xref: /linux/drivers/iommu/iommu.c (revision 900897591b2bf01154db8f59f6ecf8d60e60f15e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/bug.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/errno.h>
17 #include <linux/iommu.h>
18 #include <linux/idr.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/pci.h>
22 #include <linux/bitops.h>
23 #include <linux/property.h>
24 #include <linux/fsl/mc.h>
25 #include <linux/module.h>
26 #include <trace/events/iommu.h>
27 
28 static struct kset *iommu_group_kset;
29 static DEFINE_IDA(iommu_group_ida);
30 
31 static unsigned int iommu_def_domain_type __read_mostly;
32 static bool iommu_dma_strict __read_mostly = true;
33 static u32 iommu_cmd_line __read_mostly;
34 
35 struct iommu_group {
36 	struct kobject kobj;
37 	struct kobject *devices_kobj;
38 	struct list_head devices;
39 	struct mutex mutex;
40 	struct blocking_notifier_head notifier;
41 	void *iommu_data;
42 	void (*iommu_data_release)(void *iommu_data);
43 	char *name;
44 	int id;
45 	struct iommu_domain *default_domain;
46 	struct iommu_domain *domain;
47 };
48 
49 struct group_device {
50 	struct list_head list;
51 	struct device *dev;
52 	char *name;
53 };
54 
55 struct iommu_group_attribute {
56 	struct attribute attr;
57 	ssize_t (*show)(struct iommu_group *group, char *buf);
58 	ssize_t (*store)(struct iommu_group *group,
59 			 const char *buf, size_t count);
60 };
61 
62 static const char * const iommu_group_resv_type_string[] = {
63 	[IOMMU_RESV_DIRECT]			= "direct",
64 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
65 	[IOMMU_RESV_RESERVED]			= "reserved",
66 	[IOMMU_RESV_MSI]			= "msi",
67 	[IOMMU_RESV_SW_MSI]			= "msi",
68 };
69 
70 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
71 
72 static void iommu_set_cmd_line_dma_api(void)
73 {
74 	iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
75 }
76 
77 static bool iommu_cmd_line_dma_api(void)
78 {
79 	return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API);
80 }
81 
82 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
83 struct iommu_group_attribute iommu_group_attr_##_name =		\
84 	__ATTR(_name, _mode, _show, _store)
85 
86 #define to_iommu_group_attr(_attr)	\
87 	container_of(_attr, struct iommu_group_attribute, attr)
88 #define to_iommu_group(_kobj)		\
89 	container_of(_kobj, struct iommu_group, kobj)
90 
91 static LIST_HEAD(iommu_device_list);
92 static DEFINE_SPINLOCK(iommu_device_lock);
93 
94 /*
95  * Use a function instead of an array here because the domain-type is a
96  * bit-field, so an array would waste memory.
97  */
98 static const char *iommu_domain_type_str(unsigned int t)
99 {
100 	switch (t) {
101 	case IOMMU_DOMAIN_BLOCKED:
102 		return "Blocked";
103 	case IOMMU_DOMAIN_IDENTITY:
104 		return "Passthrough";
105 	case IOMMU_DOMAIN_UNMANAGED:
106 		return "Unmanaged";
107 	case IOMMU_DOMAIN_DMA:
108 		return "Translated";
109 	default:
110 		return "Unknown";
111 	}
112 }
113 
114 static int __init iommu_subsys_init(void)
115 {
116 	bool cmd_line = iommu_cmd_line_dma_api();
117 
118 	if (!cmd_line) {
119 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
120 			iommu_set_default_passthrough(false);
121 		else
122 			iommu_set_default_translated(false);
123 
124 		if (iommu_default_passthrough() && mem_encrypt_active()) {
125 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
126 			iommu_set_default_translated(false);
127 		}
128 	}
129 
130 	pr_info("Default domain type: %s %s\n",
131 		iommu_domain_type_str(iommu_def_domain_type),
132 		cmd_line ? "(set via kernel command line)" : "");
133 
134 	return 0;
135 }
136 subsys_initcall(iommu_subsys_init);
137 
138 int iommu_device_register(struct iommu_device *iommu)
139 {
140 	spin_lock(&iommu_device_lock);
141 	list_add_tail(&iommu->list, &iommu_device_list);
142 	spin_unlock(&iommu_device_lock);
143 	return 0;
144 }
145 EXPORT_SYMBOL_GPL(iommu_device_register);
146 
147 void iommu_device_unregister(struct iommu_device *iommu)
148 {
149 	spin_lock(&iommu_device_lock);
150 	list_del(&iommu->list);
151 	spin_unlock(&iommu_device_lock);
152 }
153 EXPORT_SYMBOL_GPL(iommu_device_unregister);
154 
155 static struct dev_iommu *dev_iommu_get(struct device *dev)
156 {
157 	struct dev_iommu *param = dev->iommu;
158 
159 	if (param)
160 		return param;
161 
162 	param = kzalloc(sizeof(*param), GFP_KERNEL);
163 	if (!param)
164 		return NULL;
165 
166 	mutex_init(&param->lock);
167 	dev->iommu = param;
168 	return param;
169 }
170 
171 static void dev_iommu_free(struct device *dev)
172 {
173 	iommu_fwspec_free(dev);
174 	kfree(dev->iommu);
175 	dev->iommu = NULL;
176 }
177 
178 int iommu_probe_device(struct device *dev)
179 {
180 	const struct iommu_ops *ops = dev->bus->iommu_ops;
181 	int ret;
182 
183 	WARN_ON(dev->iommu_group);
184 	if (!ops)
185 		return -EINVAL;
186 
187 	if (!dev_iommu_get(dev))
188 		return -ENOMEM;
189 
190 	if (!try_module_get(ops->owner)) {
191 		ret = -EINVAL;
192 		goto err_free_dev_param;
193 	}
194 
195 	ret = ops->add_device(dev);
196 	if (ret)
197 		goto err_module_put;
198 
199 	return 0;
200 
201 err_module_put:
202 	module_put(ops->owner);
203 err_free_dev_param:
204 	dev_iommu_free(dev);
205 	return ret;
206 }
207 
208 void iommu_release_device(struct device *dev)
209 {
210 	const struct iommu_ops *ops = dev->bus->iommu_ops;
211 
212 	if (dev->iommu_group)
213 		ops->remove_device(dev);
214 
215 	if (dev->iommu) {
216 		module_put(ops->owner);
217 		dev_iommu_free(dev);
218 	}
219 }
220 
221 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
222 						 unsigned type);
223 static int __iommu_attach_device(struct iommu_domain *domain,
224 				 struct device *dev);
225 static int __iommu_attach_group(struct iommu_domain *domain,
226 				struct iommu_group *group);
227 static void __iommu_detach_group(struct iommu_domain *domain,
228 				 struct iommu_group *group);
229 
230 static int __init iommu_set_def_domain_type(char *str)
231 {
232 	bool pt;
233 	int ret;
234 
235 	ret = kstrtobool(str, &pt);
236 	if (ret)
237 		return ret;
238 
239 	if (pt)
240 		iommu_set_default_passthrough(true);
241 	else
242 		iommu_set_default_translated(true);
243 
244 	return 0;
245 }
246 early_param("iommu.passthrough", iommu_set_def_domain_type);
247 
248 static int __init iommu_dma_setup(char *str)
249 {
250 	return kstrtobool(str, &iommu_dma_strict);
251 }
252 early_param("iommu.strict", iommu_dma_setup);
253 
254 static ssize_t iommu_group_attr_show(struct kobject *kobj,
255 				     struct attribute *__attr, char *buf)
256 {
257 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
258 	struct iommu_group *group = to_iommu_group(kobj);
259 	ssize_t ret = -EIO;
260 
261 	if (attr->show)
262 		ret = attr->show(group, buf);
263 	return ret;
264 }
265 
266 static ssize_t iommu_group_attr_store(struct kobject *kobj,
267 				      struct attribute *__attr,
268 				      const char *buf, size_t count)
269 {
270 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
271 	struct iommu_group *group = to_iommu_group(kobj);
272 	ssize_t ret = -EIO;
273 
274 	if (attr->store)
275 		ret = attr->store(group, buf, count);
276 	return ret;
277 }
278 
279 static const struct sysfs_ops iommu_group_sysfs_ops = {
280 	.show = iommu_group_attr_show,
281 	.store = iommu_group_attr_store,
282 };
283 
284 static int iommu_group_create_file(struct iommu_group *group,
285 				   struct iommu_group_attribute *attr)
286 {
287 	return sysfs_create_file(&group->kobj, &attr->attr);
288 }
289 
290 static void iommu_group_remove_file(struct iommu_group *group,
291 				    struct iommu_group_attribute *attr)
292 {
293 	sysfs_remove_file(&group->kobj, &attr->attr);
294 }
295 
296 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
297 {
298 	return sprintf(buf, "%s\n", group->name);
299 }
300 
301 /**
302  * iommu_insert_resv_region - Insert a new region in the
303  * list of reserved regions.
304  * @new: new region to insert
305  * @regions: list of regions
306  *
307  * Elements are sorted by start address and overlapping segments
308  * of the same type are merged.
