1 /* 2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 3 * Author: Joerg Roedel <joerg.roedel@amd.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19 #define pr_fmt(fmt) "%s: " fmt, __func__ 20 21 #include <linux/device.h> 22 #include <linux/kernel.h> 23 #include <linux/bug.h> 24 #include <linux/types.h> 25 #include <linux/module.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/iommu.h> 29 #include <linux/idr.h> 30 #include <linux/notifier.h> 31 #include <linux/err.h> 32 #include <linux/pci.h> 33 #include <trace/events/iommu.h> 34 35 static struct kset *iommu_group_kset; 36 static struct ida iommu_group_ida; 37 static struct mutex iommu_group_mutex; 38 39 struct iommu_callback_data { 40 const struct iommu_ops *ops; 41 }; 42 43 struct iommu_group { 44 struct kobject kobj; 45 struct kobject *devices_kobj; 46 struct list_head devices; 47 struct mutex mutex; 48 struct blocking_notifier_head notifier; 49 void *iommu_data; 50 void (*iommu_data_release)(void *iommu_data); 51 char *name; 52 int id; 53 }; 54 55 struct iommu_device { 56 struct list_head list; 57 struct device *dev; 58 char *name; 59 }; 60 61 struct iommu_group_attribute { 62 struct attribute attr; 63 ssize_t (*show)(struct iommu_group *group, char *buf); 64 ssize_t (*store)(struct iommu_group *group, 65 const char *buf, size_t count); 66 }; 67 68 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 69 struct iommu_group_attribute iommu_group_attr_##_name = \ 70 __ATTR(_name, _mode, _show, _store) 71 72 #define to_iommu_group_attr(_attr) \ 73 container_of(_attr, struct iommu_group_attribute, attr) 74 #define to_iommu_group(_kobj) \ 75 container_of(_kobj, struct iommu_group, kobj) 76 77 static ssize_t iommu_group_attr_show(struct kobject *kobj, 78 struct attribute *__attr, char *buf) 79 { 80 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 81 struct iommu_group *group = to_iommu_group(kobj); 82 ssize_t ret = -EIO; 83 84 if (attr->show) 85 ret = attr->show(group, buf); 86 return ret; 87 } 88 89 static ssize_t iommu_group_attr_store(struct kobject *kobj, 90 struct attribute *__attr, 91 const char *buf, size_t count) 92 { 93 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 94 struct iommu_group *group = to_iommu_group(kobj); 95 ssize_t ret = -EIO; 96 97 if (attr->store) 98 ret = attr->store(group, buf, count); 99 return ret; 100 } 101 102 static const struct sysfs_ops iommu_group_sysfs_ops = { 103 .show = iommu_group_attr_show, 104 .store = iommu_group_attr_store, 105 }; 106 107 static int iommu_group_create_file(struct iommu_group *group, 108 struct iommu_group_attribute *attr) 109 { 110 return sysfs_create_file(&group->kobj, &attr->attr); 111 } 112 113 static void iommu_group_remove_file(struct iommu_group *group, 114 struct iommu_group_attribute *attr) 115 { 116 sysfs_remove_file(&group->kobj, &attr->attr); 117 } 118 119 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 120 { 121 return sprintf(buf, "%s\n", group->name); 122 } 123 124 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 125 126 static void iommu_group_release(struct kobject *kobj) 127 { 128 struct iommu_group *group = to_iommu_group(kobj); 129 130 if (group->iommu_data_release) 131 group->iommu_data_release(group->iommu_data); 132 133 mutex_lock(&iommu_group_mutex); 134 ida_remove(&iommu_group_ida, group->id); 135 mutex_unlock(&iommu_group_mutex); 136 137 kfree(group->name); 138 kfree(group); 139 } 140 141 static struct kobj_type iommu_group_ktype = { 142 .sysfs_ops = &iommu_group_sysfs_ops, 143 .release = iommu_group_release, 144 }; 145 146 /** 147 * iommu_group_alloc - Allocate a new group 148 * @name: Optional name to associate with group, visible in sysfs 149 * 150 * This function is called by an iommu driver to allocate a new iommu 151 * group. The iommu group represents the minimum granularity of the iommu. 152 * Upon successful return, the caller holds a reference to the supplied 153 * group in order to hold the group until devices are added. Use 154 * iommu_group_put() to release this extra reference count, allowing the 155 * group to be automatically reclaimed once it has no devices or external 156 * references. 