1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/kernel.h> 11 #include <linux/bug.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/export.h> 15 #include <linux/slab.h> 16 #include <linux/errno.h> 17 #include <linux/iommu.h> 18 #include <linux/idr.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/pci.h> 22 #include <linux/bitops.h> 23 #include <linux/property.h> 24 #include <linux/fsl/mc.h> 25 #include <linux/module.h> 26 #include <trace/events/iommu.h> 27 28 static struct kset *iommu_group_kset; 29 static DEFINE_IDA(iommu_group_ida); 30 31 static unsigned int iommu_def_domain_type __read_mostly; 32 static bool iommu_dma_strict __read_mostly = true; 33 static u32 iommu_cmd_line __read_mostly; 34 35 struct iommu_group { 36 struct kobject kobj; 37 struct kobject *devices_kobj; 38 struct list_head devices; 39 struct mutex mutex; 40 struct blocking_notifier_head notifier; 41 void *iommu_data; 42 void (*iommu_data_release)(void *iommu_data); 43 char *name; 44 int id; 45 struct iommu_domain *default_domain; 46 struct iommu_domain *domain; 47 }; 48 49 struct group_device { 50 struct list_head list; 51 struct device *dev; 52 char *name; 53 }; 54 55 struct iommu_group_attribute { 56 struct attribute attr; 57 ssize_t (*show)(struct iommu_group *group, char *buf); 58 ssize_t (*store)(struct iommu_group *group, 59 const char *buf, size_t count); 60 }; 61 62 static const char * const iommu_group_resv_type_string[] = { 63 [IOMMU_RESV_DIRECT] = "direct", 64 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 65 [IOMMU_RESV_RESERVED] = "reserved", 66 [IOMMU_RESV_MSI] = "msi", 67 [IOMMU_RESV_SW_MSI] = "msi", 68 }; 69 70 #define IOMMU_CMD_LINE_DMA_API BIT(0) 71 72 static void iommu_set_cmd_line_dma_api(void) 73 { 74 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 75 } 76 77 static bool iommu_cmd_line_dma_api(void) 78 { 79 return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API); 80 } 81 82 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 83 struct iommu_group_attribute iommu_group_attr_##_name = \ 84 __ATTR(_name, _mode, _show, _store) 85 86 #define to_iommu_group_attr(_attr) \ 87 container_of(_attr, struct iommu_group_attribute, attr) 88 #define to_iommu_group(_kobj) \ 89 container_of(_kobj, struct iommu_group, kobj) 90 91 static LIST_HEAD(iommu_device_list); 92 static DEFINE_SPINLOCK(iommu_device_lock); 93 94 /* 95 * Use a function instead of an array here because the domain-type is a 96 * bit-field, so an array would waste memory. 97 */ 98 static const char *iommu_domain_type_str(unsigned int t) 99 { 100 switch (t) { 101 case IOMMU_DOMAIN_BLOCKED: 102 return "Blocked"; 103 case IOMMU_DOMAIN_IDENTITY: 104 return "Passthrough"; 105 case IOMMU_DOMAIN_UNMANAGED: 106 return "Unmanaged"; 107 case IOMMU_DOMAIN_DMA: 108 return "Translated"; 109 default: 110 return "Unknown"; 111 } 112 } 113 114 static int __init iommu_subsys_init(void) 115 { 116 bool cmd_line = iommu_cmd_line_dma_api(); 117 118 if (!cmd_line) { 119 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 120 iommu_set_default_passthrough(false); 121 else 122 iommu_set_default_translated(false); 123 124 if (iommu_default_passthrough() && mem_encrypt_active()) { 125 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 126 iommu_set_default_translated(false); 127 } 128 } 129 130 pr_info("Default domain type: %s %s\n", 131 iommu_domain_type_str(iommu_def_domain_type), 132 cmd_line ? "(set via kernel command line)" : ""); 133 134 return 0; 135 } 136 subsys_initcall(iommu_subsys_init); 137 138 int iommu_device_register(struct iommu_device *iommu) 139 { 140 spin_lock(&iommu_device_lock); 141 list_add_tail(&iommu->list, &iommu_device_list); 142 spin_unlock(&iommu_device_lock); 143 return 0; 144 } 145 EXPORT_SYMBOL_GPL(iommu_device_register); 146 147 void iommu_device_unregister(struct iommu_device *iommu) 148 { 149 spin_lock(&iommu_device_lock); 150 list_del(&iommu->list); 151 spin_unlock(&iommu_device_lock); 152 } 153 EXPORT_SYMBOL_GPL(iommu_device_unregister); 154 155 static struct dev_iommu *dev_iommu_get(struct device *dev) 156 { 157 struct dev_iommu *param = dev->iommu; 158 159 if (param) 160 return param; 161 162 param = kzalloc(sizeof(*param), GFP_KERNEL); 163 if (!param) 164 return NULL; 165 166 mutex_init(¶m->lock); 167 dev->iommu = param; 168 return param; 169 } 170 171 static void dev_iommu_free(struct device *dev) 172 { 173 iommu_fwspec_free(dev); 174 kfree(dev->iommu); 175 dev->iommu = NULL; 176 } 177 178 int iommu_probe_device(struct device *dev) 179 { 180 const struct iommu_ops *ops = dev->bus->iommu_ops; 181 int ret; 182 183 WARN_ON(dev->iommu_group); 184 if (!ops) 185 return -EINVAL; 186 187 if (!dev_iommu_get(dev)) 188 return -ENOMEM; 189 190 if (!try_module_get(ops->owner)) { 191 ret = -EINVAL; 192 goto err_free_dev_param; 193 } 194 195 ret = ops->add_device(dev); 196 if (ret) 197 goto err_module_put; 198 199 return 0; 200 201 err_module_put: 202 module_put(ops->owner); 203 err_free_dev_param: 204 dev_iommu_free(dev); 205 return ret; 206 } 207 208 void iommu_release_device(struct device *dev) 209 { 210 const struct iommu_ops *ops = dev->bus->iommu_ops; 211 212 if (dev->iommu_group) 213 ops->remove_device(dev); 214 215 if (dev->iommu) { 216 module_put(ops->owner); 217 dev_iommu_free(dev); 218 } 219 } 220 221 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 222 unsigned type); 223 static int __iommu_attach_device(struct iommu_domain *domain, 224 struct device *dev); 225 static int __iommu_attach_group(struct iommu_domain *domain, 226 struct iommu_group *group); 227 static void __iommu_detach_group(struct iommu_domain *domain, 228 struct iommu_group *group); 229 230 static int __init iommu_set_def_domain_type(char *str) 231 { 232 bool pt; 233 int ret; 234 235 ret = kstrtobool(str, &pt); 236 if (ret) 237 return ret; 238 239 if (pt) 240 iommu_set_default_passthrough(true); 241 else 242 iommu_set_default_translated(true); 243 244 return 0; 245 } 246 early_param("iommu.passthrough", iommu_set_def_domain_type); 247 248 static int __init iommu_dma_setup(char *str) 249 { 250 return kstrtobool(str, &iommu_dma_strict); 251 } 252 early_param("iommu.strict", iommu_dma_setup); 253 254 static ssize_t iommu_group_attr_show(struct kobject *kobj, 255 struct attribute *__attr, char *buf) 256 { 257 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 258 struct iommu_group *group = to_iommu_group(kobj); 259 ssize_t ret = -EIO; 260 261 if (attr->show) 262 ret = attr->show(group, buf); 263 return ret; 264 } 265 266 static ssize_t iommu_group_attr_store(struct kobject *kobj, 267 struct attribute *__attr, 268 const char *buf, size_t count) 269 { 270 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 271 struct iommu_group *group = to_iommu_group(kobj); 272 ssize_t ret = -EIO; 273 274 if (attr->store) 275 ret = attr->store(group, buf, count); 276 return ret; 277 } 278 279 static const struct sysfs_ops iommu_group_sysfs_ops = { 280 .show = iommu_group_attr_show, 281 .store = iommu_group_attr_store, 282 }; 283 284 static int iommu_group_create_file(struct iommu_group *group, 285 struct iommu_group_attribute *attr) 286 { 287 return sysfs_create_file(&group->kobj, &attr->attr); 288 } 289 290 static void iommu_group_remove_file(struct iommu_group *group, 291 struct iommu_group_attribute *attr) 292 { 293 sysfs_remove_file(&group->kobj, &attr->attr); 294 } 295 296 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 297 { 298 return sprintf(buf, "%s\n", group->name); 299 } 300 301 /** 302 * iommu_insert_resv_region - Insert a new region in the 303 * list of reserved regions. 304 * @new: new region to insert 305 * @regions: list of regions 306 * 307 * Elements are sorted by start address and overlapping segments 308 * of the same type are merged. 309 */ 310 int iommu_insert_resv_region(struct iommu_resv_region *new, 311 struct list_head *regions) 312 { 313 struct iommu_resv_region *iter, *tmp, *nr, *top; 314 LIST_HEAD(stack); 315 316 nr = iommu_alloc_resv_region(new->start, new->length, 317 new->prot, new->type); 318 if (!nr) 319 return -ENOMEM; 320 321 /* First add the new element based on start address sorting */ 322 list_for_each_entry(iter, regions, list) { 323 if (nr->start < iter->start || 324 (nr->start == iter->start && nr->type <= iter->type)) 325 break; 326 } 327 list_add_tail(&nr->list, &iter->list); 328 329 /* Merge overlapping segments of type nr->type in @regions, if any */ 330 list_for_each_entry_safe(iter, tmp, regions, list) { 331 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 332 333 /* no merge needed on elements of different types than @new */ 334 if (iter->type != new->type) { 335 list_move_tail(&iter->list, &stack); 336 continue; 337 } 338 339 /* look for the last stack element of same type as @iter */ 340 list_for_each_entry_reverse(top, &stack, list) 341 if (top->type == iter->type) 342 goto check_overlap; 343 344 list_move_tail(&iter->list, &stack); 345 continue; 346 347 check_overlap: 348 top_end = top->start + top->length - 1; 349 350 if (iter->start > top_end + 1) { 351 list_move_tail(&iter->list, &stack); 352 } else { 353 top->length = max(top_end, iter_end) - top->start + 1; 354 list_del(&iter->list); 355 kfree(iter); 356 } 357 } 358 list_splice(&stack, regions); 359 return 0; 360 } 361 362 static int 363 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 364 struct