1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/kernel.h> 11 #include <linux/bug.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/export.h> 15 #include <linux/slab.h> 16 #include <linux/errno.h> 17 #include <linux/iommu.h> 18 #include <linux/idr.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/pci.h> 22 #include <linux/bitops.h> 23 #include <linux/property.h> 24 #include <linux/fsl/mc.h> 25 #include <trace/events/iommu.h> 26 27 static struct kset *iommu_group_kset; 28 static DEFINE_IDA(iommu_group_ida); 29 30 static unsigned int iommu_def_domain_type __read_mostly; 31 static bool iommu_dma_strict __read_mostly = true; 32 static u32 iommu_cmd_line __read_mostly; 33 34 struct iommu_group { 35 struct kobject kobj; 36 struct kobject *devices_kobj; 37 struct list_head devices; 38 struct mutex mutex; 39 struct blocking_notifier_head notifier; 40 void *iommu_data; 41 void (*iommu_data_release)(void *iommu_data); 42 char *name; 43 int id; 44 struct iommu_domain *default_domain; 45 struct iommu_domain *domain; 46 }; 47 48 struct group_device { 49 struct list_head list; 50 struct device *dev; 51 char *name; 52 }; 53 54 struct iommu_group_attribute { 55 struct attribute attr; 56 ssize_t (*show)(struct iommu_group *group, char *buf); 57 ssize_t (*store)(struct iommu_group *group, 58 const char *buf, size_t count); 59 }; 60 61 static const char * const iommu_group_resv_type_string[] = { 62 [IOMMU_RESV_DIRECT] = "direct", 63 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 64 [IOMMU_RESV_RESERVED] = "reserved", 65 [IOMMU_RESV_MSI] = "msi", 66 [IOMMU_RESV_SW_MSI] = "msi", 67 }; 68 69 #define IOMMU_CMD_LINE_DMA_API BIT(0) 70 71 static void iommu_set_cmd_line_dma_api(void) 72 { 73 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 74 } 75 76 static bool iommu_cmd_line_dma_api(void) 77 { 78 return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API); 79 } 80 81 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 82 struct iommu_group_attribute iommu_group_attr_##_name = \ 83 __ATTR(_name, _mode, _show, _store) 84 85 #define to_iommu_group_attr(_attr) \ 86 container_of(_attr, struct iommu_group_attribute, attr) 87 #define to_iommu_group(_kobj) \ 88 container_of(_kobj, struct iommu_group, kobj) 89 90 static LIST_HEAD(iommu_device_list); 91 static DEFINE_SPINLOCK(iommu_device_lock); 92 93 /* 94 * Use a function instead of an array here because the domain-type is a 95 * bit-field, so an array would waste memory. 96 */ 97 static const char *iommu_domain_type_str(unsigned int t) 98 { 99 switch (t) { 100 case IOMMU_DOMAIN_BLOCKED: 101 return "Blocked"; 102 case IOMMU_DOMAIN_IDENTITY: 103 return "Passthrough"; 104 case IOMMU_DOMAIN_UNMANAGED: 105 return "Unmanaged"; 106 case IOMMU_DOMAIN_DMA: 107 return "Translated"; 108 default: 109 return "Unknown"; 110 } 111 } 112 113 static int __init iommu_subsys_init(void) 114 { 115 bool cmd_line = iommu_cmd_line_dma_api(); 116 117 if (!cmd_line) { 118 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 119 iommu_set_default_passthrough(false); 120 else 121 iommu_set_default_translated(false); 122 123 if (iommu_default_passthrough() && mem_encrypt_active()) { 124 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 125 iommu_set_default_translated(false); 126 } 127 } 128 129 pr_info("Default domain type: %s %s\n", 130 iommu_domain_type_str(iommu_def_domain_type), 131 cmd_line ? "(set via kernel command line)" : ""); 132 133 return 0; 134 } 135 subsys_initcall(iommu_subsys_init); 136 137 int iommu_device_register(struct iommu_device *iommu) 138 { 139 spin_lock(&iommu_device_lock); 140 list_add_tail(&iommu->list, &iommu_device_list); 141 spin_unlock(&iommu_device_lock); 142 return 0; 143 } 144 145 void iommu_device_unregister(struct iommu_device *iommu) 146 { 147 spin_lock(&iommu_device_lock); 148 list_del(&iommu->list); 149 spin_unlock(&iommu_device_lock); 150 } 151 152 static struct iommu_param *iommu_get_dev_param(struct device *dev) 153 { 154 struct iommu_param *param = dev->iommu_param; 155 156 if (param) 157 return param; 158 159 param = kzalloc(sizeof(*param), GFP_KERNEL); 160 if (!param) 161 return NULL; 162 163 mutex_init(¶m->lock); 164 dev->iommu_param = param; 165 return param; 166 } 167 168 static void iommu_free_dev_param(struct device *dev) 169 { 170 kfree(dev->iommu_param); 171 dev->iommu_param = NULL; 172 } 173 174 int iommu_probe_device(struct device *dev) 175 { 176 const struct iommu_ops *ops = dev->bus->iommu_ops; 177 int ret; 178 179 WARN_ON(dev->iommu_group); 180 if (!ops) 181 return -EINVAL; 182 183 if (!iommu_get_dev_param(dev)) 184 return -ENOMEM; 185 186 ret = ops->add_device(dev); 187 if (ret) 188 iommu_free_dev_param(dev); 189 190 return ret; 191 } 192 193 void iommu_release_device(struct device *dev) 194 { 195 const struct iommu_ops *ops = dev->bus->iommu_ops; 196 197 if (dev->iommu_group) 198 ops->remove_device(dev); 199 200 iommu_free_dev_param(dev); 201 } 202 203 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 204 unsigned type); 205 static int __iommu_attach_device(struct iommu_domain *domain, 206 struct device *dev); 207 static int __iommu_attach_group(struct iommu_domain *domain, 208 struct iommu_group *group); 209 static void __iommu_detach_group(struct iommu_domain *domain, 210 struct iommu_group *group); 211 212 static int __init iommu_set_def_domain_type(char *str) 213 { 214 bool pt; 215 int ret; 216 217 ret = kstrtobool(str, &pt); 218 if (ret) 219 return ret; 220 221 if (pt) 222 iommu_set_default_passthrough(true); 223 else 224 iommu_set_default_translated(true); 225 226 return 0; 227 } 228 early_param("iommu.passthrough", iommu_set_def_domain_type); 229 230 static int __init iommu_dma_setup(char *str) 231 { 232 return kstrtobool(str, &iommu_dma_strict); 233 } 234 early_param("iommu.strict", iommu_dma_setup); 235 236 static ssize_t iommu_group_attr_show(struct kobject *kobj, 237 struct attribute *__attr, char *buf) 238 { 239 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 240 struct iommu_group *group = to_iommu_group(kobj); 241 ssize_t ret = -EIO; 242 243 if (attr->show) 244 ret = attr->show(group, buf); 245 return ret; 246 } 247 248 static ssize_t iommu_group_attr_store(struct kobject *kobj, 249 struct attribute *__attr, 250 const char *buf, size_t count) 251 { 252 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 253 struct iommu_group *group = to_iommu_group(kobj); 254 ssize_t ret = -EIO; 255 256 if (attr->store) 257 ret = attr->store(group, buf, count); 258 return ret; 259 } 260 261 static const struct sysfs_ops iommu_group_sysfs_ops = { 262 .show = iommu_group_attr_show, 263 .store = iommu_group_attr_store, 264 }; 265 266 static int iommu_group_create_file(struct iommu_group *group, 267 struct iommu_group_attribute *attr) 268 { 269 return sysfs_create_file(&group->kobj, &attr->attr); 270 } 271 272 static void iommu_group_remove_file(struct iommu_group *group, 273 struct iommu_group_attribute *attr) 274 { 275 sysfs_remove_file(&group->kobj, &attr->attr); 276 } 277 278 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 279 { 280 return sprintf(buf, "%s\n", group->name); 281 } 282 283 /** 284 * iommu_insert_resv_region - Insert a new region in the 285 * list of reserved regions. 286 * @new: new region to insert 287 * @regions: list of regions 288 * 289 * Elements are sorted by start address and overlapping segments 290 * of the same type are merged. 291 */ 292 int iommu_insert_resv_region(struct iommu_resv_region *new, 293 struct list_head *regions) 294 { 295 struct iommu_resv_region *iter, *tmp, *nr, *top; 296 LIST_HEAD(stack); 297 298 nr = iommu_alloc_resv_region(new->start, new->length, 299 new->prot, new->type); 300 if (!nr) 301 return -ENOMEM; 302 303 /* First add the new element based on start address sorting */ 304 list_for_each_entry(iter, regions, list) { 305 if (nr->start < iter->start || 306 (nr->start == iter->start && nr->type <= iter->type)) 307 break; 308 } 309 list_add_tail(&nr->list, &iter->list); 310 311 /* Merge overlapping segments of type nr->type in @regions, if any */ 312 list_for_each_entry_safe(iter, tmp, regions, list) { 313 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 314 315 /* no merge needed on elements of different types than @nr */ 316 if (iter->type != nr->type) { 317 list_move_tail(&iter->list, &stack); 318 continue; 319 } 320 321 /* look for the last stack element of same type as @iter */ 322 list_for_each_entry_reverse(top, &stack, list) 323 if (top->type == iter->type) 324 goto check_overlap; 325 326 list_move_tail(&iter->list, &stack); 327 continue; 328 329 check_overlap: 330 top_end = top->start + top->length - 1; 331 332 if (iter->start > top_end + 1) { 333 list_move_tail(&iter->list, &stack); 334 } else { 335 top->length = max(top_end, iter_end) - top->start + 1; 336 list_del(&iter->list); 337 kfree(iter); 338 } 339 } 340 list_splice(&stack, regions); 341 return 0; 342 } 343 344 static int 345 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 346 struct list_head *group_resv_regions) 347 { 348 struct iommu_resv_region *entry; 349 int ret = 0; 350 351 list_for_each_entry(entry, dev_resv_regions, list) { 