1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/kernel.h> 11 #include <linux/bug.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/export.h> 15 #include <linux/slab.h> 16 #include <linux/errno.h> 17 #include <linux/iommu.h> 18 #include <linux/idr.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/pci.h> 22 #include <linux/bitops.h> 23 #include <linux/property.h> 24 #include <linux/fsl/mc.h> 25 #include <linux/module.h> 26 #include <trace/events/iommu.h> 27 28 static struct kset *iommu_group_kset; 29 static DEFINE_IDA(iommu_group_ida); 30 31 static unsigned int iommu_def_domain_type __read_mostly; 32 static bool iommu_dma_strict __read_mostly = true; 33 static u32 iommu_cmd_line __read_mostly; 34 35 struct iommu_group { 36 struct kobject kobj; 37 struct kobject *devices_kobj; 38 struct list_head devices; 39 struct mutex mutex; 40 struct blocking_notifier_head notifier; 41 void *iommu_data; 42 void (*iommu_data_release)(void *iommu_data); 43 char *name; 44 int id; 45 struct iommu_domain *default_domain; 46 struct iommu_domain *domain; 47 struct list_head entry; 48 }; 49 50 struct group_device { 51 struct list_head list; 52 struct device *dev; 53 char *name; 54 }; 55 56 struct iommu_group_attribute { 57 struct attribute attr; 58 ssize_t (*show)(struct iommu_group *group, char *buf); 59 ssize_t (*store)(struct iommu_group *group, 60 const char *buf, size_t count); 61 }; 62 63 static const char * const iommu_group_resv_type_string[] = { 64 [IOMMU_RESV_DIRECT] = "direct", 65 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 66 [IOMMU_RESV_RESERVED] = "reserved", 67 [IOMMU_RESV_MSI] = "msi", 68 [IOMMU_RESV_SW_MSI] = "msi", 69 }; 70 71 #define IOMMU_CMD_LINE_DMA_API BIT(0) 72 #define IOMMU_CMD_LINE_STRICT BIT(1) 73 74 static int iommu_alloc_default_domain(struct iommu_group *group, 75 struct device *dev); 76 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 77 unsigned type); 78 static int __iommu_attach_device(struct iommu_domain *domain, 79 struct device *dev); 80 static int __iommu_attach_group(struct iommu_domain *domain, 81 struct iommu_group *group); 82 static void __iommu_detach_group(struct iommu_domain *domain, 83 struct iommu_group *group); 84 static int iommu_create_device_direct_mappings(struct iommu_group *group, 85 struct device *dev); 86 static struct iommu_group *iommu_group_get_for_dev(struct device *dev); 87 static ssize_t iommu_group_store_type(struct iommu_group *group, 88 const char *buf, size_t count); 89 90 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 91 struct iommu_group_attribute iommu_group_attr_##_name = \ 92 __ATTR(_name, _mode, _show, _store) 93 94 #define to_iommu_group_attr(_attr) \ 95 container_of(_attr, struct iommu_group_attribute, attr) 96 #define to_iommu_group(_kobj) \ 97 container_of(_kobj, struct iommu_group, kobj) 98 99 static LIST_HEAD(iommu_device_list); 100 static DEFINE_SPINLOCK(iommu_device_lock); 101 102 /* 103 * Use a function instead of an array here because the domain-type is a 104 * bit-field, so an array would waste memory. 105 */ 106 static const char *iommu_domain_type_str(unsigned int t) 107 { 108 switch (t) { 109 case IOMMU_DOMAIN_BLOCKED: 110 return "Blocked"; 111 case IOMMU_DOMAIN_IDENTITY: 112 return "Passthrough"; 113 case IOMMU_DOMAIN_UNMANAGED: 114 return "Unmanaged"; 115 case IOMMU_DOMAIN_DMA: 116 return "Translated"; 117 default: 118 return "Unknown"; 119 } 120 } 121 122 static int __init iommu_subsys_init(void) 123 { 124 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 125 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 126 iommu_set_default_passthrough(false); 127 else 128 iommu_set_default_translated(false); 129 130 if (iommu_default_passthrough() && mem_encrypt_active()) { 131 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 132 iommu_set_default_translated(false); 133 } 134 } 135 136 pr_info("Default domain type: %s %s\n", 137 iommu_domain_type_str(iommu_def_domain_type), 138 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 139 "(set via kernel command line)" : ""); 140 141 return 0; 142 } 143 subsys_initcall(iommu_subsys_init); 144 145 /** 146 * iommu_device_register() - Register an IOMMU hardware instance 147 * @iommu: IOMMU handle for the instance 148 * @ops: IOMMU ops to associate with the instance 149 * @hwdev: (optional) actual instance device, used for fwnode lookup 150 * 151 * Return: 0 on success, or an error. 152 */ 153 int iommu_device_register(struct iommu_device *iommu, 154 const struct iommu_ops *ops, struct device *hwdev) 155 { 156 /* We need to be able to take module references appropriately */ 157 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 158 return -EINVAL; 159 160 iommu->ops = ops; 161 if (hwdev) 162 iommu->fwnode = hwdev->fwnode; 163 164 spin_lock(&iommu_device_lock); 165 list_add_tail(&iommu->list, &iommu_device_list); 166 spin_unlock(&iommu_device_lock); 167 return 0; 168 } 169 EXPORT_SYMBOL_GPL(iommu_device_register); 170 171 void iommu_device_unregister(struct iommu_device *iommu) 172 { 173 spin_lock(&iommu_device_lock); 174 list_del(&iommu->list); 175 spin_unlock(&iommu_device_lock); 176 } 177 EXPORT_SYMBOL_GPL(iommu_device_unregister); 178 179 static struct dev_iommu *dev_iommu_get(struct device *dev) 180 { 181 struct dev_iommu *param = dev->iommu; 182 183 if (param) 184 return param; 185 186 param = kzalloc(sizeof(*param), GFP_KERNEL); 187 if (!param) 188 return NULL; 189 190 mutex_init(¶m->lock); 191 dev->iommu = param; 192 return param; 193 } 194 195 static void dev_iommu_free(struct device *dev) 196 { 197 iommu_fwspec_free(dev); 198 kfree(dev->iommu); 199 dev->iommu = NULL; 200 } 201 202 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 203 { 204 const struct iommu_ops *ops = dev->bus->iommu_ops; 205 struct iommu_device *iommu_dev; 206 struct iommu_group *group; 207 int ret; 208 209 if (!ops) 210 return -ENODEV; 211 212 if (!dev_iommu_get(dev)) 213 return -ENOMEM; 214 215 if (!try_module_get(ops->owner)) { 216 ret = -EINVAL; 217 goto err_free; 218 } 219 220 iommu_dev = ops->probe_device(dev); 221 if (IS_ERR(iommu_dev)) { 222 ret = PTR_ERR(iommu_dev); 223 goto out_module_put; 224 } 225 226 dev->iommu->iommu_dev = iommu_dev; 227 228 group = iommu_group_get_for_dev(dev); 229 if (IS_ERR(group)) { 230 ret = PTR_ERR(group); 231 goto out_release; 232 } 233 iommu_group_put(group); 234 235 if (group_list && !group->default_domain && list_empty(&group->entry)) 236 list_add_tail(&group->entry, group_list); 237 238 iommu_device_link(iommu_dev, dev); 239 240 return 0; 241 242 out_release: 243 ops->release_device(dev); 244 245 out_module_put: 246 module_put(ops->owner); 247 248 err_free: 249 dev_iommu_free(dev); 250 251 return ret; 252 } 253 254 int iommu_probe_device(struct device *dev) 255 { 256 const struct iommu_ops *ops = dev->bus->iommu_ops; 257 struct iommu_group *group; 258 int ret; 259 260 ret = __iommu_probe_device(dev, NULL); 261 if (ret) 262 goto err_out; 263 264 group = iommu_group_get(dev); 265 if (!group) { 266 ret = -ENODEV; 267 goto err_release; 268 } 269 270 /* 271 * Try to allocate a default domain - needs support from the 272 * IOMMU driver. There are still some drivers which don't 273 * support default domains, so the return value is not yet 274 * checked. 275 */ 276 iommu_alloc_default_domain(group, dev); 277 278 if (group->default_domain) { 279 ret = __iommu_attach_device(group->default_domain, dev); 280 if (ret) { 281 iommu_group_put(group); 282 goto err_release; 283 } 284 } 285 286 iommu_create_device_direct_mappings(group, dev); 287 288 iommu_group_put(group); 289 290 if (ops->probe_finalize) 291 ops->probe_finalize(dev); 292 293 return 0; 294 295 err_release: 296 iommu_release_device(dev); 297 298 err_out: 299 return ret; 300 301 } 302 303 void iommu_release_device(struct device *dev) 304 { 305 const struct iommu_ops *ops = dev->bus->iommu_ops; 306 307 if (!dev->iommu) 308 return; 309 310 iommu_device_unlink(dev->iommu->iommu_dev, dev); 311 312 ops->release_device(dev); 313 314 iommu_group_remove_device(dev); 315 module_put(ops->owner); 316 dev_iommu_free(dev); 317 } 318 319 static int __init iommu_set_def_domain_type(char *str) 320 { 321 bool pt; 322 int ret; 323 324 ret = kstrtobool(str, &pt); 325 if (ret) 326 return ret; 327 328 if (pt) 329 iommu_set_default_passthrough(true); 330 else 331 iommu_set_default_translated(true); 332 333 return 0; 334 } 335 early_param("iommu.passthrough", iommu_set_def_domain_type); 336 337 static int __init iommu_dma_setup(char *str) 338 { 339 int ret = kstrtobool(str, &iommu_dma_strict); 340 341 if (!ret) 342 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 343 return ret; 344 } 345 early_param("iommu.strict", iommu_dma_setup); 346 347 void iommu_set_dma_strict(bool strict) 348 { 349 if (strict || !(iommu_cmd_line & IOMMU_CMD_LINE_STRICT)) 350 iommu_dma_strict = strict; 351 } 352 353 bool iommu_get_dma_strict(struct iommu_domain *domain) 354 { 355 /* only allow lazy flushing for DMA domains */ 356 if (domain->type == IOMMU_DOMAIN_DMA) 357 return iommu_dma_strict; 358 return true; 359 } 360 EXPORT_SYMBOL_GPL(iommu_get_dma_strict); 361 362 static ssize_t iommu_group_attr_show(struct kobject *kobj, 363 struct attribute *__attr, char *buf) 364 { 365 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 366 struct iommu_group *group = to_iommu_group(kobj); 367 ssize_t ret = -EIO; 368 369 if (attr->show) 370 ret = attr->show(group, buf); 371 return ret; 372 } 373 374 static ssize_t iommu_group_attr_store(struct kobject *kobj, 375 struct attribute *__attr, 376 const char *buf, size_t count) 377 { 378 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 379 struct iommu_group *group = to_iommu_group(kobj); 380 ssize_t ret = -EIO; 381 382 if (attr->store) 383 ret = attr->store(group, buf, count); 384 return ret; 385 } 386 387 static const struct sysfs_ops iommu_group_sysfs_ops = { 388 .show = iommu_group_attr_show, 389 .store = iommu_group_attr_store, 390 }; 391 392 static int iommu_group_create_file(struct iommu_group *group, 393 struct iommu_group_attribute *attr) 394 { 395 return sysfs_create_file(&group->kobj, &attr->attr); 396 } 397 398 static void iommu_group_remove_file(struct iommu_group *group, 399 struct iommu_group_attribute *attr) 400 { 401 sysfs_remove_file(&group->kobj, &attr->attr); 402 } 403 404 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 405 { 406 return sprintf(buf, "%s\n", group->name); 407 } 408 409 /** 410 * iommu_insert_resv_region - Insert a new region in the 411 * list of reserved regions. 412 * @new: new region to insert 413 * @regions: list of regions 414 * 415 * Elements are sorted by start address and overlapping segments 416 * of the same type are merged. 