list_head *group_resv_regions) 365 { 366 struct iommu_resv_region *entry; 367 int ret = 0; 368 369 list_for_each_entry(entry, dev_resv_regions, list) { 370 ret = iommu_insert_resv_region(entry, group_resv_regions); 371 if (ret) 372 break; 373 } 374 return ret; 375 } 376 377 int iommu_get_group_resv_regions(struct iommu_group *group, 378 struct list_head *head) 379 { 380 struct group_device *device; 381 int ret = 0; 382 383 mutex_lock(&group->mutex); 384 list_for_each_entry(device, &group->devices, list) { 385 struct list_head dev_resv_regions; 386 387 INIT_LIST_HEAD(&dev_resv_regions); 388 iommu_get_resv_regions(device->dev, &dev_resv_regions); 389 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 390 iommu_put_resv_regions(device->dev, &dev_resv_regions); 391 if (ret) 392 break; 393 } 394 mutex_unlock(&group->mutex); 395 return ret; 396 } 397 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 398 399 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 400 char *buf) 401 { 402 struct iommu_resv_region *region, *next; 403 struct list_head group_resv_regions; 404 char *str = buf; 405 406 INIT_LIST_HEAD(&group_resv_regions); 407 iommu_get_group_resv_regions(group, &group_resv_regions); 408 409 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 410 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 411 (long long int)region->start, 412 (long long int)(region->start + 413 region->length - 1), 414 iommu_group_resv_type_string[region->type]); 415 kfree(region); 416 } 417 418 return (str - buf); 419 } 420 421 static ssize_t iommu_group_show_type(struct iommu_group *group, 422 char *buf) 423 { 424 char *type = "unknown\n"; 425 426 if (group->default_domain) { 427 switch (group->default_domain->type) { 428 case IOMMU_DOMAIN_BLOCKED: 429 type = "blocked\n"; 430 break; 431 case IOMMU_DOMAIN_IDENTITY: 432 type = "identity\n"; 433 break; 434 case IOMMU_DOMAIN_UNMANAGED: 435 type = "unmanaged\n"; 436 break; 437 case IOMMU_DOMAIN_DMA: 438 type = "DMA\n"; 439 break; 440 } 441 } 442 strcpy(buf, type); 443 444 return strlen(type); 445 } 446 447 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 448 449 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 450 iommu_group_show_resv_regions, NULL); 451 452 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL); 453 454 static void iommu_group_release(struct kobject *kobj) 455 { 456 struct iommu_group *group = to_iommu_group(kobj); 457 458 pr_debug("Releasing group %d\n", group->id); 459 460 if (group->iommu_data_release) 461 group->iommu_data_release(group->iommu_data); 462 463 ida_simple_remove(&iommu_group_ida, group->id); 464 465 if (group->default_domain) 466 iommu_domain_free(group->default_domain); 467 468 kfree(group->name); 469 kfree(group); 470 } 471 472 static struct kobj_type iommu_group_ktype = { 473 .sysfs_ops = &iommu_group_sysfs_ops, 474 .release = iommu_group_release, 475 }; 476 477 /** 478 * iommu_group_alloc - Allocate a new group 479 * 480 * This function is called by an iommu driver to allocate a new iommu 481 * group. The iommu group represents the minimum granularity of the iommu. 482 * Upon successful return, the caller holds a reference to the supplied 483 * group in order to hold the group until devices are added. Use 484 * iommu_group_put() to release this extra reference count, allowing the 485 * group to be automatically reclaimed once it has no devices or external 486 * references. 487 */ 488 struct iommu_group *iommu_group_alloc(void) 489 { 490 struct iommu_group *group; 491 int ret; 492 493 group = kzalloc(sizeof(*group), GFP_KERNEL); 494 if (!group) 495 return ERR_PTR(-ENOMEM); 496 497 group->kobj.kset = iommu_group_kset; 498 mutex_init(&group->mutex); 499 INIT_LIST_HEAD(&group->devices); 500 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 501 502 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 503 if (ret < 0) { 504 kfree(group); 505 return ERR_PTR(ret); 506 } 507 group->id = ret; 508 509 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 510 NULL, "%d", group->id); 511 if (ret) { 512 ida_simple_remove(&iommu_group_ida, group->id); 513 kfree(group); 514 return ERR_PTR(ret); 515 } 516 517 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 518 if (!group->devices_kobj) { 519 kobject_put(&group->kobj); /* triggers .release & free */ 520 return ERR_PTR(-ENOMEM); 521 } 522 523 /* 524 * The devices_kobj holds a reference on the group kobject, so 525 * as long as that exists so will the group. We can therefore 526 * use the devices_kobj for reference counting. 527 */ 528 kobject_put(&group->kobj); 529 530 ret = iommu_group_create_file(group, 531 &iommu_group_attr_reserved_regions); 532 if (ret) 533 return ERR_PTR(ret); 534 535 ret = iommu_group_create_file(group, &iommu_group_attr_type); 536 if (ret) 537 return ERR_PTR(ret); 538 539 pr_debug("Allocated group %d\n", group->id); 540 541 return group; 542 } 543 EXPORT_SYMBOL_GPL(iommu_group_alloc); 544 545 struct iommu_group *iommu_group_get_by_id(int id) 546 { 547 struct kobject *group_kobj; 548 struct iommu_group *group; 549 const char *name; 550 551 if (!iommu_group_kset) 552 return NULL; 553 554 name = kasprintf(GFP_KERNEL, "%d", id); 555 if (!name) 556 return NULL; 557 558 group_kobj = kset_find_obj(iommu_group_kset, name); 559 kfree(name); 560 561 if (!group_kobj) 562 return NULL; 563 564 group = container_of(group_kobj, struct iommu_group, kobj); 565 BUG_ON(group->id != id); 566 567 kobject_get(group->devices_kobj); 568 kobject_put(&group->kobj); 569 570 return group; 571 } 572 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 573 574 /** 575 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 576 * @group: the group 577 * 578 * iommu drivers can store data in the group for use when doing iommu 579 * operations. This function provides a way to retrieve it. Caller 580 * should hold a group reference. 581 */ 582 void *iommu_group_get_iommudata(struct iommu_group *group) 583 { 584 return group->iommu_data; 585 } 586 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 587 588 /** 589 * iommu_group_set_iommudata - set iommu_data for a group 590 * @group: the group 591 * @iommu_data: new data 592 * @release: release function for iommu_data 593 * 594 * iommu drivers can store data in the group for use when doing iommu 595 * operations. This function provides a way to set the data after 596 * the group has been allocated. Caller should hold a group reference. 597 */ 598 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 599 void (*release)(void *iommu_data)) 600 { 601 group->iommu_data = iommu_data; 602 group->iommu_data_release = release; 603 } 604 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 605 606 /** 607 * iommu_group_set_name - set name for a group 608 * @group: the group 609 * @name: name 610 * 611 * Allow iommu driver to set a name for a group. When set it will 612 * appear in a name attribute file under the group in sysfs. 613 */ 614 int iommu_group_set_name(struct iommu_group *group, const char *name) 615 { 616 int ret; 617 618 if (group->name) { 619 iommu_group_remove_file(group, &iommu_group_attr_name); 620 kfree(group->name); 621 group->name = NULL; 622 if (!name) 623 return 0; 624 } 625 626 group->name = kstrdup(name, GFP_KERNEL); 627 if (!group->name) 628 return -ENOMEM; 629 630 ret = iommu_group_create_file(group, &iommu_group_attr_name); 631 if (ret) { 632 kfree(group->name); 633 group->name = NULL; 634 return ret; 635 } 636 637 return 0; 638 } 639 EXPORT_SYMBOL_GPL(iommu_group_set_name); 640 641 static int iommu_group_create_direct_mappings(struct iommu_group *group, 642 struct device *dev) 643 { 644 struct iommu_domain *domain = group->default_domain; 645 struct iommu_resv_region *entry; 646 struct list_head mappings; 647 unsigned long pg_size; 648 int ret = 0; 649 650 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 651 return 0; 652 653 BUG_ON(!domain->pgsize_bitmap); 654 655 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 656 INIT_LIST_HEAD(&mappings); 657 658 iommu_get_resv_regions(dev, &mappings); 659 660 /* We need to consider overlapping regions for different devices */ 661 list_for_each_entry(entry, &mappings, list) { 662 dma_addr_t start, end, addr; 663 664 if (domain->ops->apply_resv_region) 665 domain->ops->apply_resv_region(dev, domain, entry); 666 667 start = ALIGN(entry->start, pg_size); 668 end = ALIGN(entry->start + entry->length, pg_size); 669 670 if (entry->type != IOMMU_RESV_DIRECT && 671 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 672 continue; 673 674 for (addr = start; addr < end; addr += pg_size) { 675 phys_addr_t phys_addr; 676 677 phys_addr = iommu_iova_to_phys(domain, addr); 678 if (phys_addr) 679 continue; 680 681 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 682 if (ret) 683 goto out; 684 } 685 686 } 687 688 iommu_flush_tlb_all(domain); 689 690 out: 691 iommu_put_resv_regions(dev, &mappings); 692 693 return ret; 694 } 695 696 static bool iommu_is_attach_deferred(struct iommu_domain *domain, 697 struct device *dev) 698 { 699 if (domain->ops->is_attach_deferred) 700 return domain->ops->is_attach_deferred(domain, dev); 701 702 return false; 703 } 704 705 /** 706 * iommu_group_add_device - add a device to an iommu group 707 * @group: the group into which to add the device (reference should be held) 708 * @dev: the device 709 * 710 * This function is called by an iommu driver to add a device into a 711 * group. Adding a device increments the group reference count. 