309  */
310 int iommu_insert_resv_region(struct iommu_resv_region *new,
311 			     struct list_head *regions)
312 {
313 	struct iommu_resv_region *iter, *tmp, *nr, *top;
314 	LIST_HEAD(stack);
315 
316 	nr = iommu_alloc_resv_region(new->start, new->length,
317 				     new->prot, new->type);
318 	if (!nr)
319 		return -ENOMEM;
320 
321 	/* First add the new element based on start address sorting */
322 	list_for_each_entry(iter, regions, list) {
323 		if (nr->start < iter->start ||
324 		    (nr->start == iter->start && nr->type <= iter->type))
325 			break;
326 	}
327 	list_add_tail(&nr->list, &iter->list);
328 
329 	/* Merge overlapping segments of type nr->type in @regions, if any */
330 	list_for_each_entry_safe(iter, tmp, regions, list) {
331 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
332 
333 		/* no merge needed on elements of different types than @new */
334 		if (iter->type != new->type) {
335 			list_move_tail(&iter->list, &stack);
336 			continue;
337 		}
338 
339 		/* look for the last stack element of same type as @iter */
340 		list_for_each_entry_reverse(top, &stack, list)
341 			if (top->type == iter->type)
342 				goto check_overlap;
343 
344 		list_move_tail(&iter->list, &stack);
345 		continue;
346 
347 check_overlap:
348 		top_end = top->start + top->length - 1;
349 
350 		if (iter->start > top_end + 1) {
351 			list_move_tail(&iter->list, &stack);
352 		} else {
353 			top->length = max(top_end, iter_end) - top->start + 1;
354 			list_del(&iter->list);
355 			kfree(iter);
356 		}
357 	}
358 	list_splice(&stack, regions);
359 	return 0;
360 }
361 
362 static int
363 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
364 				 struct list_head *group_resv_regions)
365 {
366 	struct iommu_resv_region *entry;
367 	int ret = 0;
368 
369 	list_for_each_entry(entry, dev_resv_regions, list) {
370 		ret = iommu_insert_resv_region(entry, group_resv_regions);
371 		if (ret)
372 			break;
373 	}
374 	return ret;
375 }
376 
377 int iommu_get_group_resv_regions(struct iommu_group *group,
378 				 struct list_head *head)
379 {
380 	struct group_device *device;
381 	int ret = 0;
382 
383 	mutex_lock(&group->mutex);
384 	list_for_each_entry(device, &group->devices, list) {
385 		struct list_head dev_resv_regions;
386 
387 		INIT_LIST_HEAD(&dev_resv_regions);
388 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
389 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
390 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
391 		if (ret)
392 			break;
393 	}
394 	mutex_unlock(&group->mutex);
395 	return ret;
396 }
397 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
398 
399 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
400 					     char *buf)
401 {
402 	struct iommu_resv_region *region, *next;
403 	struct list_head group_resv_regions;
404 	char *str = buf;
405 
406 	INIT_LIST_HEAD(&group_resv_regions);
407 	iommu_get_group_resv_regions(group, &group_resv_regions);
408 
409 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
410 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
411 			       (long long int)region->start,
412 			       (long long int)(region->start +
413 						region->length - 1),
414 			       iommu_group_resv_type_string[region->type]);
415 		kfree(region);
416 	}
417 
418 	return (str - buf);
419 }
420 
421 static ssize_t iommu_group_show_type(struct iommu_group *group,
422 				     char *buf)
423 {
424 	char *type = "unknown\n";
425 
426 	if (group->default_domain) {
427 		switch (group->default_domain->type) {
428 		case IOMMU_DOMAIN_BLOCKED:
429 			type = "blocked\n";
430 			break;
431 		case IOMMU_DOMAIN_IDENTITY:
432 			type = "identity\n";
433 			break;
434 		case IOMMU_DOMAIN_UNMANAGED:
435 			type = "unmanaged\n";
436 			break;
437 		case IOMMU_DOMAIN_DMA:
438 			type = "DMA\n";
439 			break;
440 		}
441 	}
442 	strcpy(buf, type);
443 
444 	return strlen(type);
445 }
446 
447 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
448 
449 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
450 			iommu_group_show_resv_regions, NULL);
451 
452 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL);
453 
454 static void iommu_group_release(struct kobject *kobj)
455 {
456 	struct iommu_group *group = to_iommu_group(kobj);
457 
458 	pr_debug("Releasing group %d\n", group->id);
459 
460 	if (group->iommu_data_release)
461 		group->iommu_data_release(group->iommu_data);
462 
463 	ida_simple_remove(&iommu_group_ida, group->id);
464 
465 	if (group->default_domain)
466 		iommu_domain_free(group->default_domain);
467 
468 	kfree(group->name);
469 	kfree(group);
470 }
471 
472 static struct kobj_type iommu_group_ktype = {
473 	.sysfs_ops = &iommu_group_sysfs_ops,
474 	.release = iommu_group_release,
475 };
476 
477 /**
478  * iommu_group_alloc - Allocate a new group
479  *
480  * This function is called by an iommu driver to allocate a new iommu
481  * group.  The iommu group represents the minimum granularity of the iommu.
482  * Upon successful return, the caller holds a reference to the supplied
483  * group in order to hold the group until devices are added.  Use
484  * iommu_group_put() to release this extra reference count, allowing the
485  * group to be automatically reclaimed once it has no devices or external
486  * references.
487  */
488 struct iommu_group *iommu_group_alloc(void)
489 {
490 	struct iommu_group *group;
491 	int ret;
492 
493 	group = kzalloc(sizeof(*group), GFP_KERNEL);
494 	if (!group)
495 		return ERR_PTR(-ENOMEM);
496 
497 	group->kobj.kset = iommu_group_kset;
498 	mutex_init(&group->mutex);
499 	INIT_LIST_HEAD(&group->devices);
500 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
501 
502 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
503 	if (ret < 0) {
504 		kfree(group);
505 		return ERR_PTR(ret);
506 	}
507 	group->id = ret;
508 
509 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
510 				   NULL, "%d", group->id);
511 	if (ret) {
512 		ida_simple_remove(&iommu_group_ida, group->id);
513 		kfree(group);
514 		return ERR_PTR(ret);
515 	}
516 
517 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
518 	if (!group->devices_kobj) {
519 		kobject_put(&group->kobj); /* triggers .release & free */
520 		return ERR_PTR(-ENOMEM);
521 	}
522 
523 	/*
524 	 * The devices_kobj holds a reference on the group kobject, so
525 	 * as long as that exists so will the group.  We can therefore
526 	 * use the devices_kobj for reference counting.
527 	 */
528 	kobject_put(&group->kobj);
529 
530 	ret = iommu_group_create_file(group,
531 				      &iommu_group_attr_reserved_regions);
532 	if (ret)
533 		return ERR_PTR(ret);
534 
535 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
536 	if (ret)
537 		return ERR_PTR(ret);
538 
539 	pr_debug("Allocated group %d\n", group->id);
540 
541 	return group;
542 }
543 EXPORT_SYMBOL_GPL(iommu_group_alloc);
544 
545 struct iommu_group *iommu_group_get_by_id(int id)
546 {
547 	struct kobject *group_kobj;
548 	struct iommu_group *group;
549 	const char *name;
550 
551 	if (!iommu_group_kset)
552 		return NULL;
553 
554 	name = kasprintf(GFP_KERNEL, "%d", id);
555 	if (!name)
556 		return NULL;
557 
558 	group_kobj = kset_find_obj(iommu_group_kset, name);
559 	kfree(name);
560 
561 	if (!group_kobj)
562 		return NULL;
563 
564 	group = container_of(group_kobj, struct iommu_group, kobj);
565 	BUG_ON(group->id != id);
566 
567 	kobject_get(group->devices_kobj);
568 	kobject_put(&group->kobj);
569 
570 	return group;
571 }
572 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
573 
574 /**
575  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
576  * @group: the group
577  *
578  * iommu drivers can store data in the group for use when doing iommu
579  * operations.  This function provides a way to retrieve it.  Caller
580  * should hold a group reference.
581  */
582 void *iommu_group_get_iommudata(struct iommu_group *group)
583 {
584 	return group->iommu_data;
585 }
586 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
587 
588 /**
589  * iommu_group_set_iommudata - set iommu_data for a group
590  * @group: the group
591  * @iommu_data: new data
592  * @release: release function for iommu_data
593  *
594  * iommu drivers can store data in the group for use when doing iommu
595  * operations.  This function provides a way to set the data after
596  * the group has been allocated.  Caller should hold a group reference.
597  */
598 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
599 			       void (*release)(void *iommu_data))
600 {
601 	group->iommu_data = iommu_data;
602 	group->iommu_data_release = release;
603 }
604 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
605 
606 /**
607  * iommu_group_set_name - set name for a group
608  * @group: the group
609  * @name: name
610  *
611  * Allow iommu driver to set a name for a group.  When set it will
612  * appear in a name attribute file under the group in sysfs.
613  */
614 int iommu_group_set_name(struct iommu_group *group, const char *name)
615 {
616 	int ret;
617 
618 	if (group->name) {
619 		iommu_group_remove_file(group, &iommu_group_attr_name);
620 		kfree(group->name);
621 		group->name = NULL;
622 		if (!name)
623 			return 0;
624 	}
625 
626 	group->name = kstrdup(name, GFP_KERNEL);
627 	if (!group->name)
628 		return -ENOMEM;
629 
630 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
631 	if (ret) {
632 		kfree(group->name);
633 		group->name = NULL;
634 		return ret;
635 	}
636 
637 	return 0;
638 }
639 EXPORT_SYMBOL_GPL(iommu_group_set_name);
640 
641 static int iommu_group_create_direct_mappings(struct iommu_group *group,
642 					      struct device *dev)
643 {
644 	struct iommu_domain *domain = group->default_domain;
645 	struct iommu_resv_region *entry;
646 	struct list_head mappings;
647 	unsigned long pg_size;
648 	int ret = 0;
649 
650 	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
651 		return 0;
652 
653 	BUG_ON(!domain->pgsize_bitmap);
654 
655 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
656 	INIT_LIST_HEAD(&mappings);
657 
658 	iommu_get_resv_regions(dev, &mappings);
659 
660 	/* We need to consider overlapping regions for different devices */
661 	list_for_each_entry(entry, &mappings, list) {
662 		dma_addr_t start, end, addr;
663 
664 		if (domain->ops->apply_resv_region)
665 			domain->ops->apply_resv_region(dev, domain, entry);
666 
667 		start = ALIGN(entry->start, pg_size);
668 		end   = ALIGN(entry->start + entry->length, pg_size);
669 
670 		if (entry->type != IOMMU_RESV_DIRECT &&
671 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
672 			continue;
673 
674 		for (addr = start; addr < end; addr += pg_size) {
675 			phys_addr_t phys_addr;
676 
677 			phys_addr = iommu_iova_to_phys(domain, addr);
678 			if (phys_addr)
679 				continue;
680 
681 			ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
682 			if (ret)
683 				goto out;
684 		}
685 
686 	}
687 
688 	iommu_flush_tlb_all(domain);
689 
690 out:
691 	iommu_put_resv_regions(dev, &mappings);
692 
693 	return ret;
694 }
695 
696 static bool iommu_is_attach_deferred(struct iommu_domain *domain,
697 				     struct device *dev)
698 {
699 	if (domain->ops->is_attach_deferred)
700 		return domain->ops->is_attach_deferred(domain, dev);
701 
702 	return false;
703 }
704 
705 /**
706  * iommu_group_add_device - add a device to an iommu group
707  * @group: the group into which to add the device (reference should be held)
708  * @dev: the device
709  *
710  * This function is called by an iommu driver to add a device into a
711  * group.  Adding a device increments the group reference count.
