1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/amba/bus.h> 10 #include <linux/device.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/host1x_context_bus.h> 20 #include <linux/iommu.h> 21 #include <linux/iommufd.h> 22 #include <linux/idr.h> 23 #include <linux/err.h> 24 #include <linux/pci.h> 25 #include <linux/pci-ats.h> 26 #include <linux/bitops.h> 27 #include <linux/platform_device.h> 28 #include <linux/property.h> 29 #include <linux/fsl/mc.h> 30 #include <linux/module.h> 31 #include <linux/cc_platform.h> 32 #include <linux/cdx/cdx_bus.h> 33 #include <trace/events/iommu.h> 34 #include <linux/sched/mm.h> 35 #include <linux/msi.h> 36 #include <uapi/linux/iommufd.h> 37 38 #include "dma-iommu.h" 39 #include "iommu-priv.h" 40 41 static struct kset *iommu_group_kset; 42 static DEFINE_IDA(iommu_group_ida); 43 static DEFINE_IDA(iommu_global_pasid_ida); 44 45 static unsigned int iommu_def_domain_type __read_mostly; 46 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 47 static u32 iommu_cmd_line __read_mostly; 48 49 /* Tags used with xa_tag_pointer() in group->pasid_array */ 50 enum { IOMMU_PASID_ARRAY_DOMAIN = 0, IOMMU_PASID_ARRAY_HANDLE = 1 }; 51 52 struct iommu_group { 53 struct kobject kobj; 54 struct kobject *devices_kobj; 55 struct list_head devices; 56 struct xarray pasid_array; 57 struct mutex mutex; 58 void *iommu_data; 59 void (*iommu_data_release)(void *iommu_data); 60 char *name; 61 int id; 62 struct iommu_domain *default_domain; 63 struct iommu_domain *blocking_domain; 64 struct iommu_domain *domain; 65 struct list_head entry; 66 unsigned int owner_cnt; 67 void *owner; 68 }; 69 70 struct group_device { 71 struct list_head list; 72 struct device *dev; 73 char *name; 74 }; 75 76 /* Iterate over each struct group_device in a struct iommu_group */ 77 #define for_each_group_device(group, pos) \ 78 list_for_each_entry(pos, &(group)->devices, list) 79 80 struct iommu_group_attribute { 81 struct attribute attr; 82 ssize_t (*show)(struct iommu_group *group, char *buf); 83 ssize_t (*store)(struct iommu_group *group, 84 const char *buf, size_t count); 85 }; 86 87 static const char * const iommu_group_resv_type_string[] = { 88 [IOMMU_RESV_DIRECT] = "direct", 89 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 90 [IOMMU_RESV_RESERVED] = "reserved", 91 [IOMMU_RESV_MSI] = "msi", 92 [IOMMU_RESV_SW_MSI] = "msi", 93 }; 94 95 #define IOMMU_CMD_LINE_DMA_API BIT(0) 96 #define IOMMU_CMD_LINE_STRICT BIT(1) 97 98 static int bus_iommu_probe(const struct bus_type *bus); 99 static int iommu_bus_notifier(struct notifier_block *nb, 100 unsigned long action, void *data); 101 static void iommu_release_device(struct device *dev); 102 static int __iommu_attach_device(struct iommu_domain *domain, 103 struct device *dev); 104 static int __iommu_attach_group(struct iommu_domain *domain, 105 struct iommu_group *group); 106 static struct iommu_domain *__iommu_paging_domain_alloc_flags(struct device *dev, 107 unsigned int type, 108 unsigned int flags); 109 110 enum { 111 IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0, 112 }; 113 114 static int __iommu_device_set_domain(struct iommu_group *group, 115 struct device *dev, 116 struct iommu_domain *new_domain, 117 unsigned int flags); 118 static int __iommu_group_set_domain_internal(struct iommu_group *group, 119 struct iommu_domain *new_domain, 120 unsigned int flags); 121 static int __iommu_group_set_domain(struct iommu_group *group, 122 struct iommu_domain *new_domain) 123 { 124 return __iommu_group_set_domain_internal(group, new_domain, 0); 125 } 126 static void __iommu_group_set_domain_nofail(struct iommu_group *group, 127 struct iommu_domain *new_domain) 128 { 129 WARN_ON(__iommu_group_set_domain_internal( 130 group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED)); 131 } 132 133 static int iommu_setup_default_domain(struct iommu_group *group, 134 int target_type); 135 static int iommu_create_device_direct_mappings(struct iommu_domain *domain, 136 struct device *dev); 137 static ssize_t iommu_group_store_type(struct iommu_group *group, 138 const char *buf, size_t count); 139 static struct group_device *iommu_group_alloc_device(struct iommu_group *group, 140 struct device *dev); 141 static void __iommu_group_free_device(struct iommu_group *group, 142 struct group_device *grp_dev); 143 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type, 144 const struct iommu_ops *ops); 145 146 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 147 struct iommu_group_attribute iommu_group_attr_##_name = \ 148 __ATTR(_name, _mode, _show, _store) 149 150 #define to_iommu_group_attr(_attr) \ 151 container_of(_attr, struct iommu_group_attribute, attr) 152 #define to_iommu_group(_kobj) \ 153 container_of(_kobj, struct iommu_group, kobj) 154 155 static LIST_HEAD(iommu_device_list); 156 static DEFINE_SPINLOCK(iommu_device_lock); 157 158 static const struct bus_type * const iommu_buses[] = { 159 &platform_bus_type, 160 #ifdef CONFIG_PCI 161 &pci_bus_type, 162 #endif 163 #ifdef CONFIG_ARM_AMBA 164 &amba_bustype, 165 #endif 166 #ifdef CONFIG_FSL_MC_BUS 167 &fsl_mc_bus_type, 168 #endif 169 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS 170 &host1x_context_device_bus_type, 171 #endif 172 #ifdef CONFIG_CDX_BUS 173 &cdx_bus_type, 174 #endif 175 }; 176 177 /* 178 * Use a function instead of an array here because the domain-type is a 179 * bit-field, so an array would waste memory. 180 */ 181 static const char *iommu_domain_type_str(unsigned int t) 182 { 183 switch (t) { 184 case IOMMU_DOMAIN_BLOCKED: 185 return "Blocked"; 186 case IOMMU_DOMAIN_IDENTITY: 187 return "Passthrough"; 188 case IOMMU_DOMAIN_UNMANAGED: 189 return "Unmanaged"; 190 case IOMMU_DOMAIN_DMA: 191 case IOMMU_DOMAIN_DMA_FQ: 192 return "Translated"; 193 case IOMMU_DOMAIN_PLATFORM: 194 return "Platform"; 195 default: 196 return "Unknown"; 197 } 198 } 199 200 static int __init iommu_subsys_init(void) 201 { 202 struct notifier_block *nb; 203 204 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 205 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 206 iommu_set_default_passthrough(false); 207 else 208 iommu_set_default_translated(false); 209 210 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 211 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 212 iommu_set_default_translated(false); 213 } 214 } 215 216 if (!iommu_default_passthrough() && !iommu_dma_strict) 217 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 218 219 pr_info("Default domain type: %s%s\n", 220 iommu_domain_type_str(iommu_def_domain_type), 221 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 222 " (set via kernel command line)" : ""); 223 224 if (!iommu_default_passthrough()) 225 pr_info("DMA domain TLB invalidation policy: %s mode%s\n", 226 iommu_dma_strict ? "strict" : "lazy", 227 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 228 " (set via kernel command line)" : ""); 229 230 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL); 231 if (!nb) 232 return -ENOMEM; 233 234 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { 235 nb[i].notifier_call = iommu_bus_notifier; 236 bus_register_notifier(iommu_buses[i], &nb[i]); 237 } 238 239 return 0; 240 } 241 subsys_initcall(iommu_subsys_init); 242 243 static int remove_iommu_group(struct device *dev, void *data) 244 { 245 if (dev->iommu && dev->iommu->iommu_dev == data) 246 iommu_release_device(dev); 247 248 return 0; 249 } 250 251 /** 252 * iommu_device_register() - Register an IOMMU hardware instance 253 * @iommu: IOMMU handle for the instance 254 * @ops: IOMMU ops to associate with the instance 255 * @hwdev: (optional) actual instance device, used for fwnode lookup 256 * 257 * Return: 0 on success, or an error. 258 */ 259 int iommu_device_register(struct iommu_device *iommu, 260 const struct iommu_ops *ops, struct device *hwdev) 261 { 262 int err = 0; 263 264 /* We need to be able to take module references appropriately */ 265 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 266 return -EINVAL; 267 268 iommu->ops = ops; 269 if (hwdev) 270 iommu->fwnode = dev_fwnode(hwdev); 271 272 spin_lock(&iommu_device_lock); 273 list_add_tail(&iommu->list, &iommu_device_list); 274 spin_unlock(&iommu_device_lock); 275 276 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) 277 err = bus_iommu_probe(iommu_buses[i]); 278 if (err) 279 iommu_device_unregister(iommu); 280 else 281 WRITE_ONCE(iommu->ready, true); 282 return err; 283 } 284 EXPORT_SYMBOL_GPL(iommu_device_register); 285 286 void iommu_device_unregister(struct iommu_device *iommu) 287 { 288 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) 289 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group); 290 291 spin_lock(&iommu_device_lock); 292 list_del(&iommu->list); 293 spin_unlock(&iommu_device_lock); 294 295 /* Pairs with the alloc in generic_single_device_group() */ 296 iommu_group_put(iommu->singleton_group); 297 iommu->singleton_group = NULL; 298 } 299 EXPORT_SYMBOL_GPL(iommu_device_unregister); 300 301 #if IS_ENABLED(CONFIG_IOMMUFD_TEST) 302 void iommu_device_unregister_bus(struct iommu_device *iommu, 303 const struct bus_type *bus, 304 struct notifier_block *nb) 305 { 306 bus_unregister_notifier(bus, nb); 307 fwnode_remove_software_node(iommu->fwnode); 308 iommu_device_unregister(iommu); 309 } 310 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus); 311 312 /* 313 * Register an iommu driver against a single bus. This is only used by iommufd 314 * selftest to create a mock iommu driver. The caller must provide 315 * some memory to hold a notifier_block. 316 */ 317 int iommu_device_register_bus(struct iommu_device *iommu, 318 const struct iommu_ops *ops, 319 const struct bus_type *bus, 320 struct notifier_block *nb) 321 { 322 int err; 323 324 iommu->ops = ops; 325 nb->notifier_call = iommu_bus_notifier; 326 err = bus_register_notifier(bus, nb); 327 if (err) 328 return err; 329 330 iommu->fwnode = fwnode_create_software_node(NULL, NULL); 331 if (IS_ERR(iommu->fwnode)) { 332 bus_unregister_notifier(bus, nb); 333 return PTR_ERR(iommu->fwnode); 334 } 335 336 spin_lock(&iommu_device_lock); 337 list_add_tail(&iommu->list, &iommu_device_list); 338 spin_unlock(&iommu_device_lock); 339 340 err = bus_iommu_probe(bus); 341 if (err) { 342 iommu_device_unregister_bus(iommu, bus, nb); 343 return err; 344 } 345 WRITE_ONCE(iommu->ready, true); 346 return 0; 347 } 348 EXPORT_SYMBOL_GPL(iommu_device_register_bus); 349 350 int iommu_mock_device_add(struct device *dev, struct iommu_device *iommu) 351 { 352 int rc; 353 354 mutex_lock(&iommu_probe_device_lock); 355 rc = iommu_fwspec_init(dev, iommu->fwnode); 356 mutex_unlock(&iommu_probe_device_lock); 357 358 if (rc) 359 return rc; 360 361 rc = device_add(dev); 362 if (rc) 363 iommu_fwspec_free(dev); 364 return rc; 365 } 366 EXPORT_SYMBOL_GPL(iommu_mock_device_add); 367 #endif 368 369 static struct dev_iommu *dev_iommu_get(struct device *dev) 370 { 371 struct dev_iommu *param = dev->iommu; 372 373 lockdep_assert_held(&iommu_probe_device_lock); 374 375 if (param) 376 return param; 377 378 param = kzalloc(sizeof(*param), GFP_KERNEL); 379 if (!param) 380 return NULL; 381 382 mutex_init(¶m->lock); 383 dev->iommu = param; 384 return param; 385 } 386 387 void dev_iommu_free(struct device *dev) 388 { 389 struct dev_iommu *param = dev->iommu; 390 391 dev->iommu = NULL; 392 if (param->fwspec) { 393 fwnode_handle_put(param->fwspec->iommu_fwnode); 394 kfree(param->fwspec); 395 } 396 kfree(param); 397 } 398 399 /* 400 * Internal equivalent of device_iommu_mapped() for when we care that a device 401 * actually has API ops, and don't want false positives from VFIO-only groups. 402 */ 403 static bool dev_has_iommu(struct device *dev) 404 { 405 return dev->iommu && dev->iommu->iommu_dev; 406 } 407 408 static u32 dev_iommu_get_max_pasids(struct device *dev) 409 { 410 u32 max_pasids = 0, bits = 0; 411 int ret; 412 413 if (dev_is_pci(dev)) { 414 ret = pci_max_pasids(to_pci_dev(dev)); 415 if (ret > 0) 416 max_pasids = ret; 417 } else { 418 ret = device_property_read_u32(dev, "pasid-num-bits", &bits); 419 if (!ret) 420 max_pasids = 1UL << bits; 421 } 422 423 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids); 424 } 425 426 void dev_iommu_priv_set(struct device *dev, void *priv) 427 { 428 /* FSL_PAMU does something weird */ 429 if (!IS_ENABLED(CONFIG_FSL_PAMU)) 430 lockdep_assert_held(&iommu_probe_device_lock); 431 dev->iommu->priv = priv; 432 } 433 EXPORT_SYMBOL_GPL(dev_iommu_priv_set); 434 435 /* 436 * Init the dev->iommu and dev->iommu_group in the struct device and get the 437 * driver probed 438 */ 439 static int iommu_init_device(struct device *dev) 440 { 441 const struct iommu_ops *ops; 442 struct iommu_device *iommu_dev; 443 struct iommu_group *group; 444 int ret; 445 446 if (!dev_iommu_get(dev)) 447 return -ENOMEM; 448 /* 449 * For FDT-based systems and ACPI IORT/VIOT, the common firmware parsing 450 * is buried in the bus dma_configure path. Properly unpicking that is 451 * still a big job, so for now just invoke the whole thing. The device 452 * already having a driver bound means dma_configure has already run and 453 * found no IOMMU to wait for, so there's no point calling it again. 454 */ 455 if (!dev->iommu->fwspec && !dev->driver && dev->bus->dma_configure) { 456 mutex_unlock(&iommu_probe_device_lock); 457 dev->bus->dma_configure(dev); 458 mutex_lock(&iommu_probe_device_lock); 459 /* If another instance finished the job for us, skip it */ 460 if (!dev->iommu || dev->iommu_group) 461 return -ENODEV; 462 } 463 /* 464 * At this point, relevant devices either now have a fwspec which will 465 * match ops registered with a non-NULL fwnode, or we can reasonably 466 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can 467 * be present, and that any of their registered instances has suitable 468 * ops for probing, and thus cheekily co-opt the same mechanism. 