352 ret = iommu_insert_resv_region(entry, group_resv_regions); 353 if (ret) 354 break; 355 } 356 return ret; 357 } 358 359 int iommu_get_group_resv_regions(struct iommu_group *group, 360 struct list_head *head) 361 { 362 struct group_device *device; 363 int ret = 0; 364 365 mutex_lock(&group->mutex); 366 list_for_each_entry(device, &group->devices, list) { 367 struct list_head dev_resv_regions; 368 369 INIT_LIST_HEAD(&dev_resv_regions); 370 iommu_get_resv_regions(device->dev, &dev_resv_regions); 371 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 372 iommu_put_resv_regions(device->dev, &dev_resv_regions); 373 if (ret) 374 break; 375 } 376 mutex_unlock(&group->mutex); 377 return ret; 378 } 379 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 380 381 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 382 char *buf) 383 { 384 struct iommu_resv_region *region, *next; 385 struct list_head group_resv_regions; 386 char *str = buf; 387 388 INIT_LIST_HEAD(&group_resv_regions); 389 iommu_get_group_resv_regions(group, &group_resv_regions); 390 391 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 392 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 393 (long long int)region->start, 394 (long long int)(region->start + 395 region->length - 1), 396 iommu_group_resv_type_string[region->type]); 397 kfree(region); 398 } 399 400 return (str - buf); 401 } 402 403 static ssize_t iommu_group_show_type(struct iommu_group *group, 404 char *buf) 405 { 406 char *type = "unknown\n"; 407 408 if (group->default_domain) { 409 switch (group->default_domain->type) { 410 case IOMMU_DOMAIN_BLOCKED: 411 type = "blocked\n"; 412 break; 413 case IOMMU_DOMAIN_IDENTITY: 414 type = "identity\n"; 415 break; 416 case IOMMU_DOMAIN_UNMANAGED: 417 type = "unmanaged\n"; 418 break; 419 case IOMMU_DOMAIN_DMA: 420 type = "DMA\n"; 421 break; 422 } 423 } 424 strcpy(buf, type); 425 426 return strlen(type); 427 } 428 429 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 430 431 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 432 iommu_group_show_resv_regions, NULL); 433 434 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL); 435 436 static void iommu_group_release(struct kobject *kobj) 437 { 438 struct iommu_group *group = to_iommu_group(kobj); 439 440 pr_debug("Releasing group %d\n", group->id); 441 442 if (group->iommu_data_release) 443 group->iommu_data_release(group->iommu_data); 444 445 ida_simple_remove(&iommu_group_ida, group->id); 446 447 if (group->default_domain) 448 iommu_domain_free(group->default_domain); 449 450 kfree(group->name); 451 kfree(group); 452 } 453 454 static struct kobj_type iommu_group_ktype = { 455 .sysfs_ops = &iommu_group_sysfs_ops, 456 .release = iommu_group_release, 457 }; 458 459 /** 460 * iommu_group_alloc - Allocate a new group 461 * 462 * This function is called by an iommu driver to allocate a new iommu 463 * group. The iommu group represents the minimum granularity of the iommu. 464 * Upon successful return, the caller holds a reference to the supplied 465 * group in order to hold the group until devices are added. Use 466 * iommu_group_put() to release this extra reference count, allowing the 467 * group to be automatically reclaimed once it has no devices or external 468 * references. 469 */ 470 struct iommu_group *iommu_group_alloc(void) 471 { 472 struct iommu_group *group; 473 int ret; 474 475 group = kzalloc(sizeof(*group), GFP_KERNEL); 476 if (!group) 477 return ERR_PTR(-ENOMEM); 478 479 group->kobj.kset = iommu_group_kset; 480 mutex_init(&group->mutex); 481 INIT_LIST_HEAD(&group->devices); 482 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 483 484 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 485 if (ret < 0) { 486 kfree(group); 487 return ERR_PTR(ret); 488 } 489 group->id = ret; 490 491 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 492 NULL, "%d", group->id); 493 if (ret) { 494 ida_simple_remove(&iommu_group_ida, group->id); 495 kfree(group); 496 return ERR_PTR(ret); 497 } 498 499 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 500 if (!group->devices_kobj) { 501 kobject_put(&group->kobj); /* triggers .release & free */ 502 return ERR_PTR(-ENOMEM); 503 } 504 505 /* 506 * The devices_kobj holds a reference on the group kobject, so 507 * as long as that exists so will the group. We can therefore 508 * use the devices_kobj for reference counting. 509 */ 510 kobject_put(&group->kobj); 511 512 ret = iommu_group_create_file(group, 513 &iommu_group_attr_reserved_regions); 514 if (ret) 515 return ERR_PTR(ret); 516 517 ret = iommu_group_create_file(group, &iommu_group_attr_type); 518 if (ret) 519 return ERR_PTR(ret); 520 521 pr_debug("Allocated group %d\n", group->id); 522 523 return group; 524 } 525 EXPORT_SYMBOL_GPL(iommu_group_alloc); 526 527 struct iommu_group *iommu_group_get_by_id(int id) 528 { 529 struct kobject *group_kobj; 530 struct iommu_group *group; 531 const char *name; 532 533 if (!iommu_group_kset) 534 return NULL; 535 536 name = kasprintf(GFP_KERNEL, "%d", id); 537 if (!name) 538 return NULL; 539 540 group_kobj = kset_find_obj(iommu_group_kset, name); 541 kfree(name); 542 543 if (!group_kobj) 544 return NULL; 545 546 group = container_of(group_kobj, struct iommu_group, kobj); 547 BUG_ON(group->id != id); 548 549 kobject_get(group->devices_kobj); 550 kobject_put(&group->kobj); 551 552 return group; 553 } 554 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 555 556 /** 557 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 558 * @group: the group 559 * 560 * iommu drivers can store data in the group for use when doing iommu 561 * operations. This function provides a way to retrieve it. Caller 562 * should hold a group reference. 563 */ 564 void *iommu_group_get_iommudata(struct iommu_group *group) 565 { 566 return group->iommu_data; 567 } 568 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 569 570 /** 571 * iommu_group_set_iommudata - set iommu_data for a group 572 * @group: the group 573 * @iommu_data: new data 574 * @release: release function for iommu_data 575 * 576 * iommu drivers can store data in the group for use when doing iommu 577 * operations. This function provides a way to set the data after 578 * the group has been allocated. Caller should hold a group reference. 579 */ 580 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 581 void (*release)(void *iommu_data)) 582 { 583 group->iommu_data = iommu_data; 584 group->iommu_data_release = release; 585 } 586 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 587 588 /** 589 * iommu_group_set_name - set name for a group 590 * @group: the group 591 * @name: name 592 * 593 * Allow iommu driver to set a name for a group. When set it will 594 * appear in a name attribute file under the group in sysfs. 595 */ 596 int iommu_group_set_name(struct iommu_group *group, const char *name) 597 { 598 int ret; 599 600 if (group->name) { 601 iommu_group_remove_file(group, &iommu_group_attr_name); 602 kfree(group->name); 603 group->name = NULL; 604 if (!name) 605 return 0; 606 } 607 608 group->name = kstrdup(name, GFP_KERNEL); 609 if (!group->name) 610 return -ENOMEM; 611 612 ret = iommu_group_create_file(group, &iommu_group_attr_name); 613 if (ret) { 614 kfree(group->name); 615 group->name = NULL; 616 return ret; 617 } 618 619 return 0; 620 } 621 EXPORT_SYMBOL_GPL(iommu_group_set_name); 622 623 static int iommu_group_create_direct_mappings(struct iommu_group *group, 624 struct device *dev) 625 { 626 struct iommu_domain *domain = group->default_domain; 627 struct iommu_resv_region *entry; 628 struct list_head mappings; 629 unsigned long pg_size; 630 int ret = 0; 631 632 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 633 return 0; 634 635 BUG_ON(!domain->pgsize_bitmap); 636 637 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 638 INIT_LIST_HEAD(&mappings); 639 640 iommu_get_resv_regions(dev, &mappings); 641 642 /* We need to consider overlapping regions for different devices */ 643 list_for_each_entry(entry, &mappings, list) { 644 dma_addr_t start, end, addr; 645 646 if (domain->ops->apply_resv_region) 647 domain->ops->apply_resv_region(dev, domain, entry); 648 649 start = ALIGN(entry->start, pg_size); 650 end = ALIGN(entry->start + entry->length, pg_size); 651 652 if (entry->type != IOMMU_RESV_DIRECT && 653 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 654 continue; 655 656 for (addr = start; addr < end; addr += pg_size) { 657 phys_addr_t phys_addr; 658 659 phys_addr = iommu_iova_to_phys(domain, addr); 660 if (phys_addr) 661 continue; 662 663 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 664 if (ret) 665 goto out; 666 } 667 668 } 669 670 iommu_flush_tlb_all(domain); 671 672 out: 673 iommu_put_resv_regions(dev, &mappings); 674 675 return ret; 676 } 677 678 /** 679 * iommu_group_add_device - add a device to an iommu group 680 * @group: the group into which to add the device (reference should be held) 681 * @dev: the device 682 * 683 * This function is called by an iommu driver to add a device into a 684 * group. Adding a device increments the group reference count. 