712  */
713 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
714 {
715 	int ret, i = 0;
716 	struct group_device *device;
717 
718 	device = kzalloc(sizeof(*device), GFP_KERNEL);
719 	if (!device)
720 		return -ENOMEM;
721 
722 	device->dev = dev;
723 
724 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
725 	if (ret)
726 		goto err_free_device;
727 
728 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
729 rename:
730 	if (!device->name) {
731 		ret = -ENOMEM;
732 		goto err_remove_link;
733 	}
734 
735 	ret = sysfs_create_link_nowarn(group->devices_kobj,
736 				       &dev->kobj, device->name);
737 	if (ret) {
738 		if (ret == -EEXIST && i >= 0) {
739 			/*
740 			 * Account for the slim chance of collision
741 			 * and append an instance to the name.
742 			 */
743 			kfree(device->name);
744 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
745 						 kobject_name(&dev->kobj), i++);
746 			goto rename;
747 		}
748 		goto err_free_name;
749 	}
750 
751 	kobject_get(group->devices_kobj);
752 
753 	dev->iommu_group = group;
754 
755 	iommu_group_create_direct_mappings(group, dev);
756 
757 	mutex_lock(&group->mutex);
758 	list_add_tail(&device->list, &group->devices);
759 	if (group->domain  && !iommu_is_attach_deferred(group->domain, dev))
760 		ret = __iommu_attach_device(group->domain, dev);
761 	mutex_unlock(&group->mutex);
762 	if (ret)
763 		goto err_put_group;
764 
765 	/* Notify any listeners about change to group. */
766 	blocking_notifier_call_chain(&group->notifier,
767 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
768 
769 	trace_add_device_to_group(group->id, dev);
770 
771 	dev_info(dev, "Adding to iommu group %d\n", group->id);
772 
773 	return 0;
774 
775 err_put_group:
776 	mutex_lock(&group->mutex);
777 	list_del(&device->list);
778 	mutex_unlock(&group->mutex);
779 	dev->iommu_group = NULL;
780 	kobject_put(group->devices_kobj);
781 	sysfs_remove_link(group->devices_kobj, device->name);
782 err_free_name:
783 	kfree(device->name);
784 err_remove_link:
785 	sysfs_remove_link(&dev->kobj, "iommu_group");
786 err_free_device:
787 	kfree(device);
788 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
789 	return ret;
790 }
791 EXPORT_SYMBOL_GPL(iommu_group_add_device);
792 
793 /**
794  * iommu_group_remove_device - remove a device from it's current group
795  * @dev: device to be removed
796  *
797  * This function is called by an iommu driver to remove the device from
798  * it's current group.  This decrements the iommu group reference count.
799  */
800 void iommu_group_remove_device(struct device *dev)
801 {
802 	struct iommu_group *group = dev->iommu_group;
803 	struct group_device *tmp_device, *device = NULL;
804 
805 	dev_info(dev, "Removing from iommu group %d\n", group->id);
806 
807 	/* Pre-notify listeners that a device is being removed. */
808 	blocking_notifier_call_chain(&group->notifier,
809 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
810 
811 	mutex_lock(&group->mutex);
812 	list_for_each_entry(tmp_device, &group->devices, list) {
813 		if (tmp_device->dev == dev) {
814 			device = tmp_device;
815 			list_del(&device->list);
816 			break;
817 		}
818 	}
819 	mutex_unlock(&group->mutex);
820 
821 	if (!device)
822 		return;
823 
824 	sysfs_remove_link(group->devices_kobj, device->name);
825 	sysfs_remove_link(&dev->kobj, "iommu_group");
826 
827 	trace_remove_device_from_group(group->id, dev);
828 
829 	kfree(device->name);
830 	kfree(device);
831 	dev->iommu_group = NULL;
832 	kobject_put(group->devices_kobj);
833 }
834 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
835 
836 static int iommu_group_device_count(struct iommu_group *group)
837 {
838 	struct group_device *entry;
839 	int ret = 0;
840 
841 	list_for_each_entry(entry, &group->devices, list)
842 		ret++;
843 
844 	return ret;
845 }
846 
847 /**
848  * iommu_group_for_each_dev - iterate over each device in the group
849  * @group: the group
850  * @data: caller opaque data to be passed to callback function
851  * @fn: caller supplied callback function
852  *
853  * This function is called by group users to iterate over group devices.
854  * Callers should hold a reference count to the group during callback.
855  * The group->mutex is held across callbacks, which will block calls to
856  * iommu_group_add/remove_device.
857  */
858 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
859 				      int (*fn)(struct device *, void *))
860 {
861 	struct group_device *device;
862 	int ret = 0;
863 
864 	list_for_each_entry(device, &group->devices, list) {
865 		ret = fn(device->dev, data);
866 		if (ret)
867 			break;
868 	}
869 	return ret;
870 }
871 
872 
873 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
874 			     int (*fn)(struct device *, void *))
875 {
876 	int ret;
877 
878 	mutex_lock(&group->mutex);
879 	ret = __iommu_group_for_each_dev(group, data, fn);
880 	mutex_unlock(&group->mutex);
881 
882 	return ret;
883 }
884 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
885 
886 /**
887  * iommu_group_get - Return the group for a device and increment reference
888  * @dev: get the group that this device belongs to
889  *
890  * This function is called by iommu drivers and users to get the group
891  * for the specified device.  If found, the group is returned and the group
892  * reference in incremented, else NULL.
893  */
894 struct iommu_group *iommu_group_get(struct device *dev)
895 {
896 	struct iommu_group *group = dev->iommu_group;
897 
898 	if (group)
899 		kobject_get(group->devices_kobj);
900 
901 	return group;
902 }
903 EXPORT_SYMBOL_GPL(iommu_group_get);
904 
905 /**
906  * iommu_group_ref_get - Increment reference on a group
907  * @group: the group to use, must not be NULL
908  *
909  * This function is called by iommu drivers to take additional references on an
910  * existing group.  Returns the given group for convenience.
911  */
912 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
913 {
914 	kobject_get(group->devices_kobj);
915 	return group;
916 }
917 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
918 
919 /**
920  * iommu_group_put - Decrement group reference
921  * @group: the group to use
922  *
923  * This function is called by iommu drivers and users to release the
924  * iommu group.  Once the reference count is zero, the group is released.
925  */
926 void iommu_group_put(struct iommu_group *group)
927 {
928 	if (group)
929 		kobject_put(group->devices_kobj);
930 }
931 EXPORT_SYMBOL_GPL(iommu_group_put);
932 
933 /**
934  * iommu_group_register_notifier - Register a notifier for group changes
935  * @group: the group to watch
936  * @nb: notifier block to signal
937  *
938  * This function allows iommu group users to track changes in a group.
939  * See include/linux/iommu.h for actions sent via this notifier.  Caller
940  * should hold a reference to the group throughout notifier registration.
941  */
942 int iommu_group_register_notifier(struct iommu_group *group,
943 				  struct notifier_block *nb)
944 {
945 	return blocking_notifier_chain_register(&group->notifier, nb);
946 }
947 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
948 
949 /**
950  * iommu_group_unregister_notifier - Unregister a notifier
951  * @group: the group to watch
952  * @nb: notifier block to signal
953  *
954  * Unregister a previously registered group notifier block.
955  */
956 int iommu_group_unregister_notifier(struct iommu_group *group,
957 				    struct notifier_block *nb)
958 {
959 	return blocking_notifier_chain_unregister(&group->notifier, nb);
960 }
961 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
962 
963 /**
964  * iommu_register_device_fault_handler() - Register a device fault handler
965  * @dev: the device
966  * @handler: the fault handler
967  * @data: private data passed as argument to the handler
968  *
969  * When an IOMMU fault event is received, this handler gets called with the
970  * fault event and data as argument. The handler should return 0 on success. If
971  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
972  * complete the fault by calling iommu_page_response() with one of the following
973  * response code:
974  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
975  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
976  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
977  *   page faults if possible.
978  *
979  * Return 0 if the fault handler was installed successfully, or an error.
980  */
981 int iommu_register_device_fault_handler(struct device *dev,
982 					iommu_dev_fault_handler_t handler,
983 					void *data)
984 {
985 	struct dev_iommu *param = dev->iommu;
986 	int ret = 0;
987 
988 	if (!param)
989 		return -EINVAL;
990 
991 	mutex_lock(&param->lock);
992 	/* Only allow one fault handler registered for each device */
993 	if (param->fault_param) {
994 		ret = -EBUSY;
995 		goto done_unlock;
996 	}
997 
998 	get_device(dev);
999 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1000 	if (!param->fault_param) {
1001 		put_device(dev);
1002 		ret = -ENOMEM;
1003 		goto done_unlock;
1004 	}
1005 	param->fault_param->handler = handler;
1006 	param->fault_param->data = data;
1007 	mutex_init(&param->fault_param->lock);
1008 	INIT_LIST_HEAD(&param->fault_param->faults);
1009 
1010 done_unlock:
1011 	mutex_unlock(&param->lock);
1012 
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1016 
1017 /**
1018  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1019  * @dev: the device
1020  *
1021  * Remove the device fault handler installed with
1022  * iommu_register_device_fault_handler().