469 */ 470 ops = iommu_fwspec_ops(dev->iommu->fwspec); 471 if (!ops) { 472 ret = -ENODEV; 473 goto err_free; 474 } 475 476 if (!try_module_get(ops->owner)) { 477 ret = -EINVAL; 478 goto err_free; 479 } 480 481 iommu_dev = ops->probe_device(dev); 482 if (IS_ERR(iommu_dev)) { 483 ret = PTR_ERR(iommu_dev); 484 goto err_module_put; 485 } 486 dev->iommu->iommu_dev = iommu_dev; 487 488 ret = iommu_device_link(iommu_dev, dev); 489 if (ret) 490 goto err_release; 491 492 group = ops->device_group(dev); 493 if (WARN_ON_ONCE(group == NULL)) 494 group = ERR_PTR(-EINVAL); 495 if (IS_ERR(group)) { 496 ret = PTR_ERR(group); 497 goto err_unlink; 498 } 499 dev->iommu_group = group; 500 501 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev); 502 if (ops->is_attach_deferred) 503 dev->iommu->attach_deferred = ops->is_attach_deferred(dev); 504 return 0; 505 506 err_unlink: 507 iommu_device_unlink(iommu_dev, dev); 508 err_release: 509 if (ops->release_device) 510 ops->release_device(dev); 511 err_module_put: 512 module_put(ops->owner); 513 err_free: 514 dev->iommu->iommu_dev = NULL; 515 dev_iommu_free(dev); 516 return ret; 517 } 518 519 static void iommu_deinit_device(struct device *dev) 520 { 521 struct iommu_group *group = dev->iommu_group; 522 const struct iommu_ops *ops = dev_iommu_ops(dev); 523 524 lockdep_assert_held(&group->mutex); 525 526 iommu_device_unlink(dev->iommu->iommu_dev, dev); 527 528 /* 529 * release_device() must stop using any attached domain on the device. 530 * If there are still other devices in the group, they are not affected 531 * by this callback. 532 * 533 * If the iommu driver provides release_domain, the core code ensures 534 * that domain is attached prior to calling release_device. Drivers can 535 * use this to enforce a translation on the idle iommu. Typically, the 536 * global static blocked_domain is a good choice. 537 * 538 * Otherwise, the iommu driver must set the device to either an identity 539 * or a blocking translation in release_device() and stop using any 540 * domain pointer, as it is going to be freed. 541 * 542 * Regardless, if a delayed attach never occurred, then the release 543 * should still avoid touching any hardware configuration either. 544 */ 545 if (!dev->iommu->attach_deferred && ops->release_domain) 546 ops->release_domain->ops->attach_dev(ops->release_domain, dev); 547 548 if (ops->release_device) 549 ops->release_device(dev); 550 551 /* 552 * If this is the last driver to use the group then we must free the 553 * domains before we do the module_put(). 554 */ 555 if (list_empty(&group->devices)) { 556 if (group->default_domain) { 557 iommu_domain_free(group->default_domain); 558 group->default_domain = NULL; 559 } 560 if (group->blocking_domain) { 561 iommu_domain_free(group->blocking_domain); 562 group->blocking_domain = NULL; 563 } 564 group->domain = NULL; 565 } 566 567 /* Caller must put iommu_group */ 568 dev->iommu_group = NULL; 569 module_put(ops->owner); 570 dev_iommu_free(dev); 571 #ifdef CONFIG_IOMMU_DMA 572 dev->dma_iommu = false; 573 #endif 574 } 575 576 static struct iommu_domain *pasid_array_entry_to_domain(void *entry) 577 { 578 if (xa_pointer_tag(entry) == IOMMU_PASID_ARRAY_DOMAIN) 579 return xa_untag_pointer(entry); 580 return ((struct iommu_attach_handle *)xa_untag_pointer(entry))->domain; 581 } 582 583 DEFINE_MUTEX(iommu_probe_device_lock); 584 585 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 586 { 587 struct iommu_group *group; 588 struct group_device *gdev; 589 int ret; 590 591 /* 592 * Serialise to avoid races between IOMMU drivers registering in 593 * parallel and/or the "replay" calls from ACPI/OF code via client 594 * driver probe. Once the latter have been cleaned up we should 595 * probably be able to use device_lock() here to minimise the scope, 596 * but for now enforcing a simple global ordering is fine. 597 */ 598 lockdep_assert_held(&iommu_probe_device_lock); 599 600 /* Device is probed already if in a group */ 601 if (dev->iommu_group) 602 return 0; 603 604 ret = iommu_init_device(dev); 605 if (ret) 606 return ret; 607 /* 608 * And if we do now see any replay calls, they would indicate someone 609 * misusing the dma_configure path outside bus code. 610 */ 611 if (dev->driver) 612 dev_WARN(dev, "late IOMMU probe at driver bind, something fishy here!\n"); 613 614 group = dev->iommu_group; 615 gdev = iommu_group_alloc_device(group, dev); 616 mutex_lock(&group->mutex); 617 if (IS_ERR(gdev)) { 618 ret = PTR_ERR(gdev); 619 goto err_put_group; 620 } 621 622 /* 623 * The gdev must be in the list before calling 624 * iommu_setup_default_domain() 625 */ 626 list_add_tail(&gdev->list, &group->devices); 627 WARN_ON(group->default_domain && !group->domain); 628 if (group->default_domain) 629 iommu_create_device_direct_mappings(group->default_domain, dev); 630 if (group->domain) { 631 ret = __iommu_device_set_domain(group, dev, group->domain, 0); 632 if (ret) 633 goto err_remove_gdev; 634 } else if (!group->default_domain && !group_list) { 635 ret = iommu_setup_default_domain(group, 0); 636 if (ret) 637 goto err_remove_gdev; 638 } else if (!group->default_domain) { 639 /* 640 * With a group_list argument we defer the default_domain setup 641 * to the caller by providing a de-duplicated list of groups 642 * that need further setup. 643 */ 644 if (list_empty(&group->entry)) 645 list_add_tail(&group->entry, group_list); 646 } 647 648 if (group->default_domain) 649 iommu_setup_dma_ops(dev); 650 651 mutex_unlock(&group->mutex); 652 653 return 0; 654 655 err_remove_gdev: 656 list_del(&gdev->list); 657 __iommu_group_free_device(group, gdev); 658 err_put_group: 659 iommu_deinit_device(dev); 660 mutex_unlock(&group->mutex); 661 iommu_group_put(group); 662 663 return ret; 664 } 665 666 int iommu_probe_device(struct device *dev) 667 { 668 const struct iommu_ops *ops; 669 int ret; 670 671 mutex_lock(&iommu_probe_device_lock); 672 ret = __iommu_probe_device(dev, NULL); 673 mutex_unlock(&iommu_probe_device_lock); 674 if (ret) 675 return ret; 676 677 ops = dev_iommu_ops(dev); 678 if (ops->probe_finalize) 679 ops->probe_finalize(dev); 680 681 return 0; 682 } 683 684 static void __iommu_group_free_device(struct iommu_group *group, 685 struct group_device *grp_dev) 686 { 687 struct device *dev = grp_dev->dev; 688 689 sysfs_remove_link(group->devices_kobj, grp_dev->name); 690 sysfs_remove_link(&dev->kobj, "iommu_group"); 691 692 trace_remove_device_from_group(group->id, dev); 693 694 /* 695 * If the group has become empty then ownership must have been 696 * released, and the current domain must be set back to NULL or 697 * the default domain. 698 */ 699 if (list_empty(&group->devices)) 700 WARN_ON(group->owner_cnt || 701 group->domain != group->default_domain); 702 703 kfree(grp_dev->name); 704 kfree(grp_dev); 705 } 706 707 /* Remove the iommu_group from the struct device. */ 708 static void __iommu_group_remove_device(struct device *dev) 709 { 710 struct iommu_group *group = dev->iommu_group; 711 struct group_device *device; 712 713 mutex_lock(&group->mutex); 714 for_each_group_device(group, device) { 715 if (device->dev != dev) 716 continue; 717 718 list_del(&device->list); 719 __iommu_group_free_device(group, device); 720 if (dev_has_iommu(dev)) 721 iommu_deinit_device(dev); 722 else 723 dev->iommu_group = NULL; 724 break; 725 } 726 mutex_unlock(&group->mutex); 727 728 /* 729 * Pairs with the get in iommu_init_device() or 730 * iommu_group_add_device() 731 */ 732 iommu_group_put(group); 733 } 734 735 static void iommu_release_device(struct device *dev) 736 { 737 struct iommu_group *group = dev->iommu_group; 738 739 if (group) 740 __iommu_group_remove_device(dev); 741 742 /* Free any fwspec if no iommu_driver was ever attached */ 743 if (dev->iommu) 744 dev_iommu_free(dev); 745 } 746 747 static int __init iommu_set_def_domain_type(char *str) 748 { 749 bool pt; 750 int ret; 751 752 ret = kstrtobool(str, &pt); 753 if (ret) 754 return ret; 755 756 if (pt) 757 iommu_set_default_passthrough(true); 758 else 759 iommu_set_default_translated(true); 760 761 return 0; 762 } 763 early_param("iommu.passthrough", iommu_set_def_domain_type); 764 765 static int __init iommu_dma_setup(char *str) 766 { 767 int ret = kstrtobool(str, &iommu_dma_strict); 768 769 if (!ret) 770 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 771 return ret; 772 } 773 early_param("iommu.strict", iommu_dma_setup); 774 775 void iommu_set_dma_strict(void) 776 { 777 iommu_dma_strict = true; 778 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 779 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 780 } 781 782 static ssize_t iommu_group_attr_show(struct kobject *kobj, 783 struct attribute *__attr, char *buf) 784 { 785 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 786 struct iommu_group *group = to_iommu_group(kobj); 787 ssize_t ret = -EIO; 788 789 if (attr->show) 790 ret = attr->show(group, buf); 791 return ret; 792 } 793 794 static ssize_t iommu_group_attr_store(struct kobject *kobj, 795 struct attribute *__attr, 796 const char *buf, size_t count) 797 { 798 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 799 struct iommu_group *group = to_iommu_group(kobj); 800 ssize_t ret = -EIO; 801 802 if (attr->store) 803 ret = attr->store(group, buf, count); 804 return ret; 805 } 806 807 static const struct sysfs_ops iommu_group_sysfs_ops = { 808 .show = iommu_group_attr_show, 809 .store = iommu_group_attr_store, 810 }; 811 812 static int iommu_group_create_file(struct iommu_group *group, 813 struct iommu_group_attribute *attr) 814 { 815 return sysfs_create_file(&group->kobj, &attr->attr); 816 } 817 818 static void iommu_group_remove_file(struct iommu_group *group, 819 struct iommu_group_attribute *attr) 820 { 821 sysfs_remove_file(&group->kobj, &attr->attr); 822 } 823 824 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 825 { 826 return sysfs_emit(buf, "%s\n", group->name); 827 } 828 829 /** 830 * iommu_insert_resv_region - Insert a new region in the 831 * list of reserved regions. 832 * @new: new region to insert 833 * @regions: list of regions 834 * 835 * Elements are sorted by start address and overlapping segments 836 * of the same type are merged. 837 */ 838 static int iommu_insert_resv_region(struct iommu_resv_region *new, 839 struct list_head *regions) 840 { 841 struct iommu_resv_region *iter, *tmp, *nr, *top; 842 LIST_HEAD(stack); 843 844 nr = iommu_alloc_resv_region(new->start, new->length, 845 new->prot, new->type, GFP_KERNEL); 846 if (!nr) 847 return -ENOMEM; 848 849 /* First add the new element based on start address sorting */ 850 list_for_each_entry(iter, regions, list) { 851 if (nr->start < iter->start || 852 (nr->start == iter->start && nr->type <= iter->type)) 853 break; 854 } 855 list_add_tail(&nr->list, &iter->list); 856 857 /* Merge overlapping segments of type nr->type in @regions, if any */ 858 list_for_each_entry_safe(iter, tmp, regions, list) { 859 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 860 861 /* no merge needed on elements of different types than @new */ 862 if (iter->type != new->type) { 863 list_move_tail(&iter->list, &stack); 864 continue; 865 } 866 867 /* look for the last stack element of same type as @iter */ 868 list_for_each_entry_reverse(top, &stack, list) 869 if (top->type == iter->type) 870 goto check_overlap; 871 872 list_move_tail(&iter->list, &stack); 873 continue; 874 875 check_overlap: 876 top_end = top->start + top->length - 1; 877 878 if (iter->start > top_end + 1) { 879 list_move_tail(&iter->list, &stack); 880 } else { 881 top->length = max(top_end, iter_end) - top->start + 1; 882 list_del(&iter->list); 883 kfree(iter); 884 } 885 } 886 list_splice(&stack, regions); 887 return 0; 888 } 889 890 static int 891 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 892 struct list_head *group_resv_regions) 893 { 894 struct iommu_resv_region *entry; 895 int ret = 0; 896 897 list_for_each_entry(entry, dev_resv_regions, list) { 898 ret = iommu_insert_resv_region(entry, group_resv_regions); 899 if (ret) 900 break; 901 } 902 return ret; 903 } 904 905 int iommu_get_group_resv_regions(struct iommu_group *group, 906 struct list_head *head) 907 { 908 struct group_device *device; 909 int ret = 0; 910 911 mutex_lock(&group->mutex); 912 for_each_group_device(group, device) { 913 struct list_head dev_resv_regions; 914 915 /* 916 * Non-API groups still expose reserved_regions in sysfs, 917 * so filter out calls that get here that way. 918 */ 919 if (!dev_has_iommu(device->dev)) 920 break; 921 922 INIT_LIST_HEAD(&dev_resv_regions); 923 iommu_get_resv_regions(device->dev, &dev_resv_regions); 924 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 925 iommu_put_resv_regions(device->dev, &dev_resv_regions); 926 if (ret) 927 break; 928 } 929 mutex_unlock(&group->mutex); 930 return ret; 931 } 932 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 933 934 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 935 char *buf) 936 { 937 struct iommu_resv_region *region, *next; 938 struct list_head group_resv_regions; 939 int offset = 0; 940 941 INIT_LIST_HEAD(&group_resv_regions); 942 iommu_get_group_resv_regions(group, &group_resv_regions); 943 944 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 945 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n", 946 (long long)region->start, 947 (long long)(region->start + 948 region->length - 1), 949 iommu_group_resv_type_string[region->type]); 950 kfree(region); 951 } 952 953 return offset; 954 } 955 956 static ssize_t iommu_group_show_type(struct iommu_group *group, 957 char *buf) 958 { 959 char *type = "unknown"; 960 961 mutex_lock(&group->mutex); 962 if (group->default_domain) { 963 switch (group->default_domain->type) { 964 case IOMMU_DOMAIN_BLOCKED: 965 type = "blocked"; 966 break; 967 case IOMMU_DOMAIN_IDENTITY: 968 type = "identity"; 969 break; 970 case IOMMU_DOMAIN_UNMANAGED: 971 type = "unmanaged"; 972 break; 973 case IOMMU_DOMAIN_DMA: 974 type = "DMA"; 975 break; 976 case IOMMU_DOMAIN_DMA_FQ: 977 type = "DMA-FQ"; 978 break; 979 } 980 } 981 mutex_unlock(&group->mutex); 982 983 return sysfs_emit(buf, "%s\n", type); 984 } 985 986 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 987 988 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 989 iommu_group_show_resv_regions, NULL); 990 991 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 992 iommu_group_store_type); 993 994 static void iommu_group_release(struct kobject *kobj) 995 { 996 struct iommu_group *group = to_iommu_group(kobj); 997 998 pr_debug("Releasing group %d\n", group->id); 999 1000 if (group->iommu_data_release) 1001 group->iommu_data_release(group->iommu_data); 1002 1003 ida_free(&iommu_group_ida, group->id); 1004 1005 /* Domains are free'd by iommu_deinit_device() */ 1006 WARN_ON(group->default_domain); 1007 WARN_ON(group->blocking_domain); 1008 1009 kfree(group->name); 1010 kfree(group); 1011 } 1012 1013 static const struct kobj_type iommu_group_ktype = { 1014 .sysfs_ops = &iommu_group_sysfs_ops, 1015 .release = iommu_group_release, 1016 }; 1017 1018 /** 1019 * iommu_group_alloc - Allocate a new group 1020 * 1021 * This function is called by an iommu driver to allocate a new iommu 1022 * group. The iommu group represents the minimum granularity of the iommu. 