3191  * @dev: The device.
3192  *
3193  * The device driver about to bind @dev wants to do DMA through the kernel
3194  * DMA API. Return 0 if it is allowed, otherwise an error.
3195  */
3196 int iommu_device_use_default_domain(struct device *dev)
3197 {
3198 	/* Caller is the driver core during the pre-probe path */
3199 	struct iommu_group *group = dev->iommu_group;
3200 	int ret = 0;
3201 
3202 	if (!group)
3203 		return 0;
3204 
3205 	mutex_lock(&group->mutex);
3206 	if (group->owner_cnt) {
3207 		if (group->domain != group->default_domain || group->owner ||
3208 		    !xa_empty(&group->pasid_array)) {
3209 			ret = -EBUSY;
3210 			goto unlock_out;
3211 		}
3212 	}
3213 
3214 	group->owner_cnt++;
3215 
3216 unlock_out:
3217 	mutex_unlock(&group->mutex);
3218 	return ret;
3219 }
3220 
3221 /**
3222  * iommu_device_unuse_default_domain() - Device driver stops handling device
3223  *                                       DMA through the kernel DMA API.
3224  * @dev: The device.
3225  *
3226  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3227  * It must be called after iommu_device_use_default_domain().
3228  */
3229 void iommu_device_unuse_default_domain(struct device *dev)
3230 {
3231 	/* Caller is the driver core during the post-probe path */
3232 	struct iommu_group *group = dev->iommu_group;
3233 
3234 	if (!group)
3235 		return;
3236 
3237 	mutex_lock(&group->mutex);
3238 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3239 		group->owner_cnt--;
3240 
3241 	mutex_unlock(&group->mutex);
3242 }
3243 
3244 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3245 {
3246 	if (group->blocking_domain)
3247 		return 0;
3248 
3249 	group->blocking_domain =
3250 		__iommu_group_domain_alloc(group, IOMMU_DOMAIN_BLOCKED);
3251 	if (!group->blocking_domain) {
3252 		/*
3253 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3254 		 * create an empty domain instead.
3255 		 */
3256 		group->blocking_domain = __iommu_group_domain_alloc(
3257 			group, IOMMU_DOMAIN_UNMANAGED);
3258 		if (!group->blocking_domain)
3259 			return -EINVAL;
3260 	}
3261 	return 0;
3262 }
3263 
3264 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3265 {
3266 	int ret;
3267 
3268 	if ((group->domain && group->domain != group->default_domain) ||
3269 	    !xa_empty(&group->pasid_array))
3270 		return -EBUSY;
3271 
3272 	ret = __iommu_group_alloc_blocking_domain(group);
3273 	if (ret)
3274 		return ret;
3275 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3276 	if (ret)
3277 		return ret;
3278 
3279 	group->owner = owner;
3280 	group->owner_cnt++;
3281 	return 0;
3282 }
3283 
3284 /**
3285  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3286  * @group: The group.
3287  * @owner: Caller specified pointer. Used for exclusive ownership.
3288  *
3289  * This is to support backward compatibility for vfio which manages the dma
3290  * ownership in iommu_group level. New invocations on this interface should be
3291  * prohibited. Only a single owner may exist for a group.
3292  */
3293 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3294 {
3295 	int ret = 0;
3296 
3297 	if (WARN_ON(!owner))
3298 		return -EINVAL;
3299 
3300 	mutex_lock(&group->mutex);
3301 	if (group->owner_cnt) {
3302 		ret = -EPERM;
3303 		goto unlock_out;
3304 	}
3305 
3306 	ret = __iommu_take_dma_ownership(group, owner);
3307 unlock_out:
3308 	mutex_unlock(&group->mutex);
3309 
3310 	return ret;
3311 }
3312 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3313 
3314 /**
3315  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3316  * @dev: The device.
3317  * @owner: Caller specified pointer. Used for exclusive ownership.