1023  *
1024  * Return 0 on success, or an error.
1025  */
1026 int iommu_unregister_device_fault_handler(struct device *dev)
1027 {
1028 	struct dev_iommu *param = dev->iommu;
1029 	int ret = 0;
1030 
1031 	if (!param)
1032 		return -EINVAL;
1033 
1034 	mutex_lock(&param->lock);
1035 
1036 	if (!param->fault_param)
1037 		goto unlock;
1038 
1039 	/* we cannot unregister handler if there are pending faults */
1040 	if (!list_empty(&param->fault_param->faults)) {
1041 		ret = -EBUSY;
1042 		goto unlock;
1043 	}
1044 
1045 	kfree(param->fault_param);
1046 	param->fault_param = NULL;
1047 	put_device(dev);
1048 unlock:
1049 	mutex_unlock(&param->lock);
1050 
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1054 
1055 /**
1056  * iommu_report_device_fault() - Report fault event to device driver
1057  * @dev: the device
1058  * @evt: fault event data
1059  *
1060  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1061  * handler. When this function fails and the fault is recoverable, it is the
1062  * caller's responsibility to complete the fault.
1063  *
1064  * Return 0 on success, or an error.
1065  */
1066 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1067 {
1068 	struct dev_iommu *param = dev->iommu;
1069 	struct iommu_fault_event *evt_pending = NULL;
1070 	struct iommu_fault_param *fparam;
1071 	int ret = 0;
1072 
1073 	if (!param || !evt)
1074 		return -EINVAL;
1075 
1076 	/* we only report device fault if there is a handler registered */
1077 	mutex_lock(&param->lock);
1078 	fparam = param->fault_param;
1079 	if (!fparam || !fparam->handler) {
1080 		ret = -EINVAL;
1081 		goto done_unlock;
1082 	}
1083 
1084 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1085 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1086 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1087 				      GFP_KERNEL);
1088 		if (!evt_pending) {
1089 			ret = -ENOMEM;
1090 			goto done_unlock;
1091 		}
1092 		mutex_lock(&fparam->lock);
1093 		list_add_tail(&evt_pending->list, &fparam->faults);
1094 		mutex_unlock(&fparam->lock);
1095 	}
1096 
1097 	ret = fparam->handler(&evt->fault, fparam->data);
1098 	if (ret && evt_pending) {
1099 		mutex_lock(&fparam->lock);
1100 		list_del(&evt_pending->list);
1101 		mutex_unlock(&fparam->lock);
1102 		kfree(evt_pending);
1103 	}
1104 done_unlock:
1105 	mutex_unlock(&param->lock);
1106 	return ret;
1107 }
1108 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1109 
1110 int iommu_page_response(struct device *dev,
1111 			struct iommu_page_response *msg)
1112 {
1113 	bool pasid_valid;
1114 	int ret = -EINVAL;
1115 	struct iommu_fault_event *evt;
1116 	struct iommu_fault_page_request *prm;
1117 	struct dev_iommu *param = dev->iommu;
1118 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1119 
1120 	if (!domain || !domain->ops->page_response)
1121 		return -ENODEV;
1122 
1123 	if (!param || !param->fault_param)
1124 		return -EINVAL;
1125 
1126 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1127 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1128 		return -EINVAL;
1129 
1130 	/* Only send response if there is a fault report pending */
1131 	mutex_lock(&param->fault_param->lock);
1132 	if (list_empty(&param->fault_param->faults)) {
1133 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1134 		goto done_unlock;
1135 	}
1136 	/*
1137 	 * Check if we have a matching page request pending to respond,
1138 	 * otherwise return -EINVAL
1139 	 */
1140 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1141 		prm = &evt->fault.prm;
1142 		pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
1143 
1144 		if ((pasid_valid && prm->pasid != msg->pasid) ||
1145 		    prm->grpid != msg->grpid)
1146 			continue;
1147 
1148 		/* Sanitize the reply */
1149 		msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0;
1150 
1151 		ret = domain->ops->page_response(dev, evt, msg);
1152 		list_del(&evt->list);
1153 		kfree(evt);
1154 		break;
1155 	}
1156 
1157 done_unlock:
1158 	mutex_unlock(&param->fault_param->lock);
1159 	return ret;
1160 }
1161 EXPORT_SYMBOL_GPL(iommu_page_response);
1162 
1163 /**
1164  * iommu_group_id - Return ID for a group
1165  * @group: the group to ID
1166  *
1167  * Return the unique ID for the group matching the sysfs group number.
1168  */
1169 int iommu_group_id(struct iommu_group *group)
1170 {
1171 	return group->id;
1172 }
1173 EXPORT_SYMBOL_GPL(iommu_group_id);
1174 
1175 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1176 					       unsigned long *devfns);
1177 
1178 /*
1179  * To consider a PCI device isolated, we require ACS to support Source
1180  * Validation, Request Redirection, Completer Redirection, and Upstream
1181  * Forwarding.  This effectively means that devices cannot spoof their
1182  * requester ID, requests and completions cannot be redirected, and all
1183  * transactions are forwarded upstream, even as it passes through a
1184  * bridge where the target device is downstream.
1185  */
1186 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1187 
1188 /*
1189  * For multifunction devices which are not isolated from each other, find
1190  * all the other non-isolated functions and look for existing groups.  For
1191  * each function, we also need to look for aliases to or from other devices
1192  * that may already have a group.
1193  */
1194 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1195 							unsigned long *devfns)
1196 {
1197 	struct pci_dev *tmp = NULL;
1198 	struct iommu_group *group;
1199 
1200 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1201 		return NULL;
1202 
1203 	for_each_pci_dev(tmp) {
1204 		if (tmp == pdev || tmp->bus != pdev->bus ||
1205 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1206 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1207 			continue;
1208 
1209 		group = get_pci_alias_group(tmp, devfns);
1210 		if (group) {
1211 			pci_dev_put(tmp);
1212 			return group;
1213 		}
1214 	}
1215 
1216 	return NULL;
1217 }
1218 
1219 /*
1220  * Look for aliases to or from the given device for existing groups. DMA
1221  * aliases are only supported on the same bus, therefore the search
1222  * space is quite small (especially since we're really only looking at pcie
1223  * device, and therefore only expect multiple slots on the root complex or
1224  * downstream switch ports).  It's conceivable though that a pair of
1225  * multifunction devices could have aliases between them that would cause a
1226  * loop.  To prevent this, we use a bitmap to track where we've been.
1227  */
1228 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1229 					       unsigned long *devfns)
1230 {
1231 	struct pci_dev *tmp = NULL;
1232 	struct iommu_group *group;
1233 
1234 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1235 		return NULL;
1236 
1237 	group = iommu_group_get(&pdev->dev);
1238 	if (group)
1239 		return group;
1240 
1241 	for_each_pci_dev(tmp) {
1242 		if (tmp == pdev || tmp->bus != pdev->bus)
1243 			continue;
1244 
1245 		/* We alias them or they alias us */
1246 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1247 			group = get_pci_alias_group(tmp, devfns);
1248 			if (group) {
1249 				pci_dev_put(tmp);
1250 				return group;
1251 			}
1252 
1253 			group = get_pci_function_alias_group(tmp, devfns);
1254 			if (group) {
1255 				pci_dev_put(tmp);
1256 				return group;
1257 			}
1258 		}
1259 	}
1260 
1261 	return NULL;
1262 }
1263 
1264 struct group_for_pci_data {
1265 	struct pci_dev *pdev;
1266 	struct iommu_group *group;
1267 };
1268 
1269 /*
1270  * DMA alias iterator callback, return the last seen device.  Stop and return
1271  * the IOMMU group if we find one along the way.
1272  */
1273 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1274 {
1275 	struct group_for_pci_data *data = opaque;
1276 
1277 	data->pdev = pdev;
1278 	data->group = iommu_group_get(&pdev->dev);
1279 
1280 	return data->group != NULL;
1281 }
1282 
1283 /*
1284  * Generic device_group call-back function. It just allocates one
1285  * iommu-group per device.
1286  */
1287 struct iommu_group *generic_device_group(struct device *dev)
1288 {
1289 	return iommu_group_alloc();
1290 }
1291 EXPORT_SYMBOL_GPL(generic_device_group);
1292 
1293 /*
1294  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1295  * to find or create an IOMMU group for a device.
1296  */
1297 struct iommu_group *pci_device_group(struct device *dev)
1298 {
1299 	struct pci_dev *pdev = to_pci_dev(dev);
1300 	struct group_for_pci_data data;
1301 	struct pci_bus *bus;
1302 	struct iommu_group *group = NULL;
1303 	u64 devfns[4] = { 0 };
1304 
1305 	if (WARN_ON(!dev_is_pci(dev)))
1306 		return ERR_PTR(-EINVAL);
1307 
1308 	/*
1309 	 * Find the upstream DMA alias for the device.  A device must not
1310 	 * be aliased due to topology in order to have its own IOMMU group.
1311 	 * If we find an alias along the way that already belongs to a
1312 	 * group, use it.
1313 	 */
1314 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1315 		return data.group;
1316 
1317 	pdev = data.pdev;
1318 
1319 	/*
1320 	 * Continue upstream from the point of minimum IOMMU granularity
1321 	 * due to aliases to the point where devices are protected from
1322 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1323 	 * group, use it.