712 */ 713 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 714 { 715 int ret, i = 0; 716 struct group_device *device; 717 718 device = kzalloc(sizeof(*device), GFP_KERNEL); 719 if (!device) 720 return -ENOMEM; 721 722 device->dev = dev; 723 724 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 725 if (ret) 726 goto err_free_device; 727 728 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 729 rename: 730 if (!device->name) { 731 ret = -ENOMEM; 732 goto err_remove_link; 733 } 734 735 ret = sysfs_create_link_nowarn(group->devices_kobj, 736 &dev->kobj, device->name); 737 if (ret) { 738 if (ret == -EEXIST && i >= 0) { 739 /* 740 * Account for the slim chance of collision 741 * and append an instance to the name. 742 */ 743 kfree(device->name); 744 device->name = kasprintf(GFP_KERNEL, "%s.%d", 745 kobject_name(&dev->kobj), i++); 746 goto rename; 747 } 748 goto err_free_name; 749 } 750 751 kobject_get(group->devices_kobj); 752 753 dev->iommu_group = group; 754 755 iommu_group_create_direct_mappings(group, dev); 756 757 mutex_lock(&group->mutex); 758 list_add_tail(&device->list, &group->devices); 759 if (group->domain && !iommu_is_attach_deferred(group->domain, dev)) 760 ret = __iommu_attach_device(group->domain, dev); 761 mutex_unlock(&group->mutex); 762 if (ret) 763 goto err_put_group; 764 765 /* Notify any listeners about change to group. */ 766 blocking_notifier_call_chain(&group->notifier, 767 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 768 769 trace_add_device_to_group(group->id, dev); 770 771 dev_info(dev, "Adding to iommu group %d\n", group->id); 772 773 return 0; 774 775 err_put_group: 776 mutex_lock(&group->mutex); 777 list_del(&device->list); 778 mutex_unlock(&group->mutex); 779 dev->iommu_group = NULL; 780 kobject_put(group->devices_kobj); 781 sysfs_remove_link(group->devices_kobj, device->name); 782 err_free_name: 783 kfree(device->name); 784 err_remove_link: 785 sysfs_remove_link(&dev->kobj, "iommu_group"); 786 err_free_device: 787 kfree(device); 788 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 789 return ret; 790 } 791 EXPORT_SYMBOL_GPL(iommu_group_add_device); 792 793 /** 794 * iommu_group_remove_device - remove a device from it's current group 795 * @dev: device to be removed 796 * 797 * This function is called by an iommu driver to remove the device from 798 * it's current group. This decrements the iommu group reference count. 799 */ 800 void iommu_group_remove_device(struct device *dev) 801 { 802 struct iommu_group *group = dev->iommu_group; 803 struct group_device *tmp_device, *device = NULL; 804 805 dev_info(dev, "Removing from iommu group %d\n", group->id); 806 807 /* Pre-notify listeners that a device is being removed. */ 808 blocking_notifier_call_chain(&group->notifier, 809 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 810 811 mutex_lock(&group->mutex); 812 list_for_each_entry(tmp_device, &group->devices, list) { 813 if (tmp_device->dev == dev) { 814 device = tmp_device; 815 list_del(&device->list); 816 break; 817 } 818 } 819 mutex_unlock(&group->mutex); 820 821 if (!device) 822 return; 823 824 sysfs_remove_link(group->devices_kobj, device->name); 825 sysfs_remove_link(&dev->kobj, "iommu_group"); 826 827 trace_remove_device_from_group(group->id, dev); 828 829 kfree(device->name); 830 kfree(device); 831 dev->iommu_group = NULL; 832 kobject_put(group->devices_kobj); 833 } 834 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 835 836 static int iommu_group_device_count(struct iommu_group *group) 837 { 838 struct group_device *entry; 839 int ret = 0; 840 841 list_for_each_entry(entry, &group->devices, list) 842 ret++; 843 844 return ret; 845 } 846 847 /** 848 * iommu_group_for_each_dev - iterate over each device in the group 849 * @group: the group 850 * @data: caller opaque data to be passed to callback function 851 * @fn: caller supplied callback function 852 * 853 * This function is called by group users to iterate over group devices. 854 * Callers should hold a reference count to the group during callback. 855 * The group->mutex is held across callbacks, which will block calls to 856 * iommu_group_add/remove_device. 857 */ 858 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 859 int (*fn)(struct device *, void *)) 860 { 861 struct group_device *device; 862 int ret = 0; 863 864 list_for_each_entry(device, &group->devices, list) { 865 ret = fn(device->dev, data); 866 if (ret) 867 break; 868 } 869 return ret; 870 } 871 872 873 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 874 int (*fn)(struct device *, void *)) 875 { 876 int ret; 877 878 mutex_lock(&group->mutex); 879 ret = __iommu_group_for_each_dev(group, data, fn); 880 mutex_unlock(&group->mutex); 881 882 return ret; 883 } 884 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 885 886 /** 887 * iommu_group_get - Return the group for a device and increment reference 888 * @dev: get the group that this device belongs to 889 * 890 * This function is called by iommu drivers and users to get the group 891 * for the specified device. If found, the group is returned and the group 892 * reference in incremented, else NULL. 893 */ 894 struct iommu_group *iommu_group_get(struct device *dev) 895 { 896 struct iommu_group *group = dev->iommu_group; 897 898 if (group) 899 kobject_get(group->devices_kobj); 900 901 return group; 902 } 903 EXPORT_SYMBOL_GPL(iommu_group_get); 904 905 /** 906 * iommu_group_ref_get - Increment reference on a group 907 * @group: the group to use, must not be NULL 908 * 909 * This function is called by iommu drivers to take additional references on an 910 * existing group. Returns the given group for convenience. 911 */ 912 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 913 { 914 kobject_get(group->devices_kobj); 915 return group; 916 } 917 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 918 919 /** 920 * iommu_group_put - Decrement group reference 921 * @group: the group to use 922 * 923 * This function is called by iommu drivers and users to release the 924 * iommu group. Once the reference count is zero, the group is released. 925 */ 926 void iommu_group_put(struct iommu_group *group) 927 { 928 if (group) 929 kobject_put(group->devices_kobj); 930 } 931 EXPORT_SYMBOL_GPL(iommu_group_put); 932 933 /** 934 * iommu_group_register_notifier - Register a notifier for group changes 935 * @group: the group to watch 936 * @nb: notifier block to signal 937 * 938 * This function allows iommu group users to track changes in a group. 939 * See include/linux/iommu.h for actions sent via this notifier. Caller 940 * should hold a reference to the group throughout notifier registration. 941 */ 942 int iommu_group_register_notifier(struct iommu_group *group, 943 struct notifier_block *nb) 944 { 945 return blocking_notifier_chain_register(&group->notifier, nb); 946 } 947 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 948 949 /** 950 * iommu_group_unregister_notifier - Unregister a notifier 951 * @group: the group to watch 952 * @nb: notifier block to signal 953 * 954 * Unregister a previously registered group notifier block. 955 */ 956 int iommu_group_unregister_notifier(struct iommu_group *group, 957 struct notifier_block *nb) 958 { 959 return blocking_notifier_chain_unregister(&group->notifier, nb); 960 } 961 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 962 963 /** 964 * iommu_register_device_fault_handler() - Register a device fault handler 965 * @dev: the device 966 * @handler: the fault handler 967 * @data: private data passed as argument to the handler 968 * 969 * When an IOMMU fault event is received, this handler gets called with the 970 * fault event and data as argument. The handler should return 0 on success. If 971 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 972 * complete the fault by calling iommu_page_response() with one of the following 973 * response code: 974 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 975 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 976 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 977 * page faults if possible. 978 * 979 * Return 0 if the fault handler was installed successfully, or an error. 980 */ 981 int iommu_register_device_fault_handler(struct device *dev, 982 iommu_dev_fault_handler_t handler, 983 void *data) 984 { 985 struct dev_iommu *param = dev->iommu; 986 int ret = 0; 987 988 if (!param) 989 return -EINVAL; 990 991 mutex_lock(¶m->lock); 992 /* Only allow one fault handler registered for each device */ 993 if (param->fault_param) { 994 ret = -EBUSY; 995 goto done_unlock; 996 } 997 998 get_device(dev); 999 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1000 if (!param->fault_param) { 1001 put_device(dev); 1002 ret = -ENOMEM; 1003 goto done_unlock; 1004 } 1005 param->fault_param->handler = handler; 1006 param->fault_param->data = data; 1007 mutex_init(¶m->fault_param->lock); 1008 INIT_LIST_HEAD(¶m->fault_param->faults); 1009 1010 done_unlock: 1011 mutex_unlock(¶m->lock); 1012 1013 return ret; 1014 } 1015 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1016 1017 /** 1018 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1019 * @dev: the device 1020 * 1021 * Remove the device fault handler installed with 1022 * iommu_register_device_fault_handler(). 