417 */ 418 static int iommu_insert_resv_region(struct iommu_resv_region *new, 419 struct list_head *regions) 420 { 421 struct iommu_resv_region *iter, *tmp, *nr, *top; 422 LIST_HEAD(stack); 423 424 nr = iommu_alloc_resv_region(new->start, new->length, 425 new->prot, new->type); 426 if (!nr) 427 return -ENOMEM; 428 429 /* First add the new element based on start address sorting */ 430 list_for_each_entry(iter, regions, list) { 431 if (nr->start < iter->start || 432 (nr->start == iter->start && nr->type <= iter->type)) 433 break; 434 } 435 list_add_tail(&nr->list, &iter->list); 436 437 /* Merge overlapping segments of type nr->type in @regions, if any */ 438 list_for_each_entry_safe(iter, tmp, regions, list) { 439 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 440 441 /* no merge needed on elements of different types than @new */ 442 if (iter->type != new->type) { 443 list_move_tail(&iter->list, &stack); 444 continue; 445 } 446 447 /* look for the last stack element of same type as @iter */ 448 list_for_each_entry_reverse(top, &stack, list) 449 if (top->type == iter->type) 450 goto check_overlap; 451 452 list_move_tail(&iter->list, &stack); 453 continue; 454 455 check_overlap: 456 top_end = top->start + top->length - 1; 457 458 if (iter->start > top_end + 1) { 459 list_move_tail(&iter->list, &stack); 460 } else { 461 top->length = max(top_end, iter_end) - top->start + 1; 462 list_del(&iter->list); 463 kfree(iter); 464 } 465 } 466 list_splice(&stack, regions); 467 return 0; 468 } 469 470 static int 471 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 472 struct list_head *group_resv_regions) 473 { 474 struct iommu_resv_region *entry; 475 int ret = 0; 476 477 list_for_each_entry(entry, dev_resv_regions, list) { 478 ret = iommu_insert_resv_region(entry, group_resv_regions); 479 if (ret) 480 break; 481 } 482 return ret; 483 } 484 485 int iommu_get_group_resv_regions(struct iommu_group *group, 486 struct list_head *head) 487 { 488 struct group_device *device; 489 int ret = 0; 490 491 mutex_lock(&group->mutex); 492 list_for_each_entry(device, &group->devices, list) { 493 struct list_head dev_resv_regions; 494 495 INIT_LIST_HEAD(&dev_resv_regions); 496 iommu_get_resv_regions(device->dev, &dev_resv_regions); 497 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 498 iommu_put_resv_regions(device->dev, &dev_resv_regions); 499 if (ret) 500 break; 501 } 502 mutex_unlock(&group->mutex); 503 return ret; 504 } 505 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 506 507 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 508 char *buf) 509 { 510 struct iommu_resv_region *region, *next; 511 struct list_head group_resv_regions; 512 char *str = buf; 513 514 INIT_LIST_HEAD(&group_resv_regions); 515 iommu_get_group_resv_regions(group, &group_resv_regions); 516 517 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 518 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 519 (long long int)region->start, 520 (long long int)(region->start + 521 region->length - 1), 522 iommu_group_resv_type_string[region->type]); 523 kfree(region); 524 } 525 526 return (str - buf); 527 } 528 529 static ssize_t iommu_group_show_type(struct iommu_group *group, 530 char *buf) 531 { 532 char *type = "unknown\n"; 533 534 mutex_lock(&group->mutex); 535 if (group->default_domain) { 536 switch (group->default_domain->type) { 537 case IOMMU_DOMAIN_BLOCKED: 538 type = "blocked\n"; 539 break; 540 case IOMMU_DOMAIN_IDENTITY: 541 type = "identity\n"; 542 break; 543 case IOMMU_DOMAIN_UNMANAGED: 544 type = "unmanaged\n"; 545 break; 546 case IOMMU_DOMAIN_DMA: 547 type = "DMA\n"; 548 break; 549 } 550 } 551 mutex_unlock(&group->mutex); 552 strcpy(buf, type); 553 554 return strlen(type); 555 } 556 557 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 558 559 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 560 iommu_group_show_resv_regions, NULL); 561 562 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 563 iommu_group_store_type); 564 565 static void iommu_group_release(struct kobject *kobj) 566 { 567 struct iommu_group *group = to_iommu_group(kobj); 568 569 pr_debug("Releasing group %d\n", group->id); 570 571 if (group->iommu_data_release) 572 group->iommu_data_release(group->iommu_data); 573 574 ida_simple_remove(&iommu_group_ida, group->id); 575 576 if (group->default_domain) 577 iommu_domain_free(group->default_domain); 578 579 kfree(group->name); 580 kfree(group); 581 } 582 583 static struct kobj_type iommu_group_ktype = { 584 .sysfs_ops = &iommu_group_sysfs_ops, 585 .release = iommu_group_release, 586 }; 587 588 /** 589 * iommu_group_alloc - Allocate a new group 590 * 591 * This function is called by an iommu driver to allocate a new iommu 592 * group. The iommu group represents the minimum granularity of the iommu. 593 * Upon successful return, the caller holds a reference to the supplied 594 * group in order to hold the group until devices are added. Use 595 * iommu_group_put() to release this extra reference count, allowing the 596 * group to be automatically reclaimed once it has no devices or external 597 * references. 598 */ 599 struct iommu_group *iommu_group_alloc(void) 600 { 601 struct iommu_group *group; 602 int ret; 603 604 group = kzalloc(sizeof(*group), GFP_KERNEL); 605 if (!group) 606 return ERR_PTR(-ENOMEM); 607 608 group->kobj.kset = iommu_group_kset; 609 mutex_init(&group->mutex); 610 INIT_LIST_HEAD(&group->devices); 611 INIT_LIST_HEAD(&group->entry); 612 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 613 614 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 615 if (ret < 0) { 616 kfree(group); 617 return ERR_PTR(ret); 618 } 619 group->id = ret; 620 621 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 622 NULL, "%d", group->id); 623 if (ret) { 624 ida_simple_remove(&iommu_group_ida, group->id); 625 kobject_put(&group->kobj); 626 return ERR_PTR(ret); 627 } 628 629 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 630 if (!group->devices_kobj) { 631 kobject_put(&group->kobj); /* triggers .release & free */ 632 return ERR_PTR(-ENOMEM); 633 } 634 635 /* 636 * The devices_kobj holds a reference on the group kobject, so 637 * as long as that exists so will the group. We can therefore 638 * use the devices_kobj for reference counting. 639 */ 640 kobject_put(&group->kobj); 641 642 ret = iommu_group_create_file(group, 643 &iommu_group_attr_reserved_regions); 644 if (ret) 645 return ERR_PTR(ret); 646 647 ret = iommu_group_create_file(group, &iommu_group_attr_type); 648 if (ret) 649 return ERR_PTR(ret); 650 651 pr_debug("Allocated group %d\n", group->id); 652 653 return group; 654 } 655 EXPORT_SYMBOL_GPL(iommu_group_alloc); 656 657 struct iommu_group *iommu_group_get_by_id(int id) 658 { 659 struct kobject *group_kobj; 660 struct iommu_group *group; 661 const char *name; 662 663 if (!iommu_group_kset) 664 return NULL; 665 666 name = kasprintf(GFP_KERNEL, "%d", id); 667 if (!name) 668 return NULL; 669 670 group_kobj = kset_find_obj(iommu_group_kset, name); 671 kfree(name); 672 673 if (!group_kobj) 674 return NULL; 675 676 group = container_of(group_kobj, struct iommu_group, kobj); 677 BUG_ON(group->id != id); 678 679 kobject_get(group->devices_kobj); 680 kobject_put(&group->kobj); 681 682 return group; 683 } 684 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 685 686 /** 687 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 688 * @group: the group 689 * 690 * iommu drivers can store data in the group for use when doing iommu 691 * operations. This function provides a way to retrieve it. Caller 692 * should hold a group reference. 693 */ 694 void *iommu_group_get_iommudata(struct iommu_group *group) 695 { 696 return group->iommu_data; 697 } 698 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 699 700 /** 701 * iommu_group_set_iommudata - set iommu_data for a group 702 * @group: the group 703 * @iommu_data: new data 704 * @release: release function for iommu_data 705 * 706 * iommu drivers can store data in the group for use when doing iommu 707 * operations. This function provides a way to set the data after 708 * the group has been allocated. Caller should hold a group reference. 709 */ 710 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 711 void (*release)(void *iommu_data)) 712 { 713 group->iommu_data = iommu_data; 714 group->iommu_data_release = release; 715 } 716 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 717 718 /** 719 * iommu_group_set_name - set name for a group 720 * @group: the group 721 * @name: name 722 * 723 * Allow iommu driver to set a name for a group. When set it will 724 * appear in a name attribute file under the group in sysfs. 725 */ 726 int iommu_group_set_name(struct iommu_group *group, const char *name) 727 { 728 int ret; 729 730 if (group->name) { 731 iommu_group_remove_file(group, &iommu_group_attr_name); 732 kfree(group->name); 733 group->name = NULL; 734 if (!name) 735 return 0; 736 } 737 738 group->name = kstrdup(name, GFP_KERNEL); 739 if (!group->name) 740 return -ENOMEM; 741 742 ret = iommu_group_create_file(group, &iommu_group_attr_name); 743 if (ret) { 744 kfree(group->name); 745 group->name = NULL; 746 return ret; 747 } 748 749 return 0; 750 } 751 EXPORT_SYMBOL_GPL(iommu_group_set_name); 752 753 static int iommu_create_device_direct_mappings(struct iommu_group *group, 754 struct device *dev) 755 { 756 struct iommu_domain *domain = group->default_domain; 757 struct iommu_resv_region *entry; 758 struct list_head mappings; 759 unsigned long pg_size; 760 int ret = 0; 761 762 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 763 return 0; 764 765 BUG_ON(!domain->pgsize_bitmap); 766 767 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 768 INIT_LIST_HEAD(&mappings); 769 770 iommu_get_resv_regions(dev, &mappings); 771 772 /* We need to consider overlapping regions for different devices */ 773 list_for_each_entry(entry, &mappings, list) { 774 dma_addr_t start, end, addr; 775 size_t map_size = 0; 776 777 if (domain->ops->apply_resv_region) 778 domain->ops->apply_resv_region(dev, domain, entry); 779 780 start = ALIGN(entry->start, pg_size); 781 end = ALIGN(entry->start + entry->length, pg_size); 782 783 if (entry->type != IOMMU_RESV_DIRECT && 784 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 785 continue; 786 787 for (addr = start; addr <= end; addr += pg_size) { 788 phys_addr_t phys_addr; 789 790 if (addr == end) 791 goto map_end; 792 793 phys_addr = iommu_iova_to_phys(domain, addr); 794 if (!phys_addr) { 795 map_size += pg_size; 796 continue; 797 } 798 799 map_end: 800 if (map_size) { 801 ret = iommu_map(domain, addr - map_size, 802 addr - map_size, map_size, 803 entry->prot); 804 if (ret) 805 goto out; 806 map_size = 0; 807 } 808 } 809 810 } 811 812 iommu_flush_iotlb_all(domain); 813 814 out: 815 iommu_put_resv_regions(dev, &mappings); 816 817 return ret; 818 } 819 820 static bool iommu_is_attach_deferred(struct iommu_domain *domain, 821 struct device *dev) 822 { 823 if (domain->ops->is_attach_deferred) 824 return domain->ops->is_attach_deferred(domain, dev); 825 826 return false; 827 } 828 829 /** 830 * iommu_group_add_device - add a device to an iommu group 831 * @group: the group into which to add the device (reference should be held) 832 * @dev: the device 833 * 834 * This function is called by an iommu driver to add a device into a 835 * group. Adding a device increments the group reference count. 836 */ 837 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 838 { 839 int ret, i = 0; 840 struct group_device *device; 841 842 device = kzalloc(sizeof(*device), GFP_KERNEL); 843 if (!device) 844 return -ENOMEM; 845 846 device->dev = dev; 847 848 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 849 if (ret) 850 goto err_free_device; 851 852 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 853 rename: 854 if (!device->name) { 855 ret = -ENOMEM; 856 goto err_remove_link; 857 } 858 859 ret = sysfs_create_link_nowarn(group->devices_kobj, 860 &dev->kobj, device->name); 861 if (ret) { 862 if (ret == -EEXIST && i >= 0) { 863 /* 864 * Account for the slim chance of collision 865 * and append an instance to the name. 866 */ 867 kfree(device->name); 868 device->name = kasprintf(GFP_KERNEL, "%s.