157 */ 158 struct iommu_group *iommu_group_alloc(void) 159 { 160 struct iommu_group *group; 161 int ret; 162 163 group = kzalloc(sizeof(*group), GFP_KERNEL); 164 if (!group) 165 return ERR_PTR(-ENOMEM); 166 167 group->kobj.kset = iommu_group_kset; 168 mutex_init(&group->mutex); 169 INIT_LIST_HEAD(&group->devices); 170 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 171 172 mutex_lock(&iommu_group_mutex); 173 174 again: 175 if (unlikely(0 == ida_pre_get(&iommu_group_ida, GFP_KERNEL))) { 176 kfree(group); 177 mutex_unlock(&iommu_group_mutex); 178 return ERR_PTR(-ENOMEM); 179 } 180 181 if (-EAGAIN == ida_get_new(&iommu_group_ida, &group->id)) 182 goto again; 183 184 mutex_unlock(&iommu_group_mutex); 185 186 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 187 NULL, "%d", group->id); 188 if (ret) { 189 mutex_lock(&iommu_group_mutex); 190 ida_remove(&iommu_group_ida, group->id); 191 mutex_unlock(&iommu_group_mutex); 192 kfree(group); 193 return ERR_PTR(ret); 194 } 195 196 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 197 if (!group->devices_kobj) { 198 kobject_put(&group->kobj); /* triggers .release & free */ 199 return ERR_PTR(-ENOMEM); 200 } 201 202 /* 203 * The devices_kobj holds a reference on the group kobject, so 204 * as long as that exists so will the group. We can therefore 205 * use the devices_kobj for reference counting. 206 */ 207 kobject_put(&group->kobj); 208 209 return group; 210 } 211 EXPORT_SYMBOL_GPL(iommu_group_alloc); 212 213 struct iommu_group *iommu_group_get_by_id(int id) 214 { 215 struct kobject *group_kobj; 216 struct iommu_group *group; 217 const char *name; 218 219 if (!iommu_group_kset) 220 return NULL; 221 222 name = kasprintf(GFP_KERNEL, "%d", id); 223 if (!name) 224 return NULL; 225 226 group_kobj = kset_find_obj(iommu_group_kset, name); 227 kfree(name); 228 229 if (!group_kobj) 230 return NULL; 231 232 group = container_of(group_kobj, struct iommu_group, kobj); 233 BUG_ON(group->id != id); 234 235 kobject_get(group->devices_kobj); 236 kobject_put(&group->kobj); 237 238 return group; 239 } 240 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 241 242 /** 243 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 244 * @group: the group 245 * 246 * iommu drivers can store data in the group for use when doing iommu 247 * operations. This function provides a way to retrieve it. Caller 248 * should hold a group reference. 249 */ 250 void *iommu_group_get_iommudata(struct iommu_group *group) 251 { 252 return group->iommu_data; 253 } 254 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 255 256 /** 257 * iommu_group_set_iommudata - set iommu_data for a group 258 * @group: the group 259 * @iommu_data: new data 260 * @release: release function for iommu_data 261 * 262 * iommu drivers can store data in the group for use when doing iommu 263 * operations. This function provides a way to set the data after 264 * the group has been allocated. Caller should hold a group reference. 265 */ 266 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 267 void (*release)(void *iommu_data)) 268 { 269 group->iommu_data = iommu_data; 270 group->iommu_data_release = release; 271 } 272 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 273 274 /** 275 * iommu_group_set_name - set name for a group 276 * @group: the group 277 * @name: name 278 * 279 * Allow iommu driver to set a name for a group. When set it will 280 * appear in a name attribute file under the group in sysfs. 281 */ 282 int iommu_group_set_name(struct iommu_group *group, const char *name) 283 { 284 int ret; 285 286 if (group->name) { 287 iommu_group_remove_file(group, &iommu_group_attr_name); 288 kfree(group->name); 289 group->name = NULL; 290 if (!name) 291 return 0; 292 } 293 294 group->name = kstrdup(name, GFP_KERNEL); 295 if (!group->name) 296 return -ENOMEM; 297 298 ret = iommu_group_create_file(group, &iommu_group_attr_name); 299 if (ret) { 300 kfree(group->name); 301 group->name = NULL; 302 return ret; 303 } 304 305 return 0; 306 } 307 EXPORT_SYMBOL_GPL(iommu_group_set_name); 308 309 /** 310 * iommu_group_add_device - add a device to an iommu group 311 * @group: the group into which to add the device (reference should be held) 312 * @dev: the device 313 * 314 * This function is called by an iommu driver to add a device into a 315 * group. Adding a device increments the group reference count. 