1023 * Upon successful return, the caller holds a reference to the supplied 1024 * group in order to hold the group until devices are added. Use 1025 * iommu_group_put() to release this extra reference count, allowing the 1026 * group to be automatically reclaimed once it has no devices or external 1027 * references. 1028 */ 1029 struct iommu_group *iommu_group_alloc(void) 1030 { 1031 struct iommu_group *group; 1032 int ret; 1033 1034 group = kzalloc(sizeof(*group), GFP_KERNEL); 1035 if (!group) 1036 return ERR_PTR(-ENOMEM); 1037 1038 group->kobj.kset = iommu_group_kset; 1039 mutex_init(&group->mutex); 1040 INIT_LIST_HEAD(&group->devices); 1041 INIT_LIST_HEAD(&group->entry); 1042 xa_init(&group->pasid_array); 1043 1044 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL); 1045 if (ret < 0) { 1046 kfree(group); 1047 return ERR_PTR(ret); 1048 } 1049 group->id = ret; 1050 1051 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 1052 NULL, "%d", group->id); 1053 if (ret) { 1054 kobject_put(&group->kobj); 1055 return ERR_PTR(ret); 1056 } 1057 1058 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 1059 if (!group->devices_kobj) { 1060 kobject_put(&group->kobj); /* triggers .release & free */ 1061 return ERR_PTR(-ENOMEM); 1062 } 1063 1064 /* 1065 * The devices_kobj holds a reference on the group kobject, so 1066 * as long as that exists so will the group. We can therefore 1067 * use the devices_kobj for reference counting. 1068 */ 1069 kobject_put(&group->kobj); 1070 1071 ret = iommu_group_create_file(group, 1072 &iommu_group_attr_reserved_regions); 1073 if (ret) { 1074 kobject_put(group->devices_kobj); 1075 return ERR_PTR(ret); 1076 } 1077 1078 ret = iommu_group_create_file(group, &iommu_group_attr_type); 1079 if (ret) { 1080 kobject_put(group->devices_kobj); 1081 return ERR_PTR(ret); 1082 } 1083 1084 pr_debug("Allocated group %d\n", group->id); 1085 1086 return group; 1087 } 1088 EXPORT_SYMBOL_GPL(iommu_group_alloc); 1089 1090 /** 1091 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 1092 * @group: the group 1093 * 1094 * iommu drivers can store data in the group for use when doing iommu 1095 * operations. This function provides a way to retrieve it. Caller 1096 * should hold a group reference. 1097 */ 1098 void *iommu_group_get_iommudata(struct iommu_group *group) 1099 { 1100 return group->iommu_data; 1101 } 1102 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 1103 1104 /** 1105 * iommu_group_set_iommudata - set iommu_data for a group 1106 * @group: the group 1107 * @iommu_data: new data 1108 * @release: release function for iommu_data 1109 * 1110 * iommu drivers can store data in the group for use when doing iommu 1111 * operations. This function provides a way to set the data after 1112 * the group has been allocated. Caller should hold a group reference. 1113 */ 1114 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 1115 void (*release)(void *iommu_data)) 1116 { 1117 group->iommu_data = iommu_data; 1118 group->iommu_data_release = release; 1119 } 1120 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 1121 1122 /** 1123 * iommu_group_set_name - set name for a group 1124 * @group: the group 1125 * @name: name 1126 * 1127 * Allow iommu driver to set a name for a group. When set it will 1128 * appear in a name attribute file under the group in sysfs. 1129 */ 1130 int iommu_group_set_name(struct iommu_group *group, const char *name) 1131 { 1132 int ret; 1133 1134 if (group->name) { 1135 iommu_group_remove_file(group, &iommu_group_attr_name); 1136 kfree(group->name); 1137 group->name = NULL; 1138 if (!name) 1139 return 0; 1140 } 1141 1142 group->name = kstrdup(name, GFP_KERNEL); 1143 if (!group->name) 1144 return -ENOMEM; 1145 1146 ret = iommu_group_create_file(group, &iommu_group_attr_name); 1147 if (ret) { 1148 kfree(group->name); 1149 group->name = NULL; 1150 return ret; 1151 } 1152 1153 return 0; 1154 } 1155 EXPORT_SYMBOL_GPL(iommu_group_set_name); 1156 1157 static int iommu_create_device_direct_mappings(struct iommu_domain *domain, 1158 struct device *dev) 1159 { 1160 struct iommu_resv_region *entry; 1161 struct list_head mappings; 1162 unsigned long pg_size; 1163 int ret = 0; 1164 1165 pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0; 1166 INIT_LIST_HEAD(&mappings); 1167 1168 if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size)) 1169 return -EINVAL; 1170 1171 iommu_get_resv_regions(dev, &mappings); 1172 1173 /* We need to consider overlapping regions for different devices */ 1174 list_for_each_entry(entry, &mappings, list) { 1175 dma_addr_t start, end, addr; 1176 size_t map_size = 0; 1177 1178 if (entry->type == IOMMU_RESV_DIRECT) 1179 dev->iommu->require_direct = 1; 1180 1181 if ((entry->type != IOMMU_RESV_DIRECT && 1182 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) || 1183 !iommu_is_dma_domain(domain)) 1184 continue; 1185 1186 start = ALIGN(entry->start, pg_size); 1187 end = ALIGN(entry->start + entry->length, pg_size); 1188 1189 for (addr = start; addr <= end; addr += pg_size) { 1190 phys_addr_t phys_addr; 1191 1192 if (addr == end) 1193 goto map_end; 1194 1195 phys_addr = iommu_iova_to_phys(domain, addr); 1196 if (!phys_addr) { 1197 map_size += pg_size; 1198 continue; 1199 } 1200 1201 map_end: 1202 if (map_size) { 1203 ret = iommu_map(domain, addr - map_size, 1204 addr - map_size, map_size, 1205 entry->prot, GFP_KERNEL); 1206 if (ret) 1207 goto out; 1208 map_size = 0; 1209 } 1210 } 1211 1212 } 1213 out: 1214 iommu_put_resv_regions(dev, &mappings); 1215 1216 return ret; 1217 } 1218 1219 /* This is undone by __iommu_group_free_device() */ 1220 static struct group_device *iommu_group_alloc_device(struct iommu_group *group, 1221 struct device *dev) 1222 { 1223 int ret, i = 0; 1224 struct group_device *device; 1225 1226 device = kzalloc(sizeof(*device), GFP_KERNEL); 1227 if (!device) 1228 return ERR_PTR(-ENOMEM); 1229 1230 device->dev = dev; 1231 1232 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 1233 if (ret) 1234 goto err_free_device; 1235 1236 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 1237 rename: 1238 if (!device->name) { 1239 ret = -ENOMEM; 1240 goto err_remove_link; 1241 } 1242 1243 ret = sysfs_create_link_nowarn(group->devices_kobj, 1244 &dev->kobj, device->name); 1245 if (ret) { 1246 if (ret == -EEXIST && i >= 0) { 1247 /* 1248 * Account for the slim chance of collision 1249 * and append an instance to the name. 1250 */ 1251 kfree(device->name); 1252 device->name = kasprintf(GFP_KERNEL, "%s.%d", 1253 kobject_name(&dev->kobj), i++); 1254 goto rename; 1255 } 1256 goto err_free_name; 1257 } 1258 1259 trace_add_device_to_group(group->id, dev); 1260 1261 dev_info(dev, "Adding to iommu group %d\n", group->id); 1262 1263 return device; 1264 1265 err_free_name: 1266 kfree(device->name); 1267 err_remove_link: 1268 sysfs_remove_link(&dev->kobj, "iommu_group"); 1269 err_free_device: 1270 kfree(device); 1271 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 1272 return ERR_PTR(ret); 1273 } 1274 1275 /** 1276 * iommu_group_add_device - add a device to an iommu group 1277 * @group: the group into which to add the device (reference should be held) 1278 * @dev: the device 1279 * 1280 * This function is called by an iommu driver to add a device into a 1281 * group. Adding a device increments the group reference count. 1282 */ 1283 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 1284 { 1285 struct group_device *gdev; 1286 1287 gdev = iommu_group_alloc_device(group, dev); 1288 if (IS_ERR(gdev)) 1289 return PTR_ERR(gdev); 1290 1291 iommu_group_ref_get(group); 1292 dev->iommu_group = group; 1293 1294 mutex_lock(&group->mutex); 1295 list_add_tail(&gdev->list, &group->devices); 1296 mutex_unlock(&group->mutex); 1297 return 0; 1298 } 1299 EXPORT_SYMBOL_GPL(iommu_group_add_device); 1300 1301 /** 1302 * iommu_group_remove_device - remove a device from it's current group 1303 * @dev: device to be removed 1304 * 1305 * This function is called by an iommu driver to remove the device from 1306 * it's current group. This decrements the iommu group reference count. 1307 */ 1308 void iommu_group_remove_device(struct device *dev) 1309 { 1310 struct iommu_group *group = dev->iommu_group; 1311 1312 if (!group) 1313 return; 1314 1315 dev_info(dev, "Removing from iommu group %d\n", group->id); 1316 1317 __iommu_group_remove_device(dev); 1318 } 1319 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 1320 1321 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API) 1322 /** 1323 * iommu_group_mutex_assert - Check device group mutex lock 1324 * @dev: the device that has group param set 1325 * 1326 * This function is called by an iommu driver to check whether it holds 1327 * group mutex lock for the given device or not. 1328 * 1329 * Note that this function must be called after device group param is set. 1330 */ 1331 void iommu_group_mutex_assert(struct device *dev) 1332 { 1333 struct iommu_group *group = dev->iommu_group; 1334 1335 lockdep_assert_held(&group->mutex); 1336 } 1337 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert); 1338 #endif 1339 1340 static struct device *iommu_group_first_dev(struct iommu_group *group) 1341 { 1342 lockdep_assert_held(&group->mutex); 1343 return list_first_entry(&group->devices, struct group_device, list)->dev; 1344 } 1345 1346 /** 1347 * iommu_group_for_each_dev - iterate over each device in the group 1348 * @group: the group 1349 * @data: caller opaque data to be passed to callback function 1350 * @fn: caller supplied callback function 1351 * 1352 * This function is called by group users to iterate over group devices. 1353 * Callers should hold a reference count to the group during callback. 1354 * The group->mutex is held across callbacks, which will block calls to 1355 * iommu_group_add/remove_device. 1356 */ 1357 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1358 int (*fn)(struct device *, void *)) 1359 { 1360 struct group_device *device; 1361 int ret = 0; 1362 1363 mutex_lock(&group->mutex); 1364 for_each_group_device(group, device) { 1365 ret = fn(device->dev, data); 1366 if (ret) 1367 break; 1368 } 1369 mutex_unlock(&group->mutex); 1370 1371 return ret; 1372 } 1373 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1374 1375 /** 1376 * iommu_group_get - Return the group for a device and increment reference 1377 * @dev: get the group that this device belongs to 1378 * 1379 * This function is called by iommu drivers and users to get the group 1380 * for the specified device. If found, the group is returned and the group 1381 * reference in incremented, else NULL. 1382 */ 1383 struct iommu_group *iommu_group_get(struct device *dev) 1384 { 1385 struct iommu_group *group = dev->iommu_group; 1386 1387 if (group) 1388 kobject_get(group->devices_kobj); 1389 1390 return group; 1391 } 1392 EXPORT_SYMBOL_GPL(iommu_group_get); 1393 1394 /** 1395 * iommu_group_ref_get - Increment reference on a group 1396 * @group: the group to use, must not be NULL 1397 * 1398 * This function is called by iommu drivers to take additional references on an 1399 * existing group. Returns the given group for convenience. 1400 */ 1401 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1402 { 1403 kobject_get(group->devices_kobj); 1404 return group; 1405 } 1406 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1407 1408 /** 1409 * iommu_group_put - Decrement group reference 1410 * @group: the group to use 1411 * 1412 * This function is called by iommu drivers and users to release the 1413 * iommu group. Once the reference count is zero, the group is released. 1414 */ 1415 void iommu_group_put(struct iommu_group *group) 1416 { 1417 if (group) 1418 kobject_put(group->devices_kobj); 1419 } 1420 EXPORT_SYMBOL_GPL(iommu_group_put); 1421 1422 /** 1423 * iommu_group_id - Return ID for a group 1424 * @group: the group to ID 1425 * 1426 * Return the unique ID for the group matching the sysfs group number. 1427 */ 1428 int iommu_group_id(struct iommu_group *group) 1429 { 1430 return group->id; 1431 } 1432 EXPORT_SYMBOL_GPL(iommu_group_id); 1433 1434 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1435 unsigned long *devfns); 1436 1437 /* 1438 * To consider a PCI device isolated, we require ACS to support Source 1439 * Validation, Request Redirection, Completer Redirection, and Upstream 1440 * Forwarding. This effectively means that devices cannot spoof their 1441 * requester ID, requests and completions cannot be redirected, and all 1442 * transactions are forwarded upstream, even as it passes through a 1443 * bridge where the target device is downstream. 1444 */ 1445 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1446 1447 /* 1448 * For multifunction devices which are not isolated from each other, find 1449 * all the other non-isolated functions and look for existing groups. For 1450 * each function, we also need to look for aliases to or from other devices 1451 * that may already have a group. 