685 */ 686 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 687 { 688 int ret, i = 0; 689 struct group_device *device; 690 691 device = kzalloc(sizeof(*device), GFP_KERNEL); 692 if (!device) 693 return -ENOMEM; 694 695 device->dev = dev; 696 697 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 698 if (ret) 699 goto err_free_device; 700 701 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 702 rename: 703 if (!device->name) { 704 ret = -ENOMEM; 705 goto err_remove_link; 706 } 707 708 ret = sysfs_create_link_nowarn(group->devices_kobj, 709 &dev->kobj, device->name); 710 if (ret) { 711 if (ret == -EEXIST && i >= 0) { 712 /* 713 * Account for the slim chance of collision 714 * and append an instance to the name. 715 */ 716 kfree(device->name); 717 device->name = kasprintf(GFP_KERNEL, "%s.%d", 718 kobject_name(&dev->kobj), i++); 719 goto rename; 720 } 721 goto err_free_name; 722 } 723 724 kobject_get(group->devices_kobj); 725 726 dev->iommu_group = group; 727 728 iommu_group_create_direct_mappings(group, dev); 729 730 mutex_lock(&group->mutex); 731 list_add_tail(&device->list, &group->devices); 732 if (group->domain) 733 ret = __iommu_attach_device(group->domain, dev); 734 mutex_unlock(&group->mutex); 735 if (ret) 736 goto err_put_group; 737 738 /* Notify any listeners about change to group. */ 739 blocking_notifier_call_chain(&group->notifier, 740 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 741 742 trace_add_device_to_group(group->id, dev); 743 744 dev_info(dev, "Adding to iommu group %d\n", group->id); 745 746 return 0; 747 748 err_put_group: 749 mutex_lock(&group->mutex); 750 list_del(&device->list); 751 mutex_unlock(&group->mutex); 752 dev->iommu_group = NULL; 753 kobject_put(group->devices_kobj); 754 err_free_name: 755 kfree(device->name); 756 err_remove_link: 757 sysfs_remove_link(&dev->kobj, "iommu_group"); 758 err_free_device: 759 kfree(device); 760 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 761 return ret; 762 } 763 EXPORT_SYMBOL_GPL(iommu_group_add_device); 764 765 /** 766 * iommu_group_remove_device - remove a device from it's current group 767 * @dev: device to be removed 768 * 769 * This function is called by an iommu driver to remove the device from 770 * it's current group. This decrements the iommu group reference count. 771 */ 772 void iommu_group_remove_device(struct device *dev) 773 { 774 struct iommu_group *group = dev->iommu_group; 775 struct group_device *tmp_device, *device = NULL; 776 777 dev_info(dev, "Removing from iommu group %d\n", group->id); 778 779 /* Pre-notify listeners that a device is being removed. */ 780 blocking_notifier_call_chain(&group->notifier, 781 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 782 783 mutex_lock(&group->mutex); 784 list_for_each_entry(tmp_device, &group->devices, list) { 785 if (tmp_device->dev == dev) { 786 device = tmp_device; 787 list_del(&device->list); 788 break; 789 } 790 } 791 mutex_unlock(&group->mutex); 792 793 if (!device) 794 return; 795 796 sysfs_remove_link(group->devices_kobj, device->name); 797 sysfs_remove_link(&dev->kobj, "iommu_group"); 798 799 trace_remove_device_from_group(group->id, dev); 800 801 kfree(device->name); 802 kfree(device); 803 dev->iommu_group = NULL; 804 kobject_put(group->devices_kobj); 805 } 806 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 807 808 static int iommu_group_device_count(struct iommu_group *group) 809 { 810 struct group_device *entry; 811 int ret = 0; 812 813 list_for_each_entry(entry, &group->devices, list) 814 ret++; 815 816 return ret; 817 } 818 819 /** 820 * iommu_group_for_each_dev - iterate over each device in the group 821 * @group: the group 822 * @data: caller opaque data to be passed to callback function 823 * @fn: caller supplied callback function 824 * 825 * This function is called by group users to iterate over group devices. 826 * Callers should hold a reference count to the group during callback. 827 * The group->mutex is held across callbacks, which will block calls to 828 * iommu_group_add/remove_device. 829 */ 830 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 831 int (*fn)(struct device *, void *)) 832 { 833 struct group_device *device; 834 int ret = 0; 835 836 list_for_each_entry(device, &group->devices, list) { 837 ret = fn(device->dev, data); 838 if (ret) 839 break; 840 } 841 return ret; 842 } 843 844 845 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 846 int (*fn)(struct device *, void *)) 847 { 848 int ret; 849 850 mutex_lock(&group->mutex); 851 ret = __iommu_group_for_each_dev(group, data, fn); 852 mutex_unlock(&group->mutex); 853 854 return ret; 855 } 856 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 857 858 /** 859 * iommu_group_get - Return the group for a device and increment reference 860 * @dev: get the group that this device belongs to 861 * 862 * This function is called by iommu drivers and users to get the group 863 * for the specified device. If found, the group is returned and the group 864 * reference in incremented, else NULL. 865 */ 866 struct iommu_group *iommu_group_get(struct device *dev) 867 { 868 struct iommu_group *group = dev->iommu_group; 869 870 if (group) 871 kobject_get(group->devices_kobj); 872 873 return group; 874 } 875 EXPORT_SYMBOL_GPL(iommu_group_get); 876 877 /** 878 * iommu_group_ref_get - Increment reference on a group 879 * @group: the group to use, must not be NULL 880 * 881 * This function is called by iommu drivers to take additional references on an 882 * existing group. Returns the given group for convenience. 883 */ 884 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 885 { 886 kobject_get(group->devices_kobj); 887 return group; 888 } 889 890 /** 891 * iommu_group_put - Decrement group reference 892 * @group: the group to use 893 * 894 * This function is called by iommu drivers and users to release the 895 * iommu group. Once the reference count is zero, the group is released. 896 */ 897 void iommu_group_put(struct iommu_group *group) 898 { 899 if (group) 900 kobject_put(group->devices_kobj); 901 } 902 EXPORT_SYMBOL_GPL(iommu_group_put); 903 904 /** 905 * iommu_group_register_notifier - Register a notifier for group changes 906 * @group: the group to watch 907 * @nb: notifier block to signal 908 * 909 * This function allows iommu group users to track changes in a group. 910 * See include/linux/iommu.h for actions sent via this notifier. Caller 911 * should hold a reference to the group throughout notifier registration. 912 */ 913 int iommu_group_register_notifier(struct iommu_group *group, 914 struct notifier_block *nb) 915 { 916 return blocking_notifier_chain_register(&group->notifier, nb); 917 } 918 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 919 920 /** 921 * iommu_group_unregister_notifier - Unregister a notifier 922 * @group: the group to watch 923 * @nb: notifier block to signal 924 * 925 * Unregister a previously registered group notifier block. 926 */ 927 int iommu_group_unregister_notifier(struct iommu_group *group, 928 struct notifier_block *nb) 929 { 930 return blocking_notifier_chain_unregister(&group->notifier, nb); 931 } 932 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 933 934 /** 935 * iommu_register_device_fault_handler() - Register a device fault handler 936 * @dev: the device 937 * @handler: the fault handler 938 * @data: private data passed as argument to the handler 939 * 940 * When an IOMMU fault event is received, this handler gets called with the 941 * fault event and data as argument. The handler should return 0 on success. If 942 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 943 * complete the fault by calling iommu_page_response() with one of the following 944 * response code: 945 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 946 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 947 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 948 * page faults if possible. 949 * 950 * Return 0 if the fault handler was installed successfully, or an error. 951 */ 952 int iommu_register_device_fault_handler(struct device *dev, 953 iommu_dev_fault_handler_t handler, 954 void *data) 955 { 956 struct iommu_param *param = dev->iommu_param; 957 int ret = 0; 958 959 if (!param) 960 return -EINVAL; 961 962 mutex_lock(¶m->lock); 963 /* Only allow one fault handler registered for each device */ 964 if (param->fault_param) { 965 ret = -EBUSY; 966 goto done_unlock; 967 } 968 969 get_device(dev); 970 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 971 if (!param->fault_param) { 972 put_device(dev); 973 ret = -ENOMEM; 974 goto done_unlock; 975 } 976 param->fault_param->handler = handler; 977 param->fault_param->data = data; 978 mutex_init(¶m->fault_param->lock); 979 INIT_LIST_HEAD(¶m->fault_param->faults); 980 981 done_unlock: 982 mutex_unlock(¶m->lock); 983 984 return ret; 985 } 986 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 987 988 /** 989 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 990 * @dev: the device 991 * 992 * Remove the device fault handler installed with 993 * iommu_register_device_fault_handler(). 994 * 995 * Return 0 on success, or an error. 