316 */ 317 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 318 { 319 int ret, i = 0; 320 struct iommu_device *device; 321 322 device = kzalloc(sizeof(*device), GFP_KERNEL); 323 if (!device) 324 return -ENOMEM; 325 326 device->dev = dev; 327 328 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 329 if (ret) { 330 kfree(device); 331 return ret; 332 } 333 334 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 335 rename: 336 if (!device->name) { 337 sysfs_remove_link(&dev->kobj, "iommu_group"); 338 kfree(device); 339 return -ENOMEM; 340 } 341 342 ret = sysfs_create_link_nowarn(group->devices_kobj, 343 &dev->kobj, device->name); 344 if (ret) { 345 kfree(device->name); 346 if (ret == -EEXIST && i >= 0) { 347 /* 348 * Account for the slim chance of collision 349 * and append an instance to the name. 350 */ 351 device->name = kasprintf(GFP_KERNEL, "%s.%d", 352 kobject_name(&dev->kobj), i++); 353 goto rename; 354 } 355 356 sysfs_remove_link(&dev->kobj, "iommu_group"); 357 kfree(device); 358 return ret; 359 } 360 361 kobject_get(group->devices_kobj); 362 363 dev->iommu_group = group; 364 365 mutex_lock(&group->mutex); 366 list_add_tail(&device->list, &group->devices); 367 mutex_unlock(&group->mutex); 368 369 /* Notify any listeners about change to group. */ 370 blocking_notifier_call_chain(&group->notifier, 371 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 372 373 trace_add_device_to_group(group->id, dev); 374 return 0; 375 } 376 EXPORT_SYMBOL_GPL(iommu_group_add_device); 377 378 /** 379 * iommu_group_remove_device - remove a device from it's current group 380 * @dev: device to be removed 381 * 382 * This function is called by an iommu driver to remove the device from 383 * it's current group. This decrements the iommu group reference count. 384 */ 385 void iommu_group_remove_device(struct device *dev) 386 { 387 struct iommu_group *group = dev->iommu_group; 388 struct iommu_device *tmp_device, *device = NULL; 389 390 /* Pre-notify listeners that a device is being removed. */ 391 blocking_notifier_call_chain(&group->notifier, 392 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 393 394 mutex_lock(&group->mutex); 395 list_for_each_entry(tmp_device, &group->devices, list) { 396 if (tmp_device->dev == dev) { 397 device = tmp_device; 398 list_del(&device->list); 399 break; 400 } 401 } 402 mutex_unlock(&group->mutex); 403 404 if (!device) 405 return; 406 407 sysfs_remove_link(group->devices_kobj, device->name); 408 sysfs_remove_link(&dev->kobj, "iommu_group"); 409 410 trace_remove_device_from_group(group->id, dev); 411 412 kfree(device->name); 413 kfree(device); 414 dev->iommu_group = NULL; 415 kobject_put(group->devices_kobj); 416 } 417 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 418 419 /** 420 * iommu_group_for_each_dev - iterate over each device in the group 421 * @group: the group 422 * @data: caller opaque data to be passed to callback function 423 * @fn: caller supplied callback function 424 * 425 * This function is called by group users to iterate over group devices. 426 * Callers should hold a reference count to the group during callback. 427 * The group->mutex is held across callbacks, which will block calls to 428 * iommu_group_add/remove_device. 429 */ 430 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 431 int (*fn)(struct device *, void *)) 432 { 433 struct iommu_device *device; 434 int ret = 0; 435 436 mutex_lock(&group->mutex); 437 list_for_each_entry(device, &group->devices, list) { 438 ret = fn(device->dev, data); 439 if (ret) 440 break; 441 } 442 mutex_unlock(&group->mutex); 443 return ret; 444 } 445 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 446 447 /** 448 * iommu_group_get - Return the group for a device and increment reference 449 * @dev: get the group that this device belongs to 450 * 451 * This function is called by iommu drivers and users to get the group 452 * for the specified device. If found, the group is returned and the group 453 * reference in incremented, else NULL. 454 */ 455 struct iommu_group *iommu_group_get(struct device *dev) 456 { 457 struct iommu_group *group = dev->iommu_group; 458 459 if (group) 460 kobject_get(group->devices_kobj); 461 462 return group; 463 } 464 EXPORT_SYMBOL_GPL(iommu_group_get); 465 466 /** 467 * iommu_group_put - Decrement group reference 468 * @group: the group to use 469 * 470 * This function is called by iommu drivers and users to release the 471 * iommu group. Once the reference count is zero, the group is released. 