1452 */ 1453 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1454 unsigned long *devfns) 1455 { 1456 struct pci_dev *tmp = NULL; 1457 struct iommu_group *group; 1458 1459 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1460 return NULL; 1461 1462 for_each_pci_dev(tmp) { 1463 if (tmp == pdev || tmp->bus != pdev->bus || 1464 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1465 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1466 continue; 1467 1468 group = get_pci_alias_group(tmp, devfns); 1469 if (group) { 1470 pci_dev_put(tmp); 1471 return group; 1472 } 1473 } 1474 1475 return NULL; 1476 } 1477 1478 /* 1479 * Look for aliases to or from the given device for existing groups. DMA 1480 * aliases are only supported on the same bus, therefore the search 1481 * space is quite small (especially since we're really only looking at pcie 1482 * device, and therefore only expect multiple slots on the root complex or 1483 * downstream switch ports). It's conceivable though that a pair of 1484 * multifunction devices could have aliases between them that would cause a 1485 * loop. To prevent this, we use a bitmap to track where we've been. 1486 */ 1487 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1488 unsigned long *devfns) 1489 { 1490 struct pci_dev *tmp = NULL; 1491 struct iommu_group *group; 1492 1493 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1494 return NULL; 1495 1496 group = iommu_group_get(&pdev->dev); 1497 if (group) 1498 return group; 1499 1500 for_each_pci_dev(tmp) { 1501 if (tmp == pdev || tmp->bus != pdev->bus) 1502 continue; 1503 1504 /* We alias them or they alias us */ 1505 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1506 group = get_pci_alias_group(tmp, devfns); 1507 if (group) { 1508 pci_dev_put(tmp); 1509 return group; 1510 } 1511 1512 group = get_pci_function_alias_group(tmp, devfns); 1513 if (group) { 1514 pci_dev_put(tmp); 1515 return group; 1516 } 1517 } 1518 } 1519 1520 return NULL; 1521 } 1522 1523 struct group_for_pci_data { 1524 struct pci_dev *pdev; 1525 struct iommu_group *group; 1526 }; 1527 1528 /* 1529 * DMA alias iterator callback, return the last seen device. Stop and return 1530 * the IOMMU group if we find one along the way. 1531 */ 1532 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1533 { 1534 struct group_for_pci_data *data = opaque; 1535 1536 data->pdev = pdev; 1537 data->group = iommu_group_get(&pdev->dev); 1538 1539 return data->group != NULL; 1540 } 1541 1542 /* 1543 * Generic device_group call-back function. It just allocates one 1544 * iommu-group per device. 1545 */ 1546 struct iommu_group *generic_device_group(struct device *dev) 1547 { 1548 return iommu_group_alloc(); 1549 } 1550 EXPORT_SYMBOL_GPL(generic_device_group); 1551 1552 /* 1553 * Generic device_group call-back function. It just allocates one 1554 * iommu-group per iommu driver instance shared by every device 1555 * probed by that iommu driver. 1556 */ 1557 struct iommu_group *generic_single_device_group(struct device *dev) 1558 { 1559 struct iommu_device *iommu = dev->iommu->iommu_dev; 1560 1561 if (!iommu->singleton_group) { 1562 struct iommu_group *group; 1563 1564 group = iommu_group_alloc(); 1565 if (IS_ERR(group)) 1566 return group; 1567 iommu->singleton_group = group; 1568 } 1569 return iommu_group_ref_get(iommu->singleton_group); 1570 } 1571 EXPORT_SYMBOL_GPL(generic_single_device_group); 1572 1573 /* 1574 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1575 * to find or create an IOMMU group for a device. 1576 */ 1577 struct iommu_group *pci_device_group(struct device *dev) 1578 { 1579 struct pci_dev *pdev = to_pci_dev(dev); 1580 struct group_for_pci_data data; 1581 struct pci_bus *bus; 1582 struct iommu_group *group = NULL; 1583 u64 devfns[4] = { 0 }; 1584 1585 if (WARN_ON(!dev_is_pci(dev))) 1586 return ERR_PTR(-EINVAL); 1587 1588 /* 1589 * Find the upstream DMA alias for the device. A device must not 1590 * be aliased due to topology in order to have its own IOMMU group. 1591 * If we find an alias along the way that already belongs to a 1592 * group, use it. 1593 */ 1594 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1595 return data.group; 1596 1597 pdev = data.pdev; 1598 1599 /* 1600 * Continue upstream from the point of minimum IOMMU granularity 1601 * due to aliases to the point where devices are protected from 1602 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1603 * group, use it. 1604 */ 1605 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1606 if (!bus->self) 1607 continue; 1608 1609 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1610 break; 1611 1612 pdev = bus->self; 1613 1614 group = iommu_group_get(&pdev->dev); 1615 if (group) 1616 return group; 1617 } 1618 1619 /* 1620 * Look for existing groups on device aliases. If we alias another 1621 * device or another device aliases us, use the same group. 1622 */ 1623 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1624 if (group) 1625 return group; 1626 1627 /* 1628 * Look for existing groups on non-isolated functions on the same 1629 * slot and aliases of those funcions, if any. No need to clear 1630 * the search bitmap, the tested devfns are still valid. 1631 */ 1632 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1633 if (group) 1634 return group; 1635 1636 /* No shared group found, allocate new */ 1637 return iommu_group_alloc(); 1638 } 1639 EXPORT_SYMBOL_GPL(pci_device_group); 1640 1641 /* Get the IOMMU group for device on fsl-mc bus */ 1642 struct iommu_group *fsl_mc_device_group(struct device *dev) 1643 { 1644 struct device *cont_dev = fsl_mc_cont_dev(dev); 1645 struct iommu_group *group; 1646 1647 group = iommu_group_get(cont_dev); 1648 if (!group) 1649 group = iommu_group_alloc(); 1650 return group; 1651 } 1652 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1653 1654 static struct iommu_domain *__iommu_alloc_identity_domain(struct device *dev) 1655 { 1656 const struct iommu_ops *ops = dev_iommu_ops(dev); 1657 struct iommu_domain *domain; 1658 1659 if (ops->identity_domain) 1660 return ops->identity_domain; 1661 1662 if (ops->domain_alloc_identity) { 1663 domain = ops->domain_alloc_identity(dev); 1664 if (IS_ERR(domain)) 1665 return domain; 1666 } else { 1667 return ERR_PTR(-EOPNOTSUPP); 1668 } 1669 1670 iommu_domain_init(domain, IOMMU_DOMAIN_IDENTITY, ops); 1671 return domain; 1672 } 1673 1674 static struct iommu_domain * 1675 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type) 1676 { 1677 struct device *dev = iommu_group_first_dev(group); 1678 struct iommu_domain *dom; 1679 1680 if (group->default_domain && group->default_domain->type == req_type) 1681 return group->default_domain; 1682 1683 /* 1684 * When allocating the DMA API domain assume that the driver is going to 1685 * use PASID and make sure the RID's domain is PASID compatible. 1686 */ 1687 if (req_type & __IOMMU_DOMAIN_PAGING) { 1688 dom = __iommu_paging_domain_alloc_flags(dev, req_type, 1689 dev->iommu->max_pasids ? IOMMU_HWPT_ALLOC_PASID : 0); 1690 1691 /* 1692 * If driver does not support PASID feature then 1693 * try to allocate non-PASID domain 1694 */ 1695 if (PTR_ERR(dom) == -EOPNOTSUPP) 1696 dom = __iommu_paging_domain_alloc_flags(dev, req_type, 0); 1697 1698 return dom; 1699 } 1700 1701 if (req_type == IOMMU_DOMAIN_IDENTITY) 1702 return __iommu_alloc_identity_domain(dev); 1703 1704 return ERR_PTR(-EINVAL); 1705 } 1706 1707 /* 1708 * req_type of 0 means "auto" which means to select a domain based on 1709 * iommu_def_domain_type or what the driver actually supports. 1710 */ 1711 static struct iommu_domain * 1712 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type) 1713 { 1714 const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group)); 1715 struct iommu_domain *dom; 1716 1717 lockdep_assert_held(&group->mutex); 1718 1719 /* 1720 * Allow legacy drivers to specify the domain that will be the default 1721 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM 1722 * domain. Do not use in new drivers. 1723 */ 1724 if (ops->default_domain) { 1725 if (req_type != ops->default_domain->type) 1726 return ERR_PTR(-EINVAL); 1727 return ops->default_domain; 1728 } 1729 1730 if (req_type) 1731 return __iommu_group_alloc_default_domain(group, req_type); 1732 1733 /* The driver gave no guidance on what type to use, try the default */ 1734 dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type); 1735 if (!IS_ERR(dom)) 1736 return dom; 1737 1738 /* Otherwise IDENTITY and DMA_FQ defaults will try DMA */ 1739 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA) 1740 return ERR_PTR(-EINVAL); 1741 dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA); 1742 if (IS_ERR(dom)) 1743 return dom; 1744 1745 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1746 iommu_def_domain_type, group->name); 1747 return dom; 1748 } 1749 1750 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1751 { 1752 return group->default_domain; 1753 } 1754 1755 static int probe_iommu_group(struct device *dev, void *data) 1756 { 1757 struct list_head *group_list = data; 1758 int ret; 1759 1760 mutex_lock(&iommu_probe_device_lock); 1761 ret = __iommu_probe_device(dev, group_list); 1762 mutex_unlock(&iommu_probe_device_lock); 1763 if (ret == -ENODEV) 1764 ret = 0; 1765 1766 return ret; 1767 } 1768 1769 static int iommu_bus_notifier(struct notifier_block *nb, 1770 unsigned long action, void *data) 1771 { 1772 struct device *dev = data; 1773 1774 if (action == BUS_NOTIFY_ADD_DEVICE) { 1775 int ret; 1776 1777 ret = iommu_probe_device(dev); 1778 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1779 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1780 iommu_release_device(dev); 1781 return NOTIFY_OK; 1782 } 1783 1784 return 0; 1785 } 1786 1787 /* 1788 * Combine the driver's chosen def_domain_type across all the devices in a 1789 * group. Drivers must give a consistent result. 1790 */ 1791 static int iommu_get_def_domain_type(struct iommu_group *group, 1792 struct device *dev, int cur_type) 1793 { 1794 const struct iommu_ops *ops = dev_iommu_ops(dev); 1795 int type; 1796 1797 if (ops->default_domain) { 1798 /* 1799 * Drivers that declare a global static default_domain will 1800 * always choose that. 1801 */ 1802 type = ops->default_domain->type; 1803 } else { 1804 if (ops->def_domain_type) 1805 type = ops->def_domain_type(dev); 1806 else 1807 return cur_type; 1808 } 1809 if (!type || cur_type == type) 1810 return cur_type; 1811 if (!cur_type) 1812 return type; 1813 1814 dev_err_ratelimited( 1815 dev, 1816 "IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n", 1817 iommu_domain_type_str(cur_type), iommu_domain_type_str(type), 1818 group->id); 1819 1820 /* 1821 * Try to recover, drivers are allowed to force IDENTITY or DMA, IDENTITY 1822 * takes precedence. 1823 */ 1824 if (type == IOMMU_DOMAIN_IDENTITY) 1825 return type; 1826 return cur_type; 1827 } 1828 1829 /* 1830 * A target_type of 0 will select the best domain type. 0 can be returned in 1831 * this case meaning the global default should be used. 1832 */ 1833 static int iommu_get_default_domain_type(struct iommu_group *group, 1834 int target_type) 1835 { 1836 struct device *untrusted = NULL; 1837 struct group_device *gdev; 1838 int driver_type = 0; 1839 1840 lockdep_assert_held(&group->mutex); 1841 1842 /* 1843 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an 1844 * identity_domain and it will automatically become their default 1845 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain. 1846 * Override the selection to IDENTITY. 1847 */ 1848 if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) { 1849 static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) && 1850 IS_ENABLED(CONFIG_IOMMU_DMA))); 1851 driver_type = IOMMU_DOMAIN_IDENTITY; 1852 } 1853 1854 for_each_group_device(group, gdev) { 1855 driver_type = iommu_get_def_domain_type(group, gdev->dev, 1856 driver_type); 1857 1858 if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) { 1859 /* 1860 * No ARM32 using systems will set untrusted, it cannot 1861 * work. 1862 */ 1863 if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))) 1864 return -1; 1865 untrusted = gdev->dev; 1866 } 1867 } 1868 1869 /* 1870 * If the common dma ops are not selected in kconfig then we cannot use 1871 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been 1872 * selected. 1873 */ 1874 if (!IS_ENABLED(CONFIG_IOMMU_DMA)) { 1875 if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA)) 1876 return -1; 1877 if (!driver_type) 1878 driver_type = IOMMU_DOMAIN_IDENTITY; 1879 } 1880 1881 if (untrusted) { 1882 if (driver_type && driver_type != IOMMU_DOMAIN_DMA) { 1883 dev_err_ratelimited( 1884 untrusted, 1885 "Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n", 1886 group->id, iommu_domain_type_str(driver_type)); 1887 return -1; 1888 } 1889 driver_type = IOMMU_DOMAIN_DMA; 1890 } 1891 1892 if (target_type) { 1893 if (driver_type && target_type != driver_type) 1894 return -1; 1895 return target_type; 1896 } 1897 return driver_type; 1898 } 1899 1900 static void iommu_group_do_probe_finalize(struct device *dev) 1901 { 1902 const struct iommu_ops *ops = dev_iommu_ops(dev); 1903 1904 if (ops->probe_finalize) 1905 ops->probe_finalize(dev); 1906 } 1907 1908 static int bus_iommu_probe(const struct bus_type *bus) 1909 { 1910 struct iommu_group *group, *next; 1911 LIST_HEAD(group_list); 1912 int ret; 1913 1914 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1915 if (ret) 1916 return ret; 1917 1918 list_for_each_entry_safe(group, next, &group_list, entry) { 1919 struct group_device *gdev; 1920 1921 mutex_lock(&group->mutex); 1922 1923 /* Remove item from the list */ 1924 list_del_init(&group->entry); 1925 1926 /* 1927 * We go to the trouble of deferred default domain creation so 1928 * that the cross-group default domain type and the setup of the 1929 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios. 1930 */ 1931 ret = iommu_setup_default_domain(group, 0); 1932 if (ret) { 1933 mutex_unlock(&group->mutex); 1934 return ret; 1935 } 1936 for_each_group_device(group, gdev) 1937 iommu_setup_dma_ops(gdev->dev); 1938 mutex_unlock(&group->mutex); 1939 1940 /* 1941 * FIXME: Mis-locked because the ops->probe_finalize() call-back 1942 * of some IOMMU drivers calls arm_iommu_attach_device() which 1943 * in-turn might call back into IOMMU core code, where it tries 1944 * to take group->mutex, resulting in a deadlock. 1945 */ 1946 for_each_group_device(group, gdev) 1947 iommu_group_do_probe_finalize(gdev->dev); 1948 } 1949 1950 return 0; 1951 } 1952 1953 /** 1954 * device_iommu_capable() - check for a general IOMMU capability 1955 * @dev: device to which the capability would be relevant, if available 1956 * @cap: IOMMU capability 1957 * 1958 * Return: true if an IOMMU is present and supports the given capability 1959 * for the given device, otherwise false. 