%d", 869 kobject_name(&dev->kobj), i++); 870 goto rename; 871 } 872 goto err_free_name; 873 } 874 875 kobject_get(group->devices_kobj); 876 877 dev->iommu_group = group; 878 879 mutex_lock(&group->mutex); 880 list_add_tail(&device->list, &group->devices); 881 if (group->domain && !iommu_is_attach_deferred(group->domain, dev)) 882 ret = __iommu_attach_device(group->domain, dev); 883 mutex_unlock(&group->mutex); 884 if (ret) 885 goto err_put_group; 886 887 /* Notify any listeners about change to group. */ 888 blocking_notifier_call_chain(&group->notifier, 889 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 890 891 trace_add_device_to_group(group->id, dev); 892 893 dev_info(dev, "Adding to iommu group %d\n", group->id); 894 895 return 0; 896 897 err_put_group: 898 mutex_lock(&group->mutex); 899 list_del(&device->list); 900 mutex_unlock(&group->mutex); 901 dev->iommu_group = NULL; 902 kobject_put(group->devices_kobj); 903 sysfs_remove_link(group->devices_kobj, device->name); 904 err_free_name: 905 kfree(device->name); 906 err_remove_link: 907 sysfs_remove_link(&dev->kobj, "iommu_group"); 908 err_free_device: 909 kfree(device); 910 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 911 return ret; 912 } 913 EXPORT_SYMBOL_GPL(iommu_group_add_device); 914 915 /** 916 * iommu_group_remove_device - remove a device from it's current group 917 * @dev: device to be removed 918 * 919 * This function is called by an iommu driver to remove the device from 920 * it's current group. This decrements the iommu group reference count. 921 */ 922 void iommu_group_remove_device(struct device *dev) 923 { 924 struct iommu_group *group = dev->iommu_group; 925 struct group_device *tmp_device, *device = NULL; 926 927 dev_info(dev, "Removing from iommu group %d\n", group->id); 928 929 /* Pre-notify listeners that a device is being removed. */ 930 blocking_notifier_call_chain(&group->notifier, 931 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 932 933 mutex_lock(&group->mutex); 934 list_for_each_entry(tmp_device, &group->devices, list) { 935 if (tmp_device->dev == dev) { 936 device = tmp_device; 937 list_del(&device->list); 938 break; 939 } 940 } 941 mutex_unlock(&group->mutex); 942 943 if (!device) 944 return; 945 946 sysfs_remove_link(group->devices_kobj, device->name); 947 sysfs_remove_link(&dev->kobj, "iommu_group"); 948 949 trace_remove_device_from_group(group->id, dev); 950 951 kfree(device->name); 952 kfree(device); 953 dev->iommu_group = NULL; 954 kobject_put(group->devices_kobj); 955 } 956 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 957 958 static int iommu_group_device_count(struct iommu_group *group) 959 { 960 struct group_device *entry; 961 int ret = 0; 962 963 list_for_each_entry(entry, &group->devices, list) 964 ret++; 965 966 return ret; 967 } 968 969 /** 970 * iommu_group_for_each_dev - iterate over each device in the group 971 * @group: the group 972 * @data: caller opaque data to be passed to callback function 973 * @fn: caller supplied callback function 974 * 975 * This function is called by group users to iterate over group devices. 976 * Callers should hold a reference count to the group during callback. 977 * The group->mutex is held across callbacks, which will block calls to 978 * iommu_group_add/remove_device. 979 */ 980 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 981 int (*fn)(struct device *, void *)) 982 { 983 struct group_device *device; 984 int ret = 0; 985 986 list_for_each_entry(device, &group->devices, list) { 987 ret = fn(device->dev, data); 988 if (ret) 989 break; 990 } 991 return ret; 992 } 993 994 995 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 996 int (*fn)(struct device *, void *)) 997 { 998 int ret; 999 1000 mutex_lock(&group->mutex); 1001 ret = __iommu_group_for_each_dev(group, data, fn); 1002 mutex_unlock(&group->mutex); 1003 1004 return ret; 1005 } 1006 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1007 1008 /** 1009 * iommu_group_get - Return the group for a device and increment reference 1010 * @dev: get the group that this device belongs to 1011 * 1012 * This function is called by iommu drivers and users to get the group 1013 * for the specified device. If found, the group is returned and the group 1014 * reference in incremented, else NULL. 1015 */ 1016 struct iommu_group *iommu_group_get(struct device *dev) 1017 { 1018 struct iommu_group *group = dev->iommu_group; 1019 1020 if (group) 1021 kobject_get(group->devices_kobj); 1022 1023 return group; 1024 } 1025 EXPORT_SYMBOL_GPL(iommu_group_get); 1026 1027 /** 1028 * iommu_group_ref_get - Increment reference on a group 1029 * @group: the group to use, must not be NULL 1030 * 1031 * This function is called by iommu drivers to take additional references on an 1032 * existing group. Returns the given group for convenience. 1033 */ 1034 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1035 { 1036 kobject_get(group->devices_kobj); 1037 return group; 1038 } 1039 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1040 1041 /** 1042 * iommu_group_put - Decrement group reference 1043 * @group: the group to use 1044 * 1045 * This function is called by iommu drivers and users to release the 1046 * iommu group. Once the reference count is zero, the group is released. 1047 */ 1048 void iommu_group_put(struct iommu_group *group) 1049 { 1050 if (group) 1051 kobject_put(group->devices_kobj); 1052 } 1053 EXPORT_SYMBOL_GPL(iommu_group_put); 1054 1055 /** 1056 * iommu_group_register_notifier - Register a notifier for group changes 1057 * @group: the group to watch 1058 * @nb: notifier block to signal 1059 * 1060 * This function allows iommu group users to track changes in a group. 1061 * See include/linux/iommu.h for actions sent via this notifier. Caller 1062 * should hold a reference to the group throughout notifier registration. 1063 */ 1064 int iommu_group_register_notifier(struct iommu_group *group, 1065 struct notifier_block *nb) 1066 { 1067 return blocking_notifier_chain_register(&group->notifier, nb); 1068 } 1069 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 1070 1071 /** 1072 * iommu_group_unregister_notifier - Unregister a notifier 1073 * @group: the group to watch 1074 * @nb: notifier block to signal 1075 * 1076 * Unregister a previously registered group notifier block. 1077 */ 1078 int iommu_group_unregister_notifier(struct iommu_group *group, 1079 struct notifier_block *nb) 1080 { 1081 return blocking_notifier_chain_unregister(&group->notifier, nb); 1082 } 1083 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 1084 1085 /** 1086 * iommu_register_device_fault_handler() - Register a device fault handler 1087 * @dev: the device 1088 * @handler: the fault handler 1089 * @data: private data passed as argument to the handler 1090 * 1091 * When an IOMMU fault event is received, this handler gets called with the 1092 * fault event and data as argument. The handler should return 0 on success. If 1093 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1094 * complete the fault by calling iommu_page_response() with one of the following 1095 * response code: 1096 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1097 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1098 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1099 * page faults if possible. 1100 * 1101 * Return 0 if the fault handler was installed successfully, or an error. 1102 */ 1103 int iommu_register_device_fault_handler(struct device *dev, 1104 iommu_dev_fault_handler_t handler, 1105 void *data) 1106 { 1107 struct dev_iommu *param = dev->iommu; 1108 int ret = 0; 1109 1110 if (!param) 1111 return -EINVAL; 1112 1113 mutex_lock(¶m->lock); 1114 /* Only allow one fault handler registered for each device */ 1115 if (param->fault_param) { 1116 ret = -EBUSY; 1117 goto done_unlock; 1118 } 1119 1120 get_device(dev); 1121 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1122 if (!param->fault_param) { 1123 put_device(dev); 1124 ret = -ENOMEM; 1125 goto done_unlock; 1126 } 1127 param->fault_param->handler = handler; 1128 param->fault_param->data = data; 1129 mutex_init(¶m->fault_param->lock); 1130 INIT_LIST_HEAD(¶m->fault_param->faults); 1131 1132 done_unlock: 1133 mutex_unlock(¶m->lock); 1134 1135 return ret; 1136 } 1137 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1138 1139 /** 1140 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1141 * @dev: the device 1142 * 1143 * Remove the device fault handler installed with 1144 * iommu_register_device_fault_handler(). 1145 * 1146 * Return 0 on success, or an error. 1147 */ 1148 int iommu_unregister_device_fault_handler(struct device *dev) 1149 { 1150 struct dev_iommu *param = dev->iommu; 1151 int ret = 0; 1152 1153 if (!param) 1154 return -EINVAL; 1155 1156 mutex_lock(¶m->lock); 1157 1158 if (!param->fault_param) 1159 goto unlock; 1160 1161 /* we cannot unregister handler if there are pending faults */ 1162 if (!list_empty(¶m->fault_param->faults)) { 1163 ret = -EBUSY; 1164 goto unlock; 1165 } 1166 1167 kfree(param->fault_param); 1168 param->fault_param = NULL; 1169 put_device(dev); 1170 unlock: 1171 mutex_unlock(¶m->lock); 1172 1173 return ret; 1174 } 1175 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1176 1177 /** 1178 * iommu_report_device_fault() - Report fault event to device driver 1179 * @dev: the device 1180 * @evt: fault event data 1181 * 1182 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1183 * handler. When this function fails and the fault is recoverable, it is the 1184 * caller's responsibility to complete the fault. 1185 * 1186 * Return 0 on success, or an error. 1187 */ 1188 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1189 { 1190 struct dev_iommu *param = dev->iommu; 1191 struct iommu_fault_event *evt_pending = NULL; 1192 struct iommu_fault_param *fparam; 1193 int ret = 0; 1194 1195 if (!param || !evt) 1196 return -EINVAL; 1197 1198 /* we only report device fault if there is a handler registered */ 1199 mutex_lock(¶m->lock); 1200 fparam = param->fault_param; 1201 if (!fparam || !fparam->handler) { 1202 ret = -EINVAL; 1203 goto done_unlock; 1204 } 1205 1206 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1207 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1208 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1209 GFP_KERNEL); 1210 if (!evt_pending) { 1211 ret = -ENOMEM; 1212 goto done_unlock; 1213 } 1214 mutex_lock(&fparam->lock); 1215 list_add_tail(&evt_pending->list, &fparam->faults); 1216 mutex_unlock(&fparam->lock); 1217 } 1218 1219 ret = fparam->handler(&evt->fault, fparam->data); 1220 if (ret && evt_pending) { 1221 mutex_lock(&fparam->lock); 1222 list_del(&evt_pending->list); 1223 mutex_unlock(&fparam->lock); 1224 kfree(evt_pending); 1225 } 1226 done_unlock: 1227 mutex_unlock(¶m->lock); 1228 return ret; 1229 } 1230 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1231 1232 int iommu_page_response(struct device *dev, 1233 struct iommu_page_response *msg) 1234 { 1235 bool needs_pasid; 1236 int ret = -EINVAL; 1237 struct iommu_fault_event *evt; 1238 struct iommu_fault_page_request *prm; 1239 struct dev_iommu *param = dev->iommu; 1240 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; 1241 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1242 1243 if (!domain || !domain->ops->page_response) 1244 return -ENODEV; 1245 1246 if (!param || !param->fault_param) 1247 return -EINVAL; 1248 1249 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1250 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1251 return -EINVAL; 1252 1253 /* Only send response if there is a fault report pending */ 1254 mutex_lock(¶m->fault_param->lock); 1255 if (list_empty(¶m->fault_param->faults)) { 1256 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1257 goto done_unlock; 1258 } 1259 /* 1260 * Check if we have a matching page request pending to respond, 1261 * otherwise return -EINVAL 1262 */ 1263 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1264 prm = &evt->fault.prm; 1265 if (prm->grpid != msg->grpid) 1266 continue; 1267 1268 /* 1269 * If the PASID is required, the corresponding request is 1270 * matched using the group ID, the PASID valid bit and the PASID 1271 * value. Otherwise only the group ID matches request and 1272 * response. 