472 */ 473 void iommu_group_put(struct iommu_group *group) 474 { 475 if (group) 476 kobject_put(group->devices_kobj); 477 } 478 EXPORT_SYMBOL_GPL(iommu_group_put); 479 480 /** 481 * iommu_group_register_notifier - Register a notifier for group changes 482 * @group: the group to watch 483 * @nb: notifier block to signal 484 * 485 * This function allows iommu group users to track changes in a group. 486 * See include/linux/iommu.h for actions sent via this notifier. Caller 487 * should hold a reference to the group throughout notifier registration. 488 */ 489 int iommu_group_register_notifier(struct iommu_group *group, 490 struct notifier_block *nb) 491 { 492 return blocking_notifier_chain_register(&group->notifier, nb); 493 } 494 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 495 496 /** 497 * iommu_group_unregister_notifier - Unregister a notifier 498 * @group: the group to watch 499 * @nb: notifier block to signal 500 * 501 * Unregister a previously registered group notifier block. 502 */ 503 int iommu_group_unregister_notifier(struct iommu_group *group, 504 struct notifier_block *nb) 505 { 506 return blocking_notifier_chain_unregister(&group->notifier, nb); 507 } 508 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 509 510 /** 511 * iommu_group_id - Return ID for a group 512 * @group: the group to ID 513 * 514 * Return the unique ID for the group matching the sysfs group number. 515 */ 516 int iommu_group_id(struct iommu_group *group) 517 { 518 return group->id; 519 } 520 EXPORT_SYMBOL_GPL(iommu_group_id); 521 522 /* 523 * To consider a PCI device isolated, we require ACS to support Source 524 * Validation, Request Redirection, Completer Redirection, and Upstream 525 * Forwarding. This effectively means that devices cannot spoof their 526 * requester ID, requests and completions cannot be redirected, and all 527 * transactions are forwarded upstream, even as it passes through a 528 * bridge where the target device is downstream. 529 */ 530 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 531 532 struct group_for_pci_data { 533 struct pci_dev *pdev; 534 struct iommu_group *group; 535 }; 536 537 /* 538 * DMA alias iterator callback, return the last seen device. Stop and return 539 * the IOMMU group if we find one along the way. 540 */ 541 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 542 { 543 struct group_for_pci_data *data = opaque; 544 545 data->pdev = pdev; 546 data->group = iommu_group_get(&pdev->dev); 547 548 return data->group != NULL; 549 } 550 551 /* 552 * Use standard PCI bus topology, isolation features, and DMA alias quirks 553 * to find or create an IOMMU group for a device. 554 */ 555 static struct iommu_group *iommu_group_get_for_pci_dev(struct pci_dev *pdev) 556 { 557 struct group_for_pci_data data; 558 struct pci_bus *bus; 559 struct iommu_group *group = NULL; 560 struct pci_dev *tmp; 561 562 /* 563 * Find the upstream DMA alias for the device. A device must not 564 * be aliased due to topology in order to have its own IOMMU group. 565 * If we find an alias along the way that already belongs to a 566 * group, use it. 567 */ 568 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 569 return data.group; 570 571 pdev = data.pdev; 572 573 /* 574 * Continue upstream from the point of minimum IOMMU granularity 575 * due to aliases to the point where devices are protected from 576 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 577 * group, use it. 578 */ 579 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 580 if (!bus->self) 581 continue; 582 583 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 584 break; 585 586 pdev = bus->self; 587 588 group = iommu_group_get(&pdev->dev); 