1960 */ 1961 bool device_iommu_capable(struct device *dev, enum iommu_cap cap) 1962 { 1963 const struct iommu_ops *ops; 1964 1965 if (!dev_has_iommu(dev)) 1966 return false; 1967 1968 ops = dev_iommu_ops(dev); 1969 if (!ops->capable) 1970 return false; 1971 1972 return ops->capable(dev, cap); 1973 } 1974 EXPORT_SYMBOL_GPL(device_iommu_capable); 1975 1976 /** 1977 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi() 1978 * for a group 1979 * @group: Group to query 1980 * 1981 * IOMMU groups should not have differing values of 1982 * msi_device_has_isolated_msi() for devices in a group. However nothing 1983 * directly prevents this, so ensure mistakes don't result in isolation failures 1984 * by checking that all the devices are the same. 1985 */ 1986 bool iommu_group_has_isolated_msi(struct iommu_group *group) 1987 { 1988 struct group_device *group_dev; 1989 bool ret = true; 1990 1991 mutex_lock(&group->mutex); 1992 for_each_group_device(group, group_dev) 1993 ret &= msi_device_has_isolated_msi(group_dev->dev); 1994 mutex_unlock(&group->mutex); 1995 return ret; 1996 } 1997 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi); 1998 1999 /** 2000 * iommu_set_fault_handler() - set a fault handler for an iommu domain 2001 * @domain: iommu domain 2002 * @handler: fault handler 2003 * @token: user data, will be passed back to the fault handler 2004 * 2005 * This function should be used by IOMMU users which want to be notified 2006 * whenever an IOMMU fault happens. 2007 * 2008 * The fault handler itself should return 0 on success, and an appropriate 2009 * error code otherwise. 2010 */ 2011 void iommu_set_fault_handler(struct iommu_domain *domain, 2012 iommu_fault_handler_t handler, 2013 void *token) 2014 { 2015 if (WARN_ON(!domain || domain->cookie_type != IOMMU_COOKIE_NONE)) 2016 return; 2017 2018 domain->cookie_type = IOMMU_COOKIE_FAULT_HANDLER; 2019 domain->handler = handler; 2020 domain->handler_token = token; 2021 } 2022 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 2023 2024 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type, 2025 const struct iommu_ops *ops) 2026 { 2027 domain->type = type; 2028 domain->owner = ops; 2029 if (!domain->ops) 2030 domain->ops = ops->default_domain_ops; 2031 } 2032 2033 static struct iommu_domain * 2034 __iommu_paging_domain_alloc_flags(struct device *dev, unsigned int type, 2035 unsigned int flags) 2036 { 2037 const struct iommu_ops *ops; 2038 struct iommu_domain *domain; 2039 2040 if (!dev_has_iommu(dev)) 2041 return ERR_PTR(-ENODEV); 2042 2043 ops = dev_iommu_ops(dev); 2044 2045 if (ops->domain_alloc_paging && !flags) 2046 domain = ops->domain_alloc_paging(dev); 2047 else if (ops->domain_alloc_paging_flags) 2048 domain = ops->domain_alloc_paging_flags(dev, flags, NULL); 2049 #if IS_ENABLED(CONFIG_FSL_PAMU) 2050 else if (ops->domain_alloc && !flags) 2051 domain = ops->domain_alloc(IOMMU_DOMAIN_UNMANAGED); 2052 #endif 2053 else 2054 return ERR_PTR(-EOPNOTSUPP); 2055 2056 if (IS_ERR(domain)) 2057 return domain; 2058 if (!domain) 2059 return ERR_PTR(-ENOMEM); 2060 2061 iommu_domain_init(domain, type, ops); 2062 return domain; 2063 } 2064 2065 /** 2066 * iommu_paging_domain_alloc_flags() - Allocate a paging domain 2067 * @dev: device for which the domain is allocated 2068 * @flags: Bitmap of iommufd_hwpt_alloc_flags 2069 * 2070 * Allocate a paging domain which will be managed by a kernel driver. Return 2071 * allocated domain if successful, or an ERR pointer for failure. 2072 */ 2073 struct iommu_domain *iommu_paging_domain_alloc_flags(struct device *dev, 2074 unsigned int flags) 2075 { 2076 return __iommu_paging_domain_alloc_flags(dev, 2077 IOMMU_DOMAIN_UNMANAGED, flags); 2078 } 2079 EXPORT_SYMBOL_GPL(iommu_paging_domain_alloc_flags); 2080 2081 void iommu_domain_free(struct iommu_domain *domain) 2082 { 2083 switch (domain->cookie_type) { 2084 case IOMMU_COOKIE_DMA_IOVA: 2085 iommu_put_dma_cookie(domain); 2086 break; 2087 case IOMMU_COOKIE_DMA_MSI: 2088 iommu_put_msi_cookie(domain); 2089 break; 2090 case IOMMU_COOKIE_SVA: 2091 mmdrop(domain->mm); 2092 break; 2093 default: 2094 break; 2095 } 2096 if (domain->ops->free) 2097 domain->ops->free(domain); 2098 } 2099 EXPORT_SYMBOL_GPL(iommu_domain_free); 2100 2101 /* 2102 * Put the group's domain back to the appropriate core-owned domain - either the 2103 * standard kernel-mode DMA configuration or an all-DMA-blocked domain. 2104 */ 2105 static void __iommu_group_set_core_domain(struct iommu_group *group) 2106 { 2107 struct iommu_domain *new_domain; 2108 2109 if (group->owner) 2110 new_domain = group->blocking_domain; 2111 else 2112 new_domain = group->default_domain; 2113 2114 __iommu_group_set_domain_nofail(group, new_domain); 2115 } 2116 2117 static int __iommu_attach_device(struct iommu_domain *domain, 2118 struct device *dev) 2119 { 2120 int ret; 2121 2122 if (unlikely(domain->ops->attach_dev == NULL)) 2123 return -ENODEV; 2124 2125 ret = domain->ops->attach_dev(domain, dev); 2126 if (ret) 2127 return ret; 2128 dev->iommu->attach_deferred = 0; 2129 trace_attach_device_to_domain(dev); 2130 return 0; 2131 } 2132 2133 /** 2134 * iommu_attach_device - Attach an IOMMU domain to a device 2135 * @domain: IOMMU domain to attach 2136 * @dev: Device that will be attached 2137 * 2138 * Returns 0 on success and error code on failure 2139 * 2140 * Note that EINVAL can be treated as a soft failure, indicating 2141 * that certain configuration of the domain is incompatible with 2142 * the device. In this case attaching a different domain to the 2143 * device may succeed. 2144 */ 2145 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 2146 { 2147 /* Caller must be a probed driver on dev */ 2148 struct iommu_group *group = dev->iommu_group; 2149 int ret; 2150 2151 if (!group) 2152 return -ENODEV; 2153 2154 /* 2155 * Lock the group to make sure the device-count doesn't 2156 * change while we are attaching 2157 */ 2158 mutex_lock(&group->mutex); 2159 ret = -EINVAL; 2160 if (list_count_nodes(&group->devices) != 1) 2161 goto out_unlock; 2162 2163 ret = __iommu_attach_group(domain, group); 2164 2165 out_unlock: 2166 mutex_unlock(&group->mutex); 2167 return ret; 2168 } 2169 EXPORT_SYMBOL_GPL(iommu_attach_device); 2170 2171 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2172 { 2173 if (dev->iommu && dev->iommu->attach_deferred) 2174 return __iommu_attach_device(domain, dev); 2175 2176 return 0; 2177 } 2178 2179 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2180 { 2181 /* Caller must be a probed driver on dev */ 2182 struct iommu_group *group = dev->iommu_group; 2183 2184 if (!group) 2185 return; 2186 2187 mutex_lock(&group->mutex); 2188 if (WARN_ON(domain != group->domain) || 2189 WARN_ON(list_count_nodes(&group->devices) != 1)) 2190 goto out_unlock; 2191 __iommu_group_set_core_domain(group); 2192 2193 out_unlock: 2194 mutex_unlock(&group->mutex); 2195 } 2196 EXPORT_SYMBOL_GPL(iommu_detach_device); 2197 2198 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2199 { 2200 /* Caller must be a probed driver on dev */ 2201 struct iommu_group *group = dev->iommu_group; 2202 2203 if (!group) 2204 return NULL; 2205 2206 return group->domain; 2207 } 2208 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2209 2210 /* 2211 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2212 * guarantees that the group and its default domain are valid and correct. 2213 */ 2214 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2215 { 2216 return dev->iommu_group->default_domain; 2217 } 2218 2219 static void *iommu_make_pasid_array_entry(struct iommu_domain *domain, 2220 struct iommu_attach_handle *handle) 2221 { 2222 if (handle) { 2223 handle->domain = domain; 2224 return xa_tag_pointer(handle, IOMMU_PASID_ARRAY_HANDLE); 2225 } 2226 2227 return xa_tag_pointer(domain, IOMMU_PASID_ARRAY_DOMAIN); 2228 } 2229 2230 static bool domain_iommu_ops_compatible(const struct iommu_ops *ops, 2231 struct iommu_domain *domain) 2232 { 2233 if (domain->owner == ops) 2234 return true; 2235 2236 /* For static domains, owner isn't set. */ 2237 if (domain == ops->blocked_domain || domain == ops->identity_domain) 2238 return true; 2239 2240 return false; 2241 } 2242 2243 static int __iommu_attach_group(struct iommu_domain *domain, 2244 struct iommu_group *group) 2245 { 2246 struct device *dev; 2247 2248 if (group->domain && group->domain != group->default_domain && 2249 group->domain != group->blocking_domain) 2250 return -EBUSY; 2251 2252 dev = iommu_group_first_dev(group); 2253 if (!dev_has_iommu(dev) || 2254 !domain_iommu_ops_compatible(dev_iommu_ops(dev), domain)) 2255 return -EINVAL; 2256 2257 return __iommu_group_set_domain(group, domain); 2258 } 2259 2260 /** 2261 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group 2262 * @domain: IOMMU domain to attach 2263 * @group: IOMMU group that will be attached 2264 * 2265 * Returns 0 on success and error code on failure 2266 * 2267 * Note that EINVAL can be treated as a soft failure, indicating 2268 * that certain configuration of the domain is incompatible with 2269 * the group. In this case attaching a different domain to the 2270 * group may succeed. 2271 */ 2272 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2273 { 2274 int ret; 2275 2276 mutex_lock(&group->mutex); 2277 ret = __iommu_attach_group(domain, group); 2278 mutex_unlock(&group->mutex); 2279 2280 return ret; 2281 } 2282 EXPORT_SYMBOL_GPL(iommu_attach_group); 2283 2284 static int __iommu_device_set_domain(struct iommu_group *group, 2285 struct device *dev, 2286 struct iommu_domain *new_domain, 2287 unsigned int flags) 2288 { 2289 int ret; 2290 2291 /* 2292 * If the device requires IOMMU_RESV_DIRECT then we cannot allow 2293 * the blocking domain to be attached as it does not contain the 2294 * required 1:1 mapping. This test effectively excludes the device 2295 * being used with iommu_group_claim_dma_owner() which will block 2296 * vfio and iommufd as well. 2297 */ 2298 if (dev->iommu->require_direct && 2299 (new_domain->type == IOMMU_DOMAIN_BLOCKED || 2300 new_domain == group->blocking_domain)) { 2301 dev_warn(dev, 2302 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n"); 2303 return -EINVAL; 2304 } 2305 2306 if (dev->iommu->attach_deferred) { 2307 if (new_domain == group->default_domain) 2308 return 0; 2309 dev->iommu->attach_deferred = 0; 2310 } 2311 2312 ret = __iommu_attach_device(new_domain, dev); 2313 if (ret) { 2314 /* 2315 * If we have a blocking domain then try to attach that in hopes 2316 * of avoiding a UAF. Modern drivers should implement blocking 2317 * domains as global statics that cannot fail. 2318 */ 2319 if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) && 2320 group->blocking_domain && 2321 group->blocking_domain != new_domain) 2322 __iommu_attach_device(group->blocking_domain, dev); 2323 return ret; 2324 } 2325 return 0; 2326 } 2327 2328 /* 2329 * If 0 is returned the group's domain is new_domain. If an error is returned 2330 * then the group's domain will be set back to the existing domain unless 2331 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's 2332 * domains is left inconsistent. This is a driver bug to fail attach with a 2333 * previously good domain. We try to avoid a kernel UAF because of this. 2334 * 2335 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU 2336 * API works on domains and devices. Bridge that gap by iterating over the 2337 * devices in a group. Ideally we'd have a single device which represents the 2338 * requestor ID of the group, but we also allow IOMMU drivers to create policy 2339 * defined minimum sets, where the physical hardware may be able to distiguish 2340 * members, but we wish to group them at a higher level (ex. untrusted 2341 * multi-function PCI devices). Thus we attach each device. 2342 */ 2343 static int __iommu_group_set_domain_internal(struct iommu_group *group, 2344 struct iommu_domain *new_domain, 2345 unsigned int flags) 2346 { 2347 struct group_device *last_gdev; 2348 struct group_device *gdev; 2349 int result; 2350 int ret; 2351 2352 lockdep_assert_held(&group->mutex); 2353 2354 if (group->domain == new_domain) 2355 return 0; 2356 2357 if (WARN_ON(!new_domain)) 2358 return -EINVAL; 2359 2360 /* 2361 * Changing the domain is done by calling attach_dev() on the new 2362 * domain. This switch does not have to be atomic and DMA can be 2363 * discarded during the transition. DMA must only be able to access 2364 * either new_domain or group->domain, never something else. 2365 */ 2366 result = 0; 2367 for_each_group_device(group, gdev) { 2368 ret = __iommu_device_set_domain(group, gdev->dev, new_domain, 2369 flags); 2370 if (ret) { 2371 result = ret; 2372 /* 2373 * Keep trying the other devices in the group. If a 2374 * driver fails attach to an otherwise good domain, and 2375 * does not support blocking domains, it should at least 2376 * drop its reference on the current domain so we don't 2377 * UAF. 2378 */ 2379 if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) 2380 continue; 2381 goto err_revert; 2382 } 2383 } 2384 group->domain = new_domain; 2385 return result; 2386 2387 err_revert: 2388 /* 2389 * This is called in error unwind paths. A well behaved driver should 2390 * always allow us to attach to a domain that was already attached. 2391 */ 2392 last_gdev = gdev; 2393 for_each_group_device(group, gdev) { 2394 /* 2395 * A NULL domain can happen only for first probe, in which case 2396 * we leave group->domain as NULL and let release clean 2397 * everything up. 2398 */ 2399 if (group->domain) 2400 WARN_ON(__iommu_device_set_domain( 2401 group, gdev->dev, group->domain, 2402 IOMMU_SET_DOMAIN_MUST_SUCCEED)); 2403 if (gdev == last_gdev) 2404 break; 2405 } 2406 return ret; 2407 } 2408 2409 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2410 { 2411 mutex_lock(&group->mutex); 2412 __iommu_group_set_core_domain(group); 2413 mutex_unlock(&group->mutex); 2414 } 2415 EXPORT_SYMBOL_GPL(iommu_detach_group); 2416 2417 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2418 { 2419 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2420 return iova; 2421 2422 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2423 return 0; 2424 2425 return domain->ops->iova_to_phys(domain, iova); 2426 } 2427 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2428 2429 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2430 phys_addr_t paddr, size_t size, size_t *count) 2431 { 2432 unsigned int pgsize_idx, pgsize_idx_next; 2433 unsigned long pgsizes; 2434 size_t offset, pgsize, pgsize_next; 2435 size_t offset_end; 2436 unsigned long addr_merge = paddr | iova; 2437 2438 /* Page sizes supported by the hardware and small enough for @size */ 2439 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2440 2441 /* Constrain the page sizes further based on the maximum alignment */ 2442 if (likely(addr_merge)) 2443 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2444 2445 /* Make sure we have at least one suitable page size */ 2446 BUG_ON(!pgsizes); 2447 2448 /* Pick the biggest page size remaining */ 2449 pgsize_idx = __fls(pgsizes); 2450 pgsize = BIT(pgsize_idx); 2451 if (!count) 2452 return pgsize; 2453 2454 /* Find the next biggest support page size, if it exists */ 2455 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2456 if (!pgsizes) 2457 goto out_set_count; 2458 2459 pgsize_idx_next = __ffs(pgsizes); 2460 pgsize_next = BIT(pgsize_idx_next); 2461 2462 /* 2463 * There's no point trying a bigger page size unless the virtual 2464 * and physical addresses are similarly offset within the larger page. 2465 */ 2466 if ((iova ^ paddr) & (pgsize_next - 1)) 2467 goto out_set_count; 2468 2469 /* Calculate the offset to the next page size alignment boundary */ 2470 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2471 2472 /* 2473 * If size is big enough to accommodate the larger page, reduce 2474 * the number of smaller pages. 