1023 * 1024 * Return 0 on success, or an error. 1025 */ 1026 int iommu_unregister_device_fault_handler(struct device *dev) 1027 { 1028 struct dev_iommu *param = dev->iommu; 1029 int ret = 0; 1030 1031 if (!param) 1032 return -EINVAL; 1033 1034 mutex_lock(¶m->lock); 1035 1036 if (!param->fault_param) 1037 goto unlock; 1038 1039 /* we cannot unregister handler if there are pending faults */ 1040 if (!list_empty(¶m->fault_param->faults)) { 1041 ret = -EBUSY; 1042 goto unlock; 1043 } 1044 1045 kfree(param->fault_param); 1046 param->fault_param = NULL; 1047 put_device(dev); 1048 unlock: 1049 mutex_unlock(¶m->lock); 1050 1051 return ret; 1052 } 1053 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1054 1055 /** 1056 * iommu_report_device_fault() - Report fault event to device driver 1057 * @dev: the device 1058 * @evt: fault event data 1059 * 1060 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1061 * handler. When this function fails and the fault is recoverable, it is the 1062 * caller's responsibility to complete the fault. 1063 * 1064 * Return 0 on success, or an error. 1065 */ 1066 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1067 { 1068 struct dev_iommu *param = dev->iommu; 1069 struct iommu_fault_event *evt_pending = NULL; 1070 struct iommu_fault_param *fparam; 1071 int ret = 0; 1072 1073 if (!param || !evt) 1074 return -EINVAL; 1075 1076 /* we only report device fault if there is a handler registered */ 1077 mutex_lock(¶m->lock); 1078 fparam = param->fault_param; 1079 if (!fparam || !fparam->handler) { 1080 ret = -EINVAL; 1081 goto done_unlock; 1082 } 1083 1084 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1085 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1086 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1087 GFP_KERNEL); 1088 if (!evt_pending) { 1089 ret = -ENOMEM; 1090 goto done_unlock; 1091 } 1092 mutex_lock(&fparam->lock); 1093 list_add_tail(&evt_pending->list, &fparam->faults); 1094 mutex_unlock(&fparam->lock); 1095 } 1096 1097 ret = fparam->handler(&evt->fault, fparam->data); 1098 if (ret && evt_pending) { 1099 mutex_lock(&fparam->lock); 1100 list_del(&evt_pending->list); 1101 mutex_unlock(&fparam->lock); 1102 kfree(evt_pending); 1103 } 1104 done_unlock: 1105 mutex_unlock(¶m->lock); 1106 return ret; 1107 } 1108 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1109 1110 int iommu_page_response(struct device *dev, 1111 struct iommu_page_response *msg) 1112 { 1113 bool pasid_valid; 1114 int ret = -EINVAL; 1115 struct iommu_fault_event *evt; 1116 struct iommu_fault_page_request *prm; 1117 struct dev_iommu *param = dev->iommu; 1118 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1119 1120 if (!domain || !domain->ops->page_response) 1121 return -ENODEV; 1122 1123 if (!param || !param->fault_param) 1124 return -EINVAL; 1125 1126 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1127 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1128 return -EINVAL; 1129 1130 /* Only send response if there is a fault report pending */ 1131 mutex_lock(¶m->fault_param->lock); 1132 if (list_empty(¶m->fault_param->faults)) { 1133 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1134 goto done_unlock; 1135 } 1136 /* 1137 * Check if we have a matching page request pending to respond, 1138 * otherwise return -EINVAL 1139 */ 1140 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1141 prm = &evt->fault.prm; 1142 pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 1143 1144 if ((pasid_valid && prm->pasid != msg->pasid) || 1145 prm->grpid != msg->grpid) 1146 continue; 1147 1148 /* Sanitize the reply */ 1149 msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0; 1150 1151 ret = domain->ops->page_response(dev, evt, msg); 1152 list_del(&evt->list); 1153 kfree(evt); 1154 break; 1155 } 1156 1157 done_unlock: 1158 mutex_unlock(¶m->fault_param->lock); 1159 return ret; 1160 } 1161 EXPORT_SYMBOL_GPL(iommu_page_response); 1162 1163 /** 1164 * iommu_group_id - Return ID for a group 1165 * @group: the group to ID 1166 * 1167 * Return the unique ID for the group matching the sysfs group number. 1168 */ 1169 int iommu_group_id(struct iommu_group *group) 1170 { 1171 return group->id; 1172 } 1173 EXPORT_SYMBOL_GPL(iommu_group_id); 1174 1175 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1176 unsigned long *devfns); 1177 1178 /* 1179 * To consider a PCI device isolated, we require ACS to support Source 1180 * Validation, Request Redirection, Completer Redirection, and Upstream 1181 * Forwarding. This effectively means that devices cannot spoof their 1182 * requester ID, requests and completions cannot be redirected, and all 1183 * transactions are forwarded upstream, even as it passes through a 1184 * bridge where the target device is downstream. 1185 */ 1186 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1187 1188 /* 1189 * For multifunction devices which are not isolated from each other, find 1190 * all the other non-isolated functions and look for existing groups. For 1191 * each function, we also need to look for aliases to or from other devices 1192 * that may already have a group. 1193 */ 1194 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1195 unsigned long *devfns) 1196 { 1197 struct pci_dev *tmp = NULL; 1198 struct iommu_group *group; 1199 1200 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1201 return NULL; 1202 1203 for_each_pci_dev(tmp) { 1204 if (tmp == pdev || tmp->bus != pdev->bus || 1205 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1206 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1207 continue; 1208 1209 group = get_pci_alias_group(tmp, devfns); 1210 if (group) { 1211 pci_dev_put(tmp); 1212 return group; 1213 } 1214 } 1215 1216 return NULL; 1217 } 1218 1219 /* 1220 * Look for aliases to or from the given device for existing groups. DMA 1221 * aliases are only supported on the same bus, therefore the search 1222 * space is quite small (especially since we're really only looking at pcie 1223 * device, and therefore only expect multiple slots on the root complex or 1224 * downstream switch ports). It's conceivable though that a pair of 1225 * multifunction devices could have aliases between them that would cause a 1226 * loop. To prevent this, we use a bitmap to track where we've been. 1227 */ 1228 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1229 unsigned long *devfns) 1230 { 1231 struct pci_dev *tmp = NULL; 1232 struct iommu_group *group; 1233 1234 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1235 return NULL; 1236 1237 group = iommu_group_get(&pdev->dev); 1238 if (group) 1239 return group; 1240 1241 for_each_pci_dev(tmp) { 1242 if (tmp == pdev || tmp->bus != pdev->bus) 1243 continue; 1244 1245 /* We alias them or they alias us */ 1246 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1247 group = get_pci_alias_group(tmp, devfns); 1248 if (group) { 1249 pci_dev_put(tmp); 1250 return group; 1251 } 1252 1253 group = get_pci_function_alias_group(tmp, devfns); 1254 if (group) { 1255 pci_dev_put(tmp); 1256 return group; 1257 } 1258 } 1259 } 1260 1261 return NULL; 1262 } 1263 1264 struct group_for_pci_data { 1265 struct pci_dev *pdev; 1266 struct iommu_group *group; 1267 }; 1268 1269 /* 1270 * DMA alias iterator callback, return the last seen device. Stop and return 1271 * the IOMMU group if we find one along the way. 1272 */ 1273 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1274 { 1275 struct group_for_pci_data *data = opaque; 1276 1277 data->pdev = pdev; 1278 data->group = iommu_group_get(&pdev->dev); 1279 1280 return data->group != NULL; 1281 } 1282 1283 /* 1284 * Generic device_group call-back function. It just allocates one 1285 * iommu-group per device. 1286 */ 1287 struct iommu_group *generic_device_group(struct device *dev) 1288 { 1289 return iommu_group_alloc(); 1290 } 1291 EXPORT_SYMBOL_GPL(generic_device_group); 1292 1293 /* 1294 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1295 * to find or create an IOMMU group for a device. 1296 */ 1297 struct iommu_group *pci_device_group(struct device *dev) 1298 { 1299 struct pci_dev *pdev = to_pci_dev(dev); 1300 struct group_for_pci_data data; 1301 struct pci_bus *bus; 1302 struct iommu_group *group = NULL; 1303 u64 devfns[4] = { 0 }; 1304 1305 if (WARN_ON(!dev_is_pci(dev))) 1306 return ERR_PTR(-EINVAL); 1307 1308 /* 1309 * Find the upstream DMA alias for the device. A device must not 1310 * be aliased due to topology in order to have its own IOMMU group. 1311 * If we find an alias along the way that already belongs to a 1312 * group, use it. 1313 */ 1314 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1315 return data.group; 1316 1317 pdev = data.pdev; 1318 1319 /* 1320 * Continue upstream from the point of minimum IOMMU granularity 1321 * due to aliases to the point where devices are protected from 1322 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1323 * group, use it. 1324 */ 1325 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1326 if (!bus->self) 1327 continue; 1328 1329 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1330 break; 1331 1332 pdev = bus->self; 1333 1334 group = iommu_group_get(&pdev->dev); 1335 if (group) 1336 return group; 1337 } 1338 1339 /* 1340 * Look for existing groups on device aliases. If we alias another 1341 * device or another device aliases us, use the same group. 