xref: /linux/drivers/iommu/iommu.c (revision bc7d12b91bd35477fd650c4d72b61239de9d9066)
1 /*
2  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <jroedel@suse.de>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18 
19 #define pr_fmt(fmt)    "iommu: " fmt
20 
21 #include <linux/device.h>
22 #include <linux/kernel.h>
23 #include <linux/bug.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/iommu.h>
29 #include <linux/idr.h>
30 #include <linux/notifier.h>
31 #include <linux/err.h>
32 #include <linux/pci.h>
33 #include <linux/bitops.h>
34 #include <linux/property.h>
35 #include <trace/events/iommu.h>
36 
37 static struct kset *iommu_group_kset;
38 static DEFINE_IDA(iommu_group_ida);
39 
40 struct iommu_callback_data {
41 	const struct iommu_ops *ops;
42 };
43 
44 struct iommu_group {
45 	struct kobject kobj;
46 	struct kobject *devices_kobj;
47 	struct list_head devices;
48 	struct mutex mutex;
49 	struct blocking_notifier_head notifier;
50 	void *iommu_data;
51 	void (*iommu_data_release)(void *iommu_data);
52 	char *name;
53 	int id;
54 	struct iommu_domain *default_domain;
55 	struct iommu_domain *domain;
56 };
57 
58 struct iommu_device {
59 	struct list_head list;
60 	struct device *dev;
61 	char *name;
62 };
63 
64 struct iommu_group_attribute {
65 	struct attribute attr;
66 	ssize_t (*show)(struct iommu_group *group, char *buf);
67 	ssize_t (*store)(struct iommu_group *group,
68 			 const char *buf, size_t count);
69 };
70 
71 static const char * const iommu_group_resv_type_string[] = {
72 	[IOMMU_RESV_DIRECT]	= "direct",
73 	[IOMMU_RESV_RESERVED]	= "reserved",
74 	[IOMMU_RESV_MSI]	= "msi",
75 };
76 
77 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
78 struct iommu_group_attribute iommu_group_attr_##_name =		\
79 	__ATTR(_name, _mode, _show, _store)
80 
81 #define to_iommu_group_attr(_attr)	\
82 	container_of(_attr, struct iommu_group_attribute, attr)
83 #define to_iommu_group(_kobj)		\
84 	container_of(_kobj, struct iommu_group, kobj)
85 
86 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
87 						 unsigned type);
88 static int __iommu_attach_device(struct iommu_domain *domain,
89 				 struct device *dev);
90 static int __iommu_attach_group(struct iommu_domain *domain,
91 				struct iommu_group *group);
92 static void __iommu_detach_group(struct iommu_domain *domain,
93 				 struct iommu_group *group);
94 
95 static ssize_t iommu_group_attr_show(struct kobject *kobj,
96 				     struct attribute *__attr, char *buf)
97 {
98 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
99 	struct iommu_group *group = to_iommu_group(kobj);
100 	ssize_t ret = -EIO;
101 
102 	if (attr->show)
103 		ret = attr->show(group, buf);
104 	return ret;
105 }
106 
107 static ssize_t iommu_group_attr_store(struct kobject *kobj,
108 				      struct attribute *__attr,
109 				      const char *buf, size_t count)
110 {
111 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
112 	struct iommu_group *group = to_iommu_group(kobj);
113 	ssize_t ret = -EIO;
114 
115 	if (attr->store)
116 		ret = attr->store(group, buf, count);
117 	return ret;
118 }
119 
120 static const struct sysfs_ops iommu_group_sysfs_ops = {
121 	.show = iommu_group_attr_show,
122 	.store = iommu_group_attr_store,
123 };
124 
125 static int iommu_group_create_file(struct iommu_group *group,
126 				   struct iommu_group_attribute *attr)
127 {
128 	return sysfs_create_file(&group->kobj, &attr->attr);
129 }
130 
131 static void iommu_group_remove_file(struct iommu_group *group,
132 				    struct iommu_group_attribute *attr)
133 {
134 	sysfs_remove_file(&group->kobj, &attr->attr);
135 }
136 
137 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
138 {
139 	return sprintf(buf, "%s\n", group->name);
140 }
141 
142 /**
143  * iommu_insert_resv_region - Insert a new region in the
144  * list of reserved regions.
145  * @new: new region to insert
146  * @regions: list of regions
147  *
148  * The new element is sorted by address with respect to the other
149  * regions of the same type. In case it overlaps with another
150  * region of the same type, regions are merged. In case it
151  * overlaps with another region of different type, regions are
152  * not merged.
153  */
154 static int iommu_insert_resv_region(struct iommu_resv_region *new,
155 				    struct list_head *regions)
156 {
157 	struct iommu_resv_region *region;
158 	phys_addr_t start = new->start;
159 	phys_addr_t end = new->start + new->length - 1;
160 	struct list_head *pos = regions->next;
161 
162 	while (pos != regions) {
163 		struct iommu_resv_region *entry =
164 			list_entry(pos, struct iommu_resv_region, list);
165 		phys_addr_t a = entry->start;
166 		phys_addr_t b = entry->start + entry->length - 1;
167 		int type = entry->type;
168 
169 		if (end < a) {
170 			goto insert;
171 		} else if (start > b) {
172 			pos = pos->next;
173 		} else if ((start >= a) && (end <= b)) {
174 			if (new->type == type)
175 				goto done;
176 			else
177 				pos = pos->next;
178 		} else {
179 			if (new->type == type) {
180 				phys_addr_t new_start = min(a, start);
181 				phys_addr_t new_end = max(b, end);
182 
183 				list_del(&entry->list);
184 				entry->start = new_start;
185 				entry->length = new_end - new_start + 1;
186 				iommu_insert_resv_region(entry, regions);
187 			} else {
188 				pos = pos->next;
189 			}
190 		}
191 	}
192 insert:
193 	region = iommu_alloc_resv_region(new->start, new->length,
194 					 new->prot, new->type);
195 	if (!region)
196 		return -ENOMEM;
197 
198 	list_add_tail(&region->list, pos);
199 done:
200 	return 0;
201 }
202 
203 static int
204 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
205 				 struct list_head *group_resv_regions)
206 {
207 	struct iommu_resv_region *entry;
208 	int ret;
209 
210 	list_for_each_entry(entry, dev_resv_regions, list) {
211 		ret = iommu_insert_resv_region(entry, group_resv_regions);
212 		if (ret)
213 			break;
214 	}
215 	return ret;
216 }
217 
218 int iommu_get_group_resv_regions(struct iommu_group *group,
219 				 struct list_head *head)
220 {
221 	struct iommu_device *device;
222 	int ret = 0;
223 
224 	mutex_lock(&group->mutex);
225 	list_for_each_entry(device, &group->devices, list) {
226 		struct list_head dev_resv_regions;
227 
228 		INIT_LIST_HEAD(&dev_resv_regions);
229 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
230 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
231 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
232 		if (ret)
233 			break;
234 	}
235 	mutex_unlock(&group->mutex);
236 	return ret;
237 }
238 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
239 
240 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
241 					     char *buf)
242 {
243 	struct iommu_resv_region *region, *next;
244 	struct list_head group_resv_regions;
245 	char *str = buf;
246 
247 	INIT_LIST_HEAD(&group_resv_regions);
248 	iommu_get_group_resv_regions(group, &group_resv_regions);
249 
250 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
251 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
252 			       (long long int)region->start,
253 			       (long long int)(region->start +
254 						region->length - 1),
255 			       iommu_group_resv_type_string[region->type]);
256 		kfree(region);
257 	}
258 
259 	return (str - buf);
260 }
261 
262 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
263 
264 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
265 			iommu_group_show_resv_regions, NULL);
266 
267 static void iommu_group_release(struct kobject *kobj)
268 {
269 	struct iommu_group *group = to_iommu_group(kobj);
270 
271 	pr_debug("Releasing group %d\n", group->id);
272 
273 	if (group->iommu_data_release)
274 		group->iommu_data_release(group->iommu_data);
275 
276 	ida_simple_remove(&iommu_group_ida, group->id);
277 
278 	if (group->default_domain)
279 		iommu_domain_free(group->default_domain);
280 
281 	kfree(group->name);
282 	kfree(group);
283 }
284 
285 static struct kobj_type iommu_group_ktype = {
286 	.sysfs_ops = &iommu_group_sysfs_ops,
287 	.release = iommu_group_release,
288 };
289 
290 /**
291  * iommu_group_alloc - Allocate a new group
292  * @name: Optional name to associate with group, visible in sysfs
293  *
294  * This function is called by an iommu driver to allocate a new iommu
295  * group.  The iommu group represents the minimum granularity of the iommu.