1273 */ 1274 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 1275 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) 1276 continue; 1277 1278 if (!needs_pasid && has_pasid) { 1279 /* No big deal, just clear it. */ 1280 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; 1281 msg->pasid = 0; 1282 } 1283 1284 ret = domain->ops->page_response(dev, evt, msg); 1285 list_del(&evt->list); 1286 kfree(evt); 1287 break; 1288 } 1289 1290 done_unlock: 1291 mutex_unlock(¶m->fault_param->lock); 1292 return ret; 1293 } 1294 EXPORT_SYMBOL_GPL(iommu_page_response); 1295 1296 /** 1297 * iommu_group_id - Return ID for a group 1298 * @group: the group to ID 1299 * 1300 * Return the unique ID for the group matching the sysfs group number. 1301 */ 1302 int iommu_group_id(struct iommu_group *group) 1303 { 1304 return group->id; 1305 } 1306 EXPORT_SYMBOL_GPL(iommu_group_id); 1307 1308 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1309 unsigned long *devfns); 1310 1311 /* 1312 * To consider a PCI device isolated, we require ACS to support Source 1313 * Validation, Request Redirection, Completer Redirection, and Upstream 1314 * Forwarding. This effectively means that devices cannot spoof their 1315 * requester ID, requests and completions cannot be redirected, and all 1316 * transactions are forwarded upstream, even as it passes through a 1317 * bridge where the target device is downstream. 1318 */ 1319 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1320 1321 /* 1322 * For multifunction devices which are not isolated from each other, find 1323 * all the other non-isolated functions and look for existing groups. For 1324 * each function, we also need to look for aliases to or from other devices 1325 * that may already have a group. 1326 */ 1327 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1328 unsigned long *devfns) 1329 { 1330 struct pci_dev *tmp = NULL; 1331 struct iommu_group *group; 1332 1333 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1334 return NULL; 1335 1336 for_each_pci_dev(tmp) { 1337 if (tmp == pdev || tmp->bus != pdev->bus || 1338 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1339 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1340 continue; 1341 1342 group = get_pci_alias_group(tmp, devfns); 1343 if (group) { 1344 pci_dev_put(tmp); 1345 return group; 1346 } 1347 } 1348 1349 return NULL; 1350 } 1351 1352 /* 1353 * Look for aliases to or from the given device for existing groups. DMA 1354 * aliases are only supported on the same bus, therefore the search 1355 * space is quite small (especially since we're really only looking at pcie 1356 * device, and therefore only expect multiple slots on the root complex or 1357 * downstream switch ports). It's conceivable though that a pair of 1358 * multifunction devices could have aliases between them that would cause a 1359 * loop. To prevent this, we use a bitmap to track where we've been. 1360 */ 1361 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1362 unsigned long *devfns) 1363 { 1364 struct pci_dev *tmp = NULL; 1365 struct iommu_group *group; 1366 1367 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1368 return NULL; 1369 1370 group = iommu_group_get(&pdev->dev); 1371 if (group) 1372 return group; 1373 1374 for_each_pci_dev(tmp) { 1375 if (tmp == pdev || tmp->bus != pdev->bus) 1376 continue; 1377 1378 /* We alias them or they alias us */ 1379 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1380 group = get_pci_alias_group(tmp, devfns); 1381 if (group) { 1382 pci_dev_put(tmp); 1383 return group; 1384 } 1385 1386 group = get_pci_function_alias_group(tmp, devfns); 1387 if (group) { 1388 pci_dev_put(tmp); 1389 return group; 1390 } 1391 } 1392 } 1393 1394 return NULL; 1395 } 1396 1397 struct group_for_pci_data { 1398 struct pci_dev *pdev; 1399 struct iommu_group *group; 1400 }; 1401 1402 /* 1403 * DMA alias iterator callback, return the last seen device. Stop and return 1404 * the IOMMU group if we find one along the way. 1405 */ 1406 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1407 { 1408 struct group_for_pci_data *data = opaque; 1409 1410 data->pdev = pdev; 1411 data->group = iommu_group_get(&pdev->dev); 1412 1413 return data->group != NULL; 1414 } 1415 1416 /* 1417 * Generic device_group call-back function. It just allocates one 1418 * iommu-group per device. 1419 */ 1420 struct iommu_group *generic_device_group(struct device *dev) 1421 { 1422 return iommu_group_alloc(); 1423 } 1424 EXPORT_SYMBOL_GPL(generic_device_group); 1425 1426 /* 1427 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1428 * to find or create an IOMMU group for a device. 1429 */ 1430 struct iommu_group *pci_device_group(struct device *dev) 1431 { 1432 struct pci_dev *pdev = to_pci_dev(dev); 1433 struct group_for_pci_data data; 1434 struct pci_bus *bus; 1435 struct iommu_group *group = NULL; 1436 u64 devfns[4] = { 0 }; 1437 1438 if (WARN_ON(!dev_is_pci(dev))) 1439 return ERR_PTR(-EINVAL); 1440 1441 /* 1442 * Find the upstream DMA alias for the device. A device must not 1443 * be aliased due to topology in order to have its own IOMMU group. 1444 * If we find an alias along the way that already belongs to a 1445 * group, use it. 1446 */ 1447 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1448 return data.group; 1449 1450 pdev = data.pdev; 1451 1452 /* 1453 * Continue upstream from the point of minimum IOMMU granularity 1454 * due to aliases to the point where devices are protected from 1455 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1456 * group, use it. 1457 */ 1458 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1459 if (!bus->self) 1460 continue; 1461 1462 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1463 break; 1464 1465 pdev = bus->self; 1466 1467 group = iommu_group_get(&pdev->dev); 1468 if (group) 1469 return group; 1470 } 1471 1472 /* 1473 * Look for existing groups on device aliases. If we alias another 1474 * device or another device aliases us, use the same group. 1475 */ 1476 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1477 if (group) 1478 return group; 1479 1480 /* 1481 * Look for existing groups on non-isolated functions on the same 1482 * slot and aliases of those funcions, if any. No need to clear 1483 * the search bitmap, the tested devfns are still valid. 1484 */ 1485 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1486 if (group) 1487 return group; 1488 1489 /* No shared group found, allocate new */ 1490 return iommu_group_alloc(); 1491 } 1492 EXPORT_SYMBOL_GPL(pci_device_group); 1493 1494 /* Get the IOMMU group for device on fsl-mc bus */ 1495 struct iommu_group *fsl_mc_device_group(struct device *dev) 1496 { 1497 struct device *cont_dev = fsl_mc_cont_dev(dev); 1498 struct iommu_group *group; 1499 1500 group = iommu_group_get(cont_dev); 1501 if (!group) 1502 group = iommu_group_alloc(); 1503 return group; 1504 } 1505 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1506 1507 static int iommu_get_def_domain_type(struct device *dev) 1508 { 1509 const struct iommu_ops *ops = dev->bus->iommu_ops; 1510 1511 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 1512 return IOMMU_DOMAIN_DMA; 1513 1514 if (ops->def_domain_type) 1515 return ops->def_domain_type(dev); 1516 1517 return 0; 1518 } 1519 1520 static int iommu_group_alloc_default_domain(struct bus_type *bus, 1521 struct iommu_group *group, 1522 unsigned int type) 1523 { 1524 struct iommu_domain *dom; 1525 1526 dom = __iommu_domain_alloc(bus, type); 1527 if (!dom && type != IOMMU_DOMAIN_DMA) { 1528 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA); 1529 if (dom) 1530 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1531 type, group->name); 1532 } 1533 1534 if (!dom) 1535 return -ENOMEM; 1536 1537 group->default_domain = dom; 1538 if (!group->domain) 1539 group->domain = dom; 1540 return 0; 1541 } 1542 1543 static int iommu_alloc_default_domain(struct iommu_group *group, 1544 struct device *dev) 1545 { 1546 unsigned int type; 1547 1548 if (group->default_domain) 1549 return 0; 1550 1551 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type; 1552 1553 return iommu_group_alloc_default_domain(dev->bus, group, type); 1554 } 1555 1556 /** 1557 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1558 * @dev: target device 1559 * 1560 * This function is intended to be called by IOMMU drivers and extended to 1561 * support common, bus-defined algorithms when determining or creating the 1562 * IOMMU group for a device. On success, the caller will hold a reference 1563 * to the returned IOMMU group, which will already include the provided 1564 * device. The reference should be released with iommu_group_put(). 1565 */ 1566 static struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1567 { 1568 const struct iommu_ops *ops = dev->bus->iommu_ops; 1569 struct iommu_group *group; 1570 int ret; 1571 1572 group = iommu_group_get(dev); 1573 if (group) 1574 return group; 1575 1576 if (!ops) 1577 return ERR_PTR(-EINVAL); 1578 1579 group = ops->device_group(dev); 1580 if (WARN_ON_ONCE(group == NULL)) 1581 return ERR_PTR(-EINVAL); 1582 1583 if (IS_ERR(group)) 1584 return group; 1585 1586 ret = iommu_group_add_device(group, dev); 1587 if (ret) 1588 goto out_put_group; 1589 1590 return group; 1591 1592 out_put_group: 1593 iommu_group_put(group); 1594 1595 return ERR_PTR(ret); 1596 } 1597 1598 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1599 { 1600 return group->default_domain; 1601 } 1602 1603 static int probe_iommu_group(struct device *dev, void *data) 1604 { 1605 struct list_head *group_list = data; 1606 struct iommu_group *group; 1607 int ret; 1608 1609 /* Device is probed already if in a group */ 1610 group = iommu_group_get(dev); 1611 if (group) { 1612 iommu_group_put(group); 1613 return 0; 1614 } 1615 1616 ret = __iommu_probe_device(dev, group_list); 1617 if (ret == -ENODEV) 1618 ret = 0; 1619 1620 return ret; 1621 } 1622 1623 static int remove_iommu_group(struct device *dev, void *data) 1624 { 1625 iommu_release_device(dev); 1626 1627 return 0; 1628 } 1629 1630 static int iommu_bus_notifier(struct notifier_block *nb, 1631 unsigned long action, void *data) 1632 { 1633 unsigned long group_action = 0; 1634 struct device *dev = data; 1635 struct iommu_group *group; 1636 1637 /* 1638 * ADD/DEL call into iommu driver ops if provided, which may 1639 * result in ADD/DEL notifiers to group->notifier 1640 */ 1641 if (action == BUS_NOTIFY_ADD_DEVICE) { 1642 int ret; 1643 1644 ret = iommu_probe_device(dev); 1645 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1646 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1647 iommu_release_device(dev); 1648 return NOTIFY_OK; 1649 } 1650 1651 /* 1652 * Remaining BUS_NOTIFYs get filtered and republished to the 1653 * group, if anyone is listening 1654 */ 1655 group = iommu_group_get(dev); 1656 if (!group) 1657 return 0; 1658 1659 switch (action) { 1660 case BUS_NOTIFY_BIND_DRIVER: 1661 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1662 break; 1663 case BUS_NOTIFY_BOUND_DRIVER: 1664 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1665 break; 1666 case BUS_NOTIFY_UNBIND_DRIVER: 1667 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1668 break; 1669 case