2475 */ 2476 if (!check_add_overflow(offset, pgsize_next, &offset_end) && 2477 offset_end <= size) 2478 size = offset; 2479 2480 out_set_count: 2481 *count = size >> pgsize_idx; 2482 return pgsize; 2483 } 2484 2485 int iommu_map_nosync(struct iommu_domain *domain, unsigned long iova, 2486 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2487 { 2488 const struct iommu_domain_ops *ops = domain->ops; 2489 unsigned long orig_iova = iova; 2490 unsigned int min_pagesz; 2491 size_t orig_size = size; 2492 phys_addr_t orig_paddr = paddr; 2493 int ret = 0; 2494 2495 might_sleep_if(gfpflags_allow_blocking(gfp)); 2496 2497 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2498 return -EINVAL; 2499 2500 if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL)) 2501 return -ENODEV; 2502 2503 /* Discourage passing strange GFP flags */ 2504 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2505 __GFP_HIGHMEM))) 2506 return -EINVAL; 2507 2508 /* find out the minimum page size supported */ 2509 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2510 2511 /* 2512 * both the virtual address and the physical one, as well as 2513 * the size of the mapping, must be aligned (at least) to the 2514 * size of the smallest page supported by the hardware 2515 */ 2516 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2517 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2518 iova, &paddr, size, min_pagesz); 2519 return -EINVAL; 2520 } 2521 2522 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2523 2524 while (size) { 2525 size_t pgsize, count, mapped = 0; 2526 2527 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2528 2529 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2530 iova, &paddr, pgsize, count); 2531 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2532 gfp, &mapped); 2533 /* 2534 * Some pages may have been mapped, even if an error occurred, 2535 * so we should account for those so they can be unmapped. 2536 */ 2537 size -= mapped; 2538 2539 if (ret) 2540 break; 2541 2542 iova += mapped; 2543 paddr += mapped; 2544 } 2545 2546 /* unroll mapping in case something went wrong */ 2547 if (ret) 2548 iommu_unmap(domain, orig_iova, orig_size - size); 2549 else 2550 trace_map(orig_iova, orig_paddr, orig_size); 2551 2552 return ret; 2553 } 2554 2555 int iommu_sync_map(struct iommu_domain *domain, unsigned long iova, size_t size) 2556 { 2557 const struct iommu_domain_ops *ops = domain->ops; 2558 2559 if (!ops->iotlb_sync_map) 2560 return 0; 2561 return ops->iotlb_sync_map(domain, iova, size); 2562 } 2563 2564 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2565 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2566 { 2567 int ret; 2568 2569 ret = iommu_map_nosync(domain, iova, paddr, size, prot, gfp); 2570 if (ret) 2571 return ret; 2572 2573 ret = iommu_sync_map(domain, iova, size); 2574 if (ret) 2575 iommu_unmap(domain, iova, size); 2576 2577 return ret; 2578 } 2579 EXPORT_SYMBOL_GPL(iommu_map); 2580 2581 static size_t __iommu_unmap(struct iommu_domain *domain, 2582 unsigned long iova, size_t size, 2583 struct iommu_iotlb_gather *iotlb_gather) 2584 { 2585 const struct iommu_domain_ops *ops = domain->ops; 2586 size_t unmapped_page, unmapped = 0; 2587 unsigned long orig_iova = iova; 2588 unsigned int min_pagesz; 2589 2590 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2591 return 0; 2592 2593 if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL)) 2594 return 0; 2595 2596 /* find out the minimum page size supported */ 2597 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2598 2599 /* 2600 * The virtual address, as well as the size of the mapping, must be 2601 * aligned (at least) to the size of the smallest page supported 2602 * by the hardware 2603 */ 2604 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2605 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2606 iova, size, min_pagesz); 2607 return 0; 2608 } 2609 2610 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2611 2612 /* 2613 * Keep iterating until we either unmap 'size' bytes (or more) 2614 * or we hit an area that isn't mapped. 2615 */ 2616 while (unmapped < size) { 2617 size_t pgsize, count; 2618 2619 pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count); 2620 unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather); 2621 if (!unmapped_page) 2622 break; 2623 2624 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2625 iova, unmapped_page); 2626 2627 iova += unmapped_page; 2628 unmapped += unmapped_page; 2629 } 2630 2631 trace_unmap(orig_iova, size, unmapped); 2632 return unmapped; 2633 } 2634 2635 /** 2636 * iommu_unmap() - Remove mappings from a range of IOVA 2637 * @domain: Domain to manipulate 2638 * @iova: IO virtual address to start 2639 * @size: Length of the range starting from @iova 2640 * 2641 * iommu_unmap() will remove a translation created by iommu_map(). It cannot 2642 * subdivide a mapping created by iommu_map(), so it should be called with IOVA 2643 * ranges that match what was passed to iommu_map(). The range can aggregate 2644 * contiguous iommu_map() calls so long as no individual range is split. 2645 * 2646 * Returns: Number of bytes of IOVA unmapped. iova + res will be the point 2647 * unmapping stopped. 2648 */ 2649 size_t iommu_unmap(struct iommu_domain *domain, 2650 unsigned long iova, size_t size) 2651 { 2652 struct iommu_iotlb_gather iotlb_gather; 2653 size_t ret; 2654 2655 iommu_iotlb_gather_init(&iotlb_gather); 2656 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2657 iommu_iotlb_sync(domain, &iotlb_gather); 2658 2659 return ret; 2660 } 2661 EXPORT_SYMBOL_GPL(iommu_unmap); 2662 2663 /** 2664 * iommu_unmap_fast() - Remove mappings from a range of IOVA without IOTLB sync 2665 * @domain: Domain to manipulate 2666 * @iova: IO virtual address to start 2667 * @size: Length of the range starting from @iova 2668 * @iotlb_gather: range information for a pending IOTLB flush 2669 * 2670 * iommu_unmap_fast() will remove a translation created by iommu_map(). 2671 * It can't subdivide a mapping created by iommu_map(), so it should be 2672 * called with IOVA ranges that match what was passed to iommu_map(). The 2673 * range can aggregate contiguous iommu_map() calls so long as no individual 2674 * range is split. 2675 * 2676 * Basically iommu_unmap_fast() is the same as iommu_unmap() but for callers 2677 * which manage the IOTLB flushing externally to perform a batched sync. 2678 * 2679 * Returns: Number of bytes of IOVA unmapped. iova + res will be the point 2680 * unmapping stopped. 2681 */ 2682 size_t iommu_unmap_fast(struct iommu_domain *domain, 2683 unsigned long iova, size_t size, 2684 struct iommu_iotlb_gather *iotlb_gather) 2685 { 2686 return __iommu_unmap(domain, iova, size, iotlb_gather); 2687 } 2688 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2689 2690 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2691 struct scatterlist *sg, unsigned int nents, int prot, 2692 gfp_t gfp) 2693 { 2694 size_t len = 0, mapped = 0; 2695 phys_addr_t start; 2696 unsigned int i = 0; 2697 int ret; 2698 2699 while (i <= nents) { 2700 phys_addr_t s_phys = sg_phys(sg); 2701 2702 if (len && s_phys != start + len) { 2703 ret = iommu_map_nosync(domain, iova + mapped, start, 2704 len, prot, gfp); 2705 if (ret) 2706 goto out_err; 2707 2708 mapped += len; 2709 len = 0; 2710 } 2711 2712 if (sg_dma_is_bus_address(sg)) 2713 goto next; 2714 2715 if (len) { 2716 len += sg->length; 2717 } else { 2718 len = sg->length; 2719 start = s_phys; 2720 } 2721 2722 next: 2723 if (++i < nents) 2724 sg = sg_next(sg); 2725 } 2726 2727 ret = iommu_sync_map(domain, iova, mapped); 2728 if (ret) 2729 goto out_err; 2730 2731 return mapped; 2732 2733 out_err: 2734 /* undo mappings already done */ 2735 iommu_unmap(domain, iova, mapped); 2736 2737 return ret; 2738 } 2739 EXPORT_SYMBOL_GPL(iommu_map_sg); 2740 2741 /** 2742 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2743 * @domain: the iommu domain where the fault has happened 2744 * @dev: the device where the fault has happened 2745 * @iova: the faulting address 2746 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2747 * 2748 * This function should be called by the low-level IOMMU implementations 2749 * whenever IOMMU faults happen, to allow high-level users, that are 2750 * interested in such events, to know about them. 2751 * 2752 * This event may be useful for several possible use cases: 2753 * - mere logging of the event 2754 * - dynamic TLB/PTE loading 2755 * - if restarting of the faulting device is required 2756 * 2757 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2758 * PTE/TLB loading will one day be supported, implementations will be able 2759 * to tell whether it succeeded or not according to this return value). 2760 * 2761 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2762 * (though fault handlers can also return -ENOSYS, in case they want to 2763 * elicit the default behavior of the IOMMU drivers). 2764 */ 2765 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2766 unsigned long iova, int flags) 2767 { 2768 int ret = -ENOSYS; 2769 2770 /* 2771 * if upper layers showed interest and installed a fault handler, 2772 * invoke it. 2773 */ 2774 if (domain->cookie_type == IOMMU_COOKIE_FAULT_HANDLER && 2775 domain->handler) 2776 ret = domain->handler(domain, dev, iova, flags, 2777 domain->handler_token); 2778 2779 trace_io_page_fault(dev, iova, flags); 2780 return ret; 2781 } 2782 EXPORT_SYMBOL_GPL(report_iommu_fault); 2783 2784 static int __init iommu_init(void) 2785 { 2786 iommu_group_kset = kset_create_and_add("iommu_groups", 2787 NULL, kernel_kobj); 2788 BUG_ON(!iommu_group_kset); 2789 2790 iommu_debugfs_setup(); 2791 2792 return 0; 2793 } 2794 core_initcall(iommu_init); 2795 2796 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2797 unsigned long quirk) 2798 { 2799 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2800 return -EINVAL; 2801 if (!domain->ops->set_pgtable_quirks) 2802 return -EINVAL; 2803 return domain->ops->set_pgtable_quirks(domain, quirk); 2804 } 2805 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2806 2807 /** 2808 * iommu_get_resv_regions - get reserved regions 2809 * @dev: device for which to get reserved regions 2810 * @list: reserved region list for device 2811 * 2812 * This returns a list of reserved IOVA regions specific to this device. 2813 * A domain user should not map IOVA in these ranges. 2814 */ 2815 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2816 { 2817 const struct iommu_ops *ops = dev_iommu_ops(dev); 2818 2819 if (ops->get_resv_regions) 2820 ops->get_resv_regions(dev, list); 2821 } 2822 EXPORT_SYMBOL_GPL(iommu_get_resv_regions); 2823 2824 /** 2825 * iommu_put_resv_regions - release reserved regions 2826 * @dev: device for which to free reserved regions 2827 * @list: reserved region list for device 2828 * 2829 * This releases a reserved region list acquired by iommu_get_resv_regions(). 2830 */ 2831 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2832 { 2833 struct iommu_resv_region *entry, *next; 2834 2835 list_for_each_entry_safe(entry, next, list, list) { 2836 if (entry->free) 2837 entry->free(dev, entry); 2838 else 2839 kfree(entry); 2840 } 2841 } 2842 EXPORT_SYMBOL(iommu_put_resv_regions); 2843 2844 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2845 size_t length, int prot, 2846 enum iommu_resv_type type, 2847 gfp_t gfp) 2848 { 2849 struct iommu_resv_region *region; 2850 2851 region = kzalloc(sizeof(*region), gfp); 2852 if (!region) 2853 return NULL; 2854 2855 INIT_LIST_HEAD(®ion->list); 2856 region->start = start; 2857 region->length = length; 2858 region->prot = prot; 2859 region->type = type; 2860 return region; 2861 } 2862 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2863 2864 void iommu_set_default_passthrough(bool cmd_line) 2865 { 2866 if (cmd_line) 2867 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2868 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2869 } 2870 2871 void iommu_set_default_translated(bool cmd_line) 2872 { 2873 if (cmd_line) 2874 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2875 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2876 } 2877 2878 bool iommu_default_passthrough(void) 2879 { 2880 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2881 } 2882 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2883 2884 static const struct iommu_device *iommu_from_fwnode(const struct fwnode_handle *fwnode) 2885 { 2886 const struct iommu_device *iommu, *ret = NULL; 2887 2888 spin_lock(&iommu_device_lock); 2889 list_for_each_entry(iommu, &iommu_device_list, list) 2890 if (iommu->fwnode == fwnode) { 2891 ret = iommu; 2892 break; 2893 } 2894 spin_unlock(&iommu_device_lock); 2895 return ret; 2896 } 2897 2898 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode) 2899 { 2900 const struct iommu_device *iommu = iommu_from_fwnode(fwnode); 2901 2902 return iommu ? iommu->ops : NULL; 2903 } 2904 2905 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode) 2906 { 2907 const struct iommu_device *iommu = iommu_from_fwnode(iommu_fwnode); 2908 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2909 2910 if (!iommu) 2911 return driver_deferred_probe_check_state(dev); 2912 if (!dev->iommu && !READ_ONCE(iommu->ready)) 2913 return -EPROBE_DEFER; 2914 2915 if (fwspec) 2916 return iommu->ops == iommu_fwspec_ops(fwspec) ? 