996 */ 997 int iommu_unregister_device_fault_handler(struct device *dev) 998 { 999 struct iommu_param *param = dev->iommu_param; 1000 int ret = 0; 1001 1002 if (!param) 1003 return -EINVAL; 1004 1005 mutex_lock(¶m->lock); 1006 1007 if (!param->fault_param) 1008 goto unlock; 1009 1010 /* we cannot unregister handler if there are pending faults */ 1011 if (!list_empty(¶m->fault_param->faults)) { 1012 ret = -EBUSY; 1013 goto unlock; 1014 } 1015 1016 kfree(param->fault_param); 1017 param->fault_param = NULL; 1018 put_device(dev); 1019 unlock: 1020 mutex_unlock(¶m->lock); 1021 1022 return ret; 1023 } 1024 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1025 1026 /** 1027 * iommu_report_device_fault() - Report fault event to device driver 1028 * @dev: the device 1029 * @evt: fault event data 1030 * 1031 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1032 * handler. When this function fails and the fault is recoverable, it is the 1033 * caller's responsibility to complete the fault. 1034 * 1035 * Return 0 on success, or an error. 1036 */ 1037 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1038 { 1039 struct iommu_param *param = dev->iommu_param; 1040 struct iommu_fault_event *evt_pending = NULL; 1041 struct iommu_fault_param *fparam; 1042 int ret = 0; 1043 1044 if (!param || !evt) 1045 return -EINVAL; 1046 1047 /* we only report device fault if there is a handler registered */ 1048 mutex_lock(¶m->lock); 1049 fparam = param->fault_param; 1050 if (!fparam || !fparam->handler) { 1051 ret = -EINVAL; 1052 goto done_unlock; 1053 } 1054 1055 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1056 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1057 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1058 GFP_KERNEL); 1059 if (!evt_pending) { 1060 ret = -ENOMEM; 1061 goto done_unlock; 1062 } 1063 mutex_lock(&fparam->lock); 1064 list_add_tail(&evt_pending->list, &fparam->faults); 1065 mutex_unlock(&fparam->lock); 1066 } 1067 1068 ret = fparam->handler(&evt->fault, fparam->data); 1069 if (ret && evt_pending) { 1070 mutex_lock(&fparam->lock); 1071 list_del(&evt_pending->list); 1072 mutex_unlock(&fparam->lock); 1073 kfree(evt_pending); 1074 } 1075 done_unlock: 1076 mutex_unlock(¶m->lock); 1077 return ret; 1078 } 1079 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1080 1081 int iommu_page_response(struct device *dev, 1082 struct iommu_page_response *msg) 1083 { 1084 bool pasid_valid; 1085 int ret = -EINVAL; 1086 struct iommu_fault_event *evt; 1087 struct iommu_fault_page_request *prm; 1088 struct iommu_param *param = dev->iommu_param; 1089 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1090 1091 if (!domain || !domain->ops->page_response) 1092 return -ENODEV; 1093 1094 if (!param || !param->fault_param) 1095 return -EINVAL; 1096 1097 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1098 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1099 return -EINVAL; 1100 1101 /* Only send response if there is a fault report pending */ 1102 mutex_lock(¶m->fault_param->lock); 1103 if (list_empty(¶m->fault_param->faults)) { 1104 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1105 goto done_unlock; 1106 } 1107 /* 1108 * Check if we have a matching page request pending to respond, 1109 * otherwise return -EINVAL 1110 */ 1111 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1112 prm = &evt->fault.prm; 1113 pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 1114 1115 if ((pasid_valid && prm->pasid != msg->pasid) || 1116 prm->grpid != msg->grpid) 1117 continue; 1118 1119 /* Sanitize the reply */ 1120 msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0; 1121 1122 ret = domain->ops->page_response(dev, evt, msg); 1123 list_del(&evt->list); 1124 kfree(evt); 1125 break; 1126 } 1127 1128 done_unlock: 1129 mutex_unlock(¶m->fault_param->lock); 1130 return ret; 1131 } 1132 EXPORT_SYMBOL_GPL(iommu_page_response); 1133 1134 /** 1135 * iommu_group_id - Return ID for a group 1136 * @group: the group to ID 1137 * 1138 * Return the unique ID for the group matching the sysfs group number. 1139 */ 1140 int iommu_group_id(struct iommu_group *group) 1141 { 1142 return group->id; 1143 } 1144 EXPORT_SYMBOL_GPL(iommu_group_id); 1145 1146 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1147 unsigned long *devfns); 1148 1149 /* 1150 * To consider a PCI device isolated, we require ACS to support Source 1151 * Validation, Request Redirection, Completer Redirection, and Upstream 1152 * Forwarding. This effectively means that devices cannot spoof their 1153 * requester ID, requests and completions cannot be redirected, and all 1154 * transactions are forwarded upstream, even as it passes through a 1155 * bridge where the target device is downstream. 1156 */ 1157 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1158 1159 /* 1160 * For multifunction devices which are not isolated from each other, find 1161 * all the other non-isolated functions and look for existing groups. For 1162 * each function, we also need to look for aliases to or from other devices 1163 * that may already have a group. 1164 */ 1165 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1166 unsigned long *devfns) 1167 { 1168 struct pci_dev *tmp = NULL; 1169 struct iommu_group *group; 1170 1171 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1172 return NULL; 1173 1174 for_each_pci_dev(tmp) { 1175 if (tmp == pdev || tmp->bus != pdev->bus || 1176 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1177 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1178 continue; 1179 1180 group = get_pci_alias_group(tmp, devfns); 1181 if (group) { 1182 pci_dev_put(tmp); 1183 return group; 1184 } 1185 } 1186 1187 return NULL; 1188 } 1189 1190 /* 1191 * Look for aliases to or from the given device for existing groups. DMA 1192 * aliases are only supported on the same bus, therefore the search 1193 * space is quite small (especially since we're really only looking at pcie 1194 * device, and therefore only expect multiple slots on the root complex or 1195 * downstream switch ports). It's conceivable though that a pair of 1196 * multifunction devices could have aliases between them that would cause a 1197 * loop. To prevent this, we use a bitmap to track where we've been. 1198 */ 1199 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1200 unsigned long *devfns) 1201 { 1202 struct pci_dev *tmp = NULL; 1203 struct iommu_group *group; 1204 1205 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1206 return NULL; 1207 1208 group = iommu_group_get(&pdev->dev); 1209 if (group) 1210 return group; 1211 1212 for_each_pci_dev(tmp) { 1213 if (tmp == pdev || tmp->bus != pdev->bus) 1214 continue; 1215 1216 /* We alias them or they alias us */ 1217 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1218 group = get_pci_alias_group(tmp, devfns); 1219 if (group) { 1220 pci_dev_put(tmp); 1221 return group; 1222 } 1223 1224 group = get_pci_function_alias_group(tmp, devfns); 1225 if (group) { 1226 pci_dev_put(tmp); 1227 return group; 1228 } 1229 } 1230 } 1231 1232 return NULL; 1233 } 1234 1235 struct group_for_pci_data { 1236 struct pci_dev *pdev; 1237 struct iommu_group *group; 1238 }; 1239 1240 /* 1241 * DMA alias iterator callback, return the last seen device. Stop and return 1242 * the IOMMU group if we find one along the way. 1243 */ 1244 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1245 { 1246 struct group_for_pci_data *data = opaque; 1247 1248 data->pdev = pdev; 1249 data->group = iommu_group_get(&pdev->dev); 1250 1251 return data->group != NULL; 1252 } 1253 1254 /* 1255 * Generic device_group call-back function. It just allocates one 1256 * iommu-group per device. 1257 */ 1258 struct iommu_group *generic_device_group(struct device *dev) 1259 { 1260 return iommu_group_alloc(); 1261 } 1262 1263 /* 1264 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1265 * to find or create an IOMMU group for a device. 1266 */ 1267 struct iommu_group *pci_device_group(struct device *dev) 1268 { 1269 struct pci_dev *pdev = to_pci_dev(dev); 1270 struct group_for_pci_data data; 1271 struct pci_bus *bus; 1272 struct iommu_group *group = NULL; 1273 u64 devfns[4] = { 0 }; 1274 1275 if (WARN_ON(!dev_is_pci(dev))) 1276 return ERR_PTR(-EINVAL); 1277 1278 /* 1279 * Find the upstream DMA alias for the device. A device must not 1280 * be aliased due to topology in order to have its own IOMMU group. 1281 * If we find an alias along the way that already belongs to a 1282 * group, use it. 1283 */ 1284 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1285 return data.group; 1286 1287 pdev = data.pdev; 1288 1289 /* 1290 * Continue upstream from the point of minimum IOMMU granularity 1291 * due to aliases to the point where devices are protected from 1292 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1293 * group, use it. 1294 */ 1295 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1296 if (!bus->self) 1297 continue; 1298 1299 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1300 break; 1301 1302 pdev = bus->self; 1303 1304 group = iommu_group_get(&pdev->dev); 1305 if (group) 1306 return group; 1307 } 1308 1309 /* 1310 * Look for existing groups on device aliases. If we alias another 1311 * device or another device aliases us, use the same group. 