589 if (group) 590 return group; 591 } 592 593 /* 594 * Next we need to consider DMA alias quirks. If one device aliases 595 * to another, they should be grouped together. It's theoretically 596 * possible that aliases could create chains of devices where each 597 * device aliases another device. If we then factor in multifunction 598 * ACS grouping requirements, each alias could incorporate a new slot 599 * with multiple functions, each with aliases. This is all extremely 600 * unlikely as DMA alias quirks are typically only used for PCIe 601 * devices where we usually have a single slot per bus. Furthermore, 602 * the alias quirk is usually to another function within the slot 603 * (and ACS multifunction is not supported) or to a different slot 604 * that doesn't physically exist. The likely scenario is therefore 605 * that everything on the bus gets grouped together. To reduce the 606 * problem space, share the IOMMU group for all devices on the bus 607 * if a DMA alias quirk is present on the bus. 608 */ 609 tmp = NULL; 610 for_each_pci_dev(tmp) { 611 if (tmp->bus != pdev->bus || 612 !(tmp->dev_flags & PCI_DEV_FLAGS_DMA_ALIAS_DEVFN)) 613 continue; 614 615 pci_dev_put(tmp); 616 tmp = NULL; 617 618 /* We have an alias quirk, search for an existing group */ 619 for_each_pci_dev(tmp) { 620 struct iommu_group *group_tmp; 621 622 if (tmp->bus != pdev->bus) 623 continue; 624 625 group_tmp = iommu_group_get(&tmp->dev); 626 if (!group) { 627 group = group_tmp; 628 continue; 629 } 630 631 if (group_tmp) { 632 WARN_ON(group != group_tmp); 633 iommu_group_put(group_tmp); 634 } 635 } 636 637 return group ? group : iommu_group_alloc(); 638 } 639 640 /* 641 * Non-multifunction devices or multifunction devices supporting 642 * ACS get their own group. 643 */ 644 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 645 return iommu_group_alloc(); 646 647 /* 648 * Multifunction devices not supporting ACS share a group with other 649 * similar devices in the same slot. 650 */ 651 tmp = NULL; 652 for_each_pci_dev(tmp) { 653 if (tmp == pdev || tmp->bus != pdev->bus || 654 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 655 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 656 continue; 657 658 group = iommu_group_get(&tmp->dev); 659 if (group) { 660 pci_dev_put(tmp); 661 return group; 662 } 663 } 664 665 /* No shared group found, allocate new */ 666 return iommu_group_alloc(); 667 } 668 669 /** 670 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 671 * @dev: target device 672 * 673 * This function is intended to be called by IOMMU drivers and extended to 674 * support common, bus-defined algorithms when determining or creating the 675 * IOMMU group for a device. On success, the caller will hold a reference 676 * to the returned IOMMU group, which will already include the provided 677 * device. The reference should be released with iommu_group_put(). 678 */ 679 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 680 { 681 struct iommu_group *group; 682 int ret; 683 684 group = iommu_group_get(dev); 685 if (group) 686 return group; 687 688 if (!dev_is_pci(dev)) 689 return ERR_PTR(-EINVAL); 690 691 group = iommu_group_get_for_pci_dev(to_pci_dev(dev)); 692 693 if (IS_ERR(group)) 694 return group; 695 696 ret = iommu_group_add_device(group, dev); 697 if (ret) { 698 iommu_group_put(group); 699 return ERR_PTR(ret); 700 } 701 702 return group; 703 } 704 705 static int add_iommu_group(struct device *dev, void *data) 706 { 707 struct iommu_callback_data *cb = data; 708 const struct iommu_ops *ops = cb->ops; 709 710 if (!ops->add_device) 711 return -ENODEV; 712 713 WARN_ON(dev->iommu_group); 714 715 ops->add_device(dev); 716 717 return 0; 718 } 719 720 static int iommu_bus_notifier(struct notifier_block *nb, 721 unsigned long action, void *data) 722 { 723 struct device *dev = data; 724 const struct iommu_ops *ops = dev->bus->iommu_ops; 725 struct iommu_group *group; 726 unsigned long group_action = 0; 727 728 /* 729 * ADD/DEL call into iommu driver ops if provided, which may 730 * result in ADD/DEL notifiers to group->notifier 731 */ 732 if (action == BUS_NOTIFY_ADD_DEVICE) { 733 if (ops->add_device) 