1324 	 */
1325 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1326 		if (!bus->self)
1327 			continue;
1328 
1329 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1330 			break;
1331 
1332 		pdev = bus->self;
1333 
1334 		group = iommu_group_get(&pdev->dev);
1335 		if (group)
1336 			return group;
1337 	}
1338 
1339 	/*
1340 	 * Look for existing groups on device aliases.  If we alias another
1341 	 * device or another device aliases us, use the same group.
1342 	 */
1343 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1344 	if (group)
1345 		return group;
1346 
1347 	/*
1348 	 * Look for existing groups on non-isolated functions on the same
1349 	 * slot and aliases of those funcions, if any.  No need to clear
1350 	 * the search bitmap, the tested devfns are still valid.
1351 	 */
1352 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1353 	if (group)
1354 		return group;
1355 
1356 	/* No shared group found, allocate new */
1357 	return iommu_group_alloc();
1358 }
1359 EXPORT_SYMBOL_GPL(pci_device_group);
1360 
1361 /* Get the IOMMU group for device on fsl-mc bus */
1362 struct iommu_group *fsl_mc_device_group(struct device *dev)
1363 {
1364 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1365 	struct iommu_group *group;
1366 
1367 	group = iommu_group_get(cont_dev);
1368 	if (!group)
1369 		group = iommu_group_alloc();
1370 	return group;
1371 }
1372 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1373 
1374 /**
1375  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1376  * @dev: target device
1377  *
1378  * This function is intended to be called by IOMMU drivers and extended to
1379  * support common, bus-defined algorithms when determining or creating the
1380  * IOMMU group for a device.  On success, the caller will hold a reference
1381  * to the returned IOMMU group, which will already include the provided
1382  * device.  The reference should be released with iommu_group_put().
1383  */
1384 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1385 {
1386 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1387 	struct iommu_group *group;
1388 	int ret;
1389 
1390 	group = iommu_group_get(dev);
1391 	if (group)
1392 		return group;
1393 
1394 	if (!ops)
1395 		return ERR_PTR(-EINVAL);
1396 
1397 	group = ops->device_group(dev);
1398 	if (WARN_ON_ONCE(group == NULL))
1399 		return ERR_PTR(-EINVAL);
1400 
1401 	if (IS_ERR(group))
1402 		return group;
1403 
1404 	/*
1405 	 * Try to allocate a default domain - needs support from the
1406 	 * IOMMU driver.
1407 	 */
1408 	if (!group->default_domain) {
1409 		struct iommu_domain *dom;
1410 
1411 		dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type);
1412 		if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) {
1413 			dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA);
1414 			if (dom) {
1415 				dev_warn(dev,
1416 					 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA",
1417 					 iommu_def_domain_type);
1418 			}
1419 		}
1420 
1421 		group->default_domain = dom;
1422 		if (!group->domain)
1423 			group->domain = dom;
1424 
1425 		if (dom && !iommu_dma_strict) {
1426 			int attr = 1;
1427 			iommu_domain_set_attr(dom,
1428 					      DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
1429 					      &attr);
1430 		}
1431 	}
1432 
1433 	ret = iommu_group_add_device(group, dev);
1434 	if (ret) {
1435 		iommu_group_put(group);
1436 		return ERR_PTR(ret);
1437 	}
1438 
1439 	return group;
1440 }
1441 EXPORT_SYMBOL_GPL(iommu_group_get_for_dev);
1442 
1443 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1444 {
1445 	return group->default_domain;
1446 }
1447 
1448 static int add_iommu_group(struct device *dev, void *data)
1449 {
1450 	int ret = iommu_probe_device(dev);
1451 
1452 	/*
1453 	 * We ignore -ENODEV errors for now, as they just mean that the
1454 	 * device is not translated by an IOMMU. We still care about
1455 	 * other errors and fail to initialize when they happen.
1456 	 */
1457 	if (ret == -ENODEV)
1458 		ret = 0;
1459 
1460 	return ret;
1461 }
1462 
1463 static int remove_iommu_group(struct device *dev, void *data)
1464 {
1465 	iommu_release_device(dev);
1466 
1467 	return 0;
1468 }
1469 
1470 static int iommu_bus_notifier(struct notifier_block *nb,
1471 			      unsigned long action, void *data)
1472 {
1473 	unsigned long group_action = 0;
1474 	struct device *dev = data;
1475 	struct iommu_group *group;
1476 
1477 	/*
1478 	 * ADD/DEL call into iommu driver ops if provided, which may
1479 	 * result in ADD/DEL notifiers to group->notifier
1480 	 */
1481 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1482 		int ret;
1483 
1484 		ret = iommu_probe_device(dev);
1485 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1486 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1487 		iommu_release_device(dev);
1488 		return NOTIFY_OK;
1489 	}
1490 
1491 	/*
1492 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1493 	 * group, if anyone is listening
1494 	 */
1495 	group = iommu_group_get(dev);
1496 	if (!group)
1497 		return 0;
1498 
1499 	switch (action) {
1500 	case BUS_NOTIFY_BIND_DRIVER:
1501 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1502 		break;
1503 	case BUS_NOTIFY_BOUND_DRIVER:
1504 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1505 		break;
1506 	case BUS_NOTIFY_UNBIND_DRIVER:
1507 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1508 		break;
1509 	case BUS_NOTIFY_UNBOUND_DRIVER:
1510 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1511 		break;
1512 	}
1513 
1514 	if (group_action)
1515 		blocking_notifier_call_chain(&group->notifier,
1516 					     group_action, dev);
1517 
1518 	iommu_group_put(group);
1519 	return 0;
1520 }
1521 
1522 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1523 {
1524 	int err;
1525 	struct notifier_block *nb;
1526 
1527 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1528 	if (!nb)
1529 		return -ENOMEM;
1530 
1531 	nb->notifier_call = iommu_bus_notifier;
1532 
1533 	err = bus_register_notifier(bus, nb);
1534 	if (err)
1535 		goto out_free;
1536 
1537 	err = bus_for_each_dev(bus, NULL, NULL, add_iommu_group);
1538 	if (err)
1539 		goto out_err;
1540 
1541 
1542 	return 0;
1543 
1544 out_err:
1545 	/* Clean up */
1546 	bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1547 	bus_unregister_notifier(bus, nb);
1548 
1549 out_free:
1550 	kfree(nb);
1551 
1552 	return err;
1553 }
1554 
1555 /**
1556  * bus_set_iommu - set iommu-callbacks for the bus
1557  * @bus: bus.
1558  * @ops: the callbacks provided by the iommu-driver
1559  *
1560  * This function is called by an iommu driver to set the iommu methods
1561  * used for a particular bus. Drivers for devices on that bus can use
1562  * the iommu-api after these ops are registered.
1563  * This special function is needed because IOMMUs are usually devices on
1564  * the bus itself, so the iommu drivers are not initialized when the bus
1565  * is set up. With this function the iommu-driver can set the iommu-ops
1566  * afterwards.
1567  */
1568 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1569 {
1570 	int err;
1571 
1572 	if (ops == NULL) {
1573 		bus->iommu_ops = NULL;
1574 		return 0;
1575 	}
1576 
1577 	if (bus->iommu_ops != NULL)
1578 		return -EBUSY;
1579 
1580 	bus->iommu_ops = ops;
1581 
1582 	/* Do IOMMU specific setup for this bus-type */
1583 	err = iommu_bus_init(bus, ops);
1584 	if (err)
1585 		bus->iommu_ops = NULL;
1586 
1587 	return err;
1588 }
1589 EXPORT_SYMBOL_GPL(bus_set_iommu);
1590 
1591 bool iommu_present(struct bus_type *bus)
1592 {
1593 	return bus->iommu_ops != NULL;
1594 }
1595 EXPORT_SYMBOL_GPL(iommu_present);
1596 
1597 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1598 {
1599 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1600 		return false;
1601 
1602 	return bus->iommu_ops->capable(cap);
1603 }
1604 EXPORT_SYMBOL_GPL(iommu_capable);
1605 
1606 /**
1607  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1608  * @domain: iommu domain
1609  * @handler: fault handler
1610  * @token: user data, will be passed back to the fault handler
1611  *
1612  * This function should be used by IOMMU users which want to be notified
1613  * whenever an IOMMU fault happens.
1614  *
1615  * The fault handler itself should return 0 on success, and an appropriate
1616  * error code otherwise.