296  * Upon successful return, the caller holds a reference to the supplied
297  * group in order to hold the group until devices are added.  Use
298  * iommu_group_put() to release this extra reference count, allowing the
299  * group to be automatically reclaimed once it has no devices or external
300  * references.
301  */
302 struct iommu_group *iommu_group_alloc(void)
303 {
304 	struct iommu_group *group;
305 	int ret;
306 
307 	group = kzalloc(sizeof(*group), GFP_KERNEL);
308 	if (!group)
309 		return ERR_PTR(-ENOMEM);
310 
311 	group->kobj.kset = iommu_group_kset;
312 	mutex_init(&group->mutex);
313 	INIT_LIST_HEAD(&group->devices);
314 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
315 
316 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
317 	if (ret < 0) {
318 		kfree(group);
319 		return ERR_PTR(ret);
320 	}
321 	group->id = ret;
322 
323 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
324 				   NULL, "%d", group->id);
325 	if (ret) {
326 		ida_simple_remove(&iommu_group_ida, group->id);
327 		kfree(group);
328 		return ERR_PTR(ret);
329 	}
330 
331 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
332 	if (!group->devices_kobj) {
333 		kobject_put(&group->kobj); /* triggers .release & free */
334 		return ERR_PTR(-ENOMEM);
335 	}
336 
337 	/*
338 	 * The devices_kobj holds a reference on the group kobject, so
339 	 * as long as that exists so will the group.  We can therefore
340 	 * use the devices_kobj for reference counting.
341 	 */
342 	kobject_put(&group->kobj);
343 
344 	ret = iommu_group_create_file(group,
345 				      &iommu_group_attr_reserved_regions);
346 	if (ret)
347 		return ERR_PTR(ret);
348 
349 	pr_debug("Allocated group %d\n", group->id);
350 
351 	return group;
352 }
353 EXPORT_SYMBOL_GPL(iommu_group_alloc);
354 
355 struct iommu_group *iommu_group_get_by_id(int id)
356 {
357 	struct kobject *group_kobj;
358 	struct iommu_group *group;
359 	const char *name;
360 
361 	if (!iommu_group_kset)
362 		return NULL;
363 
364 	name = kasprintf(GFP_KERNEL, "%d", id);
365 	if (!name)
366 		return NULL;
367 
368 	group_kobj = kset_find_obj(iommu_group_kset, name);
369 	kfree(name);
370 
371 	if (!group_kobj)
372 		return NULL;
373 
374 	group = container_of(group_kobj, struct iommu_group, kobj);
375 	BUG_ON(group->id != id);
376 
377 	kobject_get(group->devices_kobj);
378 	kobject_put(&group->kobj);
379 
380 	return group;
381 }
382 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
383 
384 /**
385  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
386  * @group: the group
387  *
388  * iommu drivers can store data in the group for use when doing iommu
389  * operations.  This function provides a way to retrieve it.  Caller
390  * should hold a group reference.
391  */
392 void *iommu_group_get_iommudata(struct iommu_group *group)
393 {
394 	return group->iommu_data;
395 }
396 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
397 
398 /**
399  * iommu_group_set_iommudata - set iommu_data for a group
400  * @group: the group
401  * @iommu_data: new data
402  * @release: release function for iommu_data
403  *
404  * iommu drivers can store data in the group for use when doing iommu
405  * operations.  This function provides a way to set the data after
406  * the group has been allocated.  Caller should hold a group reference.
407  */
408 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
409 			       void (*release)(void *iommu_data))
410 {
411 	group->iommu_data = iommu_data;
412 	group->iommu_data_release = release;
413 }
414 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
415 
416 /**
417  * iommu_group_set_name - set name for a group
418  * @group: the group
419  * @name: name
420  *
421  * Allow iommu driver to set a name for a group.  When set it will
422  * appear in a name attribute file under the group in sysfs.
423  */
424 int iommu_group_set_name(struct iommu_group *group, const char *name)
425 {
426 	int ret;
427 
428 	if (group->name) {
429 		iommu_group_remove_file(group, &iommu_group_attr_name);
430 		kfree(group->name);
431 		group->name = NULL;
432 		if (!name)
433 			return 0;
434 	}
435 
436 	group->name = kstrdup(name, GFP_KERNEL);
437 	if (!group->name)
438 		return -ENOMEM;
439 
440 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
441 	if (ret) {
442 		kfree(group->name);
443 		group->name = NULL;
444 		return ret;
445 	}
446 
447 	return 0;
448 }
449 EXPORT_SYMBOL_GPL(iommu_group_set_name);
450 
451 static int iommu_group_create_direct_mappings(struct iommu_group *group,
452 					      struct device *dev)
453 {
454 	struct iommu_domain *domain = group->default_domain;
455 	struct iommu_resv_region *entry;
456 	struct list_head mappings;
457 	unsigned long pg_size;
458 	int ret = 0;
459 
460 	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
461 		return 0;
462 
463 	BUG_ON(!domain->pgsize_bitmap);
464 
465 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
466 	INIT_LIST_HEAD(&mappings);
467 
468 	iommu_get_resv_regions(dev, &mappings);
469 
470 	/* We need to consider overlapping regions for different devices */
471 	list_for_each_entry(entry, &mappings, list) {
472 		dma_addr_t start, end, addr;
473 
474 		if (domain->ops->apply_resv_region)
475 			domain->ops->apply_resv_region(dev, domain, entry);
476 
477 		start = ALIGN(entry->start, pg_size);
478 		end   = ALIGN(entry->start + entry->length, pg_size);
479 
480 		if (entry->type != IOMMU_RESV_DIRECT)
481 			continue;
482 
483 		for (addr = start; addr < end; addr += pg_size) {
484 			phys_addr_t phys_addr;
485 
486 			phys_addr = iommu_iova_to_phys(domain, addr);
487 			if (phys_addr)
488 				continue;
489 
490 			ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
491 			if (ret)
492 				goto out;
493 		}
494 
495 	}
496 
497 out:
498 	iommu_put_resv_regions(dev, &mappings);
499 
500 	return ret;
501 }
502 
503 /**
504  * iommu_group_add_device - add a device to an iommu group
505  * @group: the group into which to add the device (reference should be held)
506  * @dev: the device
507  *
508  * This function is called by an iommu driver to add a device into a
509  * group.  Adding a device increments the group reference count.