0 : -EINVAL; 2917 2918 if (!dev_iommu_get(dev)) 2919 return -ENOMEM; 2920 2921 /* Preallocate for the overwhelmingly common case of 1 ID */ 2922 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2923 if (!fwspec) 2924 return -ENOMEM; 2925 2926 fwnode_handle_get(iommu_fwnode); 2927 fwspec->iommu_fwnode = iommu_fwnode; 2928 dev_iommu_fwspec_set(dev, fwspec); 2929 return 0; 2930 } 2931 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2932 2933 void iommu_fwspec_free(struct device *dev) 2934 { 2935 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2936 2937 if (fwspec) { 2938 fwnode_handle_put(fwspec->iommu_fwnode); 2939 kfree(fwspec); 2940 dev_iommu_fwspec_set(dev, NULL); 2941 } 2942 } 2943 2944 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids) 2945 { 2946 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2947 int i, new_num; 2948 2949 if (!fwspec) 2950 return -EINVAL; 2951 2952 new_num = fwspec->num_ids + num_ids; 2953 if (new_num > 1) { 2954 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2955 GFP_KERNEL); 2956 if (!fwspec) 2957 return -ENOMEM; 2958 2959 dev_iommu_fwspec_set(dev, fwspec); 2960 } 2961 2962 for (i = 0; i < num_ids; i++) 2963 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2964 2965 fwspec->num_ids = new_num; 2966 return 0; 2967 } 2968 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2969 2970 /** 2971 * iommu_setup_default_domain - Set the default_domain for the group 2972 * @group: Group to change 2973 * @target_type: Domain type to set as the default_domain 2974 * 2975 * Allocate a default domain and set it as the current domain on the group. If 2976 * the group already has a default domain it will be changed to the target_type. 2977 * When target_type is 0 the default domain is selected based on driver and 2978 * system preferences. 2979 */ 2980 static int iommu_setup_default_domain(struct iommu_group *group, 2981 int target_type) 2982 { 2983 struct iommu_domain *old_dom = group->default_domain; 2984 struct group_device *gdev; 2985 struct iommu_domain *dom; 2986 bool direct_failed; 2987 int req_type; 2988 int ret; 2989 2990 lockdep_assert_held(&group->mutex); 2991 2992 req_type = iommu_get_default_domain_type(group, target_type); 2993 if (req_type < 0) 2994 return -EINVAL; 2995 2996 dom = iommu_group_alloc_default_domain(group, req_type); 2997 if (IS_ERR(dom)) 2998 return PTR_ERR(dom); 2999 3000 if (group->default_domain == dom) 3001 return 0; 3002 3003 if (iommu_is_dma_domain(dom)) { 3004 ret = iommu_get_dma_cookie(dom); 3005 if (ret) { 3006 iommu_domain_free(dom); 3007 return ret; 3008 } 3009 } 3010 3011 /* 3012 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be 3013 * mapped before their device is attached, in order to guarantee 3014 * continuity with any FW activity 3015 */ 3016 direct_failed = false; 3017 for_each_group_device(group, gdev) { 3018 if (iommu_create_device_direct_mappings(dom, gdev->dev)) { 3019 direct_failed = true; 3020 dev_warn_once( 3021 gdev->dev->iommu->iommu_dev->dev, 3022 "IOMMU driver was not able to establish FW requested direct mapping."); 3023 } 3024 } 3025 3026 /* We must set default_domain early for __iommu_device_set_domain */ 3027 group->default_domain = dom; 3028 if (!group->domain) { 3029 /* 3030 * Drivers are not allowed to fail the first domain attach. 3031 * The only way to recover from this is to fail attaching the 3032 * iommu driver and call ops->release_device. Put the domain 3033 * in group->default_domain so it is freed after. 3034 */ 3035 ret = __iommu_group_set_domain_internal( 3036 group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED); 3037 if (WARN_ON(ret)) 3038 goto out_free_old; 3039 } else { 3040 ret = __iommu_group_set_domain(group, dom); 3041 if (ret) 3042 goto err_restore_def_domain; 3043 } 3044 3045 /* 3046 * Drivers are supposed to allow mappings to be installed in a domain 3047 * before device attachment, but some don't. Hack around this defect by 3048 * trying again after attaching. If this happens it means the device 3049 * will not continuously have the IOMMU_RESV_DIRECT map. 3050 */ 3051 if (direct_failed) { 3052 for_each_group_device(group, gdev) { 3053 ret = iommu_create_device_direct_mappings(dom, gdev->dev); 3054 if (ret) 3055 goto err_restore_domain; 3056 } 3057 } 3058 3059 out_free_old: 3060 if (old_dom) 3061 iommu_domain_free(old_dom); 3062 return ret; 3063 3064 err_restore_domain: 3065 if (old_dom) 3066 __iommu_group_set_domain_internal( 3067 group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED); 3068 err_restore_def_domain: 3069 if (old_dom) { 3070 iommu_domain_free(dom); 3071 group->default_domain = old_dom; 3072 } 3073 return ret; 3074 } 3075 3076 /* 3077 * Changing the default domain through sysfs requires the users to unbind the 3078 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 3079 * transition. Return failure if this isn't met. 3080 * 3081 * We need to consider the race between this and the device release path. 3082 * group->mutex is used here to guarantee that the device release path 3083 * will not be entered at the same time. 3084 */ 3085 static ssize_t iommu_group_store_type(struct iommu_group *group, 3086 const char *buf, size_t count) 3087 { 3088 struct group_device *gdev; 3089 int ret, req_type; 3090 3091 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 3092 return -EACCES; 3093 3094 if (WARN_ON(!group) || !group->default_domain) 3095 return -EINVAL; 3096 3097 if (sysfs_streq(buf, "identity")) 3098 req_type = IOMMU_DOMAIN_IDENTITY; 3099 else if (sysfs_streq(buf, "DMA")) 3100 req_type = IOMMU_DOMAIN_DMA; 3101 else if (sysfs_streq(buf, "DMA-FQ")) 3102 req_type = IOMMU_DOMAIN_DMA_FQ; 3103 else if (sysfs_streq(buf, "auto")) 3104 req_type = 0; 3105 else 3106 return -EINVAL; 3107 3108 mutex_lock(&group->mutex); 3109 /* We can bring up a flush queue without tearing down the domain. */ 3110 if (req_type == IOMMU_DOMAIN_DMA_FQ && 3111 group->default_domain->type == IOMMU_DOMAIN_DMA) { 3112 ret = iommu_dma_init_fq(group->default_domain); 3113 if (ret) 3114 goto out_unlock; 3115 3116 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ; 3117 ret = count; 3118 goto out_unlock; 3119 } 3120 3121 /* Otherwise, ensure that device exists and no driver is bound. */ 3122 if (list_empty(&group->devices) || group->owner_cnt) { 3123 ret = -EPERM; 3124 goto out_unlock; 3125 } 3126 3127 ret = iommu_setup_default_domain(group, req_type); 3128 if (ret) 3129 goto out_unlock; 3130 3131 /* Make sure dma_ops is appropriatley set */ 3132 for_each_group_device(group, gdev) 3133 iommu_setup_dma_ops(gdev->dev); 3134 3135 out_unlock: 3136 mutex_unlock(&group->mutex); 3137 return ret ?: count; 3138 } 3139 3140 /** 3141 * iommu_device_use_default_domain() - Device driver wants to handle device 3142 * DMA through the kernel DMA API. 3143 * @dev: The device. 3144 * 3145 * The device driver about to bind @dev wants to do DMA through the kernel 3146 * DMA API. Return 0 if it is allowed, otherwise an error. 3147 */ 3148 int iommu_device_use_default_domain(struct device *dev) 3149 { 3150 /* Caller is the driver core during the pre-probe path */ 3151 struct iommu_group *group = dev->iommu_group; 3152 int ret = 0; 3153 3154 if (!group) 3155 return 0; 3156 3157 mutex_lock(&group->mutex); 3158 /* We may race against bus_iommu_probe() finalising groups here */ 3159 if (!group->default_domain) { 3160 ret = -EPROBE_DEFER; 3161 goto unlock_out; 3162 } 3163 if (group->owner_cnt) { 3164 if (group->domain != group->default_domain || group->owner || 3165 !xa_empty(&group->pasid_array)) { 3166 ret = -EBUSY; 3167 goto unlock_out; 3168 } 3169 } 3170 3171 group->owner_cnt++; 3172 3173 unlock_out: 3174 mutex_unlock(&group->mutex); 3175 return ret; 3176 } 3177 3178 /** 3179 * iommu_device_unuse_default_domain() - Device driver stops handling device 3180 * DMA through the kernel DMA API. 3181 * @dev: The device. 3182 * 3183 * The device driver doesn't want to do DMA through kernel DMA API anymore. 3184 * It must be called after iommu_device_use_default_domain(). 3185 */ 3186 void iommu_device_unuse_default_domain(struct device *dev) 3187 { 3188 /* Caller is the driver core during the post-probe path */ 3189 struct iommu_group *group = dev->iommu_group; 3190 3191 if (!group) 3192 return; 3193 3194 mutex_lock(&group->mutex); 3195 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array))) 3196 group->owner_cnt--; 3197 3198 mutex_unlock(&group->mutex); 3199 } 3200 3201 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group) 3202 { 3203 struct device *dev = iommu_group_first_dev(group); 3204 const struct iommu_ops *ops = dev_iommu_ops(dev); 3205 struct iommu_domain *domain; 3206 3207 if (group->blocking_domain) 3208 return 0; 3209 3210 if (ops->blocked_domain) { 3211 group->blocking_domain = ops->blocked_domain; 3212 return 0; 3213 } 3214 3215 /* 3216 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED create an 3217 * empty PAGING domain instead. 3218 */ 3219 domain = iommu_paging_domain_alloc(dev); 3220 if (IS_ERR(domain)) 3221 return PTR_ERR(domain); 3222 group->blocking_domain = domain; 3223 return 0; 3224 } 3225 3226 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner) 3227 { 3228 int ret; 3229 3230 if ((group->domain && group->domain != group->default_domain) || 3231 !xa_empty(&group->pasid_array)) 3232 return -EBUSY; 3233 3234 ret = __iommu_group_alloc_blocking_domain(group); 3235 if (ret) 3236 return ret; 3237 ret = __iommu_group_set_domain(group, group->blocking_domain); 3238 if (ret) 3239 return ret; 3240 3241 group->owner = owner; 3242 group->owner_cnt++; 3243 return 0; 3244 } 3245 3246 /** 3247 * iommu_group_claim_dma_owner() - Set DMA ownership of a group 3248 * @group: The group. 3249 * @owner: Caller specified pointer. Used for exclusive ownership. 3250 * 3251 * This is to support backward compatibility for vfio which manages the dma 3252 * ownership in iommu_group level. New invocations on this interface should be 3253 * prohibited. Only a single owner may exist for a group. 3254 */ 3255 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner) 3256 { 3257 int ret = 0; 3258 3259 if (WARN_ON(!owner)) 3260 return -EINVAL; 3261 3262 mutex_lock(&group->mutex); 3263 if (group->owner_cnt) { 3264 ret = -EPERM; 3265 goto unlock_out; 3266 } 3267 3268 ret = __iommu_take_dma_ownership(group, owner); 3269 unlock_out: 3270 mutex_unlock(&group->mutex); 3271 3272 return ret; 3273 } 3274 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner); 3275 3276 /** 3277 * iommu_device_claim_dma_owner() - Set DMA ownership of a device 3278 * @dev: The device. 3279 * @owner: Caller specified pointer. Used for exclusive ownership. 3280 * 3281 * Claim the DMA ownership of a device. Multiple devices in the same group may 3282 * concurrently claim ownership if they present the same owner value. Returns 0 3283 * on success and error code on failure 3284 */ 3285 int iommu_device_claim_dma_owner(struct device *dev, void *owner) 3286 { 3287 /* Caller must be a probed driver on dev */ 3288 struct iommu_group *group = dev->iommu_group; 3289 int ret = 0; 3290 3291 if (WARN_ON(!owner)) 3292 return -EINVAL; 3293 3294 if (!group) 3295 return -ENODEV; 3296 3297 mutex_lock(&group->mutex); 3298 if (group->owner_cnt) { 3299 if (group->owner != owner) { 3300 ret = -EPERM; 3301 goto unlock_out; 3302 } 3303 group->owner_cnt++; 3304 goto unlock_out; 3305 } 3306 3307 ret = __iommu_take_dma_ownership(group, owner); 3308 unlock_out: 3309 mutex_unlock(&group->mutex); 3310 return ret; 3311 } 3312 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner); 3313 3314 static void __iommu_release_dma_ownership(struct iommu_group *group) 3315 { 3316 if (WARN_ON(!group->owner_cnt || !group->owner || 3317 !xa_empty(&group->pasid_array))) 3318 return; 3319 3320 group->owner_cnt = 0; 3321 group->owner = NULL; 3322 __iommu_group_set_domain_nofail(group, group->default_domain); 3323 } 3324 3325 /** 3326 * iommu_group_release_dma_owner() - Release DMA ownership of a group 3327 * @group: The group 3328 * 3329 * Release the DMA ownership claimed by iommu_group_claim_dma_owner(). 3330 */ 3331 void iommu_group_release_dma_owner(struct iommu_group *group) 3332 { 3333 mutex_lock(&group->mutex); 3334 __iommu_release_dma_ownership(group); 3335 mutex_unlock(&group->mutex); 3336 } 3337 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner); 3338 3339 /** 3340 * iommu_device_release_dma_owner() - Release DMA ownership of a device 3341 * @dev: The device. 3342 * 3343 * Release the DMA ownership claimed by iommu_device_claim_dma_owner(). 3344 */ 3345 void iommu_device_release_dma_owner(struct device *dev) 3346 { 3347 /* Caller must be a probed driver on dev */ 3348 struct iommu_group *group = dev->iommu_group; 3349 3350 mutex_lock(&group->mutex); 3351 if (group->owner_cnt > 1) 3352 group->owner_cnt--; 3353 else 3354 __iommu_release_dma_ownership(group); 3355 mutex_unlock(&group->mutex); 3356 } 3357 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner); 3358 3359 /** 3360 * iommu_group_dma_owner_claimed() - Query group dma ownership status 3361 * @group: The group. 3362 * 3363 * This provides status query on a given group. It is racy and only for 3364 * non-binding status reporting. 3365 */ 3366 bool iommu_group_dma_owner_claimed(struct iommu_group *group) 3367 { 3368 unsigned int user; 3369 3370 mutex_lock(&group->mutex); 3371 user = group->owner_cnt; 3372 mutex_unlock(&group->mutex); 3373 3374 return user; 3375 } 3376 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed); 3377 3378 static void iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid, 3379 struct iommu_domain *domain) 3380 { 3381 const struct iommu_ops *ops = dev_iommu_ops(dev); 3382 struct iommu_domain *blocked_domain = ops->blocked_domain; 3383 3384 WARN_ON(blocked_domain->ops->set_dev_pasid(blocked_domain, 3385 dev, pasid, domain)); 3386 } 3387 3388 static int __iommu_set_group_pasid(struct iommu_domain *domain, 3389 struct iommu_group *group, ioasid_t pasid, 3390 struct iommu_domain *old) 3391 { 3392 struct group_device *device, *last_gdev; 3393 int ret; 3394 3395 for_each_group_device(group, device) { 3396 if (device->dev->iommu->max_pasids > 0) { 3397 ret = domain->ops->set_dev_pasid(domain, device->dev, 3398 pasid, old); 3399 if (ret) 3400 goto err_revert; 3401 } 3402 } 3403 3404 return 0; 3405 3406 err_revert: 3407 last_gdev = device; 3408 for_each_group_device(group, device) { 3409 if (device == last_gdev) 3410 break; 3411 if (device->dev->iommu->max_pasids > 0) { 3412 /* 3413 * If no old domain, undo the succeeded devices/pasid. 