1312 */ 1313 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1314 if (group) 1315 return group; 1316 1317 /* 1318 * Look for existing groups on non-isolated functions on the same 1319 * slot and aliases of those funcions, if any. No need to clear 1320 * the search bitmap, the tested devfns are still valid. 1321 */ 1322 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1323 if (group) 1324 return group; 1325 1326 /* No shared group found, allocate new */ 1327 return iommu_group_alloc(); 1328 } 1329 1330 /* Get the IOMMU group for device on fsl-mc bus */ 1331 struct iommu_group *fsl_mc_device_group(struct device *dev) 1332 { 1333 struct device *cont_dev = fsl_mc_cont_dev(dev); 1334 struct iommu_group *group; 1335 1336 group = iommu_group_get(cont_dev); 1337 if (!group) 1338 group = iommu_group_alloc(); 1339 return group; 1340 } 1341 1342 /** 1343 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1344 * @dev: target device 1345 * 1346 * This function is intended to be called by IOMMU drivers and extended to 1347 * support common, bus-defined algorithms when determining or creating the 1348 * IOMMU group for a device. On success, the caller will hold a reference 1349 * to the returned IOMMU group, which will already include the provided 1350 * device. The reference should be released with iommu_group_put(). 1351 */ 1352 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1353 { 1354 const struct iommu_ops *ops = dev->bus->iommu_ops; 1355 struct iommu_group *group; 1356 int ret; 1357 1358 group = iommu_group_get(dev); 1359 if (group) 1360 return group; 1361 1362 if (!ops) 1363 return ERR_PTR(-EINVAL); 1364 1365 group = ops->device_group(dev); 1366 if (WARN_ON_ONCE(group == NULL)) 1367 return ERR_PTR(-EINVAL); 1368 1369 if (IS_ERR(group)) 1370 return group; 1371 1372 /* 1373 * Try to allocate a default domain - needs support from the 1374 * IOMMU driver. 1375 */ 1376 if (!group->default_domain) { 1377 struct iommu_domain *dom; 1378 1379 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type); 1380 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) { 1381 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA); 1382 if (dom) { 1383 dev_warn(dev, 1384 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA", 1385 iommu_def_domain_type); 1386 } 1387 } 1388 1389 group->default_domain = dom; 1390 if (!group->domain) 1391 group->domain = dom; 1392 1393 if (dom && !iommu_dma_strict) { 1394 int attr = 1; 1395 iommu_domain_set_attr(dom, 1396 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, 1397 &attr); 1398 } 1399 } 1400 1401 ret = iommu_group_add_device(group, dev); 1402 if (ret) { 1403 iommu_group_put(group); 1404 return ERR_PTR(ret); 1405 } 1406 1407 return group; 1408 } 1409 1410 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1411 { 1412 return group->default_domain; 1413 } 1414 1415 static int add_iommu_group(struct device *dev, void *data) 1416 { 1417 int ret = iommu_probe_device(dev); 1418 1419 /* 1420 * We ignore -ENODEV errors for now, as they just mean that the 1421 * device is not translated by an IOMMU. We still care about 1422 * other errors and fail to initialize when they happen. 1423 */ 1424 if (ret == -ENODEV) 1425 ret = 0; 1426 1427 return ret; 1428 } 1429 1430 static int remove_iommu_group(struct device *dev, void *data) 1431 { 1432 iommu_release_device(dev); 1433 1434 return 0; 1435 } 1436 1437 static int iommu_bus_notifier(struct notifier_block *nb, 1438 unsigned long action, void *data) 1439 { 1440 unsigned long group_action = 0; 1441 struct device *dev = data; 1442 struct iommu_group *group; 1443 1444 /* 1445 * ADD/DEL call into iommu driver ops if provided, which may 1446 * result in ADD/DEL notifiers to group->notifier 1447 */ 1448 if (action == BUS_NOTIFY_ADD_DEVICE) { 1449 int ret; 1450 1451 ret = iommu_probe_device(dev); 1452 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1453 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1454 iommu_release_device(dev); 1455 return NOTIFY_OK; 1456 } 1457 1458 /* 1459 * Remaining BUS_NOTIFYs get filtered and republished to the 1460 * group, if anyone is listening 1461 */ 1462 group = iommu_group_get(dev); 1463 if (!group) 1464 return 0; 1465 1466 switch (action) { 1467 case BUS_NOTIFY_BIND_DRIVER: 1468 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1469 break; 1470 case BUS_NOTIFY_BOUND_DRIVER: 1471 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1472 break; 1473 case BUS_NOTIFY_UNBIND_DRIVER: 1474 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1475 break; 1476 case BUS_NOTIFY_UNBOUND_DRIVER: 1477 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1478 break; 1479 } 1480 1481 if (group_action) 1482 blocking_notifier_call_chain(&group->notifier, 1483 group_action, dev); 1484 1485 iommu_group_put(group); 1486 return 0; 1487 } 1488 1489 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1490 { 1491 int err; 1492 struct notifier_block *nb; 1493 1494 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1495 if (!nb) 1496 return -ENOMEM; 1497 1498 nb->notifier_call = iommu_bus_notifier; 1499 1500 err = bus_register_notifier(bus, nb); 1501 if (err) 1502 goto out_free; 1503 1504 err = bus_for_each_dev(bus, NULL, NULL, add_iommu_group); 1505 if (err) 1506 goto out_err; 1507 1508 1509 return 0; 1510 1511 out_err: 1512 /* Clean up */ 1513 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1514 bus_unregister_notifier(bus, nb); 1515 1516 out_free: 1517 kfree(nb); 1518 1519 return err; 1520 } 1521 1522 /** 1523 * bus_set_iommu - set iommu-callbacks for the bus 1524 * @bus: bus. 1525 * @ops: the callbacks provided by the iommu-driver 1526 * 1527 * This function is called by an iommu driver to set the iommu methods 1528 * used for a particular bus. Drivers for devices on that bus can use 1529 * the iommu-api after these ops are registered. 1530 * This special function is needed because IOMMUs are usually devices on 1531 * the bus itself, so the iommu drivers are not initialized when the bus 1532 * is set up. With this function the iommu-driver can set the iommu-ops 1533 * afterwards. 1534 */ 1535 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1536 { 1537 int err; 1538 1539 if (bus->iommu_ops != NULL) 1540 return -EBUSY; 1541 1542 bus->iommu_ops = ops; 1543 1544 /* Do IOMMU specific setup for this bus-type */ 1545 err = iommu_bus_init(bus, ops); 1546 if (err) 1547 bus->iommu_ops = NULL; 1548 1549 return err; 1550 } 1551 EXPORT_SYMBOL_GPL(bus_set_iommu); 1552 1553 bool iommu_present(struct bus_type *bus) 1554 { 1555 return bus->iommu_ops != NULL; 1556 } 1557 EXPORT_SYMBOL_GPL(iommu_present); 1558 1559 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1560 { 1561 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1562 return false; 1563 1564 return bus->iommu_ops->capable(cap); 1565 } 1566 EXPORT_SYMBOL_GPL(iommu_capable); 1567 1568 /** 1569 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1570 * @domain: iommu domain 1571 * @handler: fault handler 1572 * @token: user data, will be passed back to the fault handler 1573 * 1574 * This function should be used by IOMMU users which want to be notified 1575 * whenever an IOMMU fault happens. 1576 * 1577 * The fault handler itself should return 0 on success, and an appropriate 1578 * error code otherwise. 1579 */ 1580 void iommu_set_fault_handler(struct iommu_domain *domain, 1581 iommu_fault_handler_t handler, 1582 void *token) 1583 { 1584 BUG_ON(!domain); 1585 1586 domain->handler = handler; 1587 domain->handler_token = token; 1588 } 1589 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1590 1591 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1592 unsigned type) 1593 { 1594 struct iommu_domain *domain; 1595 1596 if (bus == NULL || bus->iommu_ops == NULL) 1597 return NULL; 1598 1599 domain = bus->iommu_ops->domain_alloc(type); 1600 if (!domain) 1601 return NULL; 1602 1603 domain->ops = bus->iommu_ops; 1604 domain->type = type; 1605 /* Assume all sizes by default; the driver may override this later */ 1606 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1607 1608 return domain; 1609 } 1610 1611 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1612 { 1613 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1614 } 1615 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1616 1617 void iommu_domain_free(struct iommu_domain *domain) 1618 { 1619 domain->ops->domain_free(domain); 1620 } 1621 EXPORT_SYMBOL_GPL(iommu_domain_free); 1622 1623 static int __iommu_attach_device(struct iommu_domain *domain, 1624 struct device *dev) 1625 { 1626 int ret; 1627 if ((domain->ops->is_attach_deferred != NULL) && 1628 domain->ops->is_attach_deferred(domain, dev)) 1629 return 0; 1630 1631 if (unlikely(domain->ops->attach_dev == NULL)) 1632 return -ENODEV; 1633 1634 ret = domain->ops->attach_dev(domain, dev); 1635 if (!ret) 1636 trace_attach_device_to_domain(dev); 1637 return ret; 1638 } 1639 1640 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1641 { 1642 struct iommu_group *group; 