3318  *
3319  * Claim the DMA ownership of a device. Multiple devices in the same group may
3320  * concurrently claim ownership if they present the same owner value. Returns 0
3321  * on success and error code on failure
3322  */
3323 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3324 {
3325 	/* Caller must be a probed driver on dev */
3326 	struct iommu_group *group = dev->iommu_group;
3327 	int ret = 0;
3328 
3329 	if (WARN_ON(!owner))
3330 		return -EINVAL;
3331 
3332 	if (!group)
3333 		return -ENODEV;
3334 
3335 	mutex_lock(&group->mutex);
3336 	if (group->owner_cnt) {
3337 		if (group->owner != owner) {
3338 			ret = -EPERM;
3339 			goto unlock_out;
3340 		}
3341 		group->owner_cnt++;
3342 		goto unlock_out;
3343 	}
3344 
3345 	ret = __iommu_take_dma_ownership(group, owner);
3346 unlock_out:
3347 	mutex_unlock(&group->mutex);
3348 	return ret;
3349 }
3350 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3351 
3352 static void __iommu_release_dma_ownership(struct iommu_group *group)
3353 {
3354 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3355 		    !xa_empty(&group->pasid_array)))
3356 		return;
3357 
3358 	group->owner_cnt = 0;
3359 	group->owner = NULL;
3360 	__iommu_group_set_domain_nofail(group, group->default_domain);
3361 }
3362 
3363 /**
3364  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3365  * @group: The group
3366  *
3367  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3368  */
3369 void iommu_group_release_dma_owner(struct iommu_group *group)
3370 {
3371 	mutex_lock(&group->mutex);
3372 	__iommu_release_dma_ownership(group);
3373 	mutex_unlock(&group->mutex);
3374 }
3375 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3376 
3377 /**
3378  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3379  * @dev: The device.
3380  *
3381  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3382  */
3383 void iommu_device_release_dma_owner(struct device *dev)
3384 {
3385 	/* Caller must be a probed driver on dev */
3386 	struct iommu_group *group = dev->iommu_group;
3387 
3388 	mutex_lock(&group->mutex);
3389 	if (group->owner_cnt > 1)
3390 		group->owner_cnt--;
3391 	else
3392 		__iommu_release_dma_ownership(group);
3393 	mutex_unlock(&group->mutex);
3394 }
3395 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3396 
3397 /**
3398  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3399  * @group: The group.
3400  *
3401  * This provides status query on a given group. It is racy and only for
3402  * non-binding status reporting.
3403  */
3404 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3405 {
3406 	unsigned int user;
3407 
3408 	mutex_lock(&group->mutex);
3409 	user = group->owner_cnt;
3410 	mutex_unlock(&group->mutex);
3411 
3412 	return user;
3413 }
3414 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3415 
3416 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3417 				   struct iommu_group *group, ioasid_t pasid)
3418 {
3419 	struct group_device *device;
3420 	int ret = 0;
3421 
3422 	for_each_group_device(group, device) {
3423 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3424 		if (ret)
3425 			break;
3426 	}
3427 
3428 	return ret;
3429 }
3430 
3431 static void __iommu_remove_group_pasid(struct iommu_group *group,
3432 				       ioasid_t pasid)
3433 {
3434 	struct group_device *device;
3435 	const struct iommu_ops *ops;
3436 
3437 	for_each_group_device(group, device) {
3438 		ops = dev_iommu_ops(device->dev);
3439 		ops->remove_dev_pasid(device->dev, pasid);
3440 	}
3441 }
3442 
3443 /*
3444  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3445  * @domain: the iommu domain.
3446  * @dev: the attached device.
3447  * @pasid: the pasid of the device.
3448  *
3449  * Return: 0 on success, or an error.