734 return ops->add_device(dev); 735 } else if (action == BUS_NOTIFY_DEL_DEVICE) { 736 if (ops->remove_device && dev->iommu_group) { 737 ops->remove_device(dev); 738 return 0; 739 } 740 } 741 742 /* 743 * Remaining BUS_NOTIFYs get filtered and republished to the 744 * group, if anyone is listening 745 */ 746 group = iommu_group_get(dev); 747 if (!group) 748 return 0; 749 750 switch (action) { 751 case BUS_NOTIFY_BIND_DRIVER: 752 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 753 break; 754 case BUS_NOTIFY_BOUND_DRIVER: 755 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 756 break; 757 case BUS_NOTIFY_UNBIND_DRIVER: 758 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 759 break; 760 case BUS_NOTIFY_UNBOUND_DRIVER: 761 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 762 break; 763 } 764 765 if (group_action) 766 blocking_notifier_call_chain(&group->notifier, 767 group_action, dev); 768 769 iommu_group_put(group); 770 return 0; 771 } 772 773 static struct notifier_block iommu_bus_nb = { 774 .notifier_call = iommu_bus_notifier, 775 }; 776 777 static void iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 778 { 779 struct iommu_callback_data cb = { 780 .ops = ops, 781 }; 782 783 bus_register_notifier(bus, &iommu_bus_nb); 784 bus_for_each_dev(bus, NULL, &cb, add_iommu_group); 785 } 786 787 /** 788 * bus_set_iommu - set iommu-callbacks for the bus 789 * @bus: bus. 790 * @ops: the callbacks provided by the iommu-driver 791 * 792 * This function is called by an iommu driver to set the iommu methods 793 * used for a particular bus. Drivers for devices on that bus can use 794 * the iommu-api after these ops are registered. 795 * This special function is needed because IOMMUs are usually devices on 796 * the bus itself, so the iommu drivers are not initialized when the bus 797 * is set up. With this function the iommu-driver can set the iommu-ops 798 * afterwards. 799 */ 800 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 801 { 802 if (bus->iommu_ops != NULL) 803 return -EBUSY; 804 805 bus->iommu_ops = ops; 806 807 /* Do IOMMU specific setup for this bus-type */ 808 iommu_bus_init(bus, ops); 809 810 return 0; 811 } 812 EXPORT_SYMBOL_GPL(bus_set_iommu); 813 814 bool iommu_present(struct bus_type *bus) 815 { 816 return bus->iommu_ops != NULL; 817 } 818 EXPORT_SYMBOL_GPL(iommu_present); 819 820 /** 821 * iommu_set_fault_handler() - set a fault handler for an iommu domain 822 * @domain: iommu domain 823 * @handler: fault handler 824 * @token: user data, will be passed back to the fault handler 825 * 826 * This function should be used by IOMMU users which want to be notified 827 * whenever an IOMMU fault happens. 828 * 829 * The fault handler itself should return 0 on success, and an appropriate 830 * error code otherwise. 831 */ 832 void iommu_set_fault_handler(struct iommu_domain *domain, 833 iommu_fault_handler_t handler, 834 void *token) 835 { 836 BUG_ON(!domain); 837 838 domain->handler = handler; 839 domain->handler_token = token; 840 } 841 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 842 843 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 844 { 845 struct iommu_domain *domain; 846 int ret; 847 848 if (bus == NULL || bus->iommu_ops == NULL) 849 return NULL; 850 851 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 852 if (!domain) 853 return NULL; 854 855 domain->ops = bus->iommu_ops; 856 857 ret = domain->ops->domain_init(domain); 858 if (ret) 859 goto out_free; 860 861 return domain; 862 863 out_free: 864 kfree(domain); 865 866 return NULL; 867 } 868 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 869 870 void iommu_domain_free(struct iommu_domain *domain) 871 { 872 if (likely(domain->ops->domain_destroy != NULL)) 873 domain->ops->domain_destroy(domain); 874 875 kfree(domain); 876 } 877 EXPORT_SYMBOL_GPL(iommu_domain_free); 878 879 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 880 { 881 int ret; 882 if (unlikely(domain->ops->attach_dev == NULL)) 883 return -ENODEV; 884 885 ret = domain->ops->attach_dev(domain, dev); 886 if (!ret) 887 trace_attach_device_to_domain(dev); 888 return ret; 889 } 890 EXPORT_SYMBOL_GPL(iommu_attach_device); 891 892 