1643 int ret; 1644 1645 group = iommu_group_get(dev); 1646 if (!group) 1647 return -ENODEV; 1648 1649 /* 1650 * Lock the group to make sure the device-count doesn't 1651 * change while we are attaching 1652 */ 1653 mutex_lock(&group->mutex); 1654 ret = -EINVAL; 1655 if (iommu_group_device_count(group) != 1) 1656 goto out_unlock; 1657 1658 ret = __iommu_attach_group(domain, group); 1659 1660 out_unlock: 1661 mutex_unlock(&group->mutex); 1662 iommu_group_put(group); 1663 1664 return ret; 1665 } 1666 EXPORT_SYMBOL_GPL(iommu_attach_device); 1667 1668 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev, 1669 struct iommu_cache_invalidate_info *inv_info) 1670 { 1671 if (unlikely(!domain->ops->cache_invalidate)) 1672 return -ENODEV; 1673 1674 return domain->ops->cache_invalidate(domain, dev, inv_info); 1675 } 1676 EXPORT_SYMBOL_GPL(iommu_cache_invalidate); 1677 1678 int iommu_sva_bind_gpasid(struct iommu_domain *domain, 1679 struct device *dev, struct iommu_gpasid_bind_data *data) 1680 { 1681 if (unlikely(!domain->ops->sva_bind_gpasid)) 1682 return -ENODEV; 1683 1684 return domain->ops->sva_bind_gpasid(domain, dev, data); 1685 } 1686 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid); 1687 1688 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 1689 ioasid_t pasid) 1690 { 1691 if (unlikely(!domain->ops->sva_unbind_gpasid)) 1692 return -ENODEV; 1693 1694 return domain->ops->sva_unbind_gpasid(dev, pasid); 1695 } 1696 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid); 1697 1698 static void __iommu_detach_device(struct iommu_domain *domain, 1699 struct device *dev) 1700 { 1701 if ((domain->ops->is_attach_deferred != NULL) && 1702 domain->ops->is_attach_deferred(domain, dev)) 1703 return; 1704 1705 if (unlikely(domain->ops->detach_dev == NULL)) 1706 return; 1707 1708 domain->ops->detach_dev(domain, dev); 1709 trace_detach_device_from_domain(dev); 1710 } 1711 1712 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1713 { 1714 struct iommu_group *group; 1715 1716 group = iommu_group_get(dev); 1717 if (!group) 1718 return; 1719 1720 mutex_lock(&group->mutex); 1721 if (iommu_group_device_count(group) != 1) { 1722 WARN_ON(1); 1723 goto out_unlock; 1724 } 1725 1726 __iommu_detach_group(domain, group); 1727 1728 out_unlock: 1729 mutex_unlock(&group->mutex); 1730 iommu_group_put(group); 1731 } 1732 EXPORT_SYMBOL_GPL(iommu_detach_device); 1733 1734 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 1735 { 1736 struct iommu_domain *domain; 1737 struct iommu_group *group; 1738 1739 group = iommu_group_get(dev); 1740 if (!group) 1741 return NULL; 1742 1743 domain = group->domain; 1744 1745 iommu_group_put(group); 1746 1747 return domain; 1748 } 1749 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 1750 1751 /* 1752 * For IOMMU_DOMAIN_DMA implementations which already provide their own 1753 * guarantees that the group and its default domain are valid and correct. 1754 */ 1755 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 1756 { 1757 return dev->iommu_group->default_domain; 1758 } 1759 1760 /* 1761 * IOMMU groups are really the natural working unit of the IOMMU, but 1762 * the IOMMU API works on domains and devices. Bridge that gap by 1763 * iterating over the devices in a group. Ideally we'd have a single 1764 * device which represents the requestor ID of the group, but we also 1765 * allow IOMMU drivers to create policy defined minimum sets, where 1766 * the physical hardware may be able to distiguish members, but we 1767 * wish to group them at a higher level (ex. untrusted multi-function 1768 * PCI devices). Thus we attach each device. 1769 */ 1770 static int iommu_group_do_attach_device(struct device *dev, void *data) 1771 { 1772 struct iommu_domain *domain = data; 1773 1774 return __iommu_attach_device(domain, dev); 1775 } 1776 1777 static int __iommu_attach_group(struct iommu_domain *domain, 1778 struct iommu_group *group) 1779 { 1780 int ret; 1781 1782 if (group->default_domain && group->domain != group->default_domain) 1783 return -EBUSY; 1784 1785 ret = __iommu_group_for_each_dev(group, domain, 1786 iommu_group_do_attach_device); 1787 if (ret == 0) 1788 group->domain = domain; 1789 1790 return ret; 1791 } 1792 1793 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 1794 { 1795 int ret; 1796 1797 mutex_lock(&group->mutex); 1798 ret = __iommu_attach_group(domain, group); 1799 mutex_unlock(&group->mutex); 1800 1801 return ret; 1802 } 1803 EXPORT_SYMBOL_GPL(iommu_attach_group); 1804 1805 static int iommu_group_do_detach_device(struct device *dev, void *data) 1806 { 1807 struct iommu_domain *domain = data; 1808 1809 __iommu_detach_device(domain, dev); 1810 1811 return 0; 1812 } 1813 1814 static void __iommu_detach_group(struct iommu_domain *domain, 1815 struct iommu_group *group) 1816 { 1817 int ret; 1818 1819 if (!group->default_domain) { 1820 __iommu_group_for_each_dev(group, domain, 1821 iommu_group_do_detach_device); 1822 group->domain = NULL; 1823 return; 1824 } 1825 1826 if (group->domain == group->default_domain) 1827 return; 1828 1829 /* Detach by re-attaching to the default domain */ 1830 ret = __iommu_group_for_each_dev(group, group->default_domain, 1831 iommu_group_do_attach_device); 1832 if (ret != 0) 1833 WARN_ON(1); 1834 else 1835 group->domain = group->default_domain; 1836 } 1837 1838 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 1839 { 1840 mutex_lock(&group->mutex); 1841 __iommu_detach_group(domain, group); 1842 mutex_unlock(&group->mutex); 1843 } 1844 EXPORT_SYMBOL_GPL(iommu_detach_group); 1845 1846 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 1847 { 1848 if (unlikely(domain->ops->iova_to_phys == NULL)) 1849 return 0; 1850 1851 return domain->ops->iova_to_phys(domain, iova); 1852 } 1853 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 1854 1855 static size_t iommu_pgsize(struct iommu_domain *domain, 1856 unsigned long addr_merge, size_t size) 1857 { 1858 unsigned int pgsize_idx; 1859 size_t pgsize; 1860 1861 /* Max page size that still fits into 'size' */ 1862 pgsize_idx = __fls(size); 1863 1864 /* need to consider alignment requirements ? */ 1865 if (likely(addr_merge)) { 1866 /* Max page size allowed by address */ 1867 unsigned int align_pgsize_idx = __ffs(addr_merge); 1868 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 1869 } 1870 1871 /* build a mask of acceptable page sizes */ 1872 pgsize = (1UL << (pgsize_idx + 1)) - 1; 1873 1874 /* throw away page sizes not supported by the hardware */ 1875 pgsize &= domain->pgsize_bitmap; 1876 1877 /* make sure we're still sane */ 1878 BUG_ON(!pgsize); 1879 1880 /* pick the biggest page */ 1881 pgsize_idx = __fls(pgsize); 1882 pgsize = 1UL << pgsize_idx; 1883 1884 return pgsize; 1885 } 1886 1887 int __iommu_map(struct iommu_domain *domain, unsigned long iova, 1888 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 1889 { 1890 const struct iommu_ops *ops = domain->ops; 1891 unsigned long orig_iova = iova; 1892 unsigned int min_pagesz; 1893 size_t orig_size = size; 1894 phys_addr_t orig_paddr = paddr; 1895 int ret = 0; 1896 1897 if (unlikely(ops->map == NULL || 1898 domain->pgsize_bitmap == 0UL)) 1899 return -ENODEV; 1900 1901 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1902 return -EINVAL; 1903 1904 /* find out the minimum page size supported */ 1905 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1906 1907 /* 1908 * both the virtual address and the physical one, as well as 1909 * the size of the mapping, must be aligned (at least) to the 1910 * size of the smallest page supported by the hardware 1911 */ 1912 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1913 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1914 iova, &paddr, size, min_pagesz); 1915 return -EINVAL; 1916 } 1917 1918 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1919 1920 while (size) { 1921 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1922 1923 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1924 iova, &paddr, pgsize); 1925 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 1926 1927 if (ret) 1928 break; 1929 1930 iova += pgsize; 1931 paddr += pgsize; 1932 size -= pgsize; 1933 } 1934 1935 if (ops->iotlb_sync_map) 1936 ops->iotlb_sync_map(domain); 1937 1938 /* unroll mapping in case something went wrong */ 1939 if (ret) 1940 iommu_unmap(domain, orig_iova, orig_size - size); 1941 else 1942 trace_map(orig_iova, orig_paddr, orig_size); 1943 1944 return ret; 1945 } 1946 1947 int iommu_map(struct iommu_domain *domain, unsigned long iova, 1948 phys_addr_t paddr, size_t size, int prot) 1949 { 1950 might_sleep(); 1951 return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 1952 } 1953 EXPORT_SYMBOL_GPL(iommu_map); 1954 1955 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 1956 phys_addr_t paddr, size_t size, int prot) 1957 { 1958 return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 1959 } 1960 EXPORT_SYMBOL_GPL(iommu_map_atomic); 1961 1962 static size_t __iommu_unmap(struct iommu_domain *domain, 1963 unsigned long iova, size_t size, 1964 struct iommu_iotlb_gather *iotlb_gather) 1965 { 1966 const struct iommu_ops *ops = domain->ops; 1967 size_t unmapped_page, unmapped = 0; 1968 unsigned long orig_iova = iova; 1969 unsigned int min_pagesz; 1970 1971 if (unlikely(ops->unmap == NULL || 1972 domain->pgsize_bitmap == 0UL)) 1973 return 0; 1974 1975 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1976 return 0; 1977 1978 /* find out the minimum page size supported */ 1979 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1980 1981 /* 1982 * The virtual address, as well as the size of the mapping, must be 1983 * aligned (at least) to the size of the smallest page supported 1984 * by the hardware 1985 */ 1986 if (!IS_ALIGNED(iova | size, min_pagesz)) { 1987 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 1988 iova, size, min_pagesz); 1989 return 0; 1990 } 1991 1992 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 1993 1994 /* 1995 * Keep iterating until we either unmap 'size' bytes (or more) 1996 * or we hit an area that isn't mapped. 