3450  */
3451 int iommu_attach_device_pasid(struct iommu_domain *domain,
3452 			      struct device *dev, ioasid_t pasid)
3453 {
3454 	/* Caller must be a probed driver on dev */
3455 	struct iommu_group *group = dev->iommu_group;
3456 	void *curr;
3457 	int ret;
3458 
3459 	if (!domain->ops->set_dev_pasid)
3460 		return -EOPNOTSUPP;
3461 
3462 	if (!group)
3463 		return -ENODEV;
3464 
3465 	mutex_lock(&group->mutex);
3466 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3467 	if (curr) {
3468 		ret = xa_err(curr) ? : -EBUSY;
3469 		goto out_unlock;
3470 	}
3471 
3472 	ret = __iommu_set_group_pasid(domain, group, pasid);
3473 	if (ret) {
3474 		__iommu_remove_group_pasid(group, pasid);
3475 		xa_erase(&group->pasid_array, pasid);
3476 	}
3477 out_unlock:
3478 	mutex_unlock(&group->mutex);
3479 	return ret;
3480 }
3481 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3482 
3483 /*
3484  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3485  * @domain: the iommu domain.
3486  * @dev: the attached device.
3487  * @pasid: the pasid of the device.
3488  *
3489  * The @domain must have been attached to @pasid of the @dev with
3490  * iommu_attach_device_pasid().
3491  */
3492 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3493 			       ioasid_t pasid)
3494 {
3495 	/* Caller must be a probed driver on dev */
3496 	struct iommu_group *group = dev->iommu_group;
3497 
3498 	mutex_lock(&group->mutex);
3499 	__iommu_remove_group_pasid(group, pasid);
3500 	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3501 	mutex_unlock(&group->mutex);
3502 }
3503 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3504 
3505 /*
3506  * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3507  * @dev: the queried device
3508  * @pasid: the pasid of the device
3509  * @type: matched domain type, 0 for any match
3510  *
3511  * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3512  * domain attached to pasid of a device. Callers must hold a lock around this
3513  * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3514  * type is being manipulated. This API does not internally resolve races with
3515  * attach/detach.
3516  *
3517  * Return: attached domain on success, NULL otherwise.
3518  */
3519 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3520 						    ioasid_t pasid,
3521 						    unsigned int type)
3522 {
3523 	/* Caller must be a probed driver on dev */
3524 	struct iommu_group *group = dev->iommu_group;
3525 	struct iommu_domain *domain;
3526 
3527 	if (!group)
3528 		return NULL;
3529 
3530 	xa_lock(&group->pasid_array);
3531 	domain = xa_load(&group->pasid_array, pasid);
3532 	if (type && domain && domain->type != type)
3533 		domain = ERR_PTR(-EBUSY);
3534 	xa_unlock(&group->pasid_array);
3535 
3536 	return domain;
3537 }
3538 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3539 
3540 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3541 					    struct mm_struct *mm)
3542 {
3543 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3544 	struct iommu_domain *domain;
3545 
3546 	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3547 	if (!domain)
3548 		return NULL;
3549 
3550 	domain->type = IOMMU_DOMAIN_SVA;
3551 	mmgrab(mm);
3552 	domain->mm = mm;
3553 	domain->iopf_handler = iommu_sva_handle_iopf;
3554 	domain->fault_data = mm;
3555 
3556 	return domain;
3557 }
3558 
3559 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3560 {
3561 	int ret;
3562 
3563 	/* max_pasids == 0 means that the device does not support PASID */
3564 	if (!dev->iommu->max_pasids)
3565 		return IOMMU_PASID_INVALID;
3566 
3567 	/*
3568 	 * max_pasids is set up by vendor driver based on number of PASID bits
3569 	 * supported but the IDA allocation is inclusive.
3570 	 */
3571 	ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3572 			      dev->iommu->max_pasids - 1, GFP_KERNEL);
3573 	return ret < 0 ? IOMMU_PASID_INVALID : ret;
3574 }
3575 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3576 
3577 void iommu_free_global_pasid(ioasid_t pasid)
3578 {
3579 	if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3580 		return;
3581 
3582 	ida_free(&iommu_global_pasid_ida, pasid);
3583 }
3584 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3585