BUS_NOTIFY_UNBOUND_DRIVER: 1670 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1671 break; 1672 } 1673 1674 if (group_action) 1675 blocking_notifier_call_chain(&group->notifier, 1676 group_action, dev); 1677 1678 iommu_group_put(group); 1679 return 0; 1680 } 1681 1682 struct __group_domain_type { 1683 struct device *dev; 1684 unsigned int type; 1685 }; 1686 1687 static int probe_get_default_domain_type(struct device *dev, void *data) 1688 { 1689 struct __group_domain_type *gtype = data; 1690 unsigned int type = iommu_get_def_domain_type(dev); 1691 1692 if (type) { 1693 if (gtype->type && gtype->type != type) { 1694 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1695 iommu_domain_type_str(type), 1696 dev_name(gtype->dev), 1697 iommu_domain_type_str(gtype->type)); 1698 gtype->type = 0; 1699 } 1700 1701 if (!gtype->dev) { 1702 gtype->dev = dev; 1703 gtype->type = type; 1704 } 1705 } 1706 1707 return 0; 1708 } 1709 1710 static void probe_alloc_default_domain(struct bus_type *bus, 1711 struct iommu_group *group) 1712 { 1713 struct __group_domain_type gtype; 1714 1715 memset(>ype, 0, sizeof(gtype)); 1716 1717 /* Ask for default domain requirements of all devices in the group */ 1718 __iommu_group_for_each_dev(group, >ype, 1719 probe_get_default_domain_type); 1720 1721 if (!gtype.type) 1722 gtype.type = iommu_def_domain_type; 1723 1724 iommu_group_alloc_default_domain(bus, group, gtype.type); 1725 1726 } 1727 1728 static int iommu_group_do_dma_attach(struct device *dev, void *data) 1729 { 1730 struct iommu_domain *domain = data; 1731 int ret = 0; 1732 1733 if (!iommu_is_attach_deferred(domain, dev)) 1734 ret = __iommu_attach_device(domain, dev); 1735 1736 return ret; 1737 } 1738 1739 static int __iommu_group_dma_attach(struct iommu_group *group) 1740 { 1741 return __iommu_group_for_each_dev(group, group->default_domain, 1742 iommu_group_do_dma_attach); 1743 } 1744 1745 static int iommu_group_do_probe_finalize(struct device *dev, void *data) 1746 { 1747 struct iommu_domain *domain = data; 1748 1749 if (domain->ops->probe_finalize) 1750 domain->ops->probe_finalize(dev); 1751 1752 return 0; 1753 } 1754 1755 static void __iommu_group_dma_finalize(struct iommu_group *group) 1756 { 1757 __iommu_group_for_each_dev(group, group->default_domain, 1758 iommu_group_do_probe_finalize); 1759 } 1760 1761 static int iommu_do_create_direct_mappings(struct device *dev, void *data) 1762 { 1763 struct iommu_group *group = data; 1764 1765 iommu_create_device_direct_mappings(group, dev); 1766 1767 return 0; 1768 } 1769 1770 static int iommu_group_create_direct_mappings(struct iommu_group *group) 1771 { 1772 return __iommu_group_for_each_dev(group, group, 1773 iommu_do_create_direct_mappings); 1774 } 1775 1776 int bus_iommu_probe(struct bus_type *bus) 1777 { 1778 struct iommu_group *group, *next; 1779 LIST_HEAD(group_list); 1780 int ret; 1781 1782 /* 1783 * This code-path does not allocate the default domain when 1784 * creating the iommu group, so do it after the groups are 1785 * created. 1786 */ 1787 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1788 if (ret) 1789 return ret; 1790 1791 list_for_each_entry_safe(group, next, &group_list, entry) { 1792 /* Remove item from the list */ 1793 list_del_init(&group->entry); 1794 1795 mutex_lock(&group->mutex); 1796 1797 /* Try to allocate default domain */ 1798 probe_alloc_default_domain(bus, group); 1799 1800 if (!group->default_domain) { 1801 mutex_unlock(&group->mutex); 1802 continue; 1803 } 1804 1805 iommu_group_create_direct_mappings(group); 1806 1807 ret = __iommu_group_dma_attach(group); 1808 1809 mutex_unlock(&group->mutex); 1810 1811 if (ret) 1812 break; 1813 1814 __iommu_group_dma_finalize(group); 1815 } 1816 1817 return ret; 1818 } 1819 1820 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1821 { 1822 struct notifier_block *nb; 1823 int err; 1824 1825 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1826 if (!nb) 1827 return -ENOMEM; 1828 1829 nb->notifier_call = iommu_bus_notifier; 1830 1831 err = bus_register_notifier(bus, nb); 1832 if (err) 1833 goto out_free; 1834 1835 err = bus_iommu_probe(bus); 1836 if (err) 1837 goto out_err; 1838 1839 1840 return 0; 1841 1842 out_err: 1843 /* Clean up */ 1844 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1845 bus_unregister_notifier(bus, nb); 1846 1847 out_free: 1848 kfree(nb); 1849 1850 return err; 1851 } 1852 1853 /** 1854 * bus_set_iommu - set iommu-callbacks for the bus 1855 * @bus: bus. 1856 * @ops: the callbacks provided by the iommu-driver 1857 * 1858 * This function is called by an iommu driver to set the iommu methods 1859 * used for a particular bus. Drivers for devices on that bus can use 1860 * the iommu-api after these ops are registered. 1861 * This special function is needed because IOMMUs are usually devices on 1862 * the bus itself, so the iommu drivers are not initialized when the bus 1863 * is set up. With this function the iommu-driver can set the iommu-ops 1864 * afterwards. 1865 */ 1866 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1867 { 1868 int err; 1869 1870 if (ops == NULL) { 1871 bus->iommu_ops = NULL; 1872 return 0; 1873 } 1874 1875 if (bus->iommu_ops != NULL) 1876 return -EBUSY; 1877 1878 bus->iommu_ops = ops; 1879 1880 /* Do IOMMU specific setup for this bus-type */ 1881 err = iommu_bus_init(bus, ops); 1882 if (err) 1883 bus->iommu_ops = NULL; 1884 1885 return err; 1886 } 1887 EXPORT_SYMBOL_GPL(bus_set_iommu); 1888 1889 bool iommu_present(struct bus_type *bus) 1890 { 1891 return bus->iommu_ops != NULL; 1892 } 1893 EXPORT_SYMBOL_GPL(iommu_present); 1894 1895 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1896 { 1897 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1898 return false; 1899 1900 return bus->iommu_ops->capable(cap); 1901 } 1902 EXPORT_SYMBOL_GPL(iommu_capable); 1903 1904 /** 1905 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1906 * @domain: iommu domain 1907 * @handler: fault handler 1908 * @token: user data, will be passed back to the fault handler 1909 * 1910 * This function should be used by IOMMU users which want to be notified 1911 * whenever an IOMMU fault happens. 1912 * 1913 * The fault handler itself should return 0 on success, and an appropriate 1914 * error code otherwise. 1915 */ 1916 void iommu_set_fault_handler(struct iommu_domain *domain, 1917 iommu_fault_handler_t handler, 1918 void *token) 1919 { 1920 BUG_ON(!domain); 1921 1922 domain->handler = handler; 1923 domain->handler_token = token; 1924 } 1925 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1926 1927 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1928 unsigned type) 1929 { 1930 struct iommu_domain *domain; 1931 1932 if (bus == NULL || bus->iommu_ops == NULL) 1933 return NULL; 1934 1935 domain = bus->iommu_ops->domain_alloc(type); 1936 if (!domain) 1937 return NULL; 1938 1939 domain->ops = bus->iommu_ops; 1940 domain->type = type; 1941 /* Assume all sizes by default; the driver may override this later */ 1942 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1943 1944 return domain; 1945 } 1946 1947 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1948 { 1949 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1950 } 1951 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1952 1953 void iommu_domain_free(struct iommu_domain *domain) 1954 { 1955 domain->ops->domain_free(domain); 1956 } 1957 EXPORT_SYMBOL_GPL(iommu_domain_free); 1958 1959 static int __iommu_attach_device(struct iommu_domain *domain, 1960 struct device *dev) 1961 { 1962 int ret; 1963 1964 if (unlikely(domain->ops->attach_dev == NULL)) 1965 return -ENODEV; 1966 1967 ret = domain->ops->attach_dev(domain, dev); 1968 if (!ret) 1969 trace_attach_device_to_domain(dev); 1970 return ret; 1971 } 1972 1973 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1974 { 1975 struct iommu_group *group; 1976 int ret; 1977 1978 group = iommu_group_get(dev); 1979 if (!group) 1980 return -ENODEV; 1981 1982 /* 1983 * Lock the group to make sure the device-count doesn't 1984 * change while we are attaching 1985 */ 1986 mutex_lock(&group->mutex); 1987 ret = -EINVAL; 1988 if (iommu_group_device_count(group) != 1) 1989 goto out_unlock; 1990 1991 ret = __iommu_attach_group(domain, group); 1992 1993 out_unlock: 1994 mutex_unlock(&group->mutex); 1995 iommu_group_put(group); 1996 1997 return ret; 1998 } 1999 EXPORT_SYMBOL_GPL(iommu_attach_device); 2000 2001 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2002 { 2003 const struct iommu_ops *ops = domain->ops; 2004 2005 if (ops->is_attach_deferred && ops->is_attach_deferred(domain, dev)) 2006 return __iommu_attach_device(domain, dev); 2007 2008 return 0; 2009 } 2010 2011 /* 2012 * Check flags and other user provided data for valid combinations. We also 2013 * make sure no reserved fields or unused flags are set. This is to ensure 2014 * not breaking userspace in the future when these fields or flags are used. 2015 */ 2016 static int iommu_check_cache_invl_data(struct iommu_cache_invalidate_info *info) 2017 { 2018 u32 mask; 2019 int i; 2020 2021 if (info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1) 2022 return -EINVAL; 2023 2024 mask = (1 << IOMMU_CACHE_INV_TYPE_NR) - 1; 2025 if (info->cache & ~mask) 2026 return -EINVAL; 2027 2028 if (info->granularity >= IOMMU_INV_GRANU_NR) 2029 return -EINVAL; 2030 2031 switch (info->granularity) { 2032 case IOMMU_INV_GRANU_ADDR: 2033 if (info->cache & IOMMU_CACHE_INV_TYPE_PASID) 2034 return -EINVAL; 2035 2036 mask = IOMMU_INV_ADDR_FLAGS_PASID | 2037 IOMMU_INV_ADDR_FLAGS_ARCHID | 2038 IOMMU_INV_ADDR_FLAGS_LEAF; 2039 2040 if (info->granu.addr_info.flags & ~mask) 2041 return -EINVAL; 2042 break; 2043 case IOMMU_INV_GRANU_PASID: 2044 mask = IOMMU_INV_PASID_FLAGS_PASID | 2045 IOMMU_INV_PASID_FLAGS_ARCHID; 2046 if (info->granu.pasid_info.flags & ~mask) 2047 return -EINVAL; 2048 2049 break; 2050 case IOMMU_INV_GRANU_DOMAIN: 2051 if (info->cache & IOMMU_CACHE_INV_TYPE_DEV_IOTLB) 2052 return -EINVAL; 2053 break; 2054 default: 2055 return -EINVAL; 2056 } 2057 2058 /* Check reserved padding fields */ 2059 for (i = 0; i < sizeof(info->padding); i++) { 2060 if (info->padding[i]) 2061 return -EINVAL; 2062 } 2063 2064 return 0; 2065 } 2066 2067 int iommu_uapi_cache_invalidate(struct iommu_domain *domain, struct device *dev, 2068 void __user *uinfo) 2069 { 2070 struct iommu_cache_invalidate_info inv_info = { 0 }; 2071 u32 minsz; 2072 int ret; 2073 2074 if (unlikely(!domain->ops->cache_invalidate)) 2075 return -ENODEV; 2076 2077 /* 2078 * No new spaces can be added before the variable sized union, the 2079 * minimum size is the offset to the union. 