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 893 { 894 if (unlikely(domain->ops->detach_dev == NULL)) 895 return; 896 897 domain->ops->detach_dev(domain, dev); 898 trace_detach_device_from_domain(dev); 899 } 900 EXPORT_SYMBOL_GPL(iommu_detach_device); 901 902 /* 903 * IOMMU groups are really the natrual working unit of the IOMMU, but 904 * the IOMMU API works on domains and devices. Bridge that gap by 905 * iterating over the devices in a group. Ideally we'd have a single 906 * device which represents the requestor ID of the group, but we also 907 * allow IOMMU drivers to create policy defined minimum sets, where 908 * the physical hardware may be able to distiguish members, but we 909 * wish to group them at a higher level (ex. untrusted multi-function 910 * PCI devices). Thus we attach each device. 911 */ 912 static int iommu_group_do_attach_device(struct device *dev, void *data) 913 { 914 struct iommu_domain *domain = data; 915 916 return iommu_attach_device(domain, dev); 917 } 918 919 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 920 { 921 return iommu_group_for_each_dev(group, domain, 922 iommu_group_do_attach_device); 923 } 924 EXPORT_SYMBOL_GPL(iommu_attach_group); 925 926 static int iommu_group_do_detach_device(struct device *dev, void *data) 927 { 928 struct iommu_domain *domain = data; 929 930 iommu_detach_device(domain, dev); 931 932 return 0; 933 } 934 935 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 936 { 937 iommu_group_for_each_dev(group, domain, iommu_group_do_detach_device); 938 } 939 EXPORT_SYMBOL_GPL(iommu_detach_group); 940 941 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 942 { 943 if (unlikely(domain->ops->iova_to_phys == NULL)) 944 return 0; 945 946 return domain->ops->iova_to_phys(domain, iova); 947 } 948 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 949 950 int iommu_domain_has_cap(struct iommu_domain *domain, 951 unsigned long cap) 952 { 953 if (unlikely(domain->ops->domain_has_cap == NULL)) 954 return 0; 955 956 return domain->ops->domain_has_cap(domain, cap); 957 } 958 EXPORT_SYMBOL_GPL(iommu_domain_has_cap); 959 960 static size_t iommu_pgsize(struct iommu_domain *domain, 961 unsigned long addr_merge, size_t size) 962 { 963 unsigned int pgsize_idx; 964 size_t pgsize; 965 966 /* Max page size that still fits into 'size' */ 967 pgsize_idx = __fls(size); 968 969 /* need to consider alignment requirements ? */ 970 if (likely(addr_merge)) { 971 /* Max page size allowed by address */ 972 unsigned int align_pgsize_idx = __ffs(addr_merge); 973 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 974 } 975 976 /* build a mask of acceptable page sizes */ 977 pgsize = (1UL << (pgsize_idx + 1)) - 1; 978 979 /* throw away page sizes not supported by the hardware */ 980 pgsize &= domain->ops->pgsize_bitmap; 981 982 /* make sure we're still sane */ 983 BUG_ON(!pgsize); 984 985 /* pick the biggest page */ 986 pgsize_idx = __fls(pgsize); 987 pgsize = 1UL << pgsize_idx; 988 989 return pgsize; 990 } 991 992 int iommu_map(struct iommu_domain *domain, unsigned long iova, 993 phys_addr_t paddr, size_t size, int prot) 994 { 995 unsigned long orig_iova = iova; 996 unsigned int min_pagesz; 997 size_t orig_size = size; 998 int ret = 0; 999 1000 if (unlikely(domain->ops->map == NULL || 1001 domain->ops->pgsize_bitmap == 0UL)) 1002 return -ENODEV; 1003 1004 /* find out the minimum page size supported */ 1005 min_pagesz = 1 << __ffs(domain->ops->pgsize_bitmap); 1006 1007 /* 1008 * both the virtual address and the physical one, as well as 1009 * the size of the mapping, must be aligned (at least) to the 1010 * size of the smallest page supported by the hardware 1011 */ 1012 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1013 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1014 iova, &paddr, size, min_pagesz); 1015 return -EINVAL; 1016 } 1017 1018 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1019 1020 while (size) { 1021 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1022 1023 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1024 iova, &paddr, pgsize); 1025 1026 ret = domain->ops->map(domain, iova, paddr, pgsize, prot); 1027 if (ret) 