510  */
511 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
512 {
513 	int ret, i = 0;
514 	struct iommu_device *device;
515 
516 	device = kzalloc(sizeof(*device), GFP_KERNEL);
517 	if (!device)
518 		return -ENOMEM;
519 
520 	device->dev = dev;
521 
522 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
523 	if (ret) {
524 		kfree(device);
525 		return ret;
526 	}
527 
528 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
529 rename:
530 	if (!device->name) {
531 		sysfs_remove_link(&dev->kobj, "iommu_group");
532 		kfree(device);
533 		return -ENOMEM;
534 	}
535 
536 	ret = sysfs_create_link_nowarn(group->devices_kobj,
537 				       &dev->kobj, device->name);
538 	if (ret) {
539 		kfree(device->name);
540 		if (ret == -EEXIST && i >= 0) {
541 			/*
542 			 * Account for the slim chance of collision
543 			 * and append an instance to the name.
544 			 */
545 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
546 						 kobject_name(&dev->kobj), i++);
547 			goto rename;
548 		}
549 
550 		sysfs_remove_link(&dev->kobj, "iommu_group");
551 		kfree(device);
552 		return ret;
553 	}
554 
555 	kobject_get(group->devices_kobj);
556 
557 	dev->iommu_group = group;
558 
559 	iommu_group_create_direct_mappings(group, dev);
560 
561 	mutex_lock(&group->mutex);
562 	list_add_tail(&device->list, &group->devices);
563 	if (group->domain)
564 		__iommu_attach_device(group->domain, dev);
565 	mutex_unlock(&group->mutex);
566 
567 	/* Notify any listeners about change to group. */
568 	blocking_notifier_call_chain(&group->notifier,
569 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
570 
571 	trace_add_device_to_group(group->id, dev);
572 
573 	pr_info("Adding device %s to group %d\n", dev_name(dev), group->id);
574 
575 	return 0;
576 }
577 EXPORT_SYMBOL_GPL(iommu_group_add_device);
578 
579 /**
580  * iommu_group_remove_device - remove a device from it's current group
581  * @dev: device to be removed
582  *
583  * This function is called by an iommu driver to remove the device from
584  * it's current group.  This decrements the iommu group reference count.
585  */
586 void iommu_group_remove_device(struct device *dev)
587 {
588 	struct iommu_group *group = dev->iommu_group;
589 	struct iommu_device *tmp_device, *device = NULL;
590 
591 	pr_info("Removing device %s from group %d\n", dev_name(dev), group->id);
592 
593 	/* Pre-notify listeners that a device is being removed. */
594 	blocking_notifier_call_chain(&group->notifier,
595 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
596 
597 	mutex_lock(&group->mutex);
598 	list_for_each_entry(tmp_device, &group->devices, list) {
599 		if (tmp_device->dev == dev) {
600 			device = tmp_device;
601 			list_del(&device->list);
602 			break;
603 		}
604 	}
605 	mutex_unlock(&group->mutex);
606 
607 	if (!device)
608 		return;
609 
610 	sysfs_remove_link(group->devices_kobj, device->name);
611 	sysfs_remove_link(&dev->kobj, "iommu_group");
612 
613 	trace_remove_device_from_group(group->id, dev);
614 
615 	kfree(device->name);
616 	kfree(device);
617 	dev->iommu_group = NULL;
618 	kobject_put(group->devices_kobj);
619 }
620 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
621 
622 static int iommu_group_device_count(struct iommu_group *group)
623 {
624 	struct iommu_device *entry;
625 	int ret = 0;
626 
627 	list_for_each_entry(entry, &group->devices, list)
628 		ret++;
629 
630 	return ret;
631 }
632 
633 /**
634  * iommu_group_for_each_dev - iterate over each device in the group
635  * @group: the group
636  * @data: caller opaque data to be passed to callback function
637  * @fn: caller supplied callback function
638  *
639  * This function is called by group users to iterate over group devices.
640  * Callers should hold a reference count to the group during callback.
641  * The group->mutex is held across callbacks, which will block calls to
642  * iommu_group_add/remove_device.
643  */
644 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
645 				      int (*fn)(struct device *, void *))
646 {
647 	struct iommu_device *device;
648 	int ret = 0;
649 
650 	list_for_each_entry(device, &group->devices, list) {
651 		ret = fn(device->dev, data);
652 		if (ret)
653 			break;
654 	}
655 	return ret;
656 }
657 
658 
659 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
660 			     int (*fn)(struct device *, void *))
661 {
662 	int ret;
663 
664 	mutex_lock(&group->mutex);
665 	ret = __iommu_group_for_each_dev(group, data, fn);
666 	mutex_unlock(&group->mutex);
667 
668 	return ret;
669 }
670 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
671 
672 /**
673  * iommu_group_get - Return the group for a device and increment reference
674  * @dev: get the group that this device belongs to
675  *
676  * This function is called by iommu drivers and users to get the group
677  * for the specified device.  If found, the group is returned and the group
678  * reference in incremented, else NULL.
679  */
680 struct iommu_group *iommu_group_get(struct device *dev)
681 {
682 	struct iommu_group *group = dev->iommu_group;
683 
684 	if (group)
685 		kobject_get(group->devices_kobj);
686 
687 	return group;
688 }
689 EXPORT_SYMBOL_GPL(iommu_group_get);
690 
691 /**
692  * iommu_group_ref_get - Increment reference on a group
693  * @group: the group to use, must not be NULL
694  *
695  * This function is called by iommu drivers to take additional references on an
696  * existing group.  Returns the given group for convenience.
697  */
698 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
699 {
700 	kobject_get(group->devices_kobj);
701 	return group;
702 }
703 
704 /**
705  * iommu_group_put - Decrement group reference
706  * @group: the group to use
707  *
708  * This function is called by iommu drivers and users to release the
709  * iommu group.  Once the reference count is zero, the group is released.
710  */
711 void iommu_group_put(struct iommu_group *group)
712 {
713 	if (group)
714 		kobject_put(group->devices_kobj);
715 }
716 EXPORT_SYMBOL_GPL(iommu_group_put);
717 
718 /**
719  * iommu_group_register_notifier - Register a notifier for group changes
720  * @group: the group to watch
721  * @nb: notifier block to signal
722  *
723  * This function allows iommu group users to track changes in a group.