1617  */
1618 void iommu_set_fault_handler(struct iommu_domain *domain,
1619 					iommu_fault_handler_t handler,
1620 					void *token)
1621 {
1622 	BUG_ON(!domain);
1623 
1624 	domain->handler = handler;
1625 	domain->handler_token = token;
1626 }
1627 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1628 
1629 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1630 						 unsigned type)
1631 {
1632 	struct iommu_domain *domain;
1633 
1634 	if (bus == NULL || bus->iommu_ops == NULL)
1635 		return NULL;
1636 
1637 	domain = bus->iommu_ops->domain_alloc(type);
1638 	if (!domain)
1639 		return NULL;
1640 
1641 	domain->ops  = bus->iommu_ops;
1642 	domain->type = type;
1643 	/* Assume all sizes by default; the driver may override this later */
1644 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1645 
1646 	return domain;
1647 }
1648 
1649 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1650 {
1651 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1652 }
1653 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1654 
1655 void iommu_domain_free(struct iommu_domain *domain)
1656 {
1657 	domain->ops->domain_free(domain);
1658 }
1659 EXPORT_SYMBOL_GPL(iommu_domain_free);
1660 
1661 static int __iommu_attach_device(struct iommu_domain *domain,
1662 				 struct device *dev)
1663 {
1664 	int ret;
1665 
1666 	if (unlikely(domain->ops->attach_dev == NULL))
1667 		return -ENODEV;
1668 
1669 	ret = domain->ops->attach_dev(domain, dev);
1670 	if (!ret)
1671 		trace_attach_device_to_domain(dev);
1672 	return ret;
1673 }
1674 
1675 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1676 {
1677 	struct iommu_group *group;
1678 	int ret;
1679 
1680 	group = iommu_group_get(dev);
1681 	if (!group)
1682 		return -ENODEV;
1683 
1684 	/*
1685 	 * Lock the group to make sure the device-count doesn't
1686 	 * change while we are attaching
1687 	 */
1688 	mutex_lock(&group->mutex);
1689 	ret = -EINVAL;
1690 	if (iommu_group_device_count(group) != 1)
1691 		goto out_unlock;
1692 
1693 	ret = __iommu_attach_group(domain, group);
1694 
1695 out_unlock:
1696 	mutex_unlock(&group->mutex);
1697 	iommu_group_put(group);
1698 
1699 	return ret;
1700 }
1701 EXPORT_SYMBOL_GPL(iommu_attach_device);
1702 
1703 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev,
1704 			   struct iommu_cache_invalidate_info *inv_info)
1705 {
1706 	if (unlikely(!domain->ops->cache_invalidate))
1707 		return -ENODEV;
1708 
1709 	return domain->ops->cache_invalidate(domain, dev, inv_info);
1710 }
1711 EXPORT_SYMBOL_GPL(iommu_cache_invalidate);
1712 
1713 int iommu_sva_bind_gpasid(struct iommu_domain *domain,
1714 			   struct device *dev, struct iommu_gpasid_bind_data *data)
1715 {
1716 	if (unlikely(!domain->ops->sva_bind_gpasid))
1717 		return -ENODEV;
1718 
1719 	return domain->ops->sva_bind_gpasid(domain, dev, data);
1720 }
1721 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid);
1722 
1723 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
1724 			     ioasid_t pasid)
1725 {
1726 	if (unlikely(!domain->ops->sva_unbind_gpasid))
1727 		return -ENODEV;
1728 
1729 	return domain->ops->sva_unbind_gpasid(dev, pasid);
1730 }
1731 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
1732 
1733 static void __iommu_detach_device(struct iommu_domain *domain,
1734 				  struct device *dev)
1735 {
1736 	if (iommu_is_attach_deferred(domain, dev))
1737 		return;
1738 
1739 	if (unlikely(domain->ops->detach_dev == NULL))
1740 		return;
1741 
1742 	domain->ops->detach_dev(domain, dev);
1743 	trace_detach_device_from_domain(dev);
1744 }
1745 
1746 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1747 {
1748 	struct iommu_group *group;
1749 
1750 	group = iommu_group_get(dev);
1751 	if (!group)
1752 		return;
1753 
1754 	mutex_lock(&group->mutex);
1755 	if (iommu_group_device_count(group) != 1) {
1756 		WARN_ON(1);
1757 		goto out_unlock;
1758 	}
1759 
1760 	__iommu_detach_group(domain, group);
1761 
1762 out_unlock:
1763 	mutex_unlock(&group->mutex);
1764 	iommu_group_put(group);
1765 }
1766 EXPORT_SYMBOL_GPL(iommu_detach_device);
1767 
1768 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1769 {
1770 	struct iommu_domain *domain;
1771 	struct iommu_group *group;
1772 
1773 	group = iommu_group_get(dev);
1774 	if (!group)
1775 		return NULL;
1776 
1777 	domain = group->domain;
1778 
1779 	iommu_group_put(group);
1780 
1781 	return domain;
1782 }
1783 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1784 
1785 /*
1786  * For IOMMU_DOMAIN_DMA implementations which already provide their own
1787  * guarantees that the group and its default domain are valid and correct.
1788  */
1789 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
1790 {
1791 	return dev->iommu_group->default_domain;
1792 }
1793 
1794 /*
1795  * IOMMU groups are really the natural working unit of the IOMMU, but
1796  * the IOMMU API works on domains and devices.  Bridge that gap by
1797  * iterating over the devices in a group.  Ideally we'd have a single
1798  * device which represents the requestor ID of the group, but we also
1799  * allow IOMMU drivers to create policy defined minimum sets, where
1800  * the physical hardware may be able to distiguish members, but we
1801  * wish to group them at a higher level (ex. untrusted multi-function
1802  * PCI devices).  Thus we attach each device.
1803  */
1804 static int iommu_group_do_attach_device(struct device *dev, void *data)
1805 {
1806 	struct iommu_domain *domain = data;
1807 
1808 	return __iommu_attach_device(domain, dev);
1809 }
1810 
1811 static int __iommu_attach_group(struct iommu_domain *domain,
1812 				struct iommu_group *group)
1813 {
1814 	int ret;
1815 
1816 	if (group->default_domain && group->domain != group->default_domain)
1817 		return -EBUSY;
1818 
1819 	ret = __iommu_group_for_each_dev(group, domain,
1820 					 iommu_group_do_attach_device);
1821 	if (ret == 0)
1822 		group->domain = domain;
1823 
1824 	return ret;
1825 }
1826 
1827 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1828 {
1829 	int ret;
1830 
1831 	mutex_lock(&group->mutex);
1832 	ret = __iommu_attach_group(domain, group);
1833 	mutex_unlock(&group->mutex);
1834 
1835 	return ret;
1836 }
1837 EXPORT_SYMBOL_GPL(iommu_attach_group);
1838 
1839 static int iommu_group_do_detach_device(struct device *dev, void *data)
1840 {
1841 	struct iommu_domain *domain = data;
1842 
1843 	__iommu_detach_device(domain, dev);
1844 
1845 	return 0;
1846 }
1847 
1848 static void __iommu_detach_group(struct iommu_domain *domain,
1849 				 struct iommu_group *group)
1850 {
1851 	int ret;
1852 
1853 	if (!group->default_domain) {
1854 		__iommu_group_for_each_dev(group, domain,
1855 					   iommu_group_do_detach_device);
1856 		group->domain = NULL;
1857 		return;
1858 	}
1859 
1860 	if (group->domain == group->default_domain)
1861 		return;
1862 
1863 	/* Detach by re-attaching to the default domain */
1864 	ret = __iommu_group_for_each_dev(group, group->default_domain,
1865 					 iommu_group_do_attach_device);
1866 	if (ret != 0)
1867 		WARN_ON(1);
1868 	else
1869 		group->domain = group->default_domain;
1870 }
1871 
1872 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1873 {
1874 	mutex_lock(&group->mutex);
1875 	__iommu_detach_group(domain, group);
1876 	mutex_unlock(&group->mutex);
1877 }
1878 EXPORT_SYMBOL_GPL(iommu_detach_group);
1879 
1880 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1881 {
1882 	if (unlikely(domain->ops->iova_to_phys == NULL))
1883 		return 0;
1884 
1885 	return domain->ops->iova_to_phys(domain, iova);
1886 }
1887 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1888 
1889 static size_t iommu_pgsize(struct iommu_domain *domain,
1890 			   unsigned long addr_merge, size_t size)
1891 {
1892 	unsigned int pgsize_idx;
1893 	size_t pgsize;
1894 
1895 	/* Max page size that still fits into 'size' */
1896 	pgsize_idx = __fls(size);
1897 
1898 	/* need to consider alignment requirements ? */
1899 	if (likely(addr_merge)) {
1900 		/* Max page size allowed by address */
1901 		unsigned int align_pgsize_idx = __ffs(addr_merge);
1902 		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1903 	}
1904 
1905 	/* build a mask of acceptable page sizes */
1906 	pgsize = (1UL << (pgsize_idx + 1)) - 1;
1907 
1908 	/* throw away page sizes not supported by the hardware */
1909 	pgsize &= domain->pgsize_bitmap;
1910 
1911 	/* make sure we're still sane */
1912 	BUG_ON(!pgsize);
1913 
1914 	/* pick the biggest page */
1915 	pgsize_idx = __fls(pgsize);
1916 	pgsize = 1UL << pgsize_idx;
1917 
1918 	return pgsize;
1919 }
1920 
1921 int __iommu_map(struct iommu_domain *domain, unsigned long iova,
1922 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
1923 {
1924 	const struct iommu_ops *ops = domain->ops;
1925 	unsigned long orig_iova = iova;
1926 	unsigned int min_pagesz;
1927 	size_t orig_size = size;
1928 	phys_addr_t orig_paddr = paddr;
1929 	int ret = 0;
1930 
1931 	if (unlikely(ops->map == NULL ||
1932 		     domain->pgsize_bitmap == 0UL))
1933 		return -ENODEV;
1934 
1935 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1936 		return -EINVAL;
1937 
1938 	/* find out the minimum page size supported */
1939 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1940 
1941 	/*
1942 	 * both the virtual address and the physical one, as well as
1943 	 * the size of the mapping, must be aligned (at least) to the
1944 	 * size of the smallest page supported by the hardware
1945 	 */
1946 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1947 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1948 		       iova, &paddr, size, min_pagesz);
1949 		return -EINVAL;
1950 	}
1951 
1952 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1953 
1954 	while (size) {
1955 		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1956 
1957 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1958 			 iova, &paddr, pgsize);
1959 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
1960 
1961 		if (ret)
1962 			break;
1963 
1964 		iova += pgsize;
1965 		paddr += pgsize;
1966 		size -= pgsize;
1967 	}
1968 
1969 	if (ops->iotlb_sync_map)
1970 		ops->iotlb_sync_map(domain);
1971 
1972 	/* unroll mapping in case something went wrong */
1973 	if (ret)
1974 		iommu_unmap(domain, orig_iova, orig_size - size);
1975 	else
1976 		trace_map(orig_iova, orig_paddr, orig_size);
1977 
1978 	return ret;
1979 }
1980 
1981 int iommu_map(struct iommu_domain *domain, unsigned long iova,
1982 	      phys_addr_t paddr, size_t size, int prot)
1983 {
1984 	might_sleep();
1985 	return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
1986 }
1987 EXPORT_SYMBOL_GPL(iommu_map);
1988 
1989 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
1990 	      phys_addr_t paddr, size_t size, int prot)
1991 {
1992 	return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
1993 }
1994 EXPORT_SYMBOL_GPL(iommu_map_atomic);
1995 
1996 static size_t __iommu_unmap(struct iommu_domain *domain,
1997 			    unsigned long iova, size_t size,
1998 			    struct iommu_iotlb_gather *iotlb_gather)
1999 {
2000 	const struct iommu_ops *ops = domain->ops;
2001 	size_t unmapped_page, unmapped = 0;
2002 	unsigned long orig_iova = iova;
2003 	unsigned int min_pagesz;
2004 
2005 	if (unlikely(ops->unmap == NULL ||
2006 		     domain->pgsize_bitmap == 0UL))
2007 		return 0;
2008 
2009 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2010 		return 0;
2011 
2012 	/* find out the minimum page size supported */
2013 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2014 
2015 	/*
2016 	 * The virtual address, as well as the size of the mapping, must be
2017 	 * aligned (at least) to the size of the smallest page supported
2018 	 * by the hardware
2019 	 */
2020 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2021 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2022 		       iova, size, min_pagesz);
2023 		return 0;
2024 	}
2025 
2026 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2027 
2028 	/*
2029 	 * Keep iterating until we either unmap 'size' bytes (or more)
2030 	 * or we hit an area that isn't mapped.