1342 */ 1343 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1344 if (group) 1345 return group; 1346 1347 /* 1348 * Look for existing groups on non-isolated functions on the same 1349 * slot and aliases of those funcions, if any. No need to clear 1350 * the search bitmap, the tested devfns are still valid. 1351 */ 1352 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1353 if (group) 1354 return group; 1355 1356 /* No shared group found, allocate new */ 1357 return iommu_group_alloc(); 1358 } 1359 EXPORT_SYMBOL_GPL(pci_device_group); 1360 1361 /* Get the IOMMU group for device on fsl-mc bus */ 1362 struct iommu_group *fsl_mc_device_group(struct device *dev) 1363 { 1364 struct device *cont_dev = fsl_mc_cont_dev(dev); 1365 struct iommu_group *group; 1366 1367 group = iommu_group_get(cont_dev); 1368 if (!group) 1369 group = iommu_group_alloc(); 1370 return group; 1371 } 1372 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1373 1374 /** 1375 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1376 * @dev: target device 1377 * 1378 * This function is intended to be called by IOMMU drivers and extended to 1379 * support common, bus-defined algorithms when determining or creating the 1380 * IOMMU group for a device. On success, the caller will hold a reference 1381 * to the returned IOMMU group, which will already include the provided 1382 * device. The reference should be released with iommu_group_put(). 1383 */ 1384 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1385 { 1386 const struct iommu_ops *ops = dev->bus->iommu_ops; 1387 struct iommu_group *group; 1388 int ret; 1389 1390 group = iommu_group_get(dev); 1391 if (group) 1392 return group; 1393 1394 if (!ops) 1395 return ERR_PTR(-EINVAL); 1396 1397 group = ops->device_group(dev); 1398 if (WARN_ON_ONCE(group == NULL)) 1399 return ERR_PTR(-EINVAL); 1400 1401 if (IS_ERR(group)) 1402 return group; 1403 1404 /* 1405 * Try to allocate a default domain - needs support from the 1406 * IOMMU driver. 1407 */ 1408 if (!group->default_domain) { 1409 struct iommu_domain *dom; 1410 1411 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type); 1412 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) { 1413 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA); 1414 if (dom) { 1415 dev_warn(dev, 1416 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA", 1417 iommu_def_domain_type); 1418 } 1419 } 1420 1421 group->default_domain = dom; 1422 if (!group->domain) 1423 group->domain = dom; 1424 1425 if (dom && !iommu_dma_strict) { 1426 int attr = 1; 1427 iommu_domain_set_attr(dom, 1428 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, 1429 &attr); 1430 } 1431 } 1432 1433 ret = iommu_group_add_device(group, dev); 1434 if (ret) { 1435 iommu_group_put(group); 1436 return ERR_PTR(ret); 1437 } 1438 1439 return group; 1440 } 1441 EXPORT_SYMBOL_GPL(iommu_group_get_for_dev); 1442 1443 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1444 { 1445 return group->default_domain; 1446 } 1447 1448 static int add_iommu_group(struct device *dev, void *data) 1449 { 1450 int ret = iommu_probe_device(dev); 1451 1452 /* 1453 * We ignore -ENODEV errors for now, as they just mean that the 1454 * device is not translated by an IOMMU. We still care about 1455 * other errors and fail to initialize when they happen. 1456 */ 1457 if (ret == -ENODEV) 1458 ret = 0; 1459 1460 return ret; 1461 } 1462 1463 static int remove_iommu_group(struct device *dev, void *data) 1464 { 1465 iommu_release_device(dev); 1466 1467 return 0; 1468 } 1469 1470 static int iommu_bus_notifier(struct notifier_block *nb, 1471 unsigned long action, void *data) 1472 { 1473 unsigned long group_action = 0; 1474 struct device *dev = data; 1475 struct iommu_group *group; 1476 1477 /* 1478 * ADD/DEL call into iommu driver ops if provided, which may 1479 * result in ADD/DEL notifiers to group->notifier 1480 */ 1481 if (action == BUS_NOTIFY_ADD_DEVICE) { 1482 int ret; 1483 1484 ret = iommu_probe_device(dev); 1485 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1486 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1487 iommu_release_device(dev); 1488 return NOTIFY_OK; 1489 } 1490 1491 /* 1492 * Remaining BUS_NOTIFYs get filtered and republished to the 1493 * group, if anyone is listening 1494 */ 1495 group = iommu_group_get(dev); 1496 if (!group) 1497 return 0; 1498 1499 switch (action) { 1500 case BUS_NOTIFY_BIND_DRIVER: 1501 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1502 break; 1503 case BUS_NOTIFY_BOUND_DRIVER: 1504 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1505 break; 1506 case BUS_NOTIFY_UNBIND_DRIVER: 1507 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1508 break; 1509 case BUS_NOTIFY_UNBOUND_DRIVER: 1510 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1511 break; 1512 } 1513 1514 if (group_action) 1515 blocking_notifier_call_chain(&group->notifier, 1516 group_action, dev); 1517 1518 iommu_group_put(group); 1519 return 0; 1520 } 1521 1522 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1523 { 1524 int err; 1525 struct notifier_block *nb; 1526 1527 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1528 if (!nb) 1529 return -ENOMEM; 1530 1531 nb->notifier_call = iommu_bus_notifier; 1532 1533 err = bus_register_notifier(bus, nb); 1534 if (err) 1535 goto out_free; 1536 1537 err = bus_for_each_dev(bus, NULL, NULL, add_iommu_group); 1538 if (err) 1539 goto out_err; 1540 1541 1542 return 0; 1543 1544 out_err: 1545 /* Clean up */ 1546 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1547 bus_unregister_notifier(bus, nb); 1548 1549 out_free: 1550 kfree(nb); 1551 1552 return err; 1553 } 1554 1555 /** 1556 * bus_set_iommu - set iommu-callbacks for the bus 1557 * @bus: bus. 1558 * @ops: the callbacks provided by the iommu-driver 1559 * 1560 * This function is called by an iommu driver to set the iommu methods 1561 * used for a particular bus. Drivers for devices on that bus can use 1562 * the iommu-api after these ops are registered. 1563 * This special function is needed because IOMMUs are usually devices on 1564 * the bus itself, so the iommu drivers are not initialized when the bus 1565 * is set up. With this function the iommu-driver can set the iommu-ops 1566 * afterwards. 1567 */ 1568 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1569 { 1570 int err; 1571 1572 if (ops == NULL) { 1573 bus->iommu_ops = NULL; 1574 return 0; 1575 } 1576 1577 if (bus->iommu_ops != NULL) 1578 return -EBUSY; 1579 1580 bus->iommu_ops = ops; 1581 1582 /* Do IOMMU specific setup for this bus-type */ 1583 err = iommu_bus_init(bus, ops); 1584 if (err) 1585 bus->iommu_ops = NULL; 1586 1587 return err; 1588 } 1589 EXPORT_SYMBOL_GPL(bus_set_iommu); 1590 1591 bool iommu_present(struct bus_type *bus) 1592 { 1593 return bus->iommu_ops != NULL; 1594 } 1595 EXPORT_SYMBOL_GPL(iommu_present); 1596 1597 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1598 { 1599 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1600 return false; 1601 1602 return bus->iommu_ops->capable(cap); 1603 } 1604 EXPORT_SYMBOL_GPL(iommu_capable); 1605 1606 /** 1607 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1608 * @domain: iommu domain 1609 * @handler: fault handler 1610 * @token: user data, will be passed back to the fault handler 1611 * 1612 * This function should be used by IOMMU users which want to be notified 1613 * whenever an IOMMU fault happens. 1614 * 1615 * The fault handler itself should return 0 on success, and an appropriate 1616 * error code otherwise. 1617 */ 1618 void iommu_set_fault_handler(struct iommu_domain *domain, 1619 iommu_fault_handler_t handler, 1620 void *token) 1621 { 1622 BUG_ON(!domain); 1623 1624 domain->handler = handler; 1625 domain->handler_token = token; 1626 } 1627 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1628 1629 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1630 unsigned type) 1631 { 1632 struct iommu_domain *domain; 1633 1634 if (bus == NULL || bus->iommu_ops == NULL) 1635 return NULL; 1636 1637 domain = bus->iommu_ops->domain_alloc(type); 1638 if (!domain) 1639 return NULL; 1640 1641 domain->ops = bus->iommu_ops; 1642 domain->type = type; 1643 /* Assume all sizes by default; the driver may override this later */ 1644 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1645 1646 return domain; 1647 } 1648 1649 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1650 { 1651 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1652 } 1653 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1654 1655 void iommu_domain_free(struct iommu_domain *domain) 1656 { 1657 domain->ops->domain_free(domain); 1658 } 1659 EXPORT_SYMBOL_GPL(iommu_domain_free); 1660 1661 static int __iommu_attach_device(struct iommu_domain *domain, 1662 struct device *dev) 1663 { 1664 int ret; 1665 1666 if (unlikely(domain->ops->attach_dev == NULL)) 1667 return -ENODEV; 1668 1669 ret = domain->ops->attach_dev(domain, dev); 1670 if (!ret) 1671 trace_attach_device_to_domain(dev); 1672 return ret; 1673 } 1674 1675 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1676 { 1677 struct iommu_group *group; 1678 int ret; 1679 1680 group = iommu_group_get(dev); 1681 if (!group) 1682 return -ENODEV; 1683 1684 /* 1685 * Lock the group to make sure the device-count doesn't 1686 * change while we are attaching 