724  * See include/linux/iommu.h for actions sent via this notifier.  Caller
725  * should hold a reference to the group throughout notifier registration.
726  */
727 int iommu_group_register_notifier(struct iommu_group *group,
728 				  struct notifier_block *nb)
729 {
730 	return blocking_notifier_chain_register(&group->notifier, nb);
731 }
732 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
733 
734 /**
735  * iommu_group_unregister_notifier - Unregister a notifier
736  * @group: the group to watch
737  * @nb: notifier block to signal
738  *
739  * Unregister a previously registered group notifier block.
740  */
741 int iommu_group_unregister_notifier(struct iommu_group *group,
742 				    struct notifier_block *nb)
743 {
744 	return blocking_notifier_chain_unregister(&group->notifier, nb);
745 }
746 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
747 
748 /**
749  * iommu_group_id - Return ID for a group
750  * @group: the group to ID
751  *
752  * Return the unique ID for the group matching the sysfs group number.
753  */
754 int iommu_group_id(struct iommu_group *group)
755 {
756 	return group->id;
757 }
758 EXPORT_SYMBOL_GPL(iommu_group_id);
759 
760 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
761 					       unsigned long *devfns);
762 
763 /*
764  * To consider a PCI device isolated, we require ACS to support Source
765  * Validation, Request Redirection, Completer Redirection, and Upstream
766  * Forwarding.  This effectively means that devices cannot spoof their
767  * requester ID, requests and completions cannot be redirected, and all
768  * transactions are forwarded upstream, even as it passes through a
769  * bridge where the target device is downstream.
770  */
771 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
772 
773 /*
774  * For multifunction devices which are not isolated from each other, find
775  * all the other non-isolated functions and look for existing groups.  For
776  * each function, we also need to look for aliases to or from other devices
777  * that may already have a group.
778  */
779 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
780 							unsigned long *devfns)
781 {
782 	struct pci_dev *tmp = NULL;
783 	struct iommu_group *group;
784 
785 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
786 		return NULL;
787 
788 	for_each_pci_dev(tmp) {
789 		if (tmp == pdev || tmp->bus != pdev->bus ||
790 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
791 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
792 			continue;
793 
794 		group = get_pci_alias_group(tmp, devfns);
795 		if (group) {
796 			pci_dev_put(tmp);
797 			return group;
798 		}
799 	}
800 
801 	return NULL;
802 }
803 
804 /*
805  * Look for aliases to or from the given device for existing groups. DMA
806  * aliases are only supported on the same bus, therefore the search
807  * space is quite small (especially since we're really only looking at pcie
808  * device, and therefore only expect multiple slots on the root complex or
809  * downstream switch ports).  It's conceivable though that a pair of
810  * multifunction devices could have aliases between them that would cause a
811  * loop.  To prevent this, we use a bitmap to track where we've been.
812  */
813 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
814 					       unsigned long *devfns)
815 {
816 	struct pci_dev *tmp = NULL;
817 	struct iommu_group *group;
818 
819 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
820 		return NULL;
821 
822 	group = iommu_group_get(&pdev->dev);
823 	if (group)
824 		return group;
825 
826 	for_each_pci_dev(tmp) {
827 		if (tmp == pdev || tmp->bus != pdev->bus)
828 			continue;
829 
830 		/* We alias them or they alias us */
831 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
832 			group = get_pci_alias_group(tmp, devfns);
833 			if (group) {
834 				pci_dev_put(tmp);
835 				return group;
836 			}
837 
838 			group = get_pci_function_alias_group(tmp, devfns);
839 			if (group) {
840 				pci_dev_put(tmp);
841 				return group;
842 			}
843 		}
844 	}
845 
846 	return NULL;
847 }
848 
849 struct group_for_pci_data {
850 	struct pci_dev *pdev;
851 	struct iommu_group *group;
852 };
853 
854 /*
855  * DMA alias iterator callback, return the last seen device.  Stop and return
856  * the IOMMU group if we find one along the way.
857  */
858 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
859 {
860 	struct group_for_pci_data *data = opaque;
861 
862 	data->pdev = pdev;
863 	data->group = iommu_group_get(&pdev->dev);
864 
865 	return data->group != NULL;
866 }
867 
868 /*
869  * Generic device_group call-back function. It just allocates one
870  * iommu-group per device.
871  */
872 struct iommu_group *generic_device_group(struct device *dev)
873 {
874 	struct iommu_group *group;
875 
876 	group = iommu_group_alloc();
877 	if (IS_ERR(group))
878 		return NULL;
879 
880 	return group;
881 }
882 
883 /*
884  * Use standard PCI bus topology, isolation features, and DMA alias quirks
885  * to find or create an IOMMU group for a device.
886  */
887 struct iommu_group *pci_device_group(struct device *dev)
888 {
889 	struct pci_dev *pdev = to_pci_dev(dev);
890 	struct group_for_pci_data data;
891 	struct pci_bus *bus;
892 	struct iommu_group *group = NULL;
893 	u64 devfns[4] = { 0 };
894 
895 	if (WARN_ON(!dev_is_pci(dev)))
896 		return ERR_PTR(-EINVAL);
897 
898 	/*
899 	 * Find the upstream DMA alias for the device.  A device must not
900 	 * be aliased due to topology in order to have its own IOMMU group.
901 	 * If we find an alias along the way that already belongs to a
902 	 * group, use it.
903 	 */
904 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
905 		return data.group;
906 
907 	pdev = data.pdev;
908 
909 	/*
910 	 * Continue upstream from the point of minimum IOMMU granularity
911 	 * due to aliases to the point where devices are protected from
912 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
913 	 * group, use it.
914 	 */
915 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
916 		if (!bus->self)
917 			continue;
918 
919 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
920 			break;
921 
922 		pdev = bus->self;
923 
924 		group = iommu_group_get(&pdev->dev);
925 		if (group)
926 			return group;
927 	}
928 
929 	/*
930 	 * Look for existing groups on device aliases.  If we alias another
931 	 * device or another device aliases us, use the same group.
932 	 */
933 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
934 	if (group)
935 		return group;
936 
937 	/*
938 	 * Look for existing groups on non-isolated functions on the same
939 	 * slot and aliases of those funcions, if any.  No need to clear
940 	 * the search bitmap, the tested devfns are still valid.
941 	 */
942 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
943 	if (group)
944 		return group;
945 
946 	/* No shared group found, allocate new */
947 	group = iommu_group_alloc();
948 	if (IS_ERR(group))
949 		return NULL;
950 
951 	return group;
952 }
953 
954 /**
955  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
956  * @dev: target device
957  *
958  * This function is intended to be called by IOMMU drivers and extended to
959  * support common, bus-defined algorithms when determining or creating the
960  * IOMMU group for a device.  On success, the caller will hold a reference
961  * to the returned IOMMU group, which will already include the provided
962  * device.  The reference should be released with iommu_group_put().