2031 	 */
2032 	while (unmapped < size) {
2033 		size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
2034 
2035 		unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather);
2036 		if (!unmapped_page)
2037 			break;
2038 
2039 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2040 			 iova, unmapped_page);
2041 
2042 		iova += unmapped_page;
2043 		unmapped += unmapped_page;
2044 	}
2045 
2046 	trace_unmap(orig_iova, size, unmapped);
2047 	return unmapped;
2048 }
2049 
2050 size_t iommu_unmap(struct iommu_domain *domain,
2051 		   unsigned long iova, size_t size)
2052 {
2053 	struct iommu_iotlb_gather iotlb_gather;
2054 	size_t ret;
2055 
2056 	iommu_iotlb_gather_init(&iotlb_gather);
2057 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2058 	iommu_tlb_sync(domain, &iotlb_gather);
2059 
2060 	return ret;
2061 }
2062 EXPORT_SYMBOL_GPL(iommu_unmap);
2063 
2064 size_t iommu_unmap_fast(struct iommu_domain *domain,
2065 			unsigned long iova, size_t size,
2066 			struct iommu_iotlb_gather *iotlb_gather)
2067 {
2068 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2069 }
2070 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2071 
2072 size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2073 		    struct scatterlist *sg, unsigned int nents, int prot,
2074 		    gfp_t gfp)
2075 {
2076 	size_t len = 0, mapped = 0;
2077 	phys_addr_t start;
2078 	unsigned int i = 0;
2079 	int ret;
2080 
2081 	while (i <= nents) {
2082 		phys_addr_t s_phys = sg_phys(sg);
2083 
2084 		if (len && s_phys != start + len) {
2085 			ret = __iommu_map(domain, iova + mapped, start,
2086 					len, prot, gfp);
2087 
2088 			if (ret)
2089 				goto out_err;
2090 
2091 			mapped += len;
2092 			len = 0;
2093 		}
2094 
2095 		if (len) {
2096 			len += sg->length;
2097 		} else {
2098 			len = sg->length;
2099 			start = s_phys;
2100 		}
2101 
2102 		if (++i < nents)
2103 			sg = sg_next(sg);
2104 	}
2105 
2106 	return mapped;
2107 
2108 out_err:
2109 	/* undo mappings already done */
2110 	iommu_unmap(domain, iova, mapped);
2111 
2112 	return 0;
2113 
2114 }
2115 
2116 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2117 		    struct scatterlist *sg, unsigned int nents, int prot)
2118 {
2119 	might_sleep();
2120 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2121 }
2122 EXPORT_SYMBOL_GPL(iommu_map_sg);
2123 
2124 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2125 		    struct scatterlist *sg, unsigned int nents, int prot)
2126 {
2127 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2128 }
2129 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic);
2130 
2131 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
2132 			       phys_addr_t paddr, u64 size, int prot)
2133 {
2134 	if (unlikely(domain->ops->domain_window_enable == NULL))
2135 		return -ENODEV;
2136 
2137 	return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
2138 						 prot);
2139 }
2140 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
2141 
2142 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
2143 {
2144 	if (unlikely(domain->ops->domain_window_disable == NULL))
2145 		return;
2146 
2147 	return domain->ops->domain_window_disable(domain, wnd_nr);
2148 }
2149 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
2150 
2151 /**
2152  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2153  * @domain: the iommu domain where the fault has happened
2154  * @dev: the device where the fault has happened
2155  * @iova: the faulting address
2156  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2157  *
2158  * This function should be called by the low-level IOMMU implementations
2159  * whenever IOMMU faults happen, to allow high-level users, that are
2160  * interested in such events, to know about them.
2161  *
2162  * This event may be useful for several possible use cases:
2163  * - mere logging of the event
2164  * - dynamic TLB/PTE loading
2165  * - if restarting of the faulting device is required
2166  *
2167  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2168  * PTE/TLB loading will one day be supported, implementations will be able
2169  * to tell whether it succeeded or not according to this return value).
2170  *
2171  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2172  * (though fault handlers can also return -ENOSYS, in case they want to
2173  * elicit the default behavior of the IOMMU drivers).
2174  */
2175 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2176 		       unsigned long iova, int flags)
2177 {
2178 	int ret = -ENOSYS;
2179 
2180 	/*
2181 	 * if upper layers showed interest and installed a fault handler,
2182 	 * invoke it.
2183 	 */
2184 	if (domain->handler)
2185 		ret = domain->handler(domain, dev, iova, flags,
2186 						domain->handler_token);
2187 
2188 	trace_io_page_fault(dev, iova, flags);
2189 	return ret;
2190 }
2191 EXPORT_SYMBOL_GPL(report_iommu_fault);
2192 
2193 static int __init iommu_init(void)
2194 {
2195 	iommu_group_kset = kset_create_and_add("iommu_groups",
2196 					       NULL, kernel_kobj);
2197 	BUG_ON(!iommu_group_kset);
2198 
2199 	iommu_debugfs_setup();
2200 
2201 	return 0;
2202 }
2203 core_initcall(iommu_init);
2204 
2205 int iommu_domain_get_attr(struct iommu_domain *domain,
2206 			  enum iommu_attr attr, void *data)
2207 {
2208 	struct iommu_domain_geometry *geometry;
2209 	bool *paging;
2210 	int ret = 0;
2211 
2212 	switch (attr) {
2213 	case DOMAIN_ATTR_GEOMETRY:
2214 		geometry  = data;
2215 		*geometry = domain->geometry;
2216 
2217 		break;
2218 	case DOMAIN_ATTR_PAGING:
2219 		paging  = data;
2220 		*paging = (domain->pgsize_bitmap != 0UL);
2221 		break;
2222 	default:
2223 		if (!domain->ops->domain_get_attr)
2224 			return -EINVAL;
2225 
2226 		ret = domain->ops->domain_get_attr(domain, attr, data);
2227 	}
2228 
2229 	return ret;
2230 }
2231 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
2232 
2233 int iommu_domain_set_attr(struct iommu_domain *domain,
2234 			  enum iommu_attr attr, void *data)
2235 {
2236 	int ret = 0;
2237 
2238 	switch (attr) {
2239 	default:
2240 		if (domain->ops->domain_set_attr == NULL)
2241 			return -EINVAL;
2242 
2243 		ret = domain->ops->domain_set_attr(domain, attr, data);
2244 	}
2245 
2246 	return ret;
2247 }
2248 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
2249 
2250 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2251 {
2252 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2253 
2254 	if (ops && ops->get_resv_regions)
2255 		ops->get_resv_regions(dev, list);
2256 }
2257 
2258 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2259 {
2260 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2261 
2262 	if (ops && ops->put_resv_regions)
2263 		ops->put_resv_regions(dev, list);
2264 }
2265 
2266 /**
2267  * generic_iommu_put_resv_regions - Reserved region driver helper
2268  * @dev: device for which to free reserved regions
2269  * @list: reserved region list for device
2270  *
2271  * IOMMU drivers can use this to implement their .put_resv_regions() callback
2272  * for simple reservations. Memory allocated for each reserved region will be
2273  * freed. If an IOMMU driver allocates additional resources per region, it is
2274  * going to have to implement a custom callback.