2080 */ 2081 minsz = offsetof(struct iommu_cache_invalidate_info, granu); 2082 2083 /* Copy minsz from user to get flags and argsz */ 2084 if (copy_from_user(&inv_info, uinfo, minsz)) 2085 return -EFAULT; 2086 2087 /* Fields before the variable size union are mandatory */ 2088 if (inv_info.argsz < minsz) 2089 return -EINVAL; 2090 2091 /* PASID and address granu require additional info beyond minsz */ 2092 if (inv_info.granularity == IOMMU_INV_GRANU_PASID && 2093 inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.pasid_info)) 2094 return -EINVAL; 2095 2096 if (inv_info.granularity == IOMMU_INV_GRANU_ADDR && 2097 inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.addr_info)) 2098 return -EINVAL; 2099 2100 /* 2101 * User might be using a newer UAPI header which has a larger data 2102 * size, we shall support the existing flags within the current 2103 * size. Copy the remaining user data _after_ minsz but not more 2104 * than the current kernel supported size. 2105 */ 2106 if (copy_from_user((void *)&inv_info + minsz, uinfo + minsz, 2107 min_t(u32, inv_info.argsz, sizeof(inv_info)) - minsz)) 2108 return -EFAULT; 2109 2110 /* Now the argsz is validated, check the content */ 2111 ret = iommu_check_cache_invl_data(&inv_info); 2112 if (ret) 2113 return ret; 2114 2115 return domain->ops->cache_invalidate(domain, dev, &inv_info); 2116 } 2117 EXPORT_SYMBOL_GPL(iommu_uapi_cache_invalidate); 2118 2119 static int iommu_check_bind_data(struct iommu_gpasid_bind_data *data) 2120 { 2121 u64 mask; 2122 int i; 2123 2124 if (data->version != IOMMU_GPASID_BIND_VERSION_1) 2125 return -EINVAL; 2126 2127 /* Check the range of supported formats */ 2128 if (data->format >= IOMMU_PASID_FORMAT_LAST) 2129 return -EINVAL; 2130 2131 /* Check all flags */ 2132 mask = IOMMU_SVA_GPASID_VAL; 2133 if (data->flags & ~mask) 2134 return -EINVAL; 2135 2136 /* Check reserved padding fields */ 2137 for (i = 0; i < sizeof(data->padding); i++) { 2138 if (data->padding[i]) 2139 return -EINVAL; 2140 } 2141 2142 return 0; 2143 } 2144 2145 static int iommu_sva_prepare_bind_data(void __user *udata, 2146 struct iommu_gpasid_bind_data *data) 2147 { 2148 u32 minsz; 2149 2150 /* 2151 * No new spaces can be added before the variable sized union, the 2152 * minimum size is the offset to the union. 2153 */ 2154 minsz = offsetof(struct iommu_gpasid_bind_data, vendor); 2155 2156 /* Copy minsz from user to get flags and argsz */ 2157 if (copy_from_user(data, udata, minsz)) 2158 return -EFAULT; 2159 2160 /* Fields before the variable size union are mandatory */ 2161 if (data->argsz < minsz) 2162 return -EINVAL; 2163 /* 2164 * User might be using a newer UAPI header, we shall let IOMMU vendor 2165 * driver decide on what size it needs. Since the guest PASID bind data 2166 * can be vendor specific, larger argsz could be the result of extension 2167 * for one vendor but it should not affect another vendor. 2168 * Copy the remaining user data _after_ minsz 2169 */ 2170 if (copy_from_user((void *)data + minsz, udata + minsz, 2171 min_t(u32, data->argsz, sizeof(*data)) - minsz)) 2172 return -EFAULT; 2173 2174 return iommu_check_bind_data(data); 2175 } 2176 2177 int iommu_uapi_sva_bind_gpasid(struct iommu_domain *domain, struct device *dev, 2178 void __user *udata) 2179 { 2180 struct iommu_gpasid_bind_data data = { 0 }; 2181 int ret; 2182 2183 if (unlikely(!domain->ops->sva_bind_gpasid)) 2184 return -ENODEV; 2185 2186 ret = iommu_sva_prepare_bind_data(udata, &data); 2187 if (ret) 2188 return ret; 2189 2190 return domain->ops->sva_bind_gpasid(domain, dev, &data); 2191 } 2192 EXPORT_SYMBOL_GPL(iommu_uapi_sva_bind_gpasid); 2193 2194 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 2195 ioasid_t pasid) 2196 { 2197 if (unlikely(!domain->ops->sva_unbind_gpasid)) 2198 return -ENODEV; 2199 2200 return domain->ops->sva_unbind_gpasid(dev, pasid); 2201 } 2202 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid); 2203 2204 int iommu_uapi_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 2205 void __user *udata) 2206 { 2207 struct iommu_gpasid_bind_data data = { 0 }; 2208 int ret; 2209 2210 if (unlikely(!domain->ops->sva_bind_gpasid)) 2211 return -ENODEV; 2212 2213 ret = iommu_sva_prepare_bind_data(udata, &data); 2214 if (ret) 2215 return ret; 2216 2217 return iommu_sva_unbind_gpasid(domain, dev, data.hpasid); 2218 } 2219 EXPORT_SYMBOL_GPL(iommu_uapi_sva_unbind_gpasid); 2220 2221 static void __iommu_detach_device(struct iommu_domain *domain, 2222 struct device *dev) 2223 { 2224 if (iommu_is_attach_deferred(domain, dev)) 2225 return; 2226 2227 if (unlikely(domain->ops->detach_dev == NULL)) 2228 return; 2229 2230 domain->ops->detach_dev(domain, dev); 2231 trace_detach_device_from_domain(dev); 2232 } 2233 2234 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2235 { 2236 struct iommu_group *group; 2237 2238 group = iommu_group_get(dev); 2239 if (!group) 2240 return; 2241 2242 mutex_lock(&group->mutex); 2243 if (iommu_group_device_count(group) != 1) { 2244 WARN_ON(1); 2245 goto out_unlock; 2246 } 2247 2248 __iommu_detach_group(domain, group); 2249 2250 out_unlock: 2251 mutex_unlock(&group->mutex); 2252 iommu_group_put(group); 2253 } 2254 EXPORT_SYMBOL_GPL(iommu_detach_device); 2255 2256 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2257 { 2258 struct iommu_domain *domain; 2259 struct iommu_group *group; 2260 2261 group = iommu_group_get(dev); 2262 if (!group) 2263 return NULL; 2264 2265 domain = group->domain; 2266 2267 iommu_group_put(group); 2268 2269 return domain; 2270 } 2271 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2272 2273 /* 2274 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2275 * guarantees that the group and its default domain are valid and correct. 2276 */ 2277 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2278 { 2279 return dev->iommu_group->default_domain; 2280 } 2281 2282 /* 2283 * IOMMU groups are really the natural working unit of the IOMMU, but 2284 * the IOMMU API works on domains and devices. Bridge that gap by 2285 * iterating over the devices in a group. Ideally we'd have a single 2286 * device which represents the requestor ID of the group, but we also 2287 * allow IOMMU drivers to create policy defined minimum sets, where 2288 * the physical hardware may be able to distiguish members, but we 2289 * wish to group them at a higher level (ex. untrusted multi-function 2290 * PCI devices). Thus we attach each device. 2291 */ 2292 static int iommu_group_do_attach_device(struct device *dev, void *data) 2293 { 2294 struct iommu_domain *domain = data; 2295 2296 return __iommu_attach_device(domain, dev); 2297 } 2298 2299 static int __iommu_attach_group(struct iommu_domain *domain, 2300 struct iommu_group *group) 2301 { 2302 int ret; 2303 2304 if (group->default_domain && group->domain != group->default_domain) 2305 return -EBUSY; 2306 2307 ret = __iommu_group_for_each_dev(group, domain, 2308 iommu_group_do_attach_device); 2309 if (ret == 0) 2310 group->domain = domain; 2311 2312 return ret; 2313 } 2314 2315 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2316 { 2317 int ret; 2318 2319 mutex_lock(&group->mutex); 2320 ret = __iommu_attach_group(domain, group); 2321 mutex_unlock(&group->mutex); 2322 2323 return ret; 2324 } 2325 EXPORT_SYMBOL_GPL(iommu_attach_group); 2326 2327 static int iommu_group_do_detach_device(struct device *dev, void *data) 2328 { 2329 struct iommu_domain *domain = data; 2330 2331 __iommu_detach_device(domain, dev); 2332 2333 return 0; 2334 } 2335 2336 static void __iommu_detach_group(struct iommu_domain *domain, 2337 struct iommu_group *group) 2338 { 2339 int ret; 2340 2341 if (!group->default_domain) { 2342 __iommu_group_for_each_dev(group, domain, 2343 iommu_group_do_detach_device); 2344 group->domain = NULL; 2345 return; 2346 } 2347 2348 if (group->domain == group->default_domain) 2349 return; 2350 2351 /* Detach by re-attaching to the default domain */ 2352 ret = __iommu_group_for_each_dev(group, group->default_domain, 2353 iommu_group_do_attach_device); 2354 if (ret != 0) 2355 WARN_ON(1); 2356 else 2357 group->domain = group->default_domain; 2358 } 2359 2360 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2361 { 2362 mutex_lock(&group->mutex); 2363 __iommu_detach_group(domain, group); 2364 mutex_unlock(&group->mutex); 2365 } 2366 EXPORT_SYMBOL_GPL(iommu_detach_group); 2367 2368 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2369 { 2370 if (unlikely(domain->ops->iova_to_phys == NULL)) 2371 return 0; 2372 2373 return domain->ops->iova_to_phys(domain, iova); 2374 } 2375 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2376 2377 static size_t iommu_pgsize(struct iommu_domain *domain, 2378 unsigned long addr_merge, size_t size) 2379 { 2380 unsigned int pgsize_idx; 2381 size_t pgsize; 2382 2383 /* Max page size that still fits into 'size' */ 2384 pgsize_idx = __fls(size); 2385 2386 /* need to consider alignment requirements ? */ 2387 if (likely(addr_merge)) { 2388 /* Max page size allowed by address */ 2389 unsigned int align_pgsize_idx = __ffs(addr_merge); 2390 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 2391 } 2392 2393 /* build a mask of acceptable page sizes */ 2394 pgsize = (1UL << (pgsize_idx + 1)) - 1; 2395 2396 /* throw away page sizes not supported by the hardware */ 2397 pgsize &= domain->pgsize_bitmap; 2398 2399 /* make sure we're still sane */ 2400 BUG_ON(!pgsize); 2401 2402 /* pick the biggest page */ 2403 pgsize_idx = __fls(pgsize); 2404 pgsize = 1UL << pgsize_idx; 2405 2406 return pgsize; 2407 } 2408 2409 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2410 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2411 { 2412 const struct iommu_ops *ops = domain->ops; 2413 unsigned long orig_iova = iova; 2414 unsigned int min_pagesz; 2415 size_t orig_size = size; 2416 phys_addr_t orig_paddr = paddr; 2417 int ret = 0; 2418 2419 if (unlikely(ops->map == NULL || 2420 domain->pgsize_bitmap == 0UL)) 2421 return -ENODEV; 2422 2423 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2424 return -EINVAL; 2425 2426 /* find out the minimum page size supported */ 2427 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2428 2429 /* 2430 * both the virtual address and the physical one, as well as 2431 * the size of the mapping, must be aligned (at least) to the 2432 * size of the smallest page supported by the hardware 2433 */ 2434 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2435 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2436 iova, &paddr, size, min_pagesz); 2437 return -EINVAL; 2438 } 2439 2440 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2441 2442 while (size) { 2443 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 2444 2445 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 2446 iova, &paddr, pgsize); 2447 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2448 2449 if (ret) 2450 break; 2451 2452 iova += pgsize; 2453 paddr += pgsize; 2454 size -= pgsize; 2455 } 2456 2457 /* unroll mapping in case something went wrong */ 2458 if (ret) 2459 iommu_unmap(domain, orig_iova, orig_size - size); 2460 else 2461 trace_map(orig_iova, orig_paddr, orig_size); 2462 2463 return ret; 2464 } 2465 2466 static int _iommu_map(struct iommu_domain *domain, unsigned long iova, 2467 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2468 { 2469 const struct iommu_ops *ops = domain->ops; 2470 int ret; 2471 2472 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2473 if (ret == 0 && ops->iotlb_sync_map) 2474 ops->iotlb_sync_map(domain, iova, size); 2475 2476 return ret; 2477 } 2478 2479 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2480 phys_addr_t paddr, size_t size, int prot) 2481 { 2482 might_sleep(); 2483 return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 2484 } 2485 EXPORT_SYMBOL_GPL(iommu_map); 2486 2487 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 2488 phys_addr_t paddr, size_t size, int prot) 2489 { 2490 return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 2491 } 2492 EXPORT_SYMBOL_GPL(iommu_map_atomic); 2493 2494 static size_t __iommu_unmap(struct iommu_domain *domain, 2495 unsigned long iova, size_t size, 2496 struct iommu_iotlb_gather *iotlb_gather) 2497 { 2498 const struct iommu_ops *ops = domain->ops; 2499 size_t unmapped_page, unmapped = 0; 2500 unsigned long orig_iova = iova; 2501 unsigned int min_pagesz; 2502 2503 if (unlikely(ops->unmap == NULL || 2504 domain->pgsize_bitmap == 0UL)) 2505 return 0; 2506 2507 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2508 return 0; 2509 2510 /* find out the minimum page size supported */ 2511 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2512 2513 /* 2514 * The virtual address, as well as the size of the mapping, must be 2515 * aligned (at least) to the size of the smallest page supported 2516 * by the hardware 2517 */ 2518 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2519 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2520 iova, size, min_pagesz); 2521 return 0; 2522 } 2523 2524 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2525 2526 /* 2527 * Keep iterating until we either unmap 'size' bytes (or more) 2528 * or we hit an area that isn't mapped. 