963  */
964 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
965 {
966 	const struct iommu_ops *ops = dev->bus->iommu_ops;
967 	struct iommu_group *group;
968 	int ret;
969 
970 	group = iommu_group_get(dev);
971 	if (group)
972 		return group;
973 
974 	group = ERR_PTR(-EINVAL);
975 
976 	if (ops && ops->device_group)
977 		group = ops->device_group(dev);
978 
979 	if (IS_ERR(group))
980 		return group;
981 
982 	/*
983 	 * Try to allocate a default domain - needs support from the
984 	 * IOMMU driver.
985 	 */
986 	if (!group->default_domain) {
987 		group->default_domain = __iommu_domain_alloc(dev->bus,
988 							     IOMMU_DOMAIN_DMA);
989 		if (!group->domain)
990 			group->domain = group->default_domain;
991 	}
992 
993 	ret = iommu_group_add_device(group, dev);
994 	if (ret) {
995 		iommu_group_put(group);
996 		return ERR_PTR(ret);
997 	}
998 
999 	return group;
1000 }
1001 
1002 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1003 {
1004 	return group->default_domain;
1005 }
1006 
1007 static int add_iommu_group(struct device *dev, void *data)
1008 {
1009 	struct iommu_callback_data *cb = data;
1010 	const struct iommu_ops *ops = cb->ops;
1011 	int ret;
1012 
1013 	if (!ops->add_device)
1014 		return 0;
1015 
1016 	WARN_ON(dev->iommu_group);
1017 
1018 	ret = ops->add_device(dev);
1019 
1020 	/*
1021 	 * We ignore -ENODEV errors for now, as they just mean that the
1022 	 * device is not translated by an IOMMU. We still care about
1023 	 * other errors and fail to initialize when they happen.
1024 	 */
1025 	if (ret == -ENODEV)
1026 		ret = 0;
1027 
1028 	return ret;
1029 }
1030 
1031 static int remove_iommu_group(struct device *dev, void *data)
1032 {
1033 	struct iommu_callback_data *cb = data;
1034 	const struct iommu_ops *ops = cb->ops;
1035 
1036 	if (ops->remove_device && dev->iommu_group)
1037 		ops->remove_device(dev);
1038 
1039 	return 0;
1040 }
1041 
1042 static int iommu_bus_notifier(struct notifier_block *nb,
1043 			      unsigned long action, void *data)
1044 {
1045 	struct device *dev = data;
1046 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1047 	struct iommu_group *group;
1048 	unsigned long group_action = 0;
1049 
1050 	/*
1051 	 * ADD/DEL call into iommu driver ops if provided, which may
1052 	 * result in ADD/DEL notifiers to group->notifier
1053 	 */
1054 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1055 		if (ops->add_device)
1056 			return ops->add_device(dev);
1057 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1058 		if (ops->remove_device && dev->iommu_group) {
1059 			ops->remove_device(dev);
1060 			return 0;
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1066 	 * group, if anyone is listening
1067 	 */
1068 	group = iommu_group_get(dev);
1069 	if (!group)
1070 		return 0;
1071 
1072 	switch (action) {
1073 	case BUS_NOTIFY_BIND_DRIVER:
1074 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1075 		break;
1076 	case BUS_NOTIFY_BOUND_DRIVER:
1077 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1078 		break;
1079 	case BUS_NOTIFY_UNBIND_DRIVER:
1080 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1081 		break;
1082 	case BUS_NOTIFY_UNBOUND_DRIVER:
1083 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1084 		break;
1085 	}
1086 
1087 	if (group_action)
1088 		blocking_notifier_call_chain(&group->notifier,
1089 					     group_action, dev);
1090 
1091 	iommu_group_put(group);
1092 	return 0;
1093 }
1094 
1095 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1096 {
1097 	int err;
1098 	struct notifier_block *nb;
1099 	struct iommu_callback_data cb = {
1100 		.ops = ops,
1101 	};
1102 
1103 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1104 	if (!nb)
1105 		return -ENOMEM;
1106 
1107 	nb->notifier_call = iommu_bus_notifier;
1108 
1109 	err = bus_register_notifier(bus, nb);
1110 	if (err)
1111 		goto out_free;
1112 
1113 	err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group);
1114 	if (err)
1115 		goto out_err;
1116 
1117 
1118 	return 0;
1119 
1120 out_err:
1121 	/* Clean up */
1122 	bus_for_each_dev(bus, NULL, &cb, remove_iommu_group);
1123 	bus_unregister_notifier(bus, nb);
1124 
1125 out_free:
1126 	kfree(nb);
1127 
1128 	return err;
1129 }
1130 
1131 /**
1132  * bus_set_iommu - set iommu-callbacks for the bus
1133  * @bus: bus.
1134  * @ops: the callbacks provided by the iommu-driver
1135  *
1136  * This function is called by an iommu driver to set the iommu methods
1137  * used for a particular bus. Drivers for devices on that bus can use
1138  * the iommu-api after these ops are registered.
1139  * This special function is needed because IOMMUs are usually devices on
1140  * the bus itself, so the iommu drivers are not initialized when the bus
1141  * is set up. With this function the iommu-driver can set the iommu-ops
1142  * afterwards.
1143  */
1144 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1145 {
1146 	int err;
1147 
1148 	if (bus->iommu_ops != NULL)
1149 		return -EBUSY;
1150 
1151 	bus->iommu_ops = ops;
1152 
1153 	/* Do IOMMU specific setup for this bus-type */
1154 	err = iommu_bus_init(bus, ops);
1155 	if (err)
1156 		bus->iommu_ops = NULL;
1157 
1158 	return err;
1159 }
1160 EXPORT_SYMBOL_GPL(bus_set_iommu);
1161 
1162 bool iommu_present(struct bus_type *bus)
1163 {
1164 	return bus->iommu_ops != NULL;
1165 }
1166 EXPORT_SYMBOL_GPL(iommu_present);
1167 
1168 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1169 {
1170 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1171 		return false;
1172 
1173 	return bus->iommu_ops->capable(cap);
1174 }
1175 EXPORT_SYMBOL_GPL(iommu_capable);
1176 
1177 /**
1178  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1179  * @domain: iommu domain
1180  * @handler: fault handler
1181  * @token: user data, will be passed back to the fault handler
1182  *
1183  * This function should be used by IOMMU users which want to be notified
1184  * whenever an IOMMU fault happens.
1185  *
1186  * The fault handler itself should return 0 on success, and an appropriate
1187  * error code otherwise.