1687 */ 1688 mutex_lock(&group->mutex); 1689 ret = -EINVAL; 1690 if (iommu_group_device_count(group) != 1) 1691 goto out_unlock; 1692 1693 ret = __iommu_attach_group(domain, group); 1694 1695 out_unlock: 1696 mutex_unlock(&group->mutex); 1697 iommu_group_put(group); 1698 1699 return ret; 1700 } 1701 EXPORT_SYMBOL_GPL(iommu_attach_device); 1702 1703 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev, 1704 struct iommu_cache_invalidate_info *inv_info) 1705 { 1706 if (unlikely(!domain->ops->cache_invalidate)) 1707 return -ENODEV; 1708 1709 return domain->ops->cache_invalidate(domain, dev, inv_info); 1710 } 1711 EXPORT_SYMBOL_GPL(iommu_cache_invalidate); 1712 1713 int iommu_sva_bind_gpasid(struct iommu_domain *domain, 1714 struct device *dev, struct iommu_gpasid_bind_data *data) 1715 { 1716 if (unlikely(!domain->ops->sva_bind_gpasid)) 1717 return -ENODEV; 1718 1719 return domain->ops->sva_bind_gpasid(domain, dev, data); 1720 } 1721 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid); 1722 1723 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 1724 ioasid_t pasid) 1725 { 1726 if (unlikely(!domain->ops->sva_unbind_gpasid)) 1727 return -ENODEV; 1728 1729 return domain->ops->sva_unbind_gpasid(dev, pasid); 1730 } 1731 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid); 1732 1733 static void __iommu_detach_device(struct iommu_domain *domain, 1734 struct device *dev) 1735 { 1736 if (iommu_is_attach_deferred(domain, dev)) 1737 return; 1738 1739 if (unlikely(domain->ops->detach_dev == NULL)) 1740 return; 1741 1742 domain->ops->detach_dev(domain, dev); 1743 trace_detach_device_from_domain(dev); 1744 } 1745 1746 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1747 { 1748 struct iommu_group *group; 1749 1750 group = iommu_group_get(dev); 1751 if (!group) 1752 return; 1753 1754 mutex_lock(&group->mutex); 1755 if (iommu_group_device_count(group) != 1) { 1756 WARN_ON(1); 1757 goto out_unlock; 1758 } 1759 1760 __iommu_detach_group(domain, group); 1761 1762 out_unlock: 1763 mutex_unlock(&group->mutex); 1764 iommu_group_put(group); 1765 } 1766 EXPORT_SYMBOL_GPL(iommu_detach_device); 1767 1768 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 1769 { 1770 struct iommu_domain *domain; 1771 struct iommu_group *group; 1772 1773 group = iommu_group_get(dev); 1774 if (!group) 1775 return NULL; 1776 1777 domain = group->domain; 1778 1779 iommu_group_put(group); 1780 1781 return domain; 1782 } 1783 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 1784 1785 /* 1786 * For IOMMU_DOMAIN_DMA implementations which already provide their own 1787 * guarantees that the group and its default domain are valid and correct. 1788 */ 1789 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 1790 { 1791 return dev->iommu_group->default_domain; 1792 } 1793 1794 /* 1795 * IOMMU groups are really the natural working unit of the IOMMU, but 1796 * the IOMMU API works on domains and devices. Bridge that gap by 1797 * iterating over the devices in a group. Ideally we'd have a single 1798 * device which represents the requestor ID of the group, but we also 1799 * allow IOMMU drivers to create policy defined minimum sets, where 1800 * the physical hardware may be able to distiguish members, but we 1801 * wish to group them at a higher level (ex. untrusted multi-function 1802 * PCI devices). Thus we attach each device. 1803 */ 1804 static int iommu_group_do_attach_device(struct device *dev, void *data) 1805 { 1806 struct iommu_domain *domain = data; 1807 1808 return __iommu_attach_device(domain, dev); 1809 } 1810 1811 static int __iommu_attach_group(struct iommu_domain *domain, 1812 struct iommu_group *group) 1813 { 1814 int ret; 1815 1816 if (group->default_domain && group->domain != group->default_domain) 1817 return -EBUSY; 1818 1819 ret = __iommu_group_for_each_dev(group, domain, 1820 iommu_group_do_attach_device); 1821 if (ret == 0) 1822 group->domain = domain; 1823 1824 return ret; 1825 } 1826 1827 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 1828 { 1829 int ret; 1830 1831 mutex_lock(&group->mutex); 1832 ret = __iommu_attach_group(domain, group); 1833 mutex_unlock(&group->mutex); 1834 1835 return ret; 1836 } 1837 EXPORT_SYMBOL_GPL(iommu_attach_group); 1838 1839 static int iommu_group_do_detach_device(struct device *dev, void *data) 1840 { 1841 struct iommu_domain *domain = data; 1842 1843 __iommu_detach_device(domain, dev); 1844 1845 return 0; 1846 } 1847 1848 static void __iommu_detach_group(struct iommu_domain *domain, 1849 struct iommu_group *group) 1850 { 1851 int ret; 1852 1853 if (!group->default_domain) { 1854 __iommu_group_for_each_dev(group, domain, 1855 iommu_group_do_detach_device); 1856 group->domain = NULL; 1857 return; 1858 } 1859 1860 if (group->domain == group->default_domain) 1861 return; 1862 1863 /* Detach by re-attaching to the default domain */ 1864 ret = __iommu_group_for_each_dev(group, group->default_domain, 1865 iommu_group_do_attach_device); 1866 if (ret != 0) 1867 WARN_ON(1); 1868 else 1869 group->domain = group->default_domain; 1870 } 1871 1872 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 1873 { 1874 mutex_lock(&group->mutex); 1875 __iommu_detach_group(domain, group); 1876 mutex_unlock(&group->mutex); 1877 } 1878 EXPORT_SYMBOL_GPL(iommu_detach_group); 1879 1880 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 1881 { 1882 if (unlikely(domain->ops->iova_to_phys == NULL)) 1883 return 0; 1884 1885 return domain->ops->iova_to_phys(domain, iova); 1886 } 1887 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 1888 1889 static size_t iommu_pgsize(struct iommu_domain *domain, 1890 unsigned long addr_merge, size_t size) 1891 { 1892 unsigned int pgsize_idx; 1893 size_t pgsize; 1894 1895 /* Max page size that still fits into 'size' */ 1896 pgsize_idx = __fls(size); 1897 1898 /* need to consider alignment requirements ? */ 1899 if (likely(addr_merge)) { 1900 /* Max page size allowed by address */ 1901 unsigned int align_pgsize_idx = __ffs(addr_merge); 1902 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 1903 } 1904 1905 /* build a mask of acceptable page sizes */ 1906 pgsize = (1UL << (pgsize_idx + 1)) - 1; 1907 1908 /* throw away page sizes not supported by the hardware */ 1909 pgsize &= domain->pgsize_bitmap; 1910 1911 /* make sure we're still sane */ 1912 BUG_ON(!pgsize); 1913 1914 /* pick the biggest page */ 1915 pgsize_idx = __fls(pgsize); 1916 pgsize = 1UL << pgsize_idx; 1917 1918 return pgsize; 1919 } 1920 1921 int __iommu_map(struct iommu_domain *domain, unsigned long iova, 1922 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 1923 { 1924 const struct iommu_ops *ops = domain->ops; 1925 unsigned long orig_iova = iova; 1926 unsigned int min_pagesz; 1927 size_t orig_size = size; 1928 phys_addr_t orig_paddr = paddr; 1929 int ret = 0; 1930 1931 if (unlikely(ops->map == NULL || 1932 domain->pgsize_bitmap == 0UL)) 1933 return -ENODEV; 1934 1935 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1936 return -EINVAL; 1937 1938 /* find out the minimum page size supported */ 1939 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1940 1941 /* 1942 * both the virtual address and the physical one, as well as 1943 * the size of the mapping, must be aligned (at least) to the 1944 * size of the smallest page supported by the hardware 1945 */ 1946 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1947 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1948 iova, &paddr, size, min_pagesz); 1949 return -EINVAL; 1950 } 1951 1952 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1953 1954 while (size) { 1955 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1956 1957 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1958 iova, &paddr, pgsize); 1959 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 1960 1961 if (ret) 1962 break; 1963 1964 iova += pgsize; 1965 paddr += pgsize; 1966 size -= pgsize; 1967 } 1968 1969 if (ops->iotlb_sync_map) 1970 ops->iotlb_sync_map(domain); 1971 1972 /* unroll mapping in case something went wrong */ 1973 if (ret) 1974 iommu_unmap(domain, orig_iova, orig_size - size); 1975 else 1976 trace_map(orig_iova, orig_paddr, orig_size); 1977 1978 return ret; 1979 } 1980 1981 int iommu_map(struct iommu_domain *domain, unsigned long iova, 1982 phys_addr_t paddr, size_t size, int prot) 1983 { 1984 might_sleep(); 1985 return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 1986 } 1987 EXPORT_SYMBOL_GPL(iommu_map); 1988 1989 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 1990 phys_addr_t paddr, size_t size, int prot) 1991 { 1992 return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 1993 } 1994 EXPORT_SYMBOL_GPL(iommu_map_atomic); 1995 1996 static size_t __iommu_unmap(struct iommu_domain *domain, 1997 unsigned long iova, size_t size, 1998 struct iommu_iotlb_gather *iotlb_gather) 1999 { 2000 const struct iommu_ops *ops = domain->ops; 2001 size_t unmapped_page, unmapped = 0; 2002 unsigned long orig_iova = iova; 2003 unsigned int min_pagesz; 2004 2005 if (unlikely(ops->unmap == NULL || 2006 domain->pgsize_bitmap == 0UL)) 2007 return 0; 2008 2009 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2010 return 0; 2011 2012 /* find out the minimum page size supported */ 2013 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2014 2015 /* 2016 * The virtual address, as well as the size of the mapping, must be 2017 * aligned (at least) to the size of the smallest page supported 2018 * by the hardware 2019 */ 2020 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2021 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2022 iova, size, min_pagesz); 2023 return 0; 2024 } 2025 2026 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2027 2028 /* 2029 * Keep iterating until we either unmap 'size' bytes (or more) 2030 * or we hit an area that isn't mapped. 