2529 */ 2530 while (unmapped < size) { 2531 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 2532 2533 unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather); 2534 if (!unmapped_page) 2535 break; 2536 2537 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2538 iova, unmapped_page); 2539 2540 iova += unmapped_page; 2541 unmapped += unmapped_page; 2542 } 2543 2544 trace_unmap(orig_iova, size, unmapped); 2545 return unmapped; 2546 } 2547 2548 size_t iommu_unmap(struct iommu_domain *domain, 2549 unsigned long iova, size_t size) 2550 { 2551 struct iommu_iotlb_gather iotlb_gather; 2552 size_t ret; 2553 2554 iommu_iotlb_gather_init(&iotlb_gather); 2555 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2556 iommu_iotlb_sync(domain, &iotlb_gather); 2557 2558 return ret; 2559 } 2560 EXPORT_SYMBOL_GPL(iommu_unmap); 2561 2562 size_t iommu_unmap_fast(struct iommu_domain *domain, 2563 unsigned long iova, size_t size, 2564 struct iommu_iotlb_gather *iotlb_gather) 2565 { 2566 return __iommu_unmap(domain, iova, size, iotlb_gather); 2567 } 2568 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2569 2570 static size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2571 struct scatterlist *sg, unsigned int nents, int prot, 2572 gfp_t gfp) 2573 { 2574 const struct iommu_ops *ops = domain->ops; 2575 size_t len = 0, mapped = 0; 2576 phys_addr_t start; 2577 unsigned int i = 0; 2578 int ret; 2579 2580 while (i <= nents) { 2581 phys_addr_t s_phys = sg_phys(sg); 2582 2583 if (len && s_phys != start + len) { 2584 ret = __iommu_map(domain, iova + mapped, start, 2585 len, prot, gfp); 2586 2587 if (ret) 2588 goto out_err; 2589 2590 mapped += len; 2591 len = 0; 2592 } 2593 2594 if (len) { 2595 len += sg->length; 2596 } else { 2597 len = sg->length; 2598 start = s_phys; 2599 } 2600 2601 if (++i < nents) 2602 sg = sg_next(sg); 2603 } 2604 2605 if (ops->iotlb_sync_map) 2606 ops->iotlb_sync_map(domain, iova, mapped); 2607 return mapped; 2608 2609 out_err: 2610 /* undo mappings already done */ 2611 iommu_unmap(domain, iova, mapped); 2612 2613 return 0; 2614 2615 } 2616 2617 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2618 struct scatterlist *sg, unsigned int nents, int prot) 2619 { 2620 might_sleep(); 2621 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2622 } 2623 EXPORT_SYMBOL_GPL(iommu_map_sg); 2624 2625 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2626 struct scatterlist *sg, unsigned int nents, int prot) 2627 { 2628 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2629 } 2630 2631 /** 2632 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2633 * @domain: the iommu domain where the fault has happened 2634 * @dev: the device where the fault has happened 2635 * @iova: the faulting address 2636 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2637 * 2638 * This function should be called by the low-level IOMMU implementations 2639 * whenever IOMMU faults happen, to allow high-level users, that are 2640 * interested in such events, to know about them. 2641 * 2642 * This event may be useful for several possible use cases: 2643 * - mere logging of the event 2644 * - dynamic TLB/PTE loading 2645 * - if restarting of the faulting device is required 2646 * 2647 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2648 * PTE/TLB loading will one day be supported, implementations will be able 2649 * to tell whether it succeeded or not according to this return value). 2650 * 2651 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2652 * (though fault handlers can also return -ENOSYS, in case they want to 2653 * elicit the default behavior of the IOMMU drivers). 2654 */ 2655 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2656 unsigned long iova, int flags) 2657 { 2658 int ret = -ENOSYS; 2659 2660 /* 2661 * if upper layers showed interest and installed a fault handler, 2662 * invoke it. 2663 */ 2664 if (domain->handler) 2665 ret = domain->handler(domain, dev, iova, flags, 2666 domain->handler_token); 2667 2668 trace_io_page_fault(dev, iova, flags); 2669 return ret; 2670 } 2671 EXPORT_SYMBOL_GPL(report_iommu_fault); 2672 2673 static int __init iommu_init(void) 2674 { 2675 iommu_group_kset = kset_create_and_add("iommu_groups", 2676 NULL, kernel_kobj); 2677 BUG_ON(!iommu_group_kset); 2678 2679 iommu_debugfs_setup(); 2680 2681 return 0; 2682 } 2683 core_initcall(iommu_init); 2684 2685 int iommu_enable_nesting(struct iommu_domain *domain) 2686 { 2687 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2688 return -EINVAL; 2689 if (!domain->ops->enable_nesting) 2690 return -EINVAL; 2691 return domain->ops->enable_nesting(domain); 2692 } 2693 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2694 2695 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2696 unsigned long quirk) 2697 { 2698 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2699 return -EINVAL; 2700 if (!domain->ops->set_pgtable_quirks) 2701 return -EINVAL; 2702 return domain->ops->set_pgtable_quirks(domain, quirk); 2703 } 2704 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2705 2706 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2707 { 2708 const struct iommu_ops *ops = dev->bus->iommu_ops; 2709 2710 if (ops && ops->get_resv_regions) 2711 ops->get_resv_regions(dev, list); 2712 } 2713 2714 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2715 { 2716 const struct iommu_ops *ops = dev->bus->iommu_ops; 2717 2718 if (ops && ops->put_resv_regions) 2719 ops->put_resv_regions(dev, list); 2720 } 2721 2722 /** 2723 * generic_iommu_put_resv_regions - Reserved region driver helper 2724 * @dev: device for which to free reserved regions 2725 * @list: reserved region list for device 2726 * 2727 * IOMMU drivers can use this to implement their .put_resv_regions() callback 2728 * for simple reservations. Memory allocated for each reserved region will be 2729 * freed. If an IOMMU driver allocates additional resources per region, it is 2730 * going to have to implement a custom callback. 2731 */ 2732 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list) 2733 { 2734 struct iommu_resv_region *entry, *next; 2735 2736 list_for_each_entry_safe(entry, next, list, list) 2737 kfree(entry); 2738 } 2739 EXPORT_SYMBOL(generic_iommu_put_resv_regions); 2740 2741 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2742 size_t length, int prot, 2743 enum iommu_resv_type type) 2744 { 2745 struct iommu_resv_region *region; 2746 2747 region = kzalloc(sizeof(*region), GFP_KERNEL); 2748 if (!region) 2749 return NULL; 2750 2751 INIT_LIST_HEAD(®ion->list); 2752 region->start = start; 2753 region->length = length; 2754 region->prot = prot; 2755 region->type = type; 2756 return region; 2757 } 2758 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2759 2760 void iommu_set_default_passthrough(bool cmd_line) 2761 { 2762 if (cmd_line) 2763 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2764 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2765 } 2766 2767 void iommu_set_default_translated(bool cmd_line) 2768 { 2769 if (cmd_line) 2770 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2771 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2772 } 2773 2774 bool iommu_default_passthrough(void) 2775 { 2776 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2777 } 2778 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2779 2780 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2781 { 2782 const struct iommu_ops *ops = NULL; 2783 struct iommu_device *iommu; 2784 2785 spin_lock(&iommu_device_lock); 2786 list_for_each_entry(iommu, &iommu_device_list, list) 2787 if (iommu->fwnode == fwnode) { 2788 ops = iommu->ops; 2789 break; 2790 } 2791 spin_unlock(&iommu_device_lock); 2792 return ops; 2793 } 2794 2795 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2796 const struct iommu_ops *ops) 2797 { 2798 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2799 2800 if (fwspec) 2801 return ops == fwspec->ops ? 0 : -EINVAL; 2802 2803 if (!dev_iommu_get(dev)) 2804 return -ENOMEM; 2805 2806 /* Preallocate for the overwhelmingly common case of 1 ID */ 2807 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2808 if (!fwspec) 2809 return -ENOMEM; 2810 2811 of_node_get(to_of_node(iommu_fwnode)); 2812 fwspec->iommu_fwnode = iommu_fwnode; 2813 fwspec->ops = ops; 2814 dev_iommu_fwspec_set(dev, fwspec); 2815 return 0; 2816 } 2817 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2818 2819 void iommu_fwspec_free(struct device *dev) 2820 { 2821 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2822 2823 if (fwspec) { 2824 fwnode_handle_put(fwspec->iommu_fwnode); 2825 kfree(fwspec); 2826 dev_iommu_fwspec_set(dev, NULL); 2827 } 2828 } 2829 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2830 2831 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2832 { 2833 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2834 int i, new_num; 2835 2836 if (!fwspec) 2837 return -EINVAL; 2838 2839 new_num = fwspec->num_ids + num_ids; 2840 if (new_num > 1) { 2841 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2842 GFP_KERNEL); 2843 if (!fwspec) 2844 return -ENOMEM; 2845 2846 dev_iommu_fwspec_set(dev, fwspec); 2847 } 2848 2849 for (i = 0; i < num_ids; i++) 2850 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2851 2852 fwspec->num_ids = new_num; 2853 return 0; 2854 } 2855 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2856 2857 /* 2858 * Per device IOMMU features. 2859 */ 2860 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2861 { 2862 if (dev->iommu && dev->iommu->iommu_dev) { 2863 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2864 2865 if (ops->dev_enable_feat) 2866 return ops->dev_enable_feat(dev, feat); 2867 } 2868 2869 return -ENODEV; 2870 } 2871 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2872 2873 /* 2874 * The device drivers should do the necessary cleanups before calling this. 2875 * For example, before disabling the aux-domain feature, the device driver 2876 * should detach all aux-domains. Otherwise, this will return -EBUSY. 2877 */ 2878 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2879 { 2880 if (dev->iommu && dev->iommu->iommu_dev) { 2881 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2882 2883 if (ops->dev_disable_feat) 2884 return ops->dev_disable_feat(dev, feat); 2885 } 2886 2887 return -EBUSY; 2888 } 2889 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2890 2891 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat) 2892 { 2893 if (dev->iommu && dev->iommu->iommu_dev) { 2894 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2895 2896 if (ops->dev_feat_enabled) 2897 return ops->dev_feat_enabled(dev, feat); 2898 } 2899 2900 return false; 2901 } 2902 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled); 2903 2904 /* 2905 * Aux-domain specific attach/detach. 2906 * 2907 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns 2908 * true. Also, as long as domains are attached to a device through this 2909 * interface, any tries to call iommu_attach_device() should fail 2910 * (iommu_detach_device() can't fail, so we fail when trying to re-attach). 