1997 */ 1998 while (unmapped < size) { 1999 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 2000 2001 unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather); 2002 if (!unmapped_page) 2003 break; 2004 2005 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2006 iova, unmapped_page); 2007 2008 iova += unmapped_page; 2009 unmapped += unmapped_page; 2010 } 2011 2012 trace_unmap(orig_iova, size, unmapped); 2013 return unmapped; 2014 } 2015 2016 size_t iommu_unmap(struct iommu_domain *domain, 2017 unsigned long iova, size_t size) 2018 { 2019 struct iommu_iotlb_gather iotlb_gather; 2020 size_t ret; 2021 2022 iommu_iotlb_gather_init(&iotlb_gather); 2023 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2024 iommu_tlb_sync(domain, &iotlb_gather); 2025 2026 return ret; 2027 } 2028 EXPORT_SYMBOL_GPL(iommu_unmap); 2029 2030 size_t iommu_unmap_fast(struct iommu_domain *domain, 2031 unsigned long iova, size_t size, 2032 struct iommu_iotlb_gather *iotlb_gather) 2033 { 2034 return __iommu_unmap(domain, iova, size, iotlb_gather); 2035 } 2036 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2037 2038 size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2039 struct scatterlist *sg, unsigned int nents, int prot, 2040 gfp_t gfp) 2041 { 2042 size_t len = 0, mapped = 0; 2043 phys_addr_t start; 2044 unsigned int i = 0; 2045 int ret; 2046 2047 while (i <= nents) { 2048 phys_addr_t s_phys = sg_phys(sg); 2049 2050 if (len && s_phys != start + len) { 2051 ret = __iommu_map(domain, iova + mapped, start, 2052 len, prot, gfp); 2053 2054 if (ret) 2055 goto out_err; 2056 2057 mapped += len; 2058 len = 0; 2059 } 2060 2061 if (len) { 2062 len += sg->length; 2063 } else { 2064 len = sg->length; 2065 start = s_phys; 2066 } 2067 2068 if (++i < nents) 2069 sg = sg_next(sg); 2070 } 2071 2072 return mapped; 2073 2074 out_err: 2075 /* undo mappings already done */ 2076 iommu_unmap(domain, iova, mapped); 2077 2078 return 0; 2079 2080 } 2081 2082 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2083 struct scatterlist *sg, unsigned int nents, int prot) 2084 { 2085 might_sleep(); 2086 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2087 } 2088 EXPORT_SYMBOL_GPL(iommu_map_sg); 2089 2090 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2091 struct scatterlist *sg, unsigned int nents, int prot) 2092 { 2093 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2094 } 2095 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic); 2096 2097 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 2098 phys_addr_t paddr, u64 size, int prot) 2099 { 2100 if (unlikely(domain->ops->domain_window_enable == NULL)) 2101 return -ENODEV; 2102 2103 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 2104 prot); 2105 } 2106 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 2107 2108 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 2109 { 2110 if (unlikely(domain->ops->domain_window_disable == NULL)) 2111 return; 2112 2113 return domain->ops->domain_window_disable(domain, wnd_nr); 2114 } 2115 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 2116 2117 /** 2118 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2119 * @domain: the iommu domain where the fault has happened 2120 * @dev: the device where the fault has happened 2121 * @iova: the faulting address 2122 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2123 * 2124 * This function should be called by the low-level IOMMU implementations 2125 * whenever IOMMU faults happen, to allow high-level users, that are 2126 * interested in such events, to know about them. 2127 * 2128 * This event may be useful for several possible use cases: 2129 * - mere logging of the event 2130 * - dynamic TLB/PTE loading 2131 * - if restarting of the faulting device is required 2132 * 2133 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2134 * PTE/TLB loading will one day be supported, implementations will be able 2135 * to tell whether it succeeded or not according to this return value). 2136 * 2137 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2138 * (though fault handlers can also return -ENOSYS, in case they want to 2139 * elicit the default behavior of the IOMMU drivers). 2140 */ 2141 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2142 unsigned long iova, int flags) 2143 { 2144 int ret = -ENOSYS; 2145 2146 /* 2147 * if upper layers showed interest and installed a fault handler, 2148 * invoke it. 2149 */ 2150 if (domain->handler) 2151 ret = domain->handler(domain, dev, iova, flags, 2152 domain->handler_token); 2153 2154 trace_io_page_fault(dev, iova, flags); 2155 return ret; 2156 } 2157 EXPORT_SYMBOL_GPL(report_iommu_fault); 2158 2159 static int __init iommu_init(void) 2160 { 2161 iommu_group_kset = kset_create_and_add("iommu_groups", 2162 NULL, kernel_kobj); 2163 BUG_ON(!iommu_group_kset); 2164 2165 iommu_debugfs_setup(); 2166 2167 return 0; 2168 } 2169 core_initcall(iommu_init); 2170 2171 int iommu_domain_get_attr(struct iommu_domain *domain, 2172 enum iommu_attr attr, void *data) 2173 { 2174 struct iommu_domain_geometry *geometry; 2175 bool *paging; 2176 int ret = 0; 2177 2178 switch (attr) { 2179 case DOMAIN_ATTR_GEOMETRY: 2180 geometry = data; 2181 *geometry = domain->geometry; 2182 2183 break; 2184 case DOMAIN_ATTR_PAGING: 2185 paging = data; 2186 *paging = (domain->pgsize_bitmap != 0UL); 2187 break; 2188 default: 2189 if (!domain->ops->domain_get_attr) 2190 return -EINVAL; 2191 2192 ret = domain->ops->domain_get_attr(domain, attr, data); 2193 } 2194 2195 return ret; 2196 } 2197 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 2198 2199 int iommu_domain_set_attr(struct iommu_domain *domain, 2200 enum iommu_attr attr, void *data) 2201 { 2202 int ret = 0; 2203 2204 switch (attr) { 2205 default: 2206 if (domain->ops->domain_set_attr == NULL) 2207 return -EINVAL; 2208 2209 ret = domain->ops->domain_set_attr(domain, attr, data); 2210 } 2211 2212 return ret; 2213 } 2214 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 2215 2216 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2217 { 2218 const struct iommu_ops *ops = dev->bus->iommu_ops; 2219 2220 if (ops && ops->get_resv_regions) 2221 ops->get_resv_regions(dev, list); 2222 } 2223 2224 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2225 { 2226 const struct iommu_ops *ops = dev->bus->iommu_ops; 2227 2228 if (ops && ops->put_resv_regions) 2229 ops->put_resv_regions(dev, list); 2230 } 2231 2232 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2233 size_t length, int prot, 2234 enum iommu_resv_type type) 2235 { 2236 struct iommu_resv_region *region; 2237 2238 region = kzalloc(sizeof(*region), GFP_KERNEL); 2239 if (!region) 2240 return NULL; 2241 2242 INIT_LIST_HEAD(®ion->list); 2243 region->start = start; 2244 region->length = length; 2245 region->prot = prot; 2246 region->type = type; 2247 return region; 2248 } 2249 2250 static int 2251 request_default_domain_for_dev(struct device *dev, unsigned long type) 2252 { 2253 struct iommu_domain *domain; 2254 struct iommu_group *group; 2255 int ret; 2256 2257 /* Device must already be in a group before calling this function */ 2258 group = iommu_group_get(dev); 2259 if (!group) 2260 return -EINVAL; 2261 2262 mutex_lock(&group->mutex); 2263 2264 ret = 0; 2265 if (group->default_domain && group->default_domain->type == type) 2266 goto out; 2267 2268 /* Don't change mappings of existing devices */ 2269 ret = -EBUSY; 2270 if (iommu_group_device_count(group) != 1) 2271 goto out; 2272 2273 ret = -ENOMEM; 2274 domain = __iommu_domain_alloc(dev->bus, type); 2275 if (!domain) 2276 goto out; 2277 2278 /* Attach the device to the domain */ 2279 ret = __iommu_attach_group(domain, group); 2280 if (ret) { 2281 iommu_domain_free(domain); 2282 goto out; 2283 } 2284 2285 iommu_group_create_direct_mappings(group, dev); 2286 2287 /* Make the domain the default for this group */ 2288 if (group->default_domain) 2289 iommu_domain_free(group->default_domain); 2290 group->default_domain = domain; 2291 2292 dev_info(dev, "Using iommu %s mapping\n", 2293 type == IOMMU_DOMAIN_DMA ? "dma" : "direct"); 2294 2295 ret = 0; 2296 out: 2297 mutex_unlock(&group->mutex); 2298 iommu_group_put(group); 2299 2300 return