2031 */ 2032 while (unmapped < size) { 2033 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 2034 2035 unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather); 2036 if (!unmapped_page) 2037 break; 2038 2039 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2040 iova, unmapped_page); 2041 2042 iova += unmapped_page; 2043 unmapped += unmapped_page; 2044 } 2045 2046 trace_unmap(orig_iova, size, unmapped); 2047 return unmapped; 2048 } 2049 2050 size_t iommu_unmap(struct iommu_domain *domain, 2051 unsigned long iova, size_t size) 2052 { 2053 struct iommu_iotlb_gather iotlb_gather; 2054 size_t ret; 2055 2056 iommu_iotlb_gather_init(&iotlb_gather); 2057 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2058 iommu_tlb_sync(domain, &iotlb_gather); 2059 2060 return ret; 2061 } 2062 EXPORT_SYMBOL_GPL(iommu_unmap); 2063 2064 size_t iommu_unmap_fast(struct iommu_domain *domain, 2065 unsigned long iova, size_t size, 2066 struct iommu_iotlb_gather *iotlb_gather) 2067 { 2068 return __iommu_unmap(domain, iova, size, iotlb_gather); 2069 } 2070 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2071 2072 size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2073 struct scatterlist *sg, unsigned int nents, int prot, 2074 gfp_t gfp) 2075 { 2076 size_t len = 0, mapped = 0; 2077 phys_addr_t start; 2078 unsigned int i = 0; 2079 int ret; 2080 2081 while (i <= nents) { 2082 phys_addr_t s_phys = sg_phys(sg); 2083 2084 if (len && s_phys != start + len) { 2085 ret = __iommu_map(domain, iova + mapped, start, 2086 len, prot, gfp); 2087 2088 if (ret) 2089 goto out_err; 2090 2091 mapped += len; 2092 len = 0; 2093 } 2094 2095 if (len) { 2096 len += sg->length; 2097 } else { 2098 len = sg->length; 2099 start = s_phys; 2100 } 2101 2102 if (++i < nents) 2103 sg = sg_next(sg); 2104 } 2105 2106 return mapped; 2107 2108 out_err: 2109 /* undo mappings already done */ 2110 iommu_unmap(domain, iova, mapped); 2111 2112 return 0; 2113 2114 } 2115 2116 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2117 struct scatterlist *sg, unsigned int nents, int prot) 2118 { 2119 might_sleep(); 2120 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2121 } 2122 EXPORT_SYMBOL_GPL(iommu_map_sg); 2123 2124 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2125 struct scatterlist *sg, unsigned int nents, int prot) 2126 { 2127 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2128 } 2129 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic); 2130 2131 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 2132 phys_addr_t paddr, u64 size, int prot) 2133 { 2134 if (unlikely(domain->ops->domain_window_enable == NULL)) 2135 return -ENODEV; 2136 2137 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 2138 prot); 2139 } 2140 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 2141 2142 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 2143 { 2144 if (unlikely(domain->ops->domain_window_disable == NULL)) 2145 return; 2146 2147 return domain->ops->domain_window_disable(domain, wnd_nr); 2148 } 2149 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 2150 2151 /** 2152 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2153 * @domain: the iommu domain where the fault has happened 2154 * @dev: the device where the fault has happened 2155 * @iova: the faulting address 2156 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2157 * 2158 * This function should be called by the low-level IOMMU implementations 2159 * whenever IOMMU faults happen, to allow high-level users, that are 2160 * interested in such events, to know about them. 2161 * 2162 * This event may be useful for several possible use cases: 2163 * - mere logging of the event 2164 * - dynamic TLB/PTE loading 2165 * - if restarting of the faulting device is required 2166 * 2167 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2168 * PTE/TLB loading will one day be supported, implementations will be able 2169 * to tell whether it succeeded or not according to this return value). 2170 * 2171 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2172 * (though fault handlers can also return -ENOSYS, in case they want to 2173 * elicit the default behavior of the IOMMU drivers). 2174 */ 2175 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2176 unsigned long iova, int flags) 2177 { 2178 int ret = -ENOSYS; 2179 2180 /* 2181 * if upper layers showed interest and installed a fault handler, 2182 * invoke it. 2183 */ 2184 if (domain->handler) 2185 ret = domain->handler(domain, dev, iova, flags, 2186 domain->handler_token); 2187 2188 trace_io_page_fault(dev, iova, flags); 2189 return ret; 2190 } 2191 EXPORT_SYMBOL_GPL(report_iommu_fault); 2192 2193 static int __init iommu_init(void) 2194 { 2195 iommu_group_kset = kset_create_and_add("iommu_groups", 2196 NULL, kernel_kobj); 2197 BUG_ON(!iommu_group_kset); 2198 2199 iommu_debugfs_setup(); 2200 2201 return 0; 2202 } 2203 core_initcall(iommu_init); 2204 2205 int iommu_domain_get_attr(struct iommu_domain *domain, 2206 enum iommu_attr attr, void *data) 2207 { 2208 struct iommu_domain_geometry *geometry; 2209 bool *paging; 2210 int ret = 0; 2211 2212 switch (attr) { 2213 case DOMAIN_ATTR_GEOMETRY: 2214 geometry = data; 2215 *geometry = domain->geometry; 2216 2217 break; 2218 case DOMAIN_ATTR_PAGING: 2219 paging = data; 2220 *paging = (domain->pgsize_bitmap != 0UL); 2221 break; 2222 default: 2223 if (!domain->ops->domain_get_attr) 2224 return -EINVAL; 2225 2226 ret = domain->ops->domain_get_attr(domain, attr, data); 2227 } 2228 2229 return ret; 2230 } 2231 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 2232 2233 int iommu_domain_set_attr(struct iommu_domain *domain, 2234 enum iommu_attr attr, void *data) 2235 { 2236 int ret = 0; 2237 2238 switch (attr) { 2239 default: 2240 if (domain->ops->domain_set_attr == NULL) 2241 return -EINVAL; 2242 2243 ret = domain->ops->domain_set_attr(domain, attr, data); 2244 } 2245 2246 return ret; 2247 } 2248 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 2249 2250 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2251 { 2252 const struct iommu_ops *ops = dev->bus->iommu_ops; 2253 2254 if (ops && ops->get_resv_regions) 2255 ops->get_resv_regions(dev, list); 2256 } 2257 2258 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2259 { 2260 const struct iommu_ops *ops = dev->bus->iommu_ops; 2261 2262 if (ops && ops->put_resv_regions) 2263 ops->put_resv_regions(dev, list); 2264 } 2265 2266 /** 2267 * generic_iommu_put_resv_regions - Reserved region driver helper 2268 * @dev: device for which to free reserved regions 2269 * @list: reserved region list for device 2270 * 2271 * IOMMU drivers can use this to implement their .put_resv_regions() callback 2272 * for simple reservations. Memory allocated for each reserved region will be 2273 * freed. If an IOMMU driver allocates additional resources per region, it is 2274 * going to have to implement a custom callback. 2275 */ 2276 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list) 2277 { 2278 struct iommu_resv_region *entry, *next; 2279 2280 list_for_each_entry_safe(entry, next, list, list) 2281 kfree(entry); 2282 } 2283 EXPORT_SYMBOL(generic_iommu_put_resv_regions); 2284 2285 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2286 size_t length, int prot, 2287 enum iommu_resv_type type) 2288 { 2289 struct iommu_resv_region *region; 2290 2291 region = kzalloc(sizeof(*region), GFP_KERNEL); 2292 if (!region) 2293 return NULL; 2294 2295 INIT_LIST_HEAD(®ion->list); 2296 region->start = start; 2297 region->length = length; 2298 region->prot = prot; 2299 region->type = type; 2300 return region; 2301 } 2302 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2303 2304 static int 2305 request_default_domain_for_dev(struct device *dev, unsigned long type) 2306 { 2307 struct iommu_domain *domain; 2308 struct iommu_group *group; 2309 int ret; 2310 2311 /* Device must already be in a group before calling this function */ 2312 group = iommu_group_get(dev); 2313 if (!group) 2314 return -EINVAL; 2315 2316 mutex_lock(&group->mutex); 2317 2318 ret = 0; 2319 if (group->default_domain && group->default_domain->type == type) 2320 goto out; 2321 2322 /* Don't change mappings of existing devices */ 2323 ret = -EBUSY; 2324 if (iommu_group_device_count(group) != 1) 2325 goto out; 2326 2327 ret = -ENOMEM; 2328 domain = __iommu_domain_alloc(dev->bus, type); 2329 if (!domain) 2330 goto out; 2331 2332 /* Attach the device to the domain */ 2333 ret = __iommu_attach_group(domain, group); 2334 if (ret) { 2335 iommu_domain_free(domain); 2336 goto out; 2337 } 2338 2339 /* Make the domain the default for this group */ 2340 if (group->default_domain) 2341 iommu_domain_free(group->default_domain); 2342 group->default_domain = domain; 2343 2344 iommu_group_create_direct_mappings(group, dev); 2345 2346 dev_info(dev, "Using iommu %s mapping\n", 2347 type == IOMMU_DOMAIN_DMA ? "dma" : "direct"); 2348 2349 ret = 0; 2350 out: 2351 mutex_unlock(&group->mutex); 2352 iommu_group_put(group); 2353 2354 return ret; 2355 } 2356 2357 /* Request that a device is direct mapped by the IOMMU */ 2358 int iommu_request_dm_for_dev(struct device *dev) 2359 { 2360 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_IDENTITY); 2361 } 2362 2363 /* Request that a device can't be direct mapped by the IOMMU */ 2364 int iommu_request_dma_domain_for_dev(struct device *dev) 2365 { 2366 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_DMA); 2367 } 2368 2369 void iommu_set_default_passthrough(bool cmd_line) 2370 { 2371 if (cmd_line) 2372 iommu_set_cmd_line_dma_api(); 2373 2374 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2375 } 2376 2377 void iommu_set_default_translated(bool cmd_line) 2378 { 2379 if (cmd_line) 2380 iommu_set_cmd_line_dma_api(); 2381 2382 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2383 } 2384 2385 bool iommu_default_passthrough(void) 2386 { 2387 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2388 } 2389 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2390 2391 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2392 { 2393 const struct iommu_ops *ops = NULL; 2394 struct iommu_device *iommu; 2395 2396 spin_lock(&iommu_device_lock); 2397 list_for_each_entry(iommu, &iommu_device_list, list) 2398 if (iommu->fwnode == fwnode) { 2399 ops = iommu->ops; 2400 break; 2401 } 2402 spin_unlock(&iommu_device_lock); 2403 return ops; 2404 } 2405 2406 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2407 const struct iommu_ops *ops) 2408 { 2409 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2410 2411 if (fwspec) 2412 return ops == fwspec->ops ? 0 : -EINVAL; 2413 2414 if (!dev_iommu_get(dev)) 2415 return -ENOMEM; 2416 2417 /* Preallocate for the overwhelmingly common case of 1 ID */ 2418 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2419 if (!fwspec) 2420 return -ENOMEM; 2421 2422 of_node_get(to_of_node(iommu_fwnode)); 2423 fwspec->iommu_fwnode = iommu_fwnode; 2424 fwspec->ops = ops; 2425 dev_iommu_fwspec_set(dev, fwspec); 2426 return 0; 2427 } 2428 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2429 2430 void iommu_fwspec_free(struct device *dev) 2431 { 2432 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2433 2434 if (fwspec) { 2435 fwnode_handle_put(fwspec->iommu_fwnode); 2436 kfree(fwspec); 2437 dev_iommu_fwspec_set(dev, NULL); 2438 } 2439 } 2440 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2441 2442 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2443 { 2444 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2445 int i, new_num; 2446 2447 if (!fwspec) 2448 return -EINVAL; 2449 2450 new_num = fwspec->num_ids + num_ids; 2451 if (new_num > 1) { 2452 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2453 GFP_KERNEL); 2454 if (!fwspec) 2455 return -ENOMEM; 2456 2457 dev_iommu_fwspec_set(dev, fwspec); 2458 } 2459 2460 for (i = 0; i < num_ids; i++) 2461 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2462 2463 fwspec->num_ids = new_num; 2464 return 0; 2465 } 2466 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2467 2468 /* 2469 * Per device IOMMU features. 2470 */ 2471 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat) 2472 { 2473 const struct iommu_ops *ops = dev->bus->iommu_ops; 2474 2475 if (ops && ops->dev_has_feat) 2476 return ops->dev_has_feat(dev, feat); 2477 2478 return false; 2479 } 2480 EXPORT_SYMBOL_GPL(iommu_dev_has_feature); 2481 2482 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2483 { 2484 const struct iommu_ops *ops = dev->bus->iommu_ops; 2485 2486 if (ops && ops->dev_enable_feat) 2487 return ops->dev_enable_feat(dev, feat); 2488 2489 return -ENODEV; 2490 } 2491 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2492 2493 /* 2494 * The device drivers should do the necessary cleanups before calling this. 2495 * For example, before disabling the aux-domain feature, the device driver 2496 * should detach all aux-domains. Otherwise, this will return -EBUSY. 2497 */ 2498 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2499 { 2500 const struct iommu_ops *ops = dev->bus->iommu_ops; 2501 2502 if (ops && ops->dev_disable_feat) 2503 return ops->dev_disable_feat(dev, feat); 2504 2505 return -EBUSY; 2506 } 2507 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2508 2509 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat) 2510 { 2511 const struct iommu_ops *ops = dev->bus->iommu_ops; 2512 2513 if (ops && ops->dev_feat_enabled) 2514 return ops->dev_feat_enabled(dev, feat); 2515 2516 return false; 2517 } 2518 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled); 2519 2520 /* 2521 * Aux-domain specific attach/detach. 2522 * 2523 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns 2524 * true. Also, as long as domains are attached to a device through this 2525 * interface, any tries to call iommu_attach_device() should fail 2526 * (iommu_detach_device() can't fail, so we fail when trying to re-attach). 2527 * This should make us safe against a device being attached to a guest as a 2528 * whole while there are still pasid users on it (aux and sva). 2529 */ 2530 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev) 2531 { 2532 int ret = -ENODEV; 2533 2534 if (domain->ops->aux_attach_dev) 2535 ret = domain->ops->aux_attach_dev(domain, dev); 2536 2537 if (!ret) 2538 trace_attach_device_to_domain(dev); 2539 2540 return ret; 2541 } 2542 EXPORT_SYMBOL_GPL(iommu_aux_attach_device); 2543 2544 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev) 2545 { 2546 if (domain->ops->aux_detach_dev) { 2547 domain->ops->aux_detach_dev(domain, dev); 2548 trace_detach_device_from_domain(dev); 2549 } 2550 } 2551 EXPORT_SYMBOL_GPL(iommu_aux_detach_device); 2552 2553 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 2554 { 2555 int ret = -ENODEV; 2556 2557 if (domain->ops->aux_get_pasid) 2558 ret = domain->ops->aux_get_pasid(domain, dev); 2559 2560 return ret; 2561 } 2562 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid); 2563 2564 /** 2565 * iommu_sva_bind_device() - Bind a process address space to a device 2566 * @dev: the device 2567 * @mm: the mm to bind, caller must hold a reference to it 2568 * 2569 * Create a bond between device and address space, allowing the device to access 2570 * the mm using the returned PASID. If a bond already exists between @device and 2571 * @mm, it is returned and an additional reference is taken. Caller must call 2572 * iommu_sva_unbind_device() to release each reference. 2573 * 2574 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 2575 * initialize the required SVA features. 2576 * 2577 * On error, returns an ERR_PTR value. 2578 */ 2579 struct iommu_sva * 2580 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 2581 { 2582 struct iommu_group *group; 2583 struct iommu_sva *handle = ERR_PTR(-EINVAL); 2584 const struct iommu_ops *ops = dev->bus->iommu_ops; 2585 2586 if (!ops || !ops->sva_bind) 2587 return ERR_PTR(-ENODEV); 2588 2589 group = iommu_group_get(dev); 2590 if (!group) 2591 return ERR_PTR(-ENODEV); 2592 2593 /* Ensure device count and domain don't change while we're binding */ 2594 mutex_lock(&group->mutex); 2595 2596 /* 2597 * To keep things simple, SVA currently doesn't support IOMMU groups 2598 * with more than one device. Existing SVA-capable systems are not 2599 * affected by the problems that required IOMMU groups (lack of ACS 2600 * isolation, device ID aliasing and other hardware issues). 2601 */ 2602 if (iommu_group_device_count(group) != 1) 2603 goto out_unlock; 2604 2605 handle = ops->sva_bind(dev, mm, drvdata); 2606 2607 out_unlock: 2608 mutex_unlock(&group->mutex); 2609 iommu_group_put(group); 2610 2611 return handle; 2612 } 2613 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 2614 2615 /** 2616 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 2617 * @handle: the handle returned by iommu_sva_bind_device() 2618 * 2619 * Put reference to a bond between device and address space. The device should 2620 * not be issuing any more transaction for this PASID. All outstanding page 2621 * requests for this PASID must have been flushed to the IOMMU. 2622 * 2623 * Returns 0 on success, or an error value 2624 */ 2625 void iommu_sva_unbind_device(struct iommu_sva *handle) 2626 { 2627 struct iommu_group *group; 2628 struct device *dev = handle->dev; 2629 const struct iommu_ops *ops = dev->bus->iommu_ops; 2630 2631 if (!ops || !ops->sva_unbind) 2632 return; 2633 2634 group = iommu_group_get(dev); 2635 if (!group) 2636 return; 2637 2638 mutex_lock(&group->mutex); 2639 ops->sva_unbind(handle); 2640 mutex_unlock(&group->mutex); 2641 2642 iommu_group_put(group); 2643 } 2644 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 2645 2646 int iommu_sva_set_ops(struct iommu_sva *handle, 2647 const struct iommu_sva_ops *sva_ops) 2648 { 2649 if (handle->ops && handle->ops != sva_ops) 2650 return -EEXIST; 2651 2652 handle->ops = sva_ops; 2653 return 0; 2654 } 2655 EXPORT_SYMBOL_GPL(iommu_sva_set_ops); 2656 2657 int iommu_sva_get_pasid(struct iommu_sva *handle) 2658 { 2659 const struct iommu_ops *ops = handle->dev->bus->iommu_ops; 2660 2661 if (!ops || !ops->sva_get_pasid) 2662 return IOMMU_PASID_INVALID; 2663 2664 return ops->sva_get_pasid(handle); 2665 } 2666 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 2667