1028 break; 1029 1030 iova += pgsize; 1031 paddr += pgsize; 1032 size -= pgsize; 1033 } 1034 1035 /* unroll mapping in case something went wrong */ 1036 if (ret) 1037 iommu_unmap(domain, orig_iova, orig_size - size); 1038 else 1039 trace_map(iova, paddr, size); 1040 1041 return ret; 1042 } 1043 EXPORT_SYMBOL_GPL(iommu_map); 1044 1045 size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size) 1046 { 1047 size_t unmapped_page, unmapped = 0; 1048 unsigned int min_pagesz; 1049 1050 if (unlikely(domain->ops->unmap == NULL || 1051 domain->ops->pgsize_bitmap == 0UL)) 1052 return -ENODEV; 1053 1054 /* find out the minimum page size supported */ 1055 min_pagesz = 1 << __ffs(domain->ops->pgsize_bitmap); 1056 1057 /* 1058 * The virtual address, as well as the size of the mapping, must be 1059 * aligned (at least) to the size of the smallest page supported 1060 * by the hardware 1061 */ 1062 if (!IS_ALIGNED(iova | size, min_pagesz)) { 1063 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 1064 iova, size, min_pagesz); 1065 return -EINVAL; 1066 } 1067 1068 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 1069 1070 /* 1071 * Keep iterating until we either unmap 'size' bytes (or more) 1072 * or we hit an area that isn't mapped. 1073 */ 1074 while (unmapped < size) { 1075 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 1076 1077 unmapped_page = domain->ops->unmap(domain, iova, pgsize); 1078 if (!unmapped_page) 1079 break; 1080 1081 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 1082 iova, unmapped_page); 1083 1084 iova += unmapped_page; 1085 unmapped += unmapped_page; 1086 } 1087 1088 trace_unmap(iova, 0, size); 1089 return unmapped; 1090 } 1091 EXPORT_SYMBOL_GPL(iommu_unmap); 1092 1093 1094 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 1095 phys_addr_t paddr, u64 size, int prot) 1096 { 1097 if (unlikely(domain->ops->domain_window_enable == NULL)) 1098 return -ENODEV; 1099 1100 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 1101 prot); 1102 } 1103 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 1104 1105 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 1106 { 1107 if (unlikely(domain->ops->domain_window_disable == NULL)) 1108 return; 1109 1110 return domain->ops->domain_window_disable(domain, wnd_nr); 1111 } 1112 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 1113 1114 static int __init iommu_init(void) 1115 { 1116 iommu_group_kset = kset_create_and_add("iommu_groups", 1117 NULL, kernel_kobj); 1118 ida_init(&iommu_group_ida); 1119 mutex_init(&iommu_group_mutex); 1120 1121 BUG_ON(!iommu_group_kset); 1122 1123 return 0; 1124 } 1125 arch_initcall(iommu_init); 1126 1127 int iommu_domain_get_attr(struct iommu_domain *domain, 1128 enum iommu_attr attr, void *data) 1129 { 1130 struct iommu_domain_geometry *geometry; 1131 bool *paging; 1132 int ret = 0; 1133 u32 *count; 1134 1135 switch (attr) { 1136 case DOMAIN_ATTR_GEOMETRY: 1137 geometry = data; 1138 *geometry = domain->geometry; 1139 1140 break; 1141 case DOMAIN_ATTR_PAGING: 1142 paging = data; 1143 *paging = (domain->ops->pgsize_bitmap != 0UL); 1144 break; 1145 case DOMAIN_ATTR_WINDOWS: 1146 count = data; 1147 1148 if (domain->ops->domain_get_windows != NULL) 1149 *count = domain->ops->domain_get_windows(domain); 1150 else 1151 ret = -ENODEV; 1152 1153 break; 1154 default: 1155 if (!domain->ops->domain_get_attr) 1156 return -EINVAL; 1157 1158 ret = domain->ops->domain_get_attr(domain, attr, data); 1159 } 1160 1161 return ret; 1162 } 1163 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 1164 1165 int iommu_domain_set_attr(struct iommu_domain *domain, 1166 enum iommu_attr attr, void *data) 1167 { 1168 int ret = 0; 1169 u32 *count; 1170 1171 switch (attr) { 1172 case DOMAIN_ATTR_WINDOWS: 1173 count = data; 1174 1175 if (domain->ops->domain_set_windows != NULL) 1176 ret = domain->ops->domain_set_windows(domain, *count); 1177 else 1178 ret = -ENODEV; 1179 1180 break; 1181 default: 1182 if (domain->ops->domain_set_attr == NULL) 1183 return -EINVAL; 1184 1185 ret = domain->ops->domain_set_attr(domain, attr, data); 1186 } 1187 1188 return ret; 1189 } 1190 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 1191