ret; 2301 } 2302 2303 /* Request that a device is direct mapped by the IOMMU */ 2304 int iommu_request_dm_for_dev(struct device *dev) 2305 { 2306 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_IDENTITY); 2307 } 2308 2309 /* Request that a device can't be direct mapped by the IOMMU */ 2310 int iommu_request_dma_domain_for_dev(struct device *dev) 2311 { 2312 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_DMA); 2313 } 2314 2315 void iommu_set_default_passthrough(bool cmd_line) 2316 { 2317 if (cmd_line) 2318 iommu_set_cmd_line_dma_api(); 2319 2320 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2321 } 2322 2323 void iommu_set_default_translated(bool cmd_line) 2324 { 2325 if (cmd_line) 2326 iommu_set_cmd_line_dma_api(); 2327 2328 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2329 } 2330 2331 bool iommu_default_passthrough(void) 2332 { 2333 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2334 } 2335 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2336 2337 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2338 { 2339 const struct iommu_ops *ops = NULL; 2340 struct iommu_device *iommu; 2341 2342 spin_lock(&iommu_device_lock); 2343 list_for_each_entry(iommu, &iommu_device_list, list) 2344 if (iommu->fwnode == fwnode) { 2345 ops = iommu->ops; 2346 break; 2347 } 2348 spin_unlock(&iommu_device_lock); 2349 return ops; 2350 } 2351 2352 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2353 const struct iommu_ops *ops) 2354 { 2355 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2356 2357 if (fwspec) 2358 return ops == fwspec->ops ? 0 : -EINVAL; 2359 2360 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL); 2361 if (!fwspec) 2362 return -ENOMEM; 2363 2364 of_node_get(to_of_node(iommu_fwnode)); 2365 fwspec->iommu_fwnode = iommu_fwnode; 2366 fwspec->ops = ops; 2367 dev_iommu_fwspec_set(dev, fwspec); 2368 return 0; 2369 } 2370 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2371 2372 void iommu_fwspec_free(struct device *dev) 2373 { 2374 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2375 2376 if (fwspec) { 2377 fwnode_handle_put(fwspec->iommu_fwnode); 2378 kfree(fwspec); 2379 dev_iommu_fwspec_set(dev, NULL); 2380 } 2381 } 2382 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2383 2384 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2385 { 2386 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2387 size_t size; 2388 int i; 2389 2390 if (!fwspec) 2391 return -EINVAL; 2392 2393 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]); 2394 if (size > sizeof(*fwspec)) { 2395 fwspec = krealloc(fwspec, size, GFP_KERNEL); 2396 if (!fwspec) 2397 return -ENOMEM; 2398 2399 dev_iommu_fwspec_set(dev, fwspec); 2400 } 2401 2402 for (i = 0; i < num_ids; i++) 2403 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2404 2405 fwspec->num_ids += num_ids; 2406 return 0; 2407 } 2408 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2409 2410 /* 2411 * Per device IOMMU features. 2412 */ 2413 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat) 2414 { 2415 const struct iommu_ops *ops = dev->bus->iommu_ops; 2416 2417 if (ops && ops->dev_has_feat) 2418 return ops->dev_has_feat(dev, feat); 2419 2420 return false; 2421 } 2422 EXPORT_SYMBOL_GPL(iommu_dev_has_feature); 2423 2424 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2425 { 2426 const struct iommu_ops *ops = dev->bus->iommu_ops; 2427 2428 if (ops && ops->dev_enable_feat) 2429 return ops->dev_enable_feat(dev, feat); 2430 2431 return -ENODEV; 2432 } 2433 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2434 2435 /* 2436 * The device drivers should do the necessary cleanups before calling this. 2437 * For example, before disabling the aux-domain feature, the device driver 2438 * should detach all aux-domains. Otherwise, this will return -EBUSY. 2439 */ 2440 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2441 { 2442 const struct iommu_ops *ops = dev->bus->iommu_ops; 2443 2444 if (ops && ops->dev_disable_feat) 2445 return ops->dev_disable_feat(dev, feat); 2446 2447 return -EBUSY; 2448 } 2449 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2450 2451 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat) 2452 { 2453 const struct iommu_ops *ops = dev->bus->iommu_ops; 2454 2455 if (ops && ops->dev_feat_enabled) 2456 return ops->dev_feat_enabled(dev, feat); 2457 2458 return false; 2459 } 2460 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled); 2461 2462 /* 2463 * Aux-domain specific attach/detach. 2464 * 2465 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns 2466 * true. Also, as long as domains are attached to a device through this 2467 * interface, any tries to call iommu_attach_device() should fail 2468 * (iommu_detach_device() can't fail, so we fail when trying to re-attach). 2469 * This should make us safe against a device being attached to a guest as a 2470 * whole while there are still pasid users on it (aux and sva). 2471 */ 2472 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev) 2473 { 2474 int ret = -ENODEV; 2475 2476 if (domain->ops->aux_attach_dev) 2477 ret = domain->ops->aux_attach_dev(domain, dev); 2478 2479 if (!ret) 2480 trace_attach_device_to_domain(dev); 2481 2482 return ret; 2483 } 2484 EXPORT_SYMBOL_GPL(iommu_aux_attach_device); 2485 2486 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev) 2487 { 2488 if (domain->ops->aux_detach_dev) { 2489 domain->ops->aux_detach_dev(domain, dev); 2490 trace_detach_device_from_domain(dev); 2491 } 2492 } 2493 EXPORT_SYMBOL_GPL(iommu_aux_detach_device); 2494 2495 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 2496 { 2497 int ret = -ENODEV; 2498 2499 if (domain->ops->aux_get_pasid) 2500 ret = domain->ops->aux_get_pasid(domain, dev); 2501 2502 return ret; 2503 } 2504 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid); 2505 2506 /** 2507 * iommu_sva_bind_device() - Bind a process address space to a device 2508 * @dev: the device 2509 * @mm: the mm to bind, caller must hold a reference to it 2510 * 2511 * Create a bond between device and address space, allowing the device to access 2512 * the mm using the returned PASID. If a bond already exists between @device and 2513 * @mm, it is returned and an additional reference is taken. Caller must call 2514 * iommu_sva_unbind_device() to release each reference. 2515 * 2516 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 2517 * initialize the required SVA features. 2518 * 2519 * On error, returns an ERR_PTR value. 2520 */ 2521 struct iommu_sva * 2522 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 2523 { 2524 struct iommu_group *group; 2525 struct iommu_sva *handle = ERR_PTR(-EINVAL); 2526 const struct iommu_ops *ops = dev->bus->iommu_ops; 2527 2528 if (!ops || !ops->sva_bind) 2529 return ERR_PTR(-ENODEV); 2530 2531 group = iommu_group_get(dev); 2532 if (!group) 2533 return ERR_PTR(-ENODEV); 2534 2535 /* Ensure device count and domain don't change while we're binding */ 2536 mutex_lock(&group->mutex); 2537 2538 /* 2539 * To keep things simple, SVA currently doesn't support IOMMU groups 2540 * with more than one device. Existing SVA-capable systems are not 2541 * affected by the problems that required IOMMU groups (lack of ACS 2542 * isolation, device ID aliasing and other hardware issues). 2543 */ 2544 if (iommu_group_device_count(group) != 1) 2545 goto out_unlock; 2546 2547 handle = ops->sva_bind(dev, mm, drvdata); 2548 2549 out_unlock: 2550 mutex_unlock(&group->mutex); 2551 iommu_group_put(group); 2552 2553 return handle; 2554 } 2555 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 2556 2557 /** 2558 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 2559 * @handle: the handle returned by iommu_sva_bind_device() 2560 * 2561 * Put reference to a bond between device and address space. The device should 2562 * not be issuing any more transaction for this PASID. All outstanding page 2563 * requests for this PASID must have been flushed to the IOMMU. 2564 * 2565 * Returns 0 on success, or an error value 2566 */ 2567 void iommu_sva_unbind_device(struct iommu_sva *handle) 2568 { 2569 struct iommu_group *group; 2570 struct device *dev = handle->dev; 2571 const struct iommu_ops *ops = dev->bus->iommu_ops; 2572 2573 if (!ops || !ops->sva_unbind) 2574 return; 2575 2576 group = iommu_group_get(dev); 2577 if (!group) 2578 return; 2579 2580 mutex_lock(&group->mutex); 2581 ops->sva_unbind(handle); 2582 mutex_unlock(&group->mutex); 2583 2584 iommu_group_put(group); 2585 } 2586 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 2587 2588 int iommu_sva_set_ops(struct iommu_sva *handle, 2589 const struct iommu_sva_ops *sva_ops) 2590 { 2591 if (handle->ops && handle->ops != sva_ops) 2592 return -EEXIST; 2593 2594 handle->ops = sva_ops; 2595 return 0; 2596 } 2597 EXPORT_SYMBOL_GPL(iommu_sva_set_ops); 2598 2599 int iommu_sva_get_pasid(struct iommu_sva *handle) 2600 { 2601 const struct iommu_ops *ops = handle->dev->bus->iommu_ops; 2602 2603 if (!ops || !ops->sva_get_pasid) 2604 return IOMMU_PASID_INVALID; 2605 2606 return ops->sva_get_pasid(handle); 2607 } 2608 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 2609