3414 * Otherwise, rollback the succeeded devices/pasid to 3415 * the old domain. And it is a driver bug to fail 3416 * attaching with a previously good domain. 3417 */ 3418 if (!old || 3419 WARN_ON(old->ops->set_dev_pasid(old, device->dev, 3420 pasid, domain))) 3421 iommu_remove_dev_pasid(device->dev, pasid, domain); 3422 } 3423 } 3424 return ret; 3425 } 3426 3427 static void __iommu_remove_group_pasid(struct iommu_group *group, 3428 ioasid_t pasid, 3429 struct iommu_domain *domain) 3430 { 3431 struct group_device *device; 3432 3433 for_each_group_device(group, device) { 3434 if (device->dev->iommu->max_pasids > 0) 3435 iommu_remove_dev_pasid(device->dev, pasid, domain); 3436 } 3437 } 3438 3439 /* 3440 * iommu_attach_device_pasid() - Attach a domain to pasid of device 3441 * @domain: the iommu domain. 3442 * @dev: the attached device. 3443 * @pasid: the pasid of the device. 3444 * @handle: the attach handle. 3445 * 3446 * Caller should always provide a new handle to avoid race with the paths 3447 * that have lockless reference to handle if it intends to pass a valid handle. 3448 * 3449 * Return: 0 on success, or an error. 3450 */ 3451 int iommu_attach_device_pasid(struct iommu_domain *domain, 3452 struct device *dev, ioasid_t pasid, 3453 struct iommu_attach_handle *handle) 3454 { 3455 /* Caller must be a probed driver on dev */ 3456 struct iommu_group *group = dev->iommu_group; 3457 struct group_device *device; 3458 const struct iommu_ops *ops; 3459 void *entry; 3460 int ret; 3461 3462 if (!group) 3463 return -ENODEV; 3464 3465 ops = dev_iommu_ops(dev); 3466 3467 if (!domain->ops->set_dev_pasid || 3468 !ops->blocked_domain || 3469 !ops->blocked_domain->ops->set_dev_pasid) 3470 return -EOPNOTSUPP; 3471 3472 if (!domain_iommu_ops_compatible(ops, domain) || 3473 pasid == IOMMU_NO_PASID) 3474 return -EINVAL; 3475 3476 mutex_lock(&group->mutex); 3477 for_each_group_device(group, device) { 3478 /* 3479 * Skip PASID validation for devices without PASID support 3480 * (max_pasids = 0). These devices cannot issue transactions 3481 * with PASID, so they don't affect group's PASID usage. 3482 */ 3483 if ((device->dev->iommu->max_pasids > 0) && 3484 (pasid >= device->dev->iommu->max_pasids)) { 3485 ret = -EINVAL; 3486 goto out_unlock; 3487 } 3488 } 3489 3490 entry = iommu_make_pasid_array_entry(domain, handle); 3491 3492 /* 3493 * Entry present is a failure case. Use xa_insert() instead of 3494 * xa_reserve(). 3495 */ 3496 ret = xa_insert(&group->pasid_array, pasid, XA_ZERO_ENTRY, GFP_KERNEL); 3497 if (ret) 3498 goto out_unlock; 3499 3500 ret = __iommu_set_group_pasid(domain, group, pasid, NULL); 3501 if (ret) { 3502 xa_release(&group->pasid_array, pasid); 3503 goto out_unlock; 3504 } 3505 3506 /* 3507 * The xa_insert() above reserved the memory, and the group->mutex is 3508 * held, this cannot fail. The new domain cannot be visible until the 3509 * operation succeeds as we cannot tolerate PRIs becoming concurrently 3510 * queued and then failing attach. 3511 */ 3512 WARN_ON(xa_is_err(xa_store(&group->pasid_array, 3513 pasid, entry, GFP_KERNEL))); 3514 3515 out_unlock: 3516 mutex_unlock(&group->mutex); 3517 return ret; 3518 } 3519 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid); 3520 3521 /** 3522 * iommu_replace_device_pasid - Replace the domain that a specific pasid 3523 * of the device is attached to 3524 * @domain: the new iommu domain 3525 * @dev: the attached device. 3526 * @pasid: the pasid of the device. 3527 * @handle: the attach handle. 3528 * 3529 * This API allows the pasid to switch domains. The @pasid should have been 3530 * attached. Otherwise, this fails. The pasid will keep the old configuration 3531 * if replacement failed. 3532 * 3533 * Caller should always provide a new handle to avoid race with the paths 3534 * that have lockless reference to handle if it intends to pass a valid handle. 3535 * 3536 * Return 0 on success, or an error. 3537 */ 3538 int iommu_replace_device_pasid(struct iommu_domain *domain, 3539 struct device *dev, ioasid_t pasid, 3540 struct iommu_attach_handle *handle) 3541 { 3542 /* Caller must be a probed driver on dev */ 3543 struct iommu_group *group = dev->iommu_group; 3544 struct iommu_attach_handle *entry; 3545 struct iommu_domain *curr_domain; 3546 void *curr; 3547 int ret; 3548 3549 if (!group) 3550 return -ENODEV; 3551 3552 if (!domain->ops->set_dev_pasid) 3553 return -EOPNOTSUPP; 3554 3555 if (!domain_iommu_ops_compatible(dev_iommu_ops(dev), domain) || 3556 pasid == IOMMU_NO_PASID || !handle) 3557 return -EINVAL; 3558 3559 mutex_lock(&group->mutex); 3560 entry = iommu_make_pasid_array_entry(domain, handle); 3561 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, 3562 XA_ZERO_ENTRY, GFP_KERNEL); 3563 if (xa_is_err(curr)) { 3564 ret = xa_err(curr); 3565 goto out_unlock; 3566 } 3567 3568 /* 3569 * No domain (with or without handle) attached, hence not 3570 * a replace case. 3571 */ 3572 if (!curr) { 3573 xa_release(&group->pasid_array, pasid); 3574 ret = -EINVAL; 3575 goto out_unlock; 3576 } 3577 3578 /* 3579 * Reusing handle is problematic as there are paths that refers 3580 * the handle without lock. To avoid race, reject the callers that 3581 * attempt it. 3582 */ 3583 if (curr == entry) { 3584 WARN_ON(1); 3585 ret = -EINVAL; 3586 goto out_unlock; 3587 } 3588 3589 curr_domain = pasid_array_entry_to_domain(curr); 3590 ret = 0; 3591 3592 if (curr_domain != domain) { 3593 ret = __iommu_set_group_pasid(domain, group, 3594 pasid, curr_domain); 3595 if (ret) 3596 goto out_unlock; 3597 } 3598 3599 /* 3600 * The above xa_cmpxchg() reserved the memory, and the 3601 * group->mutex is held, this cannot fail. 3602 */ 3603 WARN_ON(xa_is_err(xa_store(&group->pasid_array, 3604 pasid, entry, GFP_KERNEL))); 3605 3606 out_unlock: 3607 mutex_unlock(&group->mutex); 3608 return ret; 3609 } 3610 EXPORT_SYMBOL_NS_GPL(iommu_replace_device_pasid, "IOMMUFD_INTERNAL"); 3611 3612 /* 3613 * iommu_detach_device_pasid() - Detach the domain from pasid of device 3614 * @domain: the iommu domain. 3615 * @dev: the attached device. 3616 * @pasid: the pasid of the device. 3617 * 3618 * The @domain must have been attached to @pasid of the @dev with 3619 * iommu_attach_device_pasid(). 3620 */ 3621 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev, 3622 ioasid_t pasid) 3623 { 3624 /* Caller must be a probed driver on dev */ 3625 struct iommu_group *group = dev->iommu_group; 3626 3627 mutex_lock(&group->mutex); 3628 __iommu_remove_group_pasid(group, pasid, domain); 3629 xa_erase(&group->pasid_array, pasid); 3630 mutex_unlock(&group->mutex); 3631 } 3632 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid); 3633 3634 ioasid_t iommu_alloc_global_pasid(struct device *dev) 3635 { 3636 int ret; 3637 3638 /* max_pasids == 0 means that the device does not support PASID */ 3639 if (!dev->iommu->max_pasids) 3640 return IOMMU_PASID_INVALID; 3641 3642 /* 3643 * max_pasids is set up by vendor driver based on number of PASID bits 3644 * supported but the IDA allocation is inclusive. 3645 */ 3646 ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID, 3647 dev->iommu->max_pasids - 1, GFP_KERNEL); 3648 return ret < 0 ? IOMMU_PASID_INVALID : ret; 3649 } 3650 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid); 3651 3652 void iommu_free_global_pasid(ioasid_t pasid) 3653 { 3654 if (WARN_ON(pasid == IOMMU_PASID_INVALID)) 3655 return; 3656 3657 ida_free(&iommu_global_pasid_ida, pasid); 3658 } 3659 EXPORT_SYMBOL_GPL(iommu_free_global_pasid); 3660 3661 /** 3662 * iommu_attach_handle_get - Return the attach handle 3663 * @group: the iommu group that domain was attached to 3664 * @pasid: the pasid within the group 3665 * @type: matched domain type, 0 for any match 3666 * 3667 * Return handle or ERR_PTR(-ENOENT) on none, ERR_PTR(-EBUSY) on mismatch. 3668 * 3669 * Return the attach handle to the caller. The life cycle of an iommu attach 3670 * handle is from the time when the domain is attached to the time when the 3671 * domain is detached. Callers are required to synchronize the call of 3672 * iommu_attach_handle_get() with domain attachment and detachment. The attach 3673 * handle can only be used during its life cycle. 3674 */ 3675 struct iommu_attach_handle * 3676 iommu_attach_handle_get(struct iommu_group *group, ioasid_t pasid, unsigned int type) 3677 { 3678 struct iommu_attach_handle *handle; 3679 void *entry; 3680 3681 xa_lock(&group->pasid_array); 3682 entry = xa_load(&group->pasid_array, pasid); 3683 if (!entry || xa_pointer_tag(entry) != IOMMU_PASID_ARRAY_HANDLE) { 3684 handle = ERR_PTR(-ENOENT); 3685 } else { 3686 handle = xa_untag_pointer(entry); 3687 if (type && handle->domain->type != type) 3688 handle = ERR_PTR(-EBUSY); 3689 } 3690 xa_unlock(&group->pasid_array); 3691 3692 return handle; 3693 } 3694 EXPORT_SYMBOL_NS_GPL(iommu_attach_handle_get, "IOMMUFD_INTERNAL"); 3695 3696 /** 3697 * iommu_attach_group_handle - Attach an IOMMU domain to an IOMMU group 3698 * @domain: IOMMU domain to attach 3699 * @group: IOMMU group that will be attached 3700 * @handle: attach handle 3701 * 3702 * Returns 0 on success and error code on failure. 3703 * 3704 * This is a variant of iommu_attach_group(). It allows the caller to provide 3705 * an attach handle and use it when the domain is attached. This is currently 3706 * used by IOMMUFD to deliver the I/O page faults. 3707 * 3708 * Caller should always provide a new handle to avoid race with the paths 3709 * that have lockless reference to handle. 3710 */ 3711 int iommu_attach_group_handle(struct iommu_domain *domain, 3712 struct iommu_group *group, 3713 struct iommu_attach_handle *handle) 3714 { 3715 void *entry; 3716 int ret; 3717 3718 if (!handle) 3719 return -EINVAL; 3720 3721 mutex_lock(&group->mutex); 3722 entry = iommu_make_pasid_array_entry(domain, handle); 3723 ret = xa_insert(&group->pasid_array, 3724 IOMMU_NO_PASID, XA_ZERO_ENTRY, GFP_KERNEL); 3725 if (ret) 3726 goto out_unlock; 3727 3728 ret = __iommu_attach_group(domain, group); 3729 if (ret) { 3730 xa_release(&group->pasid_array, IOMMU_NO_PASID); 3731 goto out_unlock; 3732 } 3733 3734 /* 3735 * The xa_insert() above reserved the memory, and the group->mutex is 3736 * held, this cannot fail. The new domain cannot be visible until the 3737 * operation succeeds as we cannot tolerate PRIs becoming concurrently 3738 * queued and then failing attach. 3739 */ 3740 WARN_ON(xa_is_err(xa_store(&group->pasid_array, 3741 IOMMU_NO_PASID, entry, GFP_KERNEL))); 3742 3743 out_unlock: 3744 mutex_unlock(&group->mutex); 3745 return ret; 3746 } 3747 EXPORT_SYMBOL_NS_GPL(iommu_attach_group_handle, "IOMMUFD_INTERNAL"); 3748 3749 /** 3750 * iommu_detach_group_handle - Detach an IOMMU domain from an IOMMU group 3751 * @domain: IOMMU domain to attach 3752 * @group: IOMMU group that will be attached 3753 * 3754 * Detach the specified IOMMU domain from the specified IOMMU group. 3755 * It must be used in conjunction with iommu_attach_group_handle(). 3756 */ 3757 void iommu_detach_group_handle(struct iommu_domain *domain, 3758 struct iommu_group *group) 3759 { 3760 mutex_lock(&group->mutex); 3761 __iommu_group_set_core_domain(group); 3762 xa_erase(&group->pasid_array, IOMMU_NO_PASID); 3763 mutex_unlock(&group->mutex); 3764 } 3765 EXPORT_SYMBOL_NS_GPL(iommu_detach_group_handle, "IOMMUFD_INTERNAL"); 3766 3767 /** 3768 * iommu_replace_group_handle - replace the domain that a group is attached to 3769 * @group: IOMMU group that will be attached to the new domain 3770 * @new_domain: new IOMMU domain to replace with 3771 * @handle: attach handle 3772 * 3773 * This API allows the group to switch domains without being forced to go to 3774 * the blocking domain in-between. It allows the caller to provide an attach 3775 * handle for the new domain and use it when the domain is attached. 3776 * 3777 * If the currently attached domain is a core domain (e.g. a default_domain), 3778 * it will act just like the iommu_attach_group_handle(). 3779 * 3780 * Caller should always provide a new handle to avoid race with the paths 3781 * that have lockless reference to handle. 3782 */ 3783 int iommu_replace_group_handle(struct iommu_group *group, 3784 struct iommu_domain *new_domain, 3785 struct iommu_attach_handle *handle) 3786 { 3787 void *curr, *entry; 3788 int ret; 3789 3790 if (!new_domain || !handle) 3791 return -EINVAL; 3792 3793 mutex_lock(&group->mutex); 3794 entry = iommu_make_pasid_array_entry(new_domain, handle); 3795 ret = xa_reserve(&group->pasid_array, IOMMU_NO_PASID, GFP_KERNEL); 3796 if (ret) 3797 goto err_unlock; 3798 3799 ret = __iommu_group_set_domain(group, new_domain); 3800 if (ret) 3801 goto err_release; 3802 3803 curr = xa_store(&group->pasid_array, IOMMU_NO_PASID, entry, GFP_KERNEL); 3804 WARN_ON(xa_is_err(curr)); 3805 3806 mutex_unlock(&group->mutex); 3807 3808 return 0; 3809 err_release: 3810 xa_release(&group->pasid_array, IOMMU_NO_PASID); 3811 err_unlock: 3812 mutex_unlock(&group->mutex); 3813 return ret; 3814 } 3815 EXPORT_SYMBOL_NS_GPL(iommu_replace_group_handle, "IOMMUFD_INTERNAL"); 3816 3817 #if IS_ENABLED(CONFIG_IRQ_MSI_IOMMU) 3818 /** 3819 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain 3820 * @desc: MSI descriptor, will store the MSI page 3821 * @msi_addr: MSI target address to be mapped 3822 * 3823 * The implementation of sw_msi() should take msi_addr and map it to 3824 * an IOVA in the domain and call msi_desc_set_iommu_msi_iova() with the 3825 * mapping information. 3826 * 3827 * Return: 0 on success or negative error code if the mapping failed. 3828 */ 3829 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 3830 { 3831 struct device *dev = msi_desc_to_dev(desc); 3832 struct iommu_group *group = dev->iommu_group; 3833 int ret = 0; 3834 3835 if (!group) 3836 return 0; 3837 3838 mutex_lock(&group->mutex); 3839 /* An IDENTITY domain must pass through */ 3840 if (group->domain && group->domain->type != IOMMU_DOMAIN_IDENTITY) { 3841 switch (group->domain->cookie_type) { 3842 case IOMMU_COOKIE_DMA_MSI: 3843 case IOMMU_COOKIE_DMA_IOVA: 3844 ret = iommu_dma_sw_msi(group->domain, desc, msi_addr); 3845 break; 3846 case IOMMU_COOKIE_IOMMUFD: 3847 ret = iommufd_sw_msi(group->domain, desc, msi_addr); 3848 break; 3849 default: 3850 ret = -EOPNOTSUPP; 3851 break; 3852 } 3853 } 3854 mutex_unlock(&group->mutex); 3855 return ret; 3856 } 3857 #endif /* CONFIG_IRQ_MSI_IOMMU */ 3858