1188  */
1189 void iommu_set_fault_handler(struct iommu_domain *domain,
1190 					iommu_fault_handler_t handler,
1191 					void *token)
1192 {
1193 	BUG_ON(!domain);
1194 
1195 	domain->handler = handler;
1196 	domain->handler_token = token;
1197 }
1198 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1199 
1200 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1201 						 unsigned type)
1202 {
1203 	struct iommu_domain *domain;
1204 
1205 	if (bus == NULL || bus->iommu_ops == NULL)
1206 		return NULL;
1207 
1208 	domain = bus->iommu_ops->domain_alloc(type);
1209 	if (!domain)
1210 		return NULL;
1211 
1212 	domain->ops  = bus->iommu_ops;
1213 	domain->type = type;
1214 	/* Assume all sizes by default; the driver may override this later */
1215 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1216 
1217 	return domain;
1218 }
1219 
1220 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1221 {
1222 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1223 }
1224 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1225 
1226 void iommu_domain_free(struct iommu_domain *domain)
1227 {
1228 	domain->ops->domain_free(domain);
1229 }
1230 EXPORT_SYMBOL_GPL(iommu_domain_free);
1231 
1232 static int __iommu_attach_device(struct iommu_domain *domain,
1233 				 struct device *dev)
1234 {
1235 	int ret;
1236 	if (unlikely(domain->ops->attach_dev == NULL))
1237 		return -ENODEV;
1238 
1239 	ret = domain->ops->attach_dev(domain, dev);
1240 	if (!ret)
1241 		trace_attach_device_to_domain(dev);
1242 	return ret;
1243 }
1244 
1245 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1246 {
1247 	struct iommu_group *group;
1248 	int ret;
1249 
1250 	group = iommu_group_get(dev);
1251 	/* FIXME: Remove this when groups a mandatory for iommu drivers */
1252 	if (group == NULL)
1253 		return __iommu_attach_device(domain, dev);
1254 
1255 	/*
1256 	 * We have a group - lock it to make sure the device-count doesn't
1257 	 * change while we are attaching
1258 	 */
1259 	mutex_lock(&group->mutex);
1260 	ret = -EINVAL;
1261 	if (iommu_group_device_count(group) != 1)
1262 		goto out_unlock;
1263 
1264 	ret = __iommu_attach_group(domain, group);
1265 
1266 out_unlock:
1267 	mutex_unlock(&group->mutex);
1268 	iommu_group_put(group);
1269 
1270 	return ret;
1271 }
1272 EXPORT_SYMBOL_GPL(iommu_attach_device);
1273 
1274 static void __iommu_detach_device(struct iommu_domain *domain,
1275 				  struct device *dev)
1276 {
1277 	if (unlikely(domain->ops->detach_dev == NULL))
1278 		return;
1279 
1280 	domain->ops->detach_dev(domain, dev);
1281 	trace_detach_device_from_domain(dev);
1282 }
1283 
1284 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1285 {
1286 	struct iommu_group *group;
1287 
1288 	group = iommu_group_get(dev);
1289 	/* FIXME: Remove this when groups a mandatory for iommu drivers */
1290 	if (group == NULL)
1291 		return __iommu_detach_device(domain, dev);
1292 
1293 	mutex_lock(&group->mutex);
1294 	if (iommu_group_device_count(group) != 1) {
1295 		WARN_ON(1);
1296 		goto out_unlock;
1297 	}
1298 
1299 	__iommu_detach_group(domain, group);
1300 
1301 out_unlock:
1302 	mutex_unlock(&group->mutex);
1303 	iommu_group_put(group);
1304 }
1305 EXPORT_SYMBOL_GPL(iommu_detach_device);
1306 
1307 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1308 {
1309 	struct iommu_domain *domain;
1310 	struct iommu_group *group;
1311 
1312 	group = iommu_group_get(dev);
1313 	/* FIXME: Remove this when groups a mandatory for iommu drivers */
1314 	if (group == NULL)
1315 		return NULL;
1316 
1317 	domain = group->domain;
1318 
1319 	iommu_group_put(group);
1320 
1321 	return domain;
1322 }
1323 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1324 
1325 /*
1326  * IOMMU groups are really the natrual working unit of the IOMMU, but
1327  * the IOMMU API works on domains and devices.  Bridge that gap by
1328  * iterating over the devices in a group.  Ideally we'd have a single
1329  * device which represents the requestor ID of the group, but we also
1330  * allow IOMMU drivers to create policy defined minimum sets, where
1331  * the physical hardware may be able to distiguish members, but we
1332  * wish to group them at a higher level (ex. untrusted multi-function
1333  * PCI devices).  Thus we attach each device.
1334  */
1335 static int iommu_group_do_attach_device(struct device *dev, void *data)
1336 {
1337 	struct iommu_domain *domain = data;
1338 
1339 	return __iommu_attach_device(domain, dev);
1340 }
1341 
1342 static int __iommu_attach_group(struct iommu_domain *domain,
1343 				struct iommu_group *group)
1344 {
1345 	int ret;
1346 
1347 	if (group->default_domain && group->domain != group->default_domain)
1348 		return -EBUSY;
1349 
1350 	ret = __iommu_group_for_each_dev(group, domain,
1351 					 iommu_group_do_attach_device);
1352 	if (ret == 0)
1353 		group->domain = domain;
1354 
1355 	return ret;
1356 }
1357 
1358 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1359 {
1360 	int ret;
1361 
1362 	mutex_lock(&group->mutex);
1363 	ret = __iommu_attach_group(domain, group);
1364 	mutex_unlock(&group->mutex);
1365 
1366 	return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(iommu_attach_group);
1369 
1370 static int iommu_group_do_detach_device(struct device *dev, void *data)
1371 {
1372 	struct iommu_domain *domain = data;
1373 
1374 	__iommu_detach_device(domain, dev);
1375 
1376 	return 0;
1377 }
1378 
1379 static void __iommu_detach_group(struct iommu_domain *domain,
1380 				 struct iommu_group *group)
1381 {
1382 	int ret;
1383 
1384 	if (!group->default_domain) {
1385 		__iommu_group_for_each_dev(group, domain,
1386 					   iommu_group_do_detach_device);
1387 		group->domain = NULL;
1388 		return;
1389 	}
1390 
1391 	if (group->domain == group->default_domain)
1392 		return;
1393 
1394 	/* Detach by re-attaching to the default domain */
1395 	ret = __iommu_group_for_each_dev(group, group->default_domain,
1396 					 iommu_group_do_attach_device);
1397 	if (ret != 0)
1398 		WARN_ON(1);
1399 	else
1400 		group->domain = group->default_domain;
1401 }
1402 
1403 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1404 {
1405 	mutex_lock(&group->mutex);
1406 	__iommu_detach_group(domain, group);
1407 	mutex_unlock(&group->mutex);
1408 }
1409 EXPORT_SYMBOL_GPL(iommu_detach_group);
1410 
1411 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1412 {
1413 	if (unlikely(domain->ops->iova_to_phys == NULL))
1414 		return 0;
1415 
1416 	return domain->ops->iova_to_phys(domain, iova);
1417 }
1418 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1419 