2911 * This should make us safe against a device being attached to a guest as a 2912 * whole while there are still pasid users on it (aux and sva). 2913 */ 2914 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev) 2915 { 2916 int ret = -ENODEV; 2917 2918 if (domain->ops->aux_attach_dev) 2919 ret = domain->ops->aux_attach_dev(domain, dev); 2920 2921 if (!ret) 2922 trace_attach_device_to_domain(dev); 2923 2924 return ret; 2925 } 2926 EXPORT_SYMBOL_GPL(iommu_aux_attach_device); 2927 2928 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev) 2929 { 2930 if (domain->ops->aux_detach_dev) { 2931 domain->ops->aux_detach_dev(domain, dev); 2932 trace_detach_device_from_domain(dev); 2933 } 2934 } 2935 EXPORT_SYMBOL_GPL(iommu_aux_detach_device); 2936 2937 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 2938 { 2939 int ret = -ENODEV; 2940 2941 if (domain->ops->aux_get_pasid) 2942 ret = domain->ops->aux_get_pasid(domain, dev); 2943 2944 return ret; 2945 } 2946 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid); 2947 2948 /** 2949 * iommu_sva_bind_device() - Bind a process address space to a device 2950 * @dev: the device 2951 * @mm: the mm to bind, caller must hold a reference to it 2952 * 2953 * Create a bond between device and address space, allowing the device to access 2954 * the mm using the returned PASID. If a bond already exists between @device and 2955 * @mm, it is returned and an additional reference is taken. Caller must call 2956 * iommu_sva_unbind_device() to release each reference. 2957 * 2958 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 2959 * initialize the required SVA features. 2960 * 2961 * On error, returns an ERR_PTR value. 2962 */ 2963 struct iommu_sva * 2964 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 2965 { 2966 struct iommu_group *group; 2967 struct iommu_sva *handle = ERR_PTR(-EINVAL); 2968 const struct iommu_ops *ops = dev->bus->iommu_ops; 2969 2970 if (!ops || !ops->sva_bind) 2971 return ERR_PTR(-ENODEV); 2972 2973 group = iommu_group_get(dev); 2974 if (!group) 2975 return ERR_PTR(-ENODEV); 2976 2977 /* Ensure device count and domain don't change while we're binding */ 2978 mutex_lock(&group->mutex); 2979 2980 /* 2981 * To keep things simple, SVA currently doesn't support IOMMU groups 2982 * with more than one device. Existing SVA-capable systems are not 2983 * affected by the problems that required IOMMU groups (lack of ACS 2984 * isolation, device ID aliasing and other hardware issues). 2985 */ 2986 if (iommu_group_device_count(group) != 1) 2987 goto out_unlock; 2988 2989 handle = ops->sva_bind(dev, mm, drvdata); 2990 2991 out_unlock: 2992 mutex_unlock(&group->mutex); 2993 iommu_group_put(group); 2994 2995 return handle; 2996 } 2997 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 2998 2999 /** 3000 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 3001 * @handle: the handle returned by iommu_sva_bind_device() 3002 * 3003 * Put reference to a bond between device and address space. The device should 3004 * not be issuing any more transaction for this PASID. All outstanding page 3005 * requests for this PASID must have been flushed to the IOMMU. 3006 */ 3007 void iommu_sva_unbind_device(struct iommu_sva *handle) 3008 { 3009 struct iommu_group *group; 3010 struct device *dev = handle->dev; 3011 const struct iommu_ops *ops = dev->bus->iommu_ops; 3012 3013 if (!ops || !ops->sva_unbind) 3014 return; 3015 3016 group = iommu_group_get(dev); 3017 if (!group) 3018 return; 3019 3020 mutex_lock(&group->mutex); 3021 ops->sva_unbind(handle); 3022 mutex_unlock(&group->mutex); 3023 3024 iommu_group_put(group); 3025 } 3026 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 3027 3028 u32 iommu_sva_get_pasid(struct iommu_sva *handle) 3029 { 3030 const struct iommu_ops *ops = handle->dev->bus->iommu_ops; 3031 3032 if (!ops || !ops->sva_get_pasid) 3033 return IOMMU_PASID_INVALID; 3034 3035 return ops->sva_get_pasid(handle); 3036 } 3037 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 3038 3039 /* 3040 * Changes the default domain of an iommu group that has *only* one device 3041 * 3042 * @group: The group for which the default domain should be changed 3043 * @prev_dev: The device in the group (this is used to make sure that the device 3044 * hasn't changed after the caller has called this function) 3045 * @type: The type of the new default domain that gets associated with the group 3046 * 3047 * Returns 0 on success and error code on failure 3048 * 3049 * Note: 3050 * 1. Presently, this function is called only when user requests to change the 3051 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type 3052 * Please take a closer look if intended to use for other purposes. 3053 */ 3054 static int iommu_change_dev_def_domain(struct iommu_group *group, 3055 struct device *prev_dev, int type) 3056 { 3057 struct iommu_domain *prev_dom; 3058 struct group_device *grp_dev; 3059 int ret, dev_def_dom; 3060 struct device *dev; 3061 3062 mutex_lock(&group->mutex); 3063 3064 if (group->default_domain != group->domain) { 3065 dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n"); 3066 ret = -EBUSY; 3067 goto out; 3068 } 3069 3070 /* 3071 * iommu group wasn't locked while acquiring device lock in 3072 * iommu_group_store_type(). So, make sure that the device count hasn't 3073 * changed while acquiring device lock. 3074 * 3075 * Changing default domain of an iommu group with two or more devices 3076 * isn't supported because there could be a potential deadlock. Consider 3077 * the following scenario. T1 is trying to acquire device locks of all 3078 * the devices in the group and before it could acquire all of them, 3079 * there could be another thread T2 (from different sub-system and use 3080 * case) that has already acquired some of the device locks and might be 3081 * waiting for T1 to release other device locks. 3082 */ 3083 if (iommu_group_device_count(group) != 1) { 3084 dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n"); 3085 ret = -EINVAL; 3086 goto out; 3087 } 3088 3089 /* Since group has only one device */ 3090 grp_dev = list_first_entry(&group->devices, struct group_device, list); 3091 dev = grp_dev->dev; 3092 3093 if (prev_dev != dev) { 3094 dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n"); 3095 ret = -EBUSY; 3096 goto out; 3097 } 3098 3099 prev_dom = group->default_domain; 3100 if (!prev_dom) { 3101 ret = -EINVAL; 3102 goto out; 3103 } 3104 3105 dev_def_dom = iommu_get_def_domain_type(dev); 3106 if (!type) { 3107 /* 3108 * If the user hasn't requested any specific type of domain and 3109 * if the device supports both the domains, then default to the 3110 * domain the device was booted with 3111 */ 3112 type = dev_def_dom ? : iommu_def_domain_type; 3113 } else if (dev_def_dom && type != dev_def_dom) { 3114 dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n", 3115 iommu_domain_type_str(type)); 3116 ret = -EINVAL; 3117 goto out; 3118 } 3119 3120 /* 3121 * Switch to a new domain only if the requested domain type is different 3122 * from the existing default domain type 3123 */ 3124 if (prev_dom->type == type) { 3125 ret = 0; 3126 goto out; 3127 } 3128 3129 /* Sets group->default_domain to the newly allocated domain */ 3130 ret = iommu_group_alloc_default_domain(dev->bus, group, type); 3131 if (ret) 3132 goto out; 3133 3134 ret = iommu_create_device_direct_mappings(group, dev); 3135 if (ret) 3136 goto free_new_domain; 3137 3138 ret = __iommu_attach_device(group->default_domain, dev); 3139 if (ret) 3140 goto free_new_domain; 3141 3142 group->domain = group->default_domain; 3143 3144 /* 3145 * Release the mutex here because ops->probe_finalize() call-back of 3146 * some vendor IOMMU drivers calls arm_iommu_attach_device() which 3147 * in-turn might call back into IOMMU core code, where it tries to take 3148 * group->mutex, resulting in a deadlock. 3149 */ 3150 mutex_unlock(&group->mutex); 3151 3152 /* Make sure dma_ops is appropriatley set */ 3153 iommu_group_do_probe_finalize(dev, group->default_domain); 3154 iommu_domain_free(prev_dom); 3155 return 0; 3156 3157 free_new_domain: 3158 iommu_domain_free(group->default_domain); 3159 group->default_domain = prev_dom; 3160 group->domain = prev_dom; 3161 3162 out: 3163 mutex_unlock(&group->mutex); 3164 3165 return ret; 3166 } 3167 3168 /* 3169 * Changing the default domain through sysfs requires the users to ubind the 3170 * drivers from the devices in the iommu group. Return failure if this doesn't 3171 * meet. 3172 * 3173 * We need to consider the race between this and the device release path. 3174 * device_lock(dev) is used here to guarantee that the device release path 3175 * will not be entered at the same time. 3176 */ 3177 static ssize_t iommu_group_store_type(struct iommu_group *group, 3178 const char *buf, size_t count) 3179 { 3180 struct group_device *grp_dev; 3181 struct device *dev; 3182 int ret, req_type; 3183 3184 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 3185 return -EACCES; 3186 3187 if (WARN_ON(!group)) 3188 return -EINVAL; 3189 3190 if (sysfs_streq(buf, "identity")) 3191 req_type = IOMMU_DOMAIN_IDENTITY; 3192 else if (sysfs_streq(buf, "DMA")) 3193 req_type = IOMMU_DOMAIN_DMA; 3194 else if (sysfs_streq(buf, "auto")) 3195 req_type = 0; 3196 else 3197 return -EINVAL; 3198 3199 /* 3200 * Lock/Unlock the group mutex here before device lock to 3201 * 1. Make sure that the iommu group has only one device (this is a 3202 * prerequisite for step 2) 3203 * 2. Get struct *dev which is needed to lock device 3204 */ 3205 mutex_lock(&group->mutex); 3206 if (iommu_group_device_count(group) != 1) { 3207 mutex_unlock(&group->mutex); 3208 pr_err_ratelimited("Cannot change default domain: Group has more than one device\n"); 3209 return -EINVAL; 3210 } 3211 3212 /* Since group has only one device */ 3213 grp_dev = list_first_entry(&group->devices, struct group_device, list); 3214 dev = grp_dev->dev; 3215 get_device(dev); 3216 3217 /* 3218 * Don't hold the group mutex because taking group mutex first and then 3219 * the device lock could potentially cause a deadlock as below. Assume 3220 * two threads T1 and T2. T1 is trying to change default domain of an 3221 * iommu group and T2 is trying to hot unplug a device or release [1] VF 3222 * of a PCIe device which is in the same iommu group. T1 takes group 3223 * mutex and before it could take device lock assume T2 has taken device 3224 * lock and is yet to take group mutex. Now, both the threads will be 3225 * waiting for the other thread to release lock. Below, lock order was 3226 * suggested. 3227 * device_lock(dev); 3228 * mutex_lock(&group->mutex); 3229 * iommu_change_dev_def_domain(); 3230 * mutex_unlock(&group->mutex); 3231 * device_unlock(dev); 3232 * 3233 * [1] Typical device release path 3234 * device_lock() from device/driver core code 3235 * -> bus_notifier() 3236 * -> iommu_bus_notifier() 3237 * -> iommu_release_device() 3238 * -> ops->release_device() vendor driver calls back iommu core code 3239 * -> mutex_lock() from iommu core code 3240 */ 3241 mutex_unlock(&group->mutex); 3242 3243 /* Check if the device in the group still has a driver bound to it */ 3244 device_lock(dev); 3245 if (device_is_bound(dev)) { 3246 pr_err_ratelimited("Device is still bound to driver\n"); 3247 ret = -EBUSY; 3248 goto out; 3249 } 3250 3251 ret = iommu_change_dev_def_domain(group, dev, req_type); 3252 ret = ret ?: count; 3253 3254 out: 3255 device_unlock(dev); 3256 put_device(dev); 3257 3258 return ret; 3259 } 3260