2275  */
2276 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2277 {
2278 	struct iommu_resv_region *entry, *next;
2279 
2280 	list_for_each_entry_safe(entry, next, list, list)
2281 		kfree(entry);
2282 }
2283 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2284 
2285 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2286 						  size_t length, int prot,
2287 						  enum iommu_resv_type type)
2288 {
2289 	struct iommu_resv_region *region;
2290 
2291 	region = kzalloc(sizeof(*region), GFP_KERNEL);
2292 	if (!region)
2293 		return NULL;
2294 
2295 	INIT_LIST_HEAD(&region->list);
2296 	region->start = start;
2297 	region->length = length;
2298 	region->prot = prot;
2299 	region->type = type;
2300 	return region;
2301 }
2302 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2303 
2304 static int
2305 request_default_domain_for_dev(struct device *dev, unsigned long type)
2306 {
2307 	struct iommu_domain *domain;
2308 	struct iommu_group *group;
2309 	int ret;
2310 
2311 	/* Device must already be in a group before calling this function */
2312 	group = iommu_group_get(dev);
2313 	if (!group)
2314 		return -EINVAL;
2315 
2316 	mutex_lock(&group->mutex);
2317 
2318 	ret = 0;
2319 	if (group->default_domain && group->default_domain->type == type)
2320 		goto out;
2321 
2322 	/* Don't change mappings of existing devices */
2323 	ret = -EBUSY;
2324 	if (iommu_group_device_count(group) != 1)
2325 		goto out;
2326 
2327 	ret = -ENOMEM;
2328 	domain = __iommu_domain_alloc(dev->bus, type);
2329 	if (!domain)
2330 		goto out;
2331 
2332 	/* Attach the device to the domain */
2333 	ret = __iommu_attach_group(domain, group);
2334 	if (ret) {
2335 		iommu_domain_free(domain);
2336 		goto out;
2337 	}
2338 
2339 	/* Make the domain the default for this group */
2340 	if (group->default_domain)
2341 		iommu_domain_free(group->default_domain);
2342 	group->default_domain = domain;
2343 
2344 	iommu_group_create_direct_mappings(group, dev);
2345 
2346 	dev_info(dev, "Using iommu %s mapping\n",
2347 		 type == IOMMU_DOMAIN_DMA ? "dma" : "direct");
2348 
2349 	ret = 0;
2350 out:
2351 	mutex_unlock(&group->mutex);
2352 	iommu_group_put(group);
2353 
2354 	return ret;
2355 }
2356 
2357 /* Request that a device is direct mapped by the IOMMU */
2358 int iommu_request_dm_for_dev(struct device *dev)
2359 {
2360 	return request_default_domain_for_dev(dev, IOMMU_DOMAIN_IDENTITY);
2361 }
2362 
2363 /* Request that a device can't be direct mapped by the IOMMU */
2364 int iommu_request_dma_domain_for_dev(struct device *dev)
2365 {
2366 	return request_default_domain_for_dev(dev, IOMMU_DOMAIN_DMA);
2367 }
2368 
2369 void iommu_set_default_passthrough(bool cmd_line)
2370 {
2371 	if (cmd_line)
2372 		iommu_set_cmd_line_dma_api();
2373 
2374 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2375 }
2376 
2377 void iommu_set_default_translated(bool cmd_line)
2378 {
2379 	if (cmd_line)
2380 		iommu_set_cmd_line_dma_api();
2381 
2382 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2383 }
2384 
2385 bool iommu_default_passthrough(void)
2386 {
2387 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2388 }
2389 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2390 
2391 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2392 {
2393 	const struct iommu_ops *ops = NULL;
2394 	struct iommu_device *iommu;
2395 
2396 	spin_lock(&iommu_device_lock);
2397 	list_for_each_entry(iommu, &iommu_device_list, list)
2398 		if (iommu->fwnode == fwnode) {
2399 			ops = iommu->ops;
2400 			break;
2401 		}
2402 	spin_unlock(&iommu_device_lock);
2403 	return ops;
2404 }
2405 
2406 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2407 		      const struct iommu_ops *ops)
2408 {
2409 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2410 
2411 	if (fwspec)
2412 		return ops == fwspec->ops ? 0 : -EINVAL;
2413 
2414 	if (!dev_iommu_get(dev))
2415 		return -ENOMEM;
2416 
2417 	/* Preallocate for the overwhelmingly common case of 1 ID */
2418 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2419 	if (!fwspec)
2420 		return -ENOMEM;
2421 
2422 	of_node_get(to_of_node(iommu_fwnode));
2423 	fwspec->iommu_fwnode = iommu_fwnode;
2424 	fwspec->ops = ops;
2425 	dev_iommu_fwspec_set(dev, fwspec);
2426 	return 0;
2427 }
2428 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2429 
2430 void iommu_fwspec_free(struct device *dev)
2431 {
2432 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2433 
2434 	if (fwspec) {
2435 		fwnode_handle_put(fwspec->iommu_fwnode);
2436 		kfree(fwspec);
2437 		dev_iommu_fwspec_set(dev, NULL);
2438 	}
2439 }
2440 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2441 
2442 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2443 {
2444 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2445 	int i, new_num;
2446 
2447 	if (!fwspec)
2448 		return -EINVAL;
2449 
2450 	new_num = fwspec->num_ids + num_ids;
2451 	if (new_num > 1) {
2452 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2453 				  GFP_KERNEL);
2454 		if (!fwspec)
2455 			return -ENOMEM;
2456 
2457 		dev_iommu_fwspec_set(dev, fwspec);
2458 	}
2459 
2460 	for (i = 0; i < num_ids; i++)
2461 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2462 
2463 	fwspec->num_ids = new_num;
2464 	return 0;
2465 }
2466 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2467 
2468 /*
2469  * Per device IOMMU features.
2470  */
2471 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat)
2472 {
2473 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2474 
2475 	if (ops && ops->dev_has_feat)
2476 		return ops->dev_has_feat(dev, feat);
2477 
2478 	return false;
2479 }
2480 EXPORT_SYMBOL_GPL(iommu_dev_has_feature);
2481 
2482 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2483 {
2484 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2485 
2486 	if (ops && ops->dev_enable_feat)
2487 		return ops->dev_enable_feat(dev, feat);
2488 
2489 	return -ENODEV;
2490 }
2491 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2492 
2493 /*
2494  * The device drivers should do the necessary cleanups before calling this.
2495  * For example, before disabling the aux-domain feature, the device driver
2496  * should detach all aux-domains. Otherwise, this will return -EBUSY.
2497  */
2498 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2499 {
2500 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2501 
2502 	if (ops && ops->dev_disable_feat)
2503 		return ops->dev_disable_feat(dev, feat);
2504 
2505 	return -EBUSY;
2506 }
2507 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2508 
2509 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2510 {
2511 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2512 
2513 	if (ops && ops->dev_feat_enabled)
2514 		return ops->dev_feat_enabled(dev, feat);
2515 
2516 	return false;
2517 }
2518 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2519 
2520 /*
2521  * Aux-domain specific attach/detach.
2522  *
2523  * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2524  * true. Also, as long as domains are attached to a device through this
2525  * interface, any tries to call iommu_attach_device() should fail
2526  * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2527  * This should make us safe against a device being attached to a guest as a
2528  * whole while there are still pasid users on it (aux and sva).
2529  */
2530 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2531 {
2532 	int ret = -ENODEV;
2533 
2534 	if (domain->ops->aux_attach_dev)
2535 		ret = domain->ops->aux_attach_dev(domain, dev);
2536 
2537 	if (!ret)
2538 		trace_attach_device_to_domain(dev);
2539 
2540 	return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
2543 
2544 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
2545 {
2546 	if (domain->ops->aux_detach_dev) {
2547 		domain->ops->aux_detach_dev(domain, dev);
2548 		trace_detach_device_from_domain(dev);
2549 	}
2550 }
2551 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
2552 
2553 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
2554 {
2555 	int ret = -ENODEV;
2556 
2557 	if (domain->ops->aux_get_pasid)
2558 		ret = domain->ops->aux_get_pasid(domain, dev);
2559 
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
2563 
2564 /**
2565  * iommu_sva_bind_device() - Bind a process address space to a device
2566  * @dev: the device
2567  * @mm: the mm to bind, caller must hold a reference to it
2568  *
2569  * Create a bond between device and address space, allowing the device to access
2570  * the mm using the returned PASID. If a bond already exists between @device and
2571  * @mm, it is returned and an additional reference is taken. Caller must call
2572  * iommu_sva_unbind_device() to release each reference.
2573  *
2574  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2575  * initialize the required SVA features.
2576  *
2577  * On error, returns an ERR_PTR value.
2578  */
2579 struct iommu_sva *
2580 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2581 {
2582 	struct iommu_group *group;
2583 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
2584 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2585 
2586 	if (!ops || !ops->sva_bind)
2587 		return ERR_PTR(-ENODEV);
2588 
2589 	group = iommu_group_get(dev);
2590 	if (!group)
2591 		return ERR_PTR(-ENODEV);
2592 
2593 	/* Ensure device count and domain don't change while we're binding */
2594 	mutex_lock(&group->mutex);
2595 
2596 	/*
2597 	 * To keep things simple, SVA currently doesn't support IOMMU groups
2598 	 * with more than one device. Existing SVA-capable systems are not
2599 	 * affected by the problems that required IOMMU groups (lack of ACS
2600 	 * isolation, device ID aliasing and other hardware issues).
2601 	 */
2602 	if (iommu_group_device_count(group) != 1)
2603 		goto out_unlock;
2604 
2605 	handle = ops->sva_bind(dev, mm, drvdata);
2606 
2607 out_unlock:
2608 	mutex_unlock(&group->mutex);
2609 	iommu_group_put(group);
2610 
2611 	return handle;
2612 }
2613 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
2614 
2615 /**
2616  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
2617  * @handle: the handle returned by iommu_sva_bind_device()
2618  *
2619  * Put reference to a bond between device and address space. The device should
2620  * not be issuing any more transaction for this PASID. All outstanding page
2621  * requests for this PASID must have been flushed to the IOMMU.
2622  *
2623  * Returns 0 on success, or an error value
2624  */
2625 void iommu_sva_unbind_device(struct iommu_sva *handle)
2626 {
2627 	struct iommu_group *group;
2628 	struct device *dev = handle->dev;
2629 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2630 
2631 	if (!ops || !ops->sva_unbind)
2632 		return;
2633 
2634 	group = iommu_group_get(dev);
2635 	if (!group)
2636 		return;
2637 
2638 	mutex_lock(&group->mutex);
2639 	ops->sva_unbind(handle);
2640 	mutex_unlock(&group->mutex);
2641 
2642 	iommu_group_put(group);
2643 }
2644 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
2645 
2646 int iommu_sva_set_ops(struct iommu_sva *handle,
2647 		      const struct iommu_sva_ops *sva_ops)
2648 {
2649 	if (handle->ops && handle->ops != sva_ops)
2650 		return -EEXIST;
2651 
2652 	handle->ops = sva_ops;
2653 	return 0;
2654 }
2655 EXPORT_SYMBOL_GPL(iommu_sva_set_ops);
2656 
2657 int iommu_sva_get_pasid(struct iommu_sva *handle)
2658 {
2659 	const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
2660 
2661 	if (!ops || !ops->sva_get_pasid)
2662 		return IOMMU_PASID_INVALID;
2663 
2664 	return ops->sva_get_pasid(handle);
2665 }
2666 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
2667