1420 static size_t iommu_pgsize(struct iommu_domain *domain,
1421 			   unsigned long addr_merge, size_t size)
1422 {
1423 	unsigned int pgsize_idx;
1424 	size_t pgsize;
1425 
1426 	/* Max page size that still fits into 'size' */
1427 	pgsize_idx = __fls(size);
1428 
1429 	/* need to consider alignment requirements ? */
1430 	if (likely(addr_merge)) {
1431 		/* Max page size allowed by address */
1432 		unsigned int align_pgsize_idx = __ffs(addr_merge);
1433 		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1434 	}
1435 
1436 	/* build a mask of acceptable page sizes */
1437 	pgsize = (1UL << (pgsize_idx + 1)) - 1;
1438 
1439 	/* throw away page sizes not supported by the hardware */
1440 	pgsize &= domain->pgsize_bitmap;
1441 
1442 	/* make sure we're still sane */
1443 	BUG_ON(!pgsize);
1444 
1445 	/* pick the biggest page */
1446 	pgsize_idx = __fls(pgsize);
1447 	pgsize = 1UL << pgsize_idx;
1448 
1449 	return pgsize;
1450 }
1451 
1452 int iommu_map(struct iommu_domain *domain, unsigned long iova,
1453 	      phys_addr_t paddr, size_t size, int prot)
1454 {
1455 	unsigned long orig_iova = iova;
1456 	unsigned int min_pagesz;
1457 	size_t orig_size = size;
1458 	phys_addr_t orig_paddr = paddr;
1459 	int ret = 0;
1460 
1461 	if (unlikely(domain->ops->map == NULL ||
1462 		     domain->pgsize_bitmap == 0UL))
1463 		return -ENODEV;
1464 
1465 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1466 		return -EINVAL;
1467 
1468 	/* find out the minimum page size supported */
1469 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1470 
1471 	/*
1472 	 * both the virtual address and the physical one, as well as
1473 	 * the size of the mapping, must be aligned (at least) to the
1474 	 * size of the smallest page supported by the hardware
1475 	 */
1476 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1477 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1478 		       iova, &paddr, size, min_pagesz);
1479 		return -EINVAL;
1480 	}
1481 
1482 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1483 
1484 	while (size) {
1485 		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1486 
1487 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1488 			 iova, &paddr, pgsize);
1489 
1490 		ret = domain->ops->map(domain, iova, paddr, pgsize, prot);
1491 		if (ret)
1492 			break;
1493 
1494 		iova += pgsize;
1495 		paddr += pgsize;
1496 		size -= pgsize;
1497 	}
1498 
1499 	/* unroll mapping in case something went wrong */
1500 	if (ret)
1501 		iommu_unmap(domain, orig_iova, orig_size - size);
1502 	else
1503 		trace_map(orig_iova, orig_paddr, orig_size);
1504 
1505 	return ret;
1506 }
1507 EXPORT_SYMBOL_GPL(iommu_map);
1508 
1509 size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1510 {
1511 	size_t unmapped_page, unmapped = 0;
1512 	unsigned int min_pagesz;
1513 	unsigned long orig_iova = iova;
1514 
1515 	if (unlikely(domain->ops->unmap == NULL ||
1516 		     domain->pgsize_bitmap == 0UL))
1517 		return -ENODEV;
1518 
1519 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1520 		return -EINVAL;
1521 
1522 	/* find out the minimum page size supported */
1523 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1524 
1525 	/*
1526 	 * The virtual address, as well as the size of the mapping, must be
1527 	 * aligned (at least) to the size of the smallest page supported
1528 	 * by the hardware
1529 	 */
1530 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
1531 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1532 		       iova, size, min_pagesz);
1533 		return -EINVAL;
1534 	}
1535 
1536 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1537 
1538 	/*
1539 	 * Keep iterating until we either unmap 'size' bytes (or more)
1540 	 * or we hit an area that isn't mapped.
1541 	 */
1542 	while (unmapped < size) {
1543 		size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
1544 
1545 		unmapped_page = domain->ops->unmap(domain, iova, pgsize);
1546 		if (!unmapped_page)
1547 			break;
1548 
1549 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
1550 			 iova, unmapped_page);
1551 
1552 		iova += unmapped_page;
1553 		unmapped += unmapped_page;
1554 	}
1555 
1556 	trace_unmap(orig_iova, size, unmapped);
1557 	return unmapped;
1558 }
1559 EXPORT_SYMBOL_GPL(iommu_unmap);
1560 
1561 size_t default_iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
1562 			 struct scatterlist *sg, unsigned int nents, int prot)
1563 {
1564 	struct scatterlist *s;
1565 	size_t mapped = 0;
1566 	unsigned int i, min_pagesz;
1567 	int ret;
1568 
1569 	if (unlikely(domain->pgsize_bitmap == 0UL))
1570 		return 0;
1571 
1572 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1573 
1574 	for_each_sg(sg, s, nents, i) {
1575 		phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset;
1576 
1577 		/*
1578 		 * We are mapping on IOMMU page boundaries, so offset within
1579 		 * the page must be 0. However, the IOMMU may support pages
1580 		 * smaller than PAGE_SIZE, so s->offset may still represent
1581 		 * an offset of that boundary within the CPU page.
1582 		 */
1583 		if (!IS_ALIGNED(s->offset, min_pagesz))
1584 			goto out_err;
1585 
1586 		ret = iommu_map(domain, iova + mapped, phys, s->length, prot);
1587 		if (ret)
1588 			goto out_err;
1589 
1590 		mapped += s->length;
1591 	}
1592 
1593 	return mapped;
1594 
1595 out_err:
1596 	/* undo mappings already done */
1597 	iommu_unmap(domain, iova, mapped);
1598 
1599 	return 0;
1600 
1601 }
1602 EXPORT_SYMBOL_GPL(default_iommu_map_sg);
1603 
1604 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
1605 			       phys_addr_t paddr, u64 size, int prot)
1606 {
1607 	if (unlikely(domain->ops->domain_window_enable == NULL))
1608 		return -ENODEV;
1609 
1610 	return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
1611 						 prot);
1612 }
1613 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
1614 
1615 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
1616 {
1617 	if (unlikely(domain->ops->domain_window_disable == NULL))
1618 		return;
1619 
1620 	return domain->ops->domain_window_disable(domain, wnd_nr);
1621 }
1622 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
1623 
1624 static int __init iommu_init(void)
1625 {
1626 	iommu_group_kset = kset_create_and_add("iommu_groups",
1627 					       NULL, kernel_kobj);
1628 	BUG_ON(!iommu_group_kset);
1629 
1630 	return 0;
1631 }
1632 core_initcall(iommu_init);
1633 
1634 int iommu_domain_get_attr(struct iommu_domain *domain,
1635 			  enum iommu_attr attr, void *data)
1636 {
1637 	struct iommu_domain_geometry *geometry;
1638 	bool *paging;
1639 	int ret = 0;
1640 	u32 *count;
1641 
1642 	switch (attr) {
1643 	case DOMAIN_ATTR_GEOMETRY:
1644 		geometry  = data;
1645 		*geometry = domain->geometry;
1646 
1647 		break;
1648 	case DOMAIN_ATTR_PAGING:
1649 		paging  = data;
1650 		*paging = (domain->pgsize_bitmap != 0UL);
1651 		break;
1652 	case DOMAIN_ATTR_WINDOWS:
1653 		count = data;
1654 
1655 		if (domain->ops->domain_get_windows != NULL)
1656 			*count = domain->ops->domain_get_windows(domain);
1657 		else
1658 			ret = -ENODEV;
1659 
1660 		break;
1661 	default:
1662 		if (!domain->ops->domain_get_attr)
1663 			return -EINVAL;
1664 
1665 		ret = domain->ops->domain_get_attr(domain, attr, data);
1666 	}
1667 
1668 	return ret;
1669 }
1670 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
1671 
1672 int iommu_domain_set_attr(struct iommu_domain *domain,
1673 			  enum iommu_attr attr, void *data)
1674 {
1675 	int ret = 0;
1676 	u32 *count;
1677 
1678 	switch (attr) {
1679 	case DOMAIN_ATTR_WINDOWS:
1680 		count = data;
1681 
1682 		if (domain->ops->domain_set_windows != NULL)
1683 			ret = domain->ops->domain_set_windows(domain, *count);
1684 		else
1685 			ret = -ENODEV;
1686 
1687 		break;
1688 	default:
1689 		if (domain->ops->domain_set_attr == NULL)
1690 			return -EINVAL;
1691 
1692 		ret = domain->ops->domain_set_attr(domain, attr, data);
1693 	}
1694 
1695 	return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
1698 
1699 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
1700 {
1701 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1702 
1703 	if (ops && ops->get_resv_regions)
1704 		ops->get_resv_regions(dev, list);
1705 }
1706 
1707 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
1708 {
1709 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1710 
1711 	if (ops && ops->put_resv_regions)
1712 		ops->put_resv_regions(dev, list);
1713 }
1714 
1715 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
1716 						  size_t length,
1717 						  int prot, int type)
1718 {
1719 	struct iommu_resv_region *region;
1720 
1721 	region = kzalloc(sizeof(*region), GFP_KERNEL);
1722 	if (!region)
1723 		return NULL;
1724 
1725 	INIT_LIST_HEAD(&region->list);
1726 	region->start = start;
1727 	region->length = length;
1728 	region->prot = prot;
1729 	region->type = type;
1730 	return region;
1731 }
1732 
1733 /* Request that a device is direct mapped by the IOMMU */
1734 int iommu_request_dm_for_dev(struct device *dev)
1735 {
1736 	struct iommu_domain *dm_domain;
1737 	struct iommu_group *group;
1738 	int ret;
1739 
1740 	/* Device must already be in a group before calling this function */
1741 	group = iommu_group_get_for_dev(dev);
1742 	if (IS_ERR(group))
1743 		return PTR_ERR(group);
1744 
1745 	mutex_lock(&group->mutex);
1746 
1747 	/* Check if the default domain is already direct mapped */
1748 	ret = 0;
1749 	if (group->default_domain &&
1750 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY)
1751 		goto out;
1752 
1753 	/* Don't change mappings of existing devices */
1754 	ret = -EBUSY;
1755 	if (iommu_group_device_count(group) != 1)
1756 		goto out;
1757 
1758 	/* Allocate a direct mapped domain */
1759 	ret = -ENOMEM;
1760 	dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY);
1761 	if (!dm_domain)
1762 		goto out;
1763 
1764 	/* Attach the device to the domain */
1765 	ret = __iommu_attach_group(dm_domain, group);
1766 	if (ret) {
1767 		iommu_domain_free(dm_domain);
1768 		goto out;
1769 	}
1770 
1771 	/* Make the direct mapped domain the default for this group */
1772 	if (group->default_domain)
1773 		iommu_domain_free(group->default_domain);
1774 	group->default_domain = dm_domain;
1775 
1776 	pr_info("Using direct mapping for device %s\n", dev_name(dev));
1777 
1778 	ret = 0;
1779 out:
1780 	mutex_unlock(&group->mutex);
1781 	iommu_group_put(group);
1782 
1783 	return ret;
1784 }
1785 
1786 struct iommu_instance {
1787 	struct list_head list;
1788 	struct fwnode_handle *fwnode;
1789 	const struct iommu_ops *ops;
1790 };
1791 static LIST_HEAD(iommu_instance_list);
1792 static DEFINE_SPINLOCK(iommu_instance_lock);
1793 
1794 void iommu_register_instance(struct fwnode_handle *fwnode,
1795 			     const struct iommu_ops *ops)
1796 {
1797 	struct iommu_instance *iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1798 
1799 	if (WARN_ON(!iommu))
1800 		return;
1801 
1802 	of_node_get(to_of_node(fwnode));
1803 	INIT_LIST_HEAD(&iommu->list);
1804 	iommu->fwnode = fwnode;
1805 	iommu->ops = ops;
1806 	spin_lock(&iommu_instance_lock);
1807 	list_add_tail(&iommu->list, &iommu_instance_list);
1808 	spin_unlock(&iommu_instance_lock);
1809 }
1810 
1811 const struct iommu_ops *iommu_get_instance(struct fwnode_handle *fwnode)
1812 {
1813 	struct iommu_instance *instance;
1814 	const struct iommu_ops *ops = NULL;
1815 
1816 	spin_lock(&iommu_instance_lock);
1817 	list_for_each_entry(instance, &iommu_instance_list, list)
1818 		if (instance->fwnode == fwnode) {
1819 			ops = instance->ops;
1820 			break;
1821 		}
1822 	spin_unlock(&iommu_instance_lock);
1823 	return ops;
1824 }
1825 
1826 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
1827 		      const struct iommu_ops *ops)
1828 {
1829 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1830 
1831 	if (fwspec)
1832 		return ops == fwspec->ops ? 0 : -EINVAL;
1833 
1834 	fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL);
1835 	if (!fwspec)
1836 		return -ENOMEM;
1837 
1838 	of_node_get(to_of_node(iommu_fwnode));
1839 	fwspec->iommu_fwnode = iommu_fwnode;
1840 	fwspec->ops = ops;
1841 	dev->iommu_fwspec = fwspec;
1842 	return 0;
1843 }
1844 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
1845 
1846 void iommu_fwspec_free(struct device *dev)
1847 {
1848 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1849 
1850 	if (fwspec) {
1851 		fwnode_handle_put(fwspec->iommu_fwnode);
1852 		kfree(fwspec);
1853 		dev->iommu_fwspec = NULL;
1854 	}
1855 }
1856 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
1857 
1858 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
1859 {
1860 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1861 	size_t size;
1862 	int i;
1863 
1864 	if (!fwspec)
1865 		return -EINVAL;
1866 
1867 	size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]);
1868 	if (size > sizeof(*fwspec)) {
1869 		fwspec = krealloc(dev->iommu_fwspec, size, GFP_KERNEL);
1870 		if (!fwspec)
1871 			return -ENOMEM;
1872 	}
1873 
1874 	for (i = 0; i < num_ids; i++)
1875 		fwspec->ids[fwspec->num_ids + i] = ids[i];
1876 
1877 	fwspec->num_ids += num